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Abstract

This thesis treats the backreaction of quantum degrees of freedom on classical systems,
with a focus on gravitational physics. We consider both fundamental and effective classical
subsystems.

Assuming fundamental classicality of a subsystem leads to classical-quantum (CQ) dynam-
ics, a framework that requires both decoherence and classical diffusion for consistency. We first
apply the CQ formalism to study the evolution of two coupled oscillators — one classical, one
quantum — with classical friction. Using path integrals, we show that the system relaxes to a
unique non-equilibrium steady state, which becomes thermal in the high-diffusion limit. We
derive the phase-space representation of hybrid dynamics and show that for harmonic potentials
it maps exactly to a Fokker-Planck equation.

We then examine the proposal that gravity could remain fundamentally classical. Consis-
tency of the theory at all scales implies that the combined matter and gravitational evolution
has be of CQ form. We first analyse a stochastic Klein-Gordon field (the classical sector of a CQ
Yukawa model) as a toy model for linearised CQ gravity. We address the issue of unbounded
diffusion and discuss the implication of the infinite energy production in the model. Next, we
study a CQ model of cosmology. In a stochastic FLRW Universe, we show that diffusion during
inflation, if strong enough, could mimic dark matter (CDM) effects.

The second part discusses “braneworld holography” as a method to compute semiclassi-
cal backreaction of conformal quantum fields on an effectively classical metric. We apply this
framework and find an exact quantum Kerr—de Sitter solution to the (2+1)-dimensional semi-

classical Einstein’s equations with higher-curvature corrections, and derive its thermodynamic



properties. We compare the exact solution with the non-holographic, but limited, perturbative

approach to the backreaction problem. We conclude with prospects for future work.



Impact Statement

This thesis presents and analyses models that can be useful to study the problem of gravitational
backreaction, and quantum-classical backreaction more generally.

The hybrid damped classical-quantum oscillator we discuss provides the first non-thermal
steady-state in a consistent hybrid system. It provides the stepping stone towards the study
of non-equilibrium thermodynamics when both classical and quantum degrees of freedom are
present. It also shows that classical friction can be enough for the hybrid system to flow to a
steady-state. The phase-space representation of hybrid dynamics we present provides a novel
approach to efficiently simulate CQ evolution.

The techniques we introduce to solve for the classical stochastic Klein-Gordon — such as
the regularisation of the divergences and the pole-prescription in Fourier space — can be easily
generalised to any classical stochastic out-of-equilibrium field. This is key for the study of lin-
earised hybrid gravity, a natural next step towards the development of a theory of fundamental
classical gravity interacting with quantum matter.

The stochastic model of cosmology we present gives a novel mechanism to generate cold dark
matter phenomenology without the need of a hidden dust fluid. Further, it can be used, together
with our result on relativistic stochastic scalars, to explore how CQ cosmology diverges from
LambdaCDM, in order to come up with cosmological and table-top tests on the quantum nature
of the gravitational field. Indeed, falsifying CQ gravity would indirectly prove the quantumness
of the spacetime geometry.

The quantum black hole solution we discuss is the first rotating black hole in (2+1)-
dimensional de Sitter space. It — and braneworld holography in general — provides a fertile

ground of investigation to study the role of quantum corrections to classical GR results.
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Chapter 1

Introduction

The split between the classical and quantum world is a blurred line of demarcation. Importantly,
such a separation can sometimes lie in between interacting subsystems: the same object can
have some degrees of freedom which behave classically and others whose description requires
the quantum toolkit.

The situation in which it is only the evolution of the quantum subsystem to be influenced by
the classical one is well-understood and under good analytical control. It encompasses a range
of physical settings of interest, from a spin evolving in a magnetic field to quantum field theory
in curved spacetime. There, it suffices to have the parameters controlling the quantum evolution
operator being dependent on the value of some classical, independently-evolving, variable. In
all other aspects, it is simply standard — often even unitary — quantum mechanics.

In this thesis we will focus on the much harder problem of handling quantum backreaction:
we will take the evolution law of the classical degrees of freedom to depend on the state of the
quantum subsystem. In particular, we will study the problem of quantum matter bakcreacting

on a (fundamentally or effectively) classical geometry.

1.1 A brief history of consistent hybrid evolution

In most situations of interest the classicality of a subsystem of a hybrid system is only effective:
it is always assumed — or known — that there exists a fundamental quantum evolution governing

the full object, with the semi-classical description being only a useful effective theory. This
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is the case, for example, in quantum chemistry [8, 9] and measurement-and-feedback [10, 11]
(a framework used to describe quantum control, in which the measurement device is explicitly
treated as an effectively classical object). These cases can be successfully described by effective
theories of classical-quantum interaction, with some particular breakdown scale or time, after
which the quantum effects in the approximately classical system become important. The most
common techniques are the mean-field approximation, or the truncated Wigner approach.

It is, however, when the classicality of the C' subsystem is assumed to be fundamental that
one needs to be extremely careful. We call systems in which such an assumption is taken
classical-quantum (CQ) models. Historically, a number of no-go theorems have been disrupting
the way towards a unified consistent framework of hybrid classical-quantum dynamics. The
motivation towards the search of these models was originally gravitational physics itself: the
geometric description of gravity provided by Einstein’s theory of general relativity had proven to
be somewhat resistent to a straightforward description in terms of quantum fields. It was then a
natural question to ask whether a fundamentally classical spacetime interacting with quantum
field could have been seriously considered as an alternative to a fundamentally quantum theory

of gravity.

1.1.1 The failure of the mean-field equations

To see why consistent classical-quantum backreaction is problematic, consider the semiclassical
Einstein’s equations

GMV = 87TGN<TM,,> (1.1)

to be the evolution equations for the classical sector of a hybrid theory of classical gravity
interacting with quantum fields. This was postulated by some of the first champions for funda-
mentally classical gravity (e.g. [12, 13]). However, argues Bryce DeWitt in a famous article [14],

even if the quantum matter obeyed a Schrodinger equation of the form

OlY)

7
OxH

= Hyul9)¥) (1.2)

linearity in the quantum system would be violated by the expectation value of the stress-
energy tensor in Equation 1.1, prohibiting quantum superpositions — a cornerstone of quantum

mechanics. Non-linearities in the quantum evolution also allow for superluminal signalling [15].
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Within the context of the semiclassical Einstein’s equations, local changes to stress-energy
tensor can be used to send information using entangled particles at space-like separated points.
This is not a result of the gravitational theory nor does it depend on a specific quantum matter
content — it is solely a feature of quantum evolution laws that are unitary but depend non-
linearly on the state. In particular, this issue is not related to small violations of causality in
low-energy effective field theory, that can be dealt with [16]. Of course, there is no a priori
reason why the classical metric would have to satisfy the semiclassical Einstein’s equations
in a hybrid theory of gravity, nor the evolution of the quantum state be unitary — indeed it
turns out that in CQ evolution one needs to give both up. DeWitt himself admits that there
might exist a way to have a classical gravitational theory, and that a way to couple a classical
metric to quantum fields existed has appeals of its own, possibly allowing for a solution to
the measurement problem [14]. However, that the simplest approach to semiclassical gravity
suffered of such a great pathology was a significant blow for the supporters of a fundamentally

classical theory of gravitation.

1.1.2 No-go theorems for classical-quantum dynamics

The Chapel Hill conference set the community on the definite path towards quantum grav-
ity [17]. As reported by the proceedings of the conference, Richard Feynman came up with a
convincing gedanken experiments against the fundamental classicality of the gravitational field.
Feynman originally imagined a thought Stern-Gerlach experiment involving a massive spin-1/2
particle, but we quickly present a modern reformulation by Aharonov [18] instead. Consider
the classic double-slit experiment: the state of the fired electron is driven to a quantum su-
perposition of having gone through the right and left slit, producing an interference pattern at
the end-screen. If, the gravitational field is quantum-mechanical, then it becomes entangled
with the trajectory of the electron that sources it, and no inconsistency arises. A classical field,
however, can never be in a quantum superposition.

Something needs to be postulated about how the classical gravitational field reacts to the
state of the electron. We know we need to exclude the case of a mean-field backreaction, i.e.
Equation 1.1, not to incur in pathologies due to the non-linear nature of the hybrid evolution.

The other natural option, postulated by Feynman, is that of a deterministic coupling — the

14



gravitational field knows about the objective position of the electron, and reacts to it. Said
in another way, the classical gravitational field encodes the information about which slit the
particle went through. Therefore, measuring gravitational forces with infinite accuracy (which
would be allowed in principle, as the metric would be a classical object) allows one to infer
which slit the electron goes through. That would obviously collapse any superposition and,
therefore, the intereference pattern — which we instead observe. Note that, crucially, the act of
actually measuring the gravitational field would be irrelevant: the fact that the information is
encoded in a classical degree of freedom is enough to make the superposition collapse.

At first sight, it seems hard to argue against this reasoning. In fact, progress can be
made by realising that, in this thought experiment, the gravitational field acts in all effect
as a measurement device. More precisely, it performs a projective measurement of the state
of the electron on the position basis. Then, as we will see, the way out is simply to make
the gravitational field a “worse” measurement device: this makes the collapse of the quantum
particle in the position basis slower, at the cost of adding uncertainty in the gravitational
equations.

Other gedanken experiments that supposedly prove the quantumness of gravity have piled
up over the years, the most famous of which were provided by DeWitt himself [19], Eppley and
Hannah [20] and Caro (their arguments are however contentious, see [21]) and Salcedo [22]. The
first two revolve around the idea that classical-quantum interaction inevitably leads to violation
of the Heisenberg uncertainty principle. The latter shows that the most popular approaches at
the time for a hybrid classical-quantum dynamics all suffer from some serious pathologies, from
breaking of positivity to failing to recover the correct evolution equations in the limit of small
coupling. All these rely on strong assumptions on what the hybrid dynamics has to look like
and can be easily circumvented. In fact, over the years, many examples of hybrid consistent

dynamics have been explicitly found, as we now see.

1.1.3 The first consistent hybrid evolution

Semiclassical equations in which the classical system simply reacts to the expectation values
of quantum operators [23, 24] suffer from the critical problem of non-linearities that we have

highlighted before, and can therefore be used solely as effective theories applicable when the

15



quantum system is “sharply peaked”. In that sense, they can be seen as the semiclassical limit
of the Hartree approximation in quantum mechanics.

A crucial shift in perspective towards consistent CQ dynamics was introduced in [25], where
a hybrid density matrix o(z), i.e. a subnormalised operator-valued function on phase space,
was first adopted as the state of a classical-quantum model. Nonetheless, the CQ Liouville
equation, namely the first proposals for the evolution equations of such a state, failed to satisfy
trivial positivity conditions on ¢ [23]. That is, a well normalised and positive probability dis-
tribution over the classical degrees of freedom evolved generically into a non-positive function
over the classical state-space. This was the inevitable faith of all the linear, yet reversible,
classical-quantum dynamics proposed throughout the years [26, 25, 27, 28, 29, 30]. Eventu-
ally, this technical problem was overcome, first for jumping dynamics in the classical degrees
of freedom [31, 32] and later to models with continuous classical phase-space [33, 34]. The
continuous dynamics was obtained by treating the semiclassical backreaction problem as a
measurement-and-feedback dynamics, i.e. treating the classical variable as the outcome of a
weak measurement on the quantum system, conditioned on which a specific unitary is applied
to evolve the quantum state.

This theoretical result sparked new interest in hybrid dynamics, and in particular for the
potential applications of these techniques to a consistent theory of fundamentally classical
gravity [35, 36, 37, 38]. Hybrid gravity models can be seen as a natural completion of stochastic
collapse models, theories proposed to explain the macroscopic emergent of classicality. In
stochastic collapse models [39, 40, 41, 42], the quantum state spontaneously collapses in a
specific basis with a fixed rate, a free parameter in these theories. The conceptual weakness
of collapse models, other than the fine-tuning required to minimise energy production due
to the spontaneous collapse [43, 44, 45, 46], is that the decoherence is added ad-hoc. The
first theories of consistent hybrid gravity, though restricted only to the Newtonian regime,
successfully bridged spontaneous collapse theories to the historical proposal that gravitational
interaction could be the source of wavefunction collapse [14, 47, 48, 49].

The key property that emerged from these first consistent models of hybrid dynamics is the
irreversibility of the evolution. This was later established to be an inescapable property of CQ

dynamics [50, 51, 52], with the quantum subsystem undergoing decoherence and the classical

16



one having a stochastic evolution. We describe in detail recent advances in the characterisation

of CQ models in Part I.

1.1.4 CQ gravity for quantum gravity tests

Although few challenge the fundamental quantum nature of the gravitational field, there is
still no agreed-upon model of quantum gravity. Since the first attempts by Rosenfeld [53] and
Bronstein [54], a wealth of alternatives has been put forward, each with their own degree of
success. Whilst the quantisation of low-energy perturbations of the metric is well-understood
— although the theory is non-renormalisable and therefore unpredictive at high energies [55] —
all ultraviolet (UV) complete quantum theories of gravity still fall short of both experimental
verification and creating consensus in the community. Moreover, no experiment yet has con-
firmed the quantum nature of the gravitational degrees of freedom — let alone any prediction
of specific theories.

The last few years have seen a surge in proposals for model-independent low-energy signa-
tures of quantum gravity. Current proposals include measuring gravitationally-induced entan-
glement [56, 57], quantum-induced noise in the gravitational field [58, 59] (which is, however,
only expected to be measurable for highly squeezed states [60]) and others [61, 62, 63]. However,
these proposed tabletop experiments still require some significant technological developments to
reach the precision needed to observe these subtle effects [64]. As such, the recent precise char-
acterisation of theories that describe fundamentally classical degrees of freedom interacting with
quantum systems [50, 51] opens new interesting avenues to test the fundamental quantumness
of the gravitational field.

As mentioned, a condition for hybrid theories to be consistent is that they necessarily need
to allow for both decoherence of quantum states and stochasticity in the classical degrees of
freedom [50, 51, 52|, two effects that can produce observable phenomenology [65]. Crucially, the
decoherence and diffusion coefficients of a CQ theory are not independent, but need to satisfy a
relation known as the decoherence-diffusion trade-off [33, 65], implying that both effects cannot
be made arbitrarily small. Since any theory of fundamentally classical gravity interacting with
quantum matter must satisfy the decoherence-diffusion trade-off, measuring its violation (by

experimentally bounding both decoherence and diffusion coefficients) is a simple way to test
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indirectly the quantum nature of the gravitational field.

1.2 Effective semiclassical theories

When the classicality of a quantum degree of freedom is effective, consistency of the hybrid
model at all scales and all times is not a necessity. In fact, as long as one is aware of the
limitations of a model, alternative approaches to the full hybrid framework can be used, often
offering the appealing prospect of a simpler analysis.

The two most common approximations, especially in the gravitational community, are the
mean-field and “truncated Wigner” approaches. The semiclassical Einstein’s equation fall
neatly in the former: the classical system responds to the expectation value of some quan-
tum observable. They correspond to the semiclassical limit of the Hartree approximation — i.e.
the approach of treating the dynamics of a single subsystem as moving in the mean-field of
the rest of the system, which is well-motivated for a large number of particles (or fields). That
is, whenever the system of interest interacts with another whose fluctuations around the mean
are negligible [66, 67, 68]. The “truncated Wigner” approximation, instead, treats the evolu-
tion of the classical system as an ensemble average over independent realisations evolved from
initial conditions drawn from the initial, classical-like, Wigner distribution [69]. Although the
evolution map is non-positive [70], it is extremely popular in cosmology [71, 72] and condensed
matter systems [73, 74]. Both of these methods successfully capture aspects of the quantum dy-
namics up to some quantum breakdown time, when quantum effects in the effectively classical
system are no longer negligible [75, 76, 77].

The CQ formalism itself, involving both diffusion and decoherence, can be derived from the
partial classical limit of a bipartite quantum system [78]. However, when used as an effective
theory, the decoherence-diffusion trade-off needs not to be satisfied, and the dynamics might
be non-positive in general. In these cases, the decoherence or diffusion effects can appear as

subleading effects, providing only marginal improvements to other simpler approximations.
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1.2.1 Semiclassical Einstein’s equations

In quantum gravity research, the semiclassical Einstein’s equations have long been used as the
main tool to assess the backreaction effect of the quantumness in the matter degrees of free-
dom on an effectively classical geometry. The validity of the solution is restricted to regions
of spacetime whose local radius of curvature is far above the Planck length Lp [79] and for
quantum states of matter whose averaged stress-energy tensor has small fluctuations with re-
spect to its mean [66]. As an effective theory, there have been proposals to go beyond the
semiclassical equations themselves. The most relevant one, which shares certain features with
the CQ formalism, is Bei Lok Hu’s stochastic gravity (SG) [80]. There, the semiclassical Ein-
stein’s equations are supplemented with a stochastic driving force, which is intended to model
the fluctuations around the mean of the expected stress-energy tensor. This is the first main
difference with CQ gravity, where, for the evolution to be consistent, the noise kernel cannot
depend on the quantum state of the matter. Secondly, the evolution of the quantum sector is
still the standard unitary quantum field theory in curved spacetime — there is no decoherence
in the quantum degrees of freedom. As such, SG suffers from the same issue of non-linearity as
the standard semiclassical gravitational equations. Another key difference between SG and CQ
gravity is the origin of the noise process. In SG, the stochasticity is effective, coming from the
integration of some “fast” microscopic degrees of freedom — as standard [81]. Generally, such
a procedure does not produce a Markovian dynamics, with memory kernels appearing in the
reduced equations of motion. Still, at weak coupling with the bath, such stochastic equations
are well approximated by the memoryless, time-local, form if there is a clear-cut separation of
scale [82]. Further, as we explain in the next section, the effective nature of the noise term
implies, naturally, a distinct definition of the stochastic differential equations modelling the
dynamics with respect to the one representing the fundamental noise in CQ.

Nonwithstanding their popularity, the interpretation of the semiclassical Einstein’s equation
is contentious. Taken at face value, they caused the worst prediction in physics — popularly
known as the cosmological constant problem [83]. Indeed, were the full divergent vacuum
stress tensor to backreact on a semiclassical geometry, it would correspond to a vastly larger
cosmological constant than observed (irrespective of whether one uses as cutoff for the quantum

fluctuations the Planck scale or the QCD scale, and of supersymmetric cancellations between

19



bosonic and fermionic loops [84]). Today, we understand that it is the renormalised stress
tensor that backreacts on the geometry [85, 86, 87, 88], with the vacuum fluctuations being
subtracted off. Other loop effects such as vacuum polarisation can still potentially backreact
and contribute to an effective cosmological constant [84].

One of the main sources of interests on the semiclassical Einstein’s equation has been the ob-
servation that, in general, the expectation value of the quantum stress tensor does not satisfy the
usual positive energy conditions [89] which sits at the base of a wealth of classic GR results. Vi-
olation of positive-energy conditions allow for the construction of exotic gravitational solutions,
like traversable wormholes and closed timelike curves. A weaker version of the null-energy con-
dition, the averaged null energy condition, is itself violated [90] in curved space. Nevertheless,
other generalisations hold, such as the achronal averaged null-energy condition [91], forbidding
these exotic solutions. Moreover, taking quantum backreaction into the picture suggests that
any violation of the averaged null-energy condition by the quantum stress-tensor are at most
Planckian in size [79].

Solving the semiclassical Einstein’s equations themselves is a great challenge. Explicit,
exact self-consistent solutions have been found for highly symmetric cases (e.g. when the fields
possess conformal invariance and the matter stress tensor is fully determined by the conformal
anomaly [92, 93, 94]). For more general settings, the perturbative approach is required [95,
96, 97], in which one iteratively solves for corrections to both the classical geometry and the
quantum correlations sourcing it. Fortunately, a novel, powerful techniques has been recently
uncovered to extract ezract solutions to the semiclassical Einstein’s equations — braneworld

holography.

1.2.2 Braneworld holography and quantum backreaction

Braneworld models were historically introduced as a possible solution to the hierarchy prob-
lem [98, 99]. They treat the four-dimensional world we experience as a (mem)brane sitting in a
spacetime with large extra-dimensions. Although over the years their phenomenological appeal
faded due to experimental constraints on the size of these “large” extra dimensions [100], the
discovery of the AdS/CFT correspondence [101] has opened the doors to new applications of

these models.
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Born out of studies in string theory, AdS/CFT is a non-perturbative candidate model of
quantum gravity, where gravitational physics in a bulk d + 1-dimensional asymptotically AdS
spacetime has a dual description in terms of a CFT living on the d-dimensional conformal
boundary of AdS. This duality is therefore a concrete realization of gravitational hologra-
phy [102, 103]. More specifically, in a large-N expansion, the planar diagram limit of the CFT,
the bulk is well-approximated by classical gravity. A powerful feature of the AdS/CFT corre-
spondence is strong-weak coupling duality: coupling constants between the bulk and boundary
theories are inversely related, G ~ N~!. Thus, computations of strongly coupled field theories
may instead be performed via a classical gravity calculation. While the boundary geometry
on which the CFT lives may be curved (and even contain black holes [104]), it is fixed. Con-
sequently, standard AdS/CFT holography alone is insufficient for addressing the problem of
semi-classical backreaction.

It is when combined with braneworlds that holography functions as a useful toolkit to
address difficult problems in semi-classical gravity. In this framework, AdS/CFT duality is
adapted to incorporate situations where a portion of the bulk, including its boundary, is re-
moved by a d-dimensional Randall-Sundrum [105, 99] or Karch-Randall [106, 107] braneworld.
Crucially, the geometry of the end-of-the-world (ETW) brane is dynamical, having an in-
duced theory of gravity. More precisely, the brane serves as an infrared cutoff in the bulk,
translating to a ultraviolet cutoff for the holographic CFT. As in holographic renormaliza-
tion [108, 109, 110, 111, 112], a tower of higher-derivative corrections to the d-dimensional
Einstein-Hilbert action are induced by the holographic cutoff CFT;. From the brane perspec-
tive, the induced theory may thus be interpreted as a semi-classical theory of gravity [113],
where the higher-derivative corrections incorporate backreaction effects due to the CFT living
on the brane. By the AdS/CFT correspondence, the induced metric on the brane is guaranteed

to solve the higher-curvature semiclassical Einstein’s equations:
Gij + Aqgij + (higher-curvature) = 871Gy (E?FT>p1anar , (1.3)

Here A4 and G4 are induced cosmological and Newton constants on the brane, and the right-
hand side indicates the holographic CFT is in its planar limit. This is the focus of Part II of the
thesis, where we describe a specific holographic construction in 3+1-dimensions that computes

a novel solution to the semiclassical gravitational equations — a quantum-corrected rotating de

21



Sitter black hole in 2+1-dimensions.

1.3 Structure of the thesis

The thesis treats two different approaches to the quantum backreaction problem on (semi)-
classical systems, with an interest towards gravitational physics. As such, it is divided in two

main parts, plus some final remarks in Part III bridging the two main topics of discussion.

1.3.1 Classical-quantum gravity

Part I concerns quantum backreaction on fundamentally classical systems, and contains Chap-
ters 2 to 5.

In Chapter 2 we review the most general form of self-consistent classical-quantum dynamics.
We begin with a quick summary of the main ideas in the theory of stochastic processes and open
quantum systems, in all of their three equivalent descriptions: master equation, unravelling in
terms of trajectories and path integrals. They will be important to understand the main features
of hybrid CQ dynamics. We then proceed to introduce the most general form of Markovian,
self-consistent, hybrid dynamics — again in all of its three equivalent representations.

Chapter 3 is the first result section of the thesis. Here, we solve a simple toy model of
hybrid classical-quantum dynamics: two interacting harmonic oscillators, one quantum and the
other classical, with the latter experiencing friction. By mapping the problem exactly to a
classical Ornstein—Uhlenbeck process, we show that the hybrid system reaches a steady state
for any value of the couplings. We then compute its properties, such as correlations, response
to external perturbations and occupation in the quantum system. Crucially, we show that
the combined state becomes thermal when the diffusion in the classical sector is large. We
also perform the Wigner-Moyal transform of the hybrid dynamics, deriving the phase-space
representation of CQ evolution. This chapter is based on yet unpublished work [1].

The next two chapters focus on the phenomenology of the classical sector of a potential CQ
theory of gravity. In Chapter 4, we consider the evolution of a classical field in a hybrid Yukawa
model. We begin by reviewing the classical thermal Klein-Gordon (KG) field, the steady-state

of a damped stochastic KG evolution. Then, we move on to the non-equilibrium random
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system, We describe how to compute the non-equilibrium two point function of the scalar field,
showing explicitly the role of the initial state in regulating divergences. In particular, we use
a “mod-squared-retarded” pole-prescription to find that the covariance in the field is non-zero
only outside the lightcone, scales inversely with the spatial distance of the spacetime points and
grows linearly in time. We show how these results map to the thermal state correlations. We
conclude by discussing the implications for hybrid theories of gravity, in particular regarding
energy production and the induced brownian motion on test particles due to the fluctuations
generated in the classical field. This chapter is based on currently unplublished work with
Jonathan Oppenheim [2]

Chapter 5 presents a stochastic model of cosmology motivated by CQ gravity. In particular,
on comsological scales, the quantum matter can be taken to be decohered on classical-like
states. However, the decoherence-diffusion trade-off is independent on the state of the quantum,
meaning that the classical degree of freedom — in this case the cosmological scale factor —
would still experience stochastic fluctuations. We investigate what that would imply in a
homogeneous and isotropic model of cosmology — the Friedmann-Leimatre-Robertson-Walker
Universe. We find that the stochastic evolution results in the spatial metric diffusing away
from its deterministic value, generating phantom cold dark matter (CDM). This is produced
primarily at the end of the inflationary phase of the Universe’s evolution, with a statistical
distribution that depends on the specifics of the early-times cosmological model. We find the
energy density of this phantom cold dark matter is positive on average, a necessary condition
to reproduce the cosmological phenomenology of CDM, although further work is required to
calculate its mean density and spatial distribution. If the density is cosmologically significant,
phantom dark matter acts on the geometry in a way that is indistinguishable from conventional
CDM. As such, it has the potential to reproduce phenomenology such as structure formation,
lensing, and galactic rotation curves. We conclude by discussing the possibility of testing
hybrid theories of gravity by combining measurements of the Cosmic Microwave Background
with tabletop experiments. This section is based on work done in collaboration with Jonathan

Oppenheim and Andrew Pontzen [3].
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1.3.2 Quantum-corrected black holes

Part II of the thesis contains Chapters 6 and 7 where we discuss how to use braneworld holog-
raphy to exactly solve the backreaction problem on an effectively classical geometry.

We begin in Chapter 6, where we introduce and motivate the braneworld holography ap-
proach to semiclassical gravity. After having summarised briefly the main ideas needed from the
standard AdS/CFT correspondence, we derive the equations of motion for the induced metric
on a dynamical brane in AdS, showing that — under the holographic principle — they solve a
higher-order theory of semiclassical gravity. We follow by discussing a perturbative calcula-
tion to compute the semiclassical backreaction of a conformally coupled quantum scalar onto
the rotating (2+1)-dimensional Kerr-de Sitter spacetime, a GR solution of lower-dimensional
gravity that presents a naked conical singularity. We present the limitations of the standard
perturbative calculation, but highlight the suggestive result that quantum backreaction sets up
a Planckian-sized event horizon hiding the naked singularity — saving cosmic censorship. This
section is based on a review on the topic of braneworld holography written in collaboration
with Juan Pedraza and Andrew Svesko [4] with the perturbative calculations based on work
with Andrew Svesko [5].

In Chapter 7 we construct an explicit, novel, solution to the semiclassical Einstein’s equation
in 241 dimensions by means of braneworld holography — the quantum-corrected Kerr-de Sitter
black hole. The quantum Kerr black hole shares many qualitative features with the classical
four-dimensional Kerr-de Sitter solution. Of note, backreaction induces inner and outer black
hole horizons which hide a ring singularity. Moreover, the quantum-corrected geometry has
extremal, Nariai, and ultracold limits, which appear as fibered products of a circle and two-
dimensional anti-de Sitter, de Sitter, and Minkowski space, respectively. The thermodynamics
of the classical bulk black hole, described by the rotating four-dimensional anti-de Sitter C-
metric, has an interpretation on the brane as thermodynamics of the quantum black hole,
obeying a semi-classical first law where the Bekenstein-Hawking area entropy is replaced by
the generalized entropy. We conclude by comparing the exact solution of the higher-curvature
theory with the perturbative results derived from the semiclassical Einstein’s equations. This

chapter is based on work done in collaboration with Andrew Svesko [5].
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Conventions

Unless explicitly stated, we use the mostly positive convention for the Minkowski metric (—, 4+, +, +).

We also take h = ¢ = kp = 1.
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Part 1

Classical-Quantum dynamics
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Chapter 2

Consistent classical-quantum

dynamics

We now present the general classical-quantum (CQ) framework to describe consistent coupling
of classical and quantum degrees of freedom. First, we summarise the main concepts in classical
stochastic dynamics and open quantum system. Then, we merge these two frameworks and
discuss the most general form of CQ dynamics. In all cases, we describe three equivalent

representations of the dynamics: master equation, unravelling and path integral.

2.1 Stochastic classical dynamics

We denote a (deterministic or stochastic) classical degree of freedom by z € M, where M is the
m-~dimensional space of physical states. In most occasions, we take M to be the canonical phase-
space, with the coordinates chosen to represent m/2 positions and their conjugate momenta.
We refer to a realised trajectory through M via z = Z;.

Contrary to deterministic physics, in which one can compute the unique trajectory of the
classical degree of freedom in state space given the initial condition and the physical law, in
stochastic dynamics the best we can do is to predict the evolution of the probability density

p(z,t) over state space, or, equivalently, the probability of a given trajectory Z; being realised.
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Probability density and its evolution

The probability density is a positive, normalised, scalar density, i.e.:

p(z,t) >0, /M dz p(z,t) =1. (2.1)

It encodes the probability of finding the classical degree of freedom within the infinitesimal
volume d™z in state space at time ¢. It can also be used to compute the expectation value with
respect to the ensemble of any function O(z) of the stochastic degrees of freedom by integration

over state space:
E[O] :/ dz O(z)p(z,1) . (2.2)
M
The evolution map for probability distribution needs to satisfy some basic properties, ir-

respective of the physical model it is supposed to describe. Indeed, consider an operator that

takes a probability distribution at time ¢ = 0 and computes its future state at time :

p(z,t) = Li[p(2,0)] - (2.3)

Requiring that the final state p(z,t) is a valid probability distribution imposes clear restrictions
on the form of the map. Indeed, it needs to be linear, positive and norm-preserving. The latter
two conditions are obvious from the definition of a probability distribution. The first one comes
from the observation that the set of valid probability distributions is convex, meaning that for

any 0 < 6 <1 we can decompose p(z,t) as:

p(z,t) = Op1(z,t) + (1 — O)pa(z,t) , (2.4)

with p1o being two other probability distributions. Requiring that the map preserves this
decomposition imposes that £ must be a linear operator.

These three requirements are themselves not restrictive enough to fully characterise the
most general form of valid evolution operators acting on probability distributions. Yet, a simple
assumption simplifies the matter greatly — Markovianity. A stochastic dynamics is Markovian
if it is time-local, or memoryless. That is, information about the system in the past is irrelevant
if one knows already the current probability distribution. Markovianity is a strong assumption:
most effective stochastic systems do have memory [82]. Yet, as long as one coarse grains on

time-scales large enough with respect to the memory timescales, the Markovian approximation
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is effective and simplifies greatly the description of the system. Moreover, it might be a natural
expectation for any fundamental stochastic theory — CQ gravity falls necessarily in this category,
as we will shortly see — to be Markovian. This is the nature of the laws of physics that have
been so successful in describing fundamental interactions so far — both in QFT and GR it
suffices to know the current state to predict future ones. In fact, any Hamiltonian theory is by
construction time-local. It does not seem a stretch to require such a property to be retained,
even when we relieve the dynamics from fundamental determinism. For these reasons, and for
the sake of simplicity, we solely restrict to memoryless dynamics in this thesis.

Requiring £ to be Markovian, linear, positive, norm-preserving and time-local yields to the

following partial differential equation as the unique evolution equation for a probability density:

op(z,t) = (=) o
= Dy jiy....inP(2,1)] - 2.
ot nzl n!  0z,..0%, Dris..inP(2 )] (2:5)

Here, D,, are the Kramers-Moyal coefficients defined in terms of the central moments of the
infinitesimal transition probability function. That is, expanding the infinitesimal Markovian

conditional distribution as:
p(z,t|2 t — 6t) = 6(2,2") + W(z]2)ot + O(6t?) , (2.6)
the Kramers-Moyal coefficients are defined as

D(2)niy.in = /M dz W(z|2')(z = 2)iy (2 = 2)i, - (2.7)

Note that different conventions exist with respect to the factor of n!. The moments of the
Kramers-Moyal expansion fully characterise the evolution of a Markovian process via Equa-
tion 2.5, known as the Kolgomorov forward equation.

Positivity enforces an important requirement on the Kramers-Moyal coefficients. Indeed, the
Pawula theorem [114] states that the derivative expansion of the Kolgomorov forward equation
can truncate only at 1st or 2nd order. If any of the D,, with n > 2 is non-zero, then the whole
tower of moments is non-vanishing and the higher derivative terms have to be kept into account.
The latter is the case for jumping processes. Drift-only processes, i.e. deterministic processes
which might have uncertainty in the initial state, but not in the evolution, truncate at 1st order.

Those that truncate at 2nd order are diffusive processes, i.e. stochastic systems with continuous
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trajectories in phase space. For the latter family of systems, the forward Kolgomorov equation

is commonly known as the Fokker-Planck equation:

a ) —
adiad/]

ot 0z; [D2,ij p(z,t)] ) (2.8)

where Einstein’s summation convention is understood and D; is called the drift vector, con-
trolling the average force on each of the degrees of freedom of the system, whilst the positive
semi-definite Dy ;; is known as the diffusion matrix and encodes the correlation in the stochastic
random kicks. Note that the adjective “vector” to D; is a misnomen — it is a pseudovector under
coordinate transformation on state space. Yet, it is possible to repackage the Fokker-Planck
equation in a covariant manner [115].

When the deterministic part of the dynamics is taken to derive from some classical Hamil-

tonian Ho, the Fokker-Planck equation can be written as:

op(z,t) 1 02
o {Heo,p(z,t)} + 20207

[Daij p(2,1)] , (2.9)

where for Dy = 0 we recover the standard Liouville equation evolving the initial uncertainty
over the state of a deterministic Hamiltonian system. Here, {-,-} are the standard Poisson

brackets.

Trajectories

Sometimes, we desire to understand the property of specific realisations, or trajectories, of the
classical stochastic system in state space. These two pictures are obviously equivalent: given all
the allowed trajectories Z; of the stochastic dynamics with their associated probabilities, the
probability distribution p(z,t) is just the expectation value over all realisations of the trajectory

passing through the point 2z at time ¢:
p(z,1) = E[(z — Z)] . (2.10)

The evolution of any continuous stochastic variable can be therefore equivalently described in
terms of stochastic differential equations (SDEs). For a continuous Markovian process Z;, the

evolution equation is given by
Az = p(Zy, t)dt + ob(Zg, t)dWF | (2.11)
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where 1 and o determine the deterministic and stochastic forces respectively, whilst dW} is a
vector of independent Wiener increments. A Wiener process is an almost surely continuous

stochastic process with Gaussian increments distributed as:
AW =W, — W[ ~N(0,t —t'), (2.12)

i.e. with vanishing mean and variance At, with dIW; being defined as the infinitesimal limit
of the increment. W; is also often called “Brownian motion” in the mathematics literature,
but we will reserve that characterisation for the dynamics of a particle experiencing a random
white noise force —i.e. a Wiener process specifically in momentum. It is useful to think of dW;
as order v/dt, with It6’s lemma making this precise [116]. For the results in this thesis, it is

sufficient to know that the Wiener increments satisfy 1t0’s rules:
AWidW] =dt 69,  aWjidt =0 . (2.13)

and that their expectation value is zero. Often, in the physics literature Equation 2.11 is
represented as:

Z =+ o€(t) (2.14)

where £ ~ dW/dt is a d-correlated white noise process. Equation 2.14 is commonly referred to
as a Langevin equation. When it comes to Langevin equations, however, their interpretation is
not unique. This comes from the fact that, unlike Riemann integrals, stochastic integrals give

different results for different discretisations. That is, the definition of Riemann integrals

fdt = lim > f(@Zy, + (1 - )2, (i — i) (2.15)

[tit1,ti]€mn

where 7, is a sequence of partition of [0, ] with mesh going to zero, gives the same interpretation
of the integral for every « € [0, 1] as ¢t — 0. In contrast, a stochastic integral defined similarly
as:

fAWp = lim Y f(aZy + (1= @) Ze, ) (Wirn — Wi) (2.16)
[ti+1,ti]€7rn

gives different results for different choices of a. Choosing o = 0, the update of the state Z;

from t to ¢ + At is given by:
Zt—l—At = Zt + /L(Zt)At + O'(Zt)AWt . (217)
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This is known as It0 integration. It is non-anticipative (i.e. the increment is evaluated with
information of the functions p and o at the current time-step only) and it is easier to handle
numerically, but it does not obey the standard chain rule. Instead, the total derivative of a

function of a stochastic variable Z; obeys It06’s lemma instead:

_(9f, of of 10°F
Af(Zy,t) = <8t + az“> dt + 5~ odW, + 55 50%dt (2.18)

The usual interpretation of the extra dt term appearing in the formula for the total derivative
relies on the intuition, mentioned earlier, that the Wiener process is of fractional order in time.
In particular, dW? ~ dt. All the stochastic equations in this thesis will be assumed to be in
It6 sense, unless otherwise stated. Itd’s lemma will be at the basis of key results in Chapters 4
and 5. The non-anticipative nature of the integration makes It6’s SDEs the natural choice to
define a fundamentally stochastic theory — to compute the next timestep it suffices to know the
current state and the stochastic increment.
On the other hand, o = 1/2 leads to:

AZ, = f (W) At+o (W) AW, . (2.19)

This choice is known as Stratonovich interpretation and does respect the usual chain rule,
but the background noise is anticipative, meaning that E[f(Z)dW;] # 0 in general. The
Stratonovich definition appears naturally when deriving stochastic differential equations through
coarse-graining. Indeed, when the stochastic force comes from the elimination of some fast de-
grees of freedom, it is natural to expect the force acting in a time-step At to be the result of the
time-average of the forces acting on the system of interest over the coarse-graining timescale.
This is precisely the physical interpretation of the & = 1/2 choice — reason why it is commonly
used in effective random systems where the noise models the interaction with some microscopic
environment [117].

Whilst the same SDE yields different probability distributions for the final state whether it
is intended in the Stratonovich or Ito sense, it is always possible to transform any It6 SDE into
a Stratonovich one, and vice-versa [117]. Specifically, the process described by the following
SDE

dZ" = p(Z)'dt + o(2):dWj (2.20)
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(where “o” indicates that the stochastic increment is of Stratonovich type) can be equivalently

be described by the following It6 process
dZ' = (WZ)" + 6(Z)") dt + o (2):dWY (2.21)

where the Ito correction amounts to

J 9ot
oy, 30']

ou(2) = 3 a7k (2.22)

Generally, when one is to simulate a Stratonovich process, it is convenient to map it to an It6
SDE like so, and then deploy a simple forward Euler-Maruyama scheme [118].

Given an SDE, there exists a unique Fokker-Planck equation describing the evolution of
the probability distribution of the process. When expressed in It6 sense, we can read off the

Fokker-Planck drift and diffusion coeflicient as:
i i ij _ 1 TNij
D} =p', Dy = 5(00 ) (2.23)

OM and MSR path integrals

There exists a third, equivalent, representation of stochastic processes in terms of functional
integration. In particular, given an initial probability distribution pg(z), the final state can be

computed in terms of the following functional integral:
z(T)=2' ~
p(z',T) :/ Dz/DZ NeSmselz2y, (), (2.24)

where z is the vector state of the system as before, whilst Z is a vector of equal dimensions
encoding the purely imaginary response variables and N ensures the appropriate normalisation.
This formalism is known as the Martin-Siggia-Rose (MSR) [119] formalism with the action
representing the Itd process in Equation 2.11 given by:
T
~ T 1 T ~
Smsrlz, 2] = dt |Z* (0yz — Dq) — 57 Dyz| . (2.25)
to
As usual, the expectation value of any observable O; at time ty < ¢t; < T can be computed by

insertion in the path integral:
E[] [ Oi(t:)] = / Dz / Dz NemSvsnlA TT 05(t:)po(z) - (2.26)
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From here, it is explicit why the variables Z are known as response variables. Indeed, imagine

that the system is pertubed with a delta-impulse I at tg. This amounts to a perturbed action:
Saisr — Susr + 2L I6(t — to)z (2.27)

If the impulse I is “small”, the action can be Taylor expanded. To first order, this corresponds
to the original path integral with an extra Z(to) overall — meaning that E[Z(¢¢)O] computes the
change in the observable O given a small perturbation at ty to the system.

The MSR path integral is useful in many settings — it is particularly apt to perturbation
theory and shares a similar structure to the quantum path integral approach for open quantum
systems that we describe in the next section. It is therefore the formalism we adopt throughout,
in particular in Chapters 3 and 4. Still, it is in principle possible to integrate out the quadratic
response variables. The resulting path integral, known as Onsager-Machlup [120], is commonly

used in the theory of large deviations [121].

2.2 Open quantum systems

The next section is dedicated to a quick review of the theory of open quantum systems —

quantum mechanics beyond unitary evolution.

The quantum state as a density matrix

The most general quantum state, which supports both classical and quantum correlations, is
not a ray in some Hilbert space H, but rather a density matrix p. A density matrix is a
positive, Hermitian and normalised (with respect to the trace) operator on H representing the
state of the system. Given an operator O on H, we can use the density matrix to evaluate its
expectation value (we drop hats from now on):

(0) = Tx[0p] = S_ilOpli) . (2.28)

K]
where the sum is over all the basis states chosen for H.
The advantage of dealing with density operators is that they allow us to consider not only

pure states, for which p = |¢) (1|, but also mixed states. Mixed states are quantum states with
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classical uncertainty. That is, if we have probability p; of finding ourselves on the pure state

|1hi), the state is described by the following mixed density matrix:
p=_ pili) (@il . (2:29)
i

Whilst both pure and quantum states are unit trace, as classical probabilities must sum to one,

the trace of p? tells the two families of states apart. In particular:
e Tr[p?] = 1 for pure states,

e Tr[p?] < 1 for mixed states.

In unitary quantum theory, mixed states arise naturally when one considers bipartite quan-
tum systems, i.e. quantum systems whose Hilbert space can be split into two factors, Ha
and Hp for the system A and FE respectively. When tracing out the environment E, a gen-
eral quantum state on the combined systems produces a mixed state on the Hilbert space A.
Specifically, any time there exists entanglement between the system and the environment, the
tracing operation deletes the quantum correlations between E and A, yielding a mixed state.
It is straightforward to see this by considering the simple example of a Bell state between E

and A
_ L
V2

which, after the partial trace over the environment, produces the maximally mixed state

&) (194l0)e + [Dall)E) , (2.30)

pa=Trp(JV)(¥[) =14 . (2.31)

The GKSL equation
In unitary quantum mechanics, the density matrix obeys the quantum Liouville equation:
Ohp = —ilH, p] (2.32)

Yet, this is not the most general form of dynamics that preserves the quantum state. The
evolution map preserving the density matrix can be in principle non-unitaty, as long as it
satisfies some key requirements. In general, when viewed as a map acting on density operators,
the evolution has to be a CPTP (completely positive and trace preserving) map — a quantum

channel. Quantum channels ®(-) are:
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L. linear: ®(Ap1 + (1 — A)p2) = A®(p1) + (1 — A)@(p2),

2. hermiticity preserving, meaning that p = pf = ®(p) = ®(p)T,

3. trace preserving: Tr[p] = Tr[®(p)],

4. completely positive: for any auxiliary Hilbert space Ha, p >0 = ®® 14,(p) > 0.

Linearity and trace preservation (TP) are necessary in order to retain the statistical interpreta-
tion of the density matrix, whilst complete positivity (CP) is required in order for the evolution
to give positive probabilities even when it acts only on part of a larger system. Kraus theorem

states that any quantum channel can be rewritten as:

®(p) = APKopK], | (2.33)
af

where A®P is a positive Hermitian matrix, whilst K, are called the Kraus operators and can
always be taken to describe an orthogonal set of operators on the Hilbert space. Trace preser-
vation implies:

S AYKIK, =1 (2.34)
af

With stochastic dynamics, much can be said on the form of the generator if one introduces
the assumption of time-locality. In the same spirit, we focus on Markovian open quantum
systems, i.e. systems for which the CTPT maps only takes the current state at ¢ to evaluate

the state at ¢ + dt. A map is then time-local if:
pr=L(pt) - (2.35)

It is an important result that any quantum channel with these properties can, via the appro-

priate choice of Kraus operators, be written in the following form:

dp

_ . 1
20 — ittt +3° (LapLh -~ J{LhLaurbs ) (2.36)

where {-, -} 1 represents the anticommutator (to avoid confusion with the Poisson bracket {-,-})
and A*% is a positive semi-definite matrix, with no additional requirement imposed on the

Lindblad operators L,. Here, the Lindblad operators are the leading order correction away
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from the identity to the Kraus operators up to order dt, i.e. they can be expressed, without
loss of generality, as

Ko=1-Lodt,  Kuzo=VotL, . (2.37)

Note that, to satisfy the normalisation condition of the Kraus operators to linear order in dt,
the following must be true:

1
Lo=iH +; > LiLa (2.38)
a#0

where H is some Hermitian operator which is to be matched to the generator of the unitary
evolution of the system — hence the Liouville-like term in Equation 2.36.

