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Haptic Stiffness Perception Using Hand
Exoskeletons in Tactile Robotic Telemanipulation

Gabriele Giudici1,2, Claudio Coppola3, Kaspar Althoefer1, Ildar Farkhatdinov1,4, Lorenzo Jamone1,2

Abstract—Robotic telemanipulation is central in many appli-
cations, from healthcare to harsh environments. While visual
feedback from cameras can provide valuable information to
the human operator, haptic feedback offers insight into certain
object properties - such as stiffness - that vision alone cannot
provide. However, the use of haptic feedback alone has been
largely unexplored. To bridge this gap, we tested ten participants
to remotely squeeze soft objects to perceive their stiffness, by
teleoperating a dexterous robotic hand using an active hand
exoskeleton. Two haptic feedback methods were compared: using
only the contact forces measured with the tactile fingertips of
the robotic hand, or including a kinematic measure as well (the
motion mismatch between the hand exoskeleton and the robotic
hand). Our results demonstrate, for the first time, that operators
using a hand exoskeleton are indeed capable of discriminating
objects of different stiffness relying on haptic feedback alone,
with an average accuracy of 75% to identify which object in
a pair was most similar to a reference, and 65% to determine
which object in a pair was softer. In addition, our findings also
suggest that including a kinematic measure in the feedback may
enhance discrimination between objects of similar stiffness.

Index Terms—Telerobotics and Teleoperation, Perception for
Grasping and Manipulation, Force and Tactile Sensing

I. INTRODUCTION

ROBOTIC teleoperation is a key technology used across
diverse real-world applications, from healthcare to harsh

environments [1]–[4]. A crucial task in teleoperation is tele-
manipulation, which involves manipulating objects via the
teleoperated robot [5]. Perceiving the physical properties of
remote objects is essential for both effective manipulation and
information gathering, whether for object recognition or as-
sessing specific attributes, such as determining if manipulated
tissue contains a tumor or whether a strawberry is ripe. In
bilateral telemanipulation, the user operates a device (leader)

Manuscript received: October 30, 2024; Revised March 21, 2025; Accepted
July 16, 2025. This paper was recommended for publication by Editor
Angelika Peer upon evaluation of the Associate Editor and Reviewers’
comments. This work is partially funded by the UKRI through the EPSRC
grants EP/R02572X/1 (NCNR) and EP/V035304/1 (q-Arena). This work
involved human subjects in its research. Approval of all ethical and experi-
mental procedures and protocols was granted by the Queen Mary Ethics of
Research Committee under Application No. QMERC20.565.DSEECS24-053,
and performed in line with the Application of - Enhancing Teleoperation with
Exoskeletal Gloves: Leveraging Tactile Sensing for Bilateral Haptic Stiffness
Feedback.

1ARQ (the Centre for Advanced Robotics @ Queen Mary), School of
Engineering and Materials Science, UK (emails: {k.althoefer}@qmul.ac.uk).

2Department of Computer Science, University College London, London,
WC1E 6BT, UK. (emails: {g.giudici,l.jamone}@ucl.ac.uk).

3 Humanoid. email: ccop@thehumanoid.ai
4School of Biomedical Engineering and Imaging Sciences, King’s College

London, London, UK.
Digital Object Identifier (DOI): see top of this page.

Fig. 1. Teleoperation setup connecting the Leader HGlove to the Allegro
robotic hand. Forces measured from the robotic thumb, index, and ring fingers
are rendered on the glove’s thumb, index, and middle fingers, respectively.
Departing from traditional camera-based approaches, our system is solely
based on haptic feedback; the human users successfully accomplish the
telemanipulation tasks without any visual input from the robot scene.

to control a remote robot (follower) receiving feedback from
sensors placed on the remote robot or in the environment.

Vision is the dominant modality for sensing remote objects
and environments, and visual feedback can easily be provided
via monitors or Virtual Reality headsets. However, tactile and
force sensing are valuable complementary modalities and often
outperform vision in detecting vision in detecting physical
properties such as stiffness. Haptic feedback devices that can
effectively render these modalities are still uncommon [6].

