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ABSTRACT
Galactic archaeologists often assume that integrals of motion (IoMs) such as 𝐿𝑧 and 𝐸 are conserved, so substructure remains
frozen in IoM space over many Gyr. However, this is not true in the Milky Way due in part to its rotating bar. In this study we
quantify the effects of the bar on the dynamics of substructure. We employ three different theoretical models: an analytical toy
model; a set of test particle simulations with steady and slowing bars; and a cosmological zoom-in simulation of a Milky Way-like
galaxy. Each model predicts that the bar increases the angular momentum and energy spread of low-energy substructures by a
factor of ∼ 10− 100, so they cannot remain tightly clustered. We derive a criterion for determining when this effect is important.
The most affected orbits are low energy (𝐸 ≲ 𝐸⊙ , 𝑟apo < 40 kpc), prograde, eccentric, or low inclination. This includes ∼ 3/4 of
Galactic globular clusters and ∼ 1/4 of known stellar streams. We predict the presence of abundant bar-dispersed substructure.
The structures remain much more tightly clustered in the space of metallicity and Jacobi integral 𝐻J = 𝐸 − Ωb𝐿𝑧 . We therefore
propose using 𝐻J and chemistry instead of traditional IoMs when searching for inner halo substructure. In (𝐿𝑧 , 𝐸) space the
dispersal of the structures is along a principal direction with gradient d𝐸/d𝐿𝑧 equal to the bar’s pattern speed Ωb. Bar-dispersed
substructure should therefore allow the past evolution of Ωb to be constrained.
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1 INTRODUCTION

In the Lambda-CDM (ΛCDM) model of cosmology, galaxies form
hierarchically by undergoing mergers (White & Rees 1978). The
Milky Way therefore contains abundant substructure, composed of
different populations of stars born either inside or outside the Galaxy.
Examples of substructure include merged dwarf galaxies such as
the Helmi Streams (Helmi et al. 1999), Gaia Sausage-Enceladus
(Belokurov et al. 2018; Helmi et al. 2018), and Sequoia (Myeong
et al. 2019). These dwarf galaxies are often accompanied by their own
populations of globular clusters (GCs), which can be associated with
their parent galaxies through a combination of dynamics, chemistry
and ages (e.g. Myeong et al. 2018b; Massari et al. 2019; Kruijssen
et al. 2020; Callingham et al. 2022). GCs can in turn produce their
own substructure. Stars can escape through the Lagrange points of a
cluster (or satellite galaxy) due to the Milky Way’s tidal field. The
stripped stars often form a stellar stream composed of a pair of tails
leading and trailing the cluster approximately along its orbit (Binney
& Tremaine 2008). To date ∼ 100 stellar streams from GCs or dwarf
galaxies have been discovered in the Milky Way (Mateu 2023).

Interest in GCs and their debris has increased since the arrival of
high-redshift data from JWST. Observations suggest that ∼ 50% of
the stellar mass of some galaxies was contained within massive star
clusters at 𝑧 ∼ 8 (Mowla et al. 2024). In the Milky Way, Belokurov
& Kravtsov (2024) divided the population of GCs into accreted and
in situ. The clusters likely to have been born in the Milky Way are
at low energies (𝐸 ≲ 𝐸⊙), in the thick disc and inner halo. The
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low-metallicity ([Fe/H] ≲ −1.3) in situ clusters are associated with
the population of stars born in the Milky Way before the formation
of the disc at 𝑧 ∼ 3 − 5, known as Aurora (Belokurov & Kravtsov
2022) or the Poor Old Heart (Rix et al. 2022). GCs therefore provide
a portal through which to study the earliest stages of our Galaxy’s
evolution. However, many of these clusters are likely to have been
heavily tidally stripped or completely dissolved. JWST observations
(e.g. Mowla et al. 2024) and results from the Milky Way (e.g. Martell
& Grebel 2010; Belokurov & Kravtsov 2023) suggest that a large
fraction of field stars in the halo originated in GCs. Some stars born
in GCs can be identified by their unusual chemistry, in particular
their high [N/O] ratios (e.g. Martell & Grebel 2010; Horta et al.
2021; Schiavon et al. 2017; Belokurov & Kravtsov 2023; Kane et al.
2025). There is a strong overlap between the distribution of these
stars and members of Aurora (Kane et al. 2025).

Dynamics are also frequently employed in attempts to identify
unbound substructure. Populations accreted or dissolved many Gyr
ago are likely to be highly phase-mixed (Helmi & White 1999).
This means that there are no longer strong correlations between the
orbital phases of stars from the same progenitor. The use of dynam-
ics to uncover substructure therefore relies on integrals of motion
(IoMs), which are conserved along each orbit. If the Galactic poten-
tial is axisymmetric about the 𝑧-axis in the region explored by an
orbit, the energy 𝐸 and the 𝑧-component of angular momentum 𝐿𝑧

are exactly conserved (Binney & Tremaine 2008). Though the total
angular momentum vector precesses about the 𝑧-axis, its magnitude
does not vary significantly. The quantity 𝐿⊥ ≡

√︃
𝐿2
𝑥 + 𝐿2

𝑦 is there-
fore often treated as an integral of motion (e.g. Helmi et al. 1999),
and is a measure of an orbit’s vertical motion above and below the
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Galactic plane. In an axisymmetric potential any substructure will re-
main approximately frozen in the 3D space (𝐿𝑧 , 𝐿⊥, 𝐸). Any tidally
disrupted satellite galaxies or globular clusters should thus remain
tightly clustered in this space, even when highly phase-mixed and
dispersed across the Galaxy. This is the basis of various attempts to
identify substructure from dynamical quantities. These studies typ-
ically employ clustering algorithms such as HDBSCAN (McInnes
et al. 2017) in IoM space to identify sets of stars on similar orbits
(e.g. Lövdal et al. 2022; Dodd et al. 2023; Ou et al. 2023; Liu et al.
2024; Kim et al. 2025), which may have originated in a common pro-
genitor. An alternative to (𝐿𝑧 , 𝐿⊥, 𝐸) is the set of action variables
J, which (along with the angle variables 𝜽) are related to the Carte-
sian coordinates (x,v) via a canonical transformation (e.g. Binney &
Tremaine 2008). If they exist, the actions are exactly conserved in
an axisymmetric potential and should therefore preserve information
about past merger events (e.g. Myeong et al. 2018a). They are also
adiabatic invariants, so remain approximately constant during slow
changes to the potential (e.g. gradual mass accretion).

However, the assumption that (𝐿𝑧 , 𝐿⊥, 𝐸) and actions are con-
served in the Milky Way is not always valid. One reason is that the
Galaxy is not axisymmetric; it hosts a bar (de Vaucouleurs 1964;
Blitz & Spergel 1991; Whitelock 1992; Binney et al. 1991; Stanek
et al. 1994; Weiland et al. 1994) which rotates with a pattern speed
(angular frequency)Ωb ≈ 30−45 km/s/kpc (Portail et al. 2017; Bovy
et al. 2019; Sanders et al. 2019; Binney 2020; Chiba & Schönrich
2021; Clarke & Gerhard 2022; Leung et al. 2023; Zhang et al. 2024;
Dillamore et al. 2025), but is likely to be decelerating with time
(Chiba et al. 2021; Zhang et al. 2025). Along with spiral arms (e.g.
Sellwood & Binney 2002), the bar is capable of changing the angular
momenta of stars in the disc and halo (e.g. Halle et al. 2015; Chiba
et al. 2021; Dillamore et al. 2023), resulting in radial migration. It
is also well-known that the bar is able to perturb stellar streams.
Both the Ophiuchus (Hattori et al. 2016; Price-Whelan et al. 2016;
Yang et al. 2025) and Pal 5 (Pearson et al. 2017) streams may be
perturbed by interactions with the bar, creating fans or gaps, or flip-
ping the tails. Dillamore et al. (2024b) showed that a slowing bar can
transport globular clusters to higher 𝐿𝑧 and 𝐸 by trapping them in
its resonances. Stars stripped from these trapped clusters form dif-
fuse structures instead of narrow streams. The effects of resonances
on stream morphology were discussed extensively by Yavetz et al.
(2021, 2023).

In any steadily rotating potential such as a barred galaxy, conserva-
tion of 𝐸 and 𝐿𝑧 is replaced with conservation of the Jacobi integral
𝐻J (see Section 2). A second integral of motion may only exist in
specific scenarios, such as a non-rotating bar or harmonic potential
(Vandervoort 1979). In general the number of known integrals is
therefore reduced to one, though attempts have been made to iden-
tify proxies for a second integral (Qin & Shen 2021). In some cases
orbits affected by the bar are chaotic, as recently demonstrated by
Woudenberg & Helmi (2025). Any substructure composed of orbits
susceptible to the bar’s influence should thus be dispersed in IoM
space. This is especially true at low energies, in the regions occupied
by Aurora and the debris from the Milky Way’s presumed ancient
GC population (Kane et al. 2025). Understanding how substructures
dynamically evolve when influenced by the bar is therefore crucial
for connecting current observations to the Milky Way’s high-redshift
past. In this paper we focus on the effects of the bar on the distribution
of substructure in IoM space, particularly phase-mixed structures that
cannot be discovered via configuration space alone. This will help to
inform future substructure searches about when the bar’s influence
should be taken into account, and how to mitigate it.

The rest of the paper is arranged as follows. In Section 2 we present

a theoretical model of the dynamical evolution of substructure in a
barred galaxy. Sections 3 and 4 present the methods and results from
the test particle and cosmological simulations respectively. Finally
we summarise our conclusions in Section 5.

