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Abstract—This paper presents both modelled and laboratory 

results of a radar system operating under dynamic interference 

conditions, evaluated with and without a Perception Action 

Cycle (PAC) adaptation mechanism to dynamically adjust the 

transmitted waveform in response to spectral interference. 

System performance is assessed using Signal-to-Noise Ratio 

(SNR) as a quantitative metric to determine the benefit of 

adaptive behaviour. Comparative analysis shows that applying 

PAC yields improvements of up to 17.8 dB with an average gain 

of 14.6 dB in the modelled environment, and a maximum 

improvement of 11.2 dB with an average gain of 8.5 dB on the 

ARESTOR hardware in a controlled laboratory setting. These 

findings are supported by a structured modelling approach and 

validated through physical measurements, reinforcing the 

potential of adaptive sensing for interference mitigation in 

contested electromagnetic environments. 
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I. INTRODUCTION 

Modern radar systems face increasing pressure to operate 

within complex, contested, and congested electromagnetic 

environments. Traditional non-adaptive radars, though 

effective in static scenarios, lack the agility and intelligence to 

respond to dynamically evolving threats or spectrum 

conditions. Their operation is often fixed and predetermined, 

with limited feedback or context-awareness, making them 

poorly suited to scenarios requiring real-time adaptability, 

spectrum coexistence, or collaborative sensing. 

Cognitive Radar (CR), first conceptualised in [1], represents a 

biologically inspired evolution of conventional radar systems, 

drawing parallels with the perceptual capabilities of 

echolocating mammals such as bats. A CR system is 

characterised by its ability to learn from environmental 

interactions, employ a closed-loop PAC, and adapt 

transmission and processing strategies. Key elements include 

environmental learning, adaptive waveform control, and the 

integration of prior and sensed information. Further 

theoretical foundations and the evolution of CR are discussed 

in Section III. While the theoretical underpinnings of CR are 

well-developed, experimental validation remains limited. The 

gap between simulation and experimentation has slowed 

progress toward deployable systems. Integrating scheduling 

and resource optimisation into high-fidelity modelling to 

assess CR efficacy is a step forward [2]. Real-world 

evaluations remain essential to bridge this divide [3]. 

Before fully cognitive operation can be realised, radar systems 

must demonstrate adaptability within dynamic RF 

environments, including spectrum agility and interference 

mitigation. The growing number of RF devices and increased 

competition for spectrum access have made coexistence a 

fundamental challenge in both civilian and Defence 

applications. Future radar platforms must negotiate shared 

spectrum in real time and respond to external interference. 

This is reinforced by the UK Ministry of Defence’s Future 

Operating Environment 2035 report [4], which anticipates a 

congested and contested electromagnetic spectrum and 

emphasises the importance of systems that are adaptable, 

autonomous, and resilient. It identifies real-time, spectrum-

aware platforms as a strategic priority, aligning directly with 

the PAC-based adaptive radar behaviour demonstrated in this 

study. 

Another key requirement is the integration of active radar and 

passive Electronic Surveillance (ES) sensing. In operational 

environments where situational awareness depends on diverse 

data sources, the fusion of passive and active information 

becomes critical. This calls for multifunction RF systems that 

can seamlessly switch between or combine sensing modes 

across a wide range of frequencies. Yet many current 

platforms are built around single-purpose sensors, limiting 

their ability to support integrated, adaptive operations. 

While literature demonstrating degrees of CR behaviour 

experimentally is limited, notable contributions include the 

CREW radar system developed at The Ohio State University 

[5] and the FFAST framework, which demonstrated both 

interference avoidance and target-matched illumination [6].  

These represent some of the few examples where adaptive and 

cognitive sensing have been validated in hardware. They 

underscore the importance of bridging theoretical frameworks 

with practical implementation, particularly when assessing 

system performance under real-world operational constraints. 

Building on these foundations, ARESTOR [7] was developed 

by UCL to experimentally validate intelligent RF sensing 

concepts. Designed as a reconfigurable, multi-role RF sensor, 

it enables rapid experimentation with adaptive waveforms, 

mode switching, and PAC mechanisms. This paper presents 

results from simulated and experimental trials using 

ARESTOR, demonstrating adaptive waveform selection 

under variable interference to validate key principles required 

for CR development. 



These investigations are part of a broader research trend 

advocating for fully adaptive signalling strategies to optimise 

radar performance in real time. Frameworks such as FFAST 

[6] show how dynamic waveform selection supports both 

interference mitigation and mission-aligned sensing, closely 

aligning with the PAC-based approach explored in this work. 

Meanwhile, increasing spectral congestion continues to drive 

the need for intelligent radar systems that can coexist with 

other spectrum users. The growing field of radar spectrum 

engineering highlights the urgent need for systems capable of 

real-time adaptation to evolving spectral conditions [8]. The 

work presented in this paper addresses this challenge by 

demonstrating how cognitive mechanisms enable spectral 

agility and mitigate interference in practical radar 

implementations. 

This paper provides both modelled and experimental results 

of an FMCW radar mode operating under varying 

interference. The radar’s response is analysed when 

interference is present in different parts of the sensing 

spectrum, comparing non-adaptive operation with a PAC-

based approach that identifies interference and selects 

waveforms to avoid it. The trade-off between reduced sensing 

bandwidth and interference avoidance is evaluated. 

The rest of the paper is structured as follows: Section II 

reviews the hardware used in the experiments; Section III 

provides an overview of CR theory; Section IV presents the 

results from modelling, Section V presents the results from 

experimentation, and Section VI concludes the work. 

II. ARESTOR SYSTEM 

The ARESTOR platform is a multi-role RF sensing system 

developed at University College London (UCL). It is built on 

the Xilinx ZCU111 evaluation board [9], ARESTOR 

leverages first-generation Radio Frequency System-on-Chip 

(RFSoC) devices to deliver a highly reconfigurable 

architecture capable of operating as an active radar, passive 

radar, and wideband ES receiver. 

At its core, ARESTOR [7] is a tightly integrated RFSoC 

device, which combines eight high-speed Analog-to-Digital 

Converters (ADCs) and Digital-to-Analog Converters 

(DACs) with sampling up to 4 GS/s and 6.5 GS/s 

respectively, with Field Programmable Gate Array (FPGA) 

fabric and embedded processing cores. This enables 

significant control over signal generation and capture, as well 

as real-time processing and adaptivity. The flexibility of the 

system is extended through a modular development 

framework that allows rapid reconfiguration between roles 

and facilitates complex RF sensing experiments without the 

need for multiple disparate systems. 

To enable scalable and robust RF experimentation, a bespoke 

FPGA framework has been developed. This framework 

defines generic transmitter and receiver hardware modules, 

which may be instantiated as needed to realise specific 

sensing configurations. The platform also supports extensive 

Digital Signal Processing (DSP) within the programmable 

logic, including decimation, digital mixing, deramping for 

Frequency Modulated Continuous Wave (FMCW) signals, 

and passive radar pre-processing. Efficient data transfer is 

supported via a Direct Memory Access driven architecture, 

enabling real-time access to high-volume radar data through 

the processing system and onward to external storage or 

analysis pipelines. 

A key innovation within ARESTOR is its ability to operate 

multiple sensing modes simultaneously by dynamically 

allocating ADC/DAC resources, implementing mode-

specific DSP chains in hardware, and managing real-time 

synchronisation across sensing threads. 

The combination of high bandwidth, digital flexibility, and 

reconfigurable sensing modes positions ARESTOR as a 

capable experimental testbed for advancing research into the 

PAC in CR systems. Its integrated design enables dynamic 

selection of sensing modes and waveforms, in response to the 

perceived environment. This functionality makes ARESTOR 

ideally suited for experimental studies involving adaptive 

sensing in contested RF environments. 

III. COGNITIVE RADAR THEORY 

CR distinguishes itself from adaptive radar not solely through 

the presence of feedback or adaptability, but through the 

incorporation of memory, learning, and inference. A 

cognitive system must go beyond reactive control; it must 

possess the ability to improve performance over time by 

internalising experience [1]. 

The conceptual foundation for CR was established in early 

work that introduced PAC, memory, and learning as central 

to radar operation [1]. This theoretical vision positioned CR 

as a biologically inspired evolution of conventional radar 

systems, capable of dynamically adapting to its environment.  

Later contributions further emphasised CR as a 

transformative technology, highlighting its potential for 

spectrum efficiency and adaptability in complex 

electromagnetic environments [10]. More recent overviews 

have tracked progress in adaptive waveform design, 

environment sensing, and real-time processing, 

demonstrating how CR is moving closer to operational 

deployment [11]. Collectively, these works underscore the 

importance of experimental systems that validate cognition 

under real-world conditions. 

A critical differentiator between adaptive and cognitive radar 

is the role of memory. In CR, memory operates at multiple 

levels: short-term memory captures recent environmental 

observations and supports immediate adjustments, while 

long-term memory retains historical information to inform 

future strategies. This persistent knowledge base allows the 

system to detect temporal patterns, refine hypotheses, and 

make context-aware decisions. Without memory, even a 

system capable of adaptive behaviour cannot reason about 

past interactions or anticipate future outcomes and thus 



cannot be considered truly cognitive. This raises a key 

consideration: can a radar system be called cognitive if it 

selects waveforms based solely on current measurements? A 

system that ignores historical performance or evolving 

environmental conditions may exhibit agility, but it lacks 

introspection and the capacity to optimise behaviour over 

time. 

Cognition implies strategic decision-making under 

uncertainty, guided by knowledge, experience, and feedback. 

This process, not just the presence of feedback, defines the 

CR paradigm. For a system to be considered cognitive, it 

must maintain an internal representation of the environment, 

adapt its behaviour based on past outcomes, apply reasoning 

to optimise sensing and transmission, and improve its 

performance through experience. These characteristics form 

the theoretical framework [3] for evaluating CR systems and 

establish the benchmarks against which experimental 

platforms such as ARESTOR can be assessed. 

IV. MODELLED RESULTS 

Advanced RF sensors of the future will require the capability 

to determine not just how to adapt, but when and why 

adaptation is necessary. For example, the presence of 

interference in a band currently used by the radar may not 

justify a change in behaviour. This decision depends on the 

relative levels of the radar signal and the interferer, the 

interferer’s spectral location, and the availability of suitable 

alternate waveforms. To explore this, a modelling 

environment was developed to simulate radar operation and 

assess the consequence of waveform adaptation in the 

presence of interference. 

All simulation testing was carried out entirely at baseband, 

spanning 0–100 MHz, and designed to reflect the signal 

generation and reception characteristics of the ARESTOR 

radar hardware. An FMCW radar signal was generated using 

a fixed-duration chirp and a linearly swept frequency profile. 

The waveform was constructed using a sample period of 

approximately 1.39 ns, calculated from the DAC sampling 

rate of 5.76 GHz and an interpolation factor of 8. These 

values were selected to accurately replicate the baseband 

characteristics of the ARESTOR system. The signal was 

sampled using a 4096-point array. This size was selected to 

provide sufficient frequency and range resolution while 

remaining compatible with practical hardware memory and 

processing constraints. 

A library of noise interference waveforms was created in the 

form of Additive White Gaussian Noise (AWGN), either 

spanning the full operating band or confined to specific sub-

band regions. The full spectrum was divided into 10 sub-

bands and the noise library resulted in 55 different 

combinations of bandwidth and position ranging from single 

10 MHz size interference to 100 MHz full bandwidth 

examples. This allowed the precise control of the spectral 

shape and bandwidth of the interferer to emulate a wide range 

of realistic operating conditions. The simulation environment 

supported the evaluation of radar performance with and 

without adaptive behaviour, enabling direct comparison 

across interference scenarios and waveform selection 

strategies. A representative example of the modelling process 

is shown in Fig. 1, which illustrates the waveform adaptation 

logic for the first 10 test configurations. In these scenarios, 

each interferer occupies a 10 MHz sub-band, incrementally 

stepped across the 0–100 MHz spectrum. All FMCW and 

noise transmission was programmed in this test 

configuration.

 

Fig. 1. Non-PAC, Interferer and PAC waveform bandwidths for the first 10 test configurations only. 



 

Fig. 2. Modelled SNR PAC vs Non-PAC – Lower Power Interferer.

Fig. 1 illustrates the non-PAC transmit waveform, the 

spectral footprint of the interferer, and the adapted PAC 

waveform for the first 10 test configurations. While the non-

PAC system consistently transmits across the full 100 MHz 

band regardless of interference, the PAC system adaptively 

repositions or narrows the transmit waveform to avoid 

spectral overlap. This visualisation reinforces how PAC 

avoids interference where possible, preserving usable 

bandwidth and improving performance. 

The PAC waveform is defined as the longest continuous 

section of bandwidth that doesn’t overlap with the created 

noise interference defined above. This creates a trade-off: 

reducing bandwidth helps avoid overlap with interference but 

negatively affects the radar’s resolution and reduces the SNR 

on the target. 

To quantify performance across test cases, SNR was selected 

as the primary metric of success. It offers a clear and 

measurable indication of how interference affects the signal 

quality and the extent to which adaptive waveform selection 

improves system resilience. The signal component of the 

SNR was calculated by identifying the absolute global 

maximum within the FFT data. The noise component was 

derived by computing the absolute mean value of the FFT 

bins from 50 to 4000, a method chosen to avoid influence 

from the main lobe or target side-lobes, thereby capturing a 

realistic approximation of the background noise floor. 

A comparative overview of SNR results across all 55 noise 

configurations is presented in Fig. 2 and Fig. 3, which 

illustrate outcomes under two different interference power 

levels. In the lower-power scenario (Fig. 2), the full-band 

noise interference was set approximately 22 dB below the 

average signal level. Under these conditions, PAC adaptation 

did not surpass the 3 dB threshold in any case and, in several 

instances, led to degraded performance due to the reduced 

FMCW bandwidth. PAC delivered an average SNR gain of 

just 0.8 dB. This outcome highlights the inherent resilience of 

the FMCW waveform and reinforces that adaptation 

decisions should not be based solely on the spectral position 

of an interferer but must also consider its relative strength.

 

Fig. 3. Modelled SNR PAC vs Non-PAC – Higher Power Interferer

Waveform Index 

Waveform Index 



In contrast, Fig. 3 presents results from a higher-power 

interference scenario in which the noise power was 

increased by 16 dB, placing it approximately 6 dB below 

the average signal level. In this condition, PAC adaptation 

yielded a significant SNR improvement in 54 of the 55 

configurations, exceeding the 3 dB threshold in all 

adaptation test cases. The only configuration without gain 

occurred when interference spanned the full 0 to 100 MHz 

band, resulting in the same waveform being selected in both 

modes. Across the remaining scenarios, PAC delivered a 

minimum SNR gain of 7.8 dB, a maximum gain of 17.8 dB, 

and an average improvement of 14.6 dB. These findings 

demonstrate the substantial advantage of employing 

adaptive waveform strategies in contested spectral 

environments, particularly when the interference strength 

reaches operationally significant levels. 

V. LABORATORY RESULTS 

To complement the modelled analysis, the same 55 test 

configurations were replicated in a controlled laboratory 

environment using the ARESTOR hardware [7]. The setup 

involved a direct cable loopback configuration, enabling 

consistent and repeatable signal capture without over-the-

air variability. Interference was generated internally using 

a single DAC channel from the ARESTOR system, with 

the radar transmission and the interference combined prior 

to reception. A Mini-Circuits 2-way power 

splitter/combiner [12] was used to combine the two signals 

before they were received by the ADC, ensuring precise 

alignment and preserving signal integrity. 

The interference waveforms used in the laboratory were 

based on the AWGN signals from the simulation 

environment and reformatted into binary files compatible 

with the ARESTOR system. The sample length of each 

binary file was explicitly designed to consist of 345600 

samples to match the FMCW chirp period of 0.24 seconds, 

ensuring continuous interference throughout each FMCW 

chirp. 