Notably, although substantial research exists on autonomous
robotic perception of stiffness using tactile sensing [7]–[9],
object recognition via touch [10]–[12], and tactile assessment
of specific object characteristics [13], there is little to no
research on how human users with hand exoskeletons perceive
object stiffness when relying solely on remote tactile sensing
(follower) and kinesthetic haptic feedback (leader) .

In this work, we address this gap by tasking ten participants
with differentiating object stiffness using a bilateral telema-
nipulation system that provides kinesthetic haptic feedback.
The setup is composed of an exoskeletal glove (HGlove
[14]) on the leader side, which captures human hand and
finger motion, thereby controlling the remote robot while also
providing haptic feedback by applying kinesthetic forces onto
the human fingers, and a dexterous robotic hand (Allegro
Hand) equipped with tactile sensitive fingertips on the follower
side, as shown in Fig. 1. Participants were required to squeeze
five sample objects differing only in their level of stiffness
(see Section IV-A) using the telemanipulation setup, and to
then determine which of them is the most similar to a given
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reference (Task ABX) and which of them is softer (Task
S), as detailed in Section IV-D. We compare two methods
of haptic feedback rendering: the first (see Section III-B1),
which was initially introduced in [15], is based solely on
the contact forces measured by the tactile sensors, while the
second (newly proposed here, see Section III-B2) takes into
consideration the squeeze displacement differences between
the human and robot fingers, caused by kinematic mismatch
between the leader and follower devices.

The main contributions of this work are:
• Demonstration of Stiffness Perception during Tele-

manipulation: Using a bilateral telemanipulation setup
with haptic feedback on the leader and tactile sensing
on the follower, we demonstrate that ten naive users can
discriminate between five soft objects differing solely in
stiffness by remotely squeezing them with a dexterous
robotic hand while perceiving exclusively via haptic
feedback (no visual cues), as shown in Fig. 3.

• Introduction of a novel Haptic Feedback method to
perceive object stiffness: In Section III-B2, we introduce
a novel method that incorporates finger displacement
feedback in addition to force feedback, to address dif-
ferences in the squeezing motion between the human
operator and the robot caused by kinematic mismatches
between the leader and follower devices - a well estab-
lished issue in telemanipulation.

• Insights from Statistical Analysis on User Prefer-
ences: Our analysis reveals that incorporating finger
displacement feedback benefits naive users during more
challenging tasks. While the advantage is not consistently
significant across all conditions (see Tab. III), displace-
ment feedback does enhance discrimination performance
for objects of similar stiffness (as discussed in V-E).

II. RELATED WORKS

A wide range of studies has addressed automatic stiffness
estimation or classification using tactile sensors [7], [9], [16],
[17], as well as stiffness rendering through visual technolo-
gies [1], [18], [19]. However, fewer works have investigated
stiffness rendering solely through haptic devices, we assume
due to technological limitations. This study leverages data
from haptic sensors in a telerobotic setup to identify a robust
approach that enables operators to distinguish between soft ob-
jects during real-world teleoperation without visual feedback.

A. Teleoperation

Telemanipulation is an extensive area with several com-
prehensive reviews meriting consideration [1], [5], [20]. The
recent prominence of the field is illustrated by the ANA Avatar
XPRIZE, a major non-medical teleoperation competition that
challenges teams to develop systems excelling in intuitiveness,
immersiveness, social interaction, robustness, and manipula-
tion capacity across various tasks. Notable contributions have
included the AvaTRINA Nursebot which combined haptic
feedback with augmented reality [21], and the winning Nim-
bRo Avatar system, which demonstrated robust telepresence
and manipulation capabilities [22]. One entry [23] introduced

an exoskeletal glove for kinesthetic feedback, although this
system provided limited force feedback during the compe-
tition, focusing principally on grasp detection rather than
stiffness differentiation. Grasping force feedback has been
studied by integrating tactile sensors with haptic devices,
such as visuotactile sensing for dexterous manipulation [24]
and vision-based tactile sensors for precise position-force
teleoperation [25]. While these contributions have advanced
telemanipulation technology, none have addressed stiffness
perception or compared feedback methods.