Equation 2.36 is commonly known as the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL)
equation, or simply as the Lindblad equation. When A*? = 0 we recover the von Neumann
equations, the quantum version of the Liouville equation, corresponding to unitary dynamics.
Whilst the GKSL equation can be assumed as the fundamental law for a non-unitary quantum
system, it can be also be shown, under certain assumptions, to be the evolution of a system in
contact with a bath when the combined evolution is unitary and the environment is traced out.
From this, the name “open quantum systems” is often used to describe the family of systems
undergoing Lindbladian evolution. More generally, any Lindblad evolution can be embedded
in a larger, unitary system [122]. This is known as dilation, or purification.

In Lindbladian evolution, pure states tend to evolve into mixed state, a process known as
decoherence. That is, quantum states evolve into statistical mixture of pure states. From the
point of view of the total system (or purifying system), the system of interest gets entangled
with the bath degrees of freedom via the unitary dynamics, but the tracing out of E destroys
the quantum correlation, leaving us with a mixed state. From the point of view of the GKSL
equation, this is done by the Lindblad operators, which act to suppress the off-diagonal terms
in the density matrix. To see that this is the case, consider the Lindblad equation with a single
Hermitian operator L. Then, we can diagonalise the operator as L = ), L;|¢)(i|. Expanding
the density operator in the basis that diagonalises the Lindblad operator we see explicitly that
the Lindblad term acts to dampen exponentially the off-diagonal components of the density
matrix with rate A\(L; — Lj)?:

ﬁ(Li — L;)? (2.39)

Orpij ~ —5
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Quantum trajectories

The evolution given by the GKSL equation can be unravelled in terms of trajectories. Unlike
the classical version, however, these trajectories are not objective (as one cannot observe which
trajectory the quantum state actually follows) and, more importantly, are not unique (as one
can decompose a mixed state density matrix in terms of pure states in multiple equivalent

ways). A common choice for the unravelling of Equation 2.36 is given by:

dly), = — iH[e)dt
- %MLL — (L)) (Lo — (La))[t)edt + %AQB«LI»LQ — (La)Li[)edt  (2.40)
+ (A2 (Lo — (La))désys

where A = A\1/2\1/2f and d€.,: is a complex-valued Wiener process obeying:
déndés =0, d€a, &5, = dapdt (2.41)

The unravelling has the advantage of fleshing out the decoherence effect. This is given by the
first term in the second line and the third line in Equation 2.36. Indeed, we see that the pure
state is pushed in Hilbert space towards eigenstates of the Lindblad operators, where such terms
stop contributing. The non-uniqueness of the quantum trajectories has a phenomenological in-
terpretation. Indeed, in specific settings, one can explicitly derive the different representations
of the unravelling by starting from the unitary evolution and supplementing it with a specific
measurement protocol [123, 124]. For example, the jumping Poisson representation for the
dynamics is related to photon counting in quantum optics, whilst the continuous Wiener un-
ravelling maps to a homodyne detection scheme. By including the evolution of the measurement
record itself, one obtains a CQ-type dynamics that lifts the redundancy in the description. In
fact, if one does have access to the specific measurement outcomes, there exist observables that
can distinguish the particular unravelling that describes the physical evolution of the quantum
state. If one, however, ignores the measurement record, they are forced to average over the
noise — leading to the same result for every choice of trajectories.

From the unravelling, it is sufficient to use It6’s lemma and the definition of the density
matrix p(t) = E[|¢(t))(1(t)|, where the expectation value is take over all the noise realisations,

to show that this is equivalent to the GKSL equation. Whilst all the unravellings give back

38



the same Lindblad equations, they can be assigned different operational meanings [123]. In
particular, different trajectories can be associated with different “measurement protocols” on
the quantum state. As such, they can be supplemented with the evolution of the measurement
record itself, a classical variable — this is the first contact with consistent classical-quantum

evolution.

Schwinger-Keldysh path integral

The evolution of the density matrix can be expressed in terms of path integrals also for non-

unitary dynamics. The starting point is to expand the density matrix in a complete basis:

plt) = [ dutduTip(ut " 1T (2.42)
The main idea behind non-unitary path integrals is to treat the evolution of the left L and
right R branches as independent degrees of freedom (one evolving forward in time, the other
backwards). For dynamics at most quadratic in the conjugate momenta, the Lindblad equation

is equivalent to the following path integral:
: L ,,R
Pk U T) = N [ Dt DyTeiSos i oy, ) (2.43)
where N is a normalisation factor and the open system action is given by

T
iSosle", vr = / dt [iL[6") — iL") + iSpvh, o] (2.44)

to
with

T

iSpv (vt o) = / dt [A“ﬁLawL)L/a(wR) — 3 LB La(wh) = SLEW La(w™) | (245)
to

is known as the Feynman-Vernon (FV) functional. The FV contribution is the unitary-breaking

term which pictorially corresponds to a coupling of the left and right branches.

Taking the trace at the final time and inserting sources for the left and right branches gives

the Schwinger-Keldysh generating functional for moments of the operator O:

L UEI=uR) | |
2[5, JR] = ) / DL Dy ReiSosleF wRIH(IFOL—TROR) (2.46)

obeying the normalisation condition Z[0,0] = 1. Note that the boundary condition at 7" on the
two branches, coming from taking the trace, implies that the path integral is performed along a
closed-time contour with precise ordering. First, evolve the ket along the forward branch; then,

propagate the bra along the backward one — sources need to be time-ordered accordingly.
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2.3 Hybrid classical-quantum dynamics

Now that we have described the basic ingredients of the theory, we can combine them to
introduce a consistent framework that allows coupling between quantum and classical degrees
of freedom [50, 51, 125, 126, 127, 67, 128]. As before, we start from a master equation approach,
but we also discuss briefly how to interpret the dynamics in terms of trajectories and path
integrals.

The space in which the CQ state evolves is a tensor product between a Hibert space H
and phase space M. CQ assigns to each point in phase space an un-normalised density matrix
o(z,t) — the CQ state is an operator-valued probability measure. As such, the state has to

satisfy the following two properties:

e tracing out over the quantum degrees of freedom yields a normalised probability distri-

bution p in phase space : Tr[o(z,t)] = p(z,t) > 0,

e marginalising over all the classical degrees of freedom produces a normalised density

matrix p on H: [dzo(z,t) = p.

These two requirements imply the following normalisation condition:

/ dzTr[p(z,t)] =1 . (2.47)
M

Operators are defined as usual, but they are allowed to depend on the phase-space coordinates.

The CQ master equation

The dynamics has to map a CQ state to another valid CQ state. This, with the addition of
the conditions of linearity and CP implies that the only allowed maps are the ones that can be

rewritten as [50]:

o(z,t5) = /dz'ZA“’B(z,tf]z’,ti)Kag(z’,ti)K; , (2.48)
af

where A is a positive Hermitian matrix kernel for each z,2’ and K, are arbitrary orthogonal
set of Kraus operator in Hilbert space (note that we have absorbed all the phase space depen-

dence of the map in the transition matrix A). This is just a generalisation of Kraus’ theorem.
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Normalisation forces:
/dzZAaﬁ(z,tf]z',ti)K;Ka =1. (2.49)
af

As for the classical and quantum case, we are interested in dynamics with additional re-
quirements. First of all, we desire Markovian dynamics. Again, an effective CQ dynamics needs
not to be Markovian at all (and in general will not be), but, when it comes to adopting it as
the fundamental description of a physical system, Markovianity is a natural thing to ask. Very
much in the same spirit of the derivation of the Fokker-Planck equation, it is possible to do a

short time expansion for A:
AP (z,t + 6|2’ t) = 656 + StWP (2|2, t) (2.50)

where we have chosen a basis in which K, = {1, L;}. Then it can be shown that the CQ master

equation for a linear, CPTP and Markovian dynamics takes the form:

8@%2;, ) _ 3 (=" <8Zil 8" 8zin> (DY, i, (2, 6t)0(2,1))

il n!

—i[H(2), o(2)] + D (2) Lio(z) L} — Déj%{L;[LiQ(Z)}+ -
9] (_1)71 on s . ] T

! aﬁzaéoo,,; n! (822‘1 A 8z1n> (Dn,hzn( )LaQ( ’t)LB) ,

where, for convenience, we have split the indices @ = 0,4 and H(z) = £(D{’L; — DgiL;r) is a
Hermitian operator which gives the leading unitary evolution, acting as an Hamiltonian that
depends on the classical degrees of freedom.

It is useful at this point to compare the CQ master equation with Equation 2.5 and Equa-
tion 2.36. Indeed, the first line is nothing but the evolution of the probability distribution for a
classical jumping process. That is, we identify DY as the components of the CQ moments en-
coding the classical drift and diffusion. The second line strongly resembles the GKSL Equation,
highlighting that DE)O controls the unitary part of the quantum evolution, with decoherence ef-
fects encoded in Déj . In practice, Déj map exactly to the Lindblad couplings A*? in the GKSL
Equation2.36, with the added freedom of possibly depending on the classical variable Z. As
the couplings can depend on the classical system, the second line also allows for the classical
system to act on the quantum one. Finally, the last line represents non-trivial CQ backreaction,

describing how the quantum system controls the classical degrees of freedom.
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Positivity conditions on A trivially translate in conditions on W3, since:

§(2,2") + StWO(2|2/t) WY (2|2, t)

AP (2t + 6t t) = ‘ 3
StWI0(z|2',t) W™ (2|2, t)

+ 0(6t?) . (2.52)
In particular, both §(z,2") + §tW%(z|2',t) and W (z|2/,t) have to be positive matrices. More-
over, if either W% or W% vanish, then also W% must be zero except for its §(z, 2’) component,
which generates pure Hamiltonian evolution. Physically, this means that any non-trivial CQ
coupling requires a non-zero W% and, therefore, decoherence.

The positivity conditions are clearer when studied in the context of continuous dynamics in
phase space. As with for the FP equation, there is a CQ version of the Pawula theorem [51] say-
ing that, in the case of continuous dynamics, the moments truncate at second order. Therefore,

the most general CQ, autonomous, linear, CPTP and continuous dynamics is of the form:

do(2,t) 9 00 1 o 00
ot Ozl( 110(2,1)) + 5 6zlazk( 2160(2,1))
0 ; o,

—i[H(2), p(2,)] + D (2)Li(2) L} — %Déf'{L} Li,p(2)}

where the positivity conditions translate into:
2Dy > DiDy'DI , (1-DyDyY)D; =0, (2.54)

with A~! referring to the generalised inverse — recall that these are matrix multiplications for
multidimensional systems. Note that, here, we have simplified the notation by dropping indices

for the decoherence, diffusion and drift matrices

Dy=Dj, Di=DY;, Dy=DY,;, (2.55)

These relations, dubbed the “decoherence-diffusion trade-off” showcase exactly the intuition
developed before. The first one simply tells us that, unless D; = 0, the decoherence matrix Dy
(equivalent to A in the GKSL equation) cannot vanish. Further, the second relation elucidates
that the decoherence rates (the eigenvalues of Dy) bound from below the amount of diffusion
in the classical degrees of freedom encoded in Ds, as long as there is backreaction (D; # 0).

We restrict our attention to dynamics that saturate the bound given by Equation 2.54. The
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reason for the following is that the exact saturation of the decoherence-diffusion is a special
point in the parameter space of the theory — in that case there is no information destruction.
Specifically, by keeping a record of the evolution of the classical system, it is always possible
to reconstruct the pure state of the quantum system [67]. If the diffusion of the system is not
minimal, instead, the quantum system in general evolves to a mixed state even if the classical
system is monitored.

We will be in general interested in dynamics that can be seen as generated by some inter-

action Hamiltonian

HCQ = HC(x7p) + HQW, 7T) + V}(l’,lﬁ) (256)

coupling the classical and the quantum system, i.e. the minimal form of consistent CQ dynam-
ics that, modulo the irreversible terms, corresponds to the standard mean-field semiclassical
evolution. Specifically, Ho and Hg are the Hamiltonians of the classical and quantum sys-
tems respectively, (x,p) and (1, 7) their respective phase-space variables, and V; an interaction
potential coupling only to the generalised positions of the two systems. Then, by minimally

coupling the classical system to the noise field (i.e. modelling it as a stochastic white noise

_ v

force) and choosing as basis for the Lindblad operators L; = oo+ the master equation greatly

simplifies to

do(x,p) _ 1 ) 1 ot
o = tHoweh+ g5 (Do) + 5 ({Vie} = (e V)
. s (ove avi 1 [aviov
_ ©J I _ - I 2.57
i[Hg + V1, 0] + D (8@983;]- 2{8xj ol (2.57)

={Hcq,0}a +D[g] ,
where we have grouped the reversible part of the dynamics in the Aleksandrov bracket

{Hcq, 04a ={Hc, 0} —i[Hg + V7, 0] + % {V1, 0} —{o,V1}) (2.58)

and the irreversible part in the decoherence-diffusion operator

02 g (ove avi 1 [aview
] (DQ,U (fE>Q) + DO (8:61 9(9733]‘ — 5 ij Oz, 0 . (2.59)
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CQ trajectories are objective

Continuous hybrid dynamics can also be represented in terms of trajectories of the quantum
state p and classical state z. We restrict to the dynamics that saturate the decoherence-
diffusion trade-off. Under this assumption the quantum state remains pure once conditioned
on the classical trajectory [67]. The following SDEs describes the evolution for the classical

degrees of freedom:
dZy = {2y, Ho(Zy) ydt + ({Ze1, Vi(Zy) }ydt + o (Zy)dWy g, (2.60)

whilst the pure quantum state follows:

e = ~i(Ho -+ Vi(Z) 9hedt + 3075 ({70, Vi) — {{Z0, VID)) [9)ed )
Lo (2 Vi) ~ (26 ViR) (i Vi — (2o VD) et

Whilst the unravelling equations look non-linear, upon averaging they reduce to the linear

(2.61)

master equation, much like for the case of the GKSL unravelling. We can recover the combined

CQ state by averaging over all realisations of the noise:
o(z,t) = E[pid(z — Z4)] . (2.62)

Indeed, by taking Equation 2.62 and applying It6’s lemma, it is easily verified that o satisfies
Equation 2.53 if Z; and p; evolve as per the unravelling equations. Contrary to the pure
Lindbladian case, the trajectories of CQ dynamics are unique, due to the objectivity of the
classical evolution. If the decoherence-diffusion trade-off is not saturated, an unravelling in

terms of trajectories still exists, but Equation 2.61 is modified to handle mixed states instead.

CQ path integral

The time-local dynamics can be trotterized and, therefore, expressed in terms of integration
over paths. The deterministic part of the dynamics of hybrid system can be derived from the

CQ proto-action:

Weo = [ dt (Lolv] + Lels] - Vilzvo]) = [ dt Leg (2.63)

The prefix “proto” here indicates that, whilst the functional encodes all the information about

the deterministic part of the dynamics, it is not the action of the path-integral itself. Instead,
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continuous hybrid dynamics of the form of Equation 2.53 involving z and v (the classical
and quantum degree of freedom respectively) can be equivalently represented via the following

configuration-space path integral:

oz, 0", R, T) = / DyH/R / D- / Dz loag(z, b ol to) | (2.64)

where

L6AWeg i 6AWeg

5 ) B (2.65)
—2 = Wegle, yE/ B+ 57Dy )%
For simplicity of notation we have defined the averaged and subtracted proto-actions:
AWeg = Weglz, ¥ — Weglz, 9™, Weg = % (Weolz, v5 + Weglz, vf]) . (2.66)

The path integral neatly splits up in a SK-like and a MSR-like term, the first and second
lines in Equation 2.65 respectively. The usual path integral techniques to compute expectation

values of operators apply.

2.4 CQ gravity

As mentioned, the main scope of the first half of the thesis is to study the phenomenological
plausibility of theories of hybrid gravity theories — models of fundamental classical gravity
interacting with quantum matter.

Such a theory is currently active area of research. Consequently, there is a wealth of open
problems and unanswered questions even at the level of the fundamental gravitational equations
themselves, let alone on the key consistency conditions that the theory needs to satisfy —
such as agreeing with Einstein’s gravity where the latter is known to perform incredibly well.
Nonetheless, we will here attempt to provide a brief summary of the main results, proposals

and open questions on the topic — to prepare the discussion in the following chapters.

2.4.1 The fundamental dynamics

The master equation representation of the CQ framework is closer to the canonical formal-

ism than a covariant approach. As such, the first attempt at describing such dynamics came
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from adapting the canonical Arnowitt—Deser—Misner (ADM) [129] formalism of GR to the CQ
framework.
In the ADM approach, we explicitly pick a foliation of spacetime, inducing the following

3+1 decomposition of the metric:
goo =—N?+hIN;N; . goi=Ni,  gij = hij. (2.67)

Here, h;; is the spatial metric on the chosen foliation, while N and N ¢ (called the lapse func-
tion and shift vector respectively) tell us how the 3-geometry is embedded in the 4-dimensional
manifold. Further, we introduce the canonical momentum m;; conjugate to the 3-metric.
The deterministic (GR) dynamics is fully encoded by the gravity and matter Hamiltonians,
Hgrlg, 7, N,N] and Hp[g,1, ™y, N, N] respectively. Here, 9 is a quantum matter degree of
freedom and y, its conjugate momentum. In Chapter 5 we spell the gravitational Hamiltonian
out explicitly for the FLRW model.

It is important to know that Hgr encodes the autonomous gravitational evolution only,
whilst Hp, the matter evolution and the backreaction. Then, the natural guess for the CQ

equation of a hybrid gravitational theory would be schematically:

0
o = {(Hor+ Hp,0}a+Dld] . (2.68)

where the diffusion-decoherence operator D is what needs modelling and is in principle unspec-
ified — other than the requirement to satisfy the decoherence diffusion trade-off.

Imposing that the decoherence-diffusion trade-off is exactly saturated for simplicity (and
because it seems natural for a fundamental theory of Nature), the decoherence-diffusion term

DJo] = D¢o] + Dglo] can be compactly expressed as

2 7 kl T
Dolo] = / Brddyr/hz 557:3 ’ Wf’() )) (2.69)

and

Dolel =~ [ ety ARG Douten) [t [l | o

(5hij (:13)
with DY and D : ijkl the (possibly non-local) diffusion kernel and its inverse. The choice
of DYkl already poses a difficulty. Again, it seems natural to impose the saturation of the

decoherence-diffusion trade-off since it is equivalent to require that information about the
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quantum state is not destroyed if one keeps a record of the classical evolution. Covariance

is an incredibly restrictive requirement, forcing it to be related to the DeWitt metric

ijkl _ N(x)D

2\/h(x)

with 6®(z — y) being the 4-dimensional delta-function (rather than the equivalent object

(h““hﬂ + RilpIk 2,6;#%“) 9z —y), (2.71)

transforming as a density). Here is the D constant diffusion coefficient. Note, positive-
semidefiniteness of the diffusion tensor requires that 8 < 1/3. Whilst the choice of the DeWitt
metric is covariant, it has the unpleasant side-effect of adding energy to the system (on average)
at infinite rate [130]. This can be seen by looking at the evolution of the Hamiltonian itself
in the Heisenberg picture — the double derivative on 7 acting on Hgr ~ w2 will generate a
further §-function which, upon integration, yields a contact §(0) divergence. Yet, this is not
a problem for local CQ gravity only, but of any theory with diffusion and/or decoherence if
the respective kernel is local [43]. Indeed, the relativistic stochastic field theory we study in
Chapter 4 features the same divergences. How these divergences can be renormalised — if at all
— is an open question to be dealt with.

An alternative that has been discussed in the literature is relaxing the locality of the kernel,
or essentially regularising the local one. Whilst this softens the energy production problem —
energy conservation is still violated, but at a finite constant rate given by the small-distance
cutoff — it spoils covariance and, locally, Lorentz invariance. In the Newtonian limit, the non-
local kernel that minimises the decoherence in the matter degrees of freedom gives the famous
Diosi-Penrose kernel [131, 132].

There are, however, further conceptual questions on Equation 2.68. Indeed, GR is a so-called
“constrained system”, due to diffeomorphism invariance [133]. The choice of lapse function and
shift vectors is equivalent to a choice of gauge — under any such allowed choice the final state of
the evolution must be physically equivalent. In Hamiltonian systems, invariance under trans-
formations in field space results in one or more constraints [134] — algebraic relations between
phase-space variables that need to be satisfied on-shell and that are preserved by the evolution
equations. In GR, there are four of such constraints: one “Hamiltonian” and three “momen-
tum” constraints. Curcially, and this is at the heart of the result in Chapter 5, the diffusive

part of the evolution in Equation 2.68 necessarily breaks the deterministic constraint, even if
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the decoherence-diffusion terms superficially respect the symmetries of the deterministic sys-
tem. For the gravitational system, this can be seen as follows. A linear combination of the four
GR constraint is equivalent to the Hamiltonian of the hybrid system itself. However, both the
diffusion and decoherence terms do not preserve the energy of the system, that heats on average
(much like a Brownian particle undergoing undamped diffusion will heat up indefinitely).

The expectation is that this should not be taken to signify loss of covariance [135]. This relies
on the simple observation that the derivation of the constraints themselves uses the Hamiltonian
structure of the dynamics, which CQ explicitly breaks. The role of the constraints even just in
classical stochastic systems — let alone hybrid ones — is still an open question. Indeed, whilst the
deterministic form of the constraint may be broken spontaneously by the stochastic terms, there
might exist a generalisation that applies to stochastic gauge theories. Indeed, the constraints
in the ADM formalism act to restrict the number of physical degrees of freedom, since they
provide algebraic relations between the field variables. Unless we are ready to give up the idea
that linearised perturbations of the metric can be described as a massless spin-2 field, there
needs to be a mechanism in the stochastic gravitational dynamics to ensure that exactly only
2 gravitational degrees of freedom are independent. Of course, this consideration is valid only
for models that do preserve local Lorentz invariance — where effectively in the linearised regime
the theory behaves as GR with random sources. These considerations aside, there is however
no convincing proof yet that the dynamics in Equation 2.68 is indeed covariant either — even if

the decoherence-diffusion terms are taken to be local.

Path integral representation

To side-step the issue of the constraints that arises from the master equation approach, a path
integral definition of CQ gravity has been proposed [126] with action:
ilog = / d*z\/—g [m.cm -y 4 8_9 AT D,y po AT
(2.72)
— VI (G" — 8rGNT™) Dy (G — 87GNT) |
12872Gyy,

where the natural Lorentzian extension to the local covariant kernel in Equation 2.71 was
chosen, namely

o D
DHP? = ﬁ(gupgua + Gup9vo — 259/11/9,00) . (2.73)
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The action is manifestly covariant, which is a necessary condition for the path integral itself to
be invariant under diffeomorphisms. Moreover, expanding the action, it can be shown that it has
a similar structure to the quantum quadratic gravity action, an observation that has been used
to argue for renormalisability of the classical sector [136]. Of course, covariance of the action
is not in itself a sufficient condition for diffeomorphism invariance — there are subtleties due to
the normalisation and invariance of the measure which need to be investigated. Nonetheless,
explicit covariance at the level of the action comes at a price: the path integral is not of standard
CQ form. Crucially, the standard CQ path integral in configuration space for the theory in
Equation 2.68, after integration of the response variables, would only involve the “square” of
the spatial parts of the Einstein’s equations, not the full set. Indeed the G, components
of Einstein’s equation are intimately related to the constraint — it is unclear how such terms
could appear in the action starting from the master equations approach, nor whether including
them spoils any of the key properties that the master equation dynamics is known to possess —
complete positivity, trace preservation or linearity. There are specific instances, however, where
the master equation approach and the path integral definition of the dynamics are known to
be equivalent (e.g. in the Newtonian limit [137]).

A related observation is that, contrary to the Riemannian DeWitt metric, the kernel in
Equation 2.73 is dangerously not positive semidefinite on the space of 2-tensors. It has been
shown that it is so on the sub-space of physical gauge-invariant degrees of freedom (e.g. on
traceless tensor modes in the linearised regime) [136], but it is to be understood whether that

in itself would be enough to guarantee consistency of the theory.

2.4.2 Recent results

The path integral representation of the dynamics has been the starting point for a number of
recent advances in the understanding of CQ gravity.

First of all, it has been shown to be consistent in the case of Nordstrom CQ gravity [127].
Nordstrom gravity is a fully relativistic theory of gravitation that involves a single scalar degree
of freedom. In such a theory, the dynamical spacetime metric is conformally flat, with the con-
formal factor being expressed in terms of a single scalar. Whilst Nordstrom gravity correctly

reproduces Newton’s law, it fails to account for light deflection and produces inconsistent esti-

49



mates for the effect of perihelion precession. However, it has the virtue of being conceptually
much easier than GR — having a single degree of freedom implies the absence of Dirac con-
straints in the theory. Still, having a consistent theory of CQ gravity is a strong signal towards
the fact the main obstacles towards an Einstein CQ gravity theory are not the classicality of
the metric in itself, but rather the more subtle problem of covariance.

In both the path integral and master equation formulations of CQ gravity, the Newtonian
limit has been derived [137]. Crucially, it matches previous models of self-consistent Newtonian
CQ gravity [37], showing that they can be recovered from a fully relativistic theory. In the
Newtonian limit, the gravitational field is stochastic, whilst particles decohere in the position
basis as expected. The CQ Nordstrom model has the same relativistic limit as the Einstein CQ
gravity [127].

Beyond the Newtonian regime, CQ gravity seems to favour metrics that can explain the ro-
tational curves of galaxies without the need for dark matter. Indeed by studying vacuum spher-
ically symmetric solution it was found that the leading order corrections to the Schwarzschild
metric are of the form of the so-called MK metric [138] — a solution to conformal gravity that has
the potential to explain galactic rotation curves without the need of dark matter [139, 138, 140)].
Interestingly, by conditioning on the parameter that fits the rotational curves the best, the CQ
gravity path integral yields a probability distribution for the cosmological constant parameter
that is sharply peaked over the one favoured by observations. There are, however, assumption
in the work that require further justification. The biggest challenge is to explain why all galaxies
have correlated values for such a parameter term, which the path integral of the model suggests
should be drawn independently at random for each realisations of the stochastic gravitational

field — and therefore for each galaxy.

2.4.3 Cosmological evolution and dark matter

Since the main discussion in Chapter 5 will deal with cosmology and dark matter in particular,
a brief review of the current state of arts on the topic is in order. This will be extremely quick,
and it is no way intended to be a comprehensive summary of current research in cosmology,

but will serve the purpose of contextualising the results in Chapter 5.
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The briefest history of cosmology

The Standard Model of cosmology, also known as LambdaCDM, supplemented by the inflation-
ary paradigm, is currently the most successful description we have of the cosmological history
of our Universe. It explains a variety of observations, from local supernovae measurements,
to anomalous galactic rotation curves all the way back to the main features of the cosmic mi-
crowave background (CMB) — the early relic radiation produced by our young Universe. We
now attempt to give an extremely succint review of the evolution of our cosmos under such a
model — for a more detailed one, see for example [141]. It all begins with a spacelike singularity,
affectionately known as the Big Bang. Experimental data place the Big Bang approximately
14 billion years ago.

Shortly after the Big Bang, the Universe underwent a period of rapid expansion: inflation.
The inflationary paradigm was originally introduced as a solution to the flatness and horizon
problems [142]. The former is the apparent fine-tuning of the cosmological extrinsic curvature
of our Universe, which is measured to be near-zero. A period of exponential expansion has the
virtue of washing out any initial spatial curvature to zero, lifting the necessity of carefully-chosen
initial conditions to reproduce observations. The latter, instead, is the early realisation that
regions of the cosmic microwave background that could have never influenced each others within
the “hot Big Bang” model, appeared correlated. The same accelerated expansion that had the
potential to solve the flatness problem, could also solve the horizon problem — the exponential
expansion successfully puts in causal contact region of the observable sky which would have
never otherwise been able to develop correlated fluctuations in the observed temperature [142].
Several models have been put forward over the years, all realising the main features of the
inflationary proposal [143, 144]. The most popular involve single [145] (or multiple [146]) scalar
fields, “slow-rolling” down their potential and causing the exponential increase in the scale factor
of the Universe. Other options include Starobinsky inflation [93] (where the so-called inflaton
field emerges from higher-curvature corrections to GR) and Linde’s chaotic inflation [147].

After about 10732 s after the Big Bang, inflation halts and the inflaton field decays into
the Standard Model particles we observe — this is the period known as “reheating”. Shortly
after, the first nuclei are produced (Big Bang nucleosynthesis). The Universe remains opaque

for a long time, until 10° years ago, when it has cool down enough for neutral atoms to form
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and light to travel with minimal scattering. It is now that the cosmic microwave background
was released. Inflation left a definite, testable mark in the statistics of the CMB, beyond being
a solution to the horizon problem. Moreover, the mechanism also explains other features of
the power spectrum itself. Of these, famously, it explains its near scale-invariance and the
suppression of tensor modes fluctuations. The CMB provides a powerful testing ground for
inflationary models [144].

The next period of the expansion of the Universe is mainly of astrophysical significance, with
the first stars igniting (and galaxy forming). Still, different components of the energy budget
of the Universe dilute at unequal rate with the expansion. As such, whilst the main source
of the cosmic evolution has been pressureless dust (non-relativistic matter), approximately 4
billion years ago the expansion of the Universe started accelerating again [148, 149]. Within
the LambdaCDM model, the late-time expansion is attributed to a cosmological constant A,
which is driving our Universe towards an asymptotically de Sitter state (since A > 0). Still,
there exist many proposal in which the late-time acceleration is not due to a cosmological
constant [150, 151] at all, but to other more exotic types of gravitational sources instead. In
particular, recent data seems to point towards an evolving, rather than constant, dark energy
fluid [152, 153].

Still, it is not all well for LambdaCDM. Recent years have uncovered tension between late-
time and early time estimation of the model’s parameters (famously, the Hubble parameter
and matter clustering). Whilst both the Hubble tension and the so-called S8 tension can be
hints of new physics, it is still up to debate whether they can be the result of systematics in
the different measurement procedures. However, so far all the efforts in exploring the latter

hypothesis have not managed to reduce the observed tensions [154, 155].

Dark matter

The CDM portion of the standard model of cosmology refers to the hypothesised presence of
so-called “cold” dark matter. That is, non-relativistic pressureless dust that interacts only (or,
in many models, mainly) gravitationally with baryonic (observable) matter.

Dark matter was originally introduced to explain anomalous flattening of the rotation curves

of galaxies — incompatible with the observed luminous matter. Other theories that do not in-

52



clude an elusive matter species exist, the most famous of which is MOND (modified Newtonian
dynamics). MOND proposes as a solution to the galactic rotation curves problem the exis-
tence of a fundamental acceleration scale below which new physics emerges. However, over the
years, other evidence piled in favour of particle dark matter. In particular, the existence of
specific peaks in the CMB power spectrum, known as baryonic acoustic oscillations, could be
explained neatly just by assuming the esistence of CDM — matter species that do not feel radi-
ation pressure since they are completely decoupled from electromagnetism. Moreover, particle
CDM leaves its imprints also via gravitational light deflection, which allows for CDM to be
mapped. Although there exists relativistic extensions to the MOND paradigm that can explain
these phenomena as well [156], observational constraints strongly disfavour MOND models with
respect to LambdaCDM [157].

The abundance of dark matter is constrained by various independent observations (though
there are some model-dependent assumptions). In particular, both Pantheon+ [158] (low-
redshift supernovae data) and Planck [149] (high-redshift measurements of the CMB) suggest
the same value for the energy budget of the total pressureless dust (€ ~ 0.3). Of this, only
a small fraction is baryonic matter, with the vast majority being assigned to CDM. Galactic
measurements place strong bounds on models of hot or warm dark matter [159], in which the
dark matter stress-tensor does have pressure terms (i.e. the matter particles are relativistic).

Whilst it is true that there are some mysteries regarding the CDM model, and that some
other proposals can accomodate at least some of the phenomenology that CDM explains, the
particle proposal is by far the most successful one — and the one that claims most support. There
are many models to describe the nature of this invisible particle — from axions to primordial black
holes [160, 151] — which are being extensively tested. As of now, however, all of the experiments
have been unsuccessful at detecting dark matter particles, leaving the problem of the origin
of CDM open [151]. In Chapter 5 we will present a novel mechanism, within CQ gravity, to
generate CDM phenomenology without the need of a physical, elusive, particle. Instead, we will
see that the stochasticity in the evolution equation can generate fluctuations of energy excess
which remain frozen in the gravitational field. These do not interact other than gravitationally
and behave exactly as a pressureless fluid, mimicking completely the phenomenology of dark

matter. It is unclear, however, whether the amount of diffusion needed in the hybrid theory to
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generate the entire energy budget of dark matter is already excluded by table-top gravitational

experiments.
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Chapter 3

Hybrid oscillators

In this chapter we study an exactly solvable CQ system — a classical-quantum oscillator. The
first treatment of a classical oscillator interacting with a quantum one appeared in [161]. There,
the quantum and classical oscillators did undergo decoherence and diffusion respectively, but
there was no damping. As a consequence, the hybrid system heats up indefinitely. A more
recent work studied the most general form of the dynamics for the coupled hybrid oscillator
that preserves the CQ thermal state — finding that the evolution needs, other than friction in
the classical sector, a specific (temperature dependent) type of Lindblad operators that are not
generated by simply taking the Poisson brackets from the interaction Hamiltonian [162].

In this chapter, we consider the middle road in between the two approaches. We consider
the Hamiltonian CQ evolution for the hybrid system of coupled oscillators. We show that it is
sufficient to include friction in the classical system for the evolution to flow univocally towards
a hybrid steady-state — which we compute. Such a state is not in equilibrium in general, except
in the large diffusion regime, where the dynamics indeed matches the one discussed in [162].
We also present a phase-space representation of CQ dynamics by performing the Wigner-Moyal
transform of the hybdrid generator.

Note, that here we use the definition of thermal state as being the canonical Gibbs’ state
with respect to the Hamiltonian of the system Hcg. That is, the same Hamiltonian generates
the equal-time and unequal-time correlations for the system. This is in contrast with looser
definition of thermal state, which we do not adopt here, where the Hamiltonian in the Gibbs’

state is allowed to be not the system’s, but some other — e.g. the “mean-field hamiltonian”
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—which usually has to depend on the temperature of the state itself [163].

3.1 The classical case

We begin by considering two coupled — stochastically driven — classical oscillators, of which

only one is damped:

migr + k11 + agr + Mg — ¢2) = VD&

(3.1)
mado + koq2 + A(q2 — q1) = VD2&a

where m1 2 and k12 are, respectively, the mass and the spring constant of each oscillator. A,
on the other hand, is the coupling constant between the two particles, and « is the friction

coefficient. The stochastic forces {1 o are white noise processes obeying:

EG®] =0,  E&G(1)&E)] = dio(t —t) (3-2)

meaning they are two mean-zero independent processes of unit variance. Physically, we are
driving the two masses with independent random kicks of typical size /D;. Recall, we’ll intend

all the stochastic differential equations in the It0 sense - i.e. the noise process is non-anticipative.

Uncoupled oscillators

Before moving onto the coupled system, it is useful to review the behaviour of a single stochas-

tically driven damped and undamped oscillator. Let’s start with the latter:

maga + kaqa = &2, (3.3)

i.e. an oscillator of natural frequency

K2
=,/— 3.4
w2 mo ( )

and no friction. It is useful to express this second-order stochastic equation in terms of a first

order system introducing the momentum ps of the particle:

b2
o= = =0

m2 (3.5)

D2 + k2q2 = / Da2&a .
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Formally, this is an Ornstein-Uhlenbeck (OU) process — a multidimensional stochastic process
of the form:

dz' = —01 dt + X% dWj (3.6)

where 2 are the components of the vector representing the degrees of freedom of the system
whilst dW/} is a vector of independent Wiener increments — here we have assumed, without loss
of generality, that the two have the same dimensions. The constant matrices @é and Eé- encode
the mean dirft of 2 and covariance of the stochastic kicks respectively. For Equation 3.12 they

are given by:

0 —+ 0 0
0= 21, == : (3.7)
ke 0 0 vDs

Intuitively, the system undergoes unbounded diffusion and heats up forever, which can be

easily proven using Equation 2.18, [t6’s lemma. Applying it to the energy of the particle:

p% 1 2
Ho = —% 4+ — 3.8
2 s + 2/12q2 ( )
we obtain:
. /D D
Hy=Y2¢ + 22 (3.9)
meo 2m2

Note for Dy = 0 the energy of the system stays constant as expected, since the deterministic
system is conservative. However, this means that the energy in the stochastic oscillator (D2 # 0)
is going to increase linearly in time on average:

VD>

m2

E[H,) = Hy + “22t . (3.10)

This is a signature that the system does not reach a steady-state, as easily checked using
standard results from stochastic systems (and in agreement with expectations). Indeed, for
a multidimensional OU process, a steady-state exists if and only if the deterministic system
is strongly stable — i.e. the eigenvalues 6; of @;- have strictly positive real parts [164]. For

Equation 3.12 this is clearly not the case, since they are purely imaginary:
91,2 = :EiWQ . (3.11)

Adding any amount of damping to the system is enough for the oscillator to eventually

reach a steady-state. Indeed, consider the damped stochastic oscillator in isolation (in first
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order representation):

. (3.12)
p1+ n +r1q1 = vV Di& .
1

Studying the evolution of the energy of the system suggests that indeed this system will have

a steady-state:

. o vD

le——2p%—|— 151—!—7 . (3.13)
my mq 2mq

Note that, here, we are only looking at the single damped oscillator. Taking the expectation
value of both sides, we can see that the average energy stops growing when:

D
Vm@ﬁzii. (3.14)

In principle, we can use this result together with the equations of motion to extract all the
moments of the stochastic degrees of freedom. To show that the system does indeed reach
a steady-state, however, it is quicker to note that this is still an OU process in the form of

Equation 3.6 with
0
0= e Y= . (3.15)
The eigenvalues of © are then:
V3 — 4w . (3.16)

They can be completely real or have an imaginary components (corresponding to the over-
damped and underdamped regimes respectively), but they have positive real parts for any
w1 # 0 and v > 0, where

K1 (6

w1 = 5 1= —, (317)
mq mq

proving the existence of steady-state formally.

For an OU process, if the steady-state exists then it is Gaussian [164]:

P, = (277)*]\7/2det(000)*1/2 exp (;zi(Cool);zj> (3.18)

The equal-time covariance of the OU process Cf)o i= cov(2*, 27) in such a state can be computed

from the Lyapunov equation [164]:
OC, + C, .01 =xxT . (3.19)

o8



For Equation 3.15, this can be readily solved giving:

D L0
ZL [ s , (3.20)
2 0 1

Coo =

which indeed matches the variance of the momentum we calculated earlier, and gives the spread
in position for free as well. Equation 3.20 is, of course, just the covariance associated with the

thermal state:

1 _
p(q1,p1) = € A (3.21)

where § = 2vyymq/D;.

3.1.1 Coupling the two classical oscillators

We now re-introduce the spring with constant A that couples the two systems and analyse
the combined behaviour, showing that the two oscillators reach a steady-state nonetheless.
Evidence that this is the case is obtained by looking at the average evolution of the energy
under Equation 3.1:

D, Dy

. (8]
E[H] = _anr(pl) - I + 2 (3.22)
1

meaning that the energy stops increasing once the variance in the momentum of the damped

oscillator reaches:

1
Var(p) = 5 <01 + Z;DQ) . (3.23)

To make sure the steady-state exist, however, it is enough to know that the evolution of the
state vector z = (q1,p1, g2, p2) for the combined system given by Equation 3.1 is in the form of

Equation 3.6 where:

0 —m% 0 0 0O 0 0 0
|t A -2 0 5 0 vD1 0 0 (3.24)
0 0 0 —m% 0O 0 0 0
Y 0 kao+A O 0 0 0 Dy

We need to show that the eigenvalues of ® are all all strictly positive. To prove it, consider the

eigenvalue equation:

A A A A A
0t —10° + <w% +wi+—+ > 0% — (w% + > 0+ wivi +wi—+wi-—=0. (3.25)
my me m2 my m2
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The roots of the characteristic polynomial P(6) are analytically solvable for being the so-
lutions of a quartic equation. However, these solutions are extremely complicated expressions
in general, so extracting them and requiring positivity of their real part is a very inefficient
strategy. Instead, we make use of the Routh-Horowitz criteria [165, 166], i.e. a series of criteria
that need to be satisfied for all the solutions of a polynomial of order n to have positive (or,
equivalently, negative) real parts. These are more intuitive for the latter case, so we consider
6 — —6 and prove that P(—6) has solutions with only real negative parts. The first four con-
ditions are equivalent to requiring that all the coefficients of the quartic are positive, which is
always true if \,y; > 0 — a trivial condition. The remaining two criteria can be easily shown

to reduce to:

2
° <w3+%2) +A722>07

my

2
0%>0,

2

both trivially satisfied for real couplings. This shows that all the eigenvalues #; have positive
real parts, meaning that the system will reach a steady-state.

The reason for the existence of the steady-state for any coupling A is clearer when we
explicitly solve (in perturbation theory) for the eigenvalues of the system — we will see that the
undamped oscillator develops an effective damping coefficient of order A\? due to the interaction.
Physically, however, one can see that this has to be the case by a simple thermodynamics
argument. The rate at which the energy is added into the system (for both oscillators) is fixed,
and depends solely on the diffusion coefficient. However, the energy is extracted by the damped
oscillator at a rate that depends on its typical velocity (and, hence, amplitude of oscillation).
Since there is energy exchange between the two oscillators, the damped one will heat up until
it reaches the typical size of the swings for which it ejects energy at the rate equal to the one
at which it is being added to the combined system.

The covariance at equal times can be obtained by solving explicitly the Lyapunov equation.
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The variance of the positions and momenta of the two oscillators are given by:

1 mq
E[p} = — (D, + —D 3.26
il 2m < 1+’mz 2> (3.26)
1 mims AA)? A
E[pdl= — |Dy |1 R SN EAR A 2 24 = 3.27
[p3] 7 [ 2< T2 <<W1 w2+m1 m2> +M W2+m2 (3.27)
+m2D1]
m
A 2 A 2
Elg] = 5 B T (3.28)
1 1 m A
E[q3] 5 [QDl (w% + > (3.29)
1 m3 (w%i—i-w% (w%—k A )) mi mi
3
mimso A A
e (( b)) (e () i)
2 2 A 2
x (wf—2w?+ = — 20 442 :
2 1
Whilst the non-zero covariances are given by:
Domy (5 5 A A
E _Damu (5 R 3.30
R R A (3.0
Dy
E = —— 3.31
[q1p2] I\ ( )
Dy my
E = —=— 3.32
[q2p1] I\ My ( )
2
1 1 DlmileD?% <<W%+ni\1> _W%n;\l_w%<°~’%+ni\z)>
Elqigo] = 5— (3.33)
271 m2ma w%m% + w? (w% + n%)

The steady state variances have been checked numerically for a range of parameters — the
stochastic differential equations describing the trajectories of the system in phase space can be

straightforwardly simulated with an Euler-Maruyama forward scheme [118].

MSR path integral

We will now take another, more generalisable route, to extract the unequal time two-point
functions, by studying the MSR path integral of the process. As we will see, this is exactly

solvable in theory, but requiring the roots of a quartic with general coefficients the exact solution
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is not illuminating. We will therefore work in the small A regime for the rest of the chapter and
look for a more informative — although approximate — result.
The MSR path intregral representation of the stochastic process in Equation 3.1(integrating

out the momenta and working in configuration space) is given by:

Play) = [ D [ D509 Play), (3.34)

where ¢ = (q1, q2)T is the vector state of the system with the position of the oscillators, whilst

q = (q1, G2)" are the so-called (purely imaginary) response variables. The MSR action for the

process is given by:

T
~ - Dy _ .
Slg,q] = / dt {th (m107 + K1+ ady + A) q1 — 7141% — AMi1g2+

t

0

D, (3.35)

G2 (m20} + K2)) g2 — 5 3 — A2

It is always possible to extend the upper limit of integration to 4+o0o since observables in
unconditional stochastic processes are independent of future evolution. At the same time, if
we are interested only in the properties of the steady-state, we can send ty — —oo. The
path integral prepares the steady-state in such a limit starting irrespective of the initial state,
meaning that the latter can be dropped without loss of generality (we can imagine the system
starts diffusing from a delta-function on ¢; = g2 = 0 and zero momenta).