2 THEORY

2.1 The Jacobi integral

In an axisymmetric gravitational potential, both energy 𝐸 and the
𝑧-component of angular momentum 𝐿𝑧 are conserved integrals of
motion. This is no longer true in a rotating non-axisymmetric poten-
tial, such as in a galaxy with a bar or spiral arms. If the potential Φ
is rotating with constant pattern speed (angular frequency) Ωb, the
Jacobi integral is instead conserved. This is defined as

𝐻J ≡ 𝐸 −Ωb𝐿𝑧 , (1)

and can be seen as the energy in the frame corotating with the po-
tential (e.g. Binney & Tremaine 2008). This is clearer when 𝐻J is
expressed in coordinates (x′, v′) in the non-inertial frame rotating at
frequency Ωb (where v′ is the velocity relative to the rotating frame),

𝐻J =
1
2
|v′ |2 +Φ(x′) − 1

2
Ω2

b𝑅
2, (2)

where 𝑅 ≡
√︁
𝑥′2 + 𝑦′2 is the cylindrical radius.

While 𝐻J is not conserved if Ωb is time-dependent (e.g. a decel-
erating bar), it remains a valuable quantity. Consider the evolution
of 𝐻J in a potential Φ(x′) rotating with time-varying frequency
𝛀b (𝑡) = Ωb (𝑡)ẑ. In the corotating frame the equation of motion is

dv′

d𝑡
= −∇Φ − 2𝛀b × v′ −𝛀b × (𝛀b × x′) − d𝛀b

d𝑡
× x′, (3)

where the second, third and fourth terms on the right-hand side are the
Coriolis, centrifugal, and Euler forces. The Jacobi integral therefore
evolves according to

d𝐻J
d𝑡

= v′ · dv′

d𝑡
+ v′ · ∇(Φ − 1

2
Ω2

b𝑅
2) −Ωb

dΩb
d𝑡

𝑅2 (4)

= −dΩb
d𝑡

𝑅(v′ · 𝝓 + 𝑅Ωb) (5)

= −dΩb
d𝑡

𝐿𝑧 . (6)

Combined with equation (1) this implies that the energy and angular
momentum evolution of a particle are related by

d𝐸
d𝐿𝑧

= Ωb (𝑡). (7)

Hence even in a potential rotating at a variable frequency, particles
are instantaneously restricted to move along lines of gradient Ωb (𝑡)
in the (𝐿𝑧 , 𝐸) plane. These are contours of constant 𝐻J.

2.2 Evolution of substructure

Now consider a set of particles originating from a small area of
(𝐿𝑧 , 𝐸) space, such as debris from a dissolved globular cluster or
dwarf galaxy (e.g. Helmi & de Zeeuw 2000). If Ωb is fixed, they
can spread out along a fixed line in this space (if they experience
perturbations from the bar or spiral arms). With a time-varying Ωb
the gradient of these lines changes with time, so they are able to
spread into two dimensions.

We can create a simple toy model for this process by treating it as
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diffusion in angular momentum, analogous to Brownian motion. We
assume that interactions with the bar are random encounters which
give each star an angular impulseΔ𝐿𝑧 drawn from some distribution.
This assumption is only valid for substructure away from resonances,
for which the impulses from different encounters are uncorrelated
and unbiased. In this case each particle will perform a random walk
in 𝐿𝑧 , with a corresponding change in energy at each encounter
of Δ𝐸 = ΩbΔ𝐿𝑧 . The diffusion in 𝐿𝑧 is described by a diffusion
coefficient,

𝐷 ≡ 1
2
(Δ𝐿𝑧)2

𝜏
, (8)

where (Δ𝐿𝑧)2 is the mean squared change in 𝐿𝑧 per encounter and 𝜏

is the typical time between encounters with the bar (Einstein 1905).
Since 𝐷 depends on the probability distribution of Δ𝐿𝑧 and the time
between encounters, it is a function of the orbit’s actions (or energy)
andΩb. However, if we consider a single substructure diffusing across
a small region of (𝐿𝑧 , 𝐸) space, we can approximate 𝐷 as being
independent of 𝐿𝑧 and 𝐸 (but generally time-dependent). In this case
the 2D distribution of particles 𝑃(𝐿𝑧 , 𝐸, 𝑡) will obey the diffusion
equation,

𝜕𝑃

𝜕𝑡
= 𝐷

(
𝜕

𝜕𝐿𝑧
+Ωb (𝑡)

𝜕

𝜕𝐸

)2
𝑃, (9)

where the derivatives account for the fact that particle motion is
instantaneously along lines of gradient d𝐸/d𝐿𝑧 = Ωb (𝑡). We give a
derivation of equation (9) in Appendix A.

The evolution of an initially localised set of stars is given by
the Green’s function solution to this equation. Fourier transforming
equation (9) in 𝐿𝑧 and 𝐸 gives

𝜕𝑃̃

𝜕𝑡
= −𝐷

(
𝑘𝐿𝑧

+Ωb (𝑡)𝑘𝐸
)2

𝑃̃, (10)

where 𝑃̃(𝑘𝐿𝑧
, 𝑘𝐸 , 𝑡) is the Fourier transform of 𝑃. This has the

solution

𝑃̃(𝑘𝐿𝑧
, 𝑘𝐸 , 𝑡) = 𝑃̃0 (𝑘𝐿𝑧

, 𝑘𝐸 ) exp
[
−
∫ 𝑡

0
𝐷

(
𝑘𝐿𝑧

+Ωb (𝑡)𝑘𝐸
)2 d𝑡

]
,

(11)

𝑃̃0 (𝑘𝐿𝑧
, 𝑘𝐸 ) ≡ exp(−𝑖𝑘𝐿𝑧

𝐿𝑧0 − 𝑖𝑘𝐸𝐸0) (12)

where (𝐿𝑧0, 𝐸0) is the initial location of the particles. The evalu-
ated integral will contain averages of Ωb weighted by the diffusion
coefficient. For convenience we define the averaged quantities,

𝐷 ≡ 1
𝑡

∫ 𝑡

0
𝐷 d𝑡, (13)

⟨Ω𝑛
b ⟩𝐷 ≡ 1

𝐷𝑡

∫ 𝑡

0
Ω𝑛

b (𝑡)𝐷 d𝑡, (14)

so the integral can be evaluated as

𝑃̃(𝑘𝐿𝑧
, 𝑘𝐸 , 𝑡) = 𝑃̃0 exp

[
−𝐷

(
𝑘2
𝐿𝑧

+ 2⟨Ωb⟩𝐷 𝑘𝐿𝑧
𝑘𝐸 + ⟨Ω2

b⟩𝐷 𝑘2
𝐸

)
𝑡

]
.

(15)

The terms in the exponent can be factorised as

[...] = −1
2
(
𝑘𝐿𝑧

Ω0𝑘𝐸
)
𝚺̃−1

(
𝑘𝐿𝑧

Ω0𝑘𝐸

)
, (16)

𝚺̃−1 ≡ 2𝐷𝑡

(
1 ⟨Ωb⟩𝐷/Ω0

⟨Ωb⟩𝐷/Ω0 ⟨Ω2
b⟩𝐷/Ω2

0

)
, (17)

where Ω0 is a fiducial frequency ensuring all vectors and matrices
are dimensionally consistent, and 𝚺̃ is the covariance matrix in the

dimensionally consistent Fourier space (𝑘𝐿𝑧
,Ω0𝑘𝐸 ). Inverting the

Fourier transform gives the Green’s function solution,

𝑃(𝐿𝑧 , 𝐸, 𝑡) =
1

2𝜋 |𝚺 |1/2
exp

[
−1

2
(u − u0)T𝚺−1 (u − u0)

]
, (18)

u ≡ (𝐿𝑧 , 𝐸/Ω0), (19)
u0 ≡ (𝐿𝑧0, 𝐸0/Ω0), (20)

𝚺 = 𝚺̃−1
= 2𝐷𝑡

(
1 ⟨Ωb⟩𝐷/Ω0

⟨Ωb⟩𝐷/Ω0 ⟨Ω2
b⟩𝐷/Ω2

0

)
. (21)

The particles therefore spread out into a Gaussian, described in the
scaled (𝐿𝑧 , 𝐸/Ω0) space by the covariance matrix𝚺. The eigenvalues
𝜆± and eigenvectors e± of 𝚺 in this space are

𝜆± = 𝐷𝑡

(
1 + 𝑞 ±

√︃
(1 − 𝑞)2 + 4𝑝2

)
, (22)

e± =

(
1 − 𝑞 ±

√︃
(1 − 𝑞)2 + 4𝑝2, 2𝑝

)
, (23)

𝑝 ≡ ⟨Ωb⟩𝐷
Ω0

, (24)

𝑞 ≡
⟨Ω2

b⟩𝐷
Ω2

0
. (25)

It is convenient to define

𝛼 ≡
⟨Ω2

b⟩𝐷
⟨Ωb⟩2𝐷

− 1, (26)

which is the weighted variance of Ωb over time in units of its squared
weighted average. Hence 𝛼 is small in realistic scenarios where Ωb
changes by less than an order of magnitude.1 In this case, to first
order

𝜆+ ≈ 2𝐷𝑡

(
1 + 𝑝2

) [
1 + 𝑝4(

1 + 𝑝2)2 𝛼
]
, (27)

𝜆− ≈ 2𝐷𝑡
𝑝2

1 + 𝑝2 𝛼. (28)

For small 𝛼 we see that 𝜆+ ≫ 𝜆− , so the cloud of particles will
spread out in a narrow strip along the direction of the eigenvector e+.
This is given approximately by

e+ ≈
(
1 − 𝑝2

1 + 𝑝2 𝛼, 𝑝

)
, (29)

and corresponds to lines in (𝐿𝑧 , 𝐸) space with gradient

d𝐸
d𝐿𝑧

≈
(
1 + 𝑝2

1 + 𝑝2 𝛼

)
⟨Ωb⟩𝐷 (30)

≈ ⟨Ωb⟩𝐷 . (31)

The gradient is approximately equal to the weighted average of the
pattern speed across the time of diffusion, where the weighting is
by the diffusion coefficient. The present-day gradient of substructure
therefore encodes information about the past evolution of the bar’s
pattern speed. Any discrepancy between the observed slope of dif-
fused substructure in (𝐿𝑧 , 𝐸) space and measurements of the current
pattern speed would provide evidence of a time-varying Ωb. If the
bar is slowing with time (e.g. Chiba et al. 2021), the gradient will
exceed the current pattern speed.

