
Vol.:(0123456789)

Graefe's Archive for Clinical and Experimental Ophthalmology 
https://doi.org/10.1007/s00417-025-06828-3

REVIEW ARTICLE

How early can we detect diabetic retinopathy? A narrative review 
of imaging tools for structural assessment of the retina

Megan Vaughan1,2,3   · Philip Denmead1 · Nicole Tay1,3 · Ranjan Rajendram1,2 · Michel Michaelides1,2 · 
Emily Patterson1,2,4

Received: 30 October 2024 / Revised: 31 January 2025 / Accepted: 8 April 2025 
© The Author(s) 2025

Abstract 
Despite current screening models, enhanced imaging modalities, and treatment regimens, diabetic retinopathy (DR) remains 
one of the leading causes of vision loss in working age adults. DR can result in irreversible structural and functional retinal 
damage, leading to visual impairment and reduced quality of life. Given potentially irreversible photoreceptor damage, 
diagnosis and treatment at the earliest stages will provide the best opportunity to avoid visual disturbances or retinopathy 
progression. We will review herein the current structural imaging methods used for DR assessment and their capability of 
detecting DR in the first stages of disease. Imaging tools, such as fundus photography, optical coherence tomography, fundus 
fluorescein angiography, optical coherence tomography angiography and adaptive optics-assisted imaging will be reviewed. 
Finally, we describe the future of DR screening programmes and the introduction of artificial intelligence as an innovative 
approach to detecting subtle changes in the diabetic retina.
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Key Messages 
What is known 
•	 Diabetic Retinopathy is the leading cause of vision loss in working-age adults in the developed world.
•	 Standard imaging methods like fundus photography, optical coherence tomography (OCT), and fundus fluorescein angi-

ography are essential tools in diabetic retinopathy assessment.
What is new 
•	 Newer imaging techniques, including adaptive optics-assisted imaging, offer higher resolution and better detection of 

subclinical changes in the diabetic retina.
•	 Artificial intelligence is emerging as a promising tool in diabetic retinopathy screening programs, potentially reducing 

healthcare costs and manual grading time, though further validation is needed for widespread integration.
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Introduction: An overview

Diabetes mellitus (DM) is a chronic disease that occurs 
when the pancreas does not produce enough insulin, or when 
the body cannot effectively use the insulin it produces [1], 
and is associated with many ocular complications, such as 
cataract [2], ocular surface disease [2] and retinal changes, 
known as diabetic retinopathy (DR) [3].

DR is a chronic and gradual complication of DM that can 
result in sight-threatening changes, and any patient diagnosed 
with DM is at risk of developing DR [4]. DR is the leading 
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cause of vision loss in working-age adults in the developed 
world [5], and almost one million are classed as blind due to 
DR [6]. Due to the ageing and growing population, and as 
life expectancy of people with DM also rises, DR is likely 
to become more prevalent [7, 8], particularly as almost all 
people with Type I (T1) DM and at least 60% of people with 
Type II (T2) DM, will develop DR after 20 years from diag-
nosis [9]. Timely detection of DR is critical, especially as late 
detection contributes to poorer outcomes [10, 11]. There is an 
economic burden on healthcare systems due to the prevent-
able complications associated with DM and DR [12] and, 
crucially, late detection is associated with higher costs than 
early detection [13]. Therefore, novel strategies to halt pro-
gression of DR could reduce this burden and allow the allo-
cation of time and resources to other aspects of healthcare.

Diabetic retinopathy

Diabetic retinal disease can be characterised by two phe-
notypes: DR and diabetic macular oedema (DMO), with 
DR further subcategorised into: non-proliferative diabetic 
retinopathy (NPDR) and proliferative diabetic retinopa-
thy (PDR), shown in Fig. 1. Characteristic signs of NPDR 
include microaneurysms (MA), dot and blot haemorrhages, 
exudates and cotton wools spots [14]. PDR is characterised 
by neovascularisation of the disc, the iris, and elsewhere, as 
well as fibrosis, leading to tractional retinal detachments. 
Typically, NPDR precedes PDR and both features are 
observed in PDR [15]. The risk of severe visual loss from 
PDR with “High Risk” characteristics (such as hyperglycae-
mia, hypertension, and dyslipidaemia) [8] is around 50% at 

five years if untreated, compared to around 5% if PDR is 
treated with panretinal photocoagulation laser[16].

Diabetic maculopathy

DMO is a complication of DM that can lead to vision loss. 
DMO is the accumulation of exudative fluid at the macula 
and is a common cause of decreased vision [17]. It can 
occur in any stage of DR and progression is different for 
each individual, but the risk increases with DR severity 
[9, 18].

DR is traditionally seen as a microvascular disease [19]. 
However, recent insights suggest a shift from this view 
[12]. Hyperglycaemia and hyperlipidaemia may trigger 
inflammation and increase vascular endothelial growth 
factor (VEGF), resulting in damage to vascular endothelial 
cells, increased permeability of vessels, and angiogenesis 
[17]. DR occurrence is linked to disease duration, poor 
glycaemic control, and hypertension [20], with pregnancy 
also contributing [12]. However, such risk factors do not 
account fully for the onset or severity of DR or DMO. 
Some patients with well controlled glycaemic levels and 
hypertension still develop signs of DR, while others with 
poor control do not [21], indicating genetics might play 
a role [9, 22–24]. Despite this, the microvascular system 
remains crucial, as retinal microvascular circulation can 
help detect and monitor systemic complications, such as 
renal disease [25, 26] and cardiovascular events [27].

The commencement of systemic treatment prior to the 
progression of PDR or DMO is effective in slowing the 
progression of DR and reducing the risk of visual loss, as 

Fig. 1   Fundus images from A) a normal control, B) mild non-prolif-
erative diabetic retinopathy (DR) (R1), C) moderate non-proliferative 
DR (R2), and D) severe proliferative DR (R3) The arrows indicate 

dot haemorrhages (orange), blot haemorrhages (red), hard exudates 
(green) and scars from laser therapy for neovascular disease (blue)
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demonstrated in the Diabetes Control and Complications 
Trial (DCCT) [28].I It is important to intervene before 
complications of DR or DMO become irreversible [29].
As, at present, the treatments available for DR are aimed 
at later stages of the disease, when vision may already be 
affected. Therefore, a more comprehensive understanding 
of the disease in its early stages is required to provide new 
and more effective preventative measures [12].

Key interventions for delaying or slowing the progres-
sion of DR and DMO comprise laser photocoagulation, 
anti-VEGF, and steroid intravitreal injections [30]. Although 
anti-VEGF treatment can be highly effective in some patients 
[31], others do not respond to the intra-ocular injections 
[32–34]. There are also risks associated with anti-VEGF 
treatment, such as retinal detachment, uveitis, or systemic 
side effects [35], highlighting the need to weigh up the rela-
tive risks associated with treatment and disease progression.

Key to effective management of DR, which may delay or 
even prevent advanced stages of the disease [36, 37], is early 
identification and timely intervention. Functional changes 
in vision can be detected clinically through psychophysical 
testing such as colour vision [38–40], visual acuity (VA) 
[41], contrast sensitivity (CS) [17], and electrophysiology 
[42, 43]. Although such psychophysical tests can provide 
valuable insight into the extent of functional deficit of 
DR [14], they tend to be non-disease-specific and subjec-
tive, precluding their use as standalone DR detection tests. 
Moreover, by the time patients become aware of functional 
deficits in vision, structural (potentially irreversible) damage 
may already have occurred [44].

Retinal imaging techniques aid in the early identifica-
tion and monitoring of preclinical DR markers and provide 
insight into its pathogenesis. Many retinal imaging tech-
niques are now used routinely in the clinic to screen and 
monitor diabetic eye disease, such as fundus photography, 
optical coherence tomography (OCT), OCT angiography 
(OCTA), and fundus fluorescein angiography (FFA). More 
recently, adaptive optics-assisted imaging has enabled sin-
gle-cell visualisation of the retina, which may help to eluci-
date the complex signs associated with the pathophysiology 
of diabetic eye disease and ultimately detect DR in its earli-
est stages. This review will critically assess these state-of-
the-art imaging techniques and their efficacy as tools for the 
early detection of DR, as well as consider the future of DR 
screening.

Imaging of diabetic eye disease

Fundus photography

Fundus photography is the main method employed by 
higher income countries for DR screening services [45–47] 

(Fig. 1). It is quick, non-invasive, and well tolerated by 
patients [48]. There are two main modalities when con-
sidering fundus photography: conventional fundus photog-
raphy and colour scanning laser ophthalmoscopy (SLO). 
Conventional fundus photography uses a traditional cam-
era with white light to capture colour images of the retina, 
providing a broad overview, but can be affected by media 
opacities, like cataracts. In contrast, colour SLO employs 
laser light of different wavelengths to scan the retina, pro-
ducing high-resolution images with superior contrast and 
detail which are less impacted by opacities.

The quality of conventional fundus cameras has 
improved dramatically over the past two to three decades, 
with most now able to acquire images with resolution of 
approximately 20 megapixels [29]. As a result, colour 
fundus photography has shown greater sensitivity than 
both indirect and direct ophthalmoscopy techniques [20]. 
In addition, colour fundus photography and DR grading 
can be more cost effective than slit lamp ophthalmoscopy 
and alleviates the need for ophthalmology or optometrist 
consultation [49].

However, conventional fundus photography has limita-
tions in its ability to assess structural DR changes. Firstly, 
it only allows for two-dimensional imaging of the fundus 
and therefore does not enable visualisation of the sepa-
rate layers of the retina. As a result, oedema and neurode-
generative changes may be missed. Secondly, the earliest 
detectable DR-related signs using conventional fundus 
photography include MAs and, by the time of their appear-
ance, damage has already occurred to the patient’s retina, 
which in most cases is irreversible [24]. Finally, colour 
fundus photography is limited by the system’s field of view 
(typically 45° single-field), which can neglect peripheral 
lesions associated with DR [50]. This is especially relevant 
to early detection of DR, as people with peripheral lesions 
– and more specifically, retinal ischaemia – are almost five 
times more likely to develop PDR [29, 51].

Fortunately, colour SLO, widefield (angles greater 
than 50°) and ultra-widefield (UWF) (angles greater than 
100°) imaging systems have become available in the past 
20 years [51, 52]. Colour SLO and UWF systems offer 
superior colour imaging (Fig. 2) and allow clinicians to 
assess the peripheral fundus, even in undilated pupils, 
which has been suggested to be a predictor of DR progres-
sion over the following 4 years [53–55]. Furthermore, a 
study comparing conventional colour fundus photography 
with UWF found that DR was detected 17% more often in 
UWF [56]. Moreover, UWF helped to identify haemor-
rhages, MAs, venous beading, intraretinal microvascular 
abnormality, and neovascularisation in the periphery that 
would otherwise have been missed in the standard fundus 
imaging fields of view. Therefore, UWF may allow us to 
enhance the understanding of DR stages and progression, 
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particularly as current definitions are based on standard 
colour fundus photographs, which may be outdated.

Optical coherence tomography

OCT is another non-invasive technique that permits high-
resolution imaging of the posterior pole’s anatomical struc-
ture. Like fundus imaging, OCT is quick and non-invasive. 
However, unlike fundus imaging, it provides a three-dimen-
sional image of the retina (Fig. 3) [30, 51]. This enables 
transverse visualisation and assessment of both thickness 
[15] and morphology of the layers comprising the retina 
and choroid, which is of particular interest when investigat-
ing early changes in DR [48]. Advancements from time-
domain OCT to the more sophisticated spectral-domain and 
swept-source devices has resulted in higher resolution and 
greater accuracy of thickness measurements [15]. Research 
has shown thinning of the RNFL and inner neural layers 
in people with DM, even when they do not have any other 
clinical signs of DR [37, 57, 58], making it a strong clinical 

structural assessment technique for the early detection of 
DR.

However, an important consideration when using OCT 
to measure retinal thickness is the differences between 
the variety of devices on the market. Research has shown 
that retinal thickness values vary according to the device 
used and are therefore not necessarily comparable when 
acquired using different systems. This makes it difficult to 
interpret results, especially in people with DR [59–61]. 
The variability can be due to inherent device differences 
in image acquisition, variable axial scaling, compression, 
motion artefacts, or the quality of the scan produced [62, 
63]. These considerations are particularly pertinent when 
monitoring changes in a single patient in response to dis-
ease and/or treatment.

Finally, OCT features that are characteristic of early DR 
are not disease specific, which can make clinical decision 
making challenging. Retinal thinning or hyperreflective 
intraretinal foci (HRF) (as seen in Fig. 3B), for example, 
are associated with a number of other ocular conditions, 

Fig. 2   Ultrawide fundus image taken using an Optos system in A) a healthy retina and B) a retina with DR

Fig. 3   Optical coherence tomography (OCT) images A) healthy retina, and with B) moderate non-proliferative diabetic retinopathy (DR). The 
red arrows highlight hyperreflective intraretinal foci (HRF) common in patients with DR
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such as glaucoma or age-related macular degeneration 
(AMD) [64, 65], so OCT is not yet appropriate as a sole 
method for early DR detection but should be incorporated 
into future DR screening programmes.

Fundus fluorescein angiography

FFA is regarded as the gold standard for in-vivo and real-
time evaluation of the structure of the retinal and choroidal 
vasculature [51, 57]. Clinically, FFA can be used as a guide 
for targeting specific retinal locations with laser treatment, 
and it enables detection of subtle changes in the retina, par-
ticularly vessel leakage, which is not seen using OCT. In 
particular, MAs, neovascularisation at the optic disc and 
elsewhere, peripheral areas of non-perfusion, and macu-
lar ischaemia may be more obvious using FFA than other 
imaging modalities [51, 66]. FFA is also particularly use-
ful for differentiating intraretinal microvascular abnormali-
ties from neovascularisation, which would be challenging 
to distinguish using fundus photography [51]. However, a 
major disadvantage of FFA is that it requires an intra-venous 
injection of sodium fluorescein dye and, with the advent 
of non-invasive OCTA, FFA may become a less favourable 
method of evaluating retinal health and the detection of DR.

Optical coherence tomography angiography

In contrast to OCT, OCTA uses motion contrast [67], ena-
bling non-invasive visualisation and objective quantification 
of both retinal and choroidal blood flow (Fig. 4) [36, 68, 
69]. This gives it an advantage over FFA, as it eliminates 
the possibility of side effects from the intra-venous injection 
of sodium fluorescein dye, and can therefore be used in all 
patients, including in pregnancy [70]. Additionally, OCTA 
images are not disturbed by leakage of fluorescein or win-
dow defects [71]. OCTA has been shown to reveal several 
abnormalities that can be missed using FFA, such as areas of 

non-perfusion, greater vessel tortuosity and a decrease in the 
density of capillaries [72]. As a result, OCTA is considered 
to be particularly desirable over FFA as a clinical tool.

As with the imaging techniques already mentioned, 
OCTA can be used to identify MAs, intraretinal microvas-
cular abnormality, neovascularisation, and sections of cap-
illary non-perfusion [67, 73]. Additionally, it is possible to 
capture changes occurring in vessel density (VD), particu-
larly in the capillary plexus (superficial, intermediate, and 
deep) [12, 51]. VD is the proportion of the vessel area with 
respect to the total area measured, and a decrease in VD 
occurs in both the superficial and deep capillary plexus in 
DR [51]. However, VD may not be the optimum metric for 
early diagnosis as, although VD is significantly reduced in 
patients with early signs of DR compared to healthy con-
trols [73], no difference was found between controls and 
DM patients with no retinopathy, indicating that the decrease 
may only be detected once signs of DR are observed using 
other modalities.

However, when used to monitor changes in retinal cap-
illary changes, OCTA has shown promise in its ability to 
detect people at risk of developing DR. Research has shown 
that retinal capillary changes occur before MAs are visible 
clinically [36], and OCTA can provide information on the 
expansion of the foveal avascular zone (FAZ) [73]. FAZ 
expansion is thought to result from capillary dropout, and it 
has been recognised that the FAZ diameter can enlarge with 
DR [36, 74]. In a meta-analysis carried out by Zhang et al. 
(2021), results clearly indicated an expanded FAZ area and 
decreased VD in the group with DM but no DR, compared 
to the healthy control group. However, when sub-catego-
rised according to the type of DM (T1 or T2), microvascular 
alterations were negligible between T1 DM and the con-
trol group, while T2 DM remained significant. The authors 
postulate that this is due to people with T1 undergoing a 
‘peaceful period’ after diagnosis, when OCTA would be 
unable to detect the preclinical signs of DR. Following this 

Fig. 4   Optical coherence 
tomography angiography 
(OCTA) image of A) a healthy 
retina and B) with features of 
DR such as microaneurysms 
(green arrows)
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period, T1 patients then deteriorate promptly to NPDR, thus 
making it difficult for the device to detect these changes in a 
sufficiently timely manner [36]. Further research is required 
to determine if and why this occurs, especially since people 
with T1 DM have an increased prevalence of vision-threat-
ening DR compared to people with T2 DM [75].

Widefield OCTA has useful applications, particularly 
when reviewing areas of retinal non-perfusion, as this find-
ing tends to begin in the retinal periphery [76, 77]. Newer 
modalities using 12 × 12 mm field of view are valuable for 
vascular disorders of the retina, however, the larger field of 
view results in lower resolution of the microvasculature and 
so is not ideal for early detection of DR [71].

Additional shortcomings of OCTA are that it can be 
affected by artefacts and its small field of view. Projection 
artefacts occur when vessels that are more superficial appear 
in images of the deeper layers, and motion artefacts result 
from image displacement due to eye/head movements during 
acquisition [67]. Such artefacts are more common in OCTA 
than FFA, primarily due to the mode of image acquisition 
(i.e., scanning vs flood illumination respectively).

Retinal oximetry

Retinal oximetry is a non-invasive imaging technique that 
allows assessment of retinal blood vessels’ oxygen satu-
ration. The principle is similar to pulse oximetry (often 
using the finger or ear lobe) [78]; allowing for measure-
ments of oxygen saturation across disease stage, but also 
across different regions of the retina [79]. It is known that 
retinal hypoxia can occur in DR and can often present early 
in the disease [80]. As retinal oximetry allows for visuali-
sation of the blood supply and oxygenation of the blood, 
it may provide insights into the state of the retina prior to 
the observation of ischemia using other forms of imaging, 
like OCTA. Research has shown that oxygen saturation is 
altered in patients with DR [79]; there is, however, a lack of 
consensus (see [81] for a review), so it must be noted that 
it is still evolving as a technique. Although it shows strong 
repeatability, the results can be affected by the method of 
acquisition [82], and is therefore limited in its clinical use 
as a DR diagnosis tool at this time [83].

Colour doppler imaging

Colour doppler imaging (CDI) utilises ultrasonography for 
non-invasive assessment and visualisation of the vessels in 
the retina, such as the ophthalmic artery and central retinal 
artery and vein [84, 85]. In the context of DR, CDI pro-
vides information about blood flow patterns, which have 
been shown to be impacted in people with DR [86]. Further, 
CDI has shown promise in its ability to identify patients at 

risk of developing DR [87, 88]. However, while CDI shows 
promise, its specific roles and clinical applications in DR 
detection and management are still being researched and 
refined [89].

Fluorescence lifetime imaging ophthalmoscopy

Fluorescence lifetime imaging ophthalmoscopy (FLIO) is a 
relatively new non-invasive imaging technique used to study 
the retina in various retinal diseases, such as DR [90–92]. 
Many small molecules are naturally fluorescent and, when 
exposed to light, become excited to a higher electronic state. 
Upon returning to ground state, the molecule emits fluo-
rescent light. FLIO measures both the fluorescence and the 
time spent in the excited state, providing detailed informa-
tion about the metabolic and biochemical processes occur-
ring in the eye, such as the accumulation of lipofuscin in 
DR [93]. Clinically, it can aid in the early detection of DR 
by identifying subtle metabolic abnormalities before visible 
structural changes manifest [92]. FLIO may also be able to 
contribute to monitoring disease progression and evaluating 
treatment responses, and investigation into the most promis-
ing molecular signatures for DR using this new technology 
is ongoing.

Laser speckle contrast imaging

Laser speckle contrast imaging (LSCI) is another non-inva-
sive imaging method that enables analysis of blood flow and 
perfusion. LCSI has previously been used to image organs, 
such as the liver and large intestine [94], and in diabetes 
for foot ulcers [95], but is relatively new to ophthalmology. 
Rodent models have demonstrated its use in the retina [96, 
97], and its effectiveness in humans has also been shown 
[98, 99]. However, no study to date has used this to assess 
function in DR, and further research is warranted in this 
area.

Adaptive optics‑assisted imaging

The detection of small lesions can be difficult to capture due 
to aberrations from the anterior part of the eye [100]. Higher 
order aberrations and astigmatism from an imperfect cornea 
or crystalline lens can result in wavefront aberrations, which 
makes the imaging of finer details in the retina near impos-
sible with the imaging methods outlined above [30]. How-
ever, with the introduction of adaptive optics (AO)-assisted 
imaging, which can correct for such distortions, there are new 
opportunities to study different layers of the retina at a cellular 
level. AO technology enables acquisition of high-resolution 
retinal images in which it is possible to visualise individual 
cones and rods [101–104]. AO imaging devices correct 
for distortions using a wavefront sensor (Shack-Hartmann 
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aberrometer), which calculates the ocular aberrations and then 
employs a wavefront correction (using a deformable mirror) 
to counteract these aberrations [48], (Fig. 5). Commercial AO 
devices, such as the rtx1™ AO retinal camera (Imagine Eyes, 
Orsay, France), can be used to visualise waveguiding cells, 
in addition to custom-built AO systems that can be modified 
according to the researchers’ needs.

Adaptive optics scanning laser ophthalmoscopy

AO scanning laser ophthalmoscopy (AOSLO) is the most 
used form of AO-assisted imaging of the retina and com-
prises the majority of DR-related AO-assisted imaging 
data to date. AOSLO has variable depth of focus, ena-
bling visualisation of abnormal features within different 
retinal layers, such as the nerve fibre layer and vasculature, 
making it a versatile tool to assess retinal structure in DR 
[105–108].

The most commonly used modality is confocal AOSLO 
(Fig. 5), which uses a pinhole to achieve diffraction-limited 
resolution. One drawback of confocal AOSLO is that only 
waveguiding or reflective structures can be visualised. Com-
mercial systems utilise confocal imaging, whereas some 
custom-built systems have been modified to include other 
non-confocal imaging modalities. Non-confocal imaging 
modalities, such as split-detection, exploit light that is mul-
tiply scattered by the retina, which enables visualisation (for 
example) of the anterior end of cone inner segments, even 
in the absence of waveguiding cone outer segments [102, 
109, 110]. The simultaneous acquisition of both modalities 
confocal and non-confocal images provides direct temporal 
correspondence, and coaxial alignment ensures direct spatial 
correspondence, between reflective structures (confocal) and 
underlying structure (split-detection).

Using AOSLO, researchers have demonstrated changes 
in retinal microvasculature in DR [111, 112], even in mild 

NPDR [113]. In addition, Karst et al. (2018) used both con-
focal and split-detection AOSLO to evaluate the appear-
ance of the inner retinal layers within DR lesions and found 
changes in the thickness of vessel walls, as well as abnormal 
reflectivity and shadowing.

Research investigating the photoreceptor layer in DR 
is in its infancy but has shown great promise. In confocal 
images, healthy cones with intact outer segments are vis-
ible as bright spots, owing to their waveguiding properties. 
Cone density at the parafovea in T1 DM was found to be 
slightly reduced, using a commercially available (confo-
cal) AOSLO system, and while cone density alone was not 
able to distinguish eyes with DR from eyes with no DR, a 
combination of cone metrics, proposed by Lombardo et al., 
did enable such differentiation [114, 115]. Regularity of the 
cone arrangement in both T1 and T2 DM has been asso-
ciated with the presence of DR, increasing DR severity, 
and DMO using confocal AOSLO [116]. Recently, Elsner 
et al. (2022) demonstrated that cone waveguiding proper-
ties were altered in all ten DR patients assessed, but cone 
density was reduced in only five; despite all of the exam-
ined patients having total retinal thickness within normal 
limits for all quadrants, suggesting that AOSLO is a viable 
method for picking up early changes in the cone metrics of 
patients with DR.

AOSLO enables non-invasive visualisation of individ-
ual photoreceptors and tracking of individual cells across 
multiple time points to monitor natural history of disease 
[117]. However, using only confocal imaging, it is difficult 
to ascertain whether areas without bright spots are indica-
tive of cone loss or simply altered waveguiding [118–120]. 
Additionally, there are changes in reflectivity that occur 
in the normal retina due to temporal fluctuation [121] and 
in response to light stimulation [122, 123]. It is therefore 
of interest to assess cone inner segment integrity using 
non-confocal imaging, although to-date no studies have 
done so.

Fig. 5   Confocal (A) and non-
confocal split detection (B) 
AOSLO images of a healthy 
retina at ~1° temporal from the 
fovea
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Adaptive optics optical coherence tomography

AO technology has also been applied to OCT [124], with 
AO-OCT imaging being used in a variety of retinal diseases, 
including DR [125, 126]. The primary benefit of AO-OCT 
imaging over other forms of imaging is that it can combine 
OCT’s ability to resolve depth and layers with high lateral 
resolution [127]. However, due to the limited availability of 
AO-OCT devices, and high failure rate compared to clini-
cal OCT devices, AO-OCT in DR has not been explored 
fully. As in other coherent imaging devices (e.g., OCT), the 
AO-OCT is susceptible to speckle noise, which is further 
amplified by the higher magnification afforded by the AO 
element of AO-OCT [125, 128, 129].

AO-OCT has, however, been used to visualise areas of 
capillary of nonperfusion in eyes with NPDR and PDR 
[130]. These areas showed dramatic changes in cone mor-
phology, particularly at the cone inner and outer segment 
junction and the cone outer segment tips, demonstrating 
the impact of capillary circulation on cone structure. How-
ever, only four people with DM (two with moderate DR 
and two with proliferative DR) were included in this study; 
larger, more representative data is therefore needed to draw 
meaningful conclusions about such changes in relation to 
DR stage.

Overall, AO-assisted imaging is showing great promise 
within the field of DR, with potential for use in the detec-
tion of DR at its earliest stages [100]. The usefulness of 
either AOSLO or AO-OCT will vary depending on the spe-
cific question being posed. In order to better understand the 
microvascular and photoreceptor anomalies detected with 
AO-assisted imaging devices, further research is required 
with larger cohorts of patients. To date, many studies have 
an uneven distribution of sex and type of DM and used 
small sample sizes [131]. In addition, cost, time consump-
tion, reduced field of view, and the need for significant post-
acquisition analysis all limit the application of AO-assisted 
imaging in a clinical capacity. It does, however, provide vital 
information about the retina in DM and subclinical DR.

The future of screening for diabetic 
retinopathy

Subtle changes that occur in early DR are typically asymp-
tomatic, so patients will often not present to the clinic until 
advanced complications (i.e., vitreous haemorrhage or trac-
tional retinal detachment) develop. It is important that DR is 
detected early as, once these advanced complications occur, 
treatment outcomes are unfavourable [29]. Therefore, future 
research should focus on early detection and screening so 
that more can be learned about biomarkers that indicate 

which patients may benefit from early intervention (e.g., die-
tary advice) and to intervene before complications become 
irreversible. Taking baseline fundus images before onset of 
DR can serve as a reference point to track DR changes over 
time which can help future research understand the mecha-
nisms of progression. Future work may focus on the emerg-
ing techniques outlined above to enhance the knowledge of 
early DR changes.

Regular screening assessments are a crucial aspect of suc-
cessful diabetes care. DR screening models worldwide are 
focused on colour fundus photography examined by skilled 
graders [132, 133]. However, with the need for skilled grad-
ers to assess images [30], and with projections estimating 
that 700 million people will be affected with DM by 2045 [7, 
8], DR screening services may be under significant strain to 
carry out manual grading of fundus photographs [134]. The 
incorporation of artificial intelligence (AI) in DR screening 
could facilitate timely treatment, reduce labour costs and 
save time spent on manual grading [30, 135]. AI software 
utilises algorithms, such as convolutional neural networks 
(CNN) in deep learning (DL), which uses pattern recog-
nition to identify features related to DR. These algorithms 
are employed to interpret images through repeated analysis, 
which then compare the outcome to a benchmark (usually a 
manual grader) and can then correct itself if an error is made 
[29]. Many of these algorithms have high sensitivities and 
specificities, up to approximately 90% and 95% respectively, 
and a recent study has shown that they can perform with 
comparable or even superior accuracy than expert graders 
in multiple populations [136, 137]. Some modern DL sys-
tems have negative predictive values of roughly 99%, which 
translates to only a 1% likelihood of severe NPDR or PDR 
being missed [138].

A study that included more than 6,500 participants over 
a one-year period found that automated grading had similar 
effectiveness (based on sensitivity, specificity, and number 
of correct screening outcomes and cases referred appro-
priately) to manual methods and was less costly, posing a 
potential alternative to the current programme. In addition, 
there was a total of £201,600 in estimated savings to the 
NHS annually, with £4,088 in extra costs per additional case 
that was referable and £1,990 further costs per appropriate 
outcome (manual compared to automated) [139]. These find-
ings highlight the usefulness of integrating AI automated 
systems into the current screening programmes, although 
there are various challenges regarding AI based algorithms 
when it comes to clinical application.

Many AI systems are still in their infancy and are under 
continuous development. In the case of ‘black box’ detec-
tion systems, using images previously graded for DR, lit-
tle is known about the image information being used and 
how the output is determined. This is particularly limiting 
if the datasets used in the software are of a homogenous 



Graefe's Archive for Clinical and Experimental Ophthalmology	

population, as there may be issues regarding generalisa-
tion [140]. Additionally, many algorithms are trained for 
use with a single disease. Previous studies have indicated 
that once confounding pathologies such as AMD, hyper-
tensive retinopathy, artery or vein occlusions, and retini-
tis were introduced, the contemporary CNNs struggled 
with accurate diagnosis [141]. As such, the presence of 
co-pathology is likely to limit its utility in DR screening 
programmes.

With advancements in high resolution imaging tech-
niques, such as OCTA and AO-assisted imaging, it may 
become possible to identify patterns of abnormalities that 
are disease-specific. With the ability to visualise microvas-
culature and individual photoreceptors, the limiting factor 
may no longer be the resolution, but rather the type of analy-
sis performed. Quantification of retinal metrics often yields 
a single measurement (such as FAZ area, VD, cone density, 
etc.), which does not take full advantage of the rich informa-
tion available within the image. For example, simply finding 
lower cone density in a retina will not enable a diagnosis 
of DR, but unique patterns of cone loss might. However, 
analysis of such granular detail, which is typically achieved 
manually, is time-consuming, so development of AI tech-
niques for these high-resolution modalities is likely to yield 
significant benefits.

Finally, the ultimate goal of retinal imaging is not only 
to distinguish between those with DR and those without, 
but to accurately determine and monitor disease stage as 
well as risk. Non-invasive imaging techniques have a distinct 
advantage over more invasive methods (e.g. blood tests), as 
they are more tolerable for the patient, thereby facilitating 
regular screening and monitoring efforts. As such, it may 
be possible to detect not only DR (ocular disease) but also 
DM (systemic disease, i.e. oculomics). With almost one in 
two adults with DM being unaware of their condition [142], 
9.1% having impaired glucose tolerance, and 5.8% having 
impaired fasting glucose worldwide [143], ocular screening 
for DM is a significant clinical target.

Conclusion

This review has highlighted the advancements in imaging 
techniques in DR and their potential to improve clinicians’ 
ability to detect DR. A combination of functional and struc-
tural assessments is key to providing meaningful information 
about a patient’s DR status, and high-resolution structural 
assessments have a greater capacity to detect subclinical 
changes. Standard fundus photography is likely to remain 
the cornerstone of structural assessments, but with advance-
ments in blood flow visualisation, OCT, and OCTA imaging, 
the use of these techniques is likely to grow. AO-assisted 
imaging has the potential to remodel the current approach 

in early detection and treatment of subclinical DR, due to 
its high resolution and capability of imaging different layers 
of the retina. Further, the introduction of AI to DR screen-
ing programmes shows promise, particularly with regard 
to the reduction of healthcare costs and time spent grad-
ing manually, but specificity may be limited if a patient has 
co-pathologies. Further validation will be needed before AI 
can be integrated into DR care at scale but, although it can-
not replace expert grading, may provide a valuable tool for 
streamlining image analysis.
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