B. Stiffness Perception
To explore teleoperation systems that render stiffness infor-

mation for soft objects, the field of telesurgery is particularly
relevant. One study [26] demonstrated the value of haptic
feedback in manipulating non-rigid objects. Recent advance-
ments in surgical robotics have integrated haptic feedback to
enhance real-time force reflection during procedures [6]. While
systems like the da Vinci robot have lacked direct haptic
feedback, studies using the da Vinci Research Kit (dVRK)
have identified solutions [27], and the upcoming da Vinci 5
model will incorporate certified haptic feedback. The Senhance
Surgical System also highlights the benefits of haptic feedback
for precise control [6], while virtual simulations, such as
those developed in [28], have provided realistic force feedback
for training purposes. Additionally, haptic techniques using
contact force control and virtual springs have been explored
to improve transparency and stability [29], while other works
[30] have focused on adaptive impedance control. Another
work [31] explored the use of redundant haptic interfaces in
teleoperated surgical systems to enhance soft-tissue stiffness
discrimination by reducing apparent inertia and improving
manipulability, leading to more accurate tissue stiffness per-
ception during virtual palpation tasks. The advantages of cuta-
neous feedback in teleoperation, including improved stability
and stiffness perception, have been demonstrated through shear
force feedback [32] and enhanced dexterity via tactile cues
such as friction feedback during in-hand manipulation [33].

The review in [34] has addressed soft tissue contact iden-
tification with a focus on visual stiffness maps obtained by
palpation. Additionally, several studies have integrated med-
ical instruments with industrial teleoperation systems. As an
example, one study [35] used a teleoperation system with force
feedback to evaluate users’ ability to differentiate materials
of varying stiffness during a palpation task. It combined
a Haption Virtuose 6D haptic device as the leader and an
industrial robot with a da Vinci Endowrist instrument as the
follower. Our study, however, utilizes an exoskeleton glove
offering haptic feedback perception directly onto the fingers,
and is tested with more sample objects but without any visual
feedback. Additionally, we compare two feedback methodolo-
gies to evaluate the respective roles of measured force and
compression differences between the leader and follower.

III. METHODOLOGY

A. Teleoperation Setup
In this study, we utilize a portion of the robotic setup

previously described in [15], [36]. Given our focus on the

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2025.3595032

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University College London. Downloaded on August 18,2025 at 15:31:45 UTC from IEEE Xplore.  Restrictions apply. 



GIUDICI et al.: HAPTIC STIFFNESS PERCEPTION USING HAND EXOSKELETONS IN TACTILE ROBOTIC TELEMANIPULATION 3

rendering of feedback forces on the fingers, we therefore limit
the system to the Allegro robotic hand and the Leader HGlove
exoskeleton as shown in Fig. 1. The HGlove provides two
actuated degrees of freedom (DOFs) per finger for flexion and
extension, delivering up to 5 N continuous force feedback, and
one non-actuated DOF for lateral motion, which is left free
but not used as a control command in this study. Each robotic
finger of the follower hand is equipped with a magnetic tactile
sensor based on the design in [37], consisting of four Hall-
effect units (MLX90393) in a 2×2 grid embedded in silicone
[15]. Contact forces deform the silicone, displacing a 2 mm
neodymium magnet and altering the magnetic field measured
by the sensors. These variations, inspired by earlier designs
[38]–[40], are sampled at 20 Hz to detect contact forces.

The sensors provide force measurements in three directions:
Fx, Fy , and Fz . In this study, we only use three fingers of the
Allegro Hand j ∈ {thumb, index, ring}, to ensure a one-to-
one correspondence with the fingers of the Leader HGlove
i ∈ {thumb, index, middle}. This decision does not affect
the setup’s functionality but prevents potential errors due to
interaction with the object at multiple closely spaced points.
Transference of the measured forces runs in accordance with
sensor-actuator haptic mapping as follows: thumb to thumb,
index to index, and ring to middle.

The maximum force in the z-direction on the follower’s side
(subscript F) is defined as FF,j :

FF,j = max(Fz1,j , Fz2,j , Fz3,j , Fz4,j) (1)

The resulting force of each fingertip FF,j can vary within
a range of values greater than 0[digits]. However, for our
purposes, we define a specific operational range for the force
measurements using a minimum threshold Fmin

F = 30[digits]
and a maximum threshold Fmax

F = 1000[digits]. Thus, the
valid range for FF,j is:

Fmin
F ≤ FF,j ≤ Fmax

F (2)

By incorporating these thresholds, we ensure that only
meaningful force measurements within the specified range
contribute to the feedback mechanisms, thereby enhancing the
precision and reliability of the robotic finger’s responses.

B. Haptic Stiffness Feedback Methods
In this study, we test two methods for effective haptic

feedback rendering, evaluating and characterizing the haptic
experience when interacting with soft samples. The kinesthetic
feedback is applied in joint space, as described in [15], to
ensure precise rendering that aligns with the kinematics of
the robotic hand and exoskeleton glove. For this purpose, we
utilize the tactile information from the follower side, FF,j , to
generate two different haptic feedback methods on the leader
side (subscript L), denoted as F 1

L,j and F 2
L,j . It is important to

note that if the sensors are unable to record a contact force FF,j
above the minimum threshold, both methods would provide
null haptic feedback. Thus:{

F 1
L,j = 0

F 2
L,j = 0

if FF,j < Fmin
F (3)

1) Method I: In this proposed method, the leader’s feedback
force F 1

L,j is rendered as:

F 1
L,j = α · FF,j (4)

The constant scalar factor α is defined as:

α =
FL,max

Fmax
F

(5)

where FL,max represents the maximum force that the leader
can apply, which is set to 5 N. This specification ensures that
the maximum rendered force remains within the operational
limits of the haptic glove, maintaining system integrity and
functionality.

2) Method II: In this proposed method, the definition of the
force rendered by the haptic glove F 2

L,j is based on real-time
stiffness estimation through the tactile sensors. The stiffness
of the measured samples can be defined as follows:

KF,j =
FF,j

∆ZF,j
(6)

where ∆ZF,j represents the displacement in the z-direction
of the follower in response to a z-displacement ∆ZL,j of each
leader’s finger.

To relate the displacement of the robotic glove to the
displacement of the robotic hand during contact, we define
the parameter ∆Z as:

∆Z =
∆ZL,j

∆ZF,j
(7)

Additionally, we introduce the parameter β, defined as:

β =
∆Zmax

F,j

∆Zmax
L,j

(8)

This parameter allows us to normalize the differences in
movement between devices with different kinematic motion
ranges. Consequently, the leader’s feedback force F 2

L,j is given
by:

F 2
L,j = α · FF,j ·∆Z · β = F 1

L,j ·∆Z · β (9)

IV. EXPERIMENTS

A. Object Description

In this study, each participant telemanipulated five soft
samples of varying stiffness. These samples were made using
ready-to-use commercial silicon mixes [Smooth-On, Inc. -
USA], categorized according to their shore hardness (SH) [41],
and labeled on the basis of their stiffness levels as follows
(name of mix, SH):

• 1-US: Ultra-Soft (Ecoflex™ 00-10, SH: 00-10)
• 2-S: Soft (Ecoflex™ 00-30, SH: 00-30)
• 3-M: Medium (Ecoflex™ 00-50, SH: 00-50)
• 4-LH: Light-Hard (Dragon Skin™ 20, SH: A-20)
• 5-H: Hard (Dragon Skin™ 30, SH: A-30) .

As shown in Fig. 2, these labels reflect the increasing stiffness
of the samples, and provide a standardized measure to compare
the haptic feedback experienced by the participants.
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During the experiments, each sample was placed inside a
small plastic container of the object mold’s dimension fixed to
the table to prevent unintended movement. The Allegro robotic
hand squeezed the objects between its thumb and index and
ring fingers, contacting the central top regions of the opposing
lateral faces of the sample, as shown in Fig. 1. The setting
guaranteed that the robotic fingers did not interact with the
table or container during squeezing, eliminating confounding
factors in force-feedback measurements.

B. Participants Preparation

The experimental procedure began by adjusting the chair
to ensure participant comfort and accessibility. The study
involved ten right-handed participants aged 20 to 35 years,
without prior physical problems. Participants completed a
consent form detailing the feedback method used during the
experiment, and a further form in which they acknowledged
and approved the conditions and ethics that belay the experi-
ments. They then put on the HGlove and received instructions
on how to reattach it if it became dislodged, as this would
require the trial to be repeated. Participants were instructed
to move their fingers slowly and in a controlled manner to
prevent delays and avoid reflex forces.

C. Training Session

A five-minute training session was conducted, in which par-
ticipants teleoperated the Allegro robotic hand to squeeze an
object (sample 3-M) for 90 seconds while visually observing
the interaction. Following this, participants squeezed three dif-
ferent samples in a known predefined sequence (sample 1-US,
sample 3-M, sample 5-H) for 30 seconds each. Subsequently,
a panel was put in place to prevent participants from seeing
the robot and sample objects.

D. Tasks

The first task was of type ABX [42]. During this task,
participants were presented with two objects (A and B) for
10 seconds each, followed by a third object (X). They were
then asked to determine whether X was more similar to A or
to B. We refer to this task as Task ABX.

In the second task participants were asked to answer the
following question, “Which object, out of A and B is softer?”.
We refer to this task as Task S.

To familiarize participants with the tasks, two practice trials
were undertaken at the beginning of the session, using the
following sample sequences: [1 − US, 3 − M, 1 − US] and
[5−H, 3−M, 3−M ]. These results were not recorded.

E. Experimental Design

The experimental session consisted of 24 Task ABX tests
and 24 Task S tests, each conducted in three blocks of eight.
The sequence of experiments presented to each participant in
both methods is detailed in Table II. As illustrated, sequences
[1–8] are identical to sequences [17–24], while in sequences
[9–16], the values of A and B were inverted, with X remain-
ing unchanged. The values of X were selected to represent

extreme and medium stiffness levels - specifically X = 1-US,
X = 3-M, and X = 5-H.

We designed the trials to evaluate four levels of perceptual
distance (D = 1, 2, 3, 4), each defined by the difference
in stiffness levels between stimuli. Each distance level was
represented by two distinct pairs of stimuli, and each distance
level appeared six times in the experimental session, ensuring
balanced representation across all levels. As each of the eight
pairs was tested three times, this also ensured a balanced
distribution of trials among the pairs. The specific pairs for
each distance level are reported in Table I.

TABLE I
PAIRS AND DISTANCES FOR THE EXPERIMENT

In Table II, the distance D and the direction of difference
are both reported; an upward arrow (↑) indicates that the object
deemed less similar to X is harder than X , while a downward
arrow (↓) indicates that it is softer. Participants were unaware
that the sequences across the two days were the same, having
been informed that the sequences were randomly generated.
After each set of eight experiments, participants were given
a 60-second break during which the glove was readjusted
if necessary. Stimuli within each trial were presented in a
randomized order to mitigate sequence effects and potential
biases. The assignment of the X stimulus (the target) to match
either stimulus A or B was also randomized across trials.
This approach aligns with a key requirement of the ABX test,
which stipulates that multiple trials must be performed to make
statistically confident assertions about a participant’s ability
to distinguish between stimuli [43]. Additionally, limiting the
session to 24 trials adheres to guidelines aimed at preventing
participant fatigue, thereby maintaining the sensitivity and
reliability of the test results.

Two kinesthetic haptic feedback methods were employed:
Method I and Method II. Each participant completed two ses-
sions, alternating between the feedback methods. To mitigate
any potential bias related to the learning curve, half of the
participants started the first session with Method I, while the
other half began with Method II. Each experimental session
lasted approximately 40 to 45 minutes, including about 10
minutes for setup, training and rest, and approximately 30
minutes dedicated to the experiments.

V. DATA ANALYSIS AND RESULTS

A. Statistical Confidence Level
In the ABX test, each trial has a 50% chance of a correct

response under the null hypothesis of random guessing. Using
the binomial distribution with n = 24 trials and success
probability p = 0.5, the probability of obtaining at least
16 correct responses by chance (66.66% of success rate) is
approximately 10.6%:
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P (X ≥ 16) =

24∑
k=16

(
24

k

)
(0.5)24 ≈ 10.6%. (10)

This corresponds to a confidence level of approximately
89.4%. While this does not meet the threshold for statistical
significance at the 90% confidence level, it suggests a trend
toward significance in participants’ ability to discriminate
between stimuli.

To achieve statistical significance above the 95% confidence
level, participants need, on average, at least 17 correct re-
sponses (70.8% of success rate), as the probability of obtaining
this result by chance is approximately 4.3%:

P (X ≥ 17) ≈ 4.3%. (11)

On that basis we can reject the null hypothesis at the 95%
confidence level, indicating a statistically significant ability to
discriminate between stimuli.

Fig. 2. Soft material samples composed of gel or silicone, numbered from
1 to 5 in increasing stiffness. E: Ecoflex™ 00-10, 00-30, 00-50; DS: Dragon
Skin™ A-20, A-30. This figure has been edited for clarity.

B. Overall Performance Comparison

The box plot in Fig. 3 depicts the overall performance of the
participants for Task ABX and Task S using the two methods,
regardless of the day of the experimental session.

• Task ABX Performance: Both methods exhibit relatively
high success rates for Task ABX, with mean success rates
around 75%. However, Method II shows lower variability,
indicating more consistent performance by participants,
as evidenced by lower variance and standard deviation.

• Task S Performance: Here again, we find similar success
rates. Method I results show a slightly higher median
success rate (67.91%) than Method II (64.58%). However,
with Method II we see a broader spread in perfor-
mance, indicating greater variability among participants.
The presence of potential outliers suggests that some
participants faced difficulties with Method II in Task S.

The box plot in Fig. 3 shows that for Task ABX, Method
II guarantees higher performance consistency. For Task S,
while Method I results in a slightly higher median, Method
II scores exhibit greater variability, indicating that individual
differences or task-specific challenges are more pronounced
using this method.

C. Daily Performance Comparison

One limitation of the previous analysis is the potential
learning effect between Day 1 and Day 2. To address this,
we separated the participants into two groups:

p-value:0.88 p-value:0.50

Fig. 3. The graph compares the overall success rate for each task by method,
with Task ABX results on the left and Task S results on the right, without
differentiating between experimental days. ♦ are the outliers.

• Group 1: Participants who started with Method I (blue)
on Day 1 and continued with Method II (red) on Day 2.

• Group 2: Participants who started with Method II on Day
1 and continued with Method I on Day 2.

The bar plot in Fig. 4 illustrates the success rates of the
two groups across the two tasks (ABX and S) with distinct
methods applied on different days. Each bar represents the
mean success rate for a specific group on a specific day and
task. The graph reveals several key observations:

• Both groups show an average improvement in perfor-
mance between the first and second day of testing for
each task. Group 1 improved in Task ABX from 69.16%
to 75%, an increase of approximately 6.0% (p = 0.021,
statistically significant), and in Task S from 68.33% to
73.33%, an increase of approximately 5.0% (p = 0.235,
not statistically significant). Group 2 also shows an
improvement from 74.17% to 79.17% between the first
and second day on Task ABX (p = 0.063, marginally
significant) and a noticeable improvement in Task S from
55.83% to 67.50%, an increase of approximately 11.7%
(p = 0.039, statistically significant).

