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The hallmarks of cancer extend beyond genetic anomalies to encompass a

sophisticated tumor microenvironment, involving interactions between can-

cer and non-cancer cells within a dynamic biophysical setting, influencing

cancer progression. The tumor microenvironment is multifaceted, and it is

increasingly clear that the interaction and interdependence of these differ-

ent facets need to be better understood. Tissue engineering of 3D in vitro

models of the tumor microenvironment provides an opportunity to study

these interactions and their interdependence on cancer progression. Cancer

metastasis still poses a major challenge, accounting for 90% of

cancer-related deaths. This accentuates the critical need to establish

patient-specific model systems that replicate tumor complexity at all stages

of progression. Herein, we outline the latest advancements of in vitro 3D

models of the tumor microenvironment and the different tools utilized to

analyze such models. Henceforth, the interaction of the multifaceted tumor

microenvironment can be elucidated using such sophisticated in vitro tools.

Despite significant therapeutic advances, certain tumor

types, including glioblastoma, pancreatic cancer, and

triple-negative breast cancer, show limited treatment

success [1]. Moreover, the development and screening

of new anticancer drugs is a protracted and inefficient

process, with <4% of drug candidates progressing
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through clinical trials and gaining FDA approval [2].

The lack of preclinical models that accurately mimic

tumor complexity is one of the main causes of the dis-

parity between preclinical research findings and clinical

trial outcomes. Traditional in vitro 2D cell cultures in

cancer research provide rapid but limited results due

to the lack of biomimicry and physiological accuracy

for drug discovery [3]. Cell culture in a 2D configura-

tion alters cell morphology, cytoskeletal and nuclear

morphology, affecting gene and protein expression [4].

Additionally, the lack of proper spatial cell–cell and

cell-extracellular matrix interactions in native tissues

disrupts signaling pathways, causing adverse effects on

cell viability, proliferation, and differentiation, and

potentially the accumulation of genetic mutations [4].

3D cell culture models can effectively mimic tumor

architecture, behavior, histopathological features,

genetic signatures, molecular profiles, and drug respon-

siveness seen in vivo, enabling the study of tumor cells

and their microenvironment [5]. These models accu-

rately capture biophysical and biochemical signals that

drive cancer development, including tissue stiffness

and the presence of oxygen/nutrient gradients [6]. In

this review, we outline the different facets of the tumor

microenvironment and their roles and interdependence

in tumor progression. We present an overview of 3D

in vitro models depicting tumor-stroma interactions

and their impact on the development of drug

resistance.

Tumor microenvironment (TME)

Tumorigenesis is an intricate process involving genetic,

epigenetic, and metabolic changes and interactions

with the microenvironment that transform normal cells

into malignant ones [7]. Research shows tumors are

not simply cancer cell accumulations but complex,

dynamic microenvironments exposed to various physi-

cal and chemical stimuli, impacting cancer progression

and drug resistance. Tumors include cancer and

non-cancerous cells, extracellular matrix (ECM), and

soluble factors [8]. The tumor microenvironment

(TME) varies across cancer types. The TME can be

regarded as a sophisticated network of interdependent

reciprocal communications where each component of

the TME significantly influences the actions of others

(Fig. 1). In solid tumors, non-cancerous cells, such as

fibroblasts, endothelial cells, and immune cells, can be

recruited either locally or systemically (Table 1). Inter-

actions within the TME can occur directly through

cell-to-cell contact facilitated by adhesion molecules,

electrical coupling, and the transit of signals through

gap junctions or indirectly via classical paracrine

signaling mechanisms, including cytokines, growth

factors, and extracellular vesicles, as well as

metabolite-mediated communication [9].

Biophysical aspects of the TME

Tumor tissue architecture

The architecture of tissues is fundamentally linked to

the maintenance of tensional homeostasis, which is cru-

cial for organ functionality [10]. This architecture

is shaped by the integrity and properties of both cellular

and extracellular components, which depend on effec-

tive adhesive interactions between cells and the ECM.

As the tumor expands, the organized structure of tissues

is disrupted. The 3D architecture of the tumor tissue is

often characterized by irregularity, heterogeneity, and

disorganization, which can alter the mechanical micro-

environment. The diverse architectural features of tis-

sues, including their geometry, confinement, and fluid

dynamics, impose varying mechanical stimuli on cancer

cells located within the tumor. These mechanical stimuli

significantly influence the behavior of cancer cells and

their invasive potential [11].

Role of ECM and tissue stiffness

The ECM plays a crucial role in transforming the

physiological microenvironment into a tumor-

promoting microenvironment, regulating cancer cell

proliferation, stemness, epithelial-to-mesenchymal tran-

sition (EMT), metastasis, angiogenesis, and therapeutic

resistance [12]. The ECM undergoes continuous remo-

deling during tumorigenesis through the synthesis and

degradation of various proteins [13]. Diverse stromal

cell types and tumor cells can produce ECM proteins;

nevertheless, CAFs serve as the primary source for the

secretion, assembly, and modification of the ECM

(Table 1). Excessive deposition and crosslinking of

ECM proteins lead to the formation of dense ECM,

thus increasing stroma stiffness [14]. Breast cancer tis-

sue has a stiffness ranging from 4 to 12 kPa, compared

to normal breast tissues at 0.4–2 kPa [15]. Tissues,

including lung, brain, bone, and liver, have higher

stiffness levels where cancer is present [15]. ECM stiff-

ness, spatial distribution, and collagen fiber character-

istics such as local densification, fibril straightening/

stretching, and alignment near the boundary of the

growing tumor significantly impact tumor progression

and patient survival [16]. This occurs mainly through

the promotion of proliferation [17], deformations of

adjacent cells [18], increased cell traction forces [19],

altered gene expression [20], loss of cell polarity, and
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increased metastatic potential of cancer cells [21].

ECM stiffness also impacts stromal cell behavior by

triggering stromal fibroblast differentiation and macro-

phage polarization towards the pro-inflammatory phe-

notype. The stiff ECM acts as a physical barrier,

inhibiting immune cell infiltration and drug delivery

[22].

Mechanical forces in tumors

Mechanical force, initiated by cell–cell or cell-ECM

interactions, is transmitted via mechanical signaling

pathways in a process known as mechano-transduction

[23] playing a crucial role in regulating oncogenesis,

tumor progression, and metastasis [24]. These forces,

categorized into solid stress, tension, and shear stress,

affect tumor advancement and aggressiveness, which

depend on the magnitude, duration, and direction of

the applied forces, as well as the material properties

(viscoelasticity and stiffness) of the cellular and extracel-

lular tissue components [25]. Solid stress is defined as

the stress contained within the solid phase of tumors,

which encompasses the pressure applied by adjacent

healthy tissues that act to limit the tumor’s expansion

as it proliferates. This is caused by cancer cell growth,

stromal cell recruitment, and extra dense ECM, with

the solid tumor core experiencing higher stress than

border areas. Tensile stress is the result of the push and

pull forces exerted by cells on crosslinked ECM fibers.

The solid stress found in the interior of a tumor is pri-

marily compressive, which tends to shrink the volume

of an object [26]. In contrast, at the interface between

the tumor and surrounding healthy tissue, the stress

becomes tensile, indicating a propensity to enlarge the

size of an object. Fluid shear stress is the internal fric-

tional force between moving layers in laminar flow.

Cancer cells experience two primary forms of fluid

shear stress: vascular blood movement and interstitial

flows within the tumor microenvironment. As the

tumor continues to grow, newly formed blood vessels

emerge; however, these vessels are distorted, highly per-

meable, and leaky, leading to the infiltration of liquids

and macromolecules into the interspace, giving rise to

an elevation in both blood viscosity and interstitial fluid

Fig. 1. Schematic of the key component dictating the TME. Cellular components; cancer cells and stromal cells (fibroblasts, immune cells,

mesenchymal stem cells, endothelial cells). Non-cellular components include biophysical components: mechanical forces, tissue stiffness

and geometry. The biophysical components dictate the formation of gradients of nutrients, oxygen and pH across different regions, which

impact biochemical components including growth factors, enzymes, chemokines. Schematic generated using Servier Medical Art. TME,

tumor microenvironment.
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pressure [27]. Fluid shear stress is significantly involved

in vascular remodeling and the regulation of tumor cell

growth, metastasis, and transport [28].

Biochemical aspects

Abnormalities in vasculature, lymphatics, and ECM

remodeling disrupt mass transport homeostasis in the

TME, leading to a distinctive spatiotemporal distribu-

tion of nutrients, oxygen, metabolites, chemokines,

and growth factors. This disrupted mass transport in

the TME manifests as hypoxia, acidosis, localized

accumulation and trapping of different chemokines

and growth factors in the tumor core due to high

interstitial fluid pressure. Consequently, this leads to

the promotion of tumor growth and metastasis.

Impact of Hypoxia gradient and metabolic shift

Hypoxia arises in solid tumors due to the rapid growth

of cancer cells outgrowing their blood supply, creating

regions with low oxygen levels (hypoxic core) within

the tumor mass. Hypoxia can significantly impact can-

cer cells and the surrounding microenvironment, which

further promotes tumor progression. Hypoxia can

result in the expansion of more aggressive subclones of

tumor cells mediated by hypoxia-inducible factors

(HIFs) that support cell survival by inducing compen-

satory angiogenesis, ECM remodeling, metabolic

reprogramming, and immune suppression [29]. Hyp-

oxic cancer cells in the core generate excess lactate

from upregulated glycolysis, which is then released

into the extracellular space, causing lactate-dependent

reduction of pH in some parts of the TME, leading to

the development of a pH gradient [29]. As a result of

this acidic environment, increased expression and acti-

vation of pH-sensitive metastasis-promoting proteins

such as MMP-2 and MMP-9 occur and significantly

promote the invasive potential of tumor cells [30]. In

cancer cells, hypoxia can impact the response to che-

motherapy in two main ways [31]. Firstly, it can

enhance the ability of tumor cells to withstand higher

concentrations of chemotherapeutic agents via block-

ing apoptotic pathways that trigger cell death, such as

the TRAIL pathway [32]. Secondly, hypoxia promotes

DNA repair mechanisms in cancer cells, thereby reduc-

ing the efficacy of multiple chemotherapeutic agents

that cause DNA damage [33]. Additionally, the acidic

TME plays a role in diminishing the cellular uptake of

weakly basic chemotherapeutic drugs resulting in their

accumulation in the extracellular space outside of

their target sites in a process known as ion trapping,

consequently impairing their effectiveness [31].

Impact of the interstitial fluid pressure gradient

and signaling factors

An additional feature of altered mass transport in the

TME is the elevation of interstitial fluid pressure leading

to the generation of shear forces and mechanical strain

on tumor cells. In turn, this enhances their invasive capa-

bilities through factors such as flow direction (transmural

vs. luminal) [34], flow strength [35], as well as through

the redistribution of chemokine gradients [36]. Fluid flow

not only affects tumor cells but also influences the behav-

ior of stromal cells such as fibroblasts and macrophages,

which can independently facilitate tumor cell invasion

[12]. Chemokines and growth factors are integral to the

metastatic process of tumor cells and tissue tropism.

Tumor cells secrete chemoattractants that recruit a vari-

ety of immune (e.g. macrophages, neutrophils) and stro-

mal cells (e.g., mesenchymal stem cells, fibroblasts),

which in turn produce more chemokines and growth fac-

tors that further promote tumor cell migration. This

dynamic cancer/stromal cellular interaction is supported

by the selective expression of specific receptors for the

secreted factors, creating a self-reinforcing paracrine loop

[37]. Tumor cells can generate local gradients that pro-

mote their directed migration. For instance, tumor-

associated macrophages secrete epidermal growth factor,

which subsequently activates the epidermal growth factor

receptor present on breast tumor cells, thereby promot-

ing their migratory behavior [38]. Furthermore, the

CXCL12/SDF-1 chemokine produced by CAFs is instru-

mental in driving the metastasis of CXCR4-expressing

breast cancer cells specifically to the lymph nodes and

lungs [39]. Table 2 below summarizes the differences

between normal tissues and tumor tissues.

ECM remodeling and growth factors

Tumor matrix stiffness significantly influences the bio-

chemical facets of the tumor microenvironment,

including the expression, secretion, and activity of

growth factors and cytokines. Stiffer matrices can

enhance the activation of latent growth factors. For

example, TGF-b, often secreted in an inactive form, is

activated by integrin-mediated interactions influenced

by matrix stiffness [40]. In addition, stiff ECM pro-

motes a hypoxic microenvironment, which in turn

stimulates the production of growth factors such as

VEGF and cytokines that promote angiogenesis and

tumor growth [41]. The ECM is vital for intercellular

communication, functioning as a reservoir for the

sequestration of molecules and as a substrate that

facilitates cell adhesion and migration. During the pro-

cess of cancer invasion and metastasis, the activity of
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ECM-degrading enzymes increases, which promotes

the release of various matrix-associated growth factors

such as EGF, FGF, HGF, PDGF, and cytokines such

as IL-6, IL-10, TNF-a, IL-1b, and SDF-1, thereby cre-

ating local gradients of released mediators that further

promote cancer cell survival, proliferation, and

immune evasion [40, 42].

3D Cancer models

3D in vitro cancer models are biomimetic and can rep-

licate in vivo tumors by emulating the complexity

of cancer and the TME. It is critical, therefore, to

define the purpose of any 3D tissue/cancer model and

identify key biomimetic variables. Numerous design

parameters need to be considered when engineering

3D cancer models, including the selection of cellular

components (cancer/stromal cells), incorporation of

biomimetic ECM, replication of fluid flow, establish-

ment of biochemical gradients, and the development of

either a systemic multi-organ model for studying

metastasis or isolated single organ models [43].

Patient-derived cancer cells and immortalized human

cancer cell lines are commonly used cell sources. While

standardized, robust immortalized cancer cell lines are

mostly used for the development of 3D models,

they only embody one of the numerous phenotypes

found in the primary tumor and typically become less

physiologically relevant with continuous passaging.

Patient-derived cancer cells recapitulate tumor

Table 2. Comparison between characteristics of normal tissues and tumor tissues.

Normal Tumors

Cellular level

Shape Uniform, Spheroid shape Irregular (Varied sizes)

Nucleus Single nucleus Irregular shape, multi-nucleation

Chromatin Fine, evenly distributed Coarse, aggregated

Nucleolus Single, inconspicuous nucleolus Multiple enlarged nucleoli

Cytoplasm Large cytoplasmic volume Small cytoplasmic volume

Growth Controlled Uncontrolled

Maturation Mature into specialized cells Remain undifferentiated

Cell function Perform designated tasks Fail to perform designated tasks

Cell–cell adhesivity Active Cell–Cell junction and contact inhibition Reduced cell–cell junction and loss of contact inhibition

Cell stiffness Normal stiffness Softer, increase cell deformability

Cell contractility &

location

Cells stick together and remain in intended

location

Cells more contractile, can spread to other sites

Oxygen Favor aerobic respiration Favor anaerobic respiration (thrive in hypoxic conditions)

Energy efficiency Very high Very low production of ATP

Immune system Can be eliminated by immune system Cells evade immune system

Cell repair Damaged cells are repaired or replaced Cells are neither repaired nor replaced

Tissue-level Biophysical

factors

Architecture Organized arrangement polarized epithelial

layers, preserved basement membrane

Disorganized, loss of polarity of epithelial layers and break

down of basement membrane

Tissue boundary Tissues clearly demarcated Poorly defined tumor boundaries

Stiffness Normal Increased stiffness and physical stress

ECM Normal ECM turnover Excess ECM deposition, remodeling

IFP Most normal tissues, IFP range from �8 to

+6 mmHg

Increased IFP (can reach 50 or even 100 mmHg)

Tissue-level Biochemical

factors

Oxygen level Normoxia Hypoxia, dysregulated angiogenesis

pH Extrace llular pH ~7.4 Extracellular pH (6.5–6.9)

Metabolism Normal metabolism (glucose converted to

pyruvate)

Normal mitochondrial function

Low lipid oxidation, high antioxidant enzymes,

Low ROS (low resistance of cells to ROS)

Metabolic reprogramming (enhanced glycolysis and

production of lactate), lack of nutrition

High lipid oxidation, reduced antioxidant enzymes,

enhanced ROS production (cancer cells are resistant to

ROS)

Inflammation Normal inflammation control Sustained and prolonged inflammation
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heterogeneity, but culturing these cells is challenging

as the maintenance of the relevant genotype/phenotype

is difficult [12]. Inclusion of tumor-specific essential

stromal cell types, biomimicry of the microenviron-

mental ECM composition and architecture, as well as

biomimetic biomechanical stimuli is vital to replicate

the spatial organization of tissues. The assembly of

complex 3D cell structures can facilitate the recapitula-

tion of relevant biochemical cues [43]. Such 3D tumor

models that showcase tumor/stromal cross-talk can be

classified into organoids, engineered tissue models, ex

vivo models, bio-printed, and organ-on-a-chip (OOC)

models.

3D models used to test interdependence of

multiple facets of the TME

Biophysical-stromal cell interactions

All cells within the TME experience different mechani-

cal forces, including compressive, tensile, and shear

forces. These biophysical facets influence and direct

cancer progression (Fig. 1). It is important to explore

how each cell type responds to these mechanical stim-

uli and how interactions between forces and cells col-

lectively influence tumor progression. Mechanical cues

influence the interaction between cancer cells and vari-

ous immune cell types, such as T and B cells, macro-

phages, natural killer cells, and dendritic cells, which

depend on physical interactions with one another to

activate their responses. Co-culture of MDA-MB-231

breast cancer cells with monocytes and endothelial

cells in the presence of interstitial fluid flow signifi-

cantly enhances the activation of monocytes to

tumor-associated macrophages (TAM)-like phenotype

through stimulation by colony-stimulating factor 1

(CSF-1) [44]. The resultant activated macrophages, in

conjunction with interstitial fluid flow, subsequently

facilitate vascular sprouting via the vascular endothe-

lial growth factor (VEGFa) signaling, thereby promot-

ing cancer invasion [44]. Mimicking the desmoplastic

matrix of pancreatic ductal adenocarcinoma (PDAC)

through the fabrication of a 3D tumor niche using

dual-crosslinking gelatine methacrylate/hyaluronic acid

methacrylate hydrogels generates an immunosuppres-

sive microenvironment, marked by a decrease in M1

markers and an increase in M2 markers in TAMs,

induced by the PI3K-AKT-SELE/VCAM1 axis [45].

Increased matrix density and alignment of collagen

fibrils result in reduced T-cell proliferation, suppressed

T-cell activation, and altered migratory behavior of

T cells, which impedes their ability to infiltrate tumor

environments, mainly mediated by enhanced YAP

signaling [46]. Cancer cells are enveloped by a dense

layer of glycosylated proteins and lipids, known as the

glycocalyx, which plays a vital role in fostering a

favorable tumor immune microenvironment (TIME)

[47]. Nearly all cancers display modifications in glycan

synthesis, resulting in dysregulated levels of glycans

which may possess modified structural properties, pro-

foundly impacting cancer progression. It is suggested

that a dense glycocalyx acts as a protective barrier,

preventing tumor cell ligands from interacting with the

receptors of immune cells [48]. Using a 3D synthetic

bone matrix model, upregulation of glycosylation of

breast cancer cells was found to increase the thickness

of the cancer cell glycocalyx, leading to evasion of the

cytotoxic effect of natural killer cells [49].

Replicating the ECM of clear cell renal cell carci-

noma in a fibrin-based 3D culture system highlights

the impact of ECM composition and physical proper-

ties on the growth of CAF populations [50]. The ECM

confers mechanical stability to tissues and cells, allow-

ing for effective cell-matrix interactions that govern tis-

sue function. Furthermore, the ECM harbors several

types of growth factors that support cell adhesion,

growth, and migration [51]. Although often overlooked

in cancer research, the density and composition of the

ECM are recognized as crucial for the progression of

cancer. Laminin is a significant element in the modula-

tion of endothelial cell (EC) morphology and the for-

mation of vascular networks, associated with increased

tumor invasion into the stroma of engineered compart-

mentalized biomimetic colorectal tumouroids [52].

Laminin has been previously shown to increase the

expression of VEGFR2 receptors by ECs leading to

enhanced VEGF uptake and resulting in the develop-

ment of end-to-end networks in 3D hydrogels [53].

Biophysical-biochemical interactions

The biophysical microenvironment of the TME, which

includes the increased stiffness or fibrosis associated

with tumors, can impact the biochemical microenvi-

ronment in a multitude of ways (Fig. 1). Matrix remo-

deling can alter the diffusion of gradients of cytokines

and growth factors, as well as alter growth factor

sequestration. There have been a multitude of studies

in 3D tumor models that have helped decipher the

relationship between these TME facets.

PDAC is an aggressive solid tumor, distinguished by

a dense fibrotic stroma that significantly contributes to

its aggressive nature. This dense stroma leads to ele-

vated interstitial pressures and hypoxia development,

which subsequently creates a nutrient-deficient envi-

ronment that necessitates a modification of metabolic
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requirements. A microfluidic PDAC-on-a-chip plat-

form encompassing pancreatic cancer cells and pancre-

atic stellate cells (PSCs) embedded in a 3D collagen

matrix enabled the correlation of matrix stiffness and

solid stress to the altered metabolism of the PDAC

TME observed clinically in patients with pancreatic

cancer [54].

The mutual interaction between ECM remodeling

and hypoxia signaling substantially impacts tumor

progression and metastasis. The physical characteris-

tics of the ECM, including the diameter and alignment

of fibers, pore size, and viscoelasticity, modulate

hypoxia-driven biochemical processes, which in turn

facilitate metastatic transformation [55]. Mechanical

forces induced by a stiff matrix are transmitted via

mechanosensitive focal adhesion proteins to biochemi-

cal signaling in the cells [56]. Several matrix stiffness-

sensitive transcription factors are involved in cancer

progression, such as YAP/TAZ, NF-jB, Snail, and

HIF1A [56]. Culturing glioma cells in a stiff ECM

enhances HIF1A expression, which subsequently

increases the expression of tenascin C, a critical com-

ponent in the aggressiveness of gliomas [57]. Addition-

ally, in breast cancer patients, there is a notable

positive correlation between the expression of HIF1A

and the stiffness of the affected tissues [58]. Recipro-

cally, hypoxia enhances ECM remodeling by stimulat-

ing protein degradation, modifications in composition,

and changes in structural organization, ultimately

resulting in a fibrotic/stiff ECM [59]. Under hypoxic

conditions, an increase in the secretion of MMPs facil-

itates the degradation of the basement membrane

ECM through HIF signaling pathways [60]. A hypoxic

environment drives augmented deposition and cross-

linking of collagen, fibronectin, and hyaluronic acid

[61]. Furthermore, it has been suggested recently that

hypoxia and the ECM collaborate to modify various

aspects of cellular metabolism [62]. This partnership

facilitates the enhancement of aerobic glycolysis

through the upregulation of glucose transport mecha-

nisms and glycolytic enzymes, in addition to the mod-

ulation of intracellular pH levels. Likewise, both

components influence lipid and amino acid metabolism

by promoting the uptake and synthesis of these macro-

molecules, thus supplying the tumor with supplemen-

tary energy crucial for growth and metastatic

progression. The incorporation of breast cancer cells

in synthesized collagen matrix scaffolds with controlled

porosity and tortuosity facilitates the development of a

hypoxic environment impacting cancer cell growth

dynamics and the promotion of aggressive phenotypes

[63]. Another study reported the successful recapitula-

tion of a hypoxic TME in a 3D-printed in vitro model

of patient-derived PDAC cells embedded in a biomi-

metic ECM, resulting in markedly enhanced glutamine

catabolism, further exacerbating hypoxia in tumors

[64].