The steady-state of a OU process — if it exists — is Gaussian, and therefore is completely
characterised by its mean and covariance. The mean of the process converges to zero in all
its variables after sufficiently long times. To compute the unequal time 2-point function of the
positions of the two oscillators, being the path integral itself Gaussian, it suffices to invert the

kinetic matrix in the MSR action. Indeed:
Slz] = 5 dtz'Alz; | (3.36)
and, for a Gaussian process, one has:
E[2'(t)2' ()] = [A71(t, 1))} = (G(4,1)} - (3.37)

It is easier to invert the operator in Fourier space and only then Fourier transform back into
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t-space. In frequency domain, the operator is given by:

0 miw? +iaw — K1 — A 0 A
2 .
G_l(w) _ Miw* — 0w — K1 — A —-D1 A 0 ’
0 A 0 mow? — Ko — \
A 0 maw? — kg — A —Do

(3.38)
which can be easily inverted using standard formulas for block 2x2 matrices [167]. The non-zero

components are:

D1 (m2w2 — kK9 — /\)2 )\ZDQ

Gl(w) = + 3.39
) D@P D)P (3.39)
Dy| — miw? + k1 + A +iwal?  A2D
2, _ D2 1 1 1
Galv) = I PP (3.40)
AD1(—mow? + ko + A)  ADa(—myw? +iwa + k1 + \) *
1 1 2 2 2 1 1 9
e 7 DEIP e e
2
Mow?* — Ko — A %
2 .
9 miw’ — iwa — K1 — A 5%
Gi(w) = D(w)* =G (3.43)
A =% 5%
G3(w) = G3(w) = Dy - Gy =GY (3.44)
(3.45)
where
D(w) = (miw? —iaw — k1 — \)(maw? — kg — A) — A2, (3.46)
and
D(w)* = (miw® +iaw — k1 — X)(maw? — kg = A) = A%, (3.47)

that is, we conjugate the coefficient only, not the argument. Then |D(w)|? = D(w)D(w)*.

The inverse Fourier transform of these frequency-domain two-point function can be easily
computed using contour integration, once the roots of the quartic equation with complex coef-
ficients D(w) = 0 are known. These are in principle possible to find analytically, but they are
extremely complicated expression in general. However, some general statements can be made

without knowing the exact form of the solutions. First, for contour integration it is crucial to

63



know the sign of their imaginary part. To see this, consider:

A A A
D(inw):04—7193+<w%+w%++>92—71<w§+>9+w%w§
mi Mo mo
A A
2 2
g ‘4
+w2m1+w1m2 0, (3.48)

which is the same quartic that appeared in Equation 3.25. We therefore already know that
its roots 6; have strictly positive real parts and that, consequently, the imaginary parts of w
are strictly negative. This means, on the other hand, that the imaginary parts of the solutions
to D(w)* are strictly positive. As a consequence, no pole ever lies exactly on the real axis,
making the use of Cauchy’s residue theorem in the Fourier transform straightforward (no pole
prescription is needed).

The structure of the poles for the propagators is such that they can all be generated by two

independent complex roots. Let’s call:
=0+ 71 Qo = @y + Y2 (3.49)

the two independent roots of D(w)* living in the positive quadrant of the complex plane for
some Wi, W2, 71,72 > 0. Then, we can generate all the other roots of both D(w) and D(w)* and,
2

consequently |D(w)|* by a combination of conjugation and reflection about the real axis:

o 1,0y, —0F, —Q% are solutions to D(w)*
o (7,05 —0Oy,—Qy are solutions to D(w)

For convenience, we show the pictorial position in the complex plane of the poles in Figure 3.1.
It is useful to find the approximate roots for small coupling. In particular, we know the

roots for A = 0 — they are simply the eigenvalues of the two coupled systems:

2
Qo= = fui - L+ ill  00=00""=uw,. (3.50)

Then, as we deform the system with A # 0, the roots will receive some small corrections, both
real and imaginary (necessarily positively imaginary in the case of Q9 as shown earlier). We

can easily work out what that will be by expanding:
0, =0l 120 1 220% L o®) =l + 50, (3.51)
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and requiring D(€2;) = 0, to hold up to quadratic order in A we obtain:

- A A 22 P ma w4 (wf —wd)?
01 = 2 ma (W} — w3)? + yiw3) LT TS T 2 _ 7?
2myy\/w? %1 2 \\*1 2 1%2 wi— 7
(3.52)
)\2
(5:}/1 = — Y1 3.53
iy (@ — R+ 77%) (3:33)
~ A A m w? —w2)? 4+ ’y2w2
2maows my (W} — w3)? +yiw3) \ 4m2 ws
)\2
02 = " 3.55
2mama (W~ B +72%) 42

A good sanity check is that the imaginary component of €25 is indeed positive. More importantly,
corrections linear in A only shift the poles along the real axis, whilst the corrections to the
imaginary components come only at second order in A. Naturally, by small A we really mean
that the frequencies associated with the interaction spring are much smaller than the natural

frequencies of the two oscillators:
)\2

< wiwayi (3.56)
mi1ms9

For identical oscillators (i.e. mj = mg = m, and w; = wy = wy) the corrections reduce to:

A A 1 2
5o = 1— 1+ — (3.57)
2m.fw? — 4 s o=
/\2
6 = —— .
L (3.58)
A A
Sy = 1— .
w2 MWy < 4m*w§) (3.59)
)\2
§7, — s~ 3.60
= g = O 200

To illustrate the behaviour of the system, we will focus on the small (yet finite) A limit.
When performing the inverse Fourier transform of the two-point function, it is important to
keep in mind that the residues of |D(w)|? for the Qs poles are of order A~2, as this is the scaling
of the difference between such pole and their complex conjugate. This is since they have no
finite imaginary part in the A — 0 limit. It will result in the two-point functions having some
leading order A™" terms — a signature of the fact that for vanishing coupling the system does not

have a steady-state. Again, it is in principle possible to compute the general solutions explicitly
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Figure 3.1: The Q; pole and its reflections in the complex plane.

in terms of the roots of D(w), but we refrain from reporting them as their are cumbersome and
not particularly illuminating.
Performing the Fourier transform and keeping only terms leading order in A that do not

vanish in the A — 0 limit we obtain the following non-vanishing correlators:

1 o0l 2
)= — = — %It 2 _ 1
G1(t) S raZm? [Dle 2 <cos( Wi |t|> (3.61)
gi! i
+ sin 2— L] | | + D2 cos(w.lt|)
2 /w2 — 1 4
¥ T4
D2y
Dy 1 .
Gi(t) = < o sin(wy|t]) = G2(t) (3.63)
1 6771t ,.)/2 -
Gi(t) = — ——=—=sin | \/w? — -1t | O(—t) = G} (~t) (3.64)
M« 2 7% 4
W2
¥ T4
1 . 5
G3(t) = o sin(w«t)0(—t) = G3(—t) (3.65)

where we have defined

Gi(t) = E[* (1) (7 + 1)] . (3.66)



An important check is that they match the equal-time covariances match Equations 3.26 to 3.33,
which were obtained from solving the Lyapunov equation instead. Note that the covariance
q192 in Equation 3.33 goes to zero in the case of equal mass and coupling.

A few interesting properties emerge. First of all, the ratio between the typical size of the

oscillations in the first spring with respect to the second one depends linearly on the coupling

o1 |G1(0) A [ Dy
21— = 14+ = 3.67
09 G%(O) Y1k Dy ( )

Secondly, and more curiously, the covariance between the displacement of the first oscillator at

constant:

different times for time intervals greater than the typical decay time of its fluctuations ¢ £ 1/v;
is long-lived and completely dominated by effects due to the second oscillator even at leading

order in A:

Dy 1

Gi(t) —
This reflects a key behaviour of the steady-state: the two oscillators synchronise. This is due
to the fact that the anti-symmetric normal mode in which the two oscillators will be out-of-
phase with each others will have a larger damping coefficient than the in-phase relative motion,
leading over time to synchronisation. Of course, in general, the stochastic perturbation will
excite both modes, but the out-of-phase will always dies quicker. This means that the in-phase
mode dominates the steady-state distribution if one coarse-grains on time-scales larger than the
decay time of the damped oscillator. The fact that the two oscillators are synchronised is even

more obvious when one looks at the mutual information between ¢; and g2. Recalling that the

probability distribution on the combined state is Gaussian, this is trivially given by:
1
Lij(t) = I(zi(1),zj(T + 1)) = —3 log (1 —r45(t)?) (3.69)
where r;; is the correlation between the two sytems:
Cj(t)

rij(t) = ———e . (3.70)
Ci(0)C5(0)
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where the correlation functions are explicitly given by:

1 D "

ri = cos(wyt) + —e~ 211 | cos w2 — Lt 3.71
0= g [+ Ty 37)

ge! "

+ ————sin [ {/w? — L

24/ w? — %% 4

r92 = cos(wxt) (3.72)
1

T2 = ———= cos(wxt) . (3.73)
V1+ B

It is interesting to focus on the behaviour of the mutual information for the displacement
of the damped oscillator at different times. Initially, it decays in magnitude until it asymptotes

an oscillatory behaviour:

cos? (wyt)
2
(o)

This shows that information is scrambled about the position of the first oscillator after the

1
lim I;; = —ilog 1-—

t—o00

(3.74)

half-life 1/7;. After that, however, the mutual information between two observations oscillate
between 0 and some positive value set by the ratio of the two diffusion coefficients with period
ws. A similar functional dependence appears in I;o. This elucidates the fact that whilst the
damped oscillator synchronises and vibrates at the natural frequency of the frictionless one
in the steady-state, its dynamics is less regular that its counterpart. That is, if the diffusion
coefficient of the first oscillator is large enough. Indeed, in the D;/Dy — 0 limit, both Iy
and I1o asymptote to I — the relative states of the two oscillators in the steady-state become

completely deterministic.

3.2 The classical-quantum case

Having analysed the system when both oscillators are classical, from the existence of the steady-
state to its properties in the small coupling regime, we now study the classical-quantum case.
In particular, we quantise the frictionless oscillator, in the attempt to answer the question of
whether classical friction is enough for the combined CQ system to reach a steady-state. This

is of interest especially in the case of effective CQ theories, where the quantum system is well
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isolated except for the interaction with the classical one, whose classicality is effective and comes
from the interaction with some bath. If thermal, implies the presence of classical friction via
the fluctuation-dissipation relations.

We tackle the problem from the path-integral formulation of the dynamics. For a classical
oscillator with displacement ¢ coupled to a quantum one with displacement (), we have that

the proto-action encoding the CQ interaction is given by:

Woq = —%( Q). (3.75)

Then, in the L/R basis for the quantum system, the action I¢q for the hybrid path integral is
given by:

tco= [ arfi (Smo (@ - @) - ra (@t @b - (3a-@u? -3~ an))

D . D_, M.
—70>\2(QL — Qr)? — q(mcd; + ad + ko + Vg + 5(12 +5a(Qr + QR)] , (3.76)

with mqg ¢ and kg ,c being respectively the masses and coupling constants of the classical and
quantum springs. As before, A is the coupling constant between the two oscillators and « the
friction coefficient of the classical system. Finally, D and Dy are, respectively, the diffusion
coefficient for the classical oscillator and the decoherence rate in the quantum one.

It is useful to expand the coupling term in the unitary part of the quantum action:

T
o= [ @ [ (;mQ (03— 03) — 2ro (@3 — @3) + M@ - QR>) - Do, - quy?

~ D, A
—G(mcd? + ad; + ko + Mg + E«f +50(Qr + QR)] - (3.77)

It is suggestive that only the average of the left and right branches of the path integral
acts as a source to the classical system, whilst the difference appears to couple to the classical
system in the quantum sector of the path integral. Indeed, moving to the average-difference
basis (suggestively also known as the classical-quantum basis, but we’ll avoid that nomenclature
to minimise confusion):

_Qr+@r

Qi ==t Q- =QL-Qx, (3.78)
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one obtains the suggestive action:

T
D
Icg = / dt [—ZQ_ (M@0} + kg + A) Q4 — 7°A2q3 +iAgQ—
0

D
—G(mcd; + a0, + vo+ Mg+ 50 +AQ+ | - (3.79)

where we have integrated by parts the kinetic term in the unitary sector of the action. This
transformation elucidates a symmetry between the classical and quantum sectors of the hybrid
system. Indeed, recall that the response variable ¢ in the MSR formalism is a purely imaginary
auxiliary field. Making it explicit via the transformation § — ig, we see that the average degree
of freedom @4 is in exact correspondence with the classical displacement ¢, whilst QQ_ plays
the role of the response variable. Of course, this is just a mathematical equivalence in the
propagator of the theory: the reduced states of the classical and quantum systems will be a
probability distribution and a density matrix respectively.

This arises due to a well-known equivalence between Lindblad evolution and Fokker-Planck
equations in the case of Gaussian-preserving dynamics. Indeed, for quadratic potentials and
Lindblad operators at most linear in P and @ (where P is the conjugate momentum of a
quantum particle with position @) the evolution of the Wigner quasi-probability distribution
representing the state of the system in phase-space follows exactly a Fokker-Planck-like equa-
tion. Introducing anharmonicities breaks this nice symmetry bewteen diffusive and Lindbladian
dynamics [168, 169]. This is since, as se show explicitly in Section 3.3, the quantum sector of
the dynamics can be mapped exactly to a classical stochastic processes (modulo constraints on
the initial state) if and only if the potential is at most quadratic in the generalised position of
the system. As soon as the potential has a power expansion that goes beyond the quadratic
term, such a mapping becomes at best approximative — and only allowed in a region of phase
space where the potential is effectively harmonic. Still, when the path integral is Gaussian,
the Hubbard-Stratonovich transformation allows for an exact mapping between the classical
stochastic evolution and the Lindbladian one. This is a powerful result, as it allows to use the
properties of the equivalent diffusive generator to compute the steady-state of the quantum
system [170]. We will return to this point more formally in Section 3.3

This simplifies greatly the problem: we can use all the results from our classical-classical
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system, under the mapping
qo — ’L'Qf s q2 — Q+ s Dy — D0>\2 R Dy — D. (3.80)

If the backreaction is non-zero (A # 0), the decoherence diffusion trade-off requires 4D Dy > 1.
We choose to saturate the trade-off setting Dy = 1/4D — the special case of hybrid dynamics
in which the quantum state remains pure conditioned on the classical trajectory. Most impor-
tantly, we can conclude that the combined system reaches a steady-state, meaning that we can
extend the limits of integration in the CQ action of Equation 3.79 to past and future infinity,
preparing the asymptotic state. What changes is the interpretation of the correlators and how

they map to physical observables.

Occupation number

Much like in the classical systems, the correlations between () and @)+ encode both correlations

and the response of the system to external perturbations. In particular [171]:

The fact that the insertion of the difference field ) computes the perturbation to the system
due to the external source can be understood in terms of the observation that a real external
source is physical and therefore equal on the L and R branches. However, by performing the
Keldysh rotation at the level of the source, it is straightforward to see that @4 couples to
the difference of the sources J_ and vice-versa. Therefore, differentiating with respect to the
physical source brings down a factor of Q)_.

Whilst the off-diagonal components of the quantum Green’s function encode the response
of the system to external perturbations, the Keldysh propagator GX encodes the correlations
in the system. In particular, introducing the usual bosonic raising a and lowering a operators,

it is straighforward to see that the equal-time Keldysh Green’s function computes the average
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occupation of the oscillator:

Gt 1) = — (Nﬁ%l), (3.85)

mQwg 2
with N being the expectation value of the number operator aa'.

The non-zero correlator ((GQ+)) (where double-angled brackets indicate quantum and clas-
sical expectation value) econde instead the response in the quantum degrees after a perturbation
to the classical system, and vice-versa for ({(¢@)_)). The decoherence-diffusion trade-off forced
the decoherence coefficient to have quadratic dependence on A\, meaning that with respect to
the classical results the relative weights of certain terms is shifted towards the ones involving
the classical oscillator only. Indeed, keeping only leading terms up to order \°, the non-zero

correlators are given by:

71 2
aO)a) = 55— [De-zt' ( ( W = ’“|t|) (3.:36)

(Qe0)Qs(0) = (g5 + 5 ) st (3.87
- 1 el . fy%
M@WM—W2¢m<w%40ﬂ4) (3.88)
wy — 4
(Q+O)Q- (1) = —  sin(wt)f(—) (3.89)

Note that, contrary to the classical-classical case, there are no divergences when A — 0, since
saturating the decoherence-diffusion trade-off implies that the decoherence (and hence the en-
ergy increase) in the quantum state vanishes when the two systems decouple.

The energy in the quantum system is independent (to leading order) of the coupling constant
between the two oscillators — again a result of the decoherence-diffusion trade-off. Specifically,
in analogy with the classical-classical case, the typical size of the oscillation in the quantum
system would be Q%_ ~ Dy/N? (since the induced friction is of quadratic order in the coupling
constant), where Dy is the decoherence strength — effectively the diffusion constant in the
quantum oscillator. However, the decoherence diffusion trade-off forces Dy ~ A%, meaning that

the two dependences on A cancel each other, giving an order 1 effect irrespective of the coupling
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strength. We see that two terms contribute to its average energy (essentially Q2 , the Keldysh
propagator at equal times). The first one is direct decoherence in the system, controlled by
1/D; the second one is linear in D and is a result of the secondary decoherence coming from the
diffusion in the classical oscillator. Defining the effective temperature of the classical system to

be:
D D

T = — =
¢ 2, 2y1m

(3.90)

we see that we can re-express the average number of excitations in the quantum system as

1/ ws 2T
N—2<2TC+ o —1) . (3.91)

The first thing to note is that the quantum oscillator can never be empty of excitations. Tuning

the temperature of the classical system to be the critical value T§" = w, /2 we can drive the
quantum system to the lowest energy configuration allowed, namely the one that has N,,;, =
1/2. In the large diffusion regime (i.e. when the classical oscillator is much hotter than the
zero-point energy of the quantum one), the direct decoherence is negligible and the energy in
the classical and quantum oscillators exactly match to leading order in A. In fact, we have that
N =~ T¢/ws, meaning that the quantum oscillator thermalises to T as well.

We have used the correlations computed from the MSR path integral to find the two-point
functions of the hybrid system to leading order in A\ (again, the system is in principle exactly
solvable, but the roots of the quartic are extremely complicated and not at all illuminating).
However, if we are only interested in equal-time correlations — that is we only care about
symmetrised observables in the quantum system at equal times — we can use the exact covariance
computed from Equation 3.19 (after appropriate rescalings of the coefficients). To see that the
evolution of the average observables Q4 is described by Equation 3.1, we need to find the
equation of motion for the conjugate momentum P, . It suffices to take the momentum part of
the full Schwinger-Keldysh action (the purely quantum sector of the CQ action) and perform

the rotation in the average-difference basis before integrating out P:

) . P2 . P2
Ssk|Qr, Pr,Qr, Pr| =i [PLQL ~3 L PrQr+ 1L ] + ..
mQ 2mQ

:i[P('+—n%>+P+Q] + ...

Integration over P_ then sets P, = mQQ+, and complete equivalence follows.

(3.92)
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The non-zero equal-time two-point functions of the hybrid state are given by:

U me A2

((p >>——271 D+—mQ—4D (3.93)
2y _ L | A momnQ 2 2. A A ’

(P >>—271 5] DY wo —w + - e (3.94)

() = 5 (3.95)
2m mZ, (wé%c wi, wé + %Q))
Q%)) = [D (w + ) 3.96
memg 3 A
A 2 2, N 2 7
+ 4D << C+ C> +<WC <WQ+mQ)+WQmC>
2 52, N oA 2
X <UJQ 2&!0"‘ 2m +’Y1>):|
2
A moA 2 A 2 A 2 2 A
(o) — e mc+4%<(wc+mc) ~WQme —WC (wQ+m>> .
Q) = 5—— :
21mQ e+ (4 7
A
((Pq)) = EY)) (3.98)
A mo
((pPQ)) = 8D mg (3.99)
A A A
P)) = PANEYN NN AR AT .1
(P = gp=me (wt —uy+ o= ) (3.100)

Thermal limit

In [162], the temperature-dependent hybrid dynamics that preserves the CQ thermal state at
any (8 was derived — and a CQ oscillator was studied as a toy model. In that work, the authors
find that, in order to preserve the thermal state, a temperature-dependent decoherence in P is
required. Still, in the high-temperature limit the momentum decoherence term drops out, and
their dynamics coincides with ours — meaning that the model we discuss must flow to the CQ
thermal state in the high-temperature regime as well — as we now straightforwardly show.

A large effective temperature for the classical system at fixed 7; corresponds to the high
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diffusion limit. At large D, the non-zero 2-point functions are

((p*)) = mcTo (3.101)
((P?)) = mqTo (3.102)
{(d*) = HT; ( war”ZQ ) (3.103)
(@) = 3;2 ( ”szc Q) (3.104)
((gQ)) = an < 2 mcwc < Wy + >>_1 (3.105)

It is straightforward to see that in the high temperature regime the correlations converge

exactly towards those of the thermal state:

1 _
0s(q,p) = ¢ BH(a.p) (3.106)

with 8 = 1/T¢ as 8 — 0. In that limit the hybrid thermal state limits the classical one, and
the correlations can be easily extracted from the Gaussian state without worrying about the
discreteness of the energy levels in the quantum system. That is, the partition function of the

quantum oscillator is well-approximated by the classical one.

3.3 CQ in phase space

The dynamical equivalence between the CQ and the CC stochastic oscillators is not a coin-
cidence. As mentioned, it is just an extension of the statement that classical and quantum
generators are equivalent for harmonic potentials. To see this more explicitly, let’s introduce
the phase-space description of CQ dynamics by peforming a Wigner-Moyal transform, in the
spirit of [168]. For simplicity, we restrict to minimal CQ dynamics of the form of Equation 2.57.
We further take the CQ Hamiltonian to be Hermitian and the quantum degree of freedom being
described by a single point-particle. Extensions to higher-dimensional Hilbert space and more
general CQ evolution are conceptually trivial.

The Wigner-Moyal transform assigns to every classical phase-space dependent operator A(z)

(we introduce hats for operators and powers of 7 in this section to minimise confusion) a function
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over the combined phase space Mg x Mg
W) = A= Q. P) = / AZeP2INQ — 2121 A(2)|Q + 2/2) | (3.107)

where P and ) are the position and momentum respectively of the quantum particle, whilst
|Q) is its position eigenstate with eigenvalue ). The classical phase space dependence of the
operators does not add any complication here. The Wigner-Moyal transform of the CQ state

then corresponds to the hybrid Wigner quasi-probability distribution W

W [%@(z)} —W(2P.Q), (3.108)

where the numerical factor is needed to appropriately normalise the state, since

/ dQ / dP W [A(z)} — 2 A TY[A(2)] . (3.109)

This is just the usual Wigner function. The twist is that it is subnormalised on the quantum
phase-space, and it has classical-phase space dependence.

The time evolution of the hybrid phase-space state W is given by the Wigner-Moyal trans-
form of Equation 2.57, the evolution map of the CQ state. In order to compute what that is in

phase space, it is useful to keep in mind the following

w [A(Z)B(z)] — A(2,Q, P) exp <ZA> B(z,Q, P)

?

A (3.110)
= B(z,Q, P)exp <—2> A(z,Q, P) ,
)
where the differential operator A is essentially the negative of the Poisson brackets
Az@}?@é’—@a@? , (3.111)

with the arrow indicating what the derivative acts on. It then follows that the Wigner transform

of the commutator is (from now on we drop the phase space dependence for notational economy)
. R ... (hA
W [[A(z),B(z)]] = =2 Asin (| B. (3.112)

whilst for the anticommutator we obtain

W {{A@),B@)}@ — 2 Acos <712A) B. (3.113)
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Using these relations, we can easily see that the reversible part of the CQ evolution equation,

the Aleksandrov brackets, gets mapped to

hA 2 hA

271?1‘/\/ {Heoq, e}al = {Hc + Vi cos <2) ,W} 5 Hosin <2) w (3.114)

Here we have often used that the Wigner-Moyal transformation commutes with derivatives with
respect to the classical degrees of freedom z. Note that, in the 2~ — 0 limit, this is exactly the
classical Liouville equation

1
%W[{HCQ,Q}A] = {Hc-i-V[-i-HQ,W}—i-O(h)Q , (3.115)

as required for consistency. For the minimal models we consider, that is where the CQ in-
teraction potential only involves generalised positions of the hybrid system (Vi = Vi(q,Q))
and similarly the quantum Hamiltonian is given by Hg = P2/ 2mqg + Vo(Q), we can expand
Equation 3.114 as

1
5.7V [{Heq, oya] ={He + Vi + Ho, W}
o) . A 2n 1 82n 8‘/] agn oW
+nzl(_1) <2> [271!8622" <8q> apn (api> (3.116)

1 82n+1U 82n+1W
T2n T 1)10QeT gpE ]

This explicitly shows that, if Hg+ V7 is at most harmonic, the reversible part of the dynamics is
equivalent to the classical evolution — generalising the standard quantum result to CQ systems.
This is since the tower of derivatives vanishes identically for any value of A.

What about the dissipative contribution instead? The Wigner-Moyal representation of the
diffusive term is trivial, again because the map commutes with the derivatives with respect to z.
On the other hand, the decoherence term is essentially equivalent to what has been computed
in [168], under the appropriate rescalings, modulo the classical phase-space dependence. Indeed
it is easy to show that

1 1 92 OV . (RA\ Vi . (RA

Again, this can be expanded in powers of % in terms of an infinite tower of derivatives (using
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the Cauchy product for the two infinite series coming from the sines)

02 DY 92V, 92V O*W
——— (Daij W) + —2 L =L
OpiOp; 2 0Q0q* 0QIq) OP?

2Dij 0  n (_1)n h 2n+2 82m+2v] a2(n—m)+2‘/[ o227
T2l Z Z 92 0Q2m+19qi 9Q2An—m)+19qi gP2n+2

C
n=1m=0 """

S WDlo] =5
(3.118)

where we defined ¢, , = (2m + 1)!1(2(n — m) + 1)!. We have explicitly isolated the n =m =0
component of the sum, since it obviously maps to a diffusion term under the Wigner-Moyal
transform. Moreover, under the assumption of harmonic Hamiltonian, as before, that’s the
only term surviving. In which case we see again that the CQ master equation for quadratic
potentials can be mapped exactly to a diffusion problem in phase space. This is indeed the
parallel of what we have observed at the level of the path integral.

A word of caution: the decoherence-induced diffusion in the quantum system is negligible
with respect to the classical one, unless the decoherence constant itself is of the order of 1/h2.
In effective open system, the induced decoherence rate is exactly of that order, meaning that
in the i — 0, both effects contribute equally [172]. For CQ systems, instead, this corresponds
— via the deco-diff trade-off — to the small-diffusion regime. By inserting the explicit form of
the potentials for the coupled CQ oscillators, and imposing the decoherence-diffusion trade-off,
one can indeed see that the diffusion coefficient in the quantum variables is given by A2h%/4D,
as in the discussion at the level of the path integral.

The phase-space description we have introduced here nicely mirrors the purely quantum-
mechanical counterpart. Whilst it is an exact alternative representation of CQ dynamics, it
can — in analogy to the quantum case — provide great computational advantage in evaluating
the evolution of hybrid systems. For example, the Wigner formalism in quantum mechanics is

useful when simulating molecular dynamics or highly transient phenomena [173].

3.4 Summary of the main results

In this chapter, we explored a solvable system of classical-quantum interaction: the hybrid
oscillator. We began with two classical stochastic oscillator, one of which experiencing fric-
tion, showing that such a system univocally flows to a non-equilibrium steady-state. We then

computed the out-of-time correlators for the steady-state in the small coupling regime. Next,
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we quantised the undamped oscillators, and studied the system with the CQ framework. By
mapping the generator of the dynamics to the classical stochastic system, we should that also
the hybrid state flows to a non-equilibrium steady-state, which we computed. We demonstrated
that in the high-diffusion regime of CQ, such a state becomes thermal. We concluded by for-
mally deriving the phase-space description of CQ dynamics by performing the Wigner-Weyl
transformation of the CQ generator. We showed explicitly that for quadratic potentials the
hybrid evolution is equivalent to a Fokker-Planck equation with diffusion in both the classical

and quantum phase space.
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Chapter 4

Stochastic scalar

The aim of this chapter is to study the classical sector of a relativistic CQ theory as a toy
model which may share some phenomenology with a fundamentally classical theory of gravity.
In particular, we consider the free classical sector of a CQ field theory with a classical relativistic
scalar — for example the quartic theory presented in [126] or the CQ Yukawa model [136] in which
scattering has been recently discussed [174] — to compute its dynamically-generated correlations
and the induced motion on test particles. It can also be seen as the classical sector of CQ
Nordstrom gravity [127]— a scalar theory that correctly reproduces the Newtonian potential
in the weak-field non-relativistic limit, but fails on accounting a series of other phenomena,
such as light-bending and gravitational waves. While the propagating degree of freedom in CQ
Einstein’s gravity is the tensor mode, and the theory is non-linear, the study of a linear, scalar
theory serves as an interesting toy model which is useful for building up an intuition for the
gravitational case.

Here, we compute the two-point function of the non-dissipative Klein-Gordon field in Minkowski
space, showing that the covariance in the field is free of divergences, zero for time-like separated
spacetime points, grows linearly with the total time of diffusion, and drops as 1/r for spacelike
separated events. We find that the size of the fluctuations, and their spatial variation, is large
at short distances, meaning that linearised models of CQ gravity will likely break down at small
scales, where non-linearities become important — possibly acting to smooth off the magnitude of
the short-distance fluctuations. We further show that a particle reacting to the spatial gradient

of the field will undergo diffusion, and compute the typical size of the white-noise stochastic
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force that is induced by the classical stochastic fluctuations.

Conventions

Note that in this chapter of the thesis we work in the mostly negative convention for the
Minkowski metric (+ — ——), the most common choice in the quantum field theory community.

Unless stated otherwise, we set G = 1 in this chapter.

4.1 CQ scalar Yukawa

Our starting point is the one of a classical Klein-Gordon field interacting with its quantum
counterpart, and in particular the Yukawa model of [136, 126]. Scattering in this model was
recently discussed in [174] where it was shown that stochastic fluctuations can affect non-
trivially scattering probabilities in CQ theories. The CQ scalar Yukawa theory corresponds
to two dynamical Klein-Gordon scalars, the classical ¢ and quantum . Specifically, the CQ

proto-action can be obtain with the following choices:
1 1
LW = SO+ mMy, L9l = (0 +m?) (4.1)

and
Lint[th, ] = App? (4.2)

In fact, we will focus on the free part of the classical sector of the theory, whose understand-
ing is crucial to construct perturbation theory and explore the renormalisation of the model.
The equations of motion for the stochastic Klein-Gordon field (re-introducing momentarily

factors of G, ¢ and h and treating ¢ as having the unit of a gravitational potential):

2.2
(50 -v2+ 55 ) olo) =) (43)

with the Gaussian random field ¢ (with units of inverse length squared) having the following

statistics:
Elé@)] =0, El@ew) = 2 0 —y) (14)

Note that the diffusion coefficient is dimensionless, and the delta-function correlation is required

for a local, Lorentz invariant noise. Surprisingly little is known regarding this stochastic field
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theory. In the mathematics literature, this is mainly due to the fact that divergences occur in
the stochastic wave equation in more than a single spatial dimensions — meaning that a regular
solution does not exist — so deformations of the theory are usually studied instead [175, 176, 177].
In the physics literature, the non-dissipative system has not been studied to the best of our
knowledge — although the thermal Klein-Gordon state has been explored in detail and is now
textbook material [178, 179]. It is useful at this point to discuss the latter — it will serve
to develop an intuition to interpret the non-dissipative results. Therefore, we now consider
the modified dynamics that has as a fixed-point the thermal scalar field, breaking Lorentz
invariance. As we will see in Section 4.3, the thermal field covariances are closely related to the

ones of the non-dissipative system.

4.2 The Klein-Gordon thermal state, with friction

Consider now the following modification to the equations of motion:

(O+m?)(e) + 3150 = &(a) , (4.5)

where vy is some constant friction coefficient — which breaks Lorentz invariance. The factor of
3 is there in analogy with the equations of motion of a Klein-Gordon field on an inflationary
FLRW background with Hubble constant vz [180]. Of course, the analogy is imperfect since in
the cosmological case the d’Alembertian is the one of the FLRW geometry, whilst we consider
the flat-space operator instead. In the cosmological analogy, the loss of Lorentz invariance is
natural: there is a preferred frame provided by the expansion of the Universe.

For completeness, let us write these equations of motion in first order formalism, re-

introducing factors of ¢ (again, we take the field to have the units of a gravitational potential):

Orp =Ty (4.6)

c2m?

h2

Oy = ? <V2 - ) ¢ — 3YuTe + A& (4.7)

where ¢ obeys Equation 4.4. The stochastic differential equations (SDE) of motion, here, are
given in Langevin form for cosmetic reason. Recall that the white noise field corresponding to

the formal time-derivative of a three-dimensional Brownian sheet [181].

82



Because of the friction term, the system achieves a steady state. Determining that steady
state is achieved by considering the evolution of the probability density P (¢, 74) in field space.
This follows from the Fokker-Planck equation:

oP _ 5x£ _ 5901 3 3 62
o /d 5 (DyP) /d 5 (DyP) + /d /d N ES L )(DMP) (4.8)

where the drift coefficients are:
D¢ = 7I‘¢ (49)

62m2
D, =c2V%p — =) ¢ —3vEmy (4.10)

whilst the diffusion coefficient is:
Dir = Doc?6®) (2 — y) . (4.11)
A natuaral ansatz for the steady state (0;P = 0) is the thermal state:

T
Pr=—_e BH (4.12)

c2m
=55 / >z ( + (V)% + = ¢> (4.13)

and 3 to be determined (Z ensures normalisation on field space, whilst the numerical pre-

with:

factor is needed from dimensional analysis). Plugging this into the Fokker-Planck equation and

demanding that this is a steady state imposes:

6Gvn

5: D2C5 '

(4.14)

The steady-state distribution is a field whose modes have an average energy of 1/5. Without
a cutoff, the energy of the field would be divergent, as there would be infinite modes, each
contributing to 1/ to the total energy. If a natural UV cutoff A exists for the theory, however,
the total energy depends cubically on such a scale, i.e. H oc A® — the volume of the physical
states in reciprocal space.

Seeing that this is the case is straightforward, and amounts to computing the two point

functions of w4 and ¢ in the thermal state. First, note that the probability distribution over
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phase space factorises between 7y and ¢, meaning that we can compute the two separately.

Let’s introduce sources J and J for ¢ and 7 respectively, defining the generating function:
Z[J, j] - N/D¢DW¢6_BH+fd3$(J¢+j”¢)
22 -
= N/D(Z)e2% fd3z<(V¢)2+h—2¢2) efd3x‘]¢/D7T¢e_2GBc2 Jd*ar3 [ i, (4.15)
= Zy[) Z[J] .
Performing the Gaussian integrals we obtain:
62m2
2t [ 9500 s
_ N/D¢e—2%ffd3wd3y ¢(w)5(3’(r—y)(—V2+62h7’£2)¢(y)efd3m¢ (4.16)
= Zyen [ [ dxd'y J@)G—y) )
where Zy is the normalisation constant of the ¢ probability distribution and
B 2

02m
G (‘VQ T ) Glz—y) =dVz-y) . (4.17)

As expected, G(z — y) is the Green’s function of the Laplacian operator with a mass term. We

can easily find this in Fourier space:

G 1

Gk)=——— . 4.18
(k) B k% + (mc/h)? (4.18)
The inverse Fourier transform is well known [179]
G 1 _ Dac® 1 _
Gz — - T = mer /h _ 2t - mer/h 4.19
(z-y) dnfBr 247y re ( )
and corresponds to the two-point function of the field ¢
Doc® 1 _
E = 2 Zemer/h 4.20
o) = 5 e (1.20)

Differentiating in space the point-split two-point function gives the covariance for the gradient

of the field at equal times

Doc® ;T 1 me Ty (2 me m?2c? —mer/h
sionotei0] = g | (00 =5 () = 5 (5 e T ) | "

(4.21)
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We sum over all directions (recall z° = —x; in this signature of the metric). Carefully

handling the coincident limit

G Bctm?
E[Vo(z)Vo(y)] = —V°G(z —y) = 55(3) (z -y~ ~5m Glz-y)
(4.22)
= Doy gy I Gy

6vH = Doch? =
In the massless case, the appearance of the J-function is even more obvious: the probability
distribution in terms of V¢ has a J-function kernel, whose inverse is a delta-function itself.
Repeating the same calculations with the momentum instead, we find that in the thermal
state we have
B Gc?

G 3) _ Dac” (5
E[r(z)m(y)] 3 0Nz —y) = 6'}’H5 (z—y) . (4.23)

This implies that the energy of the state has a contact divergence similarly to that found in the

quantum field theory case. Indeed:

TH\T)TT 02m2
- %E [ / e &by (W +Vo(2).Vo(y) + — ¢<x)¢<y)> 0¥ (z —y>] o
= Vo) = 2Vs00) |
8 6Gyy .

The 6-like divergence is due to the infinite number of modes contributing equally to the energy.
Again, if a cutoff scale A exists, the divergence is regularised with a cubic scaling A3. The
total energy of the field does scale with the spatial volume V' — here we regulate it with some
IR cutoff which might be taken to be naturally the Hubble scale — but of course the energy
density is insensitive to the IR and only feels the contribution from the UV modes. From these
two-point functions, covariances at unequal times can be computed by studying the eigenvalue
problem of the Fokker-Planck equation [182]. We instead stop here and now progress to the
main results of the chapter — the covariance function of the non-dissipative system. We will

continuously refer to the thermal results for comparison.

4.3 Correlations out of equilibrium

Let’s consider again Equation 4.3. Contrary to the damped case, the probability distribution
over field space does not converge to a steady state, with the variance growing unbounded

instead. This means that we cannot ignore the initial state, nor the total time of evolution.
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Assuming that we can initialise the system at the past timelike infinity, providing a Lorentz-
invariant initial condition, leads to divergent results precisely for this reason. It is therefore
necessary to specify an initial state on a spacelike hypersurface ¥y, and foliate spacetime along
the time-like vector specified by the initial condition.

The initial condition means that the solution for the two-point functions will not look
Lorentz-invariant: correlators will fail to be invariant under boosts. However, this has nothing
to do with the property of the evolution itself — the equations of motion are perfectly Lorentz
invariant.

Without loss of generality — due to linearity of the Klein-Gordon equation — we are free to
consider the initial state and its time derivative to be the identically vanishing, i.e. ¢(tg,z) =
q'ﬁ(to,g) = 0. Indeed, we can always add any solution to the (deterministic) homogeneous
problem that satisfies any other initial condition. Effectively, this means we are focusing only
on the deviation from the deterministic dynamics due to the stochastic fluctuations: any non-
zero initial condition can be simply propagated by the deterministic equation, contributing only
to a non-vanishing mean.

The weak solution to Equation 4.3 can be rewritten as [175]:

Xy
o) = [ 'y Gt e) (1.25)
where G is the retarded Green’s function of the Klein-Gordon equation. Recall that for a
massive field this is given by [183]:
Gala —y) = 0" ") (5002 + O(r2) ") ) (1.26)

AT Ty

where 7, is the proper time elapsed on a geodesic between z and y, whilst J; is a Bessel

function of the first kind. The propagator of the massless field trivially follows

LL’O— 0
Gt ) =~ 2L 5(r2,) (127)

It is entirely localised on the past lightcone of .
As we intend the stochastic equation in the It6 sense, the expectation values over realisations

of the noise acts only on the random field €. Therefore:
s

Elgp(z)] = g d'y Gr(z,y)E[E(y)] =0, (4.28)
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as expected. The two-point function of the field, however, is non-zero:
W%MWEEW@W@Wm—%—N—L;d4/ d'z' Gg(z,2)Gr(y, 2 )E[E(2)E(2)
0

= Dz/ d'z Gg(z,2)GR(y, 2) ,
Yo

(4.29)
where we have used the fact that the random field is d-correlated in spacetime. C is the covari-
ance of the field at the spacetime points x and y given the initial condition of a vanishing field
and conjugate momentum at the initial spacelike surface. That covariances can be expressed
as convolutions of Green’s functions applies to any stochastic field theory with linear equations
of motion. However, performing the convolution in spacetime for a general theory is compli-
cated — it is much easier to go to the Fourier domain where the convolution becomes a simple
multiplication, and then perform the inverse Fourier transform.

For the massless KG field, solving Equation 4.29 directly is possible, as we show now.
This serves as a check for the main results of this articles — how to handle the Fourier-space

divergences of the two-points function in a stochastic field theory.

4.3.1 Explicit spacetime convolution for the massless field

We now perform the convolution:

o
C(z,ylto) = Dg/ dzo/dSz Gr(x — 2)Gr(y — 2) , (4.30)
to
directly by calculating the integral in the spacetime representation. First, expand
1
Gr(x —z) = —2—@(300 —296(s2,)
. 4.31)
15" =2 |z —z]) + (2" — 2 —|—|x—z|) B (4.
— Oz — 2% .
4w |z — 2|
Here we will assume z¥ > 0. It is useful to perform the following change of variable:
Z=y—2z, (4.32)
trasforming the integral into:
Y’ —to (20 — 5
C(x,y|t0)o</ déo/d32 (Z ‘Z|)|+| (Z +|Z|) ( y 1z )@( O)X
_ z
* (4.33)

6(a -0+ 20—z —y+2)+6"—y° + 0+ |z —y+ 2|
|z —y+ Z|

X
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Due to the theta-function imposing positivity on 2%, the §(2° + |Z|) does not contribute.

0

Integrating over z” we obtain:

5. 0@ =P+ 2 — |z —y+2) + 0"~y  + |2 + ]z -y +2)
C(x,ylto) o< [ d°Z = — = X
lz —y + Z|Z| (4.34)

x Oy’ —to — IZ]) .

Since 2° > 90, the second delta-function is irrelevant. The theta-function imposes the restriction
on |Z| due to the finite evolution in time. It is now convenient to perform the spatial integral
in spherical polars (Z, 6, ¢), where the role of the unit k vector with respect to which the angles

are defined is played by (z —y)/|z — y|. Then, using:

@—g—i—é\:\/@—g|2+§2+2|§—g\§cosﬁ, (4.35)

meaning that the delta-function condition is satisfied for 6, s.t.:

cos b, = y = + (4.36)

This clearly implies that x and y must be spacelike separated spacetime events — if timelike
the RHS is larger than 1 (recall that 2% — ° > 0). In terms of cos @, the delta-function can be

expressed as:

0_,0_ | . \/@—g|2+22+2|§—g|écos0*
62" —y + |2 —lz—y+2|) =

— 0(cos @ — cos 0,) x
Zlz —y (4.37)

x O(= (2’ =y — |z - y])) .
Now, in spherical polars the integral becomes simply (ignoring the theta-function for brevity):

2m 1 y0—to \/|£—y|2+22+2|g—y\20089*
C(x,ylto) O</ d¢/ d(cos@)/ dz — — X
0 -1 0 \/@—y\2+22+2@—y|20050 (4.38)

X 0(cosf — cosb,) .

Meaning that the final result is:

D 0420 —2¢
C(z,ylto) = ﬁ <y‘$_y0 - 1> O(—s2,)0(" +y° —2tg — |z — yl) . (4.39)

Before moving on and computing the two-point function in Fourier space instead, let’s

pause and analyse this result. The fluctuations in the field at time-like separated points are
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uncorrelated. This is caused by the structure of the massless retarded propagator — which is
completely localised on the lightcone. In order for the field in two different spacetime points to
be correlated, they need to share signal from the same stochastic fluctuation. Since these travel
strictly at the speed of light, x and y need to have intersecting light-cones — hence the first
O-function. The second O-function follows from the initial condition ¢ = 0 for ¢ < tg. Only if
the ©-condition is satisfied, then the two lightcones intersect before the stochastic white noise
is turned on, i.e. before tg. Indeed, the covariance between x and y drops as 1/r until it
reaches zero at a critical distance r,. Further than r,, the two space-like separated points do
not have an intersecting lightcone and are completely uncorrelated. Figure 4.1 visually clarifies
this point. Note that the critical distance r, grows linearly with the time coordinate elapsed

from the initial spacelike hypersurface.

Figure 4.1: Spacetime diagram in 1 4+ 1 dimensions. The points z and y, even if spacelike
separated, are not correlated — their lightcones intersect before the initial condition (dashed
line). On the other hand, the field at 2 and 3 will have non-zero covariance, as their intersection

(black dot) lies in the future of the initial spacelike hypersurface.

A useful analysis, for a further sanity check, is to compare Equation 4.39 for simultaneous
events (with respect to the initial time hypersurface) to Equation 4.20, i.e. the thermal 2-point
function. By taking the time elapsed to be ¢ty ~ 1/3vyp, i.e. the thermalisation scale, we see

that in the massless limit both the 1/r scaling and size of the correlations match. Of course, for
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the thermal state the ©-function depending on the initial time is absent — in the equilibrium
configuration enough time has elapsed such that all space-like separated points have intersecting

lightcones.

4.3.2 Mod-squared retarded pole prescription

We now discuss solving Equation 4.29 in Fourier space. We derive the corresponding pole-
prescription, which we call the mod-squared retarded prescription, and analyse the role of the
divergent terms that appear in the computations.

Before considering the regularised evolution with an initial space-like surface, let’s study the
simpler situation in which we can extend the time integral to +0o0. The upper limit is always
allowed: when computing expectation values of local observables O(x), we are free to extend
the upper limit of the time integration to infinity — the future evolution of the probability
distribution has no bearing on the expectation value of observables at some intermediate time.
Initialising the state at —oco is more problematic if the evolution does not have a fixed point,
since, as mentioned before, the variance of the probability distribution in field space grows
unbounded. In the case in which there exists a steady-state (e.g. [162]), however, extending
the time integration to infinitely far away in the past would prepare such a state, as we saw in
Chapter 3.