• Group 1 exhibited similar performance across both tasks,
with statistically significant improvement only in Task
ABX. In contrast, Group 2 outperformed Group 1 in Task
ABX but showed generally lower performance in Task
S, despite achieving statistically significant improvement
on this task between Day 1 and Day 2.

D. Analysis of Variance (ANOVA)

A two-way ANOVA was conducted to examine the effects
of Group, Day, and Task on the mean Success Rate, along with
their interaction effects. The analysis tested the following main
effects and interactions:

• Group: Evaluating the influence of participant group on
success rates.

• Day: Assessing the impact of the day on which the task
was performed on success rates.

• Task: Determining the effect of the type of task on
success rates.

• Interactions: Investigating interactions between Group
and Day, Group and Task, and Day and Task.
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TABLE II
SEQUENCE OF ABX TESTS

TABLE III
MEAN SUCCESS RATES, VARIANCES, AND STANDARD DEVIATIONS FOR

TASKS X AND S BY METHOD

p-value:0.039*p-value:0.063** p-value:0.23

Day 1 Day 2 Day 1 Day 2 Day 1 Day 2Day 1 Day 2

p-value:0.021*

Fig. 4. Task success rates for both groups, subdivided by experimental
days and methods applied. The p-values are annotated on the plot, with an
asterisk (*) indicating statistically significant results and a double asterisk (**)
denoting marginally significant results.

The results of the ANOVA are presented in Table IV and
the results are summarized as follows:

TABLE IV
ANOVA RESULTS FOR SUCCESS RATES BY GROUP, DAY, AND TASK

• The effect of Group on the Success Rate was not
statistically significant, F = 1.48, p = 0.437, indicating
that group assignment did not significantly influence
participants’ success rates.

• The effect of Day on the Success Rate was also not
statistically significant, F = 13.42, p = 0.170, suggesting
that the day of task performance did not significantly
affect success rates.

• The effect of Task on the Success Rate was not statisti-
cally significant, F = 18.74, p = 0.145, implying that the
success rates did not differ significantly between tasks.

• The interactions between Group and Day (F = 0.60,
p = 0.580), Group and Task (F = 13.42, p = 0.170),

and Day and Task (F = 0.60, p = 0.580) were all not
statistically significant.

The ANOVA results indicate no statistically significant
differences in success rates across groups, days, or tasks.
Additionally, the lack of significant interaction effects suggests
that the combination of these factors did not meaningfully
influence outcomes. Thus, variations in success rates cannot be
attributed to participant grouping or task types. The relatively
high F-values observed for factors such as Day and Task,
paired with non-significant p-values, suggest that while some
differences exist, they are not substantial enough to achieve
statistical significance. The residual sum of squares (7.05)
indicates that a significant portion of the variability in success
rates remains unexplained by the factors of Group, Day, Task,
or their interactions.

E. Performance and Statistical Analysis Across Sample Pairs

As presented in Section IV-A, the samples used during the
experiments are classified into seven different pairs, which
are further grouped according to their differences in stiffness
(denoted as D as shown in Table II).

To assess suitability for parametric testing, we first evaluated
normality and homogeneity of variances in success rates for
each object pair and each method using the Shapiro-Wilk and
Levene’s tests, respectively. The Shapiro-Wilk results indicated
significant deviations from normality (p < 0.05) in most
groups, while Levene’s test showed inconsistent homogeneity
across pairs and tasks, suggesting that parametric assumptions
were not met.

Given these results, we employed the Mann-Whitney U test
(MWU), a non-parametric alternative to the t-test, to compare
success rates between Method I and Method II for each object
pair and task (ABX and S). This test ranks observations across
both methods and calculates the U statistic, indicating the
extent of difference in rank distributions between the methods.
With statistical significance set at p < 0.05, in only one pairing
(1-US, 4-LH) in Task S did we see a significant difference
between the methods (p = 0.048). For all other pairings, the
analysis showed p > 0.05, indicating comparable success rates
between the methods across pairs and tasks. To visualize these
findings, we generated spider plots, shown in Fig. 5 and Fig. 6,
which depict success rates across object pairs for each method.