Stromal cell-immune cell interactions

Cell–cell interactions play a crucial role in cancer pro-

gression, and deciphering these precise interactions is

difficult given the number of different cell types at

play. Even within animal models, these challenges per-

sist. 3D tumor models provide an opportunity to engi-

neer biomimetic scenarios to specifically understand

cell–cell interactions in a systematic and controlled

manner (Fig. 1). These tools are powerful in helping

unravel cell–cell communication.

Colorectal cancer (CRC) evolves within a multiface-

ted TME, characterized by the dynamic interactions

between cancer cells and various types of stromal cells.

In advanced stages of CRC, the stroma can constitute

as much as 50% of the primary tumor mass, predomi-

nantly consisting of mesenchymal stromal cells

(MSCs). Mesenchymal cell signatures, in conjunction

with tumor-promoting macrophages, are significantly

linked with disease progression and diminished overall

prognosis in CRC [65]. Incorporation of MSCs, mono-

cytes, and CRC cells in a gelatine/methacryloyl-based

hydrogel demonstrated enhanced expression of matrix

remodeling proteins FN1 and MMP9, induced release

of tumor-promoting immune molecules MIF, Serpin

E1, CXCL1, IL-8, and CXCL12 by MSCs, leading to

the suppression of the anti-tumor functions in macro-

phages [66]. Triculture of pancreatic cancer cells, PSCs,

and ECs in 3D leads to inhibition of the T-cell inflam-

matory response mediated through several mecha-

nisms, including secretion of suppressive soluble

factors (IL-6, SDF-1, galectin-1), excess deposition of

ECM to limit T-cell infiltration, and metabolic repro-

gramming that depletes nutrients causing T-cell

exhaustion [67]. Studies using co-culture models of

hepatocellular carcinoma (HCC) and ECs reveal that

endothelial cells trigger an inflammatory response in

HCC cells, leading to an upregulation of the TNF sig-

naling pathway. Furthermore, the interaction between

HCC and endothelial cells facilitates macrophage

polarization towards a pro-inflammatory and pro-

angiogenic phenotype [68]. Pro-inflammatory cytokines

and growth factors produced by immune cells can

induce the transformation of fibroblasts into myofibro-

blasts, which are characterized by an increased expres-

sion of contractile protein genes, such as alpha smooth

muscle actin (Acta2), as well as other ECM proteins.

Consequently, these diverse fibroblast populations can
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modify the physical characteristics of the ECM.

Sophisticated organoid TME models, encompassing

tumor, stromal, and immune components, result in the

activation of myofibroblast-like CAFs and the infiltra-

tion of lymphocytes in the tumor [69].

Stromal cell-biochemical interactions

Gradients of chemokines, cytokines, growth factors,

small molecules like oxygen, and pH act synergistically

to promote the directional movement of tumor cells

towards the vasculature and lymphatic systems [70]. A

3D bio-printed model revealed that the interaction of

co-cultures of two glioblastoma cell lines (U-251 and

DK-MG) with mesenchymal stromal cells resulted in a

significant rise in the repertoire and concentrations of

secreted chemokines compared to monocultures [71].

Another study used 3D in vitro PDAC tumor models

to examine the interactions of macrophages and cancer

cells in hypoxic settings in the presence of various

chemical and molecular gradients and demonstrated

that hypoxic macrophages reprogrammed tumor cell

responses, evidenced by higher TGF-b and PD-L1

expression compared to monocultures of tumor cells

[72]. A different study demonstrated that an acidic

TME stimulates the NF-kB-mediated inflammatory

response of the tumor-associated mesenchymal stromal

cell through increased secretion of several cytokines

and chemokines, including IL-6, that further promote

cancer invasiveness in a 3D microfluidic model of oste-

osarcoma [73]. Tumor-associated environmental fac-

tors such as lack of nutrients, buildup of waste

products, and acidic pH hinder the antitumor

functions of T and natural killer (NK) cells. Tumor-

on-a-chip models encompassing either MCF-7 or

patient-derived breast cancer cells and endothelial cells

replicate gradients of nutrients and pH, resulting in

biomimetic cell proliferation and necrosis characteristic

of solid tumors [74]. These models further demonstrate

the gradual reduction of the cytotoxic potential of NK

cells leading to their exhaustion [74]. Notably, even

after alleviating the environmental stress imposed by

the tumor, NK cells did not revert to a non-exhausted

state, exhibiting various molecular and functional

changes [74].

3D models for studying how tumor-stromal

interactions impact drug resistance

Drug resistance poses a significant challenge in the

treatment of cancer. Despite continuous developments

of new compounds and drug combinations that exhibit

greater effectiveness in eradicating cancer cells, the

onset of drug resistance is still inevitable [75]. A

recent novel concept proposed that tumor resistance to

antineoplastic agents may arise not only from

cell-autonomous mechanisms that involve genetic and

epigenetic alterations in tumor cells, but also from

non-cell-autonomous mechanisms that are related to

the TME [76]. While the majority of cell-autonomous

mechanisms have been validated in preclinical

models and in clinical settings, preclinical in vitro

models that extensively examine TME-related mecha-

nisms of drug resistance are still limited [76]. Thus, a

comprehensive understanding of these complex interac-

tions through 3D in vitro models is critical for the

development of effective therapeutic strategies. A

multi-compartmentalized vascularized tumor-on-a-chip

model of ovarian cancer demonstrated the role of

CAF-mediated ECM remodeling and formation of

vessel-like structures with associated hypoxia gradients

in the promotion of drug resistance to

carboplatin/paclitaxel treatment, henceforth reversed

by targeting TGF-b signaling [77]. A 3D breast tumor

model [78] validated the role of the PAK1 pathway in

CAF differentiation, migration, and contraction,

thereby aggravating chemotherapy resistance. This was

successfully reversed through fabricated polymeric

nanofibers loaded with PAK1 inhibitors, which

enhanced paclitaxel efficacy as evidenced by >90%
reduction in cancer viability with diminished collagen

type I and a-smooth muscle actin [78]. The interplay

between colorectal cancer organoids and CAFs in

organoids influences the expression of genes associated

with 5-fluorouracil and oxaliplatin resistance, particu-

larly in pathways linked to interferon-alpha/beta sig-

naling and the assembly of major histocompatibility

complex class II protein complexes measured by tran-

scriptome profiling following anticancer drug treat-

ment [79]. A similar study reported the development of

resistance of cancer cells to gemcitabine, 5-FU, and

paclitaxel in co-cultures of patient-matched PDAC

organoids and CAFs. Resistance was mediated by the

induction of a pro-inflammatory phenotype in CAFs

associated with increased expression of EMT-related

genes [80]. A TME on-chip comprising breast cancer

cells and ECs cultivated under controlled interstitial

pressure conditions demonstrated that cancer cells

exposed to doxorubicin showed greater survival rates

than those in a 2D culture environment, highlighting

the influence of elevated IFP on drug delivery into

tumor tissues [81].

Cancer cells and mesenchymal stem cells/adipose-

derived stem cells (MSCs/ASCs) can interact through

several mechanisms, including tunneling nanotubes

(TNTs), cell–cell fusion, and the transport of
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extracellular vehicles (EVs) [82]. These mechanisms

enable the exchange of diverse intracellular compo-

nents, including macromolecules, organelles, vesicles,

proteins, calcium ions, and other substances. Patient-

derived breast cancer organoids cultured with ASCs

showed mitochondrial transfer via TNTs, which was

associated with triggered metabolic alterations and

enhanced ATP production that boosts the efflux activ-

ity of ABC transporters and promotes multidrug resis-

tance (MDR) [83]. Tumor metastasis is a major cause

of cancer-related deaths, as tumor cells spread from

the original location to other areas such as the liver,

bone, brain, lung, and lymph nodes [84]. This process

involves three main stages: detachment of tumor cells

from their original site, migration through the blood-

stream to a secondary location, and adjustment to sur-

vive in new sites by forming micro-metastases. The

process of organ-specific metastasis involves the com-

plex interplay of cancer cells, the microenvironment of

each organ, the distinct attributes of the vascular net-

work in each organ, and the immune system [85].

Breast-derived tumor cells migrate through the vascu-

lar system, infiltrating perivascular niches located

around blood capillaries. The slow blood flow main-

tains these niches by transporting oxygen, nutrients,

and signaling molecules from the bloodstream into the

surrounding interstitial tissue [86]. Additionally,

the ECM, ECs, and mesenchymal stem cells play a

crucial role in regulating the homing of metastatic

cells. A perfused bone perivascular niche-on-a-chip

was designed to explore breast cancer progression and

drug resistance in bone colonization [87]. Delivering

controlled flow velocities, shear stresses, and oxygen

gradients to the niche-on-a-chip facilitated the estab-

lishment of a long-lasting, self-assembled vascular net-

work in this model. Breast cancer cells exposed to

interstitial flow within the bone perivascular niche-on-

a-chip exhibit a slow-proliferative state that correlates

with increased sunitinib resistance [87].

Brain metastasis in non-small cell lung carcinoma

(NSCLC) is fatal and is known for its resistance to can-

cer therapies, which could be attributed to the tumor

microenvironment. Tumor cells from brain metastatic

NSCLC (BM-NSCLC) engage in dynamic interactions

with the brain TME (bTME) which plays a crucial role

in forming a brain metastatic niche [88]. A 3D micro-

fluidic system established the reciprocal communication

between BM-NSCLC, astrocytes, and brain-specific

ECs. This tumor-stroma interaction resulted in the acti-

vation of NF-jB, MAPK, and Notch signaling path-

ways, immune and inflammatory responses associated

with increased resistance of bTME+ BM-NSCLC to

afatinib compared to monocultures [89].