For now, let’s assume we are indeed allowed to push the lower limit of integration to time-like
infinity both in the past and in the future: this uncovers the general pole-structure in Fourier
space of classical correlators. Let’s insert the Fourier representation of the retarded propagator

in Equation 4.29:

B S A d4p Ak e—ip(m—z)e—ik(y—z)
ot =2 [ ' [ 55 [ ooyt o7 = 5 o 07— BT

i / ) il (4.40)
= L2 . . )

(2m)4 [(po +i€)? — E(B)Q] [(po —i€)? — E(Q)Q]
where E(p)? = m? + |p|? is the relativistic energy. This structure is perfectly general for

stochastic processes — see Appendix A for the case of a point Brownian particle, where we show it
explicitly recovers standard results — and we refer to it as the retarded-mod-squared prescription,
in contrast with the Feynman-mod-squared prescription assumed in [136] to discuss stochastic

propagators. Whilst the two point function is manifestly real and symmetric under exchange
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of the field ¢(z) <> ¢(y) as required for a classical two-point function for both prescriptions,
the retarded one follows naturally from the weak solution to the stochastic equations. In fact,
the MSR path integral itself calls for the retarded prescription, in analogy with the Keldysh
propagator in quantum open-system path integrals [184].

Performing the inverse Fourier transform in Equation 4.40 would lead to divergent results
in the limit € — 0, with the leading divergence of order 1/e. Indeed, in the ¢ — 0 limit the 4
first-order poles become 2 second-order poles on the pg real line. Then, when computing the
residue for one of them — let’s call it P — its conjugate P* will contribute with a 1/e factor.
These are very much physical divergences — it is not possible to map the result to distributions
as it is commonly done for the spacetime representation of QFT propagators. To understand
their physical origin instead, consider an undamped Brownian particle. It is a standard result
that the variance in the velocity X (t) of the particle grows linearly with time, the diffusion
coefficient being the constant of proportionality — namely X2 ~ Dot. Ast — oo, the probability
distribution over momenta limits to a uniform distribution — the variance diverges. The same
happens for the scalar undamped field when driven by a white noise process.

We now explicitly see how these divergences drop out of the correlators once an initial state
is defined at finite coordinate time, and what this implies for the heating rate of the classical

non-dissipative field.

4.3.3 Pole prescription from MSR

To see how the MSR path integral selects naturally the mod-squared retarded prescription,

consider the MSR path-integral representation of the stochastic process given by Equation 4.3:

Pléy.t) = / DeDgeMsr59 P(gy, do, to) | (4.41)
where
2
Icglo, 9] —/E fd4a: |:—(;~5(D +m?) ¢+ %Js? . (4.42)

The two-point function of the vector ® = (¢, @) is, as usual, given by the inverse of the dif-
ferential operator appearing in the action, subject to the boundary conditions. For simplic-

ity, we choose as initial condition P(dy, éo,to) =9 ((]5)(5(450) — any other initial condition can
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be accounted for by adding the solution to the homogeneous equation satisfying the relevant
boundary conditions.

As explained in the previous subsection, when computing expectation values of local ob-
servables O(x), we are free to extend the upper limit of the time integration to time-like infinity
since the evolution is time-local and causal. The same cannot be done for the lower limit of in-
tegration. Evaluating the Green’s function is then more easily computed in the Fourier domain,

where the inversion of the operator is straightforward. We have:

- 00 4 4 B o ‘
ICQ[¢’¢]:/tO [ s | i [‘W) (7 = ) 6(p) + 2(0)(a) | e 0

4 4
_ _% / %é&@(—qmm,p)w) ,
(4.43)
with:

0 p? —m? P ie—to(Po—qo)
Alg,p) = (2m)*6P (p - q) mo(po — go) + —————— (4.44)
p? —m? =Dy Po — Qo

where P indicates the principal value of the integral of Equation 4.43. The two-point function
will then just be the inverse operator to A with the appropriate boundary conditions, i.e. it will
be the Green’s function G for such an operator — as standard. Ignoring for a moment boundary
conditions (i.e. extending the time countour to —oo for simplicity), in Fourier domain this is

given by:

2D22 2 2 : 2
Gla.p) = ' —q) | 7 T

(4.45)

p—
Of course, this must be accompanied by the appropriate recipe to go around poles in the
complex plane for all of these propagators. In MSR, response variables have causal dependence
with the real field, meaning that the d)d; correlator is of retarded form (it is non-zero only if the
field precedes the response variable), whilst qﬁqg is the advanced Green’s function. This means

that, naturally, the MSR path integral implies the mod-squared retarded prescription for the

diagonal ¢¢ propagator, in agreement with what we derived in the previous subsection.
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4.3.4 Propagators with IR cutoff

Let’s insert the Fourier representation of the retarded propagator in Equation 4.29:

B 00 5 d4p dik efip(xfz) efik(yfz)
C(”“"’y‘“”‘DQ/tO e [ = <27r>4/ @ (oo +i0)2 — E@?] [(ho + 10? — B2

(4.46)
Now, let’s focus on the 2y integration first:

0o A A P

/ dzget0Potho) — cilpotho)to <7T5(p0 + ko) +1 > ; (4.47)
to k'O + Po
It would be tempting to use at this point the Kramers-Kronig relation
1 ) 1 .

P— = lim — + o (z) (4.48)

r  e—0x 4+ 1€
and remove a delta-function. Unfortunately, this would lead down the line to a pg pole in the
integrand without a definite ie prescription, so we refrain from doing it and evaluate the two

components separately. The spatial z integral trivially gives a delta-function on momenta:
/(dSzeidp+k)::(2w)35@7+—k). (4.49)

Performing the integrals over k& and combining we obtain (see Appendix B for more details):

C(x,ylto) = Coo + AC, (4.50)
where
Coo =D / A’ N (4.51)
772 ) @)t [(po +ie)2 — E(p)?] [(po — i€)2 — E(p)?] '

is the infinite-time contribution, whilst

AC = %e—e(yo—to)

d4p 1 e~ P-Y o—ip pipoto e~ tE(p)(yo—to) () (yo—to)
/ (2m)2 E(p) (po +i€)2 — E(p)? | po — ic + E(p)  po — ic — E(p)

(4.52)
contains information about finite-times effects.
The integral in Equation 4.51 has a leading 1/¢ divergence. However, so does Equation 4.52
— in such a way that the two divergent contributions cancel and one is left with a finite term
only. Detailed calculations are in Appendix B. We report directly the finite result in terms of
oscillatory integrals, namely:

Dy 1
C(z, ylto) = 8722 T [2(4° — to) 1 + I — I3] (4.53)
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with the oscillatory integrals

L = /0 dp# cos (E(p)($0 B yo)) sin(plz - y)) . (450
I = /0 dpE(];)3 sin (E(p)(«° — 4°)) sin(plz — ) , (4.55)
Is = /0 alpE(l;)3 sin (E<p)(a:0 + yO _ 2t0)) sin(plz —yl) , (4.56)

where I3 is really the same as I — only with different time coordinates. While Equation 4.53
seems to give different weighting to 2° and y°, this is a residue of the fact that in the calculations
we have assumed 20 > 39 throughout. To get the general expression, it suffices to replace
2% — Max(2°,9%) and y° — Min(z",3°). It further turns out that evaluating the integrals
explicitly in the massless case yields a result that is invariant under 29 — ¢° — 30 — 20, It
is not clear whether the latter property emerges from a particular symmetry in the dynamics.
Stationarity of the process usually implies a time-shift symmetry in the two-point function of the
stochastic variable, forcing it to be dependent on the time-difference between two observations
only. Here the dynamics is not stationary, and indeed the two-point function does not depend
only on At, but on their absolute value as well — due to the initial condition breaking the
time-shift dynamics at the level of the ensemble trajectories. That is, in stochastic although
one might have a time-shift invariant law for the increments, the ensemble properties will feel

the non-stationarity and the emergence of a preferred initial time.

Massless field

In the massless case, the integrals simplify greatly and can be computed exactly. This is the
case of phenomenological relevance, if we want to think about the scalar waves as a proxy for
the tensor gravitational waves. Even if they do acquire a small mass due to renormalisation
effects, as suggested in [136], the corrections to the massless result would only act to suppress
long-distance correlations. Since we are mainly worried about the short-distance divergences,
the massless results will suffice. As we show explicitly in Appendix B, the 2-point function for
the massless field is given by:

D Y0 + 29 — 2t
C(x,ylto) = 167; <\az—y0 - 1) @(_Siy)@@O +y° =2t — |z —y|) , (4.57)
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which indeed matches the result obtained by convolution of the Green’s function, computed in
Subsection 4.3.1. Again, it is finite and well-behaved modulo the contact divergence at x — v,
that is to be handled as usual in field theory — as a distribution acting on regular functions. The
IR divergence that we have removed with the definition of the initial state at finite coordinate

time tg is recovered as we send tg — —o0

4.3.5 Energy production

While in an expanding universe we expect Hubble friction terms such as those found in Equa-
tion 4.5, we here consider Minkowski space without additional friction terms. In this case,
we expect the energy of the system to increase with time, in analogy with a simple Brownian
particle. Since the Hamiltonian is not the generator of the dynamics there is no reason for it
to be conserved.

It is straightforward to show this by referring to Itd’s lemma. Let’s consider the observable

in Equation 4.13, the energy H of the field. By applying [t6’s lemma we obtain:

b= [ & (/Dor(2)e(@) + ~Ds5(0) ) | (4.58)
[ 7250))

where the deterministic contributions to the chain rule have cancelled each others (the Klein-
Gordon equation itself is energy-preserving), and only diffusion effects survive. Using that the
expectation value of the noise process vanishes, we finally obtain that the energy increases
linearly with time in a deterministic fashion:

DQCSV
H =
2G

5(0)AL (4.59)

where we have reintroduced factors of ¢ and At is the time elapsed from the initial condition.
Again, this matches Equation 4.24, the thermal state result, where the energy would stop
growing after At o< 1/vg. Much like for the energy of the thermal state, the J-divergence is
due to the infinite number of modes in the system that are being excited. The energy of a
quantum scalar field has a similar contact divergence, even if constant in time. In the case of
effective theories with a natural breakdown scale, it can be simply dealt with by introducing
a UV cutoff A. If instead we wish to consider fundamental CQ field theories, the resolution
of this divergences becomes more subtle — and likely requires renormalisation of the coupling

constants of the theory.
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A note of caution. Naively, one would expect that each mode with spatial momentum p
contributes with 1/p? to the total energy of the field at a certain fixed ¢ time slice, since the
two-point function ¢? in momentum space scales like 1/p*. However (assuming for simplicity
that the total energy of the field equipartitions between the time and spatial derivatives, as it

does in the thermal state):
BH(A0) ~ [ d*s E[V6(2).96(0)

~ / p PPE[6(p, At)g(—p, At)] (4.60)

At
~ / d®p p2—2 .
p
From the second to the third line, we have used the leading At contribution to the two-point

function of the field after integrating over pp, given the initial state (see Appendix B). Hence,
each mode will contribute equally to the energy, with an amplitude that increases linearly with
the time of diffusion. The total energy of the field relates therefore to the total volume of
reciprocal space spanned by the modes of the theory. Indeed, assuming a cutoff energy scale A,

we have:
. D205 \%4

a 2G

A3AtL (4.61)

in agreement with Equation 4.59.

Comparison to the quantum case

The divergent energy production we observe in the classical stochastic field theory shares a lot
of similarities with its better-known counterpart, an open quantum field theory. To see this,
consider the following representation of the Fokker-Planck evolution in Equation 4.8 (with no

friction)

oP

o= {H,P} + % / d3z{¢,{$, P}} (4.62)

This can also be used to compute the diffusion in energy via the “Heisenberg representation”

A _ D [ #sto. 46,113} (4.63)

dt 2
which gives the linear in time energy increase proportional the contact divergence found in

Equation 4.59. Whilst this is just a different representation of Itd’s lemma, it is cosmetically

very similar to the computation in the quantum case.
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Indeed, a similar contact divergence appears in the energy production of the quantum scalar
field, owing to the presence of modes with arbitrarily high energy. To see this, consider the
following Lindblad equation for scalar fields

oo . 3 .

o =i -3 /d 26, 6, 6]] (4.64)
for the density matrix ¢ and Lindblad operators given by the scalar field operators ¢ [185, 186].
The similarity with the classical evolution is beyond cosmetic — in fact as the Lindblad operators
are linear in the field, the quantum dynamics can be mapped exactly to our classical diffusive
evolution in a similar fashion as what done in Section 3.3 for the one-dimensional oscillator. In
particular, when computing the evolution of the Hamiltonian under the non-unitary evolution,
one obtains a similar contact divergence in the heating rate to the one we find [43]. In the
quantum field theory this is famously problematic, since it corresponds to an infinite production
rate of bosons [186], as can be seen by deriving the time evolution for the bosonic number
operator in the Heisenberg representation of the Lindblad dynamics. Of course, the energy
production here is a result of the fact that the generator of the dynamics for this QFT model

is specifically not the Hamiltonian, and the theory is therefore non-unitary.

4.3.6 Exact mode solution

Whilst the path-integral techniques discussed above are very general and can be applied to a
variety of settings, the evolution of the probability distribution for the stochastic Klein-Gordon
field can be computed exactly, mode by mode. To see this, introduce the following Fourier

mode decomposition for the field and its conjugate momentum

san= [ TEawets,  m@o= [ w6
(2m) (2m)?
where for ease of notation we defined f(k,t) = fi(¢). Similarly, let’s introduce the mode
expansion for the noise field ,
£e.0) = [ Gt (1.66)
it is straightforward to see that the noise moments imply
E[&(t)&w (¢)] = DSt — ¢)6@ (k + &) . (4.67)
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Then, plugging in Equations 4.65 and 4.66 into the first order (frictionless) stochastic equations

given by Equation 2.14, we find that the equations neatly separate into mode for mode, giving
O =7k Tk =—Epdr+ & - (4.68)

These are a tower of simple, independent, two-dimensional (degenerate) Ornstein-Ulhenbeck
(OU) processes. OU processes are Gaussian-preserving, and the evolution of the moments of
the probability distribution can be computed exactly. For simplicity, we take the mean to be
zero, since it can be easily re-introduced (it just follows a solution to the Klein-Gordon equation
with appropriate initial conditions). Then, consider each independent mode to be sampled from
an initial mean-zero Gaussian distribution (we have assumed throughout that the initial state
is a 0-function, which can be trivially recovered as its zero-variance limit)

1 1
Pp(®,0) = ——————exp <—2<1>{C,;1(0)<1>k) : (4.69)

 2my/det[C(0)]

The evolution equation preserve the mean-zero and the Gaussianity of the state, meaning that
the only non-trivial degree of freedom to be solved for is the covariance matrix for the field and
momentum of each mode. Note that here we have introduced the “field vector” &y = (¢p, 7).

It is a standard result that for a OU process
dd, = O, P, dt + X dW, (4.70)

where © and ¥ are constant (field-independent) matrices, the covariance of the mean-subtracted

process evolves following the time-dependent Lyapunov equation:

dCy, = dE[®, 1] = dE[d®,®T + ®,.dd] + dd,ddL (4.71)
= (0,Ck + C,OF + vxT)dt | (4.72)
where the (d®;)? term has to be kept in the variation by Ité’s lemma. By matching with the

mode equations of motion in Equation 4.68, we can see that the evolution equations for the

elements of the covariance matrix are given by

Cr,p6 = 20k, (4.73)
Chon = —2E;Chng+ D (4.74)
Crnp = Chmr — EClgs (4.75)
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which can be solved exactly

Chp0(0 Chmr (0
Ch,p0(t) ="”¢2¢() (14 cos(2Eyt)) + sz?() (1 — cos(2Eyt))
5 " 5 (4.76)
— — | sin(2E4t —t
+ <Ck,7r¢(0) 4E,3> sin(2Ext) + T
E2
O =270 (1 4 con(my) + B0 (1 cos(am)
D D (4.77)
— (EkC'kﬂw(O) - 4Ek> sin(2Ext) + 575 ,
D 1 Crar(0) .
Ck,frd)(t) = <Ck7ﬂ-¢(0) - 4E2> COS(QEkt) - 5 (Ck,qi)d)(O) - k’k()> Sln(2Ekt)
k
N D (4.78)
1E?

As per the now clear theme of this section, variances grow linearly in time mode by mode,
both for the field and their conjugate momenta — and therefore so does the energy of the Klein-
Gordon solution. By combining the evolution of the probability distribution mode per mode
it is straightforward to reconstruct the time evolution of every initial Gaussian probability

distribution over field space.

4.3.7 Implications for CQ gravity
Validity as a model of hybrid gravity

When considering linearised perturbation on a flat metric, i.e.:
G = M + My | <1, (4.79)

Einstein’s equations in the harmonic gauge reduce to the statement that each component of the
trace-subtracted metric follows a massless Klein-Gordon equation sourced by the stress-tensor
of matter [187]:

Ohy = —167GNT - (4.80)

In vacuum, the scalar mode of the metric perturbations can be gauged away, with the only
physical degrees of freedom being the two polarisations of the gravitational waves. When
dynamical matter is present, however, the story is more complicated — the non-relativistic limit

of the scalar mode maps to the Newtonian potential sourced by the matter distribution. For
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anisotropic matter, there are two independent scalar modes that are gauge-invariant — related
to the cosmological Bardeen potentials. These gauge-invariant scalar modes are not dynamical
but are rather fixed by constraints equation (the Bianchi identities) [188]. The same is true for
the gauge-invariant vector degrees of freedom, which are non-radiative and can in general be
gauged away. Further, in cosmological background, they decay with the expansion, becoming
irrelevant [188]. The only gauge-invariant mode that is indeed dynamical and follows a wave-
like equation is still the transverse-traceless tensor mode — i.e. the two degrees of freedom
associated with gravitational waves [187].

The identification of gauge-invariant modes in CQ theories is currently an open prob-
lem [135], meaning that we do not currently know whether physical scalar modes lack wave-like
propagation as in GR — or have them as in scalar-tensor theories of gravities (in the case, for
example, that the fundamental white noise process is a scalar random field). At any rate, we
can consider the scalar stochastic wave equation as a toy model for Equation 4.80 where we
ignore the tensorial structure of the polarisation of the modes. In this spirit, the stochastic
scalar corresponds to the classical sector of CQ Nordstrom gravity — which does correctly give
the Newtonian limit of the theory. Moreover, even if it may lack a concrete connection to CQ
gravity itself, scalar fields coupled with Yukawa interactions do give rise to a 1/r potential, an-
other reason why the stochastic KG field can be instructive as a simple toy model to understand
the qualitative behaviour of a classical-quantum theory of gravity at least in the non-relativistic
limit [174].

Moving away from the issue of constraints and physical degrees of freedom, the linearised
description on flat space is guaranteed to break down as soon as the ratio between the typical
size of the fluctuations and the background metric functions is larger than unity. As it is
well-known from the theory of stochastic process, the solution to the stochastic wave equation
in 3 spatial dimensions is highly irregular, meaning that in itself the effective linear theory
breaks down immediately at short scales, where non-linear terms such as those found in [120]
would therefore become important. Fortunately, non-linearities have been shown to cure the
irregularity of the stochastic KG equation [189, 175]. These complexities aside, we can think
of the stochastic Klein-Gordon field as providing a playground to understand some of the low-

energy phenomenology of hybrid gravity theories, without much of the complexities that arise
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from gauge redundancy and non-linearities that are necessary features of a complete theory.

Large forces on test masses in the linear theory

We now show how the stochastic fluctuations of the scalar field affects the motion of test
particles interacting with it. Whether quantum fluctuations induce stochastic motion of a
particle (sourcing and responding to the field) has been addressed in multiple studies [190,
191, 192, 59]. The result is highly sensitive on whether the field is in the vacuum or thermal
state, and on the localisation of the particle interacting with the field. However, generally the
effect is absent when the field is in the vacuum state and becomes important only at high
temperatures [192, 59, 60]. As we see now, the converse is true for the classical stochastic
fluctuations.

For a back-of-the-envelope estimation of the forces acting solid extended objects, let’s treat
the test mass as a classical constant density p sphere of diameter R. In the case of quantum
particles, we will consider them localised within their Compton wavelength, i.e. R = A./2.
Then, in the Yukawa model, the particle responds to spatial gradients of the field. In particular,
ignoring backreaction effects (i.e. radiation-reaction forces), the force on the test particle is
simply given by:

F, = —p/d3a? O(R—71)0;¢ , (4.81)
where r is the radial coordinate of the 3D cartesian system with origin at the center of the
spherical mass. On average, ¢ vanishes and so does 0;¢, meaning that the force on the particle
induced by the stochastic fluctuations is zero on expectation in any specific direction. However,

the norm of the vector itself has non-zero expectation. Indeed:
E[F? = E[F,F'] = p? / dx / By © (R —1r;) O (R — 1) E[0;60;¢] (4.82)

Extracting the two-point function of the spatial gradient of the field is straightforward — it
suffices to take the spatial gradient of C by linearity of the expectation value. The complete
expression is cumbersome — see Appendix B. For simplicity, we assume the timescale of the
experiment is much shorter than the total time of the evolution of the system 7', meaning
20 + 99 — 2ty ~ 2T. In the non-relativistic limit, the expression simplifies to:

 DoT

E[0:6(2)0"¢(y)] = =0 (z — y). (4.83)
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Again, this maps nicely to the equilibrium 2-point function, Equation 4.22. Then:

DyTM?cb

E[F?] = ¢ DyTp*Vay = ;
Vi

(4.84)

where M is the mass of the particle, Vi its volume and we have re-introduced factors of ¢
(and G, which does not appear as it is already implicitly included in the dimensionless diffusion
coefficient). As measured by a device which coarse-grains the observation on a time-scale t.,

the centre of mass of the particle evolves as:
M3 = F' + fi(t), (4.85)

where F is the sum of any external force acting on the particle, whilst f%(¢) is a stochastic force
obeying:

_ M?D,T

Bf(0]=0,  ELFOFE) =it 75— 1) (4:56)

where we have defined T" = 0 to be tg, the initial time of diffusion of the scalar field, and have
weighted the d-function by t., the time scale associated with the spatial averaging.

First, let’s consider the potential effect this would have had on one of the M ~ 1 Kg free-
falling test masses in the LISA Pathfinder Technology Package, the ESA technology demon-
stration mission for the future gravitational wave detector LISA. The test masses used were
objects of radius R ~ 5 x 1072 m [193]. LISA Pathfinder results are quoted with respect to
the variance in the relative acceleration spectral density of the masses — where the maximum
frequency to which the experiment is sensitive is w, = 1/t. ~ 1 Hz. Being the effective force
d-correlated in time and space, the two masses are acted upon by uncorrelated random forces —
and the spectral density of the acceleration variance of the test mass has flat frequency profile.
Then:

02, (w) = Dy x 102 m?s™*Hz < 1073° m?s™1Hz . (4.87)

Under this model, the accumulation over cosmological times of scalar stochastic wave would

provide a formidable bound on the diffusion coefficient of the CQ theory:
Dy S 10792, (4.88)

Coherence experiments on spatial superpositions currently lower bound the dimensionless dif-

fusion coefficient by Dy Z 10763 [194] by the decoherence-diffusion trade-off, meaning that
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the model would be ruled out by experiments. As mentioned earlier, this back-of-the-envelope
estimation of the induced force by the stochastic fluctuations is not to be taken at face value
as a good proxy for the predictions on tabletop experiments — both because scalar waves are
not necessarily expected in CQ gravity, but most importantly because the linearised model
cannot be trusted at short scales, where its irregular solution can in principle be cured by the
self-interaction of the gravitational field. Yet, it is a strong indication that, unless renormalisa-
tion greatly reduces the size of the fluctuations in the UV by several orders of magnitude, CQ
gravity can be experimentally tested with current technology.

The force induced by the fluctuations can be very large indeed. Another way to see why
CQ gravity is in danger of being falsified unless the stochastic fluctuations are greatly reduced
in the UV, is to consider their effects on subatomic particles. For example, consider the force
on an electron-sized particle:

F~ /Dy x10Y¥ N | (4.89)

which can be used set an order of magnitude bound on Ds. A good benchmark is the stability
of Rydberg atoms, atoms in which the outermost electron is pushed to very excited radial states
(i.e. the principal quantum number of the radial wavefunction n is very large, up to n ~ 700

[195]). In these case, the force that keeps the electron bound is of the order:
Fr~10"Y¥ N, (4.90)

meaning that, for these atoms to exist, the diffusion coefficient needs to be extremely small,
ie. Dy 5 10770 — still violating the decoherence-diffusion trade-off. If the diffusion coefficient
were larger than this, the nucleus and the elctrons would each feel a force in an uncorrelated
direction of the typical size of the force that keeps the electron bound, meaning that the latter

would be stripped out of its orbit immediately.

Heating

Recall, we found that with a cutoff scale A, the average energy density produced after evolving

for T is given by:
o D2C5V

" 2G

A3T . (4.91)
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Comparing the observed energy density of the Universe with the one of the non-dissipative
scalar after evolving for a Hubble time can be used to give a combined order of magnitude
estimate of DyA3 in a hybrid classical-quantum theory of gravity. In particular, this has to be
a negligible percentage of the critical energy density of the Universe p.. Therefore, taking the

cutoff scale to be A = 1/Alp (where A is a dimensionless number and ¢p the Planck scale):

H1 D H303
Tl k] = 20T

— 1n—184
Vo B g 20T (4.92)

meaning that either the diffusion coefficient of the theory is vanishingly small, or the cutoff scale
of the theory is significantly above the Planck scale. From decoherence experiments we know
the diffusion coefficient needs to be larger than Dy > 10793, meaning that if the fluctuations
gravitate the cutoff needs to be above the Planck length by at least 40 orders of magnitude,
an unreasonably large scale. This observation mirrors the cosmological constant problem in
QFT [83], with the twist that here the excess energy is in the classical fluctuations in the
gravitational degrees of freedom themselves — other than the quantum matter field. The other
distinct feature is that the classical energy density scales as TA3, whilst the Lorentz invariant
QFT vacuum requires A*. Again, it needs to be seen whether a complete CQ theory of gravity

resolves this issue through the non-linearities in the gravitational field.

4.4 Summary of the main results

In this chapter, we explored the stochastic KG equation. We began with a review of the classical
Klein-Gordon thermal field, and the damped stochastic KG equation, for which the thermal
state is a fixed point. We then removed friction, and discussed the non-dissipative system —
which corresponds to the classical sector of the CQ scalar Yukawa theory. We first computed
the two-point function of the field and showed it has a 1/r scaling for spacelike separated points
— with the intensity of the covariance increasing linearly with the time elapsed from the initial
slice. We similarly showed that the energy of the field grows linearly with time — though with
an infinite rate if no UV cutoff exists. This is related to the infinite energy of the field itself,
due to the contact divergence. We concluded by showing that the fluctuations have measurable
physical effects. Indeed, we computed the induced force on a test-particle of finite size, showing

that it is isotropic but has non-zero mean — and can lead to large accelerations on test masses
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of the size of those planned for LISA.
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Chapter 5

Phantom dark matter

5.1 Introduction

In this chapter, we study the stochastic Friedmann-Lemaitre-Robertson-Walker (FLRW) Uni-
verse, probing the cosmological consequences of such stochasticity when modelled as a source
in Einstein’s field equations. Other proposals in which the metric field in cosmological settings
is coupled to a stochastic source have been put forward over the years, such as the everpresent
Lambda [196] and models motivated by unimodular gravity [197, 198]. We diverge from those
approaches both in interpretation and implementation, due to the hypothesis of the gravita-
tional degrees of freedom being fundamentally classical. This strongly constrains the form of
the moments of the probability distribution of the noise field. Our starting point is that the
dynamics needs to be completely positive, norm preserving and linear in the probability density
to preserve the statistical interpretation of the probability density. This forces the dynamics to
be of the form of [50, 51], where the statistics of the noise field cannot depend on the quantum
states.

In standard GR, the set of algebraic relations known as the constraint equations, which the
gravitational state has to satisfy at all times, arise as a consistency condition for diffeomorphism
invariance. Further, the classical equations of motion guarantee that if the system is initialised
on the constraint surface, it remains on it. This is no longer necessarily true in a stochastic
theory. The generators of the diffeomorphisms become stochastic, and the GR constraint can be

violated without necessarily breaking diffeomorphism invariance [135], a point we shall return
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to in Subsection 8.2.3.

In our model, we find that the equations of motion evolve the Hamiltonian constraint C'
off the C'y = 0 surface even on average, with a positive drift term. Violation of the constraint
can behave in an identical manner to cold (i.e. pressureless) dark matter, an effect previously
discussed (with a different motivation) by [199, 200] and further explored in [201, 202]. In gen-
eral however, the constraint violations can lead to the appearance of both positive and negative
energy density. The main result of the present paper is to show that cosmological diffusion
provides a natural mechanism to drive the system off the constraint surface positively on aver-
age, a necessary condition for the constraint violation to appear as if it were cold dark matter.
Following from this, we find several other results. Starting from plausible assumptions about
the dependence of diffusion rate on horizon scale, we calculate the amount of phantom cold dark
matter that is produced. We find that the resulting density depends only on the dimensionless
coupling constant of the theory, and the number of e-folds during radiation domination, with
the phantom cold dark matter being produced primarily at the end of the inflationary phase.
Next, we find that shortly after inflation production halts. We then highlight how the combina-
tion of tabletop experiments and cosmological data can provide non-trivial tests for the model

we discuss.

5.2 Stochastization of Einstein’s equations

The dynamics of any theory that describes a classical metric interacting with quantum matter
without quantising the gravitational theory must be irreversible. In this chapter, we do not need
the full CQ formalism as we assume quantum degrees of freedom to be fully decohered (and
therefore classicalised) on cosmological scales. Rather, we look at a stochastic modification of
Einstein’s field equations (EFEs), since the irreversibility of continuous and Markovian hybrid
dynamics translates into an equation of motion for the classical system sourced by a background
white noise field &, irrespective of the state of the quantum system. The classical sector of

canonical CQ gravity, Equation 2.68, corresponds to the Hamiltonian gravitational equations
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sourced by a Gaussian stochastic scalar that satisfies:
El¢(xz,1)] =0,

(5.1)
El¢(z, )E(2, )] = \/l%?VD(x,t,a:’,t’) ,

where the expectation value is to be considered across realisations. Here, D is the diffusion

coefficient, and D is a function which encodes the correlation in the noise tensor between
spacetime points. N and h, the lapse function and the determinant of the spatial metric, will
be defined shortly, but their appearance is required for covariance. To preserve covariance, we
also adopt the local kernel:

D(x,t, 2", V) =6(x — 2/, t —t) (5.2)

as the natural choice. We give an explicit example of how £ can be constructed to be a scalar
using standard tools from stochastic calculus in Section 5.2.2.
In this chapter, we work in the Arnowitt—Deser—Misner (ADM) formalism [129]. Therefore,

we induce the following 34+1 decomposition of the metric:

Here, h;; is the spatial metric on the chosen foliation, while N and NV ¢ (called the lapse function
and shift vector respectively) tell us how the three geometry is embedded in the 4-dimensional
manifold. The canonical equations of motion for gravity, with minimal coupling to the noise

process, are given by:

hij = {hij, Har} + {haj, Hum} , (5.4)

70 = {x", Har} + {7, Hw} + NVRhVE , (5.5)

where 7;; is the conjugate momentum of the 3-metric and an overhead dot means differenti-
ation with respect to coordinate time t. Moreover, Hgr and H,, are the gravity and matter
Hamiltonian respectively, with {-,-} being the Poisson brackets. We do not add a stochastic
term to the evolution equation for h;; in order to yield a geometry that is differentiable. The
dimensionless coupling constant of the stochasticity is given by Gy \/T/c:”, where we have
momentarily re-introuced factors of c.

The third term in Equation 5.5 is the simplest stochastic term we can add that has the

right transformation properties (i.e. it is a spatial 2-tensor density with weight —1 which
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also transforms as a scalar density of weight —1 under time reparametrisations), under the
assumption that the fundamental driving term is a scalar. This is equivalent to a noise tensor
with the Wheeler-DeWitt metric (Equation 2.71) with large negative 8 as covariance tensor.
The same modification can be obtained starting from the gravitational theory with action
S = Sgpr+Su, made up of an Einstein-Hilbert gravitational term and matter term respectively,

by adding a contribution that minimally couples the stochastic field to the metric:

Sy = / d*z\/g¢ . (5.6)

Then, deriving the equations of motion as usual, one arrives at Equation 5.5. Integrals such as
those in Equation 5.6 require careful treatment, since £ is nowhere integrable in the standard
sense. As usual, we intend them in the It6 sense.

Any other stochastic term would amount to a derivative coupling between the noise field
and the spacetime metric, rather than a standard stochastic source to the gravitational field.
Nonetheless, at the level of the effective cosmological diffusion, we consider a noise kernel beyond
the minimally coupled one, to understand the dependence of our result on the modelling choices.
As we will see, the qualitative result remains the same — only quantitative predictions change.

Due to covariance, in standard GR the equations of motion are supplemented by the van-

ishing of the Hamiltonian and momentum constraints, Ciy and C’}; respectively:
Cy=H+NVhT® ~0, (5.7)

Ch=H — NVhhITy ~ 0, (5.8)

where ~ indicates that such algebraic relations hold only on-shell. Here, # and H’ are func-
tionals of the gravitational phase space variables h;; and m;; only. The role of constraints in
CQ theory has been explored in detail in [135], and we will further explore the relation between

constraints and covariance in stochastic theories in Subsection 8.2.3.

5.2.1 Stochastic FLRW

We now focus on Friedmann-Lemaitre-Robertson-Walker universes. As usual, we impose spatial

isotropy and homogeneity, picking the gauge N’ = 0 to have these symmetries manifest in the
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3-metric. The spatial metric h;; must then be of the form:
de? = h;;dz'da?

— a2(t) 1 ar? & 12402 (5.9)
=a 1—]{‘7’2 T T s

where dQ? is the metric on So, whilst a(t) is the so-called scale factor, a dimensionless function
controlling the time-dependent “radius” of the Universe. On the other hand, k is the Gaussian
curvature of the space for a(t) = 1, and, in our convention, has units of inverse area. Later,
we consider early time cosmology with an inflationary phase. Since inflation washes out any
spatial curvature, we will restrict our attention to flat spatial slices (k = 0) for simplicity. We
will however treat the general case for as long as useful. Homogeneity also requires that the
lapse N has no spatial dependence. Up to the choice of lapse function, the 4-metric has then

the form:
1

1 — kr?

ds® = —N(t)2dt? + a*(¢) ( dr? + r2d92> : (5.10)

For comoving pressureless dust, the stress tensor is given by:

Ty = (1 +w)p upuy +wp g 5.11)

= N2(t)p 5MO5VO +wp 9uvs

where p is the energy density of matter and w the equation of state parameter. We have used

the fact that the appropriately normalised 4-velocity u* of a comoving fluid is given by:

1
F=—(1,0,0,0) . 5.12
w = +(1,0,0,0) (5.12)

By plugging in the FLRW metric in the Einstein-Hilbert action, one can show that the mini-
superspace (the configuration space of GR when restricting to homogeneous metrics) Hamilto-

nian is given by:

2G N T2 3 k
Hor = —N -2 -] . 5.13
GR < 3 a 8rGn a) (5.13)
Here, we have used the definition of 7, as the conjugate momentum of a:
OLEH 3 aa
_ - _ - .14
"= "0a AnGy N’ (5:14)

which is related to the conjugate momentum of the homogeneous 3-metric itself via 7% =

8, /6a. Now, taking the trace of the ADM equations of motion, we obtain the cosmological

110



evolution equations:

4nGyN . m,
S NZ& 5.15
a 3 . (5.15)
. 27TGN 7T2 2 2z
«=— N2+ N N k+ N , 5.16
T 3 3 + N3wa“p + S + Na“¢ (5.16)

up to numerical prefactors in the coupling to the noise which can always be absorbed into
the diffusion coefficient. Here, we have also included the effect of curvature for completeness.
Moreover, we have forced the noise process to be homogeneous in space.

We have assumed that the local noise can be represented by the global random field &, which

has to obey the following statistics:

BIE(). 60)] = 22D 50 1) (5.17)

We explain how £ can be obtained from the local stochastic field in Subsection 5.2.3. The
homogeneous diffusion coefficient Ds(a) is, in principle, an arbitrary functional of the scale
factor which encodes how one translates the local theory into the homogeneous one. The factor
of inverse lapse is needed for time reparametrisation invariance as we discuss in Section 5.2.2.

In GR, the Hamiltonian constraint provides an initial condition for the state:

2nGy T2 3 3 k
O — Ta _ Jad
H= 3y TP T Gy

~0, (5.18)

where we have made the effect of the curvature k£ explicit. The set of relations given by Equa-
tion 5.15 (without noise) and Equation 5.18 is completely equivalent to Friedmann’s equations.

In this chapter, we discuss the consequences of a dynamical violation of the constraint. It
is, therefore, natural to question whether one is allowed at all to use the constraint as an initial
condition in such a model. In fact, we show that inflation washes out any initial deviation from
the constraint, making the ambiguity in the initial state essentially irrelevant. A point that will
be important later is that comoving pressureless dust enters the equations of the system only
through the Hamiltonian constraint.

Since we do not couple matter and the stochastic field directly, we leave the equations of
motion for the fluid unchanged with respect to the standard treatment. Fundamentally, one

can understand the system as being described by the following action:
S = Sgu + Sx + SBK , (5.19)
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where Spxk is the Brown-Kuchaf action [203], which provides the Langrangian formulation of a
perfect fluid, whilst Sgy is the Einstein-Hilbert action and Sy is the stochastic term defined by
Equation 5.6. Consequently, one finds that covariant conservation of the stress-energy tensor
associated with the fluid (V,T}' = 0) still holds. Therefore, the energy density of the fluid

dilutes with the scale factor as usual:
p = poa S0+ (5.20)

with pg being the value of the energy density for unit scale factor. The stochastic field pumps

energy only into the gravitational sector.

5.2.2 Noise and time reparametrisation

To study the evolution of the constraint under the modified equations of motion, we need to
specify the white noise £ in terms of Wiener processes. Recall that a Wiener process (or, equiv-
alently, Brownian motion) W; is an almost surely continuous stochastic process with Gaussian
increments distributed as:

AW =Wy — Wy ~ N(0,t =) . (5.21)

Schematically, the infinitesimal difference of a Wiener process dW; is of order O(V/dt), a state-
ment made precise via [t6’s lemma. In the physics community, it is standard to define the white
noise field as the distributional derivative of Brownian motion [204], i.e:

dW;
~—_. 5.22
e~ (5.22)

However, & so defined fails to be a scalar under time reparametrisation (it is a density of weight
1/2), which can be seen from dimensional analysis. The generalisation needed is readily given

by:
dw, 1 dW 1 dW;
_ AW 1 Wy : (5.23)
dt N dt VN dt

which has the required transformation properties and inherits from the Wiener process the

statistics postulated in Equation 5.17 as we now show.
After a monotonic redefinition of time u = g(t), we have that dW; can be expressed in terms

of a Wiener process with respect to the new time u as:
AW,y = Vg AW . (5.24)
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This can be understood both from the scaling property of a Wiener process and from It6’s

lemma (dW; ~ v/dt). The stochastic integral:

/ [N, (5.25)

is left invariant under such a transformation if ¥ to transforms under time reparametrisation

as:

r_ L
5 _\@z. (5.26)

Hence, we need X to be a scalar density in time of weight w = 1/2. In this form, it is immediate

to see that the choice X[N] = v/ N gives the desired transformation property. The invariant

stochastic integral takes the form:

/ VN AW, = / ENdE (5.27)

where the derivative of the Wiener process has to be understood in a distributional sense.
We can now trivially extract the moments that the stochastic field inherits from the following

properties of the Wiener process:
EW] =0, E[WWs] = min(s, t) , (5.28)
which, as we now show, lead to:

BEW] =0, B0 = o). (529)

First, consider the definition of ¢ as a distributional derivative of the Wiener process acting on

- / °°,5<t>¢<t)N<t>dt

some test function ¢:

(5.30)
/ Wt \ﬁ Bo()) d .
Then:
o0 d
Blelol = - | W0l (V@) ai=o (5.31)



yielding E[¢] = 0. For the variance, start from:
/ / W(t) ft (VN dt@ (VE@o)) dr
/ / mlntt%< N(t)o( )dt@<\/7t’¢t’>
:/0 a (VN @Oot0) [/ V()6 ] (5.32)

/ / 5(t,t")/N(t)d(t)/N(t)p(t") dt'd

However, we also have:

- /0 N /0 TEE(EE)] s()6(E)NHN(H) didt, (5.33)

and comparing the two we obtain the claimed variance for the noise process, up to an arbitrary

scale Ds.

5.2.3 Renormalising the diffusion coefficient

In order to establish the relation between the local diffusion coefficient and the global parameter
Ds(a) a procedure to flow to the long-wavelength regime is needed. At present, we do not have
a rigorous procedure for performing this renormalisation. Differing procedures could lead to a
different scaling of the diffusion with the scale factor. Therefore, we will treat Dy as a general
function of a for as long as possible.

Nonetheless we can commute the spatial averaging and time evolution for a well-motivated
estimate of the background evolution of the universe (as is common in standard cosmological
calculations). Just as the mean energy density enters the equations of motion for a FLRW
Universe, we take the spatial average value of the noise for its realisation at time ¢ to be the
stochastic source in the global Einstein’s equations. Therefore, we interpret & as the average of
the local random field given by Equation 5.1 over a spatial domain on the spacelike constant ¢
hypersurface. We essentially adopt the standard assumption in cosmology that the inhomoge-
neous Universe can be approximated as homogeneous and isotropic to leading order [205]. This

should be an acceptable approximation as long as the typical size of the local fluctuations is

114



much smaller than the average energy density of the matter sourcing the homogeneous evolu-
tion. Additional work will be required to address whether it is possible to derive formally that

such an effective dynamics is valid in the IR (long-wavelength) limit.
Working in the separate-universe approximation [206], we imagine the scale factor as as-
signed to a finite-sized patch of the Universe. To turn the noise field homogeneous, we define:

3
&@%=§V;?§§, (5.34)
X

where X is the spatial region over which we average the noise, introducing a long-distance IR
cutoff Rir over which we trust the homogeneous description. Trivially we still have E[¢x(¢)] = 0,

whereas:
_ _ Dy

Elés(t),én(t)] = N [i d3z+\/g(x)
o

We thus see that when flowing to a model in which local noise becomes averaged noise, Do

S(t—t). (5.35)

needs to be renormalised by the volume of the region over which we average, as expected from
the central limit theorem. The renormalisation scheme then boils down to choosing the spatial
domain over which to average; we now present two natural options that lead to very different
late-time behaviour.

One natural choice for Rig in FLRW cosmologies is the comoving Hubble radius Rig =
1/aH, i.e. averaging over the spatial region that is in causal contact over the current e-fold
of cosmological evolution. This leads to an effective variance that scales as the inverse of the
Hubble volume:

_ _ 3 Dy

Els(®), &(t)] = - WH35(75 —t). (5.36)

Imagine now that we work in the low-noise limit, meaning that the stochastic trajectories
are well approximated to leading order by the deterministic evolution. In an inflationary early-
Universe phase the Hubble parameter is constant (H(t) = Hy) and so the variance, too, remains
constant. During matter and radiation domination, however, the situation changes radically as
the Hubble parameter falls with time following H o ¢! in both eras. Consequently, the effective
noise gets damped significantly as the Universe expands. This is, effectively, a consequence of
the causal horizon of the patch expanding after inflation. Indeed, more and more modes re-enter
the horizon and contribute to the effective cosmological noise, which converges to the average

value with vanishing variance by the central limit theorem. Of course, this is only true at
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the cosmological level, meaning that the inhomogeneous perturbations still follow a stochastic
evolution.

An alternative spatial averaging scheme in which the stochastic term remains relevant at
late times is to adopt the choice of Ry being some fixed comoving radius Rig = R/a. This
way, we obtain:

_ _ 3 Dy

Elés(t), (1)) = mw‘s(t —1). (5.37)

This appears less motivated than the previous choice of averaging over a horizon volume, but
we include it as a possibility in the absence of a fully principled approach at present. From now

on, we drop the subscript ¥ from the noise field.

5.3 Phantom CDM from constraint violation

5.3.1 Violation of the deterministic Hamiltonian constraint

In standard GR, the constraint equations are satisfied at all times. However, using It6’s lemma,
we can see how the constraint evolves on-shell once noise is introduced.

We derive here the evolution of the constraint

2nGy 72
Cn = — — pa® . 5.38
H 3 4 pa ( )
on the stochastic trajectories given by

. 47TGN Ta
- _ NZ% 5.39
a 5 V-, (5.39)
= —— Na—g—i-NSwap—l-Nmk—l—Naf, (5.40)
p = poa 30+ (5.41)

i.e. with conservation of energy enforced in the matter sector. We allow:

~ Ds(a)
N

EE®)] =0,  E[5(t), ()] o(t,t') (5.42)

with the diffusion having a general dependence on the scale factor. It is always possible to

rescale £ as

£ = \/Ds(a,m,)¢ = \/DQ(a)\/IN(T;t (5.43)
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such that we make the scaling of the noise with the fundamental degree of freedom a manifest
in the equations of motion (keeping, however, ¢ a scalar under time-parametrisation since we
have not extracted the dependence on N).