To further explore these differences, we aggregated object
pairs by stiffness distance into three groups: D = 1, D =
2, and D = 3. The MWU test was applied to each distance
group independently for both ABX and S tasks. Although no
group reached p < 0.05 significance, results for the ABX task
produced p-values close to this threshold, D = 1 (p = 0.061)
and D = 3 (p = 0.067), suggesting a potential trend towards
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Fig. 5. Spider plot showing Success Rate performance for Methods I and II
in Task ABX for object pairs.

Fig. 6. Spider plot showing Success Rate performance for Methods I and II
in Task S for object pairs.

significance. In light of these findings, we computed mean
success rates for Method I and Method II within each distance
group to better understand performance patterns. For the ABX
task, Method II showed higher mean success rates than Method
I for D = 1 (88% vs. 75%), while Method I outperformed
Method II for D = 3 (80% vs. 65%). In the S task, Method I
consistently led to higher mean success rates for both D = 1
(73% vs. 68%) and D = 3 (65% vs. 58%).

VI. DISCUSSION

Task ABX revealed distinct performance trends between
feedback methods - using Method II led to higher success rates
for smaller stiffness differences (D=1), while Method I led to
higher success rates for larger contrasts (D=3), as evidenced
by the spider plots in Fig. 5. This suggests that in more
complex tasks (i.e. smaller stiffness differences) the addition
of a kinematic component to the force feedback (i.e. Method
II) improves discrimination performances, while this effect is
not evident for easier tasks (i.e. larger stiffness differences),
in which a simpler method based on force feedback only (i.e.
Method I) leads to better performance. In Task S, the two
methods exhibited comparable performance, albeit with lower
overall success rates, though Method I showed a statistically
significant advantage for one pair (1-US, 4-LH). These results
align with the spider plots in Fig. 6, which highlight reduced
perceptual discriminability in direct softness comparisons as
opposed to similarity discrimination tasks. Additionally, as

shown in Fig. 4, in the case of Task ABX, both groups
demonstrated a statistically significant improvement in task
performance between Day 1 and Day 2. For Task S, an
observable improvement was significant only for Group 2
making it challenging to draw definitive conclusions about the
learning effects for this task.

Some observations warrant deeper discussion. Although it
might be expected that materials with greater differences in
softness would yield near-perfect scores, this was not consis-
tently observed. For example, D=3 comparisons outperformed
D=4 when paired with 1-US. While no statistical significance
was found, the spider plots indicate that tests involving the
hardest object (5-H) tend to yield poorer results. This may be
due to force saturation, as the maximum force threshold of 5 N
compresses the dynamic range of feedback and limits percep-
tual differentiation. Additionally, material hysteresis in harder
silicone samples could alter tactile cues during compression,
reducing consistency in perceived stiffness. Another plausible
explanation relates to the optimal sensitivity range of human
tactile perception; intermediate stiffness differences (D = 3)
may fall within a range within which discriminability peaks,
whereas extreme contrasts (D = 4) may exceed this range and
introduce perceptual challenges.

VII. CONCLUSIONS

This study tested two methodologies for rendering haptic
stiffness feedback during robotic telemanipulation. The first
methodology, Method I, provided haptic feedback proportional
solely to the contact forces measured by tactile sensors on the
robotic hand. The second methodology, Method II, augmented
this feedback by incorporating finger displacement during
object squeezing to compensate for the kinematic mismatch
between the exoskeleton glove and the robotic hand. Both
methodologies were tested in a bilateral teleoperation setup
in which participants squeezed soft objects to discriminate
their stiffness without visual cues. For Task ABX, in which
participants had to identify which object was most similar to
a reference, the average success rate was approximately 75%
for both methods, exceeding the 95% confidence threshold. For
Task S, in which participants had to determine which object
was softer, success rates averaged around 65%, approaching
the 90% confidence threshold. Overall, these findings confirm
that haptic feedback alone can indeed support effective stiff-
ness discrimination during telemanipulation tasks.
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