 

Fig. 4 Interferer Waveform Grouping Noise Comparison 

This process produced 55 interference waveforms with 

comparable power spectral density (PSD). Fig. 4 illustrates 

the interference waveforms in their binary form prior to the 

PSD scaling applied by ARESTOR during FPGA loading. 

A scaling factor was applied to each waveform to ensure 

that, as the bandwidth increased, the PSD remained 

uniform across all test conditions. 

The resulting binary files were assessed to ensure 

consistent interference power across all waveform 

bandwidths. Median PSD levels were evaluated by 

bandwidth group and found to be nearly identical, 

demonstrating uniformity across the 55 test configurations. 

Validation of the FMCW and interference waveforms was 

performed using two approaches: analysis of data captured 

in a short cable loopback configuration, and independent 

measurements using a Keysight FieldFox Microwave 

Analyser N9915A [13]. This dual method ensured that the 

transmitted waveforms adhered to the correct frequency 

profile, structure, and power levels for each test 

configuration.

 

 Fig. 5. Laboratory SNR PAC vs Non-PAC Results

Waveform Index 



Although ARESTOR supports ES and real-time waveform 

adaptation, a prescribed waveform schedule was 

implemented in these experiments to ensure repeatability 

and isolate the effect of interference. 

Each test transmission and capture contained 50 chirps. To 

calculate the Noise level without artificially reducing the 

estimate through averaging, only the first chirp was 

analysed. Noise was computed as the mean magnitude 

across FFT bins 50 to 4000. The signal component was 

defined as the global maximum from the complete dataset 

of 50 chirps. This method ensured consistency with the 

simulation while enabling realistic evaluation of system 

performance under physical interference conditions 

This hardware-based setup allowed for direct evaluation of 

how the PAC and non-PAC configurations perform when 

exposed to physically generated interference under realistic 

signal chain conditions. 

A comparative overview of the SNR performance across all 

55 test configurations was also evaluated using the 

laboratory measurements – in this configuration the 

transmitted waveforms were programmed. Fig. 5 shows the 

PAC and non-PAC SNR values were calculated for each 

test case using the same definitions as in the modelled 

environment. The PAC outcome was considered beneficial 

only if it exceeded the non-PAC SNR by a threshold of 3 

dB, reflecting a cost associated with adaption. In all 54 test 

scenarios where adaptation occurred, the PAC waveform 

achieved a minimum SNR gain of 5.2 dB, a maximum gain 

of 11.2 dB, and an average improvement of 8.5 dB. These 

laboratory results reinforce the practical viability of PAC-

based adaptation in real hardware and confirm its potential 

to mitigate interference and enhance signal quality under 

realistic operating conditions. 

VI. CONCLUSIONS 

Adaptive radar systems must operate in congested and 

contested RF environments, where spectral conditions are 

dynamic, and interference is prevalent. This paper has 

demonstrated a practical PAC-based waveform adaptation 

strategy that enables coexistence with other signals in-

band. Compared to non-PAC operation, the approach 

delivered measurable SNR gains by avoiding spectral 

overlap. 

In simulation, PAC adaptation outperformed non-adaptive 

operation in 54 of 55 configurations, achieving SNR gains 

from 13.5 dB to 35.2 dB, with an average of 24.1 dB. 

Hardware trials validated this behaviour, with gains 

ranging from 5.2 dB to 11.2 dB and an average of 8.5 dB. 

These results confirm the value of real-time adaptation 

under both modelled and practical conditions. 

Performance improvements were driven by selectively 

reducing bandwidth to avoid interference, with the best 

results occurring when interference appeared at band edges. 

These findings highlight the potential of cognitive 

strategies to enhance sensing in dynamic spectral 

environments. 

Future work will explore non-contiguous waveform 

designs that retain resolution while avoiding interference, 

over-the-air trials under realistic propagation conditions, 

and Reinforcement Learning approaches to enable 

intelligent, experience-based adaptation. 
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