RESEARCH

Early developmental milestones associated with tics and psychopathological comorbidity: An EMTICS study

 $Tamar\ Steinberg^{1,2}\cdot Dana\ Feldman-Sadeh^{1,2}\cdot Alan\ Apter^{1,2}\cdot Yael\ Bronstein^{1,2}\cdot Noa\ Elfer^1\cdot Miri\ Carmel^3\cdot Elena\ Michaelovsky^3\cdot Abraham\ Weizman^3\cdot Matan\ Nahon^4\cdot Danny\ Horesh^4\cdot Astrid\ Morer^5\cdot Blanca\ Garcia\ Delgar^5\cdot Anette\ Schrag^6\cdot Silvana\ Fennig^{1,2}\cdot Pieter\ J.\ Hoekstra^{7,8}\cdot Andrea\ Dietrich^{7,8}\cdot the\ EMTICS\ collaborative\ group\cdot Noa\ Benaroya-Milshtein^{1,2}$

Received: 31 October 2024 / Accepted: 24 June 2025 © The Author(s) 2025

Abstract

Background Chronic Tic disorders (CTD) including Tourette Syndrome (TS), are associated with psychopathological comorbidities. Attention deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD) and other comorbidities have been linked to delays in early developmental milestones. Few studies have investigated the relationship between early developmental milestones, tic severity, and related comorbidities.

Methods 383 participants aged 3–16 years (76.8%, n = 294 boys) with CTD from the baseline assessment of the *European Multicenter Tics in Children Study* (EMTICS), were evaluated for: retrospective early developmental milestones (sitting, walking, first words, complete a sentence, bladder and bowel control), tic severity, tic-related functional impairment, obsessive—compulsive disorder (OCD), ADHD, oppositional defiant disorder (ODD) and suspected ASD. Data was collected using gold-standard self and clinician reporting instruments. Analyses included Pearson correlations and logistic regressions. **Results** Correlations between the acquisition of developmental milestones and tic severity or impairment were significant with small effect sizes (severity of motor tics and tic impairment were correlated with walking (r = .11), while vocal tics were correlated with first words (r = .12)). Logistic regression revealed that delayed acquisition of first words was significantly associated with ADHD, ODD and suspected ASD (Odds Ratio (ROR): 1 - 1.13, 1.04 - 1.22, 1.05 - 1.21, respectively), while delayed walking acquisition was associated with OCD (ROR: 1.01 - 1.27).

Discussion This study highlights the association between early developmental milestones and later psychopathological comorbidities in CTD patients. These findings emphasize the need for further research to distinguish between children with only tics and those with tics and psychopathological comorbidities, to improve early detection of individuals at risk.

Keywords Developmental milestones · Tourette syndrome · Tic disorders · Attention deficit hyperactivity disorder (ADHD) · Obsessive compulsive disorder (OCD)

Tamar Steinberg and Dana Feldman-Sadeh the first two authors equally contributed to this manuscript.

- Noa Benaroya-Milshtein nbenaroya@gmail.com; noabena@clalit.org.il
- Department of Child and Adolescent Psychiatry, Schneider Children's Medical Center of Israel, 4920235 Petach Tikva, Israel
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Felsenstein Medical Research Center, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Psychology, Faculty of Social Science, Bar-Ilan University, Ramat Gan, Israel

Published online: 17 July 2025

- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neurosciences, Hospital Clinic Universitari, Barcelona, Spain
- Department of Clinical Neuroscience, Queen Square UCL Institute of Neurology, University College London, London, UK
- Department of Child and Adolescent Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- 8 Accare Child Study Center, Groningen, The Netherlands

Introduction

Chronic Tic Disorders (CTD), including Tourette Syndrome (TS), are neurodevelopmental conditions characterized by the persistent presence of sudden, rapid, recurrent, non-rhythmic motor movements and/or vocalizations lasting at least one year with onset before the age of 18 [1, 2]. According to studies based on clinical samples [3], TS typically manifests early in life and is frequently accompanied by high rates of psychopathological comorbid conditions throughout an individual's lifespan [3, 4]. The most common comorbidity is attention deficit/hyperactivity disorder (ADHD), followed by obsessive-compulsive disorder (OCD) and autism spectrum disorder (ASD) [5]. Other associated comorbidities include mood disorders, anxiety disorders, oppositional defiant disorders (ODD) and various disruptive, impulse-control, and conduct disorders [4-9].

Psychopathological comorbidities, such as ADHD and ASD have been linked to delays in early developmental milestones [10–13]. Furthermore, TS patients with psychopathological comorbidities, such as communication disorders and ADHD, may exhibit significant delays in motor and language acquisition [14]. Research suggests that TS and ADHD are linked to less efficient brain connectivity among regions, particularly showing disrupted topological organization with decreased short-range connectivity in the default mode network and frontoparietal network [15]. Additionally, shared factors such as prenatal, birth and postnatal complications may contribute to both CTD and developmental delays [16–18].

Developmental delays were also associated with other psychopathological comorbidities. For instance, children with anxiety disorders have been found to exhibit higher rates of developmental delays in areas such as speech, motor, or bladder and bowel control [19]. Similarly, parents of children with ODD have reported developmental difficulties in bladder/bowel control and language, including delays in speaking their first words [20]. The United Kingdom-based AVON longitudinal birth cohort study further reveled that children with obsessions and compulsions had significantly higher rates of soiling, indicating developmental challenges associated with OCD [21]. The Copenhagen Perinatal Cohort longitudinal study, one of the few prospective studies following individuals from birth, demonstrated that delayed acquisition of motoric milestones, including sitting and walking, was correlated with later onset of adult schizophrenia [22]. This rare prospective birth cohort design allows for more reliable documentation of the relationship between early developmental milestones and later psychopathology. These findings highlight the importance of monitoring developmental

milestones during childhood to identify individuals at risk for future psychopathological comorbidities.

To our knowledge, the first investigation into developmental milestones in TS was conducted by Comings and Comings in 1987. Their study compared 247 TS patients with 47 controls and found no significant differences in the ages of first talking or walking. However, they did identify significant delays in toilet training among TS patients, including later age of first toilet training, last bed-wetting, and bowel control [23]. This area of research remained relatively neglected for several decades until Cravedi et al. (2018) examined developmental trajectories in 174 children and adolescents with TS. Their study demonstrated that developmental delays are more common in individuals with both TS and neurodevelopmental comorbidities, such as ADHD, compared to those with TS alone [15, 24]

Given the limited research, the connection between developmental delays and later-life tic severity and psychopathological comorbidities remains inconclusive. To address this gap, we retrospectively examined early developmental milestones in a large sample of youth (ages 3–16) with chronic tics from the European Multicenter Tics in Children Study (EMTICS) [25]. Our study aimed to investigate the developmental milestones of individuals with chronic CTDs. Specifically, we sought to explore the relationship between the age of acquiring early developmental milestones (motor, language, and toilet training) and both tic severity and impairment, as well as psychopathological comorbidities, including OCD, ADHD, ODD, and suspected ASD. We hypothesized that delayed acquisition of these milestones would predict greater tic severity and impairment, along with more severe comorbid symptoms or higher rates of comorbid psychopathologies.

Methods

Participants and procedure

The sample included 383 children and adolescents aged 3 to 16 years with Tourette syndrome (TS) or chronic tic disorder (CTD) who participated in the baseline assessment of the EMTICS study, which investigates the role of genetic, autoimmune, and psychosocial factors in the onset and progression of tics [24]. Participants were recruited from sixteen child mental health or pediatric neurology outpatient clinics across Europe and Israel, as well as through advertisements directed at patient organizations and health professionals. All participants who met the diagnostic criteria for TS or CTD according to the DSM-IV-TR (American Psychiatric

Association) were invited, along with their parents or guardians, to participate in the study [1].