1 For example, if 𝐷 is constant and Ωb decays exponentially by a factor of
2, then 𝛼 ≈ 0.04.
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Diffusion model predictions

Figure 1. Predictions of the diffusion model. Left-hand panel: predicted angular momentum spread of substructure as a function of 𝐿𝑧 and 𝐸. The ⊙ symbol
indicates a circular orbit at the Sun’s radius 𝑟0. The bar heavily affects prograde substructure at around the Sun’s energy 𝐸⊙ and below. Middle panel: (𝐿𝑧 , 𝐸 )
distributions of 150 randomly chosen substructures. The ellipses represent the 1𝜎 levels of the Gaussian distributions. The bar causes the substructures to
be significantly elongated along one principal direction. Right-hand panel: samples drawn from the same 150 substructures. At 𝐿𝑧 > 0 and 𝐸 ≲ 𝐸⊙ the
substructure is significantly blurred, and localised clumps are not predicted to survive.
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Figure 2. Gradients of the major axes of the substructure Gaussian distribu-
tions versus energy. The points are coloured by the circularity of the progenitor
orbits. The dashed black and red lines indicate the current and mean pattern
speeds Ωb; in most cases the gradient lies between these two values.

2.3 Diffusion Coefficient

According to our model the debris from each substructure will spread
into a Gaussian with axis lengths and gradients which depend on the
diffusion coefficient 𝐷. This in turn depends on the geometry of the
stars’ interactions with the bar. If they are assumed to occur at each
pericentric passage, the time between interactions is given by the
radial orbital period 𝜏 ≈ 2𝜋/Ω𝑟 , where Ω𝑟 is the radial frequency.

The diffusion coefficient from equation (8) then becomes

𝐷 ≈ Ω𝑟 (Δ𝐿𝑧)2
4𝜋

. (32)

The change in energy Δ𝐸 = ΩbΔ𝐿𝑧 over a radial orbital period is
given by

Δ𝐸 =

∫ 𝜏

0

𝜕Φ

𝜕𝑡
(x)d𝑡 (33)

≈ 1
Ω𝑟

∫ 2𝜋

0

𝜕Φ

𝜕𝑡
(x0)d𝜃𝑟 , (34)

where in the second line we have used the impulse approximation to
replace the true orbit x(𝑡) with the unperturbed orbit in the axisym-
metric potential x0 (𝑡), parameterised by the radial angle 𝜃𝑟 = Ω𝑟 𝑡.

To proceed we need to assume some form for the potential Φ. We
decompose it into a constant spherical potential and a rotating bar
component,

Φ(x, 𝑡) = Φ0 (𝑟) + 𝛿Φ(x, 𝑡). (35)

We take Φ0 to be the isochrone potential used by Dillamore et al.
(2024a),

Φ0 (𝑟) = − 𝐺𝑀

𝑎 +
√
𝑎2 + 𝑟2

, (36)

where 𝑀 = 2.35 × 1011𝑀⊙ and 𝑎 = 3 kpc. This gives a circular
speed at radius 𝑟0 = 8.2 kpc of 𝑣0 = 238 km/s (Bland-Hawthorn &
Gerhard 2016; Portail et al. 2017). While only a moderately good fit
to the Milky Way, the isochrone potential has the advantage that all
orbits are analytic (Binney & Tremaine 2008), so the integrand in
equation (34) can be calculated without numerically integrating any
orbits.

We use the quadrupole bar potential (Chiba et al. 2021; Hamilton
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et al. 2023),

𝛿Φ(x, 𝑡) = Φb (𝑟) sin2𝜃 cos [2 (𝜙 − 𝜙b)] , (37)

Φb (𝑟) = −
𝐴𝑣2

0
2

(
𝑟

𝑟CR

)2 (
𝑏 + 1

𝑏 + 𝑟/𝑟CR

)5
, (38)

𝜙b ≡
∫ 𝑡

Ωb (𝑡′)d𝑡′, (39)

where 𝐴 = 0.02 is the bar strength, 𝑟CR ≡ 𝑣0/Ωb is an approximation
to the corotation radius, and 𝑏 = 0.28. This gives the energy change,

Δ𝐸 ≈ 2Ωb
Ω𝑟

∫ 2𝜋

0
Φb (𝑟) sin2𝜃 sin [2 (𝜙 − 𝜙b)] d𝜃𝑟 (40)

≈ 2Ωb
Ω𝑟

∫ 2𝜋

0
Φb (𝑟) sin2𝜃 sin

[
2
(
𝜙 − Ωb

Ω𝑟
𝜃𝑟

)]
d𝜃𝑟 , (41)

where in the second line Ωb is approximated as constant over one
orbital period. Without loss of generality 𝜙b has been set to zero
at 𝜃𝑟 = 0 (i.e. the bar is aligned with 𝜙 = 0 when the orbit is at
pericentre, but the 𝜙 value of the pericentre has not been specified;
all orbit orientations are thus included). The coordinates 𝑟, 𝜃 and 𝜙 are
functions of 𝜃𝑟 along the unperturbed orbit in the potential Φ0. The
relations between these spherical coordinates and the angle variables
are given in Section 3.5.2 of Binney & Tremaine (2008). The energy
change is a function of the orbit’s actions and its orientation. To
calculate the diffusion coefficient 𝐷 as a function of the actions we
need to average (Δ𝐸)2 over all possible orientations for a given set
of actions. In the unperturbed potential three angles are required to
describe the orientation. The inclination is given by 𝐼 = cos−1 (𝐿𝑧/𝐿)
and is therefore conserved. However, the longitude of the ascending
node relative to the bar’s major axisΩ and the argument of pericentre
𝜔 will both precess. If the substructure is sufficiently phase mixed,
these angles can be approximated as being uniformly distributed
between 0 and 2𝜋. We therefore average (Δ𝐸)2 over these two angles.
This gives a final expression for the diffusion coefficient as a function
of the orbital actions,

𝐷≈ 1
4𝜋3Ω𝑟

∬ 2𝜋

0

[∫ 2𝜋

0
Φb (𝑟) sin2𝜃 sin

[
2
(
𝜙 − Ωb

Ω𝑟
𝜃𝑟

)]
d𝜃𝑟

]2
d𝜔dΩ,

(42)

where the coordinates 𝑟, 𝜃 and 𝜙 are functions of 𝜃𝑟 that depend on
the actions and the angles 𝜔 and Ω.

We find 𝐷 at a given set of actions and pattern speed by calculating
orbits across a 2D grid of 𝜔 and Ω values. We use the equations in
Appendix A of Dillamore et al. (2024a). We numerically evaluate
the 𝜃𝑟 integral at each gridpoint, then compute 𝐷 by integrating its
square over the grid according to equation (42).

2.4 Predicted distribution of tidal debris

In order to predict the distribution of a series of substructures, we
must first specify the pattern speed as a function of time. We set

Ωb (𝑡) =
Ωb0

1 + 𝜂Ωb0𝑡
, (43)

where the dimensionless deceleration coefficient 𝜂 = − ¤Ωb/Ω2
b =

0.003 and Ωb0 = 80 km/s/kpc. This deceleration rate is consistent
with Chiba et al. (2021) and Zhang et al. (2025). We let the period
of deceleration be 𝑡 ∈ [0, 𝑡f] where 𝑡f ≈ 5.5 s kpc/km ≈ 5.4 Gyr,
consistent with the bar being ∼ 8 Gyr old (Sanders et al. 2024).
This gives a final pattern speed of Ωb (𝑡f) = 34.5 km/s/kpc, similar to
recent estimates for the Milky Way (Binney 2020; Chiba & Schönrich

2021; Zhang et al. 2024; Dillamore et al. 2025). In the case of a time-
independent diffusion coefficient, this pattern speed evolution gives
𝛼 ≈ 0.067.

We also need to specify the initial distribution function (DF) of
substructures in action space. We choose the action-based Double-
PowerLaw DF (Posti et al. 2015; Vasiliev 2019),

𝑓 (J) ∝
[
1 +

(
𝐽0
ℎ(J)

) 𝜂 ]Γ/𝜂 [
1 +

(
𝑔(J)
𝐽0

) 𝜂 ]−𝐵/𝜂
, (44)

𝑔(J) ≡ 𝑔𝑟 𝐽𝑟 + 𝑔𝑧𝐽𝑧 + (3 − 𝑔𝑟 − 𝑔𝑧) |𝐽𝜙 |, (45)
ℎ(J) ≡ ℎ𝑟 𝐽𝑟 + ℎ𝑧𝐽𝑧 + (3 − ℎ𝑟 − ℎ𝑧) |𝐽𝜙 |. (46)

We take the DF parameters from the fit by Wang et al. (2022) to
the Milky Way’s globular clusters. The outer and inner slopes are
𝐵 = 5.03 and Γ = 1.23 respectively, and the transition steepness is
𝜂 = 1.08. The parameters controlling the flattening and anisotropy
are 𝑔𝑟 = 0.65, 𝑔𝑧 = 1.32, ℎ𝑟 = 1.86, and ℎ𝑧 = 1.01. Finally the
action scale is 𝐽0 = 103.08 kpc km/s. We do not include any net
rotation, so that we equally sample prograde and retrograde orbits.
We draw samples from this distribution using agama (Vasiliev 2019),
giving us a mock globular cluster-like distribution of substructure
progenitors in action space.