Using It6’s lemma, is then immediate to check that up to O(dt):

80}{ 3CH 1 82CH 2
aa da + aﬂ'a dﬂ'a + QTﬁdﬂ-a

2rG N T2 4G N T 2rGpy 1

- Ta g Ta 4 1
3 a2 @+ 3 g e 3 a

4rG 2rG
= 7r3 Nawa\/NDg(a, 7a)dWy + Da(a, 7q) 7r3 N 3Ndt ,

dCh =

A2 (5.44)

Only terms proportional to Do appear since the deterministic equations preserve the constraint
— all the drift terms cancel each other. Using the definition of the reparametrisation invariant

white noise field and Dz (a, 7,) = 3D2H? /47, we obtain

27G N 4G N

Cy = Ds(a) Na® + Nrqaf . (5.45)

The Hamiltonian constraint Cir = 0 is therefore broken by the stochastic dynamics. The sec-
ond term causes diffusion of C'y around zero, as expected. The first term is an anomalous
drift that can be understood via It0’s lemma. This “second order force” pushes the average
value of the constraint away from zero, meaning that Cy is not conserved even on average.
Equation 5.45 is the first result of this chapter. From it, we can immediately see that the
constraint violation will, on average, be positive. Previous work has considered the role of
constraints in classical-quantum theories [207, 135], and whether the constraints of the deter-
ministic part of the dynamics can be violated without breaking covariance. Here, we focus on
the phenomenological implications of such a result.

The positive constraint violation is connected with entropy production in the state, since
the average constraint depends on the variance of the conjugate momentum. The probability
distribution of momenta begins sharply peaked by assumption in the initial conditions, but
diffuses in time through stochastic kicks which increase the entropy of the classical distribution.
This is formally equivalent to the heating up of a Brownian particle without friction, and it
is fundamentally connected to the irreversibility of the Fokker-Planck equation governing the

evolution of the probability distribution over states.
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5.3.2 Phantom CDM

Now we consider what effects departing from the Hamiltonian constraint has upon the ob-
servable properties of the Universe. Consider first a matter dominated Universe for simplicity.
When averaging over the Hubble horizon, the noise term drops out at late times from the
equations of motion and the system reduces to standard GR, since H — 0. During the early
phases of the cosmological evolution, however, the system might have accumulated a non-trivial
violation of the deterministic constraint §C.

In such a low-noise regime, a violation of the Hamiltonian constraint evolves as “phantom”
extra pressureless dust in the system. To see this, first note that the deterministic Friedmann
equations preserve the value of the constraint even when off-shell; consequently, the constraint

value Cp is frozen in time once the noise becomes subdominant. The constraint equation reads:

) 2
Wg;N % — pa® = Cy, (5.46)

where p is the total matter density. An observer who infers the expansion history in such a
universe assuming that it is governed by GR would attempt to absorb the non-zero value of

Cyr into this total matter density. For a multi-component fluid, p can be re-written as
pa3 = Z pia_3wi s (547)
i

meaning that Cpg can be absorbed into an effective w; = 0 component. Therefore, the state
with violation of the constraint Cp corresponds to a standard FLRW geometry with effective
dust energy density pefro = pm,0 + Cu, where py, o is the energy density of the physical dust
when the scale factor a is unity.

A similar observation has been made in [199, 200] and studied in detail in [201, 202], moti-
vated by the classical limit of quantum gauge theories. In [200] a simple argument is presented
for why constraint violations appear like dust, even in inhomogeneous spacetimes. To recap the

argument, consider Einstein’s equations in covariant form:
Gt = 8nGNTH | (5.48)

where the (i, j) sector corresponds to the ADM equations of motion, whilst the (0, ) is related

to constraints. Since we are considering the small-noise regime, we take the spatial part of
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Einstein’s equations is to be satisfied exactly, whilst we allow for the constraints to be violated.
Then, we have

G) =8rGNT] | (5.49)

while

G, = 8rGNT,) + 87GNC] | (5.50)

where T} is the visible matter stress tensor, whilst C¥ is the constraint violation. This is
the situation we will encounter soon after inflation, when the state has diffused away from
the Cy ~ 0 surface on average in the positive direction, while C; =~ 0 is still guaranteed
from homogeneity and isotropy. For renormalisation schemes that lead to a H™ scaling for the
diffusion coefficient, the post-inflationary stochastic dynamics is suppressed due to averaging
the fluctuations over an increasingly larger spatial volume whenever n > 3, as we show shortly.
It includes the case we focus on, namely the one where the averaging happens over the Hubble
horizon. It is important to point out that, other than the n = 3 and n = 0 cases, we are not
aware of any renormalisation schemes that will lead that general behaviour. We include the
general n result for completeness — it is possible, for example, that a non-minimal noise coupling
could lead with such a scaling for the diffusion coefficient when flowing from the local to the
global theory.

A strong constraint on how CJ varies in spacetime now arises from the combination of the
Bianchi identities and the conservation of stress-energy of the true fluid source. Indeed, by

looking at the LHS of Equation 5.48, we have
VVGZ =0 = V,,(T/’j + CZ) =0. (5.51)
Imposing covariant conservation of the matter stress tensor, we end up with the requirement:
V,.Ch =0 (5.52)

which, alongside C} = 0, implies that the constraint violations evolve exactly like a matter
perturbation with w = 0, even in highly inhomogeneous limits. For completeness, we show
now that the same exact statement can be derived by using the spatial components of Ein-
stein’s equations and covariant conservation of the visible matter in linear perturbation theory,

although the argument given above is more general.
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5.4 Inhomogeneous evolution

Consider a homogeneous cosmology with small perturbations. Expanding the metric to linear
order as g, = gfg,) +€hy, where € is a small parameter and gf?) satisfies the background Fried-
mann’s equations sourced by a homogeneous perfect fluid 7(®) with density p and equation of
state parameter w. For simplicity, we consider a single background fluid, but the argument
is insensitive to this assumption. The homogeneous background evolution is allowed to be off
the constraint surface by C'y. The metric perturbations solve the standard linearised equa-
tions for cosmological perturbations. For simplicity, consider the cosmological perturbations in
Newtonian gauge:

ds? = a*(7) [ - (1 + 2ep(k, T)eikixf) dr?
. (5.53)

+ (1= 2e0(k, )™ ™) 50t dat] |

where we have expanded the metric functions in Fourier modes and have assumed k& = 0 for

the background solution. These metric perturbations are sourced by small inhomogeneous

perturbations in the matter density. For a comoving perfect fluid, these are given by:

STY = ebp

8T? =

)

“(1+w)psU; (5.54)
a

0T = —ewdp 05 ,
where 6p is the perturbation in energy density in the matter field, whilst 6U" is the relative

velocity of the fluid perturbations with respect to the comoving frame. Similarly, the inhomo-

geneous perturbations to the global constraint violation read:

509 = esC'

5T° = SCyocy (5.55)
a

5CE =06 ,

i.e. they cosmetically appear as pressureless matter violation (w = 0). To make the analogy
precise, however, one needs to check that the evolution itself is identical to that of matter. As
we now show, this can be derived just by using the spatial components of Einstein’s equations

and covariant conservation of the visible matter.
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By computing the variation of the Einstein’s tensor to linear order in € and matching terms
order by order in an € expansion, one obtains on top of the background Friedmann equations

the linearised equations for the perturbations:

4nGna®(6p + 0Cy) = —k*) — 3H (W + Ho) (5.56)

4nGa(l + w)p(8U; + 5C; = —iky(y' + Ho) (5.57)

AmGivawip 8 = [0/ + (20 + ) + @M+ H)6 — K0 — )| 8] — 56— W)k
(5.58)

where k? is the squared euclidean norm of k, H = a’/a and we indicate differentiation with
respect of conformal time with a prime. Again, we have here ignored the noise terms due to
CQ effects. The absence of anisotropic stress, as in standard cosmological perturbation theory,
forces the two scalar metric functions to be equal to each other (¢ = ¢), reducing the equations

of motion to:

A4rGrNa®(5p + 0Cy) = —k*¢ — 3H(¢' + Ho) (5.59)
4rGna (1 + w)pdU; + CydCi] = —iki(¢' + Ho) (5.60)
ArGra’wdp = (6" + H(20+ ¢)' + 2H + HQ)QS] , (5.61)

from which we see that dC acts as a matter perturbation and dC; as the velocity of the effective
fluid. Since we minimally couple the noise of gravity, we can take the stress-tensor of visible

matter to be covariantly conserved, which implies:

§p' = =3H(1 +w)dp — (1 + w)p(ik;6U; — 3¢") (5.62)
% (a®(1 + w)p iki6U) = wk?5p + (1 + w)k2pg. (5.63)

It is now a matter of simple algebra to show that also 6C and 6C?, on shell, obey identical

relations with w = 0. It will be useful to use Friedmann equations, which correspond to:
H? —H = dnGna®[(1+w)p+ Cpl . (5.64)

To derive the induced evolution equation for §C, we simply differentiate Equation 5.59 with

respect to conformal time and substitute back Equations 5.60, 5.61, 5.62 and 5.64 to obtain:
5C" = —3H?6C — Cy (ik;6C* — 3¢') . (5.65)
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This indeed matches Equation 5.62 with w = 0. Similarly, taking both the time and spatial
derivative of Equation 5.60 and using the field equations of motion in Equation 5.61 and 5.63

together with Friedmann’s equation, we obtain for the momentum constraint violation
1 .
5 (a*Crr iki6CY) = K2Cr . (5.66)

Therefore, we see explicitly that, even at the inhomogeneous level, small constraint violations
in the zero-noise limit behave exactly as pressureless dust perturbations with average energy
density C'y. Indeed, the linearised inhomogeneous Hamiltonian constraint violation dC' acts as
energy density perturbations, whilst the violation to the momentum constraint §C* plays the

role of the peculiar velocity of the phantom fluid.

5.4.1 Production during inflation

In order for the constraint violation to play the role of CDM, Ci; needs to be on average positive
and in agreement with the dark matter density inferred from observations. We find that an
inflationary phase of the early-Universe can drive the Universe to the desired state, albeit with
a density that is highly uncertain. To see why, we return to the homogeneous model in the
separate Universe approximation. Consider the ADM equations of motion for a FLRW Universe

with Lambda domination instead

47TGNE
3 a

— — A . 5.68
3 a2 + 27TGNQ 1+a’g ( )

a=-

(5.67)

Mg =

This is an effective approximation to the inflationary state, which reproduces the main feature
we are interested in for the generation of constraint violation — a shrinking horizon — without
the need of modelling the evolution of a dynamical (slow-rolling) inflationary field. Whilst a
more complete description of the dynamics can quantitatively change the results we obtain here
due to the fact that the Hubble parameter is not exactly constant in slow-roll inflation, but
rather slowly decreasing, at this stage we are only interested in producing an order of magnitude
estimation for the phantom dark matter energy density produced. Further, as we will shortly
see, the early stage of radiation-domination causes an order 1 enhancement of the phantom

CDM produced in inflation anyways — every corrections due to appropriate modelling of the
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inflaton field and the reheating stage can be interesting refinements, but won’t significantly
change the main result.

The stochastic field acts as a random fluctuation to the dark energy term. Note that we
have chosen A to have the geometric units of m~2 and picked the renormalisation scheme for

Dy where we average over the Hubble horizon:
Dy(a) = —DyH3. (5.69)
We can further rescale £ to make the dependence of the variance explicit:
§ =V DyH3 (5.70)

This way, ¢ has units of m~!/2 and moments:

- oz 1
EC@®] =0,  E[@),Ct)] = 5ot 1), (5.71)
with the units of the diffusion coefficient Dy being
[Do] = kg?sm™* = [GN] 2 [, (5.72)

where we have momentarily reintroduced factors of ¢ for completeness.
If the standard deviation of the stochastic kicks is much smaller than the energy density
that drives inflation, then /DyGy < 1. One can accordingly approximate the inflationary

evolution as the deterministic exponential expansion:
a(t) = aett | (5.73)

with a the initial value of the scale factor at inflation and Hy = y/A;/3 the value of the Hubble
parameter (which, in this approximation, remains constant during the inflationary period).

Then, the evolution of the constraint is given by:

. D 4 _
Chx = 3;&@;&[_]3 + W?S;Nﬂaa\/ Dy H3¢
T

3D,G 3 _
= NGBS Y bttt [ Dy HC
8 4m

We take inflation to last from ¢y = 0 to reheating at ¢;, corresponding to Ny = Infa(tr)/a(0)] e-

(5.74)

folds of expansion. The evolution of the expectation value of C'y from the beginning of inflation
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can be readily integrated (recalling that ¢ has zero mean) to give:

A 3D,G tr ,
Cr =E[Cu(tn)] = Cuo + ="M} / (I gy
d 0

= Cro + DZGN a*Hi (1 —1) 1)
™
DoG D

where Cpo is an arbitrary initial violation of the constraint at the beginning of inflation, a;
is the value of the scale factor at the end of inflation and in the last line we have taken the
large Ny limit. This shows that, if the inflationary phase lasts long enough, any initial violation
of the constraint becomes negligible and we would be left at reheating with a positive average
violation Cir. Combined with the previous result, that constraint violations act as pressureless
dust, this shows that phantom cold dark matter can arise dynamically in a CQ theory of gravity.

A natural question to ask is what variation around the mean one can expect for Cy under
the above assumptions. For this calculation, we take C'ro = 0 since it is so easily swamped by

the dynamically-generated constraint violation. First, consider:
2 ~2 3D2H}5~6 et SHrt! SHrt" mrr( 4\ (4! W/
E[Cy] = CF + 4 e N PRIV E(C(E)C(t)]de " . (5.76)
n o Jo

Imposing Equation 5.36 one obtains:

ot =E[C(tn)] - CF ,
_ ~6ﬁ 6Htr _ 77
= Dyad L (e 1) (5.77)
8
1 _ 1
~ g DaaHie Mt = o~ DoajHy
where again we have taken the large e-folds limit. Finally, one can evaluate the ratio between
the standard deviation and the mean to be:
oV 8
C T RV D2 G N ’

independent of the number of e-folds during or after inflation.

(5.78)

The above results are derived assuming renormalization via averaging over a Hubble volume,
such that the effective diffusion rate scales with H3. For generality, we also report the result for

a renormalisation procedure that leads to a polynomial scaling of arbitrary degree n with the
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Hubble parameter H. From dimensional analysis, cosmic diffusion scaling with H" is related

to the local diffusion coefficient by:

-3
Dy = —DyH"L"® :
2= —Da : (5.79)

up to numerical factors, where L is some length scale needed for dimensional consistency. Under
this general scaling the average constraint violation accumulated during inflation in the large

e-fold limit is given by:

- DG
Crp~ 22N G313 (5.80)
Similarly, the variance amounts to:
D
03, =~ 8—;a?H}LHL”_3 : (5.81)

meaning that the normalised variations have typical size:

Tin _ V8T (H;L) " .
Crn VD2Gy

For n = 3 we indeed recover our previous result.

(5.82)

5.4.2 Radiation domination and beyond

In standard cosmological models, once inflation ends, the universe reheats into a radiation dom-
ination phase. During radiation domination, the violation of the Hamiltonian constraint con-
tinues to accumulate. Since the comoving Hubble radius expands during radiation domination,
one has the additional complication that patches which have different stochastic realisations
during inflation now enter causal contact, necessitating an inhomogeneous calculation.
However, the rate of change for Cy depends cubically on H when averaging over a horizon
patch. H drops linearly with time during radiation domination, so phantom cold dark matter is
generated significantly only in the first few e-folds of radiation domination, where one can still
work in the separate Universe approximation. By the time significant inhomogeneities enter the
horizon, the noise has effectively decoupled from the evolution of the scale factor. From there
on, we can treat the Universe as satisfying the standard Friedmann equations, with the density

(and density fluctuations) of phantom cold dark matter already determined. As the universe
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later evolves out of radiation domination and into matter domination, this picture continues to
hold since H only decreases.

To evaluate the phantom cold dark matter produced during the early stages of radiation
domination, we can repeat the same calculation as before, now assuming that the zeroth order

evolution in the scale factor is given by:

a(t) =ar/2Ht +1 , (5.83)

where we have matched both the scale factor and the Hubble parameter at the end of inflation
with the respective quantities at the beginning of radiation domination. Also, we are re-shifting
time such that radiation domination runs from ¢t = 0 to t = tg. We indicate with Cr the average

violation of the Hamiltonian constraint accumulated during radiation domination:

t
Cr= 220 [ (VR T L) o
0

2
DG tr -
= 22N 33 / (2Ht + 1) ar’
2 0 (5.84)
Y
9 I V2Htg + 1
DyG .
~ 2N B2 =30 .

Note that in the last line we have dropped the tg-dependent term since we have taken the large
Npg limit for radiation domination as well. As expected, most of the phantom matter density
is accumulated in the first few e-folds of radiation domination. That leads to a factor of 3
enhancement with respect to what was generated during inflation, i.e.:
Cr
=t _3. 5.85
o (5.85)

We can similarly calculate the growth in the size of the fluctuations during radiation domination.

The variance of the violation is given by:

tr [tr B B
ch=aiport [ [T )

X \/2Ht' + 1\/2Ht" + 1dt'dt"

_tr
22H[tR—|-1

3
~ 87a§H;*D2 =307 .

(5.86)

3
= Ea?H?D
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The total final variance is additive, since the noise is uncorrelated in time. Therefore:

o? =0 +o% (5.87)

Hence, at the end of radiation domination, the density contrast in Cy is given by:

2 2
Vortor 1 3 1
o V. n_ -9 (5.88)

Cu~ Cr+Cr 20 BavDoGy

Since we have been working in the limit of /DyGy < 1, o7 would be much greater than
the average violation; i.e. fluctuations in the density of phantom cold dark matter are larger
than the overall density, leading to negative densities in some regions. At first sight this is
a major problem, since measurement of the CMB temperature fluctuations show §7/T < 1,
which, in standard cosmology, is a quantity related to the density contrast dp/p of matter.
However, Equation 5.88 is not the quantity that we expect to observe in the CMB itself, because
it is strongly dominated by fluctuations on microscopic scales (in the order of the comoving
horizon scale at the end of inflation). Indeed, there are even more extreme fluctuations that
have been averaged over to write down an effective homogeneous theory. The evolution of
these microscopic scales is beyond the scope of this chapter, but we continue to work on the
assumption that cosmological effects will see an effective density averaged over relevant scales.
If this is the case, the variance in the phantom dark matter density will be drastically dampened
by a factor given by the averaging volume, yielding a positive energy density with very small
perturbations around the mean.

Returning to the mean density, we should consider the effect of our renormalisation choice on
the result. For general polynomial scaling with H, the average constraint violation accumulated

during radiation domination is:

~ DQGNH?_an_g (QH[tr + 1)5_22n -1,
Cgr = a

2 5—2n I

(5.89)

Whilst for inflation different n trivially translated into different scaling of the final result with
Hj, in radiation domination the situation is more complex, due to the dynamical nature of
the Hubble parameter. Indeed, the accumulation of constraint violation continues long into
radiation domination unless n > 3. This would pose severe issues for interpreting the stochastic
effects as phantom cold dark matter, since the gravitating density would vary while baryon

acoustic waves propagated through the early universe, likely violating CMB constraints [208].
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5.4.3 Estimating the amount of phantom dark matter

The energy scale of inflation, the e-folds of inflationary expansion and the averaged diffusion
coefficient of the theory determine the amount of phantom dark matter generated. To check
whether observational bounds on the cosmological density parameters can rule out such a
mechanism for dark matter generation, we compute the density parameter of phantom dark
matter today given that we generate phantom dark matter with average energy density Cg
in the early stages of radiation domination. As usual, we define the density parameter of an

energy species ¢ as:

Pi
Q== 5.90
Pec (5.90)

where p. = 3HZ /87G\ is the critical energy density. Then:

_ 8rGNCra™ _ 4—7TD2G2 H12 a?

Q, il il 91

which, assuming N, P and M e-folds of inflation, radiation domination and matter domination

respectively, reduces to:
_ Ar DGRy ﬁe—:’,(MJrP)

Qu(a) 0 I , (5.92)

where we have momentarily reintroduced factors of ¢. The e-folds of inflation naturally drop
from the expression since the generation of dark matter and its dilution due to the expansion
of the Universe have opposite scaling with the scale factor a. However, H;/Hy is completely

determined once M and P are known. Indeed, at the end of radiation domination we have:
Hpr = Hje 2P (5.93)

whilst from the beginning of matter domination to today the Hubble parameter evolves to:

Hy= Hpe 3M/2 = e~ 75 (5.94)
Plugging this back into Equation 5.92 we have that the e-folds of matter domination also drop

from the expression, leaving:
47 D2G%; p
= —F € .

2e(a) 9¢3

(5.95)

The phantom cold dark matter density thus depends only on the dimensionless coupling

constant DoG? /¢ and P, the number of e-folds of radiation domination, meaning that it is in
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principle determined by existing cosmological constraints and laboratory limits on diffusion. P
is constrained by the ratio of the temperature at matter-radiation equality (z., = 3400) and
at the temperature after reheating, which in turn is related to the inflationary energy (often
taken to be GUT scale). Minimal models of inflation usually constrain P ~ 55, following from
bounds on the inflation energy scale given by CMB data [208].

Table-top experiments currently bound the value of the diffusion coefficient to DQG?V =
10~ (in natural units) in the case the fluctuations have no effective mass [209]. Relating the
diffusion at the energy scales of table-top experiments, to the higher energy scale of inflation
requires, other than the averaging procedure already described and the renormalisation of Do
that accompanies it, a careful consideration of the RG flow of the stochastic theory at different
energy scales [136]. Since the theory can be related to quadratic gravity which is asymptotically
free, the coupling constant DQG?V is expected to run [210, 211, 212, 213, 136]. The stochastic
fluctuations may also have an effective mass [136], which can also suppress fluctuations at lower
energy scales. These topics are still active area of research, and most of the questions are still
open, meaning that we cannot currently perform that mapping reliably. The best we can do at
the moment is to use current bounds on the diffusion coefficient from table-top experiments and
assume that they trivially apply in Equation 5.92, in order to showcase how the combination
of cosmological observations and table-top experiments can provide a powerful stress-test for
classical-quantum theories of gravity.

Assuming P = 55 e-folds of radiation domination, we obtain Q. ~ 107? as the density
parameter of phantom dark matter today, saturating the quoted upper bound for the diffusion
coefficient. In order to obtain an 2. of order unity, one would require, still with P = 55, a dif-
fusion coefficient of DQG%\, ~ 1072, several orders of magnitudes above this bound. Saturating
the experimental bounds on Ds, instead, one would require P = 100 e-folds of radiation domi-
nation. Were the bounds on the diffusion coefficient derived in Chapter 4 apply even when one
considers refinement to the linear model, the situation would worsen further — the mechanism
here described would virtually not contribute at all to the observed dark matter budget under
standard models of inflation.

However, a similar disclaimer as for the results in Chapter 4 is in order. This back-of-the-

envelope calculation has to be taken lightly since, as discussed above, flowing the local theory
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to the IR cosmology consistently is a non-trivial step, currently a work in progress. Still, if,
like in the case we have discussed, Cy turns out to be very small, then one cannot rule out
hybrid gravity since CDM can always be included as a bona fide matter component in the
Universe. The upshot would be that the cosmological departure from the constraint would be
very hard to detect, and the homogeneous cosmology is well approximated by deterministic GR
models even if spacetime is indeed fundamentally classical. If instead precise measurement of
Hjy, P and Ds lead to a larger-than-observed amount of phantom CDM, one would rule out CQ
theories that do not preserve the deterministic constraints of GR. Indeed, even though the GR
constraint violation is a natural consequence of the model we have considered, one can expect
that non-minimal models exist in which the constraints are satisfied exactly at the level of
trajectories. We describe such an option in Section 5.5.1. In general, however, the expectation
is that such dynamics require a modification of the equations of motion even at the level of the
deterministic drift, which makes them less desirable. In the middle of these two extremes is the
possibility that phantom CDM is produced with the correct density to account for cosmological
CDM; however, the calculations above show that this would imply a fine-tuned relationship

between P and Ds.

5.5 Summary of the main results

In this chapter, we have shown that a natural consequence of the stochasticity is the violation
of the deterministic constraints of GR. We argued why in the low-noise limit, such a constraint
violation acts as an effective pressureless dust both in the homogeneous and inhomogeneous
treatment. Then, we presented a mechanism by which, during inflation, the integrated effect of
the stochasticity leads to a constraint violation that is, on average, positive. This provides one
of the missing ingredients needed to show that such an effect could imitate the cosmological
fingerprint of cold dark matter.

We discussed how, for a natural choice of renormalisation scheme in which the homogeneous
global noise is related to the local one by averaging across the Hubble horizon, the phantom
matter generation stops a few e-folds after inflation, since the effective diffusion coefficient

drops as H®. This is a necessary condition for this mechanism to produce phantom cold
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dark matter that is consistent with CMB constraints. Shortly after the beginning of radiation
domination, the cosmological noise becomes negligible and the evolution is adequately captured
by the standard Friedmann’s equations with phantom CDM on cosmological scales. The average
density of the phantom matter follows a simple relation that depends on the horizon-scale
diffusion coefficient, the energy scale of inflation and the number of e-folds of expansion of
the Universe. Improving existing constraints on Hy, the number of e-folds of inflation and the

inferred CDM density will in turn put tight constraints on Ds.

5.5.1 Imposing the constraint

The deviation from the deterministic constraint is not necessarily a sign that the stochastic
theory is inconsistent. Still, a natural question is whether one can come up with any modification
to the evolution process that conserves the deterministic constraint. This has been done for a
stochastic extension to the geodesic equation, where the associated Dirac constraint corresponds

to the mass shell condition p? = —m?2.

A Lorentz covariant diffusion equation was derived
from first principle in [7] and matched with the causal set theory-motivated Lorentz invariand
diffusion equation dubbed as the “swerves equation” [214, 215]. In order to preserve the mass-
shell condition exactly at the level of trajectory, a diffusion-dependent drift term had to be
added.

It turns out that, for the stochastic cosmological model, there are two possible modifications
that will lead to that result. The first one is coupling the noise to the matter system, breaking

covariant conservation of energy-momentum for matter. We can see this with a bottom-up

approach. Assume that the energy density is allowed to evolve via under a general SDE:
dp = p(a, me, p)dt + o(a, g, p)dWs . (5.96)

We can then require that the constraint is satisfied and work out what the evolution law for p

needs to be. Using It6’s lemma once more, we get:

oCy oCy 10%Cy 5  0CH
dCqy = d dmg + = d —d
H= g 447 Ora 3 o2 ot p P
271G 2 A7G g 4G 1
= — LE + 3pa2 da + leﬂ-a — a3d,0 + L*dﬂ'g (597)
3 a2 3 a 3 a

4 2
= —a3dp + 4nGpar,Ndt + ”TGma\/NDQth + DQWTGQ3th + O(dt dW) .
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Requiring this to vanish amounts to setting:

47 G [ m, D
wla, ma, p) = T3 <3GQN 2N> (5.98)
4G g
a(a,Tra,p):—ﬂ—TZ— ND; , (5.99)
meaning
e . Dy 4nG
dp = 7; <3 . )th T =5 VN Do W, . (5.100)

Of course, for Dy = 0 this recovers the deterministic evolution for matter.

The other approach is to make the evolution of a stochastic instead. Here, we work under
the assumption that the deterministic drift should not be changed as we still want the canonical
gravitational equations of motion to be satisfied on average for every value of Ds. Therefore,

we allow only for a diffusion term in a:

4 a
da = —%GNW dt + o4 (a, N)AW; . (5.101)

By repeating the same procedure as above we find that by picking:

a3
0o = —VN (5.102)

Ta

the induced drift term in the evolution of the constraint cancels, meaning that the constraint
is satisfied on average (but not at the level of trajectories). However, stochasticity in a directly

means that the definition of the conjugate momentum breaks dowm.
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Part 11

Braneworld holography
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Chapter 6

Braneworld holography

Semi-classical gravity remains a useful proxy to study quantum effects in gravity from the
perspective of a macroscopic observer. In this context, quantum fields live in a classical dy-
namical spacetime where the combined system is characterized by the semi-classical Einstein
equations [216, 217]

Gu(9) + Mgy = 8nGN(THT) . (6.1)

Here, we allow a general cosmological constant A — but we will shortly restrict to the case
of asymptotically de Sitter Universe (A > 0). As briefly discussed in Subsection 1.2.1, the
right-hand side (T,S,FT> is the expectation value of the renormalized stress-energy tensor of the
quantum field theory in some quantum state |¥). Semi-classical gravity should be viewed as
an approximation and only valid in a certain regime. Indeed, the semi-classical approximation
fails near the Planck scale as at this level quantum gravity effects become important, such
that Equation 6.1 can no longer be trusted. Further, the semi-classical field equations are not
expected to be valid for generic quantum states |¥), e.g., macroscopic superpositions [218].
Even in its regime of validity, solutions to semi-classical gravity, particularly black holes,
are difficult to study consistently. In this chapter we review the main ideas behind braneworld
holography, an approach motivated by the AdS/CFT correspondence to solve the backreaction
problem exactly. In fact, as we see shortly, we won’t be solving Equation 6.1, but a semiclassical

gravity theory with higher-derivative corrections in d spacetime dimensions

Gij + Aqgij + (higher-curvature) = 87er<TgFT>p1anar . (6.2)

134



with the matter being specifically a conformal field theory (i.e. matter fields invariant under
the conformal group).

At first glance it would appear that the braneworld has only complicated the situation with
its higher-derivative corrections: solving the induced field equations in Equation 6.2 requires
solving the problem of backreaction in a complex higher-derivative theory of gravity. The
computational advantage of braneworld holography, however, is that the semi-classical induced
brane theory has an equivalent bulk description in terms of classical AdS;. 1 gravity coupled to
a brane obeying Israel junction conditions. Thus, exact spacetimes solving the classical bulk
field equations with brane boundary conditions automatically correspond to exact solutions
to the semi-classical brane equations of motion, Equation 6.2. Holographic braneworlds thus
provide a means to exactly study the problem of backreaction without having to explicitly solve
semi-classical field equations. In particular, classical AdSgy; black holes which localize on an
end-of-the-world (ETW) brane are conjectured to precisely map to black holes in d-dimensions,
including all orders of quantum backreaction [113], i.e., ‘quantum’ black holes.

The primary purpose of this chapter (and the next) is to review the state of the art re-
garding such holographic quantum black holes — and then present in detail a novel solution
uncovered using the braneworld approach. Emphasis is given to a particular class of analytic
black holes which localize on an AdS, braneworld, first uncovered by Emparan, Horowitz and
Myers [219, 220], corresponding to three-dimensional quantum black holes [113, 221, 219, 5].
These braneworld black holes lead to an important observation: backreaction can lead to the
existence of black holes where there were none before. That is, famously, there are no black hole
solutions in vacuum to classical Einstein gravity in three-dimensions with positive or vanishing
cosmological constant. Rather, the geometry of a point mass in Minks or dS3 is described as a
conical defect without a black hole horizon [222, 223]; Schwarzschild-dSs, for example, is a con-
ical defect with a single cosmological horizon but no black hole horizon. Quantum corrections
due to backreaction alter the three-dimensional geometry in such a way that a black hole hori-
zon is induced, leading to a type of (quantum) censorship of conical singularities. Meanwhile,
classical black holes do exist in three-dimensional Einstein gravity with a negative cosmological
constant [224, 225], a consequence of the tendency for gravitational collapse afforded by the

negatively curved geometry. Nonetheless, in such contexts backreaction yields behavior strik-
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ingly different from their classical counterparts. Unfortunatley, for phenomenologically relevant
4-dimensional black holes, the braneworld approach we describe here — using a brane judiciously
placed in a bulk C-metric geometry to derive quantum-corrected solution — is inapplicable (due
to the absence of a 5-dimensional generalisation to the C-metric). We discuss this in more
detail in Chapter 8.

This chapter contains the following. We begin with a quick review of the classical Kerr-dSs
geometry, a conical singularity with a cosmological horizon. Then, we perturbatively compute
the backreaction in the geometry, showing that to leading order the corrections imply a 1/r
term in the metric — suggesting that backreaction might set up a black hole horizon to “censor”
the conical singularity. However, the correction due to a simple conformally coupled scalar
is Planckian in size — meaning that it can’t be trusted, as it pertains to the regime where
semiclassical gravity itself breaks down. We then take a step back, and introduce the general
braneworld construction. We start by using holographic renormalisation to derive the theory
induced by the bulk on the ETW brane, followed by a detailed discussion why the AdS/CFT
correspondence implies that the metric on the brane is to be interpreted as encoding all the
backreaction effects from a quantum CFT. As we will see, such corrections are in generally
macroscopic. Indeed, the typical associated lengthscale is the Planck length enhanced by a
factor proportional to the central charge of the CFT — which is generally taken to be large in
holographic setups.

6.1 Black holes and backreaction in 3D: a perturbative analysis

6.1.1 Three-dimensional black holes and conical defects

In vacuum general relativity, black holes tend to disappear when lowering the dimension of
spacetime from four to three. This can be understood at the level of dimensional analysis. If
the only dimensionful parameter is three-dimensional Newton’s constant G5, then introducing a
massive object of mass M does not introduce an additional length scale needed to characterize
a black hole horizon solely in terms of its mass; indeed, G3M is dimensionless. Since we have
set ¢ = 1, mass has dimensions of inverse length while G5 has dimensions of length. In fact,

a massive point particle in flat (2 4+ 1)-dimensional general relativity is a conical defect, with

136



angular deficit § = 2w(1 —+/1 — 8G3M) and a conical singularity at the origin [222]. Moreover,
while a cosmological constant A will introduce another length scale, this alone is not sufficient
to have a black hole horizon. Gravitational attraction is also required.

To elaborate, there are black holes in asymptotically AdSs. Namely, the Banados-Teitelboim-
Zanelli (BTZ) black hole [224, 225]

ds* = —N(r)dt* + N~ (r)dr? + r*(d¢ + Nydt)? (6.3)

with lapse and shift metric functions

2 2
2 (G 4Gyd

N(r) = —-8GsM + f% + 2 $="" 3 (6.4)
for mass M and spin J. The roots of the lapse,
, I3 ,  (8GsJ\*
3

characterize the outer (r;) and inner/Cauchy (r_) horizons, with r4 > r_ > 0, assuming
MLs > J > 0 to avoid naked singularities. The reason we can interpret the BTZ metric as a
‘black hole’ is because the negatively curved geometry of AdS3 provides an innate geometric
tendency for gravitational collapse (see, e.g., [226]). Alternatively, there are no black holes in
dSs; the positively curved dS3 background leads to an inability for collapse. Consequently, a
point mass in dSs, is described by a conical defect [223] with a single cosmological horizon.

To see this latter point, consider the Kerr-dS3 metric. The line element formally takes the
same form as Equation 6.3 except now with lapse and shift functions

2 4G3.J)? 4G3J
N(r)El—8G3M—;2+(:2), Ny =+ >
3

: (6.6)

r2

where R3 denotes the dSg length scale and ‘+’ sign in NNy is convention. Next, introduce

dimensionless parameters v = r /R3 and a« = —4G3.J/yRs = ir_/Rs, where r1 are
, R} , (8GsJ\*
=50 | (1= 8GsM) £ /(1= 8GsM)2 — (= , (6.7)

with only a single positive root, r, identified as the cosmological horizon. Then, the coordinate
transformation [223, 227, 5]

(r/R3)? + a?

6.8
v2 + o2 (68)

f=yt+aRsp, ¢=v¢—at/Ry, F/Rs=
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brings the Kerr-dSs geometry into an empty dSs form, i.e.,

~ ~ —1
ds® = — <1 - i) di* + (1 - TZ) di® + 72dg* . (6.9)
R3 R3

Here, however, the coordinates (%, <5) do not have the same periodicity as standard dSs, where

(t,r, @) ~ (t,r,¢ + 27). Rather,
(t,¢) ~ (I + 2nR3a, o + 277) . (6.10)

Hence, Kerr—dSs is a conical defect geometry with angular deficit 6 = 27 (1 — 7).

The thermodynamics of the cosmological horizon is straightforward to work out (see [228])

R
m=n%—a? Jo_ ™ 5 c:—iv
AGs 7Hs (6.11)
Y +a? G 2nr.  2mR3y ’
‘" 2ryR3 "’ BH = 4G 4Gs
satisfying the first law

dM = —T.dSgy + Q.dJ , (6.12)

where m = 1 — 8G3M. Moreover, the system obeys the following Smarr relation
0= —-T.5gu + Q:J — 2PV, , (6.13)
where P = _87rAG3 = —8WG13 I is a thermodynamic pressure and V. = 7r2 the conjugate

thermodynamic volume. If we allow for variations to the dynamical pressure, the above first
law is extended to include a +V.dP term.

It is worth pointing out that the AdSs geometry in Equation 6.3 is not always a black
hole. For 8G3M < 0, the geometry is a conical defect, taking the form of empty AdSs (the
line element in Equation 6.9 with Wick rotation R3 = —iLg), with the same periodicity as
Equation 6.10, where now o = r4 /L3 and v = 4G3iJ/L3. In particular, when J = 0, the states
with —1 < 8G3M < 0 correspond to conical defects with angular deficit § = 27(1 —/—8G3M),
while for 8GsM < —1 the geometry has a conical excess; at 8GsM = —1, the BTZ geometry
is exactly empty AdSs. Further, when 8 G3M < 0 (for arbitrary .J) the metric components are

well-defined everywhere, i.e., there is no horizon and the conical singularity at » = 0 is ‘naked’.
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6.1.2 Perturbative backreaction in Kerr-dS;

Another way to introduce a dimensionful parameter is to allow for quantum effects. Namely, for
h # 0, there exists the three-dimensional Planck length Lp = hG3 (though there is no notion
of Planck mass in three-dimensions). The question then is whether such quantum effects can
modify the classical three-dimensional geometry so as to induce a (black hole) horizon when
there was none before.

Evidence of this comes from perturbatively solving the semi-classical Einstein equations
(Equation 6.1) for a conformally coupled scalar field ® [229, 230, 231, 232, 233, 97, 219, 5],

characterized by the action

1
167TG3

/ B/ —g[R - 2A] — % / B/ —g [(Vcb)? + ;P@Q] . (6.14)

In such a set-up, the first step is to determine the renormalized stress tensor (7),,).

The energy-momentum tensor for @ is found by varying the matter action

_ 2 e
V=g g

We will be interested in the case when G, = —g,, A, where A = # and R = 6/R3. Upon
3

Ty

3 1 1 1 1
= 7VudVio - ZgW(V@)? — 1OVuVo® + 29, S0P + éGW@Q . (6.15)

invoking the scalar equation of motion,

<D - ;R> d=0, (6.16)

it follows that the stress-energy tensor is both traceless and conserved.

Below we compute the renormalized quantum stress-energy tensor (7},,) of the free scalar
field. We do this in two steps, primarily following the techniques developed for the BTZ black
hole and conical AdSs [229, 233, 97], extending the analysis in [219]. First we determine the
Green function of the conical dSs defect geometry in Equation 6.9 related to Kerr-dSs using
the method of images. The method of images is a technique for obtaining the Green’s function
G(z, ") on a quotient space by summing the Green’s function Go(z, A,z’) of the covering space
over all group elements A, whose action leaves 2’ invariant in the quotient space [234]. We

then use point-splitting to compute the renormalized (T},,).
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Green function in conical dS;

We begin with the Green function G(z, ') of pure dS3 which solves the scalar field equations
of motion in Equation 6.16. Imposing transparent boundary conditions, the Green function
is [235, 231]

1 1

S Arm | — 2| —de’

G(z,2") (6.17)

where |z —2'| = \/(z — 2/)*(z — 2'), is the chordal or geodesic distance between z and 2’ in the
four-dimensional embedding space R1:3. Here the ie is needed to define the contact divergences
of the Green’s function in distributional sense [235]. However, for simplicity of notation, we will
drop it from now onwards. We choose transparent boundary conditions because the holographic
computation naturally selects these boundary conditions. More generically, the Green function
solving the scalar field equation of motion is 47G(x,2") = (|x — 2'|) ™! + A(Jz + 2'|) !, where A
is a parameter related to the boundary conditions one imposes; transparent (A = 0), Dirichlet
(A = —1) and Neumann (A = 1). The embedding coordinates % = (X1, Xo,T1,T2)7 for empty

dSs are

Ty = /72 — R2cosh(t/R3), Ty = /72 — R}sinh(f/R3), X;=7cosp, Xo=7rsing, (6.18)

obeying —T2 + T% + X? + X3 = R3, and where the metric ds? = —dT? + dT% + dX? + dX3

yields empty dSs in static patch coordinates. Moreover, it is easy to verify

3
0— —— ) N = Nl
( 4R§> Gasy(z,2') =0 (6.19)

for x # 2/, with the chordal distance being

o —a'| = [~(Ty = T1)* + (Te — T3)° + (X1 = X7)* + (X2 — X3)*)' 2
1/2 (6.20)

t—1 .-
= [2R§ +2\/f2 - Rg\/f@ — R3 cosh( 7 > — 277 cos(¢p — @)

3
To construct the Green function Gcqs, (2, 2") for the conical defect spacetime in Equation 6.9
we use the method of images, exploiting the fact the conical defect geometry is an orbifold due
to discrete identifications of dSs. Namely, the Green function is given by summing over the
distinct images under the action respecting the periodicity conditions in Equation 6.10. In

particular, identified points are related by an element H € SO(1,3) on the embedding space
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coordinates in Equation 6.18, except where now ¢~> ~ (5—% 27y and t ~ t+27a/, where we defined

o/ = R3a in Equation 6.10 for notational convenience. Explicitly,

cos(2my)  sin(27y) 0 0
—sin(27 cos(2m 0 0
H(y,a') = () - eos(Zm) . (6.21)
0 0 cosh(2ra’)  —sinh(27d/)
0 0 —sinh(27a’)  cosh(2ma/)

For integer n we observe H"(y,a’) = H(nvy,na’). When a = 0, we recover the identification
matrix for static dSs related to the Schwarzschild-dSs solution [219].

The Green function Gcqg, (z, 2) for the conical defect spacetime in Equation 6.9 then follows
using the method of images, where one sums over all distinct images of a point obtained by the
embedding space identification:

Goasy(,7) = = 3 Gasy (0, H'a!) = =5 2 (6.22)
47 et 47 = |x — H2!|

with

t—1 42
|z — H"2'| = [2\/772 — R%\/?”Q — R3 cosh <;—7Tna>
3

" (6.23)
— 277 cos (¢ —¢ + 27m’y> + 2R§] .

The summation range I C Z depends on the number of distinct images, and is related to the
nature of the identification matrix H. For the case of the Kerr-dS geometry, the identification
matrix in Equation 6.21 will act transitively on R'3 such that there are a countably infinite
number of distinct images, i.e., I = Z. By contrast, in the limit of vanishing rotation a = 0, the
identification matrix H becomes cyclic, such that there are a finite number of distinct images,
N — 1, where N is the smallest positive integer such that HY = 1. This implies 7 is a rational
number, which without loss of generality can be set to v = 1/N. The cyclic property is broken
for the Kerr-dSs identification matrix due to the lower block matrix. An analogous story carries
over for rotating BTZ and (static or rotating) conical AdSs [233, 97]. Notably, at this stage,
upon the Wick rotation

(3=1iR3, J——-J, ry— —irETZ (6.24)
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one recovers the scalar field Green function in conical AdSs [233], however, Wick rotating the
identification matrix in Equation 6.21 does not yield the appropriate identification matrix for

conical AdSs or the rotating BTZ.

Renormalized quantum stress-tensor

The renormalized quantum stress tensor (7),,) is obtain from G(z,z’) using the point-splitting
method [236, 229, 95, 233]. Specifically,

(T, (2)) = lim (3vxvg’G - 1gwgaﬁvgvg’c; - 1VIVH;G + 1gWG) . (6.25)

=z \4 * 4 4 # 16 R3

Here G(z, ") = Geas, (x, 2) is the Green function in Equation 6.22, the metric g, is a function
of the spacetime point x, V7, denotes a covariant derivative with respect to z, and Vﬁ/ denotes
a derivative with respect to the point x’. Moreover, the coincident limit x — 2’ amounts to
evaluating the resulting expression at ' = x. Note that while normally the renormalization of
the stress tensor is difficult, here we simply subtract off the divergent n = 0 contribution in the
image sum in the coincident limit.

