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Abstract—In wireless communications, the communication
channel between the transmitter and receiver can be monitored
by an eavesdropper. The eavesdropper uses deep learning (DL) to
quickly identify the modulation parameters of signals and further
disrupt legitimate communications. Since DL has been proven to
be vulnerable to adversarial attacks, this paper proposes to attack
the eavesdropper’s model by designing adversarial waveforms,
preventing the eavesdropper from correctly identifying the mod-
ulation schemes used by legitimate users, and thereby preventing
the eavesdropper from interfering with normal communications.
This paper proposes an attention-based black-box attack method,
which uses the prediction of different networks in the ensemble
model to assign adversarial attention factors to each network.
This greatly improves the transmission attack performance of
the designed adversarial examples. In addition, by analysing the
influence of the channel on the adversarial waveform, we further
design the adversarial waveform that can be transmitted in the
channel to improve the practicability of the attack algorithm.
Finally, we theoretically derive the bounds of the adversarial risk
increase that the attack brings to the target model. Simulation
results show that the proposed method can improve the success
rate of the attack on the eavesdropper’s modulation detection
model, cause the model to misidentify the signal modulation type,
and improve the security and reliability of legitimate transceivers
in wireless communication systems.

Index Terms—Adversarial waveform design, deep learning,
modulation recognition, black-box attack, transferability.
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ODULATION recognition is a key technology in wire-

less communication systems. It helps signal demodu-
lation and information recovery by identifying the communi-
cation parameters and the modulation mode of the received
signal, which helps to alleviate the shortage of spectrum re-
sources [1]-[3]. Traditional modulation recognition is based on
maximum likelihood estimation and statistical patterns, relying
on prior knowledge of the signals and manually extracted fea-
tures. With the development of deep neural networks (DNNs),
deep learning (DL) has been widely used in wireless systems,
such as integrated sensing and communication [4], channel
estimation [5], signal recognition [6], semantic communication
[7] and specific emitter identification [8]. The modulation
recognition scheme based on deep learning can automatically
extract the complex features of the signal, and has extremely
high recognition speed and accuracy [9]-[14]. However, due to
the broadcast nature of wireless communication, the commu-
nication information may be eavesdropped [15]. For example,
eavesdroppers may reconstruct the signal characteristics of the
transmitter by exploiting the physical-layer feature parameters,
thereby launching malicious attacks or interference, which
seriously threatens the reliability of wireless communication
systems. For physical layer security, Xie ef al. employed
physical-layer authentication schemes based on phase noise
and tags, achieving defense against spoofing attacks, detection
of impersonation attacks, and multi-user classification, thereby
enhancing authentication performance and the reliability of the
physical layer [16], [17]. Moreover, Nan et al. pointed out
that adversarial waveform design is also extremely important
for physical-layer security [18]. Compared with traditional
encryption methods, adversarial waveforms directly increase
the unrecognizability of signals at the physical layer, making
it impossible for eavesdroppers to correctly identify legiti-
mate signals, thereby protecting communication systems from
eavesdropping and interference.

The eavesdropper obtains the modulation mode of the wire-
less signal through automatic modulation classification (AMC)
using deep learning, and then generates interference to the
legitimate receiver. In order to adapt to the diverse modulation
schemes and complex channel conditions in wireless commu-
nication systems, the eavesdropper designs and applies more
complex networks to improve the recognition performance.
Howeyver, this leads to vulnerabilities in these networks within
high-dimensional spaces. Therefore, it is possible to deceive
the eavesdropper’s intelligent recognition model according to
its high-dimensional characteristics.
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In recent years, many researchers have discovered the
vulnerability of deep learning models in the wireless domain,
providing adversarial schemes for attacking eavesdroppers to
protect communication systems from eavesdropping [19]-[21].
If the eavesdropper’s intelligent recognition model is a white
box, the communication transmitter can use the parameters of
the model and the loss gradient to create an adversarial ex-
ample for the model, and achieve self-protection by attacking
the eavesdropper’s recognition model. Sadeghi et al. generated
white-box adversarial examples® against the DL-based radio
signal classifier, significantly reducing the performance of the
classifier with minimal perturbation power [22]. Lin et al
applied four gradient attack methods to intelligent modulation
detection, which significantly reduced the accuracy of the DL-
based modulation detection model [23]. Liu et al. used the
feature layer and decision layer of the model to design small
perturbations of wireless signals, which further improved the
effect of gradient attacks [24]. However, these works did not
consider channel effects such as multipath fading between the
attacker and the receiver. This will affect the antagonism of
the designed perturbation waveform by changing the direction
and magnitude of the perturbation, resulting in the failure of
the attack. Therefore, Kim et al. considered the channel effect
and attacked the wireless signal classifier based on DL, which
destroyed the channel perception accuracy of the classifier
[25]. In order to evaluate the impact of adversarial attacks,
many researchers have analysed the threat of adversarial
examples to the robustness of the target model from different
adversarial metrics [26], [27].

In practice, the eavesdropper’s modulation recognition mod-
el is a black box, and its internal network parameter infor-
mation is often hidden and cannot be obtained. Most of the
adversarial examples generated by the traditional white-box
attack method are for a specific source-target model, and their
attack capabilities are highly dependent on the model. This
makes it difficult to migrate to the black-box target model to
implement the attack [28], [29]. For the black-box model, the
commonly used attack methods mainly include substitution
attack and migration attack. The substitution attack mimics
the classification boundary of the target model by constructing
a shadow model, and fine-tunes the classification boundary
of the substitution model by querying the model [30]-[33].
However, since the output of the target receiver cannot be
obtained, the black-box attack based on the substitution model
is not practical in wireless communication. Ensemble attack
is a commonly used transmission-based attack method. By
fusing the output of each network in the ensemble model, it
generates strong transferable adversarial examples that have
a good attack effect on the target black-box model [34]-
[36]. However, existing ensemble attack methods have not
fully exploited the differences in input predictions between
different networks in the ensemble model, making it difficult
for the resulting adversarial examples to successfully attack
target models with classification boundaries far away from the
original example points.

IThe adversarial example refers to the superposition of the designed
adversarial waveform onto the original clean signal.

To counter these attack methods, many adversarial defence
methods have been proposed against various attacks. Zhang
et al. studied a defence mechanism based on training time
and running time for white-box attacks, which improved the
robustness of DL-based modulation classifiers against adver-
sarial attacks [37]. Nesti et al. proposed a method called
defence perturbation to effectively detect robust adversarial
examples [38] by detecting adversarial examples through
transformations. Yang et al. used the SecureSense framework
to process the input, which is generally robust to common
attacks and can reduce the negative impact of adversarial
attacks [39]. Therefore, in wireless communication, eavesdrop-
pers can also adopt some defensive strategies to reduce the
impact of adversarial attacks. However, there is a contradiction
between the effectiveness of a defence and its generalisability.
Although the defence designed for a specific attack is very
efficient, its generalisability is not strong and it is difficult
to defend effectively against other types of attacks [40]. The
defensive methods that generally have certain defensive effects
for different attacks have strong generalisability, but their
defensive effects are not pronounced. Therefore, it is necessary
to find new ways to increase the transferability of attacks to
disable the eavesdropper’s modulation detection model.

In this paper, we consider the influence of the channel
environment on adversarial attacks and propose a black-
box attack method based on the attention mechanism with
strong transferability. The main contributions of this paper are
summarised as follows:

o We propose a new attack method based on the attention
mechanism. By using the prediction of different networks
in the ensemble model to calculate the adversarial at-
tention factor to adjust the movement of examples in
the classification difference region, the transferability of
adversarial examples to the target black-box model is
improved.

o We analyse the negative impact of the channel environ-
ment on the adversarial nature of the designed pertur-
bation waveform, and use the channel information to
improve the adaptability of the adversarial waveform to
the channel.

o We derive the bound of the adversarial risk increment
caused by the adversarial attack on the target model, and
evaluate the attack performance by testing the proximity
of the adversarial loss to the bound.

o We use the proposed attack algorithm to design adver-
sarial perturbation waveforms and transfer them to the
eavesdropper’s modulation recognition model to imple-
ment the self-protection attack, significantly reducing the
eavesdropper’s modulation recognition accuracy to offer
maximum protection for the legitimate communication.

The rest of the paper is organized as follows: Section II
introduces the system model of self-protective attack against
the eavesdropper in wireless communication system. Section
IIT proposes an attention-based ensemble attack method, which
enhances the transferability of adversarial examples by assign-
ing attention to different networks. Section IV considers the
influence of the perturbation channel, and uses the channel
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Fig. 1. Wireless communication system model with jamming and protection.

information to further enhance the adaptability of the designed
perturbation waveform to the channel. Section V theoretically
derives the boundary of the adversarial risk increment of the
target model after being attacked to measure the performance
of the generated adversarial examples. Section VI shows the
performance of the proposed attack method through simula-
tion. Section VII concludes the paper.

II. SYSTEM MODEL
A. Communication Model

In the wireless communication system, a trained DL-based
classifier at the receiver can quickly and accurately identify the
category of modulation signals transmitted by the legitimate
transmitter, and it can adapt well to a multi-protocol envi-
ronment. However, legitimate communications can be eaves-
dropped and jammed. The eavesdropper employs an intelligent
recognition model to identify the modulation types of the
communication signals and then generates jamming signals
based on the recognition results and a jamming algorithm to
interfere with the legitimate receiver. It is evident that the
eavesdropper’s ability to intelligently recognize modulation
types is a fundamental prerequisite for implementing intelli-
gent jamming, directly affecting whether effective jamming
signals can be generated to disrupt legitimate communica-
tions. Therefore, it is necessary to develop countermeasures
to disrupt the eavesdropper’s intelligent recognition model in
order to prevent the eavesdropper from obtaining accurate
modulation information. In this paper, we consider a wireless
communication system consisting of a signal transmitter, a
legitimate receiver, an eavesdropper and a perturbation trans-
mitter, as shown in Fig. 1.

Fig. 1 is a system model for the design and use of ad-
versarial waveforms for wireless transceivers. When wireless
communication is performed between the transmitter and the
receiver through the communication channel H., the signal
is intercepted by the eavesdropper. Through the DL-based
modulation recognition model, the eavesdropper can quickly
obtain information such as the modulation category of the
signal and further perform jamming on the receiver. Take the

eavesdropper’s DL-based modulation detection model as the
target model. To protect legitimate communication, an adver-
sarial perturbation waveform can be designed to destroy the
target model. In practice, the target model is usually a black-
box model, and the ensemble attack algorithm can be used to
generate adversarial waveforms corresponding to the modula-
tion signal. The perturbation transmitter sends an adversarial
waveform, which is superimposed on the modulation signal
at the eavesdropper after passing through the perturbation
channel H,, to deceive the target model and realise the self-
protection attack on the eavesdropper. At the same time, the
legitimate receiver generates adversarial examples using the
same attack algorithm as the transmitter and incorporates them
into the training set to train the model [41]. This enhances the
model’s robustness against such adversarial examples. Mean-
while, since the eavesdropper is unaware of the attack method
employed between the cooperative transmitter and receiver, it
cannot effectively counteract this type of attack, resulting in a
significant degradation of its recognition performance.

In practical deployment, whether the perturbation transmit-
ter needs to be integrated into the signal transmitter depends
on the specific scenario requirements. When deployment is
difficult or resources are limited, the perturbation waveform
generator can be integrated into the signal transmitter. The
generated perturbation is then superimposed on the signal and
transmitted together, arriving at the receiver via the communi-
cation channel. When greater flexibility of the perturbation is
required, the signal transmitter and the perturbation transmitter
are separated and transmit independently. The two signals
arrive at the receiver via the communication channel and the
perturbation channel, respectively.

B. DL-Based Modulation Recognition Model

RADIOML2016.10B is an open-source modulation signal
data set, which is often used to test the performance of
modulation recognition models [42]. It has additive white
Gaussian noise (AWGN), multipath fading, sampling rate
offset and center frequency offset to simulate the real wireless
communication environment, which is suitable for testing the
influence of the adversarial attack algorithm on the modulation
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recognition model in this paper. The data set contains ten
modulation modes, and the signal-to-noise ratio (SNR) under
each modulation mode is evenly distributed in the interval [-
20 dB, 18 dB] with an interval of 2 dB. These modulation
modes include eight digital modulations such as 8PSK, QPSK,
BPSK, GFSK, CPFSK, 4PAM, 16QAM and 64QAM, and two
analog modulations such as WBFM and AM-DSB. In each
modulation mode, the number of signal examples at each SNR
is about 6000, including a total of 1.2 million signal examples.
Each signal example has 128 pairs of I/Q sample points, which
can be expressed as

S (t) = Icos(2mft) + Qsin (27 ft), (1)

where f is the carrier frequency.

In the modulation recognition task, DNN has the advantages
of high recognition speed and high recognition accuracy.
ResNet is a deep residual network that solves the problem of
gradient disappearance and loss of representational capability
in deep neural networks by introducing residual connections
so that the network can be trained and optimised more easily
[43]. The network has been shown to work well for modulation
recognition tasks [44]. In this paper we choose ResNet as
the modulation recognition model used by the eavesdropper.
This model is a black box and can only be used to test the
effect of the proposed attack algorithm. In addition, when
implementing an ensemble attack, different networks must be
selected to form an ensemble model. The difference between
the networks helps to increase the portability of the attacks.
O’Shea et al. used CNN, VGG, ResNet and other networks to
perform the modulation detection task and showed the detec-
tion performance of different networks [45]. In this paper we
use VTCNN, Inception and VGG to form an ensemble model
and improve the transferability of the adversarial examples
generated.

C. Adversarial Attack Model

The DL-based target modulation recognition model uses a
deep neural network to predict the modulation mode of the
input signal x, and its prediction loss can be expressed as:

K
L(z,y) == yr(x)log (fu (2)), 2)
k=1

where K is the number of modulation modes, and y is the
true label of the signal. £ represents the difference between
the predicted result f (x) of the target model and the true label.
To disrupt the target model, the adversarial perturbation
waveform is designed to increase the prediction loss of the
target model. Since the direction of the loss gradient VL (z,y)
indicates the direction of increased model loss, adding a
perturbation value ¢ to the original signal in this direction will
deceive the target model into making incorrect predictions, that
is, f(x) # y, which has been proven in [23]. At this point,
the adversarial perturbation waveform can be expressed as:

n = esign (VL (z,y)) . 3)

In this paper, we consider gradient-based attacks, including
iterative attacks such as the fast gradient sign method (FGSM),

the basic iterative method (BIM) and the momentum iterative
method (MIM), and ensemble attacks. These attack algorithms
are usually subject to norm constraints, which reduce the
perceptibility of the perturbation by constraining the power
of the perturbation waveform. The [,-norm constraint of the
adversarial perturbation waveform is

Inll, = (Z m|”> : &)
=1

When p = 0, it represents the number of nonzero perturbation
points. When p = 2, it represents the Euclidean distance
between the example before and after perturbation. When
p = 00, it represents the maximum perturbation value among
all sampled points.

1) Iterative Attack: FGSM uses the loss gradient of the
target model to determine the direction of the perturbation,
and generates an adversarial example by directly adding the
maximum perturbation constraint value ¢ in this direction. It
can be expressed as

¥ =x +esign (VL (x,y)), %)

where = and y denote the original input and its true label,
respectively, and VL (z,y) denotes the loss gradient of the
target model.

BIM evenly divides the perturbation level of FGSM into N
segments for iteration, and continuously iterates to update the
perturbation waveform. The adversarial example generated by
the (n + 1)-th iteration can be represented as

xh .y =), + asign (Ve L (2,,7)) (©6)

where o = ¢/N denotes the step size of each iteration.

MIM uses the cumulant of the loss gradient instead of the
loss gradient used to determine the adversarial direction in
BIM, which is expressed as

Vs L (2,
sign (gn+1) = sign <,u9n i WM) Y
Tk n’ 1

where p denotes the momentum decay factor, g,, denotes the
gradient accumulation of the n-th iteration and gy = 0.

2) Ensemble Attack: Ensemble attack refers to a method
of generating adversarial examples using an ensemble model
composed of M networks?, which can effectively enhance the
transferability of adversarial examples for attacking unknown
models. In the ensemble model, the ensemble loss is obtained
by combining the predictions, losses, or logits of different
networks. Adversarial examples x* are then generated using
the gradient of the loss. Therefore, the goal of the ensemble
attack is to deceive all networks in the ensemble model, which
can be expressed as

argmax {y;n (I)} ?é Yt Ym € {1,2, o aM} (8)

where y" (x) is the prediction probability vector of the m-th
network, and y; is the true class of the signal.

2These networks are composed of a large number of interconnected
neurons, collectively forming the ensemble model, which is capable of fully
extracting both deep and shallow features from the data.
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According to the different output forms of the network,
ensemble attacks include prediction, loss and logit. The
prediction-based ensemble attack generates an adversarial ex-
ample by merging the prediction probability vectors of each
network in the ensemble model, which will generally be
adversarial to these networks. The loss of the ensemble model

is
M
L(z,y) = —ylog (Z wyl" ($)> : 9)
m=1

where w is the fusion weight and w = 1/M.

The loss-based ensemble attack generates an adversarial
example by fusing the predicted losses of each network. The
fused loss can be expressed as

M

L(z,y) = Z wL™ (z,y),

m=1

(10)

where £ () is the prediction loss of the m-th network in the
ensemble model.

The logit-based ensemble attack fuses the logits of the
networks in the ensemble model before normalization using
the activation function softmax, preserving more primitive
network output information. The loss of the ensemble model
is

M
L(z,y) = —ylog <softmax <Z wl™ (x))) , (11)

m=1

where I (z) is the logit of the m-th network for the input in
the ensemble model. Dong et al. proved that the adversarial
examples generated by (11) have better transferability than
(9) and (10) [46]. Therefore, this paper uses (11) to study
attack methods that improve the transferability of adversarial
examples.

IIT. ATTENTION-BASED ENSEMBLE ADVERSARIAL
WAVEFORM DESIGN

In the scenario where the perturbation generator is integrat-
ed into the signal transmitter, we employ an integrated ad-
versarial attack algorithm to generate adversarial waveforms.
These waveforms are designed to deceive the eavesdropper’s
recognition model based on DL. Additionally, we design
an attention mechanism to enhance the effectiveness of the
adversarial waveforms.

Traditional ensemble attacks achieve ensemble loss by aver-
aging the outputs of different networks to generate adversarial
examples. However, this fusion approach treats all networks
in the ensemble model equally, making it difficult to fully
exploit the structural differences between networks to improve
the transferability of adversarial examples. For the same input,
different trained networks will produce similar classification
results, but there will still be a difference between the pre-
dicted probabilities. This means that for the same modulation
classification task, there is always a region of classification dif-
ference between the classification boundaries of the networks.
Therefore, we assign an attention factor? to the output of each
network in the fusion process during the iterative process,

o Class B
O
(@] ]
(@]
o
(@]
(@]
O O
Class A

7L Decision boundary of network ----> Moving path of example

Fig. 2.  The movement process of an adversarial example near the classi-
fication boundaries of Network 1 (left), Network 2 (middle) and Network 3
(right).

adjusting the examples to cross the classification difference
region.

When adversarial examples are generated iteratively in the
ensemble model, if the example can cross the classification
boundary of a network, it indicates that the example can
fool the network, and the attention to this network should
be reduced. If the example cannot cross the classification
boundary of a network, it indicates that the example is less
adversarial to the network. At this point, the attention to the
network should be increased in order to use the network more
in the next iteration to guide the movement of adversarial ex-
amples near the classification boundary. Near the classification
boundaries of different networks, the process of an example
passing through the classification difference region is simply
represented as Fig. 2.

In Fig. 2, the region between the classification boundaries of
each net is the classification difference region. In the process of
moving the example to gain adversarial power, if the example
first passes the classification boundary of network 1, but is still
in the classification difference region between network 1 and
network 2, network 1 and network 3, the adversarial power of
the example is still not enough to fool network 2 and network
3. Therefore, more attention should be paid to these networks.
At the same time, the attention is continuously updated during
each iteration, and the example is adjusted to pass through
all the classification difference regions that can deceive all
the networks in the ensemble model, thereby improving the
transferability of the adversarial example to the target black-
box model.

Non-target attacks maximise the loss between the predic-
tion and the real label by designing adversarial examples to
misclassify the model and reduce its reliability. In this paper,
we adjust the network attention according to the prediction
results of each network and calculate the attention factor used
to obtain the logits and prediction loss of the ensemble model
by fusion, as shown in Fig. 3.

By comparing the prediction and real labels of each network
in the ensemble model for the same input, the attention
accumulation is constructed by using the performance of these
networks. In the (n+1)-th iteration, the attention accumulation

3The attention factor is the weight used to fuse the prediction outputs of
the networks for the same example, and its value is within the interval [0, 1].
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Fig. 3. Adjust the attention to fuse different network outputs to obtain the
logits of the ensemble model.

of the m-th network can be expressed as

ap' +1, Yy (x3,) = v,
max (a' —1,0), y;* (x3,) # v,
where y," () represents the prediction label of the m-th
network. We set the initial attention accumulation ag® = 0.

Accordingly, the attention factor of the m-th network can be
expressed as

an'q = (12)

m a1 +1
wi = —l (13)

M
m
Z an+1 + M
m=1

and the initial weight is set to w{® = 1/M. The purpose of
initializing af* = 0 and w{* = 1/M is to ensure unbiased
attention to different networks. This allows us to initially
roughly select the networks in the ensemble model that require
focused attention, that is, the networks that are difficult to
deceive. Subsequently, we fine-tune the attention to different
networks through continuous accumulation of attention. If
these two initial values were biased towards a particular
network, that network would be primarily used to generate
adversarial waveforms from the outset. This would result in
a slow convergence of the entire iterative process and would
also reduce the transferability of the adversarial waveforms.
After fusing the logits of each network with the attention
factor, the loss function of the ensemble model is proposed as

M
L (z),y) = —ylog [ softmax Z w1 (2,)

m=1

. (14)

Then, the adversarial waveform is generated by using the loss
gradient of the ensemble model as

vx; L (1’1:7 y)
IVar £ )ll, )
and the adversarial example of this iteration is updated by

(16)

N1 = osign ( g, + (15)

Tpar = CpG {2y, + N}

where Clip, {-} is used to clip the amplitude of the example to
constrain the maximum power of the perturbation and ensure
the concealment of the attack.

Similarly, the targeted attack minimizes the loss between
the model’s prediction and the targeted label in (14) to induce
the model to identify the example as a specified modulation
category. It is similar to the implementation of the non-targeted
attack, so we will not repeat it here. It should be noted that

for the specified label y;, we need to change the attention
accumulation in (12) to

m an +1, Yp' (23) # Vs,
Apy1 = m fn * (17)
max (a,' — 1,0), y," (z},) = Ys,
and get the targeted adversarial example
1 = Clipy {z}, = Nnia} - (18)

In this way, if the adversarial example can mislead the network
into misidentifying as a particular modulation category, the
attention to the network will be reduced, and vice versa.

We call the proposed attention-based iterative method AIM.
The attention mechanism proposed in this method can be
combined with many traditional iterative attacks to improve
the transferability. AIM is suitable for the scenario where
the perturbation transmitter and the modulation signal trans-
mitter are integrated. The perturbation is then superimposed
on the modulation signal and transmitted together to the
eavesdropper. However, in many cases, it is necessary to have
two separate transmitters in order to react flexibly to the
eavesdropper. For example, by comparing whether the signal
modulation categories received by the receiver before and after
the perturbation are consistent, one can determine whether the
eavesdropper is present. Therefore, it is necessary to design
an adversarial attack method that is suitable for transmission
in a perturbation channel when the channel is considered
separately.

IV. CHANNEL AND ATTENTION BASED TRANSFERABLE
ADVERSARIAL WAVEFORM DESIGN

In the scenario where the perturbation generator is separated
from the signal transmitter, we design and optimize the pertur-
bation waveform through channel compensation, aligning its
direction with the ideal perturbation. This approach enhances
the stability of the perturbation waveform in the perturbation
channel.

When designing the adversarial waveform, the negative
impact of the channel on the waveform cannot be ignored [25].
In this section, we improve the attention-based attack method
proposed in the previous section based on the perturbation
channel, so that the generated perturbation can be transmitted
separately from the communication transmitter, increasing the
flexibility of the self-protection attack.

After the perturbation passes through the perturbation chan-
nel, the direction and magnitude of the perturbation reaching
the eavesdropper’s receiver will change, which greatly reduces
the attack. It is therefore necessary to consider the channel
effect when designing a perturbation. From the generation
process of the adversarial example, it can be seen that the
perturbation direction is the sensitivity direction that makes the
model most prone to error. Before and after the perturbation
channel, the change in perturbation size should be minimised
while ensuring that the direction of the perturbation remains
unchanged to maintain the adversarial nature.

The channel between the signal transmitter and the receiver
is denoted as H, = diag{hc1,- - ,hcs} [47]. The pertur-
bation channel between the perturbation transmitter and the
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eavesdropper is denoted as H,, = diag {h, 1,--- , hp+}, which
can be expressed as [48]
d v
hp7i = K(;) whra%ia (19)

where ¢ is the dimension of the perturbation, K is a constant,
d and d are the distance between the perturbation transmitter
and the eavesdropper and the reference distance, respectively,
«v is the path loss index, 1) denotes shadow effect, and h,.qy 4
denotes Rayleigh fading. After transmitting the designed ad-
versarial waveform 7 to the eavesdropper, the signal received
by the eavesdropper is the superposition of the communication
signal, the perturbation signal and the complex Gaussian noise
n, which can be expressed as

2, = Hox + Hyn + n. (20)

Without considering the perturbation channel, the perturba-
tion directly designed for the target model is denoted as the
ideal disturbance 7V°¢", which has the greatest threat to the
target model. Assuming that the channel information is known,
the difference between the two can be minimized under the
loo-norm constraint, which is expressed as

. oChil2
mnln HHPU—??N C}Hgﬂ 21
st [nll,, —e<0.

Since the [.,-norm constraint inequality is difficult to derive
directly, it can be transformed into the /3-norm form. Accord-
ing to the definition of norm, ||n||,, = max {|ni|, -, |n|} <
&, 50 [Inl2 = [ + -+ el < timax{fmi] -, Ine}]° <
te2. Therefore, the constraint condition in (21) can be written
as ||77||§ — te? < 0. Since the ly-norm is a derivable convex
function, (21) is a convex optimization problem, and the
Lagrangian function can be constructed as

L (9, 2) = [y = 0|5 = A (Inll3 — ) .

where A is the Lagrange multiplier. According to (22), the
Karush-Kuhn-Tucker (KKT) condition of the optimization
problem is

(22)

2H (Hpn — n™o°") + 2an =0,
A (Il = t?) =0,

A >0,

Inll; — te* < 0.

KKT conditions (23)

In order to study the influence of the channel on the
perturbation, we obtain the relationship between the generated
perturbation and the ideal perturbation according to the first
equation in (23), which is expressed as

(HZH, + A1) n = HypNooh, (24)

where I denotes the unit diagonal matrix with dimension ¢ X ¢.
Suppose hy; # 0 for Vi € {1,2,---,t}, then hy ;hy,; =
|\hp7||§ > 0. In addition, since A > 0, then hj; ;hy; + A > 0,
so the diagonal matrix HyH,, + Al is invertible, then

* -1 * el
n = (H;H, + AI) " HynNo". (25)

So n; = th;mN"Ch, where K, is a real constant and
K, = (h;,ihp,i +)\)_1 > 0. Therefore, according to the
optimization problem (21), by using the channel conjugate
multiplied by the perturbation, the difference between the
perturbation and the ideal perturbation after passing through
the channel can be minimized. At this time, the perturbation
arriving at the receiver through the channel is expressed as

2 o
MNryi = hp,ini =K HhPJ'HQ 77N Ch7 (26)

and denote it as KQnN oCh  where Ko is a real constant

and Ko > 0. Therefore, the perturbation generated after this
treatment is consistent with the adversarial direction of the
ideal perturbation, and only the amplitude changes.

In order to further adjust the amplitude of the perturbation
according to the channel to offset the influence of the channel
on the perturbation, we use the channel information to adjust
the global [.,-norm constraint when iteratively generating
adversarial examples. When adjusting the power of the final
generated perturbation, it can be adjusted in terms of both the
number of iterations and the perturbation constraint in a single
iteration. However, increasing the perturbation constraint in a
single iteration will result in the generated perturbation having
many burrs and not being smooth compared to the clean
example, which can be easily detected by the eavesdropper.
Therefore, we still keep the perturbation constraint of each
iteration as €/N, and use the channel information to adjust
the number of iterations to

tN
Ny = <Tr (H,H) > ’

where Tr () denotes the trace of the matrix, and (-) denotes
the ceiling function. At this time, the final iteratively generated
adversarial waveform is 7, = H, Zgil 1, after passing
through the perturbation channel.

The above method of using the perturbation channel can
be combined with FGSM, BIM, MIM and AIM to improve
their adaptability in the perturbation channel. For example,
after combining the scheme proposed in this section with AIM,
we call the perturbation channel and attention-based iterative
attack method PC-AIM. The non-targeted attack of PC-AIM
is summarised in Algorithm 1, and the process of the targeted
attack is similar.

27)

V. ADVERSARIAL RISK INCREMENT BOUND

In this section, we analyze the adversarial risk generated
by the adversarial attack on the target model, and derive
the incremental upper bound of the risk to measure the
adversarial quality of the perturbation that eventually reaches
the eavesdropper receiver.

[26] investigated the prediction error of linear regression
under adversarial attacks and derived the bounds of this error.
In this paper, we extend it to the modulation recognition task
using the Taylor series. Goodfellow ef al. pointed out that
the generation of an adversarial example is directly related
to the high feature dimension and linear nature of the target
model [49]. Therefore, in the process of iteratively generating
the adversarial example x*, the first-order Taylor expansion
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Algorithm 1 PC-AIM non-targeted attack

Input: A clean example x and true label y;

Input: The perturbation constraint £; number of networks M
in the ensemble model; momentum decay factor u; original
iterations [V and perturbation channel H,,.

Output: An adversarial example 2* with |z* — 2| <e.

Lay=x90=0;w] =1/M; a=¢/N;

2: Calculate the number of iterations IV, for the perturbation

channel according to (27);

3: forn =0to N, —1do

Input z,,* and output the logits of the mth network
" (z5);
5: Update the attention factor w;}, ; for different networks

by (12) and (13);
6: Obtain the logits of the ensemble model by

M
1 (a5) = 3wl (25
m=1

7: Calculate the loss £ (x,y) by (14) and loss gradient
Vaux L (x},,y) of the ensemble model;
8: Update the gradient accumulation by

1Var £ ()l
9: Update the adversarial example by

In+1 = HGn

p41 = Clipg {z;, + arsign (gn11)};

10: end for
. * *
11: return z° = 7y .

is used to repeatedly approximate the prediction of the DNN
classifier with a linear function, and the output result of the
network near the clean sample xy can be expressed as

f (@) & [ (20) + V f(wo)" (x — o)

— VS0 s+ (f @) - Vi ). O

Denoting the second term in (28) as b, the output of the
network for the adversarial example with a small perturbation
superimposed near x, can be approximated as f(z*) =
Vf(x0) a* +b.

In order to measure the error of the target model’s predic-
tions with respect to the true labels instead of updating the
model parameters, we use the Mean Square Error (MSE) to
measure the adversarial risk of the trained model. After the
model is attacked, the adversarial risk for an adversarial exam-
ple generated under the [.-norm constraint ||z* — x|, < ¢
can be expressed as

2
R (1) = Egy 4o [(yo — Vf(xo) 2t — b) } . (29)

According to the perturbation n = z* — =z, (29) is expanded

as

R (2*) = Bag.yo [(yo — V(@) w0 — b— Vf(l“O)Tﬁ)Q]
= Eay 40 [(yo ~ VJ(w0) w0~ b) 1
+ Emmyo |:(Vf(x0)T77) i

—2 (30— Vf(w0)"z0 — b) (Vf(z0)")]
=R (z0) + Eqq y0 [TQ — 2egr],
(30)
2
where R (z9) = Egy .y, [(yo — Vf(zo) 2o — b) } denotes

the model’s MSE for the clean example, r = Vf(z0)'n
denotes the risk term associated with the perturbation, and
eo=yo— Vf (xo)Txo — b denotes the difference between the
model’s predicted probability and the true label of the clean
example with ey > 0.

Under the I,,-norm constraint, let M (r) = 72 — 2eor.
By Holder’s inequality we have |r| = ‘Vf(a:o)Tn’ <
71l IV S (zo)lly < ell VS (zo)llys Le., —el|Vf (mo)ll; <7 <
||V f (zo)]|;. Moreover, r < e can be obtained according to

eo — 7 =140 — Vf(xo) zo —b—Vf(zo)'n
=0 — (V/(wo)"a" +b) > 0.

In addition, the adversarial risk of the model will increase after
being attacked, i.e., 72 — 2eqr > 0 in (30). Therefore, the risk
term r < 0, then

3D

M (r) <% = 2e07 |r= v (a0,
= 2|V £ (o)l + 2¢|V £ (o), €0

According to (30), the adversarial risk increment of the
target model for the adversarial example can be expressed as

AR = R (z*) — R (x0)
< Eapo [V S (@0)lI} + 259 £ (20)] 0]

= &Eay ||V (20) 7] + 2Bz [V (0)] 0]

(33)

ATR denotes the increment of the model’s prediction error after
being attacked, and its upper bound can be used as a measure
of the effectiveness of the attack algorithm against the target
model. The closer to the upper bound, the more aggressive
the adversarial example is. From (33), it can be seen that the
upper bound of AR is related to the perturbation constraint ¢,
the target model f, and the clean example label pair (zq, yo).
Further, we analyze the case when the adversarial risk
increment reaches the upper bound. It can be seen from
(32) that when r = —¢[|Vf(x0)|,, M (r) reaches the
maximum value, then Vjf(zo)'n = —¢||Vf (o)ll, =
—eV f(x0) sign (V[ (20)). that is, n = —esign (Vf (x0)).
It means that a perturbation of size ¢ is applied in the
direction perpendicular to the classification boundary of the
model, which can make the prediction probability of the model
decrease the fastest. Thus the maximum perturbation level is
applied in the ideal perturbation direction. In fact, the existing

(32)
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Fig. 4. Modulation recognition accuracy of ResNet after the non-targeted attack. (a) The model is attacked by the perturbation generated at the communication
end through the communication channel Hc. (b) The model is attacked by the perturbation generated at the communication end through the perturbation
channel Hy. (c) The model is attacked by the perturbation generated at the perturbation end through the perturbation channel Hy,.

attack algorithms mainly optimize the direction and size of
the perturbation to approximate the ideal adversarial effect as
much as possible.

VI. SIMULATION RESULTS AND ANALYSIS

In this section, we investigate the impact of eavesdroppers
on legitimate communication systems. We conduct simulation
experiments under the system model shown in Fig. 1, em-
ploying deep learning models to simulate the threat posed by
eavesdroppers to legitimate communications, which has been
proven to be feasible [50], [S1]. We use the signal examples in
RADIOML2016.10B to verify the attack performance of the
proposed method for eavesdroppers. These examples include
additive white Gaussian noise (AWGN), multipath fading,
sampling rate offset and center frequency offset, which effec-
tively simulate the real wireless communication environment.
In the following, we verify the attack effect of the designed
perturbation waveforms without considering the perturbation
channel or with considering the perturbation channel, respec-
tively, and the attack modes include non-targeted attack and
targeted attack.

Before the adversarial attack, we utilize VTCNN, Inception,
and VGG to construct the ensemble model, and select ResNet
as the target model to be attacked. When training the network,
80% of the examples in the dataset are used as the training
set, and the remaining examples are used as the test set.
We set the batch and epoch to 1024 and 100, respectively.
In addition, our experiments were conducted on an NVIDIA
GeForce RTX 3080Ti GPU, with models trained using the
TensorFlow 2.0 framework. During training, the Adam opti-
mizer was employed, with an initial learning rate set at 0.001
and an automatic update mechanism in place. When generating
adversarial waveforms, we set the momentum decay factor and
the number of iterations to 1.0 and 10, respectively.

A. Perturbation-to-Noise Ratio

When implementing a self-protective attack on an eaves-
dropper’s modulation recognition model, the concealment of
the attack should be ensured so that it is not perceived and
defended by the eavesdropper. The perturbation amplitude

represents the strength of the attack. If it is too strong, it will
reduce the concealment of the attack. Therefore, the attack
under the condition that the perturbation perception is invisible
is beneficial to covertly destroy the eavesdropper’s recognition
model. The perturbation-to-noise ratio (PNR) can be used to
measure the power of the perturbation relative to the noise,
which is defined as [52]

E {l23]

When PNR is less than O dB, the adversarial waveform is
considered imperceptible [53]. Therefore, we use the PNR
distributed in [-20 dB, O dB] to constrain the power of the
perturbation, thereby generating an imperceptible adversarial
waveform to covertly attack the target model. In different chan-
nel scenarios, we use the traditional average fusion method and
FGSM, BIM, MIM to generate adversarial examples in the
ensemble model, and use the proposed attention mechanism
and AIM to generate adversarial examples to test the effect
of non-targeted attack and targeted attack on the target model.
The recognition accuracy of the model before and after being
subjected to non-targeted attacks is shown in Fig. 4, and the
attack success rate of implementing targeted attacks on the
recognition model is shown in Fig. 5.

Fig. 4 shows the effect of the proposed algorithm on the
non-targeted attack on the recognition model of the eavesdrop-
per. It can be seen that the perturbations significantly reduce
the model accuracy when they are generated at the transmitter
and pass through H. to attack the target model. However,
when the perturbations pass through H,, to perform the attack,
their threat to the model is significantly reduced. At this point,
the perturbations are generated at the perturbation end using
the channel-based enhanced adversarial approach in Section
IV, and these perturbations again reduce the model accuracy,
which indicates that these perturbations retain their adversarial
nature after passing through the perturbation channel. The
effect of PC-FGSM in Fig. 4(c) is essentially the same as that
of FGSM in Fig. 4(a), which is due to the fact that FGSM
is a single-step iterative attack whose perturbation constraints
based on channel tuning are directly used in their entirety to

PNR [dB] = [dB] + SNR [dB] . (34)
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Fig. 5. Success rate of the targeted attack on ResNet, and the specified modulation type is 64QAM. (a) The model is attacked by the perturbation generated
at the communication end through the communication channel H. (b) The model is attacked by the perturbation generated at the communication end through
the perturbation channel Hy. (c) The model is attacked by the perturbation generated at the perturbation end through the perturbation channel Hy.
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Fig. 6. The prediction confusion matrix of ResNet for clean
attack. (c) AIM targeted attack.

counteract the effects of the perturbation channel. Therefore,
the perturbations generated by PC-FGSM retain the original
perturbation information after passing through the perturbation
channel.

In Fig. 5, we choose 64QAM as the specified modulation
type in the targeted attack, and the proportion of all examples
recognized as this modulation type by the model of the
eavesdropper is denoted as the targeted attack success rate
(TASR). It can be seen that although AIM is not the best in
Fig. 5(a), in Fig. 5(c) of the scenario where the perturbation
channel is considered, PC-AIM makes optimal under different
perturbation constraints, which shows the advantage of PC-
AIM in the perturbation channel environment. In addition, we
record the generation time of an AIM adversarial waveform
and a PC-AIM adversarial waveform, which are 0.056 s and
0.098 s, respectively, indicating that the proposed method has
good generation efficiency and can meet the real-time require-
ments in practical applications. In addition, the generation time
of adversarial waveforms can be further shortened by selecting
the lateral network in the integrated model, which will be
explained in section VI.B. Therefore, the proposed adversarial
waveform design method is feasible in practical applications.

We use the confusion matrix in Fig. 6 to visually display the
modulation recognition results of the target model before and
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signals and AIM adversarial examples when PNR = 0 dB. (a) No attack. (b) AIM non-targeted

after the AIM attack. In Fig. 6(a), the unattacked recognition
model tends to misclassify WBFM as AM-DSB. This is pri-
marily due to the silent periods present when generating these
two types of data by sampling simulated audio signals. During
the data sampling process, the data samples of WBFM and
AM-DSB signals, due to the existence of intermittent silent
phases, only retain the carrier feature parameters. This results
in significant confusion in the recognition of the modulation
types of the two signals [54]. Fig. 6(b) is the prediction matrix
of the model after the non-targeted attack. The smaller the
probability on the diagonal of the matrix, the greater the
prediction error of the model, the better the effect of non-
targeted attack. Fig. 6(c) is the prediction matrix of the model
after the targeted attack. The greater the probability on the
column corresponding to the specified modulation category in
the matrix, the better the effect of the target attack. It can be
seen that the non-targeted attack greatly reduces the reliability
of the target model. It is worth noting that in Fig. 6(c),
when the specified category is digital modulation 64QAM,
the targeted attack success rates of digital modulation QPSK
and 16QAM are as high as 0.85 and 0.94, respectively, while
the targeted attack success rates of analog modulation WBFM
and AM-DSB are only 0.06 and 0.00. This means that when
the modulation type is specified as digital modulation, the
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designed adversarial example is difficult to disguise as analog
modulation, because it usually requires greater perturbation
power, which is difficult to achieve under the norm constraint
used to ensure the invisibility of the attack. Therefore, the
targeted attack is applicable to the same modulation mode.

In the following, we focus on the non-targeted attacks and
conduct simulations from three aspects: attention factors in
the ensemble model, adversarial risk increment of the target
model, and waveform correlation between adversarial exam-
ples and clean modulation signals to verify the effectiveness
of the proposed method.

B. Attention Factor

In order to study the distribution of the classification
boundaries of different networks in the ensemble model, we
record the attention factors assigned to these networks by the
attention-based non-targeted attack under different perturba-
tion constraints, as shown in Fig. 7.

Fig. 7 shows the variation of the attention factors assigned to
different networks in the ensemble model with the perturbation
constraints when the adversarial waveforms are generated by
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Fig. 9. FD between adversarial examples and clean examples.

AIM and PC-AIM, respectively. The larger the attention factor
is, the more difficult the network is to be fooled, and the farther
the classification boundary is from the original example. When
the perturbation constraint is zero, we allocate the attention
to each network on average, and set the attention factor to
be 0.33. As the perturbation constraint increases, the attention
factor approaches 0.33 after adjustment. This is because it can
be seen from Fig. 4 that the increase in perturbation power
makes the example more adversarial and gradually has the
ability to fool all networks in the ensemble model. Therefore,
it can be seen from (12) that the attention accumulation of each
network tends to be equal. In Fig. 7, the weight of Network 3
is always the largest, indicating that its classification boundary
is the farthest from the original example and is at the outermost
side of the classification difference region. Similarly, Network
1 is closest to the original example. Therefore, it is possible to
directly use Network 1 and Network 3 to form an ensemble
model, which will obtain the largest region of classification
variability, produce examples with similar transferability as
an ensemble model composed of multiple networks, and
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Fig. 10. Time domain waveforms of eight modulation signals before and after AIM attack and their adversarial waveforms.

substantially improve the efficiency of perturbation generation.

C. Adversarial Risk Increment

We use the adversarial risk incremental bound derived in
Section V as a benchmark to test the threat of adversarial
examples to the target model. The difference between the
MSEs of the model for the adversarial examples and the clean
examples, respectively, is taken as the actual adversarial risk
increment generated by the attack, and the closer it is to the
incremental bound, the closer its adversarial nature is to the
ideal attack. In order to observe the effect of the attack, we
use the sigmoid function to process the risk increment to unify
the dimension. The actual adversarial risk increment and the
incremental upper bound for different attacks under different
perturbation constraints are shown in Fig. 8.

In Fig. 8, the proposed AIM is closer to the upper bound of
the risk increment than other attacks, indicating the effective-
ness of its adversarial examples. However, as the perturbation
constraint increases, the actual risk increment generated by
these attacks gradually moves away from the upper bound
of the risk increment. This is because the upper bound is
generated under ideal conditions, and at the end of the
actual iterative attack process, the direction and size of the
perturbation are usually difficult to achieve the global optimal
point. This allows the adversarial example to deceive the
target model, but there is still a deviation from the ideal
perturbation. Nevertheless, the upper bound of adversarial
risk increment can still be used to measure the quality of
adversarial examples. In fact, as the invisibility of attacks tends
to deteriorate with the increase of perturbation constraints, we
usually focus on generating attacks with small perturbation
constraints.

D. Waveform Correlation

In addition to the attack success rate, concealment is another
key indicator to measure the attack effect. It is reflected in
the correlation between the adversarial example and the clean
example, which is directly related to whether the designed
perturbation waveform can be detected by the eavesdropper.
We use fitting difference (FD) to quantitatively analyze the
similarity between adversarial examples and clean examples
to compare the concealment effect of different attacks, which
is expressed as [55]

(35)

(si —35)°

where N is the length of the signal example, s and 5 are the
original signal example and its average value, respectively,
that is, 5 = ) ."°, s;/N,, and s* is the adversarial example.
The smaller the FD, the greater the similarity between the
adversarial example and the clean example.

We use AIM and PC-AIM to generate adversarial examples,
respectively, and calculate the FD of these adversarial exam-
ples, as shown in Fig. 9. From Fig. 9(a), it can be seen that
for the adversarial waveform generated at the communication
end, FGSM has the largest FD and the worst concealment,
which is most easily detected by the eavesdropper. AIM has a
slightly smaller FD than MIM, and its concealment is slightly
better than that of MIM. BIM has the smallest FD and the best
concealment, but it can be seen from Fig. 4 that it has a poorer
attack performance than AIM. For the adversarial waveform
generated by PC-AIM at the perturbation end, there is a similar
analysis.

When SNR = 10dB and ¢ = 0.0018, we plot the
time domain waveforms of AIM perturbations and adversarial
examples designed for eight digital modulation signals, as
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shown in Fig. 10. According to (34), PNR = —4.89 dB at
this point. It can be seen that since the perturbation amplitude
is constrained by the [,,-norm, the adversarial example does
not change much compared with the clean example, but it can
be seen from Fig. 4(a) that this can reduce the accuracy of the
target model by more than 50%, preventing the eavesdropper
from correctly obtaining the modulation information of the
communication.

VII. CONCLUSION

In this paper, we have designed an adversarial wave-
form for the modulated signal to solve the problem that
the legitimate wireless signal transmitter and receiver are
vulnerable to eavesdropper monitoring and jamming. First,
we designed an attention-based iterative attack scheme. By
using the performance of different networks in the ensemble
model for the same example, we accumulated and updated
the attention for each network, gradually crossing the clas-
sification difference regions to improve the transferability of
the attack. Then, we further analysed the negative impact of
the perturbation channel on the attacks, and used the channel
information to compensate for changes in the adversary’s
power. Finally, we theoretically derived the adversarial risk
limit of the target model after the attack and intuitively
measured the performance of adversarial examples generated
by the attack algorithms. The simulation results show that
the method proposed can effectively attack the eavesdropper’s
illegal modulation recognition model by designing adversarial
perturbation waveforms, protecting the security of legitimate
communication.
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