For each progenitor we calculate 𝐷 over a grid of times 𝑡 using
equation (42), then evaluate 𝐷 and ⟨Ω𝑛

b ⟩𝐷 using equations (13) and
(14). This allows us to calculate the covariance matrices 𝚺 of the sub-
structure distributions in (𝐿𝑧 , 𝐸) space according to equation (21).

We show the results in Fig. 1. The left-hand panel shows the
predicted angular momentum spread𝜎𝐿𝑧

= (2𝐷𝑡)1/2 as a function of
𝐿𝑧 and 𝐸 . We normalise the values of 𝜎𝐿𝑧

by the angular momentum
of a circular orbit at the Sun’s radius, 𝐿𝑧⊙ = 𝑟0𝑣0 ≈ 2000 kpc km/s
(indicated by the ⊙ symbol). The bar is predicted to heavily affect
substructure on prograde orbits at lower energies than the Sun. This
is because low-energy prograde orbits move slowly relative to the
rotating bar, so interactions are stronger and the diffusion coefficient
is larger.

To produce the middle and right-hand panels we randomly se-
lect 200 mock progenitors from the distribution, roughly equal to
the number of globular clusters in the Milky Way (e.g. Vasiliev &
Baumgardt 2021). The middle panel shows the 1𝜎 ellipses of the
predicted Gaussian distributions calculated from equation (21). As
expected, the major axes of the ellipses have positive gradients (re-
lated to the time dependence of the pattern speed). The dispersion is
most significant at 𝐿𝑧 > 0 and 𝐸 < 𝐸⊙ , causing the distributions of
different clusters to significantly overlap at low energies. Meanwhile
at 𝐿𝑧 < −1× 103 kpc km/s or high energies the amount of spreading
is negligible compared to the separation of the clusters, suggesting
that substructure can survive in these regions.

In the right-hand panel we draw 1600 samples from each of the
200 Gaussian distributions to represent mock stellar populations. At
𝐿𝑧 > 0 and 𝐸 < 𝐸⊙ the blurring effect is so severe that different
clusters would be indistinguishable without the colour-coding. The
model predicts that phase mixed substructure can only remain tightly
clustered at 𝐸 ≳ 𝐸⊙ or 𝐿𝑧 < 0. This challenges the notion that
ancient substructure in the inner Milky Way (e.g. dissolved globular
clusters) can be discovered using clustering in dynamical spaces
alone, unless they are significantly younger than the bar (or the bar
is younger than current estimates; e.g. Sanders et al. 2024).

However, even where substructure is blurred, the gradients of the
distributions’ major axes may still be discerned. We plot the gradients
calculated from equation (30) as a function of energy 𝐸 in Fig. 2. The
points are coloured by the circularity 𝜂 ≡ 𝐿𝑧/𝐿𝑧 (𝐸), where 𝐿𝑧 (𝐸)
is the angular momentum of the circular orbit at energy 𝐸 . Red (blue)
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Figure 3. Distributions of globular clusters in (𝐿𝑧 , 𝐸 ) space. Left-hand panel: Initial distribution of mock clusters drawn from a DoublePowerLaw distribution
function. Middle panel: final distribution of mock clusters in the simulation with the slowing bar. Right-hand panel: distribution of observed globular clusters
in the Vasiliev & Baumgardt (2021) catalogue.

points indicate prograde (retrograde) orbits. The black and red dashed
lines mark the final and time-averaged pattern speed in our model.
A large majority of the points lie between the final and average
values of Ωb. This is because the gradient for each substructure
is approximately equal to the weighted mean of the pattern speed,
⟨Ωb⟩𝐷 , where the weighting is by the diffusion coefficient 𝐷. Since
changes to 𝐿𝑧 tend to be larger when the pattern speed is slower, the
diffusion of stars is faster at lower values of Ωb. The weighting by 𝐷

therefore decreases the gradients, resulting in most lying between the
current and average values of Ωb. Since they preserve memory of the
past evolution of the pattern speed, they present a possible method
of constraining the time dependence of the Milky Way’s bar. If bar-
dispersed substructure can be identified in the Milky Way (e.g. by
chemistry), the slope can be measured and compared to the current
pattern speed inferred by other methods.

Our diffusion model has produced several valuable predictions for
the distribution of substructure under the influence of the Galactic
bar. We now turn to more realistic numerical models to verify these
predictions.

3 TEST PARTICLE SIMULATIONS

An assumption of the diffusion model above is that the substructure
is already phase-mixed before the bar forms. In reality this may not
be true, since stars recently stripped from a cluster will be correlated
in orbital angles and hence interactions with the bar. Test particle
simulations allow us to drop this assumption by releasing particles
from the Lagrange points of a population of clusters. We describe
the setup of the simulation below.

3.1 Setup

We run the simulation in a barred potential similar to that used by
Dillamore et al. (2025). This is based on the barred Milky Way
potential by Hunter et al. (2024), which includes the bar potential

fitted by Sormani et al. (2022) to the Portail et al. (2017) model.
We modify the Hunter et al. (2024) potential by scaling the non-
axisymmetric Fourier components such that the relative length 𝑆(𝑡) =
Ωb (𝑡f)/Ωb (𝑡), where Ωb (𝑡f) is the final pattern speed. This means
that the bar length is roughly proportional to the corotation radius. We
increase the bar strength smoothly between times 𝑡 = 1 s kpc/km ≈
1 Gyr and 𝑡 = 2 s kpc/km according to equation (4) in Dehnen
(2000). The pattern speed is initially Ωb0 = 80 km/s/kpc and begins
to smoothly decrease between 𝑡 = 2 and 3 s kpc/km. It then decreases
with constant deceleration parameter 𝜂 = − ¤Ωb/Ω2

b = 0.003 until
𝑡 = 𝑡f = 8 s kpc/km, at which Ωb (𝑡f) ≈ 34.5 km/s/kpc, similar to our
diffusion model. For comparison with the slowing bar, we also run
simulations in the axisymmetric (azimuthally averaged) potential,
and in the Hunter et al. (2024) potential rotating at constant pattern
speed Ωb (𝑡f).

We generate a mock population of 200 globular clusters in the
initial axisymmetric potential using the distribution function given
by equation (44), with the same parameters as in Section 2.4. We
integrate their orbits in the steady and slowing bar potentials using
agama (Vasiliev 2019). Their initial distribution is plotted in the
left-hand panel of Fig. 3, and their final distribution in the simulation
with the slowing bar is shown in the middle panel. For comparison
the right-hand panel shows the observed Milky Way GCs in the same
potential, using the catalogue from Vasiliev & Baumgardt (2021).

The main difference between the initial and observed distributions
is that our mock population is roughly symmetric in 𝐿𝑧 , while there
are more observed GCs with 𝐿𝑧 > 0. This choice means that we ini-
tially equally sample both prograde and retrograde orbits. However,
the slowing of the bar affects this symmetry. The middle panel shows
that by the end of the simulation, there is an excess of mock GCs at
𝐿𝑧 ∼ 1 × 103 kpc km/s and 𝐸 ∼ −1.4 × 105 (km/s)2. This is due
to trapping and dragging in the bar’s corotation resonance, which
increases the angular momentum of the population and gives it a net
prograde bias. This effect may contribute to the excess of globular
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Final simulation snapshots

Figure 4. Final snapshots of the test particle simulations in (𝐿𝑧 , 𝐸 ) space (top row) and (𝐿𝑧 , 𝐿⊥ ) space (bottom row). Left-hand column: The axisymmetric
potential, in which 𝐿𝑧 and 𝐸 are conserved for all particles. Middle column: the potential with a steadily rotating bar of pattern speed Ωb = 34.5 km/s/kpc,
where the Jacobi integral 𝐻J is conserved. Right-hand column: the potential with a decelerating bar, where the pattern speed decreases from Ωb = 80 to
34.5 km/s/kpc. The ⊙ symbol marks a circular planar orbit at the Sun’s Galactocentric radius.

clusters on prograde disc-like orbits in the Milky Way (Dillamore
et al. 2024b).

We generate tidally stripped debris by releasing particles from
the two Lagrange points of each cluster (e.g. Gibbons et al. 2014;
Bowden et al. 2015; Fardal et al. 2015). For a cluster at position x,
the Lagrange points are approximately located at xt = x(1 ± 𝑟𝑡/|x|),
where the tidal radius is

𝑟t ≡ ©­« 𝐺𝑀c

Ω2 − 𝜕2Φ
𝜕𝑟2

ª®¬
1/3

. (47)

Here 𝑀c is the mass of the cluster and Ω is its instantaneous angular
speed about the Galactic centre (e.g. Bowden et al. 2015; Gibbons
et al. 2014). The particles are assigned a velocity drawn from a
Gaussian with velocity dispersion𝜎. Following Bowden et al. (2015),
the centre of this Gaussian has the same radial velocity as the cluster,
while the tangential velocity components match those of the points
halfway between the cluster and the Lagrange points. We set 𝑀c =

1 × 105𝑀⊙ , which is a typical globular cluster mass (Baumgardt &
Hilker 2018). The velocity dispersion is kept fixed at 𝜎 = 1 km/s,

consistent with models of globular cluster streams (e.g. Bowden
et al. 2015; Dillamore et al. 2022b). We release one particle from
each Lagrange point every 10 Myr, giving a total of 1600 stars in
the tidal debris of each cluster. The stars’ orbits are then evolved
in the Galactic potential until the end of the simulation (for ≈ 8
Gyr). To save computation time we do not include the gravity of
the progenitors, since we are only interested in the orbits of escaped
stars.