To evaluate each component of the renormalized stress tensor in the conical defect back-
ground, we use the fact G(z,2’) is a symmetric biscalar, while its covariant derivatives are
bitensors. Thus, we invoke a generalization of Synge’s theorem for bitensors [236]:

g};glx(vg’Aal) = Vi, lim (4a,) = lim (VjAq,) , (6.26)
where A,, is a bivector with equal weight at both 2 and 2/, whose coincidence limit exists. Con-
sequently, applying Equation 6.26 (Synge’s rule) to the quantum stress tensor in Equation 6.25
we have:

3 X 13 xX : xX x 1 (0% €T : €T : x xT
(T () = 1 {Vl, lim (V;G) — lim (V,,VMG)] — 19m9 s [Vﬁ xlgnx(vac;) — lim (V3V4G)

' —x ' —x ' —x
1 1
li S\ VArA Vi — . 2
T < g VnVeG 16R§g“”G> (6:27)
To clarify,
V2 lim (VEQ) = &7 ( lim 8°G ) —T*, ( lim 8°G) | (6.28)
' —x ® =z M P \aSg P
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where the coincident limit is taken before evaluating the 0, derivative. Meanwhile,

lim (VIVEG) = lim (9205G —T%,,0,G) (6.29)

/' —x /' —x

where the limit x — 2’ is taken at the end.
Evaluating the quantum stress-tensor in Equation 6.27 in the defect geometry of Equa-
tion 6.9 and performing the inverse coordinate transformation of Equation 6.8 to return to

(t,r, ®) coordinates yields,

i i 4T 54- + 62 )b - 3an] + 2R39n) Cn — 354_,3_6”[87’2 + (/83 - 53)1‘3%]
8w (B3 + B82)2dn(r)5/2 ’

3
Jat

- 1 Cn
T =16z 2 a7

1 X (4r2[3an — (B2 + B2)by] + 2R2Gn)cn — 381 B—_en[81% + (B2 — 52 ) R3]

oy .~
ol = T GRS AN |
Tty — 3R i By B-cnldr?(c, —4) — R3ay] + en[4r2(ﬂi - B%)+ QﬂgﬂiRg]
s (B% + B)2dn ()2 |
=B S Bl —4) ~ Fhoa] - eafb?(5 — 52) ~ FE(3 + 51)
R e (83 + 52 )2dn(r)?/? |
(6.30)
Here we introduced parameters 5, = 2y and S_ = 2a’/R3 and defined
an =2 [ﬁ% sin? <mr2ﬁ+> + 37 sinh® <n7r2ﬂ_>} : (6.31)
Gp = 2 [[33_ sin? <n7r23_~_> + /32 sinh? <7r2ﬂ>} , (6.32)
by, =2 [sinh2 (mrzﬁ_> + sin? (T)} . (6.33)
¢n = 2+ cos(mnfy) + cosh(mnfp-) , (6.34)
en = 2sin(nmfBy) sinh(nwf_) , (6.35)
gn = B2(BL — 26%) sin® (””25*) — B2(B% — 282 sinh? (m ‘) : (6.36)
Gn = B2(B2 — 282 sinh? (mf> — B2(B% — 282 sin® <mf+) , (6.37)
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and with denominator

d () B?:l—]zgﬁ [53 sin <"7r25 - > — $32 sinh? (mf ‘) + 2R32r2bn] . (6.38)

We have already removed the divergent n = 0 contribution. Note that we recover components

of the renormalized stress-tensor for a free conformally coupled scalar field in conical AdSs [97]
upon the Wick rotations R3 — —iL and - — iS_. To arrive at these expressions we used
the summation symmetry over negative and positive integers n € Z such that ), /{0} fn =
3% (fn + f-n), where f_, = £f, depending on each summand f,. For example, (T’;) has
a numerator sin?(n7y) sinh(2wna’/R3) which is eliminated under the sum symmetry between
positive and negative integers. This symmetry eliminates all mixed components with 7.

To compare to the holographic stress-tensor in Chapter 7 it is useful to define
ra=dY? . dy =r2dY + R2dP (6.39)

with

Wi N e () - st (T )L o)

so as to suggestively write the stress-tensor

1 1 A, . 1 e 1 1 A,
(T%) :8”2_:17’% (A’H—r%) , (1) = 16”2:17’%’ (1) :_8”2_:17“2 (Bn"i'r%) ;
¢\ Shs = 1 & . | F,
To) = 8 nz::lr% (En+r%>’ (%) = 87TR3;T§L<En+r%>’
(6.41)
where
A=Ay UrlBE £ B2)by — 3an] + 2R3gn)cn
" (5% + 72)° |
B — B, B — (4r2[3ay, — (8% + B2)by] + 2R3Gn)cn
S O (L + 527 |
_ By , BeB-cyldr?(c, — 4) — R3ay)
i _  3BiB-enl8r? + (B2 — B)R]]
! (8% +82)? ’
5o enldr®(B7 —B2) + 232 BYRE] L ealdr®(81 — B2) — RE(BL + B2)]
! (B3 +B2)? C (B2 + B2)? ‘
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Quantum-corrected geometry

With the renormalized quantum stress-tensor at hand, let us proceed and compute the quantum

corrections to Kerr-dSs by solving the three-dimensional semi-classical Einstein equations

1
Guy + ﬁgw = 87TG3 <Tuy> (643)
3

perturbatively in Lp. Our strategy closely follows the AdSs analysis presented in [97]. Our
starting point is the general form of the stationary (rotating) balck hole:

ds* = N(r)?f(r)dt® + }i(?f) + 72(df + Kk(r)dt)? , (6.44)

where k, f and N are the functions to be determined. Expanding to linear order in L,
N(r) = No(r) + LpNi(r) + O(L%) ,
F(r) = fo(r) + +Lpfi(r) + O(L}) , (6.45)
k(r) = ko(r) + Lpki(r) + O(L}) .
Note that, in our units, the Oth order metric functions are dimensionless. Formally, the ex-
pansion is valid only when the dimensionless ratio |h,,/gu| < 1, where g, is the leading
order term and h,, the corrections. However, we here explicitly pull out factors of Lp, since
as we’ll see is the relevant scale for the corrections — this makes the corrected metric functions
appropriately dimensionful. Heuristically, the expansion should be intended to be in powers of
Lp/lyr, where £y is the length scale associated with the energy density of the matter fields.
We substitute these expressions back into the left hand side of Equation 6.43 and match order

by order in Lp with the expectation value for the stress energy tensor. At (’)(L%) we obtain

r2 J? J

0 ) fO m R§+4T2’ 0 27"27

(6.46)

recovering the Kerr-dS; metric of Equation 6.6, to a minor redefinition of the constants of
integration J. Note that we have also made the choice of a vanishing shift vector at infinity,
which sets a third integration constant to zero.

At linear order in Lp, we solve the differential equations for the linear corrections to the
Kerr metric using that we have computed the stress-tensor to linear order in Lp. It is helpful

to use the traceless property of the perturbative stress energy tensor,

(T = F3(0) — (7 = 15 ) (i) + () (6.47)
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Going through the algebra and requiring the corrections to go to zero for vanishing stress energy

tensor, we eventually find

Ni(r) = 8253 / dr <2r<Tw> - wﬁ) ,

filr) = /dr [—2f0N{ + <2;n i2> Ny + — 2 /dr (—erNl + 82f3r3f0<Tw>>] ,  (6.48)

2N1(7’) 87TG3
R% _fO Lp <Trr>>

Jkq :f1+2f0N1+2/7'd7“<

Substituting in Equation 6.30 and integrating, we obtain

- R3 N anCn — 204 P—en

Ni(r) = 5 R nzl bt : (6.49)
= A (r) (ancn — 284 B-en) — carp (B 4 52)?
fi(r) = nzl 647,2(/83 AT : (6.50)
en + B+6 Cn( Cn — 4)
8T2 Z . : (6.51)
with
2 _ 2 2

hn = (47% — R3B2)(4r? + R3B2)by, + (B2 + B2) (47"2 - W’) dy, . (6.52)

Since fi ~ 1/r as r — oo, the correction to the blackening factor does resemble the 4D
Schwarzschild-like contribution that emerges from the holographic calculations. However, as
this derivation can only be accomplished to linear order in Lp, a limit of the perturbative
approach, we cannot justify these quantum corrections induce a black hole horizon; one must
consider higher order corrections. The ‘horizon’ radius, however, is proportional to the Planck
length, the scale when quantum gravitational effects are expected to become important. Con-
sequently, the above perturbative semi-classical analysis cannot be trusted, and we are not able
to conclude the backreacted geometry results in a genuine horizon. This is not to say semi-
classical backreaction will always result in Planckian-sized horizons. Indeed, both gravitational
and quantum effects are in play: a large ¢ > 1 number of conformally coupled scalars results
in a combined quantum effect ox ch which may gravitate to yield semi-classical black holes, i.e.,
those with horizon radius ~ Gch = c¢Lp > Lp, for which quantum gravity effects may be safely
neglected. To verify this, the backreaction problem of a large number of fields must be non-

linearly accounted for, and, thus far, perturbative methods have been unable accomplish this

146



consistently. Braneworld holography provides a framework for which the backreaction problem

due to a large-c holographic conformal field theory can be exactly solved.

6.2 Braneworld holography and quantum black holes

The perturbative analysis above suggests semi-classical backreaction due to quantum fields
can lead to the appearance of a black hole horizon when there was none before. Due to the
limitations of the perturbative approach, however, the observation is cursory at best. Since the
perturbative correction to the classical geometry is on the order of the Planck scale we cannot
definitively argue a black horizon appears. Only if there are a large-c number of quantum fields
present would this conclusion be plausible. The only known framework where a solution with
these requirements can be consistently achieved is braneworld holography, where one innately

works in a large-c limit. Below we summarize the relevant aspects of holographic braneworlds.

6.2.1 AdS/CFT dictionary and holographic renormalization

The AdS/CFT correspondence [101], in its strongest form, describes a duality between a theory
of gravity and conformal field theory at the level of their partition functions, summarized by

Gubser, Klebanov, Polyakov and Witten (GKPW) [237, 238]

<€ fBM O¢(0) > — Zgrav [¢(0)] |M . (653)
CFT

On the right-hand side we have the gravitational partition function of a bulk field ® over
an asymptotically d + 1-dimensional AdS spacetime M, with conformal boundary OM, and
}(0) 1s the fixed boundary value of the bulk field ®. On the left-hand side is the generating
functional for the dual d-dimensional CFT living on OM, where O is the field theory operator
dual to the bulk field. Taking variations with respect to ¢y and then setting ¢ () = 0, one
can obtain correlation functions of O, sourced by ¢(q). This equivalence of partition functions
in Equation 6.53 is often dubbed the standard AdS/CFT dictionary, and, at least formally,
defines a model of non-perturbative quantum gravity.

One of the essential features of the AdS/CFT correspondence is that it can probe strongly
coupled field theories on a non-dynamical background using weakly coupled, classical (su-

per)gravity. This is because, typically, the holographic field theories are non-abelian gauge
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theories with gauge group of rank N and 't Hooft coupling A, where, at large-N and A > 1
(the planar-diagram limit) the dynamics are effectively classical, with O(1/N) corrections in
the dual field theory corresponding to bulk gravity quantum corrections O(Gy). A concrete
realization of AdS/CFT duality is that of N = 4 super-Yang-Mills theory, a superconformal
field theory, which is dual to type IIB string theory on AdSs x S°, where the 't Hooft coupling
A controls curvature scale of AdSs whilst the string coupling is gs ~ N~'. In the large-N limit,
stringy interactions are thus suppressed and A > 1 forces curvatures to be small, such that the
string theory may be replaced by an effectively classical gravity.

More generally, the dual field theory degrees of freedom are encoded in the central charge
¢, which, for known holographic theories scale with N, i.e., ¢ ~ N¢ for positive, real . Thus,
the large-c limit coincides with the classical limit in the bulk, and the right-hand side of the
dictionary in Equation 6.53 may be approximately given by a sum over classical saddles {®;}
lim <e Jor O¢(0>> =) et (6.54)

CFT

c—00 -
i

where each field configuration ®; is a solution to the bulk classical gravity equations of motion
subject to the prescribed boundary conditions. A particular case of interest is to turn off all
sources ¢(g) except those the boundary value of the bulk metric. In such an event, at large-c,
it is consistent to turn off all bulk fields except the metric, such that the bulk is described by

a pure theory of gravity, often taken to be the Einstein-Hilbert action.

Holographic renormalization

The standard dictionary in Equation 6.53, however, requires special care in regards to diver-
gences. Indeed, even at tree-level — Equation 6.54 — the gravity partition function exhibits long
distance infrared (IR) divergences, which correspond to ultraviolet (UV) divergences in the CFT
correlation functions. These divergences may be removed via holographic renormalization, a
prescription that adds appropriate local counterterms [108, 109, 110, 111, 112] in a minimal
subtraction scheme. Whilst there is in principle freedom in choosing specific finite terms —
corresponding to different renormalisation schemes — the nature of the local divergent terms
is universal, meaning that there is no ambiguity in the action we shortly derive for the brane

theory. The local finite scheme-dependent terms can be added, beyond minimal subtraction,
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to match specific CFT data if needed [239]. Since it will become relevant momentarily, let us
outline the holographic renormalization procedure — see the appendices in [4] for further details.
Consider a bulk asymptotically AdSz41 spacetime M of curvature scale Lz and cosmo-

logical constant Agyq = —d(d —1)/2L? 41, governed by classical Einstein gravity

1 A 1
Ty = ——=— /M day/—g (R - 2Ad+1) + d*zv/—hK . (6.55)

167G a1 87Gar1 Jom

Here G441 is the d + 1-dimensional Newton’s constant, g, is the metric endowed on M, and
K in the Gibbons-Hawking York (GHY) boundary term is the trace of the extrinsic curvature
of the boundary submanifold OM endowed with induced metric h;;. Working in the large-c,
planar-diagram limit, the bulk gravity theory has a dual holographic description in terms of a
CFTy living on the asymptotic conformal boundary M.

Asymptotically, the bulk AdS spacetime can be cast in Fefferman-Graham gauge [240], such

that near the boundary

dp* |1 o
ds* = gapdada® = L3, <422 + pgij(az,p)dfvldﬂ) , (6.56)

where the d-dimensional metric has the expansion g;;(x, p) = gg-]) (x) —i—pgg) (z)+...4+p?? gz(;-l)(x).

The conformal boundary is located at p = 0. By perturbatively solving the bulk Einstein’s

(k>0)

equations, the higher-order metric coefficients g; J (z) may be cast covariantly in terms of the

metric gg)) and derivatives thereof.

On-shell, the bulk action in Equation 6.55 has IR divergences at p = 0. To isolate and
regulate these divergences, introduce an IR cutoff p = ¢, for € < 1, near the asymptotic
boundary, and integrate over bulk coordinate p between € < p < p., where p. > € is some
constant.

See Figure 6.1 for an illustration. This procedure produces a regulated bulk action,

1 .
) — d™le/—4 (R — 2A 2/ d%zv/—hK | . .
bulk = 167Gy {/px TN —9g (R d+1> + - x (6.57)

Using the perturbative expansion for g;;(z, p), the regulated action in Equation 6.57 may be

divided into a contribution Ig;, which diverges in the limit ¢ — 0, and a finite contribution I,

I8 = Laiv + Ign - (6.58)
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Figure 6.1: Holographic regularization. A constant timeslice of empty AdSg.1. An IR cutoff surface
is introduced at p = € (thick, red line). The regulated action follows from integrating out the bulk radial

coordinate from € < p < p.. As € — 0, the cutoff surface recedes to the AdS boundary.

Schematically, the IR divergent contribution is

CLayn [ -d/2,, —d/2+1 -1
lagiv = 167Gy /d xr{ / /2+ a2y + ... +€ “ag-2) — log ea(d)} ,  (6.59)

with coefficients a(g), a(z), ... that are covariant combinations of gg)) and its derivatives. In terms

of the boundary metric h;;, it may be cast as

Idiszd“/dd F[ @-1n, R __ Ld“ vy <Rz'2j_4(dR2)>+...

where the ellipsis indicates higher-curvature and higher-derivative contributions (see, e.g., [108,
112, 241, 242]). The finite contribution Ig, ~ O(e) +O(e)... survives the € — 0 limit, though it
will also typically include higher-curvature terms. Its interpretation will be given momentarily.

At this stage the renormalized action is obtained by minimal subtraction,

I = (1 + Tet) (6.61)
where a local counterterm action has been introduced, I,y = —Igiy, to precisely cancel the IR

divergences. Then, via the standard AdS/CFT dictionary, variations with respect to the metric

hi; of the renormalized action yields the quantum expectation value of the stress-tensor of the

holographic CFT,

) 2 OIFen 2 0W [h]
TCFTy _ | bulk — CFT 62
i) fl—>0< Va(z, p) 097 (. €) Vh o 6hi (6.62)
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such that the renormalized bulk action is identified with the quantum effective action of the

CFT, Werr|h]. Thus, at leading order, the finite action I, characterizes the CFT.

6.2.2 Braneworld holography

In braneworld holography [243], the bulk IR cutoff surface OM is instead replaced by a d-
dimensional (ETW) Randall-Sundrum [99, 105] or Karch-Randall [106, 107] brane B at a small
fixed distance away from the boundary. Hence, the physical space is cutoff at the ETW brane
and there are no longer IR divergences to be removed. For simplicity, assume the brane is

purely tensional, having an action
I, = —T/ d%az/~h, (6.63)
B

where 7 is the brane tension. Since a portion of the bulk has been removed, to complete the
space, a second copy of AdSgy; with a brane is sewn to the first cutoff geometry along the
cutoff surface (see Figure 6.2). This surgical procedure leads to a discontinuity in the extrinsic
curvature K;; across the junction. The Israel junction conditons [244] relate this discontinuity

to the brane stress-tensor S;; via
AKij — hijAK = 81Ga415i; = —87Gay17hy; (6.64)

where AK;; = K. :jr - K denoting the difference between the extrinsic curvature across either
‘+’ and ‘—’ sides of the brane (here we take K:; = —K,; such that AK;; = 2K;;), and the last

equality follows from taking the metric h;; variation of the brane action in Equation 6.63, i.e.,

Sij = _\/%W (;5,{;. Thus, the location of the brane in the completed space is determined by the
junction conditions in Equation 6.64, which in the present case amounts to tuning the brane
tension 7.

Moreover, unlike the metric on the AdS boundary, the brane metric is dynamical, governed
by a holographically induced higher-curvature theory of gravity coupled to matter. Precisely,
the induced brane theory is found by adding the bulk theory in Equation 6.55 to the brane
action in Equation 6.63. Integrating out the bulk up to the ETW brane B, as in holographic

regularization, leads to an effective induced theory with action I
I = Ipgrav[B] + Icrr[B] . (6.65)
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Figure 6.2: Braneworld surgery. Replace the IR cutoff surface with an end-of-the-world (Karch-
Randall) brane B (thick, red line), excising the shaded region from the bulk spacetime. To complete the
space, two copies of the spacetime are glued along B making the brane double-sided. A BCFT lives
on the AdS;4+1 boundary dM and is coupled to a defect CFT4_; where B intersects the AdS boundary

(yellow dot). The induced brane theory is characterized by a specific higher-derivative gravity coupled
to a CFT, with a UV cutoff.

The brane gravity theory is (cf. [245, 242])

IBgrav = 2Idiv + I

! L; AR (6.66)
= 167G /dex\/jh[R_2Ad+(d—4§lz;—2) (jo_zl(d—l)> _|_:| ,

where the factor of two accounts for integrating out the bulk on both sides of the brane, and
the ellipsis corresponds to higher curvature densities, entering with higher powers of Lg 41 S0
far the higher-derivative contributions have been computed up to quintic order in curvature
for arbitrary d, and sextic order for d = 3 [242]. In principle, these results could be extended
to arbitrary order, even though the calculations might be practically prohibitive. Here Gy

represents the effective brane Newton’s constant induced from the bulk

d—2
Gd — TMGd_i_l s (667)
and Ag = —(d — 1)(d — 2)/2L2 is an effective brane cosmological constant with an induced

curvature scale Ly

1 2 < 4rGat1Lar )
L 1 7). (6.68)
L2 L3, d—1
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As written, it has been assumed the brane has a negative cosmological constant such that the
bulk theory is coupled to a Karch-Randall brane [106]. When coupled to a Randall-Sundrum
brane, the brane cosmological constant can be tuned to be positive or zero, as will be considered
later.

Due to the presence of higher-derivative terms in Equation 6.66, the brane theory of gravity
is in general ‘massive’ since a massive graviton bound state will localize on the brane [106].
This brane graviton mass, however, will become negligible for a brane very near the boundary.
Further, general higher-derivative theories of gravity are often sick since they are typically
accompanied by ghosts. In the present case, however, provided the series of higher-derivative
terms is not truncated, the brane theory is not expected to inherit these usual pathologies since
the starting bulk theory and the procedure of integrating out bulk degrees of freedom are not
pathological

The action Icpr[B], meanwhile, describes the CFT theory, now living on the brane, and
corresponds to the finite contribution to the regulated bulk action upon integrating out the
bulk. To see this, note that upon integrating out the bulk degrees of freedom on both sides of
the brane we have

[=2I"% + 1, . (6.69)

Then add and subtract the 214;y, giving
I =214+ I1;)+ (2]11;?51( — 2l4iv) , (6.70)

where the first term in parentheses is recognized as Ipgray. The second term is simply 215, =
Icpr, which, to leading order in the cutoff ¢, is identified with the quantum effective action of
the CFT, Icpr = Wepr + O(€). In most cases of interest, we work in the limit that € is small,
i.e., when the brane is close to the (now fictitious) AdS;.1 boundary, such that the matter on
the brane has an approximate description as a large-c holographic CF'T. Roughly speaking, a
portion of the conformal AdS;;1 boundary has been pushed into the bulk, such that the dual
CFTy is now residing on the brane — however, at a cost. Since the brane represents an IR cutoff
surface, the CFT has a UV cutoff [246, 247]. The cutoff, from the perspective of the boundary
gl(jq) metric, is denoted by e, while from the induced brane metric hy; = (L7, / e)gi(](-)) the UV

cutoff of the CFT is duyy = Lg+1.
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6.2.3 Holographic quantum black holes: a conjecture

Two equivalent ways to interpret the theory given by Equation 6.65 are as follows. From the
bulk perspective, I characterizes a theory of a (d+1)-dimensional system with dynamics ruled by
Einstein gravity coupled to an end-of-the-world brane obeying appropriate boundary conditions.
Meanwhile, from the brane perspective I represents a specific higher-curvature gravity in d
dimensions coupled to a large-c cutoff CFT that backreacts on the brane metric h;;. The
tower of higher-order derivative terms to the Einstein-Hilbert contribution represent quantum-
corrections induced by the backreaction of the CFT;. We refer to this higher-derivative tower as
‘corrections’ because in most cases of interest one treats the brane action as an effective theory,
thereby assuming Ly > Lyt and guaranteeing the higher-derivative terms are suppressed by at
least O(L? 1/ L%). Equally, L? 1/ L% ~ ¢, and thus the gravitational brane action is recognized
as an expansion in small e. Moreover, from the brane perspective, the short-distance UV cutoff
of the CFTy goes like L4411 such that the higher-derivative terms also correspond to an expansion
in the UV cutoff. Consistency between these two viewpoints implies solutions to the classical
bulk equations satisfying proper brane boundary conditions exactly correspond to solutions
to the semi-classical field equations on the brane. Therefore, the classical (d + 1)-dimensional
geometry encodes the entire series of quantum-corrections to the d-dimensional brane geometry,
accounting for all orders in backreaction. Thus, holographic braneworlds provide a distinct
computational advantage: rather than directly solving a complicated semi-classical theory of
gravity, one may instead solve simpler classical gravitational field equations in one dimension
higher.

This philosophy, combined with the observation [248] that the ~ 1/r® corrections to the four-
dimensional Newtonian potential due to massive Kaluza-Klein modes in the Randall-Sundrum
model precisely coincide with corrections induced by one-loop quantum effects of the graviton
propagator [249], suggests braneworld black holes from the brane perspective are quantum-
corrected geometries. These insights in part motivated Emparan, Fabbri and Kaloper [113] to

make the following conjecture:

Conjecture: Classical black holes which localize on a brane in AdS;y; exactly map to d-

dimensional quantum-corrected black holes including all orders of backreaction.
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Figure 6.3: Braneworld black hole. The bulk white region is excised down to the brane B (blue
line), and glued to a copy of itself. A bulk black hole with an event horizon (red line) is intersected by

(depicted here, Karch-Randall) brane, inducing a horizon on the brane.

Such quantum-corrected black holes are dubbed ‘quantum’ black holes, though, technically
are solutions to the semi-classical theory induced on the brane. An illustration is given in
Figure 6.3.

Explicit tests of this proposal include the exact localized AdS, braneworld black holes dis-
covered by Emparan, Horowitz, and Myers [219, 220], with their projection onto the brane
being reinterpreted as three-dimensional quantum black holes. The exact static (neutral)
quantum black holes receive the same modifications to their geometry as suggested by the
(non-holographic) perturbative analysis summarized in Section 6.1. The rotating and charged
holographic quantum black holes, meanwhile, do not match exactly to the non-holographic
perturbatively-corrected counterparts (cf. [229, 97, 5, 250, 6]), although they share the quali-
tative behaviour. In particular, perturbative backreaction to the rotating BTZ black hole or
Kerr-dSs solution due to a conformally coupled scalar field leads to a more complicated radial
dependence than that of a holographic CFT and a quantum stress-tensor.

Before moving on to the next chapter where we analyze an exact quantum-corrected three-
dimensional black holes, it is worth briefly commenting on the status of the proposal [113] in
higher and lower dimensions. For brane dimensions d > 4, the most physically relevant case
being d = 4, there are still no known exact stationary solutions (see [251] for a review of analytic
and numerical braneworld black holes). In fact, there is a no-go theorem [252] which alleges

the exterior geometry on the brane in d > 4 cannot be static. The lack of exact solutions

155



makes identifying the specific state of the CFT; more difficult. In [113, 253], for d > 4, it was
qualitatively argued the obstruction to having static quantum black holes can be understood as
a consequence of backreaction due to Hawking effects, such that any black hole that localizes on
the brane must evaporate. However, static braneworld black holes in higher-dimensions have
been found numerically, e.g., [254, 255, 256, 257, 258, 259], and the qualitative argument was
shown to have flaws [256].

Lastly, let us make some general remarks about static black holes localized on the brane.
First, a brane with non-vanishing tension is an accelerated trajectory with respect to the bulk,
i.e., the brane does not undergo geodesic motion. Thus, a black hole which localizes on the brane
is in an accelerating frame; likewise for any observer glued to the brane. Next, a static black
hole stuck to the brane will neither eat the brane or slide off it. The reason is as follows [260]. To
be static, the brane intersects the black hole orthogonally, otherwise the black hole would grow
by eating the brane. Indeed, a black hole will grow if T;;k’k? > 0 in the background, for null
generator of the horizon k?. A black hole thus remains static when T;; k'k? = 0. Since the brane
stress tensor is proportional to the induced metric, the static condition translates to k'k; = 0,
i.e., the k* lies entirely on the brane, which occurs when the radial direction orthogonal to the
black hole is tangent to the brane. Consequently, the brane bends to remain orthogonal to the
black hole if the latter is being pulled off the brane (by, say, another black hole in the bulk).
Thus, a static black hole localized on the brane experiences a restoring force due to the tension
of the brane and does not slide off. Evaporating black holes, on the other hand, eventually slide

off the brane.
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Chapter 7

Quantum Kerr de Sitter

In this chapter we use braneworld holography to find an exact quantum-corrected rotating black
hole in dS3, a non-trivial extension of [219]. Our starting point, as in [221], is the rotating AdS,
C-metric, however, coupled to an asymptotically dS3 Randall-Sundrum brane. As a solution to
the bulk Einstein equations, we are guaranteed the brane geometry is an exact solution to the
full semi-classical theory given by Equation 6.66, in the planar limit of the CF'T, resulting in
the quantum Kerr-dS (qKdS) black hole.

An outline of the chapter is as follows. In Section 7.1 we summarily review elements of
the 4-dimensional C-metric in AdS space, the bulk solution at the basis of our braneworld
construction. Section 7.2 is primarily devoted to the geometric construction of the qKdS black
hole, where include an analysis of each of its Nariai, extremal, and ultracold limits, and com-
pute the renormalized stress-tensor of the holographic CFT. A detailed account of the horizon

thermodynamics is instead given in Section 7.3.

7.1 Elements of the AdS C-metric

The AdSs C-metric is a solution to Einstein’s equation with negative cosmological constant,

arising from a particular rescaling of the Plebanski-Demianski solution [261]:

1 2 dy? dz?
2a g2 TV F5y o

ds* = + G(x)de?| | (7.1)

with
H(y) = A+ ky? —2mAy® . G(z) =1+ ka? — 2mAz® | (7.2)
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and k = 41,0, —1 which will determine the topology of the horizon of the black hole solutions
when they exist. The parameters A and m can be thought of as acceleration and mass, respec-
tively, while A is related to the cosmological constant. Indeed, the bulk Ricci tensor satisfies
Rup = —(3/L3)gap where Ly = (AV/A+1)7! sets the scale for the bulk cosmological con-
stant. Maintaining a negative cosmological constant in the bulk requires A > —1, however, as
summarized below, various ranges of A describe different asymptotic brane geometries.

The overall factor (z — y)~2 in Equation 7.1 implies the point y = z is infinitely far away
from points y # z (the point y = x corresponds to the asymptotic AdS, geometry). A curvature
singularity is located at y = —oo, which is hidden behind one of the horizons. To maintain a
‘mostly plus’ Lorentzian signature requires G(z) > 0, restricting the range of x.

Each zero of H(y) corresponds to a Killing horizon associated with the time translation
Killing vector dy. Meanwhile, the zeros of G(x) correspond to an axis for the rotation symmetry
Dy, i.e., for €4 = 9%, then &2 ~ G(z), vanishing at a zero of G(z). For a range of values of mA

and k, there will be three distinct real zeros. Explicitly, the cubic G(z) = —2mAz3+kz?+1 =0
k
3
p = —% and ¢ = —W, such that the discriminant is A = —(4p® + 27¢%) =

—%. When A > 0, then G(x) will have three distinct real roots, while if A < 0 then

can be solved by introducing = z — & and express in depressed form, z3 + pz + ¢ = 0, with

G(z) will have one real root and two complex roots. For example, for A = 0 and k = —1, then
G(z) will have three distinct roots zp < x2 < 0 < 1 provided 0 < mA < ﬁ [219]. The three
roots to G(z), {zo,x1, 22}, each lead to a distinct conical singularity. One singularity can be

removed via

4

~P+Ap, Ap=— 7.3

where x; is one of the zeros. Once the period of ¢ has been fixed in this way, say at = x1, then
¢ cannot be readjusted to eliminate the remaining conical singularities at x = xg, z2. Thus, in

general there will be a conical singularity along the axis z = x; with deficit angle

47
= G

—Ag, (7.4)

which can be interpreted as a cosmic string with tension 7. = §/87. Note that it is this
feature which leads one to interpret the C-metric as a single or pair of accelerating black holes.

For example, for a single black hole, a cosmic string attaches at one pole in the background
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and the black hole, suspending it away from the center of the spacetime, thereby inducing
its acceleration (for a detailed analysis on the interpretation of the C-metric, see [262]). This
acceleration leads to an additional acceleration horizon, analogous to a Rindler horizon, and an
equilibrium thermodynamic description [220] (see also [263]).

We are interested in introducing a brane into the AdS, spacetime. Generally there will be
a discontinuity in the extrinsic curvature K;;[h] across the brane which, via the Israel junction
conditions (equations of motion for the brane), is related to the stress-tensor introduced by the
brane. In the four-dimensional case at hand, where the brane action is purely tensional, the
junction conditions are

AKi]’ - hl]AK% == 87TG47’hij s (75)

where AK;; = K:]r — KZ; = 2K;; and S;; = —7h;;. Therefore, the tension can be seen as a
parameter which fixes the location of the brane B. In the case of the C-metric, a natural choice
for the location of B is the surface x = 0 since it is umbilic. To see this, note that the unit
normal to the brane at z = 0 is n’, = Ae(z — y)/G(z)0%, where ¢ = +1 corresponds to the
orientation of the normal; here we take ¢ = 41 since x = 0 is a timelike hypersurface. The
non-vanishing components of K;; = V;n; obey K;; = —Ahgf), with hl(;-t) being the induced
metric along the x = 0 brane. Comparing to the Israel junction conditions we identify the

brane tension as

A
7_27TG4'

Similarly, the y = 0 hypersurface is umbilic. Indeed, with unit normal n!, = Ae(x—y)+/H (y)0},
then K;; = —Ae\/—Ah(y) where h{¥) is the induced metric at y = 0.

iy i

(7.6)

To gain some intuition for the brane construction, it is helpful to consider the simplifying
case when mA = 0. One can then move to a coordinate frame showing the geometry is locally
AdSs where the brane itself has a three-dimensional cosmological constant Az = —\ [220].
Thus, the sign of A denotes different constant curvature slicings of AdS;. There are three
distinct cases: (1) A =0, a flat slicing. In this case one must choose k = +1, where for k = —1
the coordinate ¢ is timelike everywhere; (2) —1 < A < 0, leads to a three-dimensional de Sitter
slicing. One must select ¥ = —1 to have dSs in static patch coordinates and cosmological
horizons, and (3) A > 0, an AdS; slicing where the three different values of k distinguish three
distinct slicings of AdSs: global coordinates (kK = —1), the massive BTZ black hole (k = +1),
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and the massless BTZ black hole (k = 0). The flat (A = 0) solution was studied in [219] while
the AdSs slicings were analyzed in [220].
Adding rotation

Let us now briefly review the rotating AdS; C-metric, following the conventions of [220]. The

line element is

ds” = — (xl_ ok Eify;) (dt + az?de)? — E;I:Ié’;)/)dyQ + Eé“(”;f)/)dﬁ + Z((;fz/) (dg — ay®dt)?| ,
(7.7)
with metric functions
H(y) = =X+ ky? — 2mAy® — a*y*, 3(z,y) = 1 + a’z?y? - g
G(z) =1+ kx? — 2mAz® + a® Xz . (7
As in the static case, this spacetime is obeys RAB = —3/L§§]AB with the same scale Ly. When

m # 0, there is a curvature singularity when 1/y?%(z,y) = 0, i.e., when both y — —oo and
x = 0, which may be recognized as the standard ring singularity familiar to Kerr black holes.

The zeros x; of G(x) now correspond to fixed orbits of the rotational Killing vector
€ =0y — az?d; . (7.9)

Indeed, the vector 8(’; no longer has vanishing norm at = = x;, while £ does. Avoiding a conical
defect at, say, * = x1 requires one identify points along the integral curves of this Killing
vector with an appropriate period, amounting to coordinate transformation £ = ¢+ aw%gb, where
angular variable ¢ has the same period as Equation 7.3. To see this, expand the relevant portion
of the metric in Equation 7.7 near a zero of G(z). Without loss of generality, consider the slice

y = 0, where, up to the conformal factor

dz?

2, 2dp? + ——————
ds® ~ )\(dt+a$zd¢) +G/($i)($_xi)

+ G () (x — z;)do? . (7.10)

Aside from the first term, the (z, ¢) sector takes the same form as in the non-rotating case, from
which the periodicity of ¢ is given by Equation 7.3. Including rotation, however, this would not

be the correct periodicity for ¢. The situation is remedied with the coordinate transformation
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t = t+ax?¢, such that, at x = z;, then dt = (dt+ax?d¢). Similarly, at the roots y; of H(y), the
Killing vector ¢ = 9; + ay?d,, becomes null, defining horizons with angular velocity Q = ay?.

The brane is again placed at © = 0 since this surface remains umbilic. Indeed, for space-
like unit normal n’, = A(z — y)\/G(x)/S(z,y)0%, the extrinsic curvature again satisfies K;; =
—Ahg) at z = 0. Similarly, the y = 0 hypersurface, with unit normal nz = Ae(z—y) \/WB;,
obeys K;; = (—Ae\/—i)\)h%’).

Due to the periodicity in ¢, notice that along the orbit £ the coordinate ¢ is shifted: via
t=t—axi¢p and t ~ ¢, then t ~ t — ax?A¢p. Consequently, this introduces a rotation of frames
in the asymptotic limit; namely, introducing radial coordinate p = —y~! and performing the
coordinate transformation (t,y, ) — (¢, p, ¢), the hzs component of the brane metric at z = 0
will grow as p? and not as a constant [220]. To remove this undesired asymptotic growth,
one further shifts ¢ = ¢ + C? for a judiciously chosen constant to remove the p? growth in the
coordinate frame (£, p, ¢~)) To place the brane metric in more canonically normalized coordinates,

one further rescales coordinates ¢ and gzNS and redefines the radial coordinate p.

7.2 Bulk and brane geometry

7.2.1 The qSdS black hole

Let’s begin by reviewing quickly the static quantum-corrected Schwarzschild-de Sitter black
hole, first derived in [264].
Consider the four-dimensional static AdS; C-metric

€2

2 _
W= Ty

7,2 1.2
—H(r)dt* + g(r) + 7 ( g(x) + G(:x)dng)] , (7.11)

with metric functions H(r) and G(z)

2
He)=1- 2 " Ga)=1-o . (7.12)
R r

Note, we have changed convention for convenience. Now, our conventions primarily follow [221],
however, with kK = +1 and set €§ = —Rg such that the brane we eventually introduce is a dSs
brane of radius R3. The cases k = 0 or kK = —1 exclude the possibility of a dSs brane, since the

roots of H(r) do not represent a cosmological horizon in those cases. To move from the form
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of the C-metric in Equation 7.1 to the one in Equation 7.11, one identifies

0 1 —/
A=~ k":_’{'a 2mA:/JJ> yZT

AZ@? E’

and further rescale ¢t — t/¢. The real, positive parameter ¢ is equal to the (inverse) acceleration.
Meanwhile, p > 0 is interpreted to be a mass parameter of the four-dimensional black hole.

The AdS4 length scale Ly is related to the parameters Rg and £ via

E 2
L?=107? [1 - (R)
3

For L3 > 0 such that the bulk cosmological constant is negative, we require R3 > £2.

(7.13)

Following the construction of [219, 220], a Randall-Sundrum brane with tension 7 and action

given by Equation 6.63) is placed at the umbilic = 0 surface, resulting in a tension

B 1
T T oGl

(7.14)

As explained in Section 7.1, the tension may be read off from the Israel junction conditions
which determine the location of the brane, such that tuning the tension corresponds to changing
the position of the brane. Further, recall that the brane effectively cuts off the bulk space. For
a dS braneworld, we keep only the z > 0 portion of the bulk, eliminating all but one of the
roots of G(x), which we denote as x1. This root corresponds to an axis for the rotational Killing

symmetry Oy resulting in a conical singularity at x = x1, and is removed via the identification

47 4y
pry pry . 7.15
G'(z1)] 3 —af (7.15)

p~9+Agp, Ag

To complete the space, we perform surgery by cutting the bulk at « = 0, keeping only the
range 0 < x < z1, where there are no conical singularities, and glue a second copy along B to
complete the space. See Figure 7.1 for an illustration.

The geometry induced on the brane at x = 0 will result in a metric in (¢, 7, ¢)-coordinates

which has a conical deficit angle due to the identification in Equation 7.15. To respect regularity

in the bulk, one thus rescales coordinates (t,r,¢) — (£,7,¢), where t = nf, r = n~'F, and
® = n¢, and 2 = Ag, such that ¢ is periodic in 27, and results in the geometry [264]
LF(M 72
dsisqs = —H(F)dE* + H™'(7)dr® + 7*di* ,  H(F) = 1 —8G3M — i ) _ % . (7.16)
3
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Figure 7.1: Left: Bulk AdS; with a de Sitters brane. The brane is represented as a (magenta)
hyperboloid. The bulk region up to the brane (z < 0, dashed magenta region) is excluded. To complete
the construction, we glue a second copy along the two-sided brane. Cosmological horizons on the dS
brane corresponds to the bulk acceleration horizons intersecting the brane (red dashed line). Right:
Constant t-time slice of a single AdS, cylinder with a de Sitter brane (thick red circle) containing black
holes. The coordinates cover only half of the disk, containing only a single black hole and cosmological

horizon, where the other half is obtained via an appropriate analytic continuation.

This is the three-dimensional quantum Schwarzschild-de Sitter black hole. Depending on the
size of /F'(M), there exist two positive roots to H(7) = 0, denoted 74 and 7, the black hole
and cosmological horizon, respectively. From the bulk perspective, the cosmological horizon on
the brane arises due to the brane intersecting the acceleration horizon of the bulk black hole.
Moreover, here the mass M of the brane black hole and the form factor F'(M) are

433'%
(3—a7)?’

8(1 —3)

8GaM =1 — A\ ’
s 322

F(M) = (7.17)

with renormalized Newton’s constant Gz = L4sG3/¢. To arrive at the expression for F'(M), the
parameter y is treated as being “derived” from G(x1) = 0, such that x; € (0, 1], where z; =1
coincides with p = 0 [221].

We can think of the metric in Equation 7.16 as a semi-classical black hole because it is an

exact solution to the holographically induced theory of gravity

1
=
167G

2
/dga:\/—h [R 7 L3 (jo - :R2> + ] + Icpr (7.18)
B 3

163



with semi-classical equations of motion

8nGs(T5" ") = Gij + o (7.19)

-9 1 1 13 1
+ 4R Ry, — 1 1B = ORyj + ViV, R+ Shy; (832 — 3R}, + 253) + .

The CFT stress-energy tensor sources the effective three-dimensional gravity theory such that

backreaction is accounted for by <TgFT

). Here we work in the limit where the effective three-
dimensional theory obeys Ly < Ls, or, equivalently, £ ~ L4 such that ¢/Rs is taken to be a
small expansion parameter. Thus, the higher curvature terms in the action are multiplied by
higher powers of ¢, where, from the brane perspective, £ captures the strength of backreaction.
Hence, the higher-derivative corrections can be understood as a series of corrections due to
semi-classical backreaction. In the limit of small backreaction, moreover, L2 ~ R2 while the
central charge ¢ = Li /G4 of the CFTj satisfies 2¢Gs = Ly ~ {. Therefore, for fixed ¢, gravity
becomes weak on the brane as £ — 0 such that there is no backreaction due to the CFT. Lastly,
¢ = 2cLp, where Lp = G3 is the Planck length (since we set & = 1). The limit of vanishing
backreaction looks singular from the bulk perspective, since keeping R3 finite would then require
L, — 0. Instead take the limit Ly — 0 while rescaling the bulk metric by a factor L3, then the
brane is pushed to the boundary and gravitational dynamics on the brane is turned off, while
still keeping a non-trivial state of the non-backreacting CFT3 [264].

Returning to the qSdS geometry in Equation 7.16, we see that the ¢F'(M)/7 contribution
characterizes quantum-corrections to the classical SdSg solution. Since ¢ ~ 2cLp and ¢ > 1,
as required by holography, the gSdS is not a Planck-sized black hole, but rather has a horizon
much larger than the Planck length. Further, the renormalized Newton’s constant G3 given by
Equation 7.17 takes into account the modification of the definition of mass due to the higher
curvature corrections [221]. Finally, we emphasize that analyzing the semi-classical Einstein’s
equations for a free conformally coupled scalar results in the metric in Equation 7.16 to leading
order in Lp [264]. In principle, any correction (even if Planckian) is significant with respect
to the background geometry, as it corresponds to generating a bona-fide horizon, rather than
expanding an existing geometric feature. However, the corrections need to be super-Planckian
in order for them to be meaningful, and not be relevant only at scales where the semiclassical

approximation breaks down in the first place — with quantum gravity effects expected to play

164



a key role instead.

7.2.2 The qKdS black hole

We now describe the main novel result of this chapter, the quantum Kerr-de Sitter black hole.
Analogous to the rotating quantum BTZ black hole [221], our starting point is the rotating

AdS, C-metric, describing accelerating Kerr-AdSy black holes and has the line element

H(r) Y b G(z) a  \2
2 2f 2332 2 2 2
ds® = w < 3 e = ardg) & psdr® 4 | prsda? + = (d¢+—r2dt> (7.20)
with metric functions
r? ol a’ 2 3 a4
H(’"):l_Rg_r+r2’ Glx)=1-2z _Mx_R§$ , (7.21)
02 a2
2 _ _

Here a is a parameter encoding the rotation of the bulk black hole (the angular momentum per
unit mass), and in the limit a = 0 we recover the static C-metric in Equation 7.11. Evaluating
the bulk Kretschmann scalar invariant R“deRabcd, there is a curvature singularity when 2% =
r2 4+ a?2? = 0, i.e., when both » = 0 and z = 0. This is the familiar ring singularity in Kerr
black holes. This is clarified when one moves to coordinates where x = cosf, such that the
singularity lies at the § = 7/2 edge of the r = 0 disk.

Despite rotation, the x = 0 hypersurface remains umbilic, obeying K;; = —E‘lhij, and is

thus a natural location to place the de Sitter brane. The geometry on the brane is
2
ds?|y—0 = —H(r)dt® + H(r)dr? + r? (d¢> + %dt) . (7.23)
r

Since the rotating C-metric in Equation 7.20 is a solution to the bulk Einstein equations,
we are guaranteed the brane geometry is a solution to the induced theory of gravity given
by Equation 6.66. However, at this stage it would be naive to interpret this solution as the
quantum Kerr-dSs black hole. This is because we have not yet accounted for bulk regularity
conditions, which will affect more than just the periodicity of the angular variable ¢. In fact,
we know the ‘naive metric’ in Equation 7.23 does not capture all of the correct features because
the ring singularity lives on the brane, yet the above metric does not have a ring singularity
at r = 0 but rather a standard curvature singularity. We will see momentarily how the ring

singularity makes an appearance.

165



Bulk regularity

Notice that the Killing vector dg4 no longer has vanishing norm at a zero x; of G(x). Rather,
the Killing vector
¢" =0} + ax}oy (7.24)

obeys ¢2|;, = 0. Avoiding conical defects at x = x; requires us to identify points along the
integral curves of the vector given by Equation 7.24 with an appropriate period. To determine
the correct periodicity, consider the rotating C-metric in Equation 7.20 near a zero z = x;
such that G(z) ~ G'(x;)(z — z;), as explained in Section 7.1. Removal of a conical singularity
at ¥ = x; requires one simultaneously perform the coordinate transformation ¢ = t — ax?¢
together with the same periodicity condition on ¢ as Equation 7.15. Specifically, singling out

the smallest positive root x = 1, then

_Ar 4y
p~d+Ag, A¢_IG@MI_3—x%+¥’ (7.25)

where to arrive to the second equality we recast the parameter p in terms of z;

1-— x% — a2 a %
=—  a=—. 7.26
Thus, identifying points along the orbits of £” are made on surfaces of constant
t=t—azx2¢. (7.27)

The remaining zeros x; # 1 are dealt with by cutting off the bulk spacetime at x = 0, and
gluing to a second region such that the complete space is comprised of a bulk region with
x € [0, 21], leaving a space which is free of conical singularities at x = x;.

Returning to the naive geometry at x = 0 given by Equation 7.23, consider the asymptotic
limit r — co. The metric is asymptotic to ‘rotating dSs’, where the dtd¢ component grows like a
constant. Unfortunately, the coordinates are not canonically normalized due to the periodicity
in ¢ in Equation 7.25. In fact, since points along orbits of Equation 7.24 are identified, the
periodicity in ¢ as Equation 7.25 returns one to a different point in time ¢: from Equation 7.27,
we see that with # ~ £ then t ~ t+27nax?, where n = A¢/27. This means we cannot just rescale
coordinates (t,r,¢) — (f,7,¢) as done in the static case for Equation 7.16. Additionally, the

periodicity alters the asymptotic form of the metric such that the dtd¢ grows as r2, which would
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seem to imply a diverging angular momentum. To see this, perform the following coordinate
transformation in the brane geometry given by Equation 7.23 t — ¢ + aac%& and ¢ — ¢. Then,
it is straightforward to show for large r the hgq; component of the geometry diverges as 2.

We can remedy the situation by changing coordinates (¢, ¢) to (%, qg) where t =+ aa:%g?) and
® = ¢ + C1T for some constant C. In the asymptotic limit, the £ — ¢ component of the naive
brane metric in Equation 7.23 will have go as

2
hiz = <c + ‘g;) r? 4 (a — az? + Ca2?) + O(1/r) . (7.28)
3

Judiciously, we choose C = —ax?/R% = —a/R3 to eliminate the r? divergence. Making this
choice deals with the undesired asymptotic growth, however, qg is still not periodic in 27. This

is now easily resolved by a simple rescaling, t = it and quS = n¢, such that the transformation

(=t +arad), o=n(6-pt) . (7.29)
3
puts the brane geometry in a more canonical form. Inverting the transformation in Equa-
tion 7.29,
Fe L (4 GRsp), = — <¢+ a t) (7.30)
= — Qa 5 == = —— 5 .
n(1+3a2) ’ n(1+a%) \" " R

we see the Killing vectors 0y and 0y transform as

o=— (o4 Lo, 0 —¥(87—d}2 ) (7.31)

Consequently, now the rotational Killing vector in Equation 7.24 is ¢* = 77*18(];.
With the coordinate change in Equation 7.29, the brane metric does not quite have the
canonical asymptotic form of a rotating de Sitter black hole. We still need to redefine the

radial coordinate r. Following [221], let

P Y _ Rsan 5 2aR3\/2—af
T =TT TsT T 2-r=—0 55 - (7.32)
(1+a2)n T 3—xi+a

Altogether, the geometry on the brane in the canonically normalized coordinates (£, 7, @) is

4a? 2 uln?
ds? oo = — (P (1 -8+ = ) — = — dt?
A== (o (120 ) - -

~9 -2 ~oN2 4 2~2 2 92 4\ —1
N <772 (1 a2y 4Cl2> B % _pe( Jrle )*n'r " R3a 6‘2 Ty ) P (7.33)
x] R3 T T

~2 12,2
n (;2 N W) A + Ryapwin? (1 n ;;) (dodi + dido)
1

where we have kept both r and 7 when convenient.
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7.2.3 Black hole on the brane

Let us now scrutinize the brane geometry in Equation 7.33. First, we identify the mass M as

4a2> L 42?3 — a* (23 — 4)]

8GsM =1 — 2<1—a2+ . ,
3 g z? (3 — 22 + a2)2

(7.34)

where Gz = L4G3/¢ is the ‘renormalized’ three-dimensional Newton’s constant [221]. Since
the brane theory is generally three-dimensional Finstein-de Sitter gravity plus higher-derivative
corrections, we do not have a generic Komar-like mass integral in which we compute M. Rather,
here we have identified the mass as the subleading constant term in hz, as done in Einstein-de
Sitter gravity, and used G3 to encompass all of the higher-derivative corrections entering at
order £2 in the brane action in Equation 7.18 [265]. The expression is not terribly transparent,
but the mass of the black hole depends implicitly, via Z1, on u. As we will see later, this is
exactly the parameter that controls the expectation value of the backreacting energy of the
quantum field. Similarly, we have identified the three-dimensional angular momentum J to be

4Rza(x? +a? — 1)
(3—xf+a?)? 7

4G3J = —Rzauxin® = (7.35)

where again the renormalized Newton’s constant plays the role of accounting for higher-derivative
corrections to the angular momentum. Importantly, notice M and J depend on a2 and z?%, and
the parameter ¢ does not make an explicit appearance.

We emphasize, at this stage, the mass M given by Equation 7.34 and angular momentum
J in Equation 7.35 are identifications. Justification for this, in part, comes from the fact that
these quantities satisfy a first law of thermodynamics, as we demonstrate in the next section.
Essentially, as argued in [113] the mass of the black hole on the brane is identified as the mass
of the bulk black hole intersecting the brane. A feature distinguishing AdS and dS braneworld
constructions is how the mass Equation 7.34 coincides with a conserved charge. This is because
asymptotically dS spacetimes do not have a boundary which makes providing an invariant
notion of conserved charges more difficult. From the brane perspective, one could compute
conserved charges, for example, by calculating the Brown-York quasi-local stress tensor on
slices at past and future infinity [266]. The mass found should then coincide with the mass of
the bulk black hole intersecting the brane at I*. In practice this is difficult, however, because

the theory on the brane is a complicated higher-order theory of gravity, a context in which
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defining conserved charges is also a subtle matter (AdS braneworld models encounter the same
subtlety in this regard). Alternatively, one can use the method developed in [267], which does
not require entering an asymptotic region. It would be worthwhile to explore this question and
verify the mass identified in the first law coincides with an invariant conserved charge.

With the substitutions given by Equation 7.34 and Equation 7.35, the brane geometry in

Equation 7.33 takes the form

=2 £2
dSéKdS:—<1—893M—T—HTZ >d£2

R% r
-2 4G.J)2 o(1 + a2)2n? -1
+<1—8Q3M—;2+(g;’2) _ 1A ;ﬁ“) dr? (7.36)
3

+ <r2 + ‘W) dd? — 4GsJ (1 + E) (dpdt + dtde) .
r T

Since the metric in Equation 7.36 is an exact solution to the full semi-classical theory of gravity
on the brane, we refer to the three-dimensional spacetime as the quantum Kerr-dS3 black hole
(qKdS). We say ‘black hole’ because, as we describe below, this geometry possesses both an
inner and outer black hole horizon, shrouding a ring singularity, and a cosmological horizon.
We say ‘quantum’ because it includes all orders of semi-classical backreaction due to the CFT,
where terms in the metric proportional to pf are understood to be quantum corrections to
the classical Kerr-dSs conical defect. Justification of this terminology will be given when we
compute the renormalized CFT stress-tensor <TSFT>

Before we analyze the brane geometry given by Equation 7.36 in more detail, there are a
few special limits to consider. First, clearly, when the rotation a — 0, then J = 0 and the
geometry reduces to the static metric in Equation 7.16, the quantum Schwarzschild-de Sitter
black hole [219]. Next, in the limit of vanishing backreaction ¢ — 0, in which the gravitational
effects of the cutoff CFT are suppressed (where G3 — G3), the metric in Equation 7.36 takes
the form of the classical Kerr-dSs conical defect spacetime (see Section 6.1.1). Thirdly, when
the parameter p in Equation 7.26 vanishes, i.e., ;1 = v/1 — @2, then both M = J = 0, resulting
in the empty dS3 geometry. The mass M will also be zero when z1 = v/9 — @2. When this is
the case, J # 0 and pu # 0,

320 R; 512aR;
4 = = .
9T = G aap M @ op@ 32 (7.37)

and we can think of the brane geometry as quantum rotating dSs.
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Horizons and closed timelike curves

While the metric given by Equation 7.36 is in the correct canonically normalized coordinates
(t,7,¢), in what follows we will perform calculations in the naive background (¢, r, ¢) of Equa-
tion 7.23, and perform the appropriate coordinate transformation. This is largely done for
convenience, but also because both metrics share nearly all of the same qualitative features.
In the static case, roots of H(r) correspond to the Killing horizons of the Killing vector 0.
With rotation, the Killing vector
¢ =0 — =50, (7.38)

2

becomes null at roots r; of H(r). Define the function Q(r) = r?H(r). Since Q(r) is a quartic
polynomial in r, it will generally have either four, two, or zero real roots. Here we focus on the
case when there are four real roots, which we will see later enforces conditions on the physical
parameters a and p. The three positive roots to Q(r) are the cosmological horizon r., the outer
black hole horizon 7 and inner black hole horizon r_, obeying r— < r; < r.. The fourth root,
Ty, is negative and resides behind the singularity at » = 0. Using H(r.) = 0, and H(r+) = 0,

we can express

R% :r2+ri+rcr++r_(rc+r++r_),
e et et ) )

P2+ 12 fray 4 (retry ) (7.39)
9 rerar—(re+ry +r_)

N rg+ri+rcr++r,(rc+r++r,) '

The blackening factor H(r) factorizes as

1
H(r) = g re = 1)(r = 7)(r = ) e ) (7.40)
3
The limit — — 0 coincides with ¢ = 0, while r, = r_ = 0 corresponds to p — 0, resulting in

the Kerr-dSs geometry with a single cosmological horizon. Let us point out now that, whilst
the roots r4 are strictly “quantum” — in the sense that they would not be at all present if
the backreaction of the quantum field was not accounted for — the location of the other two
horizons as well suffers a correction due to the quantum stress tensor. Moreover, the four roots
need not be all distinct. When they coincide, we obtain interesting limiting geometries — which

we further explore in Section 7.2.4.
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Since the black hole is stationary, the positive roots r; to H(r) correspond to rotating

horizons with rotation €2;,
2,.2 2
a (ziry — R3)

Q= —-——+——2=, 741
"7 ORZ (r? + a22?) (7.41)
where we used the transformations in Equation 7.31, to express ¢? and define ¢°
1 ~2
ULRAD WP (7.42)

7b:7
)

7

Further, relative to ¢, the surface gravity x; associated with each horizon r; is given by

n(l+a%) 1
|H' (r;)| = (r2 - a2x2) SR |R§u£ri - 27"2L - 2a2R§| , (7.43)
i 1 31

n(1+ a?) ﬁ
(r7 + a?a) 2

P =

where we used the definition (*V,(¢ = k(¢. Explicitly,

_ n(1+ a?)
BT (r2 + a2a?) (re =r4)(re = r-)(ry +7—+2re) ,
(1 +a?)
TR (2 g e T e )t 2 (7.44)
1 ~2
K_ = 77( +a )

TR (T g argd) e e o) e 2.

Notice the cosmological horizon surface gravity x. vanishes when r. = r4 or r. = r_, and
similarly for the other surface gravities. We explore these extremal limits momentarily. When
r_ — 0, i.e., vanishing rotation, we recover the surface gravities of the cosmological horizon
and black hole horizon of the qSdS black hole [219]. Additionally, in the limit of vanishing
backreaction, then r4+ — 0 such that k+ — 0.

As mentioned previously, in the naive coordinates of Equation 7.23, a computation of the
Kretschmann scalar reveals a curvature singularity at » = 0. In the canonically normalized
coordinates of Equation 7.36, » = 0 corresponds 7 = r,, corresponding to a ring singularity,
and is endowed from the bulk black hole solution. Moreover, near the ring singularity there
exists the possibility of closed timelike curves. Relative to the canonically normalized metric in
Equation 7.36, the norm of the axial Killing vector 8¢; is

72+ NE@QRgnZ ‘

r
Thus, for sufficiently small and negative r, the vector 8¢; becomes timelike, the orbits of which
are closed curves around the rotation axis. However, unlike the rotating qBTZ black hole, these

closed timelike curves do not become naked.
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Figure 7.2: Penrose diagram of a neutral quantum Kerr black hole in dS3. Shown here is the global
structure with periodic identifications made along constant ¢ hypersurfaces. The diagram has infinite

extent in the vertical directions while the dashed edges are identified.

When all of the roots to Q(r) are distinct, then standard methods [268] lead to a maximal
extension of the quantum Kerr-dSs3 black hole. Generally, the resulting conformal diagram is in-
finite in extent and is nearly identical to the Kruskal extension of the classical four-dimensional
Kerr-dS black hole. The aforementioned closed timelike curves may be eliminated by an appro-
priate periodic identification [269], such that constant ¢ hypersurfaces are closed and span two
black hole regions with opposite spin, cutting through intersections of r» = r. and r = r; (see

Figure 7.2 for a diagram).

Ergoregions

As with classical Kerr-de Sitter spacetimes, the qKdS black hole has a stationary limit surface
and two ergoregions associated with the outer black hole and cosmological horizons. Explicitly,
the time-translation Killing vector 9, in the naive metric has the norm N

a?

N=—H(r)+ o (7.46)
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Clearly, at the outer and cosmological horizons, where H = 0, then 0, is spacelike. The locus of
points where V' = 0 yields a stationary limit surface, satisfying r(R3 — r?) = R3ul. Since there
exist regions in between the outer and cosmological horizons where 9; is timelike, there are two
ergoregions, where an observer is forced to move in the direction of rotation of the outer black
hole horizon or cosmological horizon (the black hole and cosmological ergoregions, respectively).
With the appearance of ergoregions, one can in principle examine the Penrose process of energy
extraction in the qKdS solution in morally the same way as a classical four-dimensional Kerr-de
Sitter black hole (see, e.g., [270]). At least for small backreaction, it is expected the Penrose

process in the cosmological ergoregion is not possible.

7.2.4 Extremal, Nariai, ultracold, and lukewarm limits

As with the four-dimensional Kerr-de Sitter black hole, the quantum Kerr-dS3 has a number of
limiting geometries. Specifically, (i) extremal or ‘cold’ limit, where . = r_; (ii) rotating Nariai
limit, where r. = r; (iii) the ‘ultacold’ limit where r. = 4 = r_, and (iv) the ‘lukewarm’ limit,
where the surface gravities k. = k4. Below we summarize each of these limiting geometries
and briefly explore their features, leaving the details to Appendix C. Our analysis primarily
follows [269], and for simplicity, we work with the naive metric (¢,7, ¢) of Equation 7.23 except

when stated otherwise.

Extremal black hole: r; =r_

The extremal black hole corresponds to when the outer and inner black hole horizons coincide.
In this limit the surface gravity of the outer horizon xy = 0, and, correspondingly the Hawking
temperature T of the black hole vanishes, i.e., the black hole is ‘cold’. Moreover, parameters
a? and pf may be cast as

47‘1
RZ -~

34
a?=r? "+ wl=2ry —

In the extremal limit the global structure of the spacetime changes because now the (double)
black hole horizon moves to an infinite proper distance away from all other portions of the

geometry, such that the black hole interior is inaccessible from the rest of the spacetime.
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In the near horizon limit of extremal qKdS, we can no longer express the metric in co-
ordinates (t,7,¢) as they become singular. Rather, we perform a coordinate transformation

analogous to [271, 272]

r
T:T++>\p7 t:X) QSZSO_T%_A? (748)
where upon taking A — 0 we find
2 _ oo dp? 2 a2
dsz, =T | —p“d7* + 2 + 75 (dp + kpd7)” | (7.49)
with
r2 2aR?
T = + k= ks B . 7.50
1-6r2/R3’ r(R3 —612) (7.50)

This is the near horizon extremal Kerr (NHEK) geometry for the quantum-corrected Kerr-dSs.
Formally it has the same structure as the NHEK region of four-dimensional Kerr-(A)dS space-
times, and has the form of a fibered product of AdSs and the circle. As such, following [272],
the isometry group is SL(2,R) x U(1).

Notice from Equation 7.47 that a = 0 when 7, = 0 or r, = R3/+/3, which, respectively,
corresponds to puf = 0 or ul = 2R3/3+/3. The latter is simply the Nariai limit of the quantum

Schwarzschild-de Sitter black hole [219], which we explore in more detail below.

Rotating Nariai black hole: r. =1

The Nariai solution occurs when the cosmological and outer black hole horizons coincide 7. =
r+ =rN. Then
> TR p2 2 2rN o 2
a = ﬁ(RzJ, —3rx), (W)N = ﬁ(Rzﬂ, —2ry) - (7.51)
3 3
Notice when a = 0 we recover ry = R3/v/3 and (uf)x = 2R3/3+/3, the Nariai limit of the static
Schwarzschild-de Sitter black hole. Physically, the Nariai black hole is the largest black hole
which may fit inside the cosmological horizon, saturating at uyn. Moreover, the rotating Nariai
black hole is generally larger than the static Nariai solution, analogous to how the charged
Nariai black hole is larger than the neutral geometry.
The blackening factor H(r) vanishes when r = ry making the (¢,7,¢) coordinate system
incompatible in describing the Nariai geometry. Thus, introduce coordinates [269]
s
UL « SV (75
€ N3
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Figure 7.3: Penrose diagram of the Nariai qKdS black hole. The black hole and cosmological
horizons are located at p = —1 and p = 1, respectively, and are in thermal equilibrium at a non-
zero temperature. Clearly there is a finite proper distance between the two horizons. Future
and past infinity Z* are located at p = oo, while the past and future black hole singularities

correspond to p = —oo. The left and right sides of the diagram are identified.

and send € — 0 such that the naive geometry in Equation 7.23 becomes

d 2
ds =T <—(1 — p*)d7? + (1_ppg)> + 1% (dg + kpd?)? (7.53)
where
R3r} 2R3
_ 237'N27 k= — ‘2‘ 5. (7.54)
6ry — R rn(6ry — R3)

Hence, the Nariai limit of the qKdS black hole has the product structure of dSsy fibered over
a circle, written here in static patch coordinates, and has the isometry group U(1) x SL(2,R).
When a = 0, then I' = Rg/S, leading to the non-rotating Nariai metric [273, 274, 275] with
product geometry dSs x Sa. A static patch observer is restricted to the region p € (—1,1),
where p = —1 corresponds to the black hole horizon and p = +1 the cosmological horizon, at a
finite proper distance apart. To draw the Penrose diagram (see Figure 7.3) it is useful to switch

to global coordinates [276]

1
tan(n/2) = tanh <2 sinhfl(MSinh %))

cos ) = p(cosh? 7 — p? sinh? %)*1/2 (7.55)

sin(n + 1/))) 7

= +ﬁlo <
TP it )

2
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such that

—dn? + dip?
dsy =T (W) + 12 (dx + k tanndi)? (7.56)

where ¢ ~ 1 + 27 and n € (—7/2,7/2) cover the all of the dSs portion.

Naively, when r. = r4 the surface gravities given by Equation 7.43 of the cosmological
and black hole horizons vanish, k. = k4 = 0. However, in the Nariai geometry given by
Equation 7.53, the two horizons are in thermal equilibrium at a non-zero temperature 7. We

will return to this in Section 7.3.

Ultracold black hole: r. =7, =r_

The ultracold black hole is the limit when all of the horizons coincide, namely, r. = ry =r_ =
Tue- The form of the metric can be found directly from the Nariai geometry in Equation 7.53.

Since the Nariai geometry becomes singular when ry = r_, the coordinates (p,7) require an

2ryc — 0 R3 R3ryc
— ./ X T=y— I 7.57
P E3 ’ 27”110 — 5 4 ’ ( )

where 7 = I'T, and subsequently take the limit 6 — 2r,.. The resulting geometry is

appropriate rescaling

R3rye
4

20X 2
ds?, = (—dT? + dX?) + 12, <dg0— ¢ dT> . (7.58)

3
Tac

This geometry is of the form of a fibered product of two-dimensional Minkowski space over a
circle. Via an appropriate coordinate transformation (see [269]), the ultracold solution can also
be expressed as a fibered product of two-dimensional Rindler space and a circle. In the limit

of vanishing rotation there is no ultracold solution, but rather a static Nariai black hole.

Lukewarm black hole: . = k4

As with all Kerr-de Sitter black holes, the quantum Kerr-dSs has a lukewarm limit. This
occurs when the surface gravities of the cosmological and outer black hole horizons coincide
at a value different from the surface gravity of the Nariai black hole. Notably, the geometry
is non-singular in (¢, r, ¢) coordinates. Thermodynamically speaking, this spacetime is another

example of where the black hole and cosmological horizon are in thermal equilibrium. We will
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return to this limit in Section 7.3, however, in Appendix C we find its limiting form in the naive

brane geometry.

Before moving on, we point out that the special limits of the quantum Kerr-dS3 black hole
has qualitatively similar features to dSs black hole solutions to topologically massive gravity,
cf. [277, 278, 279]. Indeed, the asymptotically warped dSs black hole (obtained from discrete
global identifications of warped dS3) has a Nariai limit whose U (1) x U(1) isometry is enhanced
to a SL(2,R) x U(1) isometry group. It would be interesting to understand the relation between

quantum dSj3 black holes and warped dSs black holes in more detail.

7.2.5 Holographic conformal matter stress-tensor

We have been referring to the geometry on the brane given by Equation 7.36 as a quantum
black hole since, via the holographic dictionary, it is a solution to the semi-classical equations
of motion i Equation 7.19 to all orders in backreaction. Let us now justify this claim and solve
for the expectation value of the CFT stress-energy tensor (7Tj;) sourcing the black hole.
Following [221], we decompose (le> = (T@)o + €2<T§->2 + ... in increasing powers of (2.
Specifically, the leading order contribution is
. 1 2
8nG3(T)o = R'; — 5(51]- <R — R%) , (7.59)

while the O(¢£?) contribution is

. . . 9 - 1_.
87TG3<T3>2 = 4RZkRjk; — Dle — ZRsz + ZVZVJR
13 ) ) (7.60)

1 7 2 2 1
5 22 _ 0OR — —
+25]<8R 3REy+ 50R — 55

It proves is more computationally convenient to determine (7;;) in the naive metric of Equa-
tion 7.23 and then transform into the (,7, ¢) than working directly with the metric in Equa-
tion 7.36. Thus, in the naive background we find the only non-vanishing components of the

stress-tensor are

1 1w

Tt — TT = —— T¢ = 3
(T = (Th)o = 5T = 15573 - (7.61)
1 3upla |

T9)o = —
(Tt)o 167Gs 5
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and, for completeness,

¢
(T, = _m [90a2R2 — 117" + R2r(18r — 19u0)] |
3
. ¢
(T7)g = _W [r* + 30a2R3 + R3r(6r — Tul)]
3
¢
(T%)2 = _W [10r* — 120a®R% — R3r(24r — 29p0)] (7.62)
3
3aul
i — —
(To)2 = 2mrGard
3apul
(T9)y = O [23r* — 70a2R2 — R2r(30r — 32u¢)]

327G R0

Notice that while (T%)g = 0, as one would expect for a CFT stress-tensor, we see (T%)y =
—3(ul)?/32mrG3rS. A non-termminating trace at higher order powers is a consequence of the
fact that the CFT on the brane has an ultraviolet cutoff. Indeed, the Weyl anomaly (and hence
the sporious trace at the quantum level for CF'Ts) is absent in odd space-time dimensions [280],
meaning that if a non-zero contribution to the trace appears must have its origin in an explicit
breaking of the conformal symmetry. Such a breaking is a consequence of the IR cutoff in
the bulk (the brane that cuts AdS space), which is dual to a UV cutoff in the CFT on brane
itself [113].

Transforming to the (,7, ) coordinates

' 1 0 —aR3
= AR = oz’ 1 ~
7 1 AT . — - - 1+a2
<T > - AzAj<T]> ) A] = O 77(1 T C~L2) 0 r P 0 y (7'63)
—E 0 1

we find the leading order contribution to the stress-tensor is

£ e o | 3a°R}
T = _

7 e
Ty = —
(Tr)o 167G3r3 ’

6 pl o 3a’R3
T%)o = — _

i 3ulaRs a’R32
(T%)o = " 2,

o7 T 16mGs(1 + a)r3 232

3 3ula R?
T?) = 1— =3
(TEdo 16wG3(1 + a?)Rsr3 < x%r2> ’
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where recall r is given in Equation 7.32. In what follows it suffices to only study the stress-
tensor to this order and therefore we do not include the cumbersome expressions of (T%> at
higher orders in /. Notice these components are equivalent to the stress-tensor of the CFT in
the rotating quantum BTZ black hole upon the simultaneous Wick rotations ¢35 — ¢R3 and
a — 1da.

For practical purposes, we can view the black hole as being characterized by R3,x2,a and
£. Notably, the mass M in Equation 7.34 and angular momentum J given by Equation 7.35 do
not explicitly depend on ¢, they only depend on ¢ through the renormalized Newton’s constant
Gs. Moreover, at least with respect to the leading order components of the stress-tensor in
Equation 7.64, the parameter ¢ only appears in the overall prefactor. Combining these two
observations indicates (Tij)o depends on backreaction only through Gs. This is no longer the
case at higher orders, however, as can be gleaned from the O(¢2) contributions in Equation 7.62.

In the static case, the quantum SdS black hole given by Equation 7.16, the dependence
of the stress-tensor on the mass was entirely captured by a single function F'(M) given by

Equation 7.17 [219],
- 1 (F(M)
TZ— quS —
(5} 167G 73

diag(1,1,-2) . (7.65)

Unfortunately this is not possible when rotation is included: the dependence of the stress-tensor
on M and J cannot be characterized solely by a single function F(M, J). However, as in [221],
we instead identify F'(M,J) with the leading contribution at large 7. Precisely, consider <T€—>0
at large 7,

_ g — B o
<1—g>0 = m;LW 1 + a2773(1 _— 20,2) —|— O(T’ 5) s (766)

where we used r &~ 7/v/1 + a?n. We thus define
8v1 + a2(1 — 2a?)

(3—a}+a?)3

F(M,J) = V1 +a2(1—2a°) = (1—22 —a?), (7.67)

such that for large 7
0o L tF(M,J)
- 167G 7 ’

(7.68)

and similarly for the other components of the stress-tensor in Equation 7.64. Notice F(M,J)
will vanish when p = 0 (i.e., a®> = 1 — 2%), the empty dSs solution, or when a% = 1/2, and it

reduces to the F'(M) in Equation 7.17 for the static solution when a = 0.
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It is worth repeating there are two perspectives to interpret the solution on the brane and
the parameters defining the background. From the bulk viewpoint, the solution is naturally
characterized by L4, ¢, 4 and a. Meanwhile, from the point of view of the brane, the natu-
ral quantities parameterizing the solution include the radius Rs fixing the scale of the brane
geometry, ¢Gs, GsM, and G3J. The cutoff length of the three-dimensional effective theory is
L4 = cLp, such that for large ¢, this cutoff is much larger than the Planck length, where quan-
tum gravity effects dominate. Thus, the ‘quantum’ black holes constructed here, as described
in the introduction, are much larger than the Planck length. Hence, our solution can be viewed

as a valid solution to the problem of semi-classical backreaction.

Comparison to perturbative backreaction

It is illustrative to compare the holographic stress-tensor in Equation 7.64 to the renormalized
quantum stress-tensor due to perturbative backreaction of a free conformally coupled scalar
field in conical Kerr-dSs. We presented those results in Section 6.1.2, but they are summarized

below for convenience:

() 166:2?3 nz % ’

(T%) = —8523 27}2 (Bn + fg) : (7.69)
mo- S (s B

() = 8wgc§;R37§r% ( o Fg >

16 . B .
dg) = (5—% n 53) [sth (m; > + sin? (WT;BJF)] )

4 . B : B
g e () (2]

The remaining coefficients A, fln, Cn, etc., are cumbersome to write here, but explicitly given

(7.70)

[

in Section 6.1.2 and satisfy A, + % — B, = 0 . Moreover, the parameters 3, = 2r./R3 and
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B— = —8G3J/r. are related to the periodicity of coordinates in ¢ and ¢, respectively, where 7.
is the cosmological horizon radius. The infinite sum arises from using the method of images to
determine the appropriate Green function solving the scalar equation of motion, where, unlike
the Schwarzschild-dSs case [219], there are a countably infinite number of distinct images.

Comparing to the holographic stress-tensor in Equation 7.64, we notice the tensor compo-
nents share a similar structure. In particular, coefficients aside, the two sets of tensors have
a comparable radial dependence, comparing the 7 dependence in Equation 7.64 and r, above.
Of course, once the infinite sums are performed, the radial dependence in Equation 7.69 is
sufficiently more complicated than its holographic counterpart. Likewise, substituting in the
explicit expressions of i results in expressions with cumbersome dependence on M and J.
This is in contrast to the static case explored in [219], where the radial dependence in either
the holographic or perturbative methods was the same, going as 1/7# in Equation 7.65. In
summary, due to the complicated radial dependence, with non-zero rotation the result of a
holographic CFT backreacting on the geometry is far simpler than that of a single conformally
coupled scalar field. Indeed, the holographic stress-tensor given by Equation 7.64 is clearly
non-singular everywhere outside of the ring singularity at r = 0. This is far less obvious looking
at the perturbative stress-tensor.

Moreover, the complicated radial dependence in the perturbative backreaction in Equa-
tion 7.69 lead to far more complicated quantum corrections to the Kerr-dSs geometry, a result

from solving the three-dimensional semi-classical Einstein equations

1
Guy + ﬁguu = 871G <TMV> (7.71)
3
perturbatively in Lp. Leaving the details to Appendix 6.1.2, we expand the metric ansatz
d 2
ds? = N(r)2f (r)dt® + 2 + r2(df + k(r)dt)? (7.72)

f(r)

to linear order in Lp such that

N(r) = No(r) + LeNi(r) . f(r) = fo(r) + +Lpfi(r) , k(r) = ko(r) + Lpki(r) . (7.73)

At (’)(LOP) we recover the classical Kerr-dS3 geometry, while perturbatively solving the semi-

classical Einstein equations yields

_ Rg . Ancp — 26+ 6_en
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fi (’I”) _ io: 4h’n(r)(ancn - 264—6—671) - Cnri(ﬁi + 6%)3

=1 64r2(83 + 62273 ) (7.75)
R o 2 3 . _enlen 4
kl(r):_ﬁz — ;fm wlen =2 (7.76)
n=1 n'n

with coefficients a,, b, etc. are presented in Section 6.1.2. Clearly, the terms to linear order in
Lp are more cumbersome than the quantum corrected geometry due to the holographic stress-
tensor. However, f1 ~ 1/r as r — 00, i.e. the correction to the blackening factor does resemble

the 4D Schwarzschild-like contribution that emerges from the holographic calculations.

7.3 Thermodynamics of quantum Kerr-dS; black holes

Here we analyze the thermodynamics of the quantum Kerr-dS black hole. As with the geometry,
there are two perspectives to view the thermodynamics of the system: the thermodynamics of
the classical bulk black hole, and the thermodynamics of the quantum black hole on the brane.
Due to the holographic construction, the formulae we derive in either perspective appear the
same, however, with conceptually different interpretations. Since the parent solution is well

understood, we begin with the thermodynamics of the bulk.

7.3.1 Bulk thermodynamics

The C-metric in Equation 7.20 is known to describe a uniformly accelerating black hole or a
pair of such black holes, whose acceleration is mediated by a cosmic string. Since the bulk black
hole is accelerating it is natural to wonder whether it is sensible to study the thermodynamics
of accelerating black holes. It is worth emphasizing that while the black hole is accelerating, it
is nonetheless stationary, having a time-translation Killing symmetry 0;. Moreover, the black
hole(s) are held fixed at a proper distance away from the acceleration horizon. Consequently, the
black hole has a sensible thermodynamic interpretation (see, e.g., [263]), having a well-defined
temperature and entropy.

When analyzing the thermodynamics, it is useful to introduce the parameters [221]

IS

Rg _ £ __98_3a
rixy ~ R3’ Rz

N
Il

: (7.77)

—_
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where 7; is a positive real root of the bulk blackening factor H(r), representing each horizon of

braneworld black hole. We can express z1, i and r; solely in terms of these parameters,

9 1+wzd
Tr{ =
VT 2L+ vzt a2z(z +v)] ]
2
7“12 :R§1+Vz+a z§z+y) , (7.78)
1+vz
22— 1) (1 +a2(1 + 22
iy = D004 7)
+ vz

The first expression is found by solving H(r;) = 0 for 27, from which the other two relations

readily follow. Moreover, the bare and renormalized Newton’s constants are

2G3l g —lig, _ _Gs
Vi T Ao

The limit of vanishing backreaction now coincides with small v, and we take v?> < 1, which

Gy =2L4Gs = (7.79)

guarantees the bulk is asymptotically AdS,. Using the parameters in Equation 7.78, we can

recast the mass M in Equation 7.34 and angular momentum J in Equation 7.35

2 _ 2 2\119,2 _ 34 02094 — 1 3
M:L 1_1/2(2 D1+ a”(1+27)][92° — 1+ 8vz° + (9= + 8vz?)] (7.80)
8G3 (322 = 14 2v23 + a?(1 + 4vz3 4 324))?
Je aRy 71/22(22 — D[+ a?(1+ 22/ A +v23) (1 + vz + a?2(z + v)) (7.81)
- Gs (322 — 1+ 2v23 4+ a2(1 4 4vz3 + 324))2 )

As described in the previous section, the canonically normalized Killing vector ¢? = (9%’ +$0;
in Equation 7.42 generates rotating horizons at the positive roots r; with rotation €2; given by

Equation 7.41, now expressed as

a (PP - DV +v23)(1 + vz + a22(2 +v))
= Rs 2(1+vz)(1 + a2(1 + 22)) ' (7.82)

Additionally, the surface gravity ; in Equation 7.43 relative to ¢’ yields a temperature T; =
Ki/2m,

T — 1 (22(1+vz) + (1 +2v2% +24)|(2 + 3vz — v2® + a?(42% +vz(2* + 3)))|
' 27R3 2(14+v2) (14 a?(1 4+ 22))(322 — 1 + 2v23 + a2(1 + 324 + 4v23))

(7.83)

We will deal with absolute value more carefully in the next section.
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Lastly, the bulk horizon entropy is given by the Bekenstein-Hawking area formula

(1) _ Area(r;) = 2 /2” / r2(? 1 a’a?
SBHi 4G4 4G4 d¢ dx E‘i‘ i )277 + TZZ

o play (r? + ax?)
- G74 (E + Tz‘wl)
mR3 V1—=122(1 4 a?(1 + 22))
Gs (322 =1+ 2v23 + a?2(1 + 324 + 4v23))

(7.84)

Altogether, the mass, angular momentum, angular velocity, temperature and entropy con-
stitute the thermodynamics of the rotating AdS, bulk black hole. In the o = 0 limit, one
recovers the thermodynamics of the static AdSs bulk [219]. One may derive the bulk thermo-
dynamics using a canonical partition function by evaluating the on-shell bulk gravity action
via an appropriate modification of the presentation given in [281]. Additionally, by explicit

computation it is straightforward to verify
0. M — T,0,85) — 20.T =0, 0aM — T;0555) — 2 =0, (7.85)
such that the bulk system obeys the first law
AM = TydS5) + Qud.J (7.86)

for all values of the parameters, including any value of the brane tension, as controlled by v.

7.3.2 Semi-classical thermodynamics on the brane

From the brane perspective, the thermodynamics of the classical bulk system doubles as the
thermodynamics of the quantum de Sitter black hole. It is worth mentioning that, even with-
out accounting for backreaction, de Sitter thermodynamics is more subtle than their flat or
AdS space counterparts. Firstly, this is because de Sitter space lacks an asymptotic region to
introduce boundary conditions which fix thermoodynamic data to define a thermal ensemble.
Moreover, the first law of cosmological horizons [268] comes with a minus sign which begs how
the thermodynamics of the dS static patch should be understood. In what follows, we ignore
these subtleties, though it would be interesting to return to them in the future, adapting the
quasi-local approach developed in [282, 283] (see also [284, 285]). These approaches derive the

first law of thermodynamics for de Sitter horizons by using an auxiliary non-dynamical “York”
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boundary to specify the appropriate thermodynamic ensemble. This is in principle straightfor-
ward on the brane, although it is not obvious what the dual description of such a boundary
in the bulk is. One can expect it to be some co-dimension 2 surface in AdS that induces the
appropriate co-dimension 1 boundary term on the brane, but how to choose it remains unclear
at this stage. The biggest complication, however, is to extend the quasi-local approach to
spacetimes solving higher-curvature theories of gravity — a possible route is to make use of the
covariant phase-space formalism which has been successful in generalising the horizon entropy

formula for higher-derivative Lagrangians [280].

Thermodynamics with multiple horizons

The quantum de Sitter black hole comes with three horizons which are generally at different
temperatures. Consequently, each horizon generally has its own thermodynamics, satisfying its
own first laws, as we now show. The mass, angular momentum, and angular velocity given
by Equations 7.80, 7.81, 7.82 of the quantum black hole all take the same form in terms of
parameters in Equation 7.77. The temperature in Equation 7.83 encodes the temperature of
each horizon of the quantum black hole, where we remind the reader the outer and inner black
hole horizons correspond to the outer and inner bulk black hole horizons localized on the brane,
while the cosmological horizon arises from the bulk acceleration horizon intersecting the brane.
To distinguish each horizon, it is useful to slightly modify the notation for z via z. = Rs/r.x;
and zy = Rs/rixz; to denote the cosmological and black hole horizons, respectively. Then,

from the surface gravities given by Equation 7.44
TC = E(ZC) ’ T+ = _E(Z+) ) T = E(Z_) ) (787)

where we used r— < ry < r. such that z_ > z; > z.. Consequently, the black hole horizon is
generally hotter than the cosmological horizon, T, < T, such that the system is not in thermal
equilibrium; an observer located between the cosmological and (outer) black hole horizon is in
a system characterized by two temperatures. There are three special cases, where the horizons
degenerate, when the outer black hole and cosmological horizons are in thermal equilibrium, as
we explore below.

The most notable difference between the bulk and brane black hole thermodynamics is the

interpretation of the entropy given by Equation 7.84. On the brane, this entropy 51(34})1 is equal
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to the sum of gravitational entropy and the entanglement entropy of the holographic CFT [221].

Thus, the bulk entropy is identified with the generalized entropy on the brane Ség%,

Shn =SB =53+ S . (7.88)

grav

This relation is exact to all orders in semi-classical backreaction codified by v. The gravitational

entropy is computed using Wald’s entropy functional [286],

oL
Swald = —277/7_[ dAWEQbECd ) (7.89)

where dA = d?2z.,/q is the codimension-2 area element of the bifurcate horizon H, with
Gab = hap + nanp — uqup being the induced metric, for spacelike and timelike unit normals
ne and ug, respectively. The binormal e, = (nqup — nyu,) satisfies €2 = —1, and we define
(d — 1)-dimensional metric in directions orthogonal to the horizon. Moreover, L refers to the
Lagrangian density defining the theory. With respect to the induced theory of gravity on the

brane given by Equation 7.18, the gravitational entropy is

1
S, = yTen / dz/q {1 + 2 ( R — g% Rab> + 0(54/36)} . (7.90)
We see higher-curvature corrections to entropy enter at order £2, such that the dominant con-
tribution to the entropy at leading order in backreaction is the three-dimensional Bekenstein-
Hawking entropy

2,2
(3) 2777“177 a‘xy\ 14+ vz 3)
SBH 4G / T\/q = <1+ 2 )— mSgen. (7.91)

(2

Therefore, the Bekenstein-Hawking entropy includes semi-classical backreaction effects.

Formally, the matter entropy S’g’gT is given by the difference

3
St = S8, - 88, . (7.92)
Notably, the matter entropy enters at linear order in v,

S~ 88 — S8 = —v2Sh (7.93)

in contrast with the higher-curvature contributions to the gravitational entropy which enter at

order v2. Recall that the central charge ¢ = L3/Gy4 ~ vR3/2G3, such that Sg%T is proportional
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to ¢. As in the quantum BTZ case [221], generally the matter entropy will be dominated by
entanglement across the horizon(s) in CFT states with large Casimir effects.
Interpreting 51(34& as the generalized entropy of the quantum black hole, the bulk first law

in Equation 7.86 leads to a semi-classical first law for each horizon

dM =Ty dS) | +Q.dJ (7.94)
dM = ~T.dS§3) , + QcdJ (7.95)
dM = ~T_dS$) _ +9_dJ, (7.96)

where Q. = Q;(z.) and Q1 = Q;(z1) are the angular speeds of the cosmological and black hole

horizons. Combining the first two first laws yields

0=T.dS{3) + T.dSS) + (Q — Q_)dJ . (7.97)

gen

Our first law is consistent with the semi-classical first laws for static two-dimensional (A)dS
black holes in [284, 287]. Notice the minus sign in the first law of the cosmological horizon
remains even in the quantum-backreacted geometry. Consequently, adding positive energy into
the static patch reduces the total entropy of the system, with the entropy of pure dS being
maximal, such that de Sitter black holes behave as instantons constraining the states of the
original de Sitter degrees of freedom (cf. [288, 289, 290]).

At this stage, there are two limits of interest. The first is the quantum de Sitter limit, at

z =1 or p =0, and, consequently,

M=J=Q;=0, (7.98)
21 Rs /1 — 12 1
S L R L , (7.99)
g 4Gy 1+v 27 R3

where we see the temperature of the quantum dSs cosmological horizon is the same as classical
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dSs. Second, when backreaction vanishes v — 0, then z4 — oo since 74+ — 0 and we have

1T (2= +a?(1+22))(922 — 1+ a?(921 - 1))

M =
8G3 (322 — 1+ a?(1 + 32%))2 ’
J aR3 2(22 —1)(1+ (1 + 22))V1 + o222
- Gs (322 — 1+ a?(1 + 324))2 ’

a2 - 1)V14a?2?
© R3z(14a2(1+22))°
1 2(1 + 2a22%) (22 + (1 + %))
© T 2R3 2(322 — 1+ a2(1 + 320)) (1 + a2(1 + 22)) ’
TRy z2(1+a%(1+2?%)
Gz (322 —14a?(1+3z%))

(7.100)

Se =

where it is understood that here z = z.. It is straightforward to show the resulting thermody-

namics reproduces that of the classical Kerr-dSs (see Section 6.1.1), namely,

R 8GsJ 8GsJ
5@ =T \/I—SGM ;273 \/1—8GM—' ) =g 7.101
gen‘ =0 4G5 ( 3 )+ t Rs + ( 3 ) ? Rs KdSs > ( )

where we used the relation /z + iy + vz — iy = 24/ + /22 + 32 /V/2.

Thermodynamics of degenerate horizons

As described in Section 7.2, the quantum Kerr black hole has special limits where two or more
horizons become degenerate. Of interest are the extremal (ry = r_), Nariai (r, = ry), and
lukewarm (7, = T;) geometries. The extremal black hole is one with a vanishing temperature,
Text = 0. Naively, the Nariai black hole will have a vanishing temperature, however, in its
near horizon geometry, the temperature of the black hole and cosmological horizon will be in
thermal equilibrium at a non-zero temperature Tn. The precise form of the temperature can
be found, for example, by removing the conical singularity in the Euclideanized section of the
(naive) Nariai geometry in Equation 7.53, given via the Wick rotation 7 — i7g and a — iag,
resulting in Ty = (2rv/T) ™.

To connect to the canonical geometry, we relate the Nariai radii rn and 7y via Equation 7.32.
Lastly, the lukewarm limit occurs when the outer black hole and cosmological horizons are
in thermal equilibrium at a temperature different from the Nariai temperature. Though the
resulting expression is cumbersome and not very illustrative, the precise temperature can be

solved for explicitly by setting Ty = T, (using the surface gravities in Equation 7.44) and
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following the method described in Appendix C. The lukewarm temperature is proportional to

(re —r4)/2mR3, with r. # ry.

7.4 Summary of the main results

In this chapter we used braneworld holography to construct a three-dimensional quantum-
corrected Kerr-de Sitter black hole exactly accounting for backreaction effects due to a conformal
field theory. By stark contrast, there are no de Sitter black holes in three-dimensions, only
conical defect geometries with a single cosmological horizon. Thus, semi-classical backreaction
alters the defect geometry so as to induce inner and outer black hole horizons, which hide a
ring singularity, sharing many qualitative features with the classical four-dimensional Kerr-de
Sitter solution. With three horizons, we uncovered the extremal, Nariai, and ‘ultracold’ limits
of the semi-classical black hole, which appear as fibered products of a circle and AdSs, dSs, or
two-dimensional Minkowski space, respectively.

