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Abstract

Despite current screening models, enhanced imaging modalities, and treatment regimens, diabetic retinopathy (DR) remains
one of the leading causes of vision loss in working age adults. DR can result in irreversible structural and functional retinal
damage, leading to visual impairment and reduced quality of life. Given potentially irreversible photoreceptor damage,
diagnosis and treatment at the earliest stages will provide the best opportunity to avoid visual disturbances or retinopathy
progression. We will review herein the current structural imaging methods used for DR assessment and their capability of
detecting DR in the first stages of disease. Imaging tools, such as fundus photography, optical coherence tomography, fundus
fluorescein angiography, optical coherence tomography angiography and adaptive optics-assisted imaging will be reviewed.
Finally, we describe the future of DR screening programmes and the introduction of artificial intelligence as an innovative
approach to detecting subtle changes in the diabetic retina.

Clinical Trial Registration number N/A

Key Messages

What is known

¢ Diabetic Retinopathy is the leading cause of vision loss in working-age adults in the developed world.

e Standard imaging methods like fundus photography, optical coherence tomography (OCT), and fundus fluorescein angi-
ography are essential tools in diabetic retinopathy assessment.

What is new

e Newer imaging techniques, including adaptive optics-assisted imaging, offer higher resolution and better detection of
subclinical changes in the diabetic retina.

e Artificial intelligence is emerging as a promising tool in diabetic retinopathy screening programs, potentially reducing
healthcare costs and manual grading time, though further validation is needed for widespread integration.
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cause of vision loss in working-age adults in the developed
world [5], and almost one million are classed as blind due to
DR [6]. Due to the ageing and growing population, and as
life expectancy of people with DM also rises, DR is likely
to become more prevalent [7, 8], particularly as almost all
people with Type I (T1) DM and at least 60% of people with
Type II (T2) DM, will develop DR after 20 years from diag-
nosis [9]. Timely detection of DR is critical, especially as late
detection contributes to poorer outcomes [10, 11]. There is an
economic burden on healthcare systems due to the prevent-
able complications associated with DM and DR [12] and,
crucially, late detection is associated with higher costs than
early detection [13]. Therefore, novel strategies to halt pro-
gression of DR could reduce this burden and allow the allo-
cation of time and resources to other aspects of healthcare.

Diabetic retinopathy

Diabetic retinal disease can be characterised by two phe-
notypes: DR and diabetic macular oedema (DMO), with
DR further subcategorised into: non-proliferative diabetic
retinopathy (NPDR) and proliferative diabetic retinopa-
thy (PDR), shown in Fig. 1. Characteristic signs of NPDR
include microaneurysms (MA), dot and blot haemorrhages,
exudates and cotton wools spots [14]. PDR is characterised
by neovascularisation of the disc, the iris, and elsewhere, as
well as fibrosis, leading to tractional retinal detachments.
Typically, NPDR precedes PDR and both features are
observed in PDR [15]. The risk of severe visual loss from
PDR with “High Risk” characteristics (such as hyperglycae-
mia, hypertension, and dyslipidaemia) [8] is around 50% at

five years if untreated, compared to around 5% if PDR is
treated with panretinal photocoagulation laser[16].

Diabetic maculopathy

DMO is a complication of DM that can lead to vision loss.
DMO is the accumulation of exudative fluid at the macula
and is a common cause of decreased vision [17]. It can
occur in any stage of DR and progression is different for
each individual, but the risk increases with DR severity
[9, 18].

DR is traditionally seen as a microvascular disease [19].
However, recent insights suggest a shift from this view
[12]. Hyperglycaemia and hyperlipidaemia may trigger
inflammation and increase vascular endothelial growth
factor (VEGF), resulting in damage to vascular endothelial
cells, increased permeability of vessels, and angiogenesis
[17]. DR occurrence is linked to disease duration, poor
glycaemic control, and hypertension [20], with pregnancy
also contributing [12]. However, such risk factors do not
account fully for the onset or severity of DR or DMO.
Some patients with well controlled glycaemic levels and
hypertension still develop signs of DR, while others with
poor control do not [21], indicating genetics might play
arole [9, 22-24]. Despite this, the microvascular system
remains crucial, as retinal microvascular circulation can
help detect and monitor systemic complications, such as
renal disease [25, 26] and cardiovascular events [27].

The commencement of systemic treatment prior to the
progression of PDR or DMO is effective in slowing the
progression of DR and reducing the risk of visual loss, as

Fig. 1 Fundus images from A) a normal control, B) mild non-prolif-
erative diabetic retinopathy (DR) (R1), C) moderate non-proliferative
DR (R2), and D) severe proliferative DR (R3) The arrows indicate
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demonstrated in the Diabetes Control and Complications
Trial (DCCT) [28].1 It is important to intervene before
complications of DR or DMO become irreversible [29].
As, at present, the treatments available for DR are aimed
at later stages of the disease, when vision may already be
affected. Therefore, a more comprehensive understanding
of the disease in its early stages is required to provide new
and more effective preventative measures [12].

Key interventions for delaying or slowing the progres-
sion of DR and DMO comprise laser photocoagulation,
anti-VEGF, and steroid intravitreal injections [30]. Although
anti-VEGEF treatment can be highly effective in some patients
[31], others do not respond to the intra-ocular injections
[32-34]. There are also risks associated with anti-VEGF
treatment, such as retinal detachment, uveitis, or systemic
side effects [35], highlighting the need to weigh up the rela-
tive risks associated with treatment and disease progression.

Key to effective management of DR, which may delay or
even prevent advanced stages of the disease [36, 37], is early
identification and timely intervention. Functional changes
in vision can be detected clinically through psychophysical
testing such as colour vision [38—40], visual acuity (VA)
[41], contrast sensitivity (CS) [17], and electrophysiology
[42, 43]. Although such psychophysical tests can provide
valuable insight into the extent of functional deficit of
DR [14], they tend to be non-disease-specific and subjec-
tive, precluding their use as standalone DR detection tests.
Moreover, by the time patients become aware of functional
deficits in vision, structural (potentially irreversible) damage
may already have occurred [44].

Retinal imaging techniques aid in the early identifica-
tion and monitoring of preclinical DR markers and provide
insight into its pathogenesis. Many retinal imaging tech-
niques are now used routinely in the clinic to screen and
monitor diabetic eye disease, such as fundus photography,
optical coherence tomography (OCT), OCT angiography
(OCTA), and fundus fluorescein angiography (FFA). More
recently, adaptive optics-assisted imaging has enabled sin-
gle-cell visualisation of the retina, which may help to eluci-
date the complex signs associated with the pathophysiology
of diabetic eye disease and ultimately detect DR in its earli-
est stages. This review will critically assess these state-of-
the-art imaging techniques and their efficacy as tools for the
early detection of DR, as well as consider the future of DR
screening.

Imaging of diabetic eye disease
Fundus photography

Fundus photography is the main method employed by
higher income countries for DR screening services [45—47]

(Fig. 1). It is quick, non-invasive, and well tolerated by
patients [48]. There are two main modalities when con-
sidering fundus photography: conventional fundus photog-
raphy and colour scanning laser ophthalmoscopy (SLO).
Conventional fundus photography uses a traditional cam-
era with white light to capture colour images of the retina,
providing a broad overview, but can be affected by media
opacities, like cataracts. In contrast, colour SLO employs
laser light of different wavelengths to scan the retina, pro-
ducing high-resolution images with superior contrast and
detail which are less impacted by opacities.

The quality of conventional fundus cameras has
improved dramatically over the past two to three decades,
with most now able to acquire images with resolution of
approximately 20 megapixels [29]. As a result, colour
fundus photography has shown greater sensitivity than
both indirect and direct ophthalmoscopy techniques [20].
In addition, colour fundus photography and DR grading
can be more cost effective than slit lamp ophthalmoscopy
and alleviates the need for ophthalmology or optometrist
consultation [49].

However, conventional fundus photography has limita-
tions in its ability to assess structural DR changes. Firstly,
it only allows for two-dimensional imaging of the fundus
and therefore does not enable visualisation of the sepa-
rate layers of the retina. As a result, oedema and neurode-
generative changes may be missed. Secondly, the earliest
detectable DR-related signs using conventional fundus
photography include MAs and, by the time of their appear-
ance, damage has already occurred to the patient’s retina,
which in most cases is irreversible [24]. Finally, colour
fundus photography is limited by the system’s field of view
(typically 45° single-field), which can neglect peripheral
lesions associated with DR [50]. This is especially relevant
to early detection of DR, as people with peripheral lesions
— and more specifically, retinal ischaemia — are almost five
times more likely to develop PDR [29, 51].

Fortunately, colour SLO, widefield (angles greater
than 50°) and ultra-widefield (UWF) (angles greater than
100°) imaging systems have become available in the past
20 years [51, 52]. Colour SLO and UWF systems offer
superior colour imaging (Fig. 2) and allow clinicians to
assess the peripheral fundus, even in undilated pupils,
which has been suggested to be a predictor of DR progres-
sion over the following 4 years [53-55]. Furthermore, a
study comparing conventional colour fundus photography
with UWF found that DR was detected 17% more often in
UWF [56]. Moreover, UWF helped to identify haemor-
rhages, MAs, venous beading, intraretinal microvascular
abnormality, and neovascularisation in the periphery that
would otherwise have been missed in the standard fundus
imaging fields of view. Therefore, UWF may allow us to
enhance the understanding of DR stages and progression,
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Fig.2 Ultrawide fundus image taken using an Optos system in A) a healthy retina and B) a retina with DR

particularly as current definitions are based on standard
colour fundus photographs, which may be outdated.

Optical coherence tomography

OCT is another non-invasive technique that permits high-
resolution imaging of the posterior pole’s anatomical struc-
ture. Like fundus imaging, OCT is quick and non-invasive.
However, unlike fundus imaging, it provides a three-dimen-
sional image of the retina (Fig. 3) [30, 51]. This enables
transverse visualisation and assessment of both thickness
[15] and morphology of the layers comprising the retina
and choroid, which is of particular interest when investigat-
ing early changes in DR [48]. Advancements from time-
domain OCT to the more sophisticated spectral-domain and
swept-source devices has resulted in higher resolution and
greater accuracy of thickness measurements [15]. Research
has shown thinning of the RNFL and inner neural layers
in people with DM, even when they do not have any other
clinical signs of DR [37, 57, 58], making it a strong clinical

structural assessment technique for the early detection of
DR.

However, an important consideration when using OCT
to measure retinal thickness is the differences between
the variety of devices on the market. Research has shown
that retinal thickness values vary according to the device
used and are therefore not necessarily comparable when
acquired using different systems. This makes it difficult to
interpret results, especially in people with DR [59-61].
The variability can be due to inherent device differences
in image acquisition, variable axial scaling, compression,
motion artefacts, or the quality of the scan produced [62,
63]. These considerations are particularly pertinent when
monitoring changes in a single patient in response to dis-
ease and/or treatment.

Finally, OCT features that are characteristic of early DR
are not disease specific, which can make clinical decision
making challenging. Retinal thinning or hyperreflective
intraretinal foci (HRF) (as seen in Fig. 3B), for example,
are associated with a number of other ocular conditions,

A - B -
Fig.3 Optical coherence tomography (OCT) images A) healthy retina, and with B) moderate non-proliferative diabetic retinopathy (DR). The
red arrows highlight hyperreflective intraretinal foci (HRF) common in patients with DR
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Fig.4 Optical coherence
tomography angiography
(OCTA) image of A) a healthy
retina and B) with features of
DR such as microaneurysms
(green arrows)

such as glaucoma or age-related macular degeneration
(AMD) [64, 65], so OCT is not yet appropriate as a sole
method for early DR detection but should be incorporated
into future DR screening programmes.

Fundus fluorescein angiography

FFA is regarded as the gold standard for in-vivo and real-
time evaluation of the structure of the retinal and choroidal
vasculature [51, 57]. Clinically, FFA can be used as a guide
for targeting specific retinal locations with laser treatment,
and it enables detection of subtle changes in the retina, par-
ticularly vessel leakage, which is not seen using OCT. In
particular, MAs, neovascularisation at the optic disc and
elsewhere, peripheral areas of non-perfusion, and macu-
lar ischaemia may be more obvious using FFA than other
imaging modalities [51, 66]. FFA is also particularly use-
ful for differentiating intraretinal microvascular abnormali-
ties from neovascularisation, which would be challenging
to distinguish using fundus photography [51]. However, a
major disadvantage of FFA is that it requires an intra-venous
injection of sodium fluorescein dye and, with the advent
of non-invasive OCTA, FFA may become a less favourable
method of evaluating retinal health and the detection of DR.

Optical coherence tomography angiography

In contrast to OCT, OCTA uses motion contrast [67], ena-
bling non-invasive visualisation and objective quantification
of both retinal and choroidal blood flow (Fig. 4) [36, 68,
69]. This gives it an advantage over FFA, as it eliminates
the possibility of side effects from the intra-venous injection
of sodium fluorescein dye, and can therefore be used in all
patients, including in pregnancy [70]. Additionally, OCTA
images are not disturbed by leakage of fluorescein or win-
dow defects [71]. OCTA has been shown to reveal several
abnormalities that can be missed using FFA, such as areas of

non-perfusion, greater vessel tortuosity and a decrease in the
density of capillaries [72]. As a result, OCTA is considered
to be particularly desirable over FFA as a clinical tool.

As with the imaging techniques already mentioned,
OCTA can be used to identify MAs, intraretinal microvas-
cular abnormality, neovascularisation, and sections of cap-
illary non-perfusion [67, 73]. Additionally, it is possible to
capture changes occurring in vessel density (VD), particu-
larly in the capillary plexus (superficial, intermediate, and
deep) [12, 51]. VD is the proportion of the vessel area with
respect to the total area measured, and a decrease in VD
occurs in both the superficial and deep capillary plexus in
DR [51]. However, VD may not be the optimum metric for
early diagnosis as, although VD is significantly reduced in
patients with early signs of DR compared to healthy con-
trols [73], no difference was found between controls and
DM patients with no retinopathy, indicating that the decrease
may only be detected once signs of DR are observed using
other modalities.

However, when used to monitor changes in retinal cap-
illary changes, OCTA has shown promise in its ability to
detect people at risk of developing DR. Research has shown
that retinal capillary changes occur before MAs are visible
clinically [36], and OCTA can provide information on the
expansion of the foveal avascular zone (FAZ) [73]. FAZ
expansion is thought to result from capillary dropout, and it
has been recognised that the FAZ diameter can enlarge with
DR [36, 74]. In a meta-analysis carried out by Zhang et al.
(2021), results clearly indicated an expanded FAZ area and
decreased VD in the group with DM but no DR, compared
to the healthy control group. However, when sub-catego-
rised according to the type of DM (T1 or T2), microvascular
alterations were negligible between T1 DM and the con-
trol group, while T2 DM remained significant. The authors
postulate that this is due to people with T1 undergoing a
‘peaceful period’ after diagnosis, when OCTA would be
unable to detect the preclinical signs of DR. Following this
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period, T1 patients then deteriorate promptly to NPDR, thus
making it difficult for the device to detect these changes in a
sufficiently timely manner [36]. Further research is required
to determine if and why this occurs, especially since people
with T1 DM have an increased prevalence of vision-threat-
ening DR compared to people with T2 DM [75].

