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Glossary of Terms

Term Full form
ARDS Acute respiratory distress syndrome
COPD Chronic obstructive pulmonary disease
FEV Forced expiratory volume
FIO2 Fraction of inspired oxygen
FRC Functional respiratory capacity
FVC Forced vital capacity
MAP Mean airway pressure
PaO2 Partial pressure of oxygen
PEEP Positive end-expiratory pressure
PIP Peak inspiratory pressure
TLC Total lung capacity
VC Vital capacity
VILI Ventilator-induced lung injury
Ventral The front portion of the lungs, or the part of the lungs that faces

the front of the body
Dorsal The back portion of the lungs, or the part of the lungs that faces

the back of the body
Dependent Lung The lowest part of the lung in relation to gravity
Non-dependent Lung The highest part of the lung in relation to gravity

*All code used in this thesis was implemented in MATLAB [1]
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1 Abstract

This thesis explores the impact of body positioning on pulmonary mechan-

ics in critically ill patients, particularly those requiring mechanical ventilation

for conditions like ARDS. Changing a patient’s posture, such as moving them

from supine to prone, can enhance lung function by improving ventilation and

perfusion distribution and reducing the risk of Ventilator-Induced Lung Injury

(VILI). The primary goal of this research is to identify key parameters influ-

enced by body positioning and to develop a mathematical model that simulates

lung behaviour under different conditions.

Central to this thesis is the understanding of how gravity influences lung tis-

sue deformation, a phenomenon directly affecting airflow and blood flow within

the lungs. Through detailed analyses, we identify that alveolar displacement is

more pronounced when a patient is upright, and less pronounced in the prone,

compared to the supine. We demonstrate that lung deformation due to gravity

is a critical factor in the observed differences in pulmonary function between

positions.

After an in-depth review of the current and historic literature, we begin by

modelling the lung as a static object using solid mechanics, to determine the

deformation of lung tissue when fully deflated. This model will then inform the

governing equations of a poroelastic model, coupling the solid tissue with the

intricate airflow through the system. We will look at this from its simplest lin-

ear approximation, increasing complexity until a fully non-linear physiologically

accurate model is realised. Finishing this thesis, we will connect the non-linear

poroelastic model to the branching upper airways and blood column, in order

to assess the spatial ventilation and perfusion mismatch of the lