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Abstract: The strength mobilisation framework was adopted for the first time to describe 

the stress–strain responses for three different types of sands, including a total of 30 pub-

lished drained triaxial tests—25 for Karlsruhe Fine Sand, 2 for Ottawa sands and 3 for 

Fontainebleau sand, under confining pressures ranging from 50 to 400 kPa. The peak shear 

strength 𝜏𝑝𝑒𝑎𝑘 obtained from drained triaxial shearing of these sands was used to nor-

malise shear stress. Shear strains normalised at peak strength 𝛾𝑝𝑒𝑎𝑘  and at half peak of 

shear strength 𝛾𝑀=2 were taken as the normalised reference strains, and the results were 

compared. Power–law functions were then derived when the mobilised strength was be-

tween 0.2𝜏𝑝𝑒𝑎𝑘 and 0.8𝜏𝑝𝑒𝑎𝑘. Exponents of the power–law functions of these sands were 

found to be lower than in the published undrained shearing data of clays. Using 𝛾𝑀=2 as 

the reference strain shows a slightly better power–law correlation than using 𝛾𝑝𝑒𝑎𝑘 . Linear 

relationships between the reference strains and variables, such as relative density, relative 

dilatancy index, and dilatancy, are identified. 
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1. Introduction 

Soils are natural materials formed by the chemical or physical weathering of rocks. 

Soils are complex porous materials; soils obtained from different regions show a wide 

range of properties (e.g., density, void ratio, particle shape, and grain size distribution). 

Not only do the physical properties of soil particles such as particle size and composition 

vary, but site conditions such as confining stress range, and drainage conditions also have 

significant impacts on its mechanical behaviour. When a soil is subjected to external load, 

its deformations show non-linear elastoplastic characteristics in both volumetric and 

shear domains. Traditional geotechnical design calculations using the concept of safety 

factors, however, could only consider ultimate stresses but ignore deformation despite its 

significant impact on the performance of soil structures. To predict the stress–strain–vol-

ume behaviour of soils, geotechnical engineers have proposed a plethora of constitutive 

modelling approaches over the decades. For instance, a typical elaborated constitutive 

model based on the original critical state framework [1], e.g., the cross-anisotropy model 

[2], requires up to 21 variables, as cited by Wood [3,4]. Adopting these complex constitu-

tive models in numerical modelling and applying the results in practical engineering de-

sign requires a skilful geotechnical engineer to build advanced finite element models and 

predict the responses of soils on site or in advance. Recently, a ‘strength mobilisation 

framework’ [5–7] was proposed. It is a relatively simple empirical framework that has 

been proven to be applicable in estimating the mobilised stress–strain responses of hun-

dreds of natural clays and silt when shearing in a short-term, undrained manner. This 
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framework has also been applied to predict the level of deformation of some specific ge-

otechnical structures, e.g., retaining walls [8,9], deep excavations [10] and bored piles [11]. 

Previous investigations undertaken by Vardanega and Bolton [5] were related to clay 

shearing in undrained conditions. Compared with undrained clays, it is uncommon for 

sands to be subjected to undrained shearing conditions, although loose sand can poten-

tially liquefy [12,13]. In this case, pore pressure rises, and effective stress decreases. When 

the effective stress is zero, the shear capacity of the soil disappears completely, and the 

soil liquefies [13]. It is, however, more common for sand to be sheared under drained con-

ditions due to its high permeability. It is therefore necessary for researchers to investigate 

the strength mobilisation framework for sands under drained shearing. The peak shear 

strength of sand depends on the grading of the sand, the confining stress level, the relative 

density, and the crushing strength statistics of the sand particles [14,15]. To date, few in-

vestigators have explored the strength mobilisation framework of sands. For examples, 

what are the curve-fitting parameters for the power-law relationship between mobilisa-

tion strength and shear strain in sands, what does the reference shear strain of sands de-

pend on, and what are the limitations involved. 

This paper attempts to explore the strength mobilisation framework of sands, mainly 

based on drained triaxial tests on Karlsruhe Fine Sand from a public database [16]. One pur-

pose of this study is to assess whether the previously published mobilisation framework for 

clays and silt is also applicable to sands. The second purpose is to quantify the relationship 

between volumetric parameters and mobilised strength, as well as the stiffness of sands and 

the reference strain, by normalisation and regression analysis. 

2. Materials and Methods 

The main workflow for the data of the project is illustrated in Figure 1. 

2.1. Data Collection 

Three relatively different sand types were chosen to check the proposed strength mo-

bilisation framework’s applicability to sands. 

Figure 2a shows that the average grain diameter for Karlsruhe Fine Sand, from Karls-

ruhe in southwest Germany, is 0.14 mm. The coefficient of uniformity of 1.5 indicates that 

the sand particles were not well graded. The particle shape is subangular, as shown in the 

optical microscope image in Figure 2b. T. Wichtmann and T. Triantafyllidis [16] conducted 

25 monotonic triaxial tests under isotopic consolidation. The samples used had various 

relative densities 𝐼𝐷, ranging from 0.15 to 0.95. All tests can be divided into five groups 

for different densities (see Table 1, TMD1-TMD25), where the applied effective confining 

pressures are 50, 100, 200, 300 and 400, respectively. 
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Figure 1. Flowchart diagram for the workflow of the project. 

Additional data pertaining to drained triaxial tests of Clean Ottawa Sand and Fon-

tainebleau Sand [17,18] were collected (See Table 1). This study involved two sets of tri-

axial test data on Ottawa sand from Ottawa in Canada (see Table 1, A14 and A17). The 

particle shape of this sand is rounded [19]. We also used three sets of triaxial test data of 

Fontainebleau Sand from south Paris in France (see Table 1, Test 3, Test 5, Test 7) [20]. This 

sand is weaker than Ottawa and Karlsruhe fine sand. 
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Figure 2. Characteristics of sands. (a) Grain size distribution curve for three sands; (b) particle shape 

of grains of Karlsruhe Fine Sand with an optical microscope [16]. Reprinted with permission from 

T. Wichtmann. 

Table 1. Monotonic drained triaxial tests [16–18]. 

Test No. Void Ratios Relative Densities Effective Confining Pressures [KPa] 

TMD1 0.996 0.15 50 

TMD2 0.975 0.21 100 

TMD3 0.975 0.21 200 

TMD4 0.970 0.22 300 

TMD5 0.960 0.25 400 

TMD6 0.880 0.46 50 

TMD7 0.862 0.51 100 

TMD8 0.859 0.52 200 

TMD9 0.848 0.55 300 

TMD10 0.847 0.55 400 

TMD11 0.840 0.57 50 

TMD12 0.819 0.63 100 

TMD13 0.824 0.63 200 

TMD14 0.822 0.64 300 

TMD15 0.814 0.68 400 

TMD16 0.743 0.82 50 

TMD17 0.758 0.79 100 

TMD18 0.748 0.81 200 

TMD19 0.734 0.85 300 

TMD20 0.753 0.8 400 

TMD21 0.734 0.85 50 

TMD22 0.735 0.85 100 

TMD23 0.706 0.92 200 

TMD24 0.697 0.95 300 

TMD25 0.718 0.89 400 

A14 Ottawa 0.558 0.74 100 

A17 Ottawa 0.699 0.27 400 

Test 3-CID Fontainebleau 0.684 0.57 200 

Test 5-CID Fontainebleau 0.660 0.65 100 

Test 7-CID Fontainebleau 0.612 0.80 50 
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2.2. Data Reduction and Processing 

The originally divergent stress–strain curves of London clay before normalisation are 

shown in Figure 3 as an example, where the legend represents different samples. The solid 

and hollow triangles denote the reference strain 𝛾𝑟𝑒𝑓  corresponding to 𝛾𝑀=2  (shear 

strain at half peak undrained strength 𝐶𝑢/2) and 𝛾𝑝𝑒𝑎𝑘  (shear strain at peak undrained 

shear strength 𝐶𝑢), respectively. For further analysis, the Y-axis can be expressed as nor-

malised strength mobilisation ratio M, which is defined as the mobilized shear strength 

𝜏𝑚𝑜𝑏 over the undrained shear strength 𝐶𝑢, i.e., 𝜏𝑚𝑜𝑏/𝐶𝑢, and the X-axis can be expressed 

as mobilised shear strain normalised by a reference strain, i.e., 𝛾/𝛾𝑟𝑒𝑓. Note that only the 

moderate strength region between 0.2𝐶𝑢  and 0.8𝐶𝑢  is considered, because both high-

strength (> 0.8𝐶𝑢) and low-strength (< 0.2𝐶𝑢) regions are not typically needed for the de-

sign purpose. If the soil shear strength was designed to be greater than 0.8𝐶𝑢, the struc-

ture would be too close to failure and unsafe. In contrast, if it was assumed to be less than 

0.2𝐶𝑢, the structure would be unnecessarily safe and too expensive to build. The results 

obtained from the moderate-strength region, however, reveal a unified stress–strain curve 

that could be approximated by a power–law function [6,7]. 

 
 

Figure 3. Mobilised shear stress-strain curves of London clay from Yimsiri (2001) [6]. Reprinted with 

permission from P. J. Vardanega. 

In order to correctly analyse the drained shearing data of sands, the mobilised shear 

stress 𝜏𝑚𝑜𝑏 and mobilised shear strain 𝛾𝑚𝑜𝑏 need to be calculated accurately in the ax-

isymmetric system of triaxial testing. In undrained shearing, shear strain is given by γ = 

1.5εa. However, the coefficient of 1.5 in [5] is unsuitable for drained conditions. The shear 

strain equals to axial strain εa minus radial strain, which can be expressed as the product 

of Poisson’s ratio and axial strain based on Hooke’s Law. In undrained conditions, the soil 

sample volume remains constant, resulting in a Poisson’s ratio of 0.5 (see Appendix A). 

However, sand’s peak strength is difficult to reach in undrained cases, but would be found 

in drained cases. Due to the changeable volume in drained conditions, Poisson’s ratio is 

less than 0.5. Evidence summarized by K. Yokota and M. Konno [21] indicate that Pois-

son’s ratio for sands in drained conditions is around 0.3. Therefore, the coefficient of 1.5 

in [5] should be modified to 1.3, as shown in Equation (1). Equation (2) is valid for both 

drained and undrained triaxial shearing conditions, where the deviator stress q is the dif-

ference between major and minor principal stresses. Hence 0.5q is the mobilised shear 

stress 𝜏𝑚𝑜𝑏. 

𝛾𝑚𝑜𝑏   =  1.3𝜀𝑎, (1) 
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𝜏𝑚𝑜𝑏  =  0.5𝑞, (2) 

Using Equations (1) and (2) to convert the deviator stresses and axial strains to mobi-

lised stresses and mobilised strains, geotechnical engineers could monitor shear strain in 

real time regarding the stress–strain curve [5]. The Y-axis in the normalised plot is 𝜏𝑚𝑜𝑏 

over 𝜏𝑝𝑒𝑎𝑘, and the X-axis is 𝛾𝑚𝑜𝑏 over reference strain 𝛾𝑟𝑒𝑓. The reference strain could be 

either the strain at peak shear stress 𝛾𝑝𝑒𝑎𝑘  or at half of the peak shear stress 𝛾𝑀=2. 

The normalising process changes the variables into a dimensionless range between 

zero and one, facilitating data processing. Note that Vardanega and Bolton [5] mentioned 

that when shear stress is normalised with the undrained shear strength, the effect of ani-

sotropy is automatically filtered out in the correlation. 

When using hyperbolas, it is difficult to obtain unknown parameters from the rela-

tionship directly, e.g., parameter α in Equation (3) below [22]: 

𝐺

𝐺𝑚𝑎𝑥  
 =

1

1 + (
𝛾

𝛾𝑟𝑒𝑓
)

𝛼 
(3) 

Hence, Equation (3) could be transformed to facilitate analysis. Firstly, we switch the 

numerators and denominators on both sides of the equation to convert the correlation to 

a power function. The variable is then isolated by rearranging terms, and logarithms are 

taken of both sides:  

log10(
𝐺𝑚𝑎𝑥

G
− 1)  = log10(

𝛾

𝛾𝑟𝑒𝑓
)𝛼 (4) 

Apply the power rule to drop down the exponent: 

log10(
𝐺𝑚𝑎𝑥

G
− 1)  = 𝛼 ∙ log10(

𝛾

𝛾𝑟𝑒𝑓
) (5) 

In theory, all transformed hyperbolas pass through the origin when 𝛾 = 𝛾𝑀=2. When 

𝛾𝑝𝑒𝑎𝑘  is taken as the reference strain, Equation (5) would be transformed to Equation (6). 

But there is no reference to verify the reliability of the regression analysis. 

log10(
𝐺𝑚𝑎𝑥

G
− 1)  = 𝛼 ∙ log10 (

𝛾

𝛾𝑝𝑒𝑎𝑘
) + 𝐶 (6) 

Hence, the stiffness reduction function can be written as: 

𝐺

𝐺𝑚𝑎𝑥
 =

1

1+10𝐶∙(
𝛾

𝛾𝑝𝑒𝑎𝑘
)

𝛼, 
(7) 

2.3. Data Analysis 

Within the strength mobilisation framework for clays [5], the power curves show that 

the stress–strain response forms a straight line on log-log plots. 

Subsequently, regression analysis served as the principal methodology in this re-

search to quantitatively simulate the relationship between variables and develop statisti-

cal models for predicting relevant geotechnical parameters. Vardanega and Bolton [5] pre-

sented a power–law relationship between normalised mobilisation stress and strain. 

Hence, normalised data are plotted on log-log graphs to clarify this linear relationship. 

However, the reliability of results depends on both the quantity and quality of data. The 

coefficient of determination 𝑅2 indicates fitting quality, with values closer to unity de-

noting better fit. Meanwhile, data volume also has an impact on the results. 

In contrast, previous studies indicate that the stiffness–strain relationship follows a 

hyperbolic model [23]. 
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3. Results 

3.1. Predicting Mobilisation Strain 

The results of the mobilised stress–strain relationships are presented in Figure 4. The 

power law function for Karlsruhe fine sand using 𝛾𝑝𝑒𝑎𝑘  as the reference strain is: 

𝜏𝑚𝑜𝑏

𝜏𝑝𝑒𝑎𝑘
 =  1.61(

𝛾

𝛾𝑝𝑒𝑎𝑘
)0.52 (8) 

Figure 5 provides the mobilised stress–strain relationships using 𝛾𝑀=2 as the refer-

ence strain. The resulting regression for Karlsruhe fine sand in this case is: 

𝜏𝑚𝑜𝑏

𝜏𝑝𝑒𝑎𝑘
 =  0.48(

𝛾

𝛾𝑀=2
)0.52 (9) 

The choice of reference strain has no impact on the exponent, which is the crucial 

parameter for mobilisable strength design (MSD). However, using 𝛾𝑀=2 as the reference 

strain makes it easier for investigators to verify the derived equation. The existing data-

base also indicates that 𝛾𝑀=2 yields slightly better correlation than 𝛾𝑝𝑒𝑎𝑘 . 

 
(a) 
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Figure 4. Mobilised stress-strain curves for 30 triaxial tests (𝛾𝑝𝑒𝑎𝑘). (a) Karlsruhe fine sand only; (b) 

three sands including Karlsruhe fine sand (all grey); (c) legend. 
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(b) 

Figure 5. Mobilised stress–strain curves for 30 triaxial tests (𝛾𝑀=2). (a) Karlsruhe fine sand only; (b) 

three sands including Karlsruhe fine sand (all grey). 

The value of the exponent for sands (0.52) is lower than that for clays (0.6). This means 

that at the same stress mobilisation ratio, say  𝜏𝑚𝑜𝑏/𝜏𝑝𝑒𝑎𝑘 = 0.8, the value of normalised 

shear strain for sands is higher than that for clays (see Figure 6). In other words, the 
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deformation of sands relative to the reference shear strain 𝛾𝑀=2 could be slightly larger 

than that of clays at the same moblised stress level exceeding 0.5𝜏𝑝𝑒𝑎𝑘. The error range 

for sands (0.9 to 1.7) is narrower than that for clays (0.57 to 1.75), which indicates a better 

result (see Figure 6). Note that only one type of sand is considered here, whereas previous 

published data for clay consisted of a much larger dataset from around the world. 

 
 

Figure 6. A comparison of power laws between sands and clays. 

3.2. Sand Behaviours 

Figure 7 shows the locations of the reference shear strains for different groups of rel-

ative density (RD). When the relative density of samples increases at the same confining 

stress level, the shear strength increases and the reference strain decreases. For low rela-

tive densities (RD = 0.15–0.25), peak shear strength occurs at large deformation (γref = 0.3). 

The reference shear strength decreases from around 0.3 to less than 0.1 when RD is at the 

highest of around 0.79–0.85. 

  

(a)  
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(c)  

(d)  

Figure 7. Stress–strain curves for sands with various confining pressures ranging from 100 to 400 

kPa and relative densities ranging from (a) 0.15 to 0.25; (b) 0.46 to 0.55; (c) 0.57 to 0.68; and (d) 0.79 

to 0.85. 

Figure 8b presents the volumetric behaviour for sands, which shows initial contrac-

tion (with positive volumetric strain) followed by dilation. Notably, actual critical states 

were not reached in these tests, especially under lower confining pressure. 
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Figure 8. An example of sand behaviours under various confining pressures and relative densities: 

(a) mobilisation shear stress versus mobilisation shear strain; (b) volumetric strain versus mobilisa-

tion shear strain.  

Figure 9 represents the stress–dilatancy behaviour of a Karlsruhe fine sand specimen 

under drained loading. The stress ratio is η=q/p’, where q is the deviator stress and p’ is 

the effective mean stress. Dilatancy is defined as D=dεv/dγ (the slope in Figure 8b). Figure 

9 shows that both phase transformation and final critical states occur at consistent stress 

ratios of around 0.4 and 1.4, respectively, regardless of the initial sample’s relative density. 

At the beginning of shearing, the sand goes through strain hardening and volumetric con-

traction. After the phase transformation state, dilatancy occurs. The peak state occurs sub-

sequently at the maximum dilatancy ratio (Dmax). Strength softening develops when vol-

umetric dilatancy reduces after the peak state. Dilatancy reduces towards the critical state, 

where D = 0. This manifests a typical stress–dilatancy behaviour of soils, as proposed by 

Been and Jefferies [24]. 
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Figure 9. Examples of stress–dilatancy relationships for drained Karlsruhe Fine Sand with relative 

density ranging from 0.79 to 0.85. 

The maximum dilatancy for denser samples (with higher relative density and lower 

void ratio) is higher than that of looser samples at the same confining stress levels, indi-

cating greater volumetric dilation in denser samples. For instance, at the confining pres-

sure of 100 kPa, the maximum dilatancy ranges from 0.1 to 0.7 across loose to dense sam-

ples. As the confining pressure increases, both the initial shear modulus and peak shear 

strength increase. As a result, at the same level of relative density, samples with higher 

confining pressure exhibit lower maximum dilatancy. 

Figures 10 and 11 reveal strong linear relationships in the reference strain 𝛾𝑀=2 be-

tween various parameters including relative density, relative dilatancy, relative dilatancy 

index, and stress ratio, but not confining pressure. The quantitative analyses of the rela-

tionships between two reference strains, 𝛾𝑀=2 and 𝛾𝑝𝑒𝑎𝑘 , and these parameters are sum-

marised in Table 2. The results for 𝛾𝑝𝑒𝑎𝑘   are better than those for 𝛾𝑀=2  as they give 

higher R2 values. 
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Figure 10. Quantitative analyses of the relationships between reference strain 𝛾𝑀=2 and (a) relative 

density; (b) relative density index; and (c) dilatancy. 
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Figure 11. Quantitative analyses of the relationships between reference strain 𝛾𝑀=2 and (a) stress 

ratio and (b) confining pressure. 

Table 2. Quantitative analyses of the relationships between reference strain and various parame-

ters. 

Reference 

Strain 
Relative Density 

Relative Density  

Index 
Dilatancy Stress Ratio 

Confining  

Pressure 

𝛾𝑀=2 

𝛾𝑀=2 = −0.017𝐼𝐷 + 

0.025 

R2 = 0.74 

𝛾𝑀=2 = −0.0035𝐼𝑅 + 

0.021 

R2 = 0.85 

𝛾𝑀=2 = 0.020𝐷𝑚𝑖𝑛 + 

0.022 

R2 = 0.87 

𝛾𝑀=2 = −0.0344𝜂 + 

0.068 

R2 = 0.85 

N/A 

𝛾𝑝𝑒𝑎𝑘  
𝛾𝑝𝑒𝑎𝑘  = −0.32𝐼𝐷 + 0.35 

R2 = 0.94 

𝛾𝑝𝑒𝑎𝑘  = −0.060𝐼𝑅 + 0.28 

R2 = 0.87 

𝛾𝑝𝑒𝑎𝑘  = 0.35𝐷𝑚𝑖𝑛 + 

0.29 

R2 = 0.89 

𝛾𝑝𝑒𝑎𝑘  = −0.57𝜂 + 1.047 

R2 = 0.85 
N/A 

Figure 12 demonstrates the relationship between the dilatancy rate and relative den-

sity, along with the relative dilatancy index. The dilatancy rate is well correlated with the 

relative dilatancy index. However, the slope of the best fit line in Figure 12 is 0.22 for 

Karlsruhe fine sand, which is lower than the 0.31 proposed by Bolton [14]. This difference 

might be attributed to the soil type. 
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Figure 12. Dilatancy rate versus (a) relative density and (b) relative dilatancy index for drained 

Karlsruhe fine sand with various confining pressures and relative densities. 

Figure 13 provides the results for Karlsruhe fine sand at peak strength with relative 

density ranging from loose to dense. The maximum stress ratio for the densest sample is 

around 1.7. The linear regression equation derived from these data is as follows: 

η𝑚𝑎𝑥  =  −0.56 × 𝐷𝑚𝑖𝑛 + 1.34, R2 = 0.93 (10) 

 

Figure 13. ηmax–Dmin relationship for Karlsruhe fine sand ranging from loose to dense at low confin-

ing pressures in triaxial tests. 
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The hyperbola describing the relationship between normalised shear modulus and 

normalised mobilisation strain (See Figure 14) is given by 

𝐺

𝐺𝑚𝑎𝑥
 =  

1

1+35.8×(
𝛾

𝛾𝑝𝑒𝑎𝑘
)0.87

, R2 ≈ 0.97 (11) 

𝐺

𝐺𝑚𝑎𝑥
 =  

1

1+(
𝛾

𝛾𝑀=2
)0.87, R2 ≈ 0.89 (12) 

 

Figure 14. (a) An example of a shear modulus reduction curve for Karlsruhe fine sand with relative 

density ranging from 0.85 to 0.95; (b) in logarithmic form. 

The α value of 0.87 for sands is larger than the 0.74 for clays and silts reported by 

Vardanega and Bolton [22]. This indicates that the degradation of the normalised shear 

modulus for clays is gentler and smoother [25–26]. 

4. Discussion 

The determination of Poisson’s ratio under drained conditions has a significant im-

pact on the results. An assumption of 0.3 is adopted in this research. However, Poisson’s 

ratio for sands under drained conditions ranges from 0.2 to 0.4. A limitation of using the 

average value is that it may not accurately represent Poisson’s ratio across different soils 

in the drained state. In fact, the relationship between radial strain and axial strain fits bet-

ter to a straight line with a Poisson’s ratio of around 0.22. This limitation can be reduced 

with an expanded sand database in the future. Based on the data for three sands investi-

gated under the drained condition, the power laws are summarised in Table 3. What is 

interesting is that all three sands share an identical exponent of 0.52, suggesting a gener-

alisable power law for sands. Table 4 shows data for clays from previous literatures and 

compares their power laws. It is found that the clays generally yield a higher exponent. 

Table 5 summarises the hyperbolic functions for stiffness reduction with high coefficients 

of determination. The exponent for sands is larger than that of clays, which means the 

stiffness of sands undergoes a more significant reduction than that of clays when the mo-

bilised strain increases. 

Table 3. Comparison of power laws for Karlsruhe Fine Sand with a different reference strain. 

Power Law (Karlsruhe Fine 

Sand) 
Standard Deviator Power Law (Three Sands) Standard Deviator 

𝜏𝑚𝑜𝑏

𝜏𝑝𝑒𝑎𝑘
 =  0.48(

𝛾

𝛾𝑀=2
)0.52 0.006 

𝜏𝑚𝑜𝑏

𝜏𝑝𝑒𝑎𝑘
 =  0.48(

𝛾

𝛾𝑀=2
)0.52 0.02 

𝜏𝑚𝑜𝑏

𝜏𝑝𝑒𝑎𝑘
 =  1.61(

𝛾

𝛾𝑝𝑒𝑎𝑘
)0.52 0.1 

𝜏𝑚𝑜𝑏

𝜏𝑝𝑒𝑎𝑘
 =  1.67(

𝛾

𝛾𝑝𝑒𝑎𝑘
)0.52 0.34 
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Table 4. Comparison of power laws fitted to Karlsruhe fine sand and different types of clays. 

Soil Type Exponent b Std Dev Index A Std Dev Error Range Power Laws Source 

Clays 0.60 0.15 0.49 N/A ±40%  
𝜏𝑚𝑜𝑏

𝐶𝑢
 =  0.49 (

𝛾

𝛾𝑀=2
)

0.6

 [5] 

London Clay 0.58 0.04 0.49 0.04 ±20%  
𝜏𝑚𝑜𝑏

𝐶𝑢
 =  0.49 (

𝛾

𝛾𝑀=2
)

0.58

 [6] 

Kaolin Clay N/A N/A 0.50 N/A ±40%  N/A [7] 

Sands 𝛾𝑀=2 0.52 0.07 0.48 0.02 ±20% 
𝜏𝑚𝑜𝑏

𝜏𝑝𝑒𝑎𝑘
 =  1.61(

𝛾

𝛾𝑝𝑒𝑎𝑘
)0.52 This 

Project 

Sands 𝛾𝑝𝑒𝑎𝑘  0.52 0.07 1.67 0.34 ±40% 
𝜏𝑚𝑜𝑏

𝜏𝑝𝑒𝑎𝑘
 =  0.48(

𝛾

𝛾𝑀=2
)0.52 This 

Project 

Table 5. Comparison of relationships between shear modulus reduction with normalised shear 

strain for clays and Karlsruhe fine sand with a reference strain of 𝛾𝑀=2. 

Soil Type Function R2 Source 

Clays 𝛾𝑀=2 
𝐺

𝐺𝑚𝑎𝑥
 =  

1

1 + (
𝛾

𝛾𝑟𝑒𝑓
)0.74

 0.95 [22] 

Clays 𝛾𝑀=2 
𝐺

𝐺𝑚𝑎𝑥
 =  

1

1 + (
𝛾

𝛾𝑟𝑒𝑓
)0.74

 0.96 [25] 

Karlsruhe Fine Sand 
𝛾𝑀=2 

𝐺

𝐺𝑚𝑎𝑥
 =  

1

1 + (
𝛾

𝛾𝑟𝑒𝑓
)0.87

 0.89 This Project 

5. Conclusions 

This research represents the first exploration of the strength mobilisation framework 

for sands. Based on drained triaxial test data of three sands, it is shown that the framework 

proposed for clay and silts by Vardanega and Bolton [5] remains applicable to sands. 

(1) A power function relating normalised shear stress and shear stain 
𝜏𝑚𝑜𝑏

𝜏𝑝𝑒𝑎𝑘
 =

 0.48 (
𝛾

𝛾𝑀=2
)

0.52

 was obtained in the moderate stress region of 0.2 to 0.8 of peak shear stress 

𝜏𝑝𝑒𝑎𝑘. The exponent for sands (0.52) is lower than that of clays, indicating that in general, 

clay mobilises its strength faster than sands in a normalised sense. However, the exact 

magnitude of the reference strain of each sand sample is different, and clays generally 

have a larger reference strain than sands. Using 𝛾𝑀=2  as the reference strain gives a 

slightly better fitting than 𝛾𝑝𝑒𝑎𝑘 , with errors within the acceptable range of +/−20% for the 

sands investigated. 

(2) The reference shear strain reveals strong linear relationships with dilatancy-re-

lated parameters, such as relative density and relative dilatancy index, but not directly 

with confining pressure. 

(3) There is a hyperbolic function fitting the relationship between normalised shear 

modulus and normalised mobilisation strain. The fitting coefficient α is 0.87 for sands, 

compared to the 0.74 for clays and silts proposed by Vardanega and Bolton [22]. 

(4) This research confirms that a simple empirical power–law stress–strain function 

can potentially be used by engineers to predict sand deformation with structures built on 

it. The function derives directly from triaxial test data without the need for plastic poten-

tial theory to predict strain. Future work should focus on expanding the database and 

validating the approach through case studies. 
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Appendix A 

Suppose the lengths of the three sides of the rectangular micro-element are x, y and 

z, and the deformations for each side are dx, dy and dz, respectively. 

Volume before the change: 𝑉1  =  𝑥𝑦𝑧.  

Volume after the change: 𝑉2  = (𝑥 + d𝑥)(𝑦 + d𝑦)(𝑧 + d𝑧).  

Volume change: dV = 𝑉2 − 𝑉1.  

Neglecting the higher-order term, the volume strain is: 

d𝑉

𝑉1
=

𝑉2 − 𝑉1

𝑉1
≈

(𝑦𝑧 ∙ d𝑥 + 𝑥𝑧 ∙ d𝑦 + 𝑥𝑦 ∙ d𝑧)

𝑥𝑦𝑧
  

d𝑉

𝑉1
=

d𝑥

𝑥
+

d𝑦

𝑦
+

d𝑧

𝑧
= 𝜀𝑥𝑥 + 𝜀𝑦𝑦 + 𝜀𝑧𝑧  

∵ 𝜀𝑦𝑦 = 𝜀𝑧𝑧 =  −𝜇 ∙ 𝜀𝑥𝑥 (𝜇 𝑖𝑠 𝑃𝑜𝑖𝑠𝑠𝑜𝑛′𝑠 𝑟𝑎𝑡𝑖𝑜)  

∴
d𝑉

𝑉1
= (1 − 2𝜇)𝜀𝑥𝑥   
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