Widefield OCTA has useful applications, particularly
when reviewing areas of retinal non-perfusion, as this find-
ing tends to begin in the retinal periphery [76, 77]. Newer
modalities using 12 X 12 mm field of view are valuable for
vascular disorders of the retina, however, the larger field of
view results in lower resolution of the microvasculature and
so is not ideal for early detection of DR [71].

Additional shortcomings of OCTA are that it can be
affected by artefacts and its small field of view. Projection
artefacts occur when vessels that are more superficial appear
in images of the deeper layers, and motion artefacts result
from image displacement due to eye/head movements during
acquisition [67]. Such artefacts are more common in OCTA
than FFA, primarily due to the mode of image acquisition
(i.e., scanning vs flood illumination respectively).

Retinal oximetry

Retinal oximetry is a non-invasive imaging technique that
allows assessment of retinal blood vessels’ oxygen satu-
ration. The principle is similar to pulse oximetry (often
using the finger or ear lobe) [78]; allowing for measure-
ments of oxygen saturation across disease stage, but also
across different regions of the retina [79]. It is known that
retinal hypoxia can occur in DR and can often present early
in the disease [80]. As retinal oximetry allows for visuali-
sation of the blood supply and oxygenation of the blood,
it may provide insights into the state of the retina prior to
the observation of ischemia using other forms of imaging,
like OCTA. Research has shown that oxygen saturation is
altered in patients with DR [79]; there is, however, a lack of
consensus (see [81] for a review), so it must be noted that
it is still evolving as a technique. Although it shows strong
repeatability, the results can be affected by the method of
acquisition [82], and is therefore limited in its clinical use
as a DR diagnosis tool at this time [83].

Colour doppler imaging

Colour doppler imaging (CDI) utilises ultrasonography for
non-invasive assessment and visualisation of the vessels in
the retina, such as the ophthalmic artery and central retinal
artery and vein [84, 85]. In the context of DR, CDI pro-
vides information about blood flow patterns, which have
been shown to be impacted in people with DR [86]. Further,
CDI has shown promise in its ability to identify patients at
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risk of developing DR [87, 88]. However, while CDI shows
promise, its specific roles and clinical applications in DR
detection and management are still being researched and
refined [89].

Fluorescence lifetime imaging ophthalmoscopy

Fluorescence lifetime imaging ophthalmoscopy (FLIO) is a
relatively new non-invasive imaging technique used to study
the retina in various retinal diseases, such as DR [90-92].
Many small molecules are naturally fluorescent and, when
exposed to light, become excited to a higher electronic state.
Upon returning to ground state, the molecule emits fluo-
rescent light. FLIO measures both the fluorescence and the
time spent in the excited state, providing detailed informa-
tion about the metabolic and biochemical processes occur-
ring in the eye, such as the accumulation of lipofuscin in
DR [93]. Clinically, it can aid in the early detection of DR
by identifying subtle metabolic abnormalities before visible
structural changes manifest [92]. FLIO may also be able to
contribute to monitoring disease progression and evaluating
treatment responses, and investigation into the most promis-
ing molecular signatures for DR using this new technology
is ongoing.

Laser speckle contrast imaging

Laser speckle contrast imaging (LSCI) is another non-inva-
sive imaging method that enables analysis of blood flow and
perfusion. LCSI has previously been used to image organs,
such as the liver and large intestine [94], and in diabetes
for foot ulcers [95], but is relatively new to ophthalmology.
Rodent models have demonstrated its use in the retina [96,
97], and its effectiveness in humans has also been shown
[98, 99]. However, no study to date has used this to assess
function in DR, and further research is warranted in this
area.

Adaptive optics-assisted imaging

The detection of small lesions can be difficult to capture due
to aberrations from the anterior part of the eye [100]. Higher
order aberrations and astigmatism from an imperfect cornea
or crystalline lens can result in wavefront aberrations, which
makes the imaging of finer details in the retina near impos-
sible with the imaging methods outlined above [30]. How-
ever, with the introduction of adaptive optics (AO)-assisted
imaging, which can correct for such distortions, there are new
opportunities to study different layers of the retina at a cellular
level. AO technology enables acquisition of high-resolution
retinal images in which it is possible to visualise individual
cones and rods [101-104]. AO imaging devices correct
for distortions using a wavefront sensor (Shack-Hartmann
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Fig.5 Confocal (A) and non-
confocal split detection (B)
AOSLO images of a healthy
retina at ~1° temporal from the
fovea

aberrometer), which calculates the ocular aberrations and then
employs a wavefront correction (using a deformable mirror)
to counteract these aberrations [48], (Fig. 5). Commercial AO
devices, such as the rtx1™ AQO retinal camera (Imagine Eyes,
Orsay, France), can be used to visualise waveguiding cells,
in addition to custom-built AO systems that can be modified
according to the researchers’ needs.

Adaptive optics scanning laser ophthalmoscopy

AO scanning laser ophthalmoscopy (AOSLO) is the most
used form of AO-assisted imaging of the retina and com-
prises the majority of DR-related AO-assisted imaging
data to date. AOSLO has variable depth of focus, ena-
bling visualisation of abnormal features within different
retinal layers, such as the nerve fibre layer and vasculature,
making it a versatile tool to assess retinal structure in DR
[105-108].

The most commonly used modality is confocal AOSLO
(Fig. 5), which uses a pinhole to achieve diffraction-limited
resolution. One drawback of confocal AOSLO is that only
waveguiding or reflective structures can be visualised. Com-
mercial systems utilise confocal imaging, whereas some
custom-built systems have been modified to include other
non-confocal imaging modalities. Non-confocal imaging
modalities, such as split-detection, exploit light that is mul-
tiply scattered by the retina, which enables visualisation (for
example) of the anterior end of cone inner segments, even
in the absence of waveguiding cone outer segments [102,
109, 110]. The simultaneous acquisition of both modalities
confocal and non-confocal images provides direct temporal
correspondence, and coaxial alignment ensures direct spatial
correspondence, between reflective structures (confocal) and
underlying structure (split-detection).

Using AOSLO, researchers have demonstrated changes
in retinal microvasculature in DR [111, 112], even in mild

NPDR [113]. In addition, Karst et al. (2018) used both con-
focal and split-detection AOSLO to evaluate the appear-
ance of the inner retinal layers within DR lesions and found
changes in the thickness of vessel walls, as well as abnormal
reflectivity and shadowing.

Research investigating the photoreceptor layer in DR
is in its infancy but has shown great promise. In confocal
images, healthy cones with intact outer segments are vis-
ible as bright spots, owing to their waveguiding properties.
Cone density at the parafovea in T1 DM was found to be
slightly reduced, using a commercially available (confo-
cal) AOSLO system, and while cone density alone was not
able to distinguish eyes with DR from eyes with no DR, a
combination of cone metrics, proposed by Lombardo et al.,
did enable such differentiation [114, 115]. Regularity of the
cone arrangement in both T1 and T2 DM has been asso-
ciated with the presence of DR, increasing DR severity,
and DMO using confocal AOSLO [116]. Recently, Elsner
et al. (2022) demonstrated that cone waveguiding proper-
ties were altered in all ten DR patients assessed, but cone
density was reduced in only five; despite all of the exam-
ined patients having total retinal thickness within normal
limits for all quadrants, suggesting that AOSLO is a viable
method for picking up early changes in the cone metrics of
patients with DR.

AOSLO enables non-invasive visualisation of individ-
ual photoreceptors and tracking of individual cells across
multiple time points to monitor natural history of disease
[117]. However, using only confocal imaging, it is difficult
to ascertain whether areas without bright spots are indica-
tive of cone loss or simply altered waveguiding [118-120].
Additionally, there are changes in reflectivity that occur
in the normal retina due to temporal fluctuation [121] and
in response to light stimulation [122, 123]. It is therefore
of interest to assess cone inner segment integrity using
non-confocal imaging, although to-date no studies have
done so.
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Adaptive optics optical coherence tomography

AO technology has also been applied to OCT [124], with
AO-OCT imaging being used in a variety of retinal diseases,
including DR [125, 126]. The primary benefit of AO-OCT
imaging over other forms of imaging is that it can combine
OCT’s ability to resolve depth and layers with high lateral
resolution [127]. However, due to the limited availability of
AO-OCT devices, and high failure rate compared to clini-
cal OCT devices, AO-OCT in DR has not been explored
fully. As in other coherent imaging devices (e.g., OCT), the
AO-OCT is susceptible to speckle noise, which is further
amplified by the higher magnification afforded by the AO
element of AO-OCT [125, 128, 129].

AO-OCT has, however, been used to visualise areas of
capillary of nonperfusion in eyes with NPDR and PDR
[130]. These areas showed dramatic changes in cone mor-
phology, particularly at the cone inner and outer segment
junction and the cone outer segment tips, demonstrating
the impact of capillary circulation on cone structure. How-
ever, only four people with DM (two with moderate DR
and two with proliferative DR) were included in this study;
larger, more representative data is therefore needed to draw
meaningful conclusions about such changes in relation to
DR stage.

Overall, AO-assisted imaging is showing great promise
within the field of DR, with potential for use in the detec-
tion of DR at its earliest stages [100]. The usefulness of
either AOSLO or AO-OCT will vary depending on the spe-
cific question being posed. In order to better understand the
microvascular and photoreceptor anomalies detected with
AO-assisted imaging devices, further research is required
with larger cohorts of patients. To date, many studies have
an uneven distribution of sex and type of DM and used
small sample sizes [131]. In addition, cost, time consump-
tion, reduced field of view, and the need for significant post-
acquisition analysis all limit the application of AO-assisted
imaging in a clinical capacity. It does, however, provide vital
information about the retina in DM and subclinical DR.

The future of screening for diabetic
retinopathy

Subtle changes that occur in early DR are typically asymp-
tomatic, so patients will often not present to the clinic until
advanced complications (i.e., vitreous haemorrhage or trac-
tional retinal detachment) develop. It is important that DR is
detected early as, once these advanced complications occur,
treatment outcomes are unfavourable [29]. Therefore, future
research should focus on early detection and screening so
that more can be learned about biomarkers that indicate
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which patients may benefit from early intervention (e.g., die-
tary advice) and to intervene before complications become
irreversible. Taking baseline fundus images before onset of
DR can serve as a reference point to track DR changes over
time which can help future research understand the mecha-
nisms of progression. Future work may focus on the emerg-
ing techniques outlined above to enhance the knowledge of
early DR changes.

Regular screening assessments are a crucial aspect of suc-
cessful diabetes care. DR screening models worldwide are
focused on colour fundus photography examined by skilled
graders [132, 133]. However, with the need for skilled grad-
ers to assess images [30], and with projections estimating
that 700 million people will be affected with DM by 2045 [7,
8], DR screening services may be under significant strain to
carry out manual grading of fundus photographs [134]. The
incorporation of artificial intelligence (Al) in DR screening
could facilitate timely treatment, reduce labour costs and
save time spent on manual grading [30, 135]. Al software
utilises algorithms, such as convolutional neural networks
(CNN) in deep learning (DL), which uses pattern recog-
nition to identify features related to DR. These algorithms
are employed to interpret images through repeated analysis,
which then compare the outcome to a benchmark (usually a
manual grader) and can then correct itself if an error is made
[29]. Many of these algorithms have high sensitivities and
specificities, up to approximately 90% and 95% respectively,
and a recent study has shown that they can perform with
comparable or even superior accuracy than expert graders
in multiple populations [136, 137]. Some modern DL sys-
tems have negative predictive values of roughly 99%, which
translates to only a 1% likelihood of severe NPDR or PDR
being missed [138].

A study that included more than 6,500 participants over
a one-year period found that automated grading had similar
effectiveness (based on sensitivity, specificity, and number
of correct screening outcomes and cases referred appro-
priately) to manual methods and was less costly, posing a
potential alternative to the current programme. In addition,
there was a total of £201,600 in estimated savings to the
NHS annually, with £4,088 in extra costs per additional case
that was referable and £1,990 further costs per appropriate
outcome (manual compared to automated) [139]. These find-
ings highlight the usefulness of integrating Al automated
systems into the current screening programmes, although
there are various challenges regarding Al based algorithms
when it comes to clinical application.

Many Al systems are still in their infancy and are under
continuous development. In the case of ‘black box’ detec-
tion systems, using images previously graded for DR, lit-
tle is known about the image information being used and
how the output is determined. This is particularly limiting
if the datasets used in the software are of a homogenous
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population, as there may be issues regarding generalisa-
tion [140]. Additionally, many algorithms are trained for
use with a single disease. Previous studies have indicated
that once confounding pathologies such as AMD, hyper-
tensive retinopathy, artery or vein occlusions, and retini-
tis were introduced, the contemporary CNNs struggled
with accurate diagnosis [141]. As such, the presence of
co-pathology is likely to limit its utility in DR screening
programmes.

With advancements in high resolution imaging tech-
niques, such as OCTA and AO-assisted imaging, it may
become possible to identify patterns of abnormalities that
are disease-specific. With the ability to visualise microvas-
culature and individual photoreceptors, the limiting factor
may no longer be the resolution, but rather the type of analy-
sis performed. Quantification of retinal metrics often yields
a single measurement (such as FAZ area, VD, cone density,
etc.), which does not take full advantage of the rich informa-
tion available within the image. For example, simply finding
lower cone density in a retina will not enable a diagnosis
of DR, but unique patterns of cone loss might. However,
analysis of such granular detail, which is typically achieved
manually, is time-consuming, so development of Al tech-
niques for these high-resolution modalities is likely to yield
significant benefits.

Finally, the ultimate goal of retinal imaging is not only
to distinguish between those with DR and those without,
but to accurately determine and monitor disease stage as
well as risk. Non-invasive imaging techniques have a distinct
advantage over more invasive methods (e.g. blood tests), as
they are more tolerable for the patient, thereby facilitating
regular screening and monitoring efforts. As such, it may
be possible to detect not only DR (ocular disease) but also
DM (systemic disease, i.e. oculomics). With almost one in
two adults with DM being unaware of their condition [142],
9.1% having impaired glucose tolerance, and 5.8% having
impaired fasting glucose worldwide [143], ocular screening
for DM is a significant clinical target.

Conclusion

This review has highlighted the advancements in imaging
techniques in DR and their potential to improve clinicians’
ability to detect DR. A combination of functional and struc-
tural assessments is key to providing meaningful information
about a patient’s DR status, and high-resolution structural
assessments have a greater capacity to detect subclinical
changes. Standard fundus photography is likely to remain
the cornerstone of structural assessments, but with advance-
ments in blood flow visualisation, OCT, and OCTA imaging,
the use of these techniques is likely to grow. AO-assisted
imaging has the potential to remodel the current approach

in early detection and treatment of subclinical DR, due to
its high resolution and capability of imaging different layers
of the retina. Further, the introduction of Al to DR screen-
ing programmes shows promise, particularly with regard
to the reduction of healthcare costs and time spent grad-
ing manually, but specificity may be limited if a patient has
co-pathologies. Further validation will be needed before Al
can be integrated into DR care at scale but, although it can-
not replace expert grading, may provide a valuable tool for
streamlining image analysis.
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