We also run a second simulation in each potential with 2000 pro-
genitors sampled from the DF, but with particles released only every
100 Myr. This allows us to measure the overall effects of the bar on
substructure with higher resolution in integral of motion space.

3.2 Results

We show the final (𝐿𝑧 , 𝐸) distributions of the debris from all
200 clusters in the top row of Fig. 4. The bottom row shows the
(𝐿𝑧 , 𝐿⊥) distributions, where the perpendicular angular momentum
𝐿⊥ ≡

√︃
𝐿2
𝑥 + 𝐿2

𝑦 . The left-hand column shows the simulation in the
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8 A. M. Dillamore et al.

Gradients of debris in (Lz, E) plane

Figure 5. Slopes of the best-fit lines to the debris from each cluster in the final
simulation snapshots. The top and middle panels show the simulations with
the steady and slowing bars respectively. The black dashed lines indicates
the final pattern speed Ωb = 34.5 km/s/kpc, while the red dashed line in the
lower panel marks the mean Ωb across the simulation. The points are colour-
coded by the clusters’ orbital circularity, where red (blue) points correspond
to prograde (retrograde) orbits.

axisymmetric potential, in which 𝐿𝑧 and 𝐸 are both integrals of mo-
tion. The tidal debris therefore remains frozen in this space, and there
is no dispersion. The clusters remain similarly compact in (𝐿𝑧 , 𝐿⊥)
space. The middle column shows the simulation in the steadily rotat-
ing barred potential. In this case the debris from each cluster spreads
out significantly from its progenitor. Due to the conservation of the
Jacobi integral 𝐻𝐽 , the movement of each particle in (𝐿𝑧 , 𝐸) space
is restricted to a fixed line of gradient Ωb = 34.5 km/s/kpc. This
results in the debris from each cluster spreading out along a narrow
strip with positive gradient, as predicted by the diffusion model in

Fig. 1. There is now significant overlap between different individual
structures in both (𝐿𝑧 , 𝐸) and (𝐿𝑧 , 𝐿⊥) space. The results for the
slowing bar in the right-hand panel are similar, though the degree of
dispersion of the clusters is even greater. The gradients of the lines
traced by each structure in (𝐿𝑧 , 𝐸) space are also noticeably steeper.
This is consistent with our prediction (equation (30)) that the gradient
should equal a weighted average of the pattern speed over time.

We show this effect more clearly in Fig. 5, where we plot gradients
d𝐸/d𝐿𝑧 of lines fitted by linear regression to each structure, as a
function of progenitor energy. In this case we use the simulations
with 2000 progenitors. As in Fig. 2 we colour-code the points by
the orbital circularity 𝜂. The top and bottom panels show the steady
and slowing bars respectively. With a steadily rotating bar, most of
the gradients are close to the pattern speed (marked by the black
dashed line). This is especially true for prograde and low-energy
substructure. Retrograde and high-energy substructure tends to have
a shallower or even negative gradient. This is because a) the two tails
of an unperturbed retrograde stellar stream will be anti-correlated in
(𝐿𝑧 , 𝐸) space, giving a negative gradient; and b) retrograde structures
experience less dispersion due to the bar (see Fig. 1), so this pre-
existing gradient can dominate over any subsequent spreading. The
gradient most closely matches the pattern speed when the spreading
is large enough to dominate over the initial distribution.

In the simulation with the slowing bar, the gradients at 𝐸 ≲ −1 ×
105 (km/s)2 almost all exceed the current pattern speed. We also show
the (unweighted) mean pattern speed across the full lifetime of the
bar with a red dashed line. Nearly all the gradients are less than this
mean, in excellent agreement with our predictions from the diffusion
model (Fig. 2). It demonstrates that the current observable slopes of
structures in (𝐿𝑧 , 𝐸) space preserve memory of the past evolution
of the bar’s pattern speed. In particular, Figs. 2 and 5 suggest that
the gradients should roughly extend between the current and mean
pattern speeds. A series of measured slopes from observations should
thus place constraints on the deceleration rate of the Milky Way’s
bar. This method could complement those using resonances in the
Milky Way’s disc (Chiba et al. 2021; Zhang et al. 2025). At higher
energies (𝐸 ≳ −1×105 (km/s)2) there is no correspondence between
the gradients and the pattern speed, suggesting that interactions with
the bar significantly weaken above this threshold. In Section 3.3 we
provide an estimate for the critical boundary below which the bar has
a significant effect on the dispersion of substructure.

3.3 Criterion for substructure survival

While many structures are significantly blurred by the bar, Fig. 4
shows that those at sufficiently high energy are almost unaffected,
particularly on retrograde orbits. This is consistent with the predic-
tions of the diffusion model (see Fig. 1). We now estimate the location
of the boundary in (𝐿𝑧 , 𝐸) space which separates structures that are
significantly affected by the bar from those that are not. We quantify
the effect of the bar on a structure by the ratio 𝜎𝐿𝑧 ,bar/𝜎𝐿𝑧 ,axi, where
𝜎𝐿𝑧 ,axi and 𝜎𝐿𝑧 ,bar are the standard deviations of 𝐿𝑧 of all particles
belonging to the structure. This ratio is therefore the factor by which
the angular momentum dispersion increases due to the bar. We note
that this ratio will increase with the age of the stream for a given
progenitor, so it should only be viewed as an order-of-magnitude
prediction of disruption.

We show different projections of phase space colour-coded by this
ratio in Fig. 6 for the steady (top) and slowing (bottom) bars. Each
Voronoi cell corresponds to the initial position of a single progenitor.
The colour scale runs from no change (white) to an increase by a
factor of 100 (dark blue). From left to right, the three projections
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Lz dispersion due to bar

Figure 6. Standard deviation of 𝐿𝑧 for each substructure in the barred potentials 𝜎𝐿𝑧 ,bar compared to the axisymmetric potential 𝜎𝐿𝑧 ,axi. The top and bottom
rows show the steady and slowing bars respectively. The colour scale runs from white (unaffected by the bar) to dark blue (dipsersed by a factor of 100). The
dashed lines show slices of the critical boundary 𝐸crit (𝐿𝑧 , 𝐿⊥ ) . Left-hand column: (𝐿𝑧 , 𝐸 ) space. The dashed line shows the boundary for orbits in the Galactic
plane, 𝐸crit (𝐿𝑧 , 0) . Middle column: (𝐿𝑧 , 𝐿⊥ ) space. In this case the dashed line shows the contour of the boundary at Solar energy, i.e. 𝐸crit (𝐿𝑧 , 𝐿⊥ ) = 𝐸⊙ .
Right-hand panel: (𝐿⊥, 𝐸 ) space. The dashed line marks the boundary for polar orbits, 𝐸crit (0, 𝐿⊥ ) .

are (𝐿𝑧 , 𝐸), (𝐿𝑧 , 𝐿⊥), and (𝐿⊥, 𝐸). As expected from the diffusion
model and Fig. 4, the dispersion decreases towards higher energies,
and prograde orbits are affected more than retrograde orbits. The
middle and right-hand panels demonstrate the importance of also
taking 𝐿⊥ into account. At constant 𝐿𝑧 and 𝐸 , the dispersion de-
creases towards larger 𝐿⊥. This is unsurprising; a radial orbit with
𝐿𝑧 = 𝐿⊥ = 0 will likely be more affected than a circular polar orbit
with 𝐿𝑧 = 0 but large 𝐿⊥. To define a critical boundary for disruption
by the bar we therefore fit a function 𝐸crit (𝐿𝑧 , 𝐿⊥) to the simula-
tion data. We choose the simple form of a paraboloid with a peak at
𝐿⊥ = 0 and 𝐿𝑧 > 0,

𝐸crit (𝐿𝑧 , 𝐿⊥) = 𝐸⊙ + 𝑎 − 𝑏(𝐿𝑧/kpc − 𝑐)2 − 𝑑 (𝐿⊥/kpc)2. (48)

We define a structure to be significantly affected by the bar if its dis-
persion increases by a factor of 𝜎𝐿𝑧 ,bar/𝜎𝐿𝑧 ,axi > 𝑒 ≈ 2.7. We fit the
curve to the distribution of initial progenitor coordinates (𝐿𝑧 , 𝐿⊥, 𝐸)𝑖
using a weighting to emphasise those with 𝜎𝐿𝑧 ,bar/𝜎𝐿𝑧axi ≈ 𝑒.
Specifically, we use the Gaussian weight,

𝑤𝑖 = exp ©­«−
[
ln(𝜎𝐿𝑧 ,bar/𝜎𝐿𝑧 ,axi)𝑖 − 1

]2

2𝜎2
ª®¬ , (49)

where 𝜎 = 0.1. The curve is fitted to all points with 𝐸𝑖 > −2 ×
105 (km/s)2 using scipy.optimize.curve_fit, with the uncertainty

sigma set to 1/√𝑤𝑖 . The solution has the equation,

𝐸crit (𝐿𝑧 , 𝐿⊥) = 𝐸⊙ + 4.8 × 104 (km/s)2

− 0.018(𝐿𝑧/kpc − 505 km/s)2

− 0.005(𝐿⊥/kpc)2.

(50)

Since we include the Solar radius circular orbital energy 𝐸⊙ in the
equation, it can be used in different Milky Way potential models.
The largest apocentre of any orbit with 𝐸 < 𝐸crit is ∼ 40 kpc,
so equation (50) is approximately valid in any potential similar to
Hunter et al. (2024) within that radius (though it will change slightly
depending on properties such as bar strength and pattern speed). We
show slices of this surface in Fig. 6 with black dashed lines. From
left to right these slices are in the planes 𝐿⊥ = 0, 𝐸crit = 𝐸⊙ , and
𝐿𝑧 = 0.