Methods of analysis of tumor-stroma
interaction in 3D models

The complexity of 3D cancer models presents chal-

lenges in data collection and analysis due to inherent

heterogeneity and interference from the matrix. Devel-

oping strategies for distinguishing between different

cell populations in the TME is of utmost necessity.

Additionally, tools for evaluating drug responses in

3D cultures hold great potential for advancing drug

discovery [90]. Analysis of 3D culture models will

greatly depend on the research question and the

intended application of this model. These models serve

two primary purposes, which are the mechanistic study

of cancer biology and the development of novel and

personalized therapies. Studies examining tumor cells

often assess the 3D engineered cancer mass as a whole

to ascertain growth, spheroid size, invasion, metastasis,

and cancer cell proliferation/apoptosis. There are a

wide range of assays and microscopy techniques that

are able to assess these parameters.

Studying the TME usually includes investigating

angiogenesis, immune cell infiltration, and inflamma-

tion, ECM dysregulation, heterogeneous stromal cell

function, a hypoxic/acidic microenvironment, and met-

abolic alterations. These require analysis methods that

are indirect and often require multiple modes of assess-

ment. For example, angiogenesis as a process may

include studying an increase in angiogenic growth fac-

tors at the gene or protein level, along with measuring

the complexity of cell-to-cell network aggregation by

endothelial cells. Collectively, these data will provide

an understanding of changes or remodeling in

vascularization.

The disruption of signaling mechanisms which lead

to increased growth and survival of tumors can stem

from various sources such as changes in the DNA

sequence, the epigenetic landscape, the levels of

gene and protein expression, and the functional activ-

ity of proteins, including their interactions and post-

translational modifications. Thus, comprehensive

understanding requires analysis at different levels

within the same cellular context [91]. Tumor-stroma

interactions in 3D models can be analyzed using a

variety of techniques (Fig. 2).

Traditional techniques such as histology and quanti-

tative PCR have long been the gold standard to corre-

late proteins and genes with disease phenotype. These

methods are still used in pathology and often rely on

clinicians and pathologists using the accrued knowl-

edge of marker regulation with disease progression

and/or regression. This means the compatibility of 3D

models with existing techniques is critical for
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comparisons to human tissue. An example is the fixing

and sectioning of 3D models, which allows for direct

comparison of disease progression [91, 92]. This

dataset also provides the basis for the underlying vali-

dation of any 3D model as a biomimetic equivalent of

diseased human tissue.

There are technologies now being employed to bring

together large sets of data to gain further insight or

details into disease (Fig. 2). This includes the use of

spatial transcriptomics to study patterns of gene regu-

lation in spatially relevant locations, for instance, at

the tumor-stroma boundary versus deep within the

tumor core [93]. Furthermore, atomic force micros-

copy has allowed for the study of cell-generated matrix

remodeling to be studied [94, 95]. Employing more

sophisticated techniques will give us greater insight

into disease progression and allow us to study multiple

facets of therapeutic intervention.

Conclusions and future directions

To summarize, cancer is a multifaceted disease where

the interactions between tumor cells and the different

components of their surrounding microenvironment

impact tumor progression and therapeutic efficacy.

The development of biomimetic in vitro systems of the

TME is essential for cancer modeling to facilitate

the development of novel therapeutic strategies and

decipher the molecular processes underlying tumori-

genesis. The evolution of 3D in vitro tumor models

that offer controlled and physiologically relevant con-

ditions enables researchers to isolate the effects of both

cellular and acellular microenvironmental factors on

cancer progression. Despite their advantages, 3D

models are still constrained by inherent drawbacks

that might limit their translation into clinical settings.

These include incomplete recapitulation of heteroge-

neous subpopulations of cancer cells, the discrepancy

between the biology of the model system and the con-

text of the human body, the design of the 3D struc-

ture, like cellular composition and biomaterial

formulation, and the quantification of the 3D model.

In the future, the application of machine learning to

replicate and predict the behavior and properties of

3D structures according to their cellular and material

composition could facilitate the rapid advancement of

personalized tissue model development. This could be

accomplished through the systematic selection of cellu-

lar components and biomaterials and meticulous con-

trol of environmental conditions. The integration of

patient-derived tissues, cutting-edge imaging, multi-

omics technologies, and computational models has

Fig. 2. Schematic of the multiple approaches taken to analyze 3D models. We start with general techniques and then show methods that

provide details on spatial analysis. Specialized techniques can be modified to provide analysis for 3D tumor models, including the use of

atomic force microscopy to measure tissue/matrix remodeling by cancer cells. Schematic generated using Servier Medical Art.
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substantial potential to revolutionize the field of per-

sonalized medicine, particularly in oncology.
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