Inclusion criteria required participants to be between 3 and 16 years old, with a confirmed diagnosis of TS or CTD based on DSM-IV-TR criteria [1]. Additionally, for the current study, only participants whose parents had completed all questions related to early developmental milestones were included. Exclusion criteria included severe medical or neurological illness, recent antibiotic treatment within the past month, or inability to comply with study procedures. Written informed consent was obtained from parents or legal guardians, and participating adolescents provided either written assent or consent, depending on local medical-ethical regulations. Ethical approval was granted by the relevant Research Ethics Committees at each participating center.

Baseline measures, including parent-reported questionnaires and a clinical interview, were collected during the initial EMTICS visit. Additionally, a clinician confirmed the diagnosis of TS or CTD and assessed for ADHD and OCD according to DSM-IV-TR criteria [1].

Measures

Demographic information, including the child's sex, age at evaluation, study site, and ethnicity, was collected through a demographic questionnaire.

Early Developmental Milestones were gathered using the Modified Schedule for Risk and Protective Factors in Early Development (MSRPFED) [24]. Parents reported the age (in months) at which their child acquired eight developmental milestones from early life: sitting, walking, first words, sentence completion, daytime and nighttime bladder control, and bowel control. This information created eight continuous developmental measures for analysis. Developmental delays were assessed using the Denver II assessment for motor and language development [25], with suspected delays determined using the 90th percentile age norms. Toilet training and delays differentiated by sex were assessed based on the 75th percentile, following the methodology of Schum et al. [26] For the developmental milestones norms, refer to Appendix B, Table 6. Consequently, an additional dichotomous variable was created for each developmental milestone to identify children with developmental delays.

Tic severity and impairment symptoms were measured using the clinician-rated *Yale Global Tic Severity Scale* (YGTSS) [27, 28]. Each of the following dimensions was rated on a five-point scale: number, frequency, intensity, interference, and complexity over the past week. Scores were calculated for motor tic severity (range: 0–25), vocal tic severity (range: 0–25), total tic severity (range: 0–50), and the tic impairment score (subjective evaluation of impairment caused by tics, range: 0–50). In the current

study, Cronbach's alpha values were calculated as follows: $\alpha = 0.88$ for the total tic severity scale, $\alpha = 0.82$ for the motor subscale, and $\alpha = 0.89$ for the vocal subscale. Total tic severity cut-offs were defined as follows: minimal tics < 10, mild tics: 10–20, moderate tics: 20–40, and severe tics: 40–50, based on the work of Leckman and colleagues [27].

Obsessive–Compulsive Disorder (OCD) symptoms were assessed using the clinician-rated Children's Yale-Brown Obsessive–Compulsive Scale (CY-BOCS) [32], which evaluates five dimensions: time, interference, distress, resistance, and control associated with obsessions and compulsions over the past week. Each dimension is rated on a five-point scale. The scale provides three summary scores: obsession severity (ranging from 0 to 20; α =0.92), compulsion severity (ranging from 0 to 20; α =0.93), and total OCD severity (ranging from 0 to 40; α =0.94). A dichotomous diagnosis of OCD was based on DSM-IV-TR criteria, as determined by a trained clinician, or a CY-BOCS total severity score of 16 or higher, following the cut-off established by Scahill et al. [29].

Attention Deficit/Hyperactivity Disorder (ADHD) symptoms were assessed using the abbreviated version of the Swanson, Nolan, and Pelham, version IV (SNAP-IV) rating scale, which evaluates symptoms over the past week on a four-point scale. This scale yields three scores: inattention score (9 items, range 0–27; current study α =0.91), hyperactivity-impulsivity score (9 items, range 0–27; current study α =0.90), and combined score (18 items, range 0–54; current study α =0.94), with higher scores indicating greater symptom severity [30]. A dichotomous diagnosis of ADHD was determined based on DSM-IV-TR criteria, as diagnosed by a trained clinician, and included any of the ADHD subtypes (inattentive, hyperactive, or combined) [31].

Oppositional Defiant Disorder (ODD) symptoms were assessed using the parent-rated *Swanson*, *Nolan*, *and Pelham*, *version IV* (SNAP-IV) abbreviated version rating scale. ODD symptoms were evaluated over the past week on a four-point scale, with higher scores indicating greater symptom severity (8 items, range 0–24; current study $\alpha = 0.91$). A dichotomous ODD variable was defined as scoring above the 95th percentile cut-off on the SNAP-IV questionnaire (ODD mean score ≥ 1.88) [31].

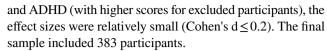
Suspected Autism Spectrum Disorder (ASD) symptoms were assessed using the parent-rated Autism Spectrum Screening Questionnaire (ASSQ) [32]. A three-point scale was employed to evaluate symptoms across four domains: social interaction, communication, restricted and repetitive behaviors, and motor clumsiness, along with other associated symptoms. Higher scores indicated greater suspected ASD symptom severity (27 items, range 0–54; α =0.90). A dichotomous variable for suspected ASD was defined as scoring above the established cut-off (ASSQ score \geq 19) [32].

Statistical analysis

Missing data patterns were examined using Little's MCAR (Missing Completely at Random) test, incorporating variables such as developmental milestones, tics, OCD, ADHD, ODD, suspected ASD, sex, age at visit, ethnicity, and site.

Correlation matrices were constructed to evaluate both intra-correlations and inter-correlations among early developmental milestones, tic severity and impairment, and the severity of psychopathological comorbidity symptoms (all continuous variables).

Due to the weak correlations with continuous variables, we proceeded with our analysis using dichotomous dependent variables for ADHD, OCD, and ODD (based on DSM-IV-TR criteria or established cut-offs from gold standard report measures).


To evaluate whether developmental milestones are related to the presence of psychopathological comorbid diagnoses, logistic regression analyses were performed separately for each diagnosis, with the presence of ADHD, ODD, OCD, and suspected ASD as dependent variables (0 = without the respective comorbidity; 1 = with the respective comorbidity). Independent variables included the age in months for each developmental milestone (sitting, walking, first words, sentence completion, daytime/nighttime bladder control, and bowel control). Covariates such as sex, age, and site were also included.

Results were reported using odds ratios (OR), where OR values below, equal to, or above 1 reflect lower, neutral, or higher odds of the outcome, respectively. Model accuracy was evaluated using a classification table to compare observed and predicted outcomes. All analyses were conducted using IBM SPSS, Version 20.0 [34], with a significance level of $\alpha = 0.05$.

Results

Sample characteristics

The initial sample consisted of 709 participants. Only participants whose parents had completed all questions related to early developmental milestones were included. Missing data were assessed using Little's MCAR test (considering variables such as sex, age at visit, ethnicity, study site, tics, OCD, ADHD, ODD, and suspected ASD), which indicated that the missing data were completely random ($\chi^2(523) = 564.26$, p = 0.10). To validate this result, differences in outcome variables between participants with complete data and those who were excluded were examined using t-tests. Although significant differences were found for nighttime bowel control

The majority of participants (87.5%, n = 335) were diagnosed with Tourette syndrome (TS), 11.5% (n = 44) with chronic motor tic disorder, and less than 1% (n = 1; 0.3%) with chronic vocal tic disorder. In terms of tic severity, 47% (n = 180) of participants exhibited moderate tic severity, 36% (n = 138) had mild tics, 16.2% (n = 62) had minimal tics, and 0.8% (n = 3) had severe tics. Regarding comorbidities, 31% (n = 121) of participants met criteria for OCD, 25.1% (n = 96) for ADHD, 12.8% (n = 49) of participants met criteria for ODD severity score and 18.8% (n = 72) met criteria for suspected ASD. Descriptive statistics for demographics, tic severity, impairment, and comorbid psychopathology symptoms are presented in Table 1. For intra-correlations between tics and comorbid psychopathology, refer to Appendix B, Table 7.

Early developmental milestones

Table 2 presents the average age at which participants achieved early developmental milestones, as well as the

Table 1 Demographics and clinical characteristics (n=383)

	N(%)	M±SD	Range
Age		10.67 ± 2.69	3.35–16.79
Sex (male)	294 (76.8)		-
Ethnicity (Caucasian)	362 (94.5)		-
Chronic tic disorder			
Motor tic severity score ^a		12.42 ± 4.55	0-23
Vocal tic severity score ^a		7.40 ± 5.55	0-22
Total tic severity score ^a		19.81 ± 8.70	0-44
Tic impairment score ^a		14.73 ± 11.68	0-50
OCD^b	121 (31)		
Obsessions severity score ^b		3.20 ± 4.69	0-17
Compulsions severity score ^b		3.85 ± 4.99	0-20
Total OCD severity score ^b		7.04 ± 8.85	0-34
ADHD	96 (25.1)		
Inattention severity score ^c		10.59 ± 6.91	0-27
Hyperactivity severity score ^c		8.87 ± 6.76	0-27
Combined severity score ^c		19.46 ± 12.58	0-54
ODD^c	49 (12.8)	8.23 ± 5.96	0-24
ODD severity score			
Suspected ASD ^d	72(18.8)	11.06 ± 8.93	0–46

OCD, Obsessive Compulsive Disorder; ADHD, Attention Deficit Hyperactive Disorder; ODD, Oppositional Defiant Disorder; suspected ASD, suspected Autism Spectrum Disorder;

aby YGTSS – Yale Global Tic Severity Scale;
 bby CYBOCS – Children's Yale-Brown Obsessive Compulsive Scale;
 cby SNAP – Swanson, Nolan and Pelham;
 dby ASSQ – Autism Spectrum Screening Questionnaire

Table 2 Age of acquiring early developmental milestones (n = 383)

Developmental milestones	Md (months)	M±SD (months)	Range (months)	Suspected developmental delay % (n)
Motor development				
Sitting	6.00	6.84 ± 1.54	3–12	$2.9(11)^{a}$
Walking	12.50	13.01 ± 2.48	8.5–36	$8.1 (31)^a$
Language development				
First words	12.00	13.28 ± 5.98	4–52	19.8 (76) ^a
Complete a sentence	22.00	21.95 ± 7.58	8–60	18.3 (70) ^a
Toilet training				
Day bladder control	30.00	30.80 ± 13.87	10-168	8.9 (34) ^b
Night bladder control	30.00	37.34 ± 21.70	12-192	19.1 (73) ^b
Bowel control	30.00	31.85 ± 10.72	12–134	15.4 (59) ^b

^aAccording to The Denver II Developmental Screening Test (1992) [25]

percentage of participants with suspected delays. Daytime and nighttime bowel control were highly correlated (r=0.83, p<0.01) and were therefore combined into a single variable for further analysis based on clinical considerations. Table 3 shows intra-correlations between developmental milestones, with significant positive correlations within each domain (motor, language, and toilet training; r=0.39-0.67, p<0.01). Cross-domain correlations ranged from minor to moderate positive (r=0.02-0.46, p=n.s.-<0.01).

For the developmental milestones norms, refer to Appendix B, Table 6

Correlations between early acquisition of developmental milestones, tics, and comorbid symptoms

A Pearson correlation analysis (Table 4) revealed weak correlations overall, with small effect sizes (r < 0.21). Notably, the acquisition of sitting was not associated with any comorbid psychopathological symptoms. Motor tics and tic impairment were correlated with walking (r = 0.11-0.12), while vocal tics were correlated with first words (r = 0.12).

OCD showed correlations with walking, first words, and sentence completion (r=0.12-0.18). ADHD was correlated with walking, first words, sentence completion, and bowel control (r=0.12-0.21). ODD was correlated with first words (r=0.15), and suspected ASD was correlated with bladder and bowel control (r=0.10-0.17).

Prediction of psychopathological comorbidity diagnoses by early developmental milestones

Logistic regression analyses were conducted to explore the relationship between early developmental milestones and comorbid psychopathological diagnoses (Table 5.), with the results detailed below. Unless otherwise noted, the covariates (sex, age, and site) were not significant.

OCD

The model was significant ($\chi^2(10) = 34.2$, p < 0.01), accounting for 12.2% of the variance in OCD and correctly classifying 68.7% of cases. Later acquisition of walking

Table 3 Correlation matrix of intra-correlations between early developmental milestones (n=383)

Domain	Developmental milestones	Walking	First words	Complete a sentence	Day bladder control	Night bladder control	Bowel control
Motor	Sitting	0.40**	0.22**	0.06	0.08	0.08	0.16**
	Walking	_	0.46**	0.28**	0.09	0.06	0.14**
Language	First words		_	0.68**	0.12*	0.09	0.25**
	Complete a sentence			_	0.09	0.02	0.22**
Toilet training	Day bladder control				_	0.67**	0.59**
	Night bladder control					_	0.46**
	Bowel control						_

^{*}p < 0.05, **p < 0.01

^bAccording to Schum, et al. (2002) [26]

Table 4 Correlation matrix between early developmental milestones and severity of tics and comorbid psychopathology symptoms (n=383)

	Age of	acquiring e	arly developn	nental milest	ones (mont	hs)	
	Sitting	Walking	First words	Complete a sentence	Day bladder control	Night bladder control	Bowel control
Tics ^a							
Motor tic severity	-0.04	0.11*	0.02	0.05	0.04	-0.003	0.01
Vocal tic severity	-0.09	0.06	0.12*	0.08	0.05	-0.007	0.08
Total tic severity	-0.08	0.09	0.08	0.07	0.06	-0.004	0.06
Impairment	-0.04	0.12*	0.08	0.07	0.07	0.03	0.09
OCD severity ^b							
Obsessions	0.01	0.16**	0.15**	0.12**	0.04	-0.05	0.05
Compulsions	0.005	0.17**	0.07	0.08	0.03	-0.02	0.05
Total OCD severity	0.01	0.18**	0.12*	0.11*	0.03	-0.04	0.05
ADHD severity ^c							
Inattention	0.09	0.18**	0.18**	0.13*	0.07	0.06	0.1*
Hyperactivity	0.06	0.16**	0.21**	0.12*	0.04	0.06	0.11*
Combined	0.08	0.19**	0.21**	0.13**	0.06	0.06	0.12*
ODD severity ^c	-0.05	0.08	0.15**	0.09	-0.008	-0.01	0.02
ASD severity ^d	0.08	0.05	0.1	0.03	0.17**	0.17**	0.10*

p < 0.05, p < 0.01

OCD, Obsessive Compulsive Disorder; ADHD, Attention Deficit Hyperactive Disorder; suspected ASD, suspected Autism Spectrum Disorder; ODD, Oppositional Defiant Disorder.

(OR = 1.13; 1.01–1.27, p < 0.05) and the child's older age (covariate) (OR = 1.16; 1.06–1.26, p < 0.01) increased the likelihood of an OCD diagnosis.

ADHD

The model predicting ADHD was also significant $(\chi^2(10) = 22.97, p < 0.01)$, accounting for 8.6% of the variance and correctly classifying 75% of cases. Later acquisition of first words increased the likelihood of an ADHD diagnosis (OR = 1.06; 1.00–1.30, p < 0.05), while later acquisition of sentence completion reduced the likelihood (OR = 0.95; 0.91–0.99, p < 0.05).

ODD

Significant results were found ($\chi^2(10) = 25.11$, p < 0.05), contributing 11.9% to the variance in ODD and correctly classifying 87.2% of cases. Later acquisition of first words increased the likelihood of ODD (OR = 1.13; 1.04–1.22, p < 0.01), while later acquisition of sitting reduced the likelihood (OR = 0.70; 0.54–0.90, p < 0.01). Being male

(covariate) also increased the likelihood of an ODD diagnosis (OR = 0.36; 0.14-0.90, p < 0.03).

Suspected ASD

The model was significant ($\chi^2(10) = 34.32$, p < 0.01), accounting for 13.8% of the variance in suspected ASD and correctly classifying 81.2% of cases. Later acquisition of first words increased the likelihood of suspected ASD (OR = 1.13; 1.05–1.21, p < 0.01), while sentence completion reduced the likelihood (OR = 0.95; 0.89–1.00, p < 0.05).

Discussion

The current study included a large sample of children and adolescents aged 3–16 years with chronic tic disorders (CTD), aimed to explore the relationship between delayed acquisition of key developmental milestones (motor, language, and toilet training) and tic severity, tic-related impairment as well as psychopathological comorbidities. The primary finding was that delayed language acquisition, particularly speaking first words in infancy, predicted later

^aby YGTSS – Yale Global Tic Severity Scale; ^bby CYBOCS – Children's Yale-Brown Obsessive Compulsive Scale; ^cby SNAP – Swanson, Nolan and Pelham; ^d by ASSQ – Autism Spectrum Screening Questionnaire.

Table 5. Logistic Regressions for predicting comorbid psychopathology diagnoses by early developmental milestones

Prediction of OCD by: Overall	В	SE	Wald	p	Exp(B) (95% C.I)	NagelkerkeR ²
Sitting	-0.08	0.08	0.94	0.33	0.92 (0.78–1.09)	
Walking	0.12	0.06	4.24	0.04	1.13 (1.01–1.27)	
First words	0.04	0.03	1.94	0.16	1.04 (0.98–1.10)	
Complete sentence	0.00	0.02	0.00	1.00	1.00 (0.96–1.04)	
Day bladder control	0.02	0.01	2.37	0.12	1.02 (0.99-1.05)	
Night bladder control	-0.01	0.01	2.80	0.09	0.99 (0.97-1.00)	
Bowel control	0.01	0.01	0.28	0.60	1.01 (0.98–1.03)	
Prediction of ADHD by: Overall	В	SE	Wald	p	Exp(B) (95% C.I)	NagelkerkeR ²
Sitting	-0.03	0.09	0.16	0.69	0.97 (0.82–1.14)	0.000
Walking	0.12	0.06	3.66	0.06	1.12 (1.00–1.27)	
First words	0.06	0.03	3.83	0.05	1.06 (1.00–1.13)	
Complete sentence	-0.05	0.02	4.01	0.05	0.95 (0.91-1.00)	
Day bladder control	-0.03	0.03	0.97	0.32	0.98 (0.93-1.03)	
Night bladder control	0.00	0.01	0.19	0.67	1.00 (0.98-1.01)	
Bowel control	0.05	0.02	3.52	0.06	1.05 (0.98–1.10)	
Prediction of ODD by:	В	SE	Wald	p	Exp(B) (95% C.I)	NagelkerkeR ²
Overall						
Sitting	-0.36	0.13	7.53	0.01	0.70 (0.54-0.90)	0.119
Walking	0.07	0.07	1.03	0.31	1.07 (0.94–1.23)	
First words	0.12	0.04	8.74	0.00	1.12 (1.04–1.22)	
Complete sentence	-0.06	0.03	3.30	0.07	0.94 (0.88–1.00)	
Day bladder control	-0.04	0.05	0.68	0.41	0.96 (0.88–1.05)	
Night bladder control	0.00	0.01	0.19	0.66	1.00 (0.98–1.02)	
Bowel control	0.02	0.04	0.16	0.68	0.1.02 (0.94–1.09)	
Prediction of suspected ASD by:	В	SE	Wald	p	Exp(B) (95% C.I)	NagelkerkeR ²
Overall						
Sitting	0.086	0.09	0.22	0.64	1.05 (0.87–1.26)	0.138
Walking	-0.09	0.07	1.99	0.16	0.91 (0.80–1.04)	
First words	0.12	0.04	11.34	0.00	1.13 (1.05–1.21)	
Complete sentence	-0.06	0.03	3.75	0.05	0.95 (0.89–1.00)	
Day bladder control	0.01	0.01	0.33	0.57	1.01 (0.98–1.04)	
Night bladder control	0.01	0.01	2.09	0.15	1.01 (1.00–1.03)	
Bowel control		0.02	0.70	0.40	0.99(0.96-1.02)	

the models covaried sex site and age (significant results are presented in the main text)

ADHD, Attention Deficit Hyperactive Disorder; *OCD*, Obsessive Compulsive Disorder; *suspected ASD*, suspected Autism Spectrum Disorder; *ODD*, Oppositional Defiant Disorder.

psychopathological comorbidities associated with CTD, including OCD, ADHD, ODD and suspected ASD.

In line with our hypothesis, tic severity and impairment were correlated with developmental milestones albeit with small effect size. Interestingly, motor tics and tic impairment were associated with the age of first walking, while vocal tics were linked to delayed acquisition of first words. Similarly, Cravedi et al., (2018), identified developmental delays in children with tics and neurodevelopmental comorbidities,

however, their study categorized TS individuals into clusters rather than using continuous measures [14]. In contrast, Coming and Comings (1987), in a different study design, found no significant delays in talking or walking among TS patients compared to controls, but reported significant delays in bladder and bowel control [23]. These methodological differences may explain the variance in findings between studies. Thus, further research is needed to draw definitive conclusions.

Regarding related psychopathological comorbidities, our findings revealed a correlation between OCD, both severity and diagnosis, and delays in motor (walking) and language development. This aligns with previous research indicating that children with anxiety, a common comorbidity of OCD, often experience developmental delays in motor, language, and toilet training milestones [19, 33, 34] Importantly, this study focused on tic-related OCD, and future research should further explore developmental delays in cases of non-tic-related OCD [35, 36].

Our findings corroborate previous research that links neurodevelopmental disorders to developmental delays [13, 37, 38]. Specifically, we found that delayed language acquisition and bowel control were both associated with the severity of ADHD and suspected ASD symptoms. This aligns with LeBeau et al. (2022), who reported that bowel control difficulties were linked to the severity of ADHD and ASD symptoms, while delayed speech acquisition predicted later ASD diagnoses [10]. Similarly, Gurevitz et al. (2012) identified language delay as a significant early predictor of ADHD [39, 40].

Regarding ODD, our study found a significant correlation between delayed acquisition of first words and later ODD diagnosis and severity of symptoms. This aligns with previous research showing that children with ODD often experience slower language development and less speech clarity [21]. Nevertheless more studies on ODD with or without TS are needed.

Interestingly, negative correlations were found between ADHD and suspected ASD diagnoses with sentence completion, as well as between ODD diagnoses and sitting. One possible explanation is that children with psychopathological comorbidities often exhibit highly variable developmental trajectories, resulting in uneven progress across different developmental domains. For example, LeBeau et al. (2022) identified a similar pattern, particularly noting negative correlations between ADHD and delayed language acquisition [10]. Another explanation may lie in the tendency of parents to more easily recall prominent milestones, such as first words or walking, compared to less noticeable ones like sentence completion or sitting. This highlights the potential influence of memory bias in parental reporting of developmental milestones.

This study highlights the association between early developmental delays, including language, motor acquisition, and bowel/bladder control, and the later development of psychopathological comorbidities (OCD, ADHD, ODD, and suspected ASD) in CTD patients. Identifying these relationships could improve early detection of at-risk individuals and facilitate timely, tailored interventions, potentially improving long-term outcomes and quality of life for CTD patients with comorbid psychopathologies. Furthermore, our findings underscore the importance of distinguishing

between patients with tics alone and those with both tics and comorbid psychopathologies, as demonstrated in previous studies [3, 40, 41].

Strengths and limitations

This study offers several notable strengths, such as its large sample size and thorough assessment of developmental milestones across various domains. However, there are important limitations. Participant recruitment from clinical settings could introduce selection bias, leading to a higher proportion of individuals with psychopathological comorbidities compared to the general population. Additionally, the reduction in sample size due to missing developmental milestone data should be considered, though the analysis suggests this data was missing randomly. Methodologically, the study faced constraints, such as relying solely on retrospective parental reports without supplementary measurement tools, and the absence of inter-rater reliability measures for evaluating developmental milestones, which could affect data consistency. Moreover, our study did not include systematic assessment of learning disabilities and cognitive difficulties, which could be relevant to developmental milestone acquisition, particularly language development. Given the participants'mean age, recall bias may have influenced the results; however, the large sample size may reduce individual inaccuracies. We used widely accepted developmental norms from validated tools, acknowledging the challenges in establishing universal norms. Finally, the impact of multiple comparisons on the results should be noted, though the consistency of patterns, especially regarding language delays and their link to symptom severity, supports clinical knowledge that early developmental delays signal a higher risk for multiple diagnoses later in childhood and adolescence. Future research should incorporate a prospective design, comparing healthy controls, individuals with tics only, and those with specific psychiatric disorders without tics, to better differentiate the contributions of developmental trajectories to various clinical presentations and improve the precision of associations between developmental milestones and psychopathological comorbidities.

Appendix A

EMTICS group authorship: Alan Apter¹, Valentina Baglioni², Juliane Ball³, Noa Benaroya-Milshtein¹ Emese Bognar⁴, Bianka Burger⁵, Judith Buse⁶, Francesco Cardona², Marta Correa Vela⁷, Andrea Dietrich^{8,9}, Carolin Fremer¹⁰, Blanca Garcia-Delgar¹¹, Julie Hagstrøm¹², Tammy J. Hedderly¹³, Isobel Heyman¹⁴, Pieter J. Hoekstra^{8,9}, Chaim Huijser^{15,16}, Marcos Madruga-Garrido¹⁷, Anna Marotta¹⁸, Davide Martino¹⁹, Pablo

Mir^{7,20,21}, Astrid Morer^{11,22,23}, Norbert Müller⁵, Kirsten Müller-Vahl¹⁰, Alexander Münchau²⁴, Peter Nagy⁴, Valeria Neri², Alessandra Pellico²⁵, Ángela Periañez Vasco⁷, Kerstin J. Plessen^{12,26}, Cesare Porcelli¹⁸, Renata Rizzo²³, Veit Roessner⁶, Daphna Ruhrman¹, Jaana M.L. Schnell⁵, Anette Schrag²⁷, Paola Rosaria Silvestri², Tamar Steinberg¹, Friederike Tagwerker Gloor³, Zsanett Tarnok^{4,28}, Susanne Walitza³, Elif Weidinger⁵

¹Child and Adolescent Psychiatry Department, Schneider Children's Medical Center of Israel, affiliated to Sackler Faculty of Medicine, Tel Aviv University, Petah-Tikva, Israel

²University La Sapienza of Rome, Department of Human Neurosciences, Rome, Italy

³Department of Child and Adolescent Psychiatry and Psychotherapy, University of Zurich, Zurich, Switzerland

4Vadaskert Child and Adolescent Psychiatric Hospital, Budapest, Hungary

⁵Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany.

⁶Clinical Child and Adolescent Psychology, Institute of Clinical Psychology and Psychotherapy, TU Dresden, Germany

⁷Unidad de Trastornos del Movimiento. Instituto de Biomedicina de Sevilla (IBiS). Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla. Seville, Spain.

⁸Accare Child Study Center, Groningen, The Netherlands ⁹University of Groningen, University Medical Center Groningen, Department of Child and Adolescent Psychiatry, Groningen, The Netherlands

¹⁰Clinic of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany

¹¹Department of Child and Adolescent Psychiatry and Psychology, Institute of Neurosciences, Hospital Clinic Universitari, Barcelona, Spain

¹²Child and Adolescent Mental Health Center, Mental Health Services, Capital Region of Denmark, Denmark

¹³Evelina London Children's Hospital GSTT, Kings Health Partners AHSC, London, UK.

¹⁴Great Ormond Street Hospital for Children, and UCL Institute of Child Health, London, UK

¹⁵Levvel, Academic Center for Child and Adolescent Psychiatry, Amsterdam, The Netherlands

¹⁶Amsterdam UMC, Department of Child and Adolescent Psychiatry, Amsterdam, The Netherlands

¹⁷Neuropediatrics, Centro de Pediatría de Sevilla, Hospital Viamed Santa Ángela De la Cruz, Seville, Spain

¹⁸Azienda Sanitaria Locale di Bari, Mental Health Department, Child and Adolescent Service of Bari Metropolitan Area, Bari, Italy

¹⁹Department of Clinical Neurosciences, University of Calgary, Calgary, Canada

²⁰Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain

²¹Departamento de Medicina, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain

²²Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain

²³Centro de Investigacion en Red de Salud Mental (CIBERSAM), Instituto Carlos III, Spain

²⁴Institute of Systems Motor Science, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany

²⁵Child Neuropsychiatry Section, Department of Clinical and Experimental Medicine, School of Medicine, Catania University, Catania, Italy

²⁶Division of Child and Adolescent Psychiatry, Department of Psychiatry, University Medical Center, University of Lausanne, Lausanne, Switzerland

²⁷Department of Clinical Neurosciene, UCL Institute of Neurology, University College London, London, UK

²⁸Semmelweis University, Budapest, Hungary

Further Acknowledgement This research was supported by Stiftung Immunität und Seele (Burger, Müller, Schnell); and National Institute for Health Research Biomedical Research Centre at Great Ormond Street Hospital for Children NHS Foundation Trust and University College London (Heymanm, schrag); and Deutsche Forschungsgemeinschaft (DFG): projects 1692/3-1, 4-1 and FOR 2698 (Münchau); Deutsche Forschungsgemeinschaft (DFG): FOR 2698 (Roessner). We thank all colleagues at the various study centers who contributed to data collection:, Judy Grejsen (Paediatric Department, Herley University Hospital, Herley, Denmark); Julie E. Bruun, Christine L. Ommundsen, Mette Rubæk (Capital Region Psychiatry, Copenhagen, Denmark); Stephanie Enghardt, Benjamin Bodmer (TU Dresden, Germany); Carolin Fremer (MHH Hannover, Germany); Jenny Schmalfeld (Lübeck University, Germany); Martin L. Woods, Victoria L. Turner (Evelina London Children's Hospital, United Kingdom); Franciska Gergye, Margit Kovacs, Reka Vidomusz (Vadaskert Hospital, Budapest, Hungary); Chen Regev, Tomer Simcha, Adi Moka, Julia Katz (Tel Aviv, Petah-Tikva, Israel); Annelieke Hagen (Levvel, Amsterdam, Netherlands); Marieke Messchendorp, Thaïra J.C. Openneer, Anne-Marie Stolte, Frank Visscher and the Stichting Gilles de la Tourette (University Medical Center Groningen, Netherlands); Maria Teresa Cáceres, Fátima Carrillo, Laura Vargas (Seville, Spain); Maria Cristina Ferro, Mariangela Gulisano (University of Catania, Italy), and all who may not have been mentioned.

Contributors N. Benaroya-Milshtein, T. Steinberg, D. Feldman-Sadeh, A. Apter, conceptualized and designed the study; N. Benaroya-Milshtein, T. Steinberg, M. Carmel, E.

Michaelovsky, M. Nahon, P.J. Hoekstra, A. Dietrich and the EMTICS collaborative group—collected data; N. Benaroya-Milshtein, D. Feldman-Sadeh, T. Steinberg, Y. Bronstein, N. Elfer, P.J. Hoekstra and A. Dietrich were responsible for the statistical analyses; N. Benaroya-Milshtein, T. Steinberg, D. Feldman-Sadeh, P.J. Hoekstra, A. Dietrich and the EMTICS collaborative group drafted the initial manuscript;

N. Benaroya-Milshtein, T. Steinberg, D. Feldman-Sadeh, A. Apter, Y. Bronstein, N. Elfer, M. Carmel, E. Michaelovsky, A. Weizman, M. Nahon, D. Horesh, A. Morer, B. Garcia Delgar, P.J. Hoekstra and A. Dietrich – critically reviewed the manuscript for important intellectual content and revised the manuscript; All authors approved the final manuscript as submitted and agree to be accountable for all aspects of the work.

Appendix B

Table 6 Developmental Milestone Norms

Developmental Milestone	Norms of Age (in month) of Acquiring Milestone*	
Motor development	50th percentile	90th percentile
Sitting	8.5	10
Walking	12.5	16.5
Language development		
First words	11.5	15
Complete a sentence	18.5	24
Toilet training	Norms of age (month) of acquiring milestone by sex**	
	50th percentile	75th percentile
Toilet trained bladder - daytime	Girls: 32.5	Girls: 36
	Boys: 35	Boys:39
Toilet trained bladder - nighttime	Girls: 34	Girls: 37
	Boys:36	Boys:42
Toilet trained bowel (day + night)	Girls:31.5	Girls: 35
	Boys:34.5	Boys:39

^{*}According to The Denver II Developmental Screening Test (1992) [25]

^{**}According to Schum, et al. (2002) [26]

Table 7 Correlation Matrix of intra-correlations between tics and comorbid psychopathology

					•	3						
	Tics (YGTSS)	SS)				OCD (CY-BOCS)	OCS)		ADHD	ODD (SNAP) Total	Total	Autism
	Motor tics	Motor tics Vocal tics Total tic severity	Total tic severity	Impairment	Impairment Yale global tic severity	Obsessions	Obsessions Compulsions Total OCD severity	Total OCD severity	(SNAP)		difficulties score (SDQ)	(ASSQ)
Tics (YGTSS)												
Motor tics	ı	0.49*** 0.84***	0.84***	0.55	0.75***	0.16***	0.21 ***	0.19***	0.21***	0.15**	0.21***	0.18***
Vocal tics		ı	0.89***	0.52***	0.73***	0.22***	0.24***	0.24***	0.23***	0.19***	0.31***	0.25***
Total tic			1	***09.0	***98.0	0.22***	0.26***	0.25***	0.25***	0.21***	0.31***	0.26***
severity ⁺												
Impairment				I	0.92***	0.21***	0.23***	0.24***	0.24**	0.16**	0.28***	0.21***
Yale global tic					ı	0.23***	0.27***	0.26***	0.27***	0.19***	0.32***	0.26***
severity												
OCD												
(CY-BOCS)												
Obsessions						ı	0.67	0.87***	0.17***	0.19***	0.28***	0.05
Compulsions							ı	0.93***	0.27***	0.25***	0.29***	0.21***
Total OCD								1	0.25***	0.25***	0.32***	0.16**
severity												
ADHD									ı	0.66***	0.72***	0.56***
(SNAP)												
ODD (SNAP)										I	0.64***	0.45***
Total											1	0.57***
difficulties												
score												
$(SDQ)^{+}$												
Autism												ı
(ASSQ)												

p < 0.05, *p < 0.01

YGTSS, Yale Global Tic Severity Scale; OCD, Obsessive Compulsive Disorder; CYBOCS, Children's Yale-Brown Obsessive Compulsive Scale; ADHD, Attention Deficit Hyperactive Disorder; SNAP, Swanson, Nolan and Pelham; ODD, Oppositional Defiant Disorder; SDQ, Strength and Difficulties Questionnaire; ASSQ, Autism Spectrum Screening Questionnaire.

Acknowledgements The authors are deeply grateful to all the children and their parents who willingly participated to make this research possible

EMTICS group authorship: Alan Apter¹, Valentina Baglioni², Juliane Ball³, Noa Benaroya-Milshtein¹ Emese Bognar⁴, Bianka Burger⁵, Judith Buse⁶, Francesco Cardona², Marta Correa Vela⁷, Andrea Dietrich^{8,9}, Carolin Fremer10, Blanca Garcia-Delgar¹¹, Julie Hagstrøm¹², Tammy J. Hedderly13, Isobel Heyman14, Pieter J. Hoekstra^{8,9}, Chaim Huijser^{15,16}, Marcos Madruga-Garrido17, Anna Marotta18, Davide Martino19, Pablo Mir^{7,20,21}, Astrid Morer^{11,22,23}. Norbert Müller⁵, Kirsten Müller-Vahl¹⁰, Alexander Münchau²⁴, Peter Nagy⁴, Valeria Neri², Alessandra Pellico²⁵, Ángela Periañez Vasco⁷, Kerstin J. Plessen^{12,26}, Cesare Porcelli¹⁸, Renata Rizzo²³, Veit Roessner⁶, Daphna Ruhrman¹, Jaana M.L. Schnell⁵, Anette Schrag²⁷, Paola Rosaria Silvestri², Tamar Steinberg¹, Friederike Tagwerker Gloor³, Zsanett Tarnok^{4,28}, Susanne Walitza³, Elif Weidinger⁵ ¹Child and Adolescent Psychiatry Department, Schneider Children's Medical Center of Israel, affiliated to Sackler Faculty of Medicine, Tel Aviv University, Petah-Tikva, Israel ²University La Sapienza of Rome, Department of Human Neurosciences, Rome, Italy ³Department of Child and Adolescent Psychiatry and Psychotherapy, University of Zurich, Zurich, Switzerland ⁴Vadaskert Child and Adolescent Psychiatric Hospital, Budapest, Hungary 5Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany ⁶Clinical Child and Adolescent Psychology, Institute of Clinical Psychology and Psychotherapy, TU Dresden, Germany ⁷Unidad de Trastornos del Movimiento. Instituto de Biomedicina de Sevilla (IBiS). Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla. Seville, Spain. 8Accare Child Study Center, Groningen, The Netherlands ⁹University of Groningen, University Medical Center Groningen, Department of Child and Adolescent Psychiatry, Groningen, The Netherlands ¹⁰Clinic of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany ¹¹Department of Child and Adolescent Psychiatry and Psychology, Institute of Neurosciences, Hospital Clinic Universitari, Barcelona, Spain ¹²Child and Adolescent Mental Health Center, Mental Health Services, Capital Region of Denmark, Denmark ¹³Evelina London Children's Hospital GSTT, Kings Health Partners AHSC, London, UK ¹⁴Great Ormond Street Hospital for Children, and UCL Institute of Child Health, London, UK 15Levvel, Academic Center for Child and Adolescent Psychiatry, Amsterdam, The Netherlands ¹⁶Amsterdam UMC, Department of Child and Adolescent Psychiatry, Amsterdam, The Netherlands 17Neuropediatrics, Centro de Pediatría de Sevilla, Hospital Viamed Santa Ángela De la Cruz, Seville, Spain 18 Azienda Sanitaria Locale di Bari, Mental Health Department, Child and Adolescent Service of Bari Metropolitan Area, Bari, Italy ¹⁹Department of Clinical Neurosciences, University of Calgary, Calgary, Canada ²⁰Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain. ²¹Departamento de Medicina, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain. ²²Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain ²³Centro de Investigacion en Red de Salud Mental (CIBERSAM), Instituto Carlos III, Spain ²⁴Institute of Systems Motor Science, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany 25Child Neuropsychiatry Section, Department of Clinical and Experimental Medicine, School of Medicine, Catania University, Catania, Italy ²⁶Division of Child and Adolescent Psychiatry, Department of Psychiatry, University Medical Center, University of Lausanne, Lausanne, Switzerland, ²⁷Department of Clinical Neurosciene, UCL Institute of Neurology, University College London, London, UK ²⁸Semmelweis University, Budapest, Hungary FurtherAcknowledgement: This research was supported by Stiftung Immunität und Seele (Burger, Müller, Schnell); and National Institute for Health Research Biomedical Research Centre at Great Ormond Street Hospital for Children NHS Foundation Trust and University College London (Heymanm, schrag); and Deutsche Forschungsgemeinschaft (DFG): projects 1692/3-1, 4-1 and FOR 2698 (Münchau); Deutsche Forschungsgemeinschaft (DFG): FOR 2698 (Roessner). We thank all colleagues at the various study centers who contributed to data collection:, Judy Grejsen (Paediatric Department, Herley University Hospital, Herley, Denmark); Julie E. Bruun, Christine L. Ommundsen, Mette Rubæk (Capital Region Psychiatry, Copenhagen, Denmark); Stephanie Enghardt, Benjamin Bodmer (TU Dresden, Germany); Carolin Fremer (MHH Hannover, Germany); Jenny Schmalfeld (Lübeck University, Germany); Martin L. Woods, Victoria L. Turner (Evelina London Children's Hospital. United Kingdom); Franciska Gergye, Margit Kovacs, Reka Vidomusz (Vadaskert Hospital, Budapest, Hungary); Chen Regev, Tomer Simcha, Adi Moka, Julia Katz (Tel Aviv, Petah-Tikva, Israel); Annelieke Hagen (Levvel, Amsterdam, Netherlands); Marieke Messchendorp, Thaïra J.C. Openneer, Anne-Marie Stolte, Frank Visscher and the Stichting Gilles de la Tourette (University Medical Center Groningen, Netherlands); Maria Teresa Cáceres, Fátima Carrillo, Laura Vargas (Seville, Spain); Maria Cristina Ferro, Mariangela Gulisano (University of Catania, Italy), and all who may not have been mentioned.

Author contributions N. Benaroya-Milshtein, T. Steinberg, D. Feldman-Sadeh, A. Apter, conceptualized and designed the study; N. Benaroya-Milshtein, T. Steinberg, M. Carmel, E. Michaelovsky, M. Nahon, P.J. Hoekstra, A. Dietrich and the EMTICS collaborative group - collected data; N. Benaroya-Milshtein, D. Feldman-Sadeh, T. Steinberg, Y. Bronstein, N. Elfer, P.J. Hoekstra and A. Dietrich were responsible for the statistical analyses; N. Benaroya-Milshtein, T. Steinberg, D. Feldman-Sadeh, P.J. Hoekstra, A. Dietrich and the EMTICS collaborative group drafted the initial manuscript: N. Benaroya-Milshtein, T. Steinberg, D. Feldman-Sadeh, A. Apter, Y. Bronstein, N. Elfer, M. Carmel, E. Michaelovsky, A. Weizman, M. Nahon, D. Horesh, A. Morer, B. Garcia Delgar, P.J. Hoekstra and A. Dietrich – critically reviewed the manuscript for important intellectual content and revised the manuscript; All authors approved the final manuscript as submitted and agree to be accountable for all aspects of the work.

Funding Open access funding provided by Tel Aviv University. The longitudinal European Multicenter Tics in Children Study (EMTICS) has received funding from the European Union's Seventh Framework Program for research, technological development, and demonstration under Grant agreement no. 278367.

Data Availability No datasets were generated or analysed during the current study.

Declarations

Competing interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

- (2013) Diagnostic and statistical manual of mental disorders: DSM-5TM, 5th ed. American Psychiatric Publishing, Inc., Arlington, VA, US
- Bloch MH, Leckman JF (2009) Clinical course of Tourette syndrome. J Psychosom Res 67:497–501. https://doi.org/10.1016/j.jpsychores.2009.09.002
- Hirschtritt ME, Lee PC, Pauls DL et al (2015) Lifetime Prevalence, Age of Risk, and Genetic Relationships of Comorbid Psychiatric Disorders in Tourette Syndrome. JAMA Psychiat 72:325–333. https://doi.org/10.1001/jamapsychiatry.2014.2650
- Groth C, Mol Debes N, Rask CU et al (2017) Course of Tourette Syndrome and Comorbidities in a Large Prospective Clinical Study. J Am Acad Child Adolesc Psychiatry 56:304

 –312. https://doi.org/10.1016/j.jaac.2017.01.010
- Cravedi E, Deniau E, Giannitelli M et al (2017) Tourette syndrome and other neurodevelopmental disorders: a comprehensive review. Child Adolesc Psychiatry Ment Health 11:59. https://doi.org/10. 1186/s13034-017-0196-x
- Lebowitz ER, Motlagh MG, Katsovich L et al (2012) Tourette syndrome in youth with and without obsessive compulsive disorder and attention deficit hyperactivity disorder. Eur Child Adolesc Psychiatry 21:451–457. https://doi.org/10.1007/s00787-012-0278-5
- Rizzo R, Gulisano M, Martino D, Robertson MM (2017) Gilles de la Tourette Syndrome, Depression, Depressive Illness, and Correlates in a Child and Adolescent Population. J Child Adolesc Psychopharmacol 27:243–249. https://doi.org/10.1089/cap.2016.0120
- Freeman RD, Fast DK, Burd L et al (2000) An international perspective on Tourette syndrome: selected findings from 3500 individuals in 22 countries. Dev Med Child Neurol 42:436–447. https://doi.org/10.1111/j.1469-8749.2000.tb00346.x
- Thériault M-CG, Bécue J-C, Lespérance P et al (2018) Oppositional behavior and longitudinal predictions of early adulthood mental health problems in chronic tic disorders. Psychiatry Res 266:301–308. https://doi.org/10.1016/j.psychres.2018.03.026
- LeBeau B, Schabilion K, Assouline SG et al (2022) Developmental milestones as early indicators of twice-exceptionality. Neurobiol Learn Mem 194:107671. https://doi.org/10.1016/j.nlm.2022.107671
- Lee J, Mayall LA, Bates KE et al (2021) The relationship between motor milestone achievement and childhood motor deficits in children with Attention Deficit Hyperactivity Disorder (ADHD) and children with Developmental Coordination Disorder. Res Dev Disabil 113:103920. https://doi.org/10.1016/j.ridd.2021.103920
- Uljarević M, Hedley D, Alvares GA et al (2017) Relationship between early motor milestones and severity of restricted and repetitive behaviors in children and adolescents with autism spectrum disorder. Autism Res 10:1163–1168. https://doi.org/10.1002/ aur 1763
- Kuo SS, van der Merwe C, Fu JM et al (2022) Developmental Variability in Autism Across 17 000 Autistic Individuals and 4000 Siblings Without an Autism Diagnosis: Comparisons by Cohort, Intellectual Disability, Genetic Etiology, and Age at Diagnosis. JAMA Pediatr 176:915–923. https://doi.org/10.1001/jamapediat rics.2022.2423
- Cravedi E, Deniau E, Giannitelli M et al (2018) Disentangling Tourette syndrome heterogeneity through hierarchical ascendant clustering. Dev Med Child Neurol 60:942–950. https://doi.org/10. 1111/dmcn.13913
- Openneer TJC, Marsman J-BC, van der Meer D et al (2020) A graph theory study of resting-state functional connectivity in children with Tourette syndrome. Cortex 126:63–72. https://doi.org/ 10.1016/j.cortex.2020.01.006