The effectiveness of this boundary in determining the bar’s im-
portance is tested in Fig. 7. We divide the structures into two groups
according to whether they lie above or below the boundary, and for
each simulation plot histograms of the ratio 𝜎𝐿𝑧 ,bar/𝜎𝐿𝑧axi. The
blue (red) histograms show structures with energies above (below)
𝐸crit (𝐿𝑧 , 𝐿⊥). These show that the boundary effectively separates
affected and unaffected clusters. With both steady and slowing bars
a large majority of the structures above the boundary are dispersed
by a factor of less than ∼ 𝑒, and almost all by a factor of less than 5.
Hence for structures with 𝐸 > 𝐸crit (𝐿𝑧 , 𝐿⊥), it is safe to assume that
the extents of their integral of motion space distributions are altered
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Figure 7. Histograms of the ratio 𝜎𝐿𝑧 ,bar/𝜎𝐿𝑧 ,axi for substructure above
(blue) and below (red) the critical energy, again for the steady (top panel)
and slowing (bottom panel) bars. A large majority of the substructure above
(below) the critical energy is dispersed by a factor of < 𝑒 (> 𝑒).

by less than an order of magnitude by the bar. Conversely, a large
majority of structures with 𝐸 < 𝐸crit (𝐿𝑧 , 𝐿⊥) are dispersed by a
factor of more than 2 by both steady and slowing bars. It is therefore
probable that any old substructure below the critical threshold has
been significantly dispersed by the bar, in many cases by a factor of
> 10.

In Fig. 8 we compare the boundary 𝐸crit (𝐿𝑧 , 𝐿⊥) (black dashed
line) with observed substructure in the Milky Way. The left-panel
shows globular clusters from the Vasiliev & Baumgardt (2021) cata-
logue. Those with energy greater than (less than) 𝐸crit are shown in
blue (red). The black dotted line marks the boundary between in situ
and accreted globular clusters according to Belokurov & Kravtsov
(2024), where accreted clusters are at higher energy. Over 70% of
the clusters lie below 𝐸crit (𝐿𝑧 , 𝐿⊥), so tidally stripped stars from
these clusters are liable to be dispersed far from their progenitors in
integral of motion space. This includes almost all in situ as well as
over 20 accreted clusters.

The second panel shows stellar streams in the catalogue provided
by Bonaca & Price-Whelan (2025). We use the (𝐿𝑧 , 𝐿⊥, 𝐸) values of

their orbit fits, and shift the energies according to the relative depths
of our and their potentials at a radius of 8 kpc. Only ∼ 25% of the
streams lie below 𝐸crit (𝐿𝑧 , 𝐿⊥). These include streams previously
associated with bar perturbations, in particular Ophiuchus (Hattori
et al. 2016; Price-Whelan et al. 2016) and Pal 5 (Pearson et al.
2017). We list all streams below the critical boundary in Appendix B.
Compared to globular clusters a much smaller fraction of streams are
in the region predicted to be affected by the bar, with none at all below
𝐸 ∼ −1.4× 105 (km/s)2. This may be partly due to selection effects,
such as the difficulties of detecting streams in dense stellar fields
towards the Galactic centre. However, our results suggest that the total
lack of observed streams at low energies may be due to bar-driven
dispersal of any globular cluster debris. Baumgardt et al. (2019)
showed that the initial mass of the Milky Way’s globular cluster
system was a factor of ∼ 5 times higher than at present, with most
of the mass lost from within the Solar orbital radius. We therefore
expect that the inner galaxy contains an abundance of undiscovered
substructure from tidally stripped globular clusters, much of which
is likely to be highly dispersed by the bar.

The third panel of Fig. 8 shows other known structures in the Milky
Way. The plotted ellipses are centred on the median positions reported
by Naidu et al. (2020), adjusted for our potential. The ellipse axes
and orientations are chosen to roughly match the stellar distributions.
Several of these structures are below the critical boundary, including
Gaia Sausage-Enceladus (GSE) and the in situ halo. Compared to
dissolved globular clusters, these structures are broader in integral
of motion space and contain many more stars. This allows them
to be detected even after dispersal by the bar. However, they may
have been initially more localised in integral of motion space. High-
energy structures such as the Sagittarius stream are not expected to be
affected, nor are retrograde structures such as Sequoia (Myeong et al.
2019). While the Helmi streams are shown below the boundary in this
projection, they are on highly inclined orbits (𝐿⊥ ∼ 2000 km/s/kpc;
Koppelman et al. 2019), so are above the boundary in 3D space.
Hence they are not expected to be significantly affected by the bar.

The right-hand panel of Fig. 8 shows stars from Gaia data release
3 (DR3; Gaia Collaboration et al. 2023). We use the data from Table
2 of Andrae et al. (2023), which consists of giant stars with metal-
licities [M/H] estimated from Gaia XP spectra. We show stars with
parallax signal-to-noise greater than 10 and metallicity [M/H] < −1.
This selection includes some accreted stars and in situ stars born be-
fore the formation of the Milky Way’s disc (Aurora/Poor Old Heart
Belokurov & Kravtsov 2022; Rix et al. 2022). A majority of the
stars in this sample are below the critical boundary: ∼ 95% have
𝐸 < 𝐸crit (𝐿𝑧 , 𝐿⊥) (though this is likely to be somewhat enhanced
by selection effects). We therefore expect that any unbound sub-
structure in the ancient in situ components of the Milky Way will
have been significantly dispersed by the bar. This suggests that the
high-[N/O] GC-origin stars (Belokurov & Kravtsov 2023; Kane et al.
2025) are unlikely to remain clustered with others sharing the same
progenitor.

3.4 Effect on clustering

Searches for small-scale Milky Way substructure often utilise clus-
tering algorithms such as HDBSCAN (McInnes et al. 2017) in the
space of traditional integrals of motion (e.g. Lövdal et al. 2022;
Dodd et al. 2023; Ou et al. 2023; Liu et al. 2024). The set of quan-
tities (𝐿𝑧 , 𝐿⊥, 𝐸) is frequently used. However, we have shown that
clusters do not remain confined to small volumes in this space if
𝐸 < 𝐸crit (𝐿𝑧 , 𝐿⊥). Fig. 4 illustrates that debris from different pro-
genitors is significantly blurred by the bar, causing a large degree of
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Substructure compared to critical boundary

Figure 8. Observed substructure compared to the slice of the critical boundary for orbits in the Galactic plane, 𝐸crit (𝐿𝑧 , 0) . Left-hand panel: globular clusters
from the Vasiliev & Baumgardt (2021) catalogue. The points are coloured blue (red) if they lie above (below) the critical boundary in (𝐿𝑧 , 𝐿⊥, 𝐸 ) space. The
dotted line marks the approximate boundary between in situ (below) and accreted (above) clusters according to Belokurov & Kravtsov (2024). Second panel:
stellar streams from the orbit fits by Bonaca & Price-Whelan (2025). A number of streams above the boundary are projected below it in this space due to their
high orbital inclinations. Third panel: schematic of selected substructure described by Naidu et al. (2020). Right-hand panel: giant stars with metallicities
[M/H] < −1, as estimated by Andrae et al. (2023). In each case many known objects are located below the critical boundary, suggesting they are susceptible to
significant dispersion by the bar.

Mock metallicities vs Jacobi integral

Figure 9. Mock metallicities [Fe/H] vs the Jacobi integral 𝐻J. From left to right, the three panels show the axisymmetric, steady bar and slowing bar potentials.
The bar is much less destructive to the clusters in this space than in traditional integral of motion space (see Fig. 4).

overlap between them. This challenges the notion that clustering al-
gorithms can effectively distinguish debris from different progenitors
using the three traditional integrals of motion alone.

We have shown that the spreading of clusters in (𝐿𝑧 , 𝐸) space
is along narrow streaks of gradient approximately equal to the pat-
tern speed (see Figs. 4 and 5). With a steadily rotating bar this is
because the Jacobi integral 𝐻J is exactly conserved. However, even
with a slowing bar we can expect debris from a given progenitor
to be more tightly clustered in 𝐻J than in energy or angular mo-
mentum. We therefore propose using 𝐻J instead of 𝐿𝑧 , 𝐿⊥ and 𝐸

when searching for substructure in the region 𝐸 < 𝐸crit (𝐿𝑧 , 𝐿⊥).
This can be used in conjunction with chemical abundances such as
metallicity [Fe/H]. We illustrate this in Fig. 9, where we plot mock

metallicity against Jacobi integral for the stars in the simulations
(with 200 progenitors). The metallicities are ‘painted on’ to the sim-
ulation particles as follows. The mean [Fe/H] for each progenitor is
drawn from a Gaussian distribution with mean -1.35 and standard de-
viation 0.5, which roughly reproduces the metallicity distribution of
Milky Way globular clusters (Harris 1996, 2010). For each progeni-
tor the stellar metallicities are drawn from another Gaussian centred
on the progenitor’s mean [Fe/H], with standard deviation 0.04. This
is typical of the metallicity spread of Milky Way globular clusters
(Latour et al. 2025). We note that the distributions in Fig. 9 are not
entirely realistic. Accreted (in situ) globular clusters typically have
lower (higher) metallicities and higher (lower) energies (Belokurov
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& Kravtsov 2024), so in reality [Fe/H] would anti-correlate with 𝐻J.
However, our mock values serve well as a simple illustration.