Moreover, the thermodynamics of the classical bulk black hole, described by the rotating
AdS,; C-metric, has a dual interpretation on the brane as thermodynamics of the semi-classical
Kerr-dSs black hole. Specifically, the standard first law of thermodynamics in the bulk becomes
a semi-classical first law, where the four-dimensional Bekenstein-Hawking area-entropy is iden-
tified with the three-dimensional generalized entropy, given by the sum of the Wald entropy
due to higher curvature corrections, and the matter entropy of the CFT. In essence, we have
derived the semi-classical generalization of the first law of cosmological horizons of Gibbons and
Hawking [268]. As in the classical four-dimensional Kerr-dS solution, the limiting geometries
of the quantum Kerr-dS black hole give rise to scenarios of thermal equilibrium, including the
Nariai and lukewarm limits where the temperatures of the cosmological and outer black hole
horizons coincide. Therefore, quantum-corrections greatly enrich the thermodynamic structure

of three-dimensional de Sitter solutions.
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Chapter 8

Closing Remarks

In this thesis, we have discussed two parallel approaches to the problem of backreaction of quan-
tum degrees of freedom on classical ones. The first one, CQ dynamics, assumes fundamental
classicality of the classical degree of freedom in the model — an assumption that requires any
such physical system to feature both diffusion and decoherence effects. However, the scope of
the hybrid formalism is transversal —it can be used to describe any model of classical-quantum
interaction both as a fundamental and effective level. In this thesis, we mainly focused on the
application of CQ ideas on the problem of gravitational backreaction, in order to explore the
recent proposal of a consistent theory of fundamentally classical gravity. The second approach
we discussed — braneworld holography — is instead a novel method that can be used to compute
the backreaction of quantum fields on an effectively classical geometry using the AdS/CFT

correspondenee.

8.1 Summary of the main results

We now briefly summarise the main results presented in the thesis, before discussing natural

extensions to the work and long-term objectives for both research directions.

CQ steady state

In Chapter 3 we studied a simple system of coupled classical-quantum oscillators with classical

friction. We showed that the CQ evolution flows to a unique steady state by relying on standard
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results in the theory of stochastic processes, and computed the two-point functions with respect
to such a hybrid state. We showed that the steady state becomes thermal in the high-diffusion
regime. We also derived the phase-space representation of CQ dynamics by performing the
Wigner-Moyal transform of the hybrid generator. We showed that for harmonic potentials the
dynamics exactly maps to a Fokker-Planck equation with diffusion in both the classical and

quantum phase-space.

Stochastic gravity

In Chapter 4 we studied the classical stochastic Klein-Gordon equation to understand the po-
tential phenomenology of linearised CQ gravity. We showed how to regularise the divergences
in the Fourier-space integrals for the two-point function of the stochastic field. We used them
to compute the non-equilibrium covariances for the field and compared them with the standard
thermal Klein-Gordon results. We concluded by discussing the issue of infinite energy produc-
tion and that a stochastic scalar can induce large forces on test particles. If these results hold
up when considering a spin-2 massless field (rather than the spin-0 model we considered), CQ
gravity would risk of running afoul of experiments.

In Chapter 5 we similarly studied the effects of a stochastic driving term in the cosmological
FLRW equations. We discovered that, whilst a time reparametrisation-invariant stochastic
model can be constructed, the dynamics naturally breaks the Hamiltonian constraints of General
Relativity in an inflationary epoch. In the later stages of radiation-domination and matter-
domination, the stochasticity decouples from the evolution of the scale factor and we would be
left with a positive on average amount of constraint violation. We showed that such a constraint

violation, in the current cosmological era, would have the same effect as cold dark matter.

Quantum rotating black hole in dS;

In Chapter 7 we used braneworld holography to uncover a novel solution to the (higher-
curvature) semiclassical Einstein’s equations. We found that backreaction on the (2+1)-dimensional
rotating conical defect in de Sitter space induces two black-hole horizons — one inner and one
outer, much like the 4-dimensional Kerr black hole. This quantum Kerr-de Sitter black hole has

a ring-singularity and an ergoregion. We derived the generalised laws of black hole mechanics
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for the system, including higher-curvature corrections and contribution due to the backreact-
ing matter. We compared our exact result with the perturbative solutions to the standard

semiclassical Einstein’s equation, with the source being a single conformally coupled scalar.

8.2 Outlook

8.2.1 Oscillators and CQ thermodynamics

The main novel result in Chapter 3 is that classical friction can be enough for minimal hybrid
system to reach a steady state, even though it might not be an equilibrium state in general.
Whilst thermal states in CQ models have been recently studied in detail [162], much can still be
said on non-equilibrium states. In particular, the hybrid oscillator would be a good toy model to
study properties of hybrid systems that do not satisfy detailed balance. A first objective would
be to derive the generalised fluctuation relations for CQ non-equilibrium thermodynamics and
compute the entropy production in the system [291].

Both classical and quantum thermal equilibrium and the fluctuation-dissipation relations
can be shown to be associated with particular symmetries of the respective path-integral ac-
tions. A key step towards a complete understanding of CQ thermodynamics would be to show
that such an equivalence exists for hybrid systems as well, deriving the fluctuation-dissipation
relations from first principles in the process [292]. Another interesting avenue would be to make
contact between quantum and hybrid thermodynamics, deriving the latter as a special case of

the former — possibly integrating out some environment a la Caldera-Leggett [293].

8.2.2 Field theory

The results of Chapter 4 pave the way for a more rigorous exploration of CQ field theory, which

can take many interesting directions.

Linearised CQ gravity: A natural one is to go beyond stochastic scalar fields, and study a
CQ model of a classical spin-2 field interacting with quantum matter — i.e. the full linearised
CQ gravity. This necessarily requires, however, the understanding of covariance in stochastic

processes. Developing such a model is a crucial step in the formulation of a fundamental CQ
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theory of gravity, with obvious applications to the theory of cosmological perturbations. The
derivation of CQ predictions for the cosmic microwave background and gravitational wave back-
ground would be obvious objectives. They would provide formidable tests for hybrid theories
of gravity — and possibly assess the proposal that stochastic fluctuations in the gravitational
field can act as cold dark matter [3, 209].

CQ renormalisation: Another natural direction is to study the renormalisation properties
of the CQ scalar Yukawa theory. The path-integral formulation of CQ gravity is expected to
be free of the renormalisation issues that plague Einstein’s gravity due to the analogies with
the quadratic gravity action[136], whose quantum theory is known to be renormalisable [294].
Nonetheless, no explicit renormalisation analysis has ever been performed on a CQ field theory
— the scalar Yukawa model seems the ideal playground to approach the problem by building
on known results for classical statistical field theory and open QFT [295, 184]. A fundamental
question is whether the renormalisation group can preserve the decoherence-diffusion trade-off,
the crucial consistency condition of CQ theories. Moreover, as we discussed at length when
estimating the induced forces from the classical stochastic fluctuations on extended object,
it is important to address whether self-interaction vertices (either from non-linearities in the
classical equations or induced from quantum backreaction) can indeed curb the irregularity of
the free stochastic wave equation — inspired by some existing formal results [176, 189].

CQ field theory as effective: Finally, CQ theories have been shown to emerge as effective
theories when the partial classical limit of a bipartite quantum system [78, 296] is taken. Ex-
tending this result to the case of field theories is crucial to understand better the regime of
validity of the semiclassical Einstein’s equations [68, 66], and of CQ models as effective theo-
ries of semiclassical gravity. This is in the spirit of including both decoherence and diffusion
effects, going beyond the stochastic corrections to the semiclassical Eisntein’s equations that

are considered in the formalism of stochastic gravity [80].

8.2.3 CQ Cosmology

In Chapter 5 we explored the cosmological implications of a potential fundamental classicality
of the gravitational field. Many fundamental questions on CQ gravity arose in the process,

indicating natural future steps for investigations on CQ gravity and cosmology.
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Diffeomorphisms and constraints in CQ: The model presented in Chapter 5 allows for
the violation of the constraints of general relativity. As mentioned in the introduction, con-
straints are a necessary condition for covariance in the deterministic theory. In the Hamiltonian
ADM formulation, they are required for the series of three-dimensional spatial geometries to
be embeddable into a (3+1)-dimensional spacetime. However, in a stochastic theory the role of
constraints is more subtle and their violation should not be taken to indicate loss of covariance,
but rather that the constraint was formulated ignoring the existence of the stochastic field.
Indeed, the two approaches typically used to derive constraints [134, 133] in the deterministic
theory fail here. The Dirac procedure is not applicable as the Hamiltonian is not the generator
of the dynamics, a point already made in [207]. The expectation is that the concept of the
constraint needs modifying for random systems, similarly to what happens for Noether’s the-
orem [297, 298, 299]. Moreover, deriving the constraints by demanding that the hypersurface
deformation algebra closes [133], yields no constraints in minisuperspace since the algebra is
trivial. Of course, the situation is more complex when considering the full local theory, as
discussed in [207]. Our construction is indeed valid only as a description within a preferred
frame, the cosmological one, since spacetime looks homogeneous and isotropic only within a
specific set of coordinates. These, adapted to the symmetries of the problem, are effectively
provided by the perfect fluid sourcing the geometry. It is only in these coordinates that we
can identify a consistent low-noise regime on late-time spatial hypersurfaces. On a different,
arbitrary, foliation of spacetime, the homogeneous description breaks down and a more refined
analysis is needed.

An interesting playground for such an exploration is the so-called second order differential
geometry [300], a coordinate invariant formulation of stochastic processes on manifolds that
has been shown to be useful in characterising global charges in random processes. It would
be interesting to approach the problem of constraints taking inspiration from the geometric
perspective given by the covariant phase-space formalism [301].

Cosmological tests on the quantumness of spacetime This work sets the basis for the
study of the cosmological consequences of theories where gravity is classical and, therefore,
fundamentally stochastic. The main objective of this line of work is to try to establish pre-

dictions that may help test such theories in the near future, possibly proving observationally
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the necessity of quantising the gravitational theory. CQ theories of gravity predict that the
amount of diffusion in the gravitational system is lower-bounded by the typical decoherence
rate of superposition in the quantum matter degrees of freedom. As explored in detail in [65],
table-top experiments can lower-bound the diffusion in the metric and squeeze the theory from
both sides. Here, we find that cosmological measurements can also provide easily accessible
data that can also constrain the amount of diffusion allowed, on a very different scale. When
integrated over long times, the stochastic force can cause the gravitational system to diverge
significantly from its deterministic trajectory. In particular, we have seen that if CDM can be
understood by the mechanism presented in its article, its abundance would be entirely fixed by
the parameters of the early-Universe model.

A key step towards using cosmological data to constrain the value of the diffusion coeffi-
cient in stochastic theories of gravity is studying the inhomogeneous evolution. This is key to
reconstruct clear predictions for the observed Universe and especially the CMB; we know the
separate-universe approximation is not really self-consistent, since the shrinking horizon during
inflation partitions the universe into multiple causally-disconnected regions. The resulting inho-
mogeneous modes will re-enter the horizon following reheating, and their subsequent evolution
can only be handled via an inhomogeneous calculation. Furthermore, whilst the homogeneous
noise at late times goes to zero, locally the dynamics is still stochastic, meaning that late-time
evolution might still differ from standard deterministic calculations. Altogether, moving away
from the homogeneous model is fundamental in order to extract the power spectrum of the
perturbations imprinted on the CMB that the stochastic theory predicts. This will ultimately
provide a powerful stress-test for CQ theories of gravity, since there is a plethora of strong

observational constraints that the stochastic theory will have to reproduce [149].

8.2.4 Comparison with other models of stochastic gravity

The motivation behind the models in Chapters 4 and 5 is that stochasticity in the classical
gravitational degrees of freedom is a necessary consequence of a theory that describes classical
and quantum systems with non-trivial interaction in a consistent manner. In particular, it
follows once the physical requirements of complete positivity, trace preservation and linearity

are imposed at the level of the master equation, which is the evolution equation of the hybrid
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state [50, 51]. While this specific motivation has emerged over the past few years, having some
randomness in the evolution equations for the gravitational field is not a new proposal, with
stochastic evolution equations put forward mainly as effective theories. Here we give a brief
overview of some of these approaches and how they differ from our analysis.

Cosmetically, the closest approach to our own comes from the formalism of “stochastic
gravity” [80]. Its objective is to include quantum fluctuations when calculating backreaction
effects in semiclassical gravity. In stochastic gravity, the stochastic tensor ,, represents the
quantum fluctuations of the field that sources the metric and is therefore not a fundamental
white noise process. Indeed, the moments of the random field match those of the stress energy

tensor of the QFT. Stochastic gravity is governed by the Einstein-Langevin equations
Gy = 87G ((Tw) + &) » (8.1)

and aims to include corrections to the semiclassical Einstein’s equations, with which it partially
shares the regime of validity (i.e. when the fluctuation in the stress-energy tensor of the quantum
system are small with respect to the mean). This condition is commonly probed by the Kuo-
Ford criterion [66]. Indeed, even though stochastic gravity can improve on the semiclassical
FEinstein’s equation by including both the quantum fluctuations of the matter fields and the
induced one of the gravitational field [68], the expectation value in Equation 8.1 leads to a
breakdown in causality unless the theory is modified in some way [302, 303] due to the non-
linearity in the density matrix, much like in the standard semiclassical Einstein’s equations.
As such, stochastic gravity can only be treated as an effective theory. This is also true for the
other proposals of stochastic theories of gravity that modify Einstein’s equations by adding a
random gravitational constant G instead [304, 305].

Causal set theory and unimodular gravity also motivate some models of effective spacetime
diffusion. In the everpresent Lambda proposal [196], the stochasticity in the cosmological
constant comes from the causal set interpretation of A being the conjugate variable to the local
spacetime volume, a stochastic variable. In unimodular gravity (often considered the continuum
limit of causal set theory) the motivation of having a stochastic evolution of spacetime comes
from violation of the conservation of the matter stress-energy tensor instead, which is allowed

by the theory [197, 198].
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8.3 Braneworld

The braneworld construction we outlined in chapters 6 and 7 is versatile and can used in a

variety of future studies. Some of them are listed below.

Other three-dimensional quantum black holes: Here we focused on neutral rotating
quantum de Sitter black holes. It is natural to ask whether other types of three-dimensional
quantum black holes are possible using a similar braneworld construction. Recently, a charged
quantum BTZ solution in has been found [250], and we have extended the results to the case of
a charged de Sitter black hole, simply by starting from the charged AdSs C-metric. Although
there is no need for counterterms for the Maxwell field in AdS, [109, 306], a Maxwell action is
nevertheless generated on a brane at finite distance in the bulk, further modifying the geometry
of the quantum black hole [307]. Similarly, starting from the accelerating Taub-NUT AdS, black
hole, one would conceivably find a quantum Taub-NUT black hole on the brane. Altogether, via
suitable modifications to the AdSy C-metric, one could develop a catalog of charged, rotating,
Taub-NUT quantum (A)dS black holes in three-dimensions.

A further generalization would be to consider quantum black holes with scalar hair. One way
to do this is to consider bulk Einstein gravity in addition to a conformally coupled scalar field.
Black hole solutions to this theory have a rich history, dating back to Bekenstein [308, 309],
including exact generalizations of the charged C-metric [310] and Plebanski-Demianski family
of metrics [311].

Higher dimensional quantum black holes: The quantum Kerr-dSs black hole is another ex-
ample of an exact description of a localized three-dimensional black hole in a Randall-Sundrum
braneworld, belonging to the class of the solutions uncovered in [220, 219] (see also [312], where
the brane tension was detuned from the bulk acceleration). It is natural to wonder whether
one can construct higher-dimensional quantum black holes in a similar fashion. Extrapolating
from the four-dimensional bulk models, holographic considerations predict backreaction due
to conformal fields is expected to similarly induce quantum corrections to the geometry. For
example, a semi-classical four-dimensional brane black hole would include a £u/7? correction to
the standard 1/r gravitational potential, a behavior inherited from its parent AdSs black hole.

Thus far, however, there are no known exact quantum black holes in higher dimensions. This
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is because finding static brane localized black holes in higher dimensions has proven challenging,
both analytically and numerically (for a review, see [251]). The essential feature of the four-
dimensional C-metric which is exploited is that there is a natural location to place the brane,
at z = 0, where the Israel-junction conditions are automatically satisfied. A higher-dimensional
analog of the C-metric exuding this feature is not known to exist [313], making the construction
of exact quantum black holes difficult. Perhaps numerical techniques together with the large-D
approximation of bulk Einstein gravity, as was recently accomplished to describe evaporating

brane black holes [259], can be adapted to construct exact quantum black holes in higher-

dimensions.

8.4 Closing remarks

The problem of backreaction of quantum matter on a classical spacetime has a rich history.
It had the virtue of highlighting many conceptual subtleties that were originally overlooked —
from what part of the quantum stress-tensor actually gravitates, to the possibility of coupling
consistently classical and quantum degrees of freedom. In this thesis, we have presented two
modern outlooks on the problem, albeit coming from largely different motivations and technical
tools. Both promise to enrich our understanding of classical-quantum interaction, in gravita-
tional physics and beyond. Braneworlds have the potential of allowing us to explore quantum
corrections to classical solutions to GR without resorting to numerical analysis or perturbative
solutions. On the other hand, CQ offers an appealing route to test the quantum nature of
the gravitational field not by measuring directly subtle quantum effects — but by contradic-
tion. Studying theories of fundamentally classical gravity interacting with quantum matter can
allow us to understand how to test the decoherence-diffusion trade-off, a key requirement for
spacetime not to be quantum mechanical.

Even though the starting point are vastly different, braneworlds and CQ do not need to
be perpendicular approaches. In fact, CQ provides a completion of the standard semiclassical
toolkit even for effective theories. Whilst in that case the decoherence-diffusion trade-off does
not need to hold, in principle a semiclassical model should include both decoherence and diffu-

sion effects, especially due to the coarse-graining that is performed on the “classical” system.

199



Holography has historically been about unitary quantum theories, but in recent years decoher-
ence, open evolution and measurements have been discussed (e.g. [314, 315, 316]). It would be
interesting to explore whether the semiclassical limit of the AdS/CFT correspondence can be

made to account explicitly for these effects.
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Appendix A

Brownian motion

SDEs perspective

As an illustrative example of the results presented here, consider a particle undergoing Brownian

motion:
G=2¢() , (A1)
where:
E@®)] =0,  EE®)EE)] =DiE—1). (A.2)
We initialise the state at t = tg such that ¢(tg) = 0 and ¢(tp) = 0. Essentially:

P(q,4,t0) = 0(q)d(q) - (A.3)

We then let the system evolve following Equation A.1 up to some future time t. The covariance

of the stochastic process is then defined as:
C(t,s) = Elg(t), a(s)|q(to) = d(to) = 0] . (A.4)

Given a realisation of the stochastic field £, we can reconstruct the trajectory of the Brownian

particle by simply convoluting with the retarded Green’s function of the equation of motion:
alt) = [ Gt 1) (4.5)
where the theta function is there to impose the BC’s and:
Gr(t,t) =0t -ttt —-1t). (A.6)
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Therefore, given the boundary conditions, we simply have (assume ¢ > s):

C(t, s|ty) = /too dr tOOdT'GR(t, 7)GR(s, 7 )E[E(T)E(T)] (A.7)
=D tOOdTG(t—T)G(s—T)(t—T)(s—T) (A.8)

Since t > s, the first f-function is irrelevant, whilst the second one sets the upper integration
limit:

s

C(t,s|to) = D t dr Gr(t,7)GRgr(s,T) (A.9)
0
=D ts dr(t—7)(s — 1) (A.10)
0
= %(s —10)%(3t — s — 2t9) , (A.11)
or, in explicit powers of s:
C(t,s) = %[—33 + 3ts% 4 3sto(to — 2t) + t2(3t — 2to)] . (A.12)
The variance, instead:
V(t;to) = Clt, titg) = g(t?’ — 3tot? + 3t3t —t3) . (A.13)

Clearly, as tg — —oo both variance and covariance diverge.

Fourier representation of the propagator

We know derive the same result by performing the convolution in Fourier domain, uncovering
the pole prescription of the propagator in the complex plane. Let’s begin with the Fourier

representation of the retarded propagator. This is given by:

Gr(t—s) = %gﬂw)e—iw(t—” , (A.14)
where:
-1

To see this, first note that for ¢ < s, the Fourier integral vanishes since the complex contour

of integration (closing from above, to make the contribution from the semicircle limit to zero).
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For t > s, however, the contour encloses the w = —ie pole of order p = 2. Using the residue
theorem we see:
/dw_leiw(ts) = —iRes ;e%w(hs) —ie (A.16)
27 (w + i€)? (w + i€)? ’
=t—s (A.17)

Combining the two time-ordered result we indeed obtain Equation A.5.
Now, let’s derive the Fourier representation of C(t,s). To do this, we start from Equation

A.8 and substitute the Fourier representation of the retarded propagators:

o) 1 . .
t. sltn) = D d —iw(t—7) ,—iw’ (s—7) Al
Clt.slio) =D | T/ / w+ze> (@ + i) ‘ (4.18)
1 : -1 o . ’
- D —iwt ,—iw’s d i(wtw’)T A1l
/_ / (w+ 26) (W' + ie)2€ ‘ /to e (4.19)
1 . .1 & . ’
- D —twt ,—iw’s i(wtw’) (74+10) A2
/_ / 27r (w+ 26) (W' + ie)Ze ¢ /0 dre (A.20)
1 . - )
— —iw(t—to) ,—iw’ (s—to)
D/_ / 27 ( w—i—ze) (w’+ie)2€ ‘ (W&(w+w)+Pw+w>
(A.21)
_ %C’oo(t, 5) + AC(t, slto) (A.22)

Here we have split the integral in the infinite time (the integral involving the delta function
kills all the ¢ty dependence, and is exactly half of the integral resulting from the tg — —oo limit)
and finite time effects. Note that here P indicates that the principal value of the integral needs
to be extracted for such a pole.

Let’s begin with:

1 —iw(t— —iw’ (s—
Coolt ) = D/ / (w+ ze) (w' + i€)? ¢TI TG (w + o) (A23)
1 .
=D —iw(t=s) A24
/ (w +1i€)? (w—ie)ze ( )
= / o o (w)e (=) (A.25)
where:
Coo(w) = D (A.26)

(w+ie)?(w —i€)?
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Note, this is different from the Feynman mod-squared (FM2) prescription proposed in [136]. In
fact, the latter is given by:

Crmod2 () = # Coo(w) . (A.27)

(w? + i€)(w? — ie)
The biggest difference between the two prescriptions is the nature of the poles. The 2-point
function obtained as convolution of 2 retarded Green’s function (RM2) has two second order
poles, whilst the FM2 prescription involves four simple poles.

The finite time effects, instead, are given by:

1D . ,
AC t t —iw(t—to) ,—iw’ (s—to)
(t, sfto) = /‘ / w+muw+nyw+wf ¢

=3 /OO 3 Cooli)e 7 (A.28)

3] 1 —iw(t—to)
_ De—e(s—to)/ dw (i(s ~to) + . ) -

oo 2T w—ie) (w+ie)?(w — ie)

Performing the inverse Fourier transform

Let’s begin with the infinite time effects. For ¢ > s close below, picking up the double w = —ie

pole. Using the residue theorem we get:

) e—e(t—s) 1
Coo(t,s) = lim 5 t—s+—) . (A.29)

e—0 4e

On the other hand:
De—e(S—to) /OO dﬁ <Z<S o t(]) + 1 ‘ > ‘ 1 : e—iw(t—to) —

oo 2T w—ie) (w+i€)?(w — ic)

i De—e(t+8—2t0) . . . 1 1 . . 1 (ASO)
e [“‘ °>< - 0+ze> +ze< - 0+6>] -
Plugging all together and keeping terms up to O(e%) we get:
D 2
C(t, s|ty) = 6(8 —t0)“ (3t — s — 2tp) . (A.31)

This is indeed the correct solution, and no divergent term survives. Recall, once more, that

here t > s was assumed.
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Appendix B

Integrals in Fourier space

We assume the field (and its conjugate momentum) is initialised on an initial slice o to vanish

everywhere, i.e. ¢(z,ty) = ¢(z,tg) = 0. Then the covariance is given by:

. B 00 i 3 d4p dik e—ip(x—z)e—ik(y—z)
Clatito) = D /t dz0 / d / 2! / @) [(po + 62 — BE@)?] [(ko + i€ — E®)?]

(B.1)
Now, let’s focus on the zy integration first:
o0 , . © . P
/ dz()ezzo(po-i-ko) = ez(Po-i-ko)to/ dretTPotko) — i(po+ko)to <7T(5(p0 + ko) +i ) , (B.2)
to 0 ko + po

where the capital P stands for the principal value of the integral for the corresponding pole.

The spatial z integral gives:

/ dPze==0Fh) = (2m)35(p + k). (B.3)
Combining:
Clx,t;ty) = %Coo +C, (B.4)
where:
B d4p d4k‘ e—ip:ve—iky - 4
=01 [ 55 | G oo T i B e 1m0 P )
B d4p e—ip(x—y) '
a Dz/ (2m)* [(po + i€)2 — E(p)?] [(po —i€)? — E(p)?] ’
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whilst:

5 d*p / d*k e—ipT g—iky ,
C=1D 0m35(n 4
Z 2/ )t | o [+ i = B@A [(ho 107 — B@R ) "R 0
d*p dko eiP(z=Y) —ipoz ,—ikoy p

—iD, / (2m)* / 271 [(po + ic)? — E(p)?] [(ko + i€)2 — E(p)2] po + ko
(B.6)

Infinite-time terms

Let’s first compute C for the massive KG field corresponding to the retarded mod-squared

prescription:
B d*p e~ p(z—y)
Coest) = D2 | (o (307~ 0 7107~ F
_p d*p e~ ip(z—y)
B 2/ (2m)% (po + ie + E(p))(po + ie — E(p))(po — ic + E(p))(po — ie — E(p))

(B.7)

Throughout we assume the time ordering of the events as xg > yo. This means that we close
the complex contour from below (clockwise) picking up contributions from the poles in the

lower-half plane. First, let’s integrate over energy:

+20 o e—ipo(z°—y°)
/_oo 27 (po + ie + E(p))(po + ic — E(p))(po — ie + E(p))(po — i€ — E(p))

= —i [Res (f(po). po = E(p) — i€) + Res (f(po), po = —E(p) — ie)]
e IE@@-y0) o —iER)(0—y")

E(p) — ie * E(p) +ie

e [B(p) cos (B(p) (2 — o)) + esin (B’ — )] -

= me
B 1
~ 4eE(p)(E(p)? +€)

—e(z0—y)

Moreover, we can integrate the angular coordinates of the 3-momentum:

27 T ) 27 T ) sin T —
/ d(b/ dfsin 2=y = / d(b/ dfsin @ ePlz—yleosd — 47TM. (B.9)
0 0 0 0 plz — Q’

Finally, recall the following limit:

. €
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We can now combine these results to obtain:

Doy e—€="=1%) /1
YSCRIII

= 82 |z — y|

Dy 1 1 (29 — 30)? (B-11)
82z -y K - yO)) Lt b+ m——m I = (2’ = ")z | +O(e)
Here we have defined:
L= /0 h i gz €0 (B ()0 = ")) sinfolz — ). (B.12)
I = /OOO dpE(];)g sin (E(p)(z° — 4°)) sin(plz: — y|) (B.13)
I = /0 " dp 8(E(p)) peos (Bp)(a° — 1) sin(plz — y]) = 0, (B.14)
= [ dp S(E) s (B@)a® =9) sinlolz =) =0 (B13)

Note that both I5; = Iso = 0 for any m > 0, since for the massive case the delta function
condition is never satisfied, whilst for the m = 0 case at p = 0 the integrand is vanishing.
Therefore, in the € — 0 limit, the infinite-time component of the covariance is given by:

_& 1 1_ 0_,0
Coo = 372 |§—y| |:(6 ($ Y )) Il+I2:| . (B.16)

We were not able to find a closed analytical solution for both I; and Is for arbitrary mass.

Finite-time contribution

Let’s now compute the finite-time contributions to the two-point function. This corresponds to
evaluating the following integral:

N 4 4 —ipxz ,—iky ,i(po+ko)to ,—~i(p+k).z
czz'DQ/d%/ dp4/dk4 c ¢ ¢ € P man
(27) (27) [(po +i€)? — E(Q)Q} [(ko + i€)2 — E(k)?] ko + po

Performing the integral and extracting the principal value one gets:

~ 1
€= 5Cu+AC, (B.18)
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where

AC — &G—E(yo—to) / dp 1 e_iﬂ-%e—ipxeipoto e—iEFP)(yo—to) B eiE(Zf)(yo—to)
2 (2m)* E(p) (po + i€)*> — E(p)* | po —ie + E(p)  po — i€ — E(p)
(B.19)
Performing again the py integral in the complex plane (close below, since xg > to by construc-
tion):
dpo e—ipo(xo—to) _e—ﬁ(ﬂco—to) eiE(B)(iUO—tO) e—iE(E)(ﬂﬂo—to)
) : : = +1 .
/ 27 [(po + i€)*> — E(p)?][po — ie + E(p)] 4E(p)? € T E(p) e
(B.20)
and
dpo e—po(z°—to) e—€(@—to) e—iE(B)(iBO—tO) ’eiE(B)(IO—tO)
- . . = —1 —.
/ 27 [(po +i€)* — E(p)?][po — ie — E(p)] ~ 4E(p)* € E(p) + ie
(B.21)

We can then perform the angular integral and combine the results to obtain:

E(p)
(E(p)? + €2)

D2 676 {L'()+y0 2t0)

AC = / E [ cos (E(p)(zo — yo)) + sin (E(p)(zo + yo — 2to))

8 [z —y
€

TEQE+ e ” (E(p)(xo + yo — 2t0))] sin (plz —y|) -

(B.22)

We can now expand in € and take the limit ¢ — 0 to obtain:

D 1 1
AC = 2 [( — (2% 440 - 2t0)> I+ I3 — mlyg — m(a® 4+ 3° - 2750)]64] , (B.23)

82z —yl
where
B [ dp s sin () + 4 - 20))sin(olz - ) (B.24)
Is3 = /000 dp §(E(p)) E(];))Q cos (E(p)(ac0 + 90 — 2to)) sin(plz — y|) = 0, (B.25)
Isq = /000 dp 5(E(P))E}(9p) sin (E(p)(z° +y° — 2to)) sin(plz — y|) =0 . (B.26)

This time around, one of the two integrals involving delta functions doesn’t vanish form m = 0,
hence the Kronecker delta d,,0. Note, the I3 integral is essentially I with different time

components. Therefore:

Dy 1 1
AC = 87‘(‘2 |x — y| |:( (l‘ + y 2t0)> Il + Ig:| . (B.27)
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Final result

It is now time to add up the two contributions. As expected, the two 1/e divergent terms

cancel, leaving a finite well-behaved 2-point function:

1 _
C(m,t;to):§Cw+C:Coo+AC
B.28)
= —F—2 —to)l1 + Is — I3] .
87T2|£7y|[(y o)1+ I 3]

Massless case

In the massless limit, the relevant integrals simplify greatly. First, consider:

lim [} = |z — y]/ dp cos(p(z® — 3°))sinc(p|z — y|)
7, y

m—0

™ . .
= — [sign(a® = + |z — y[) — sign(a” — y° — |z — y])] (B.29)

= 59(—52)

where O(z) is the Heaviside step function and s? = At? — Az? is the spacetime interval.

On the other hand:

lim Ir = (2 — y°)[z — y| /0 dp sinc(p(z” — y°))sinc(plz — y|)

m—0

_ (@’ — e~y (B.30)
|20 =0 + |z — yl[ + 2 — y° — |z — o]

- g@ —yle(s?) + g(xo —y")0(-5%)

and, similarly

o0
lim Iy = (2° +y° — 2to) |z — y| / dp sinc(p(a” + y° — 2to))sinc(plz — y|)
m—r - 0 =

_ ﬂ'(xo + 40 — 2tg)|z — ¥
|20 + 30 = 2t + |z — yl| + [2° +y° — 2t0 — |z — y|

™

5 (2° + 9" — 2t)O(—(2° + y° — 2t0) + [z — y]) .

T
= le—ylO@" +y" =2t — [z~ y]) +

(B.31)

Finally, for most applications, we will be interested in the large y° — ¢y limit, we can effectively

replace the latter integral by:
lim I3 = g\g -yl . (B.32)

m—0
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By noting that for time-like separated events 2° + y° — 2ty > |z — y|, we can combine all

the theta-functions conditions into the following simpler result:

Co(z,y;t0) = %Coo +C=Cyx + AC

_ Dy (2% +¢° = 2t)
167 |z -yl

(B.33)
- 1> O(—s2)0(z" +4° — 2tg — |z — yl) -

Spatial gradient

The two-point function of the spatial gradient of the field is easily computed by differentiating C
directly, thanks to the linearity of the expectation value. By carefully handling the derivatives
of the distributions, we get three terms, two of which concentrated on the lightcone (due to the
derivatives of the theta function). In particular:

xo 0_ 5Z Ty — Yi)\Tj — Y5
B00(a)0y0(s)] = o ) (m e )> o(-<2,)

70 0 _

_ <167r|x—y| - 1 (25(_51@/)5@] + 45 (—Sxy)("[‘z f— yz)(l'j _ yj)) ,

(B.34)

where we have purposedly ignored the ©-function related to the initial conditions for simplicity,
as it is irrelevant in most situations of interest — o is much larger than the typical scale of any
Earth-based experiment. However, if we are only interested in the coincident limit (and in the
sum over all directions), the solution greatly simplifies. In particular, by using the standard

relation:

v21

2 = 476 (z —y) , B.35
Z—7] (z—y) (B.35)

we obtain (recalling the minus sign for the spatial contractions in this signature):

—52
B[0,0(2)9'9(y)] =102 (2 + 1 — 2to) (2‘5( ) g9z - y|>@<—s§y>>
(B.36)

16 lz —yl =
Do 2 21 2
+ 167 (66(_5337;) + 4‘£ - y’ d (_Sajy))
In the non-relativistic limit:
Ol —
§(—s3,) = (|| y||) , (B.37)
z-y



and r26'(r?) = 0 when integrated against any smooth test-function, whilst we always have:

Oz —y) M

D= Tl P (B.38)

Therefore, in the non-relativistic limit we get the following covariance for the gradient of the

field:

DT o(lz—yl) DT

Ei0(0)0'ou)]) =5 1 F = 2

0 (@ —y), (B.39)

where we have kept only the leading term in T' = —tg, i.e. we assume the diffusive evolution

has been going on for much larger timescales than those related to any local observation.
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Appendix C

Limits of qKdS

Here we provide details leading to the various limiting geometries of the qKdS black hole
described in the main text. Our analysis primarily follows [269]. First let us explore the
horizon structure of the naive metric (7.23), corresponding to the roots of the blackening factor
H(r). Introduce a function Q(r) = r?H(r) such that the roots of @ coincide with the roots
of H. Since @ is a quartic, it will have either four, two, or zero real roots. Requiring @ to
have four real roots, three of which are positive and correspond to the horizons r, > ry > r_,
imposes restrictions on the physical parameters of the black hole solution, namely, a and . As
described in the main text, we can express the parameters a?, R% and pf in terms of the three
horizons 74+ and r..! The negative root of @, denoted r,, and sometimes called the ‘negative
horizon’, lies behind the singularity at r = 0.

With these roots, we factorize @Q as

1

Q(r) = —R—g(r—rc)(r—r+)(r—r_)(r—7’n) ) (C.1)

It proves convenient to introduce parameters d, d, e and € to parameterize the roots of @,

re=ete, rp=e—¢€,
(C.2)
r-=d+4+9d, rhm=d-—9.

'For example, to reexpress R3, first subtract ry H(ry) = 0 from r.H(r.) = 0, and similarly subtract
r—H(r-) = 0 from ryH(ry) = 0. Subtracting the first of the resultant expressions from the other and re-

arranging one recovers (7.39).
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Since 7. and r+ are all non-negative, we immediately learn e and d are real while § and € must
be non-negative real numbers. Expressing Q(r) in terms of these parameters, one fixes d = —e
to eliminate the r3 contribution. Additionally, the root ordering condition, r. > r, > r_ and

rn = —(ry +7r_ +1.) < 0 further imposes

0<e<e, e<di<22e—c, (C.3)
allowing us to write
1
Q= —ﬁ((r—e)2 — ) ((r+e)*—6?). (C4)
3

Moreover, the parameters R, a® and uf (7.39) become

R =2e* + &+ 47,
9 (e—0d)(e+d)(e—e)e+e)

“=- 2e2 4 €2 4 52 7 (©5)
jl = 2e(d —e)(0 +e)
2e? 4 €2 + 02

Notice from the root ordering (C.3) that a®> > 0 and u > 0.
There are multiple cases when () has degenerate roots, or degenerate horizons. These
include: (i) the extremal or ‘cold’ limit, where ry = r_; (ii) the (rotating) Nariai limit, where

re =14, and (iii) the ‘ultracold’ limit, when r. = r; = r_ coincide. Each are explored below.

Extremal limit

The extremal limit corresponds to when the inner and outer black hole horizons coincide,
r4 = r_. In this limit, the temperature of the outer black hole horizon vanishes, 7, = 0, and is
thus sometimes called the ‘cold’ black hole. Given the parameterization (C.2), r4 = r_ imposes

d = 2e — €. Consequently, the parameters (C.5) become

e*(e —¢
CLQZI%(G—E)Q(BG—E)(G—I—E) , ;M:8(R§) , (C.6)
with R3 = 2(3e? — 2ee + €2), and
Q) = — 5 (r — (e + ) (r — e+ &2(r +3e —c) . ()

_Rg
It is interesting to consider the near horizon limit of the extremal black hole, where r ~

r4 = e — €. The coordinates (t,r, ») become singular in this limit and we therefore perform the
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coordinate transformation

T at
=e— A t=— =p— —= C.8
r € €+ pa )\7 (b ()0 (6—6)2)\7 ( )
where A is a dimensionless parameter which for the time being is non-zero. Then,
)\2[)2
Qp) = —?()\p —2€)(A\p +4e — 2¢) . (C.9)
3

Substituting this, performing the coordinate transformation and then taking the limit A\ — 0,

the naive brane geometry (7.23) becomes

ds? = —’0—2d7'2 + Fd—pz + (e —€)? (dp — 2'.;adT : (C.10)
ex F pQ (6 _ 6)3 )
with?
Ri(e —¢)? R§r2 r2
r= 13 _ + + (C.11)

de(2e—¢)  (re—r4)(re+3ry) 1-— 6r2 /R3
Introducing dimensionless coordinates (7, p) such that 7 = VT'# and p = VT'p, we find

dA2
ds?, =T (-;3%1%2 + ;2 > + 72 (dp + kpdi)? (C.12)

where k = —2al'/r} = —2aR}/r (R} — 6r}).
For completeness, the leading order contribution to the holographic CF'T stress-energy ten-

sor in the extremal background is

1 1 pl

T = (TP g = ——(T%)y = L
(T30 = (T)o = —5(T%)o 167G 12

1
3uba R} (C.13)

_ iy
 87G3(R:—6r2)rd”’

(T%)o

which has vanishing trace to this order.

Nariai limit

The Nariai black hole is when the outer black hole horizon and cosmological horizon coincide,
re = r4+ = rn. In this limit, naively, the temperature of the cosmological and black hole
horizons vanish, however, we will see the Nariai black hole has a non-zero temperature. From

the parameterization (C.2), r. = r4 is equivalent to € = 0, such that

s €2(6%—¢?) _ 2ed?

(=" C.14
I y M RZ ( )

*Here we use that in the extremal limit R3 = r2 + 3r3 + 2rir., such that r. = ,/R2 — 2r3 —ry.
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with RZ = 22 + 6%, and

1
—R—g(r — )3 ((r + )% = 6?) (C.15)

Q p—
which vanishes in the limit » = ry. Therefore, the (¢,7,¢) coordinate system is insufficient to
describe the Nariai geometry.

To this end, consider the following coordinate transformation

rmetep, 12T, ompmLp. c19
€ e’e
The function ) becomes
¢ 2 2 2
Qp) = 7o (1= p)((ep +2¢)° = 7). (C.17)
3

Taking the e — 0 limit, the brane metric (7.23) takes the form

d 2
ds} =T <—(1 — p?)di? + (1_’)/)2)> + 2 (dp + kpdi)? | (C.18)
where 7 = I'7 and
R2e? R2r2 2al’
r=-—-53 _=_"31X k=-—"r C.19
4e?2 — 62 6rf — R’ ry ( )

where we used 6§ = y/R% — 2r%.

The temperature Ty of the Nariai black hole can be found by Wick rotating the near horizon
metric into an appropriate Euclidean section. To see this, rescale coordinates p = pyv/I' and

7 = #/T, such that the Nariai metric (C.18) becomes
dsi = —f(p)dr® + [~ (p)dp” + 1R (de + (k/T)pdr)? (C.20)

with k/T' = —2a/r% and f(p) =1 — p?/T. Next, Wick rotate 7 — it and a — iag, such that

the Euclideanized geometry is

-
dsd = f(p)dr2 + 1 (p)dp? + 13 <d¢+ Zf” dTE> . (C.21)
N

We now zoom in to the near horizon region where p; = v/T and express the metric in flat polar

coordinates and impose regularity to remove the conical singularity. Thus, introduce the radial

coordinate

p :% = dp* = (f'(p)p'[2)%dp” . (C.22)

249



Moreover, to eliminate the drgd¢ cross term in the line element, introduce coordinates

1 , / 1 ’ /
TE = W(VTE —rNvad'), ¢ = m <:1:TE +7¢> ) (C.23)

with v = v/T'/rx and a = —2axT/r%. Then, expand the metric (C.21) about p = VT,
2
ds% ~ pd(87'rp)? + dpf? + g, (C.24)

where we used f(p) = f'(p;)(p — pi) and
2

N-¥3

B

The (7, p)-sector is that of a cone where we remove the singularity at p’ = 0 by demanding
T, have period A7}, = 273. Additionally, we impose ¢’ to have period A¢’ = 0, such that the
geometry (C.24) represents flat polar coordinates. We now solve for the periodicity of Atg in

the Euclidean geometry (C.21) via®

Aty =271 = yAtp +rnalAg ., A¢ =0=~A¢p — L Arg, (C.26)
N
leading to
AT = 2By =27VT (C.27)
(72 +a?) | |

Hence, the temperature of the Nariai black hole is Ti = (27v/T) L.

Lastly, the holographic CFT stress-energy tensor in the rotating Nariai geometry is

R 1 1w
TN = {TPVg = —={(T%\q = —
( T>0 < p>0 2< T>0 167TG3 7,,1{1 )
9 (C.28)
(T2)o = 3ulaRy Y
?10 8rGy(6ry — R2) 1k
When a = 0, we recover the stress-tensor for the static quantum Nariai black hole [264].
Ultracold limit
The ultracold limit occurs when all three horizons coincide, r. = r4 = r_ = ryc. Thus, this is

a combination of the Nariai and extremal limits, i.e., simultaneously sending § — 2e — € and

3Where it is useful to know the inverse coordinate transformation 75 = v7g + rnad and ¢’ = v — %TE.
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€ — 0. Here we will arrive at the ultracold limit directly from the Nariai limit, where we make

the following change of variables:

_ 2e — ¢ o R3 R3€
p =14/ 7 X, 7= 50 5 4T, (C.29)

and subsequently take the limit 6 — 2e such that the Nariai geometry (C.18) becomes that of
the ultracold black hole,

Rarye 20X 2
ds?, = 23N (T 4 dx?) + 2, <d¢— a dT> . (C.30)

3
4 e

The physical parameters meanwhile are a® = 3e?/R3 and uf = 8¢*/R3.

Lukewarm black hole

Lastly, as with all Kerr-de Sitter black holes, the gKdS has a lukewarm limit, where the surface
gravities of the cosmological and outer black hole horizons coincide k. = k4, apart from the
surface gravity of the Nariai black hole. For completeness we carry out the analysis of this
limiting geometry with respect to the surface gravities of the naive black hole spacetime, leaving
the analysis of the lukewarm limit of the regular black hole for the main text.

To this end, the surface gravities with respect to the naive metric (7.23) are simply x; =
%|H '(1;)], following the definition (*V,(¢ = k(¢ where there is a surface gravity associated with

each root of the blackening factor H(r). The temperature of each horizon is then®

ki _ [H'(ri)]

2 47 (C:31)

Then, using H'(r;) = r; 2Q'(r;), since H(r;) = 0, we have

Q' (ri)] 1 2 2 2 _ 2

T, = Ir? = GRaey [[(ri —e)((ri +€)° = 0%) + (ri+e)((r: —e)* —€7)]| . (C.32)

Then, the temperature of the outer horizon r; =e — € is

1 2¢((2e —€)? — 42

((2e—¢) — ) (C.33)

- 47 R} (e —¢€)?

4One way to derive this expression of the temperature is to move to the Euclidean section of the rotating
geometry (7.23), via the double Wick rotation ¢ — i7g and a — iag and then impose regularity to remove the

conical singularity along the Euclidean time direction.
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Via root ordering, this temperature is positive, and vanishes in the extremal limit. Meanwhile,
the temperature of the cosmological horizon r. = e + € is

1 2e((2e+€) — 6?)
 4AmR3 (e+¢€)?

(C.34)

C

Taking their difference,
T.— T, =0 <= e?(-22+6%)=0. (C.35)

Here e = 0 is forbidden via the root ordering while ¢ = 0 corresponds to the Nariai limit.
Hence, the lukewarm limit corresponds to when §2 = 2e% — €2, with temperature Tiye = ﬁ.
3

Moreover, since H(r) is non-zero in this limit, the lukewarm geometry is safely covered by the

coordinates (t,r,¢) with blackening factor

1

H(?") = —@

(r—e)?—e)((r+e)?—2e%+¢€), (C.36)

and where (C.5) become R2a? = (e — €2)? and R3ul = 4e(e? — €2), with R2 = 4e%.
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