- Abdulkadir M, Tischfield JA, King RA et al (2016) Pre- and perinatal complications in relation to Tourette syndrome and cooccurring obsessive-compulsive disorder and attention-deficit/ hyperactivity disorder. J Psychiatr Res 82:126–135. https://doi. org/10.1016/j.jpsychires.2016.07.017
- Brander G, Rydell M, Kuja-Halkola R et al (2018) Perinatal risk factors in Tourette's and chronic tic disorders: a total population sibling comparison study. Mol Psychiatry 23:1189–1197. https:// doi.org/10.1038/mp.2017.31
- Ergaz Z, Ornoy A (2011) Perinatal and Early Postnatal Factors Underlying Developmental Delay and Disabilities. Dev Disabil Res Rev 17:59–70. https://doi.org/10.1002/ddrr.1101
- Johnco C, Lewin AB, Salloum A et al (2016) Adverse Prenatal, Perinatal and Neonatal Experiences in Children with Anxiety Disorders. Child Psychiatry Hum Dev 47:317–325. https://doi.org/10. 1007/s10578-015-0569-4
- Joinson C, Heron J, Butler U et al (2006) Psychological Differences Between Children With and Without Soiling Problems. Pediatrics 117:1575–1584. https://doi.org/10.1542/peds. 2005-1773
- Martel MM (2019) The Clinician's Guide to Oppositional Defiant Disorder: Symptoms, Assessment, and Treatment. Academic Press
- Sørensen HJ, Mortensen EL, Schiffman J et al (2010) Early developmental milestones and risk of schizophrenia: A 45-year follow-up of the Copenhagen Perinatal Cohort. Schizophr Res 118:41–47. https://doi.org/10.1016/j.schres.2010.01.029
- Comings DE, Comings BG (1987) A controlled study of Tourette syndrome. VI. Early development, sleep problems, allergies, and handedness. Am J Hum Genet 41:822–838
- Schrag A, Martino D, Apter A et al (2019) European Multicentre Tics in Children Studies (EMTICS): protocol for two cohort studies to assess risk factors for tic onset and exacerbation in children and adolescents. Eur Child Adolesc Psychiatry 28:91–109. https://doi.org/10.1007/s00787-018-1190-4
- Frankenburg WK, Dodds J, Archer P et al (1992) The Denver II: A Major Revision and Restandardization of the Denver Developmental Screening Test. Pediatrics 89:91–97. https://doi.org/10.1542/peds.89.1.91
- Schum TR, Kolb TM, McAuliffe TL et al (2002) Sequential Acquisition of Toilet-Training Skills: A Descriptive Study of Gender and Age Differences in Normal Children. Pediatrics 109:e48. https://doi.org/10.1542/peds.109.3.e48
- Leckman JF, Riddle MA, Hardin MT et al (1989) The Yale Global Tic Severity Scale: Initial Testing of a Clinician-Rated Scale of Tic Severity. J Am Acad Child Adolesc Psychiatry 28:566–573. https://doi.org/10.1097/00004583-198907000-00015
- Storch EA, Murphy TK, Geffken GR et al (2005) Reliability and validity of the Yale Global Tic Severity Scale. Psychol Assess 17:486–491. https://doi.org/10.1037/1040-3590.17.4.486
- Scahill L, Riddle MA, McSWIGGIN-HARDIN M et al (1997) Children's Yale-Brown Obsessive Compulsive Scale: Reliability and Validity. J Am Acad Child Adolesc Psychiatry 36:844–852. https://doi.org/10.1097/00004583-199706000-00023
- Gau SS-F, Shang C-Y, Liu S-K et al (2008) Psychometric properties of the Chinese version of the Swanson, Nolan, and Pelham, version IV scale parent form. Int J Methods Psychiatr Res 17:35–44. https://doi.org/10.1002/mpr.237
- Bussing R, Fernandez M, Harwood M et al (2008) Parent and Teacher SNAP-IV Ratings of Attention Deficit Hyperactivity Disorder Symptoms: Psychometric Properties and Normative Ratings From a School District Sample. Assessment 15:317–328. https:// doi.org/10.1177/1073191107313888
- 32. Ehlers S, Gillberg C, Wing L (1999) A Screening Questionnaire for Asperger Syndrome and Other High-Functioning Autism

- Spectrum Disorders in School Age Children. J Autism Dev Disord 29:129–141. https://doi.org/10.1023/A:1023040610384
- Goodwin GM (2015) The overlap between anxiety, depression, and obsessive-compulsive disorder. Dialogues Clin Neurosci 17:249–260. https://doi.org/10.31887/DCNS.2015.17.3/ggoodwin
- Comer JS, Kendall PC, Franklin ME et al (2004) Obsessing/worrying about the overlap between obsessive-compulsive disorder and generalized anxiety disorder in youth. Clin Psychol Rev 24:663–683. https://doi.org/10.1016/j.cpr.2004.04.004
- Brander G, Kuja-Halkola R, Rosenqvist MA et al (2021) A population-based family clustering study of tic-related obsessive-compulsive disorder. Mol Psychiatry 26:1224–1233. https://doi.org/10.1038/s41380-019-0532-z
- Leckman JF, Denys D, Simpson HB et al (2010) Obsessive—compulsive disorder: a review of the diagnostic criteria and possible subtypes and dimensional specifiers for DSM-V. Depress Anxiety 27:507–527. https://doi.org/10.1002/da.20669

- Flensborg-Madsen T, Mortensen EL (2018) Associations of Early Developmental Milestones With Adult Intelligence. Child Dev 89:638–648. https://doi.org/10.1111/cdev.12760
- Perna R, Loughan A (2012) Early Developmental Delays: Neuropsychological Sequelae and Subsequent Diagnoses. Appl Neuropsychol Child 1:57–62. https://doi.org/10.1080/09084282.2011.643963
- Gurevitz M, Geva R, Varon M, Leitner Y (2014) Early Markers in Infants and Toddlers for Development of ADHD. J Atten Disord 18:14–22. https://doi.org/10.1177/1087054712447858
- Groth C (2018) Tourette syndrome in a longitudinal perspective.
 Clinical course of tics and comorbidities, coexisting psychopathologies, phenotypes and predictors. Dan Med J 65(4):B5465
- 41. Mathews CA, Grados MA (2011) Familiality of Tourette Syndrome, Obsessive-Compulsive Disorder, and Attention-Deficit/ Hyperactivity Disorder: Heritability Analysis in a Large Sib-Pair Sample. J Am Acad Child Adolesc Psychiatry 50:46–54. https://doi.org/10.1016/j.jaac.2010.10.004