Fig. 9 shows that clusters are much less dispersed in 𝐻J than in
𝐿𝑧 , 𝐿⊥ or 𝐸 (Fig. 4). The bar only slightly broadens the distributions
of 𝐻J, and the clusters remain compact. This is true even in the
slowing bar simulation where 𝐻J is not conserved. Combining 𝐻J
with [Fe/H] allows the clusters to be distinguished and separated
across most of the space, and including other chemical abundances
may aid this further. We therefore conclude that the Jacobi integral
𝐻J is a better tool for identifying substructure in integral of motion
space than energy or angular momentum separately, at least for 𝐸 <

𝐸crit (𝐿𝑧 , 𝐿⊥). This is consistent with the results of Woudenberg &
Helmi (2025).

4 COSMOLOGICAL SIMULATION

The test particle simulations described above present an idealised
picture of bar perturbations on unbound debris. In reality stars are
affected by other perturbations such as spiral arms, minor mergers,
galaxy mass growth, and disc reorientation (e.g. Dillamore et al.
2022a). To take these effects into consideration we now turn to a
cosmological zoom-in simulation of a Milky Way-like galaxy from
the Auriga suite (Grand et al. 2017).

4.1 The Auriga simulations

Auriga is a suite of 30 magneto-hydrodynamical zoom-in simulations
of galaxies in Milky Way-mass haloes (Grand et al. 2017). The
haloes have masses in the range 1 < 𝑀200/(1012𝑀⊙) < 2 and
are required to be relatively isolated (i.e. sufficiently far from other
massive haloes or galaxy clusters). The simulations are run with
cosmological parameters from (Planck Collaboration et al. 2014)
using the moving mesh code arepo (Springel 2010). They include
AGN feedback and magnetic fields. We use the level 4 resolution,
which has dark matter and baryonic particle masses of 4 × 105𝑀⊙
and 5 × 104𝑀⊙ respectively.

For our study we select the galaxy Auriga 18 (Au-18), which is
a close analogue of the Milky Way. It has a Milky Way-like bar
(Fragkoudi et al. 2020) which formed ∼ 8 Gyr before the the present
day (Merrow et al. 2024), similar to estimates for the Milky Way’s
bar (Sanders et al. 2024). It also has a Milky Way-like merger history,
with an analogue of Gaia Sausage Enceladus (GSE) merging 9 Gyr
ago (Fattahi et al. 2019). This produces a comparatively metal-rich
component of the halo on highly eccentric orbits, like the Milky
Way’s GSE (Belokurov et al. 2018; Helmi et al. 2018). It otherwise
experiences no major mergers over the last 12 Gyr (Fragkoudi et al.
2020). Au-18 is therefore ideal for studying the effects of a bar on
substructure in a realistic Milky Way-like environment.

We import the particle data from a set of snapshots of Au-18, and
shift the coordinate origin to the galactic centre. We then transform
the coordinates to align the 𝑧-axis with the angular momentum vector
of all stars with radii 𝑟 < 0.05𝑅200, where 𝑅200 is the virial radius.
In this new coordinate system we compute the angular momentum
and energy of each particle, using the potential energy values in the
Auriga data. All quantities are converted to physical units. We also
calculate the pattern speed of the bar at each snapshot using the
method and code provided by Dehnen et al. (2023).

4.2 Selection of mock clusters

Since the resolution of the Auriga simulations does not allow stars
in globular clusters to be resolved, we cannot trace the evolution
of cluster debris without re-simulation. Instead, we construct mock
clusters from the star particles in the simulation. In brief, these are
sets of stars which share similar values of 𝐿𝑧 , 𝐿⊥ and 𝐸 at a given
snapshot. Since we do not select on orbital phase, the stars in a given
cluster are fully phase-mixed from formation. They therefore trace
the evolution of dynamically old substructure rather than cold stellar
streams.

We first select ‘progenitor’ particles by randomly choosing a set
of 200 stars with ages > 12 Gyr. These can be seen as representing a
set of ancient globular clusters, whose ages in the Milky Way mostly
exceed 12 Gyr (VandenBerg et al. 2013). We now wish to select other
star particles with similar angular momenta and energies to represent
the stars ‘stripped’ from these progenitors. We therefore define the
following distance in integral of motion space,

Δ𝐼2𝑖 𝑗 ≡ (𝐿𝑧,𝑖 − 𝐿𝑧, 𝑗 )2 + (𝐿⊥,𝑖 − 𝐿⊥, 𝑗 )2 + (𝐸𝑖 − 𝐸 𝑗 )2/Ω2
0, (51)

where 𝐿𝑧,𝑖 , 𝐿⊥,𝑖 , and 𝐸𝑖 are the angular momentum components and
energy of the 𝑖th particle, and we take the unit conversion factorΩ0 to
be equal to the pattern speed at the present-day snapshot. We calculate
Δ𝐼𝑖 𝑗 for each progenitor particle 𝑖 and each star particle 𝑗 in each
snapshot. The set of 50 particles (including the progenitor itself) with
smallest Δ𝐼𝑖 𝑗 are taken as the stars stripped from the cluster in that
snapshot. These particles are then traced through later snapshots to
determine how the phase-mixed cluster evolves in integral of motion
space. We also assign metallicities to each cluster, based on the
metallicity [M/H] of the progenitor particle. As in Section 3.4, we
assign metallicities to each cluster particle by randomly drawing
from a Gaussian centred on the progenitor metallicity with standard
deviation 0.04.

4.3 Results

The evolution of a set of mock clusters in (𝐿𝑧 , 𝐸) space is shown
in Fig. 10. We choose 50 progenitor particles, and select mock
clusters around them at four different snapshots, at lookback times
𝑡L ∈ {7.9, 5.2, 3.4, 1.5} Gyr. The different rows show the evolution of
the clusters from each of these times. Each column shows a different
snapshot, with the present-day on the right. The results are qualita-
tively very similar to the predictions of the diffusion model (Fig. 1)
and the test particle simulations (Fig. 4). For each age, the clusters
rapidly disperse in < 2 Gyr. As seen before, this spread is mostly
along an axis with a positive gradient. This is most clearly seen be-
tween the two snapshots of the 1.5 Gyr-old cluster (bottom row). At
higher energies the spread is at approximately constant energy, while
𝐿𝑧 is not conserved. This may be explained by a non-axisymmetric
potential at large radii. The simulation confirms that in a realistic
Milky Way-like galaxy, phase-mixed substructure rapidly disperses
and should not be expected to remain tightly bound in integral of
motion space.

Like in Fig. 4, we show the gradients of the dispersed substruc-
tures at the present day in Fig. 11. In this case we select 200 mock
progenitors. Each panel shows clusters of a different age, and the
colours indicate orbital circularity as before. We show the current
pattern speed with the black dashed line. In this simulation Ωb is
relatively steady, varying between ∼ 30 km/s/kpc and ∼ 40 km/s/kpc
over its lifetime. The mean pattern speed is therefore close to the
current value and is not shown for clarity. In the right-hand panel
the results are similar to those for the test particle simulation with
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Evolution of phase-mixed clusters in Au-18

Figure 10. Evolution in (𝐿𝑧 , 𝐸 ) space of mock phase-mixed clusters of stars in Au-18. Each column shows a different snapshot with the lookback time 𝑡L
labelled above. Each row corresponds to sets of stars selected from small regions of integral of motion space at different snapshots. In each row the left-most
panel with coloured points is the snapshot at which the particles were selected. From top to bottom, the ages of these mock clusters decrease from 7.9 Gyr to
1.5 Gyr. The results are qualitatively similar to the test particle simulation in Fig. 4; the particles in each cluster spread out along diagonal lines with positive
gradient. This is most obvious between the two snapshots in the bottom row.

the steady bar: below a certain energy most of the structures have
gradients close to Ωb. This implies that the bar is driving the spread
of these clusters over the last 1.5 Gyr of the simulation. However, the
older clusters tend to have steeper slopes at low energies, in many
cases greater than the fastest pattern speeds. There must therefore
be other processes causing the older clusters to spread out in energy
more than angular momentum. This may be due to mass growth
of the galaxy. Merger events can cause violent relaxation (Lynden-
Bell 1967), when a rapidly changing potential causes the energies
of different particles to vary. This presents an obstacle to using the
gradients of dispersed substructure to infer the past pattern speed

evolution, since the effects of potential variations may be difficult to
disentangle from those of a slowing bar.

The metallicity vs Jacobi integral distributions of 50 clusters are
shown in Fig. 12 for the four different ages. As in the test particle
simulation (Fig. 9) the clumps are much less dispersed in 𝐻J than
in (𝐿𝑧 , 𝐸) space. This is especially true for the younger clusters,
suggesting that metallicity/𝐻J space may be an effective tool for dis-
covering recently phase-mixed globular cluster debris. However, as
the age increases the clusters become more dispersed and overlapping
in 𝐻J. This is related to the large spread in gradients seen in Fig. 11,
and suggests that even 𝐻J may not be useful for clusters dissolved
≳ 10 Gyr ago.
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(Lz, E) gradients of mock clusters with different ages

Figure 11. Gradients in (𝐿𝑧 , 𝐸 ) space of different mock clusters at the present day, as in Fig. 5. Each panel shows a cluster of a different age, with younger
towards the right-hand side. As in Figs. 2 and 5, the colour indicates the orbital circularity and the black dashed line is the final pattern speed. For the younger
clusters (right-hand panels), the gradients align closely with the pattern speed, as in the idealised simulation. However, older clusters (left-hand panels) at low
energies tend to have steeper gradients.

Metallicity vs Jacobi integral for mock Au-18 clusters

Figure 12. Metallicity vs Jacobi integral at the present day for the mock clusters in Au-18. As in Fig. 11 the cluster ages decrease from left to right. The clusters
are much less dispersed in this space than in (𝐿𝑧 , 𝐸 ) (see Fig. 10), especially those with younger ages.

5 CONCLUSIONS

In this paper we have investigated the dynamical effects of the Galac-
tic bar on small-scale substructure, such as dissolved globular clus-
ters. We have employed three different models: an analytic toy model
in which the bar’s effects are treated as a diffusion process; a set of
test particle simulations where stars are stripped from globular clus-
ters and evolved in a realistic Milky Way potential with a slowing bar;
and the cosmological zoom-in simulation Auriga 18, which is a close
analogue of the Milky Way. Our principal findings are summarised
below.

(i) The bar causes clusters in (𝐿𝑧 , 𝐸) space to disperse along lines
of gradient equal to the pattern speed Ωb. If Ωb is steady, this is
equivalent to conservation of the Jacobi integral 𝐻J = 𝐸 −Ωb𝐿𝑧 .

(ii) We fit straight lines to the distributions of stars from each simulated
cluster in (𝐿𝑧 , 𝐸) space. With a steadily rotating bar, these gradients

are clustered around the pattern speed due to 𝐻J conservation. With
a slowing bar, the present-day gradients are greater than the current
Ω but less than the time-averaged Ωb across the simulation. The
gradients of bar-dispersed substructure in (𝐿𝑧 , 𝐸) space therefore
preserves memory of the past evolution of the pattern speed. This
may offer a route for future studies to constrain the past evolution of
the bar’s pattern speed. However, the cosmological simulation Au-18
suggests that other processes in real galaxies (e.g. mass growth) may
steepen these gradients at low energies, complicating the picture.

(iii) We quantify which regions of integral of motion space are most
affected by the bar. For each cluster in the test particle simulation we
measure the factor by which the bar increases the angular momentum
spread 𝜎𝐿𝑧

of the stripped debris. We fit a paraboloid surface in
(𝐿𝑧 , 𝐿⊥, 𝐸) space to the clusters where 𝜎𝐿𝑧

increases by a factor of
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𝑒 due to the slowing bar. This surface has the equation,

𝐸crit (𝐿𝑧 , 𝐿⊥) = 𝐸⊙ + 4.8 × 104 (km/s)2

− 0.018(𝐿𝑧/kpc − 505 km/s)2

− 0.005(𝐿⊥/kpc)2,

(52)

where 𝐸⊙ is the energy of a circular orbit at the Sun’s radius. Any
clusters with energy 𝐸 < 𝐸crit (𝐿𝑧 , 𝐿⊥) are likely to be significantly
affected by the bar. This can be used as a rule of thumb in any realistic
Milky Way potential to determine whether the bar is influential.
Orbits are more affected at low energy, positive (prograde) 𝐿𝑧 , high
eccentricity, and low inclination.

(iv) A significant proportion of the Milky Way’s known substructure
lies at 𝐸 < 𝐸crit (𝐿𝑧 , 𝐿⊥) so is expected to be influenced by the
bar. This includes ∼ 3/4 of globular clusters and ∼ 1/4 of known
stellar streams (listed in Appendix B). Among these are the Pal
5 and Ophiuchus streams, which have previously been associated
with bar perturbations. The lack of observed streams at low ener-
gies may be explained by dispersal of globular cluster debris by the
bar. Larger-scale substructure such as Gaia Sausage-Enceladus and
the in situ halo are expected to be blurred by the bar. A large ma-
jority of the Galaxy’s metal-poor ([Fe/H] < −1) stars are also at
𝐸 < 𝐸crit (𝐿𝑧 , 𝐿⊥). This includes those born before the formation of
the Milky Way’s disc (Belokurov & Kravtsov 2022). Hence the debris
from any globular clusters present in the early Milky Way is expected
to be significantly dispersed by the bar. Since much mass has been
lost from globular clusters in the inner halo (Baumgardt et al. 2019),
we predict that it contains a large amount of undiscovered substruc-
ture which is no longer clustered in (𝐿𝑧 , 𝐿⊥, 𝐸) space. Traditional
clustering algorithms are not likely to detect such substructure.

(v) Debris from dissolved clusters is predicted to remain much less
dispersed in the Jacobi integral 𝐻J than in the traditional integrals of
motion separately (such as (𝐿𝑧 , 𝐿⊥, 𝐸)). We show that mock glob-
ular cluster debris in the space of metallicity [Fe/H] vs 𝐻J remains
tightly clustered even in a decelerating barred potential. We there-
fore propose that a combination of chemistry and the Jacobi integral
should be used to search for phase-mixed substructure in the inner
halo of the Milky Way, particularly in the region 𝐸 < 𝐸crit (𝐿𝑧 , 𝐿⊥).

While the bar is expected to have a damaging effect on Milky Way
substructure, Galactic archaeology is far from impossible in the inner
halo. A combination of the Jacobi integral and chemical abundances
should allow different structures to be identified even when highly
dispersed in integral of motion space. With the arrival of new chem-
ical abundance measurements from upcoming spectroscopic surveys
such as WEAVE, this should bring us a step closer to reconstructing
the earliest stages of our Galaxy’s evolution.
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APPENDIX A: DERIVATION OF THE DIFFUSION
EQUATION

Here we derive the diffusion equation (9) in the (𝐿𝑧 , 𝐸) plane under
the approximation of a constant diffusion coefficient 𝐷.

Consider an infinitesimal bin of area d𝐿𝑧d𝐸 at (𝐿𝑧 , 𝐸), containing
𝑃(𝐿𝑧 , 𝐸, 𝑡)d𝐿𝑧d𝐸 particles at time 𝑡. In the time interval 𝑡 → 𝑡 + Δ𝑡

particles will experience some change in angular momentum ±Δ𝐿𝑧

due to the bar, where we take Δ𝐿𝑧 > 0 and assume positive and neg-
ative changes are equally likely. Since the energy change is fixed to
±Δ𝐸 = ±Ωb (𝑡)Δ𝐿𝑧 by equation (7), half of the particles experienc-
ing changes±Δ𝐿𝑧 from each of the bins at (𝐿𝑧±Δ𝐿𝑧 , 𝐸±Ωb (𝑡)Δ𝐿𝑧)
will move to (𝐿𝑧 , 𝐸). Meanwhile all of the particles at (𝐿𝑧 , 𝐸) ex-
periencing finite Δ𝐿𝑧 ≠ 0 will be outside the bin at time 𝑡 + Δ𝑡. Let
𝑓 (Δ𝐿𝑧) be the probability distribution of Δ𝐿𝑧 , assumed to be inde-
pendent of 𝐿𝑧 , 𝐸 , and 𝑡 in the domain of interest. The new occupation
of the bin is then obtained by summing over all Δ𝐿𝑧 ,

𝑃(𝐿𝑧 , 𝐸, 𝑡 + Δ𝑡) = 1
2

∫ ∞

0
[𝑃(𝐿𝑧 − Δ𝐿𝑧 , 𝐸 −Ωb (𝑡)Δ𝐿𝑧 , 𝑡)

+𝑃(𝐿𝑧 + Δ𝐿𝑧 , 𝐸 +Ωb (𝑡)Δ𝐿𝑧 , 𝑡)] 𝑓 (Δ𝐿𝑧) dΔ𝐿𝑧 .

(A1)

Expanding both sides and cancelling terms, we obtain

𝜕𝑃

𝜕𝑡
Δ𝑡 =

1
2

[
𝜕2𝑃

𝜕𝐿2
𝑧

+ 2Ωb (𝑡)
𝜕2𝑃

𝜕𝐿𝑧𝜕𝐸
+Ω2

b (𝑡)
𝜕2𝑃

𝜕𝐸2

]
×
∫ ∞

0
(Δ𝐿𝑧)2 𝑓 (Δ𝐿𝑧) dΔ𝐿𝑧 ,

(A2)

=
(Δ𝐿𝑧)2

2

(
𝜕

𝜕𝐿𝑧
+Ωb (𝑡)

𝜕

𝜕𝐸

)2
𝑃. (A3)

We can now define the diffusion coefficient,

𝐷 ≡ 1
2
(Δ𝐿𝑧)2
Δ𝑡

, (A4)

where we let Δ𝑡 = 𝜏 be the average time between interactions with
the bar, and ±Δ𝐿𝑧 the change in angular momentum per interaction.
We can now recover the diffusion equation (9),

𝜕𝑃

𝜕𝑡
= 𝐷

(
𝜕

𝜕𝐿𝑧
+Ωb (𝑡)

𝜕

𝜕𝐸

)2
𝑃. (A5)

APPENDIX B: STREAMS PREDICTED TO BE AFFECTED
BY THE BAR

In Table B1 we list the streams in the Bonaca & Price-Whelan (2025)
catalogue whose energies 𝐸 are below our critical energy for bar-
driven dispersal, 𝐸crit (𝐿𝑧 , 𝐿⊥). The right-hand column shows the
magnitude of the energy difference between the streams and the
boundary, shown in descending order. The streams nearer the top of
the list are therefore most likely to be heavily perturbed by the bar.
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Stream |𝐸 − 𝐸crit (𝐿𝑧 , 𝐿⊥ ) | [105 (km/s)2]

New-15 0.63
New-6 0.48
New-9 0.47
Gaia-7 0.30
Hydrus 0.23

NGC288 0.20
NGC6397 0.20
NGC1851 0.16

Svol 0.16
C-9 0.16

New-27 0.14
NGC7099 0.13

Pal5 0.11
M5 0.10

Ophiuchus 0.08
Gaia-8 0.06
New-17 0.05
New-19 0.04
LMS-1 0.04
M92 0.03
Hrid 0.01

Table B1. Streams predicted to be affected by the bar. The right-hand col-
umn shows the distance in energy below the critical boundary for bar-driven
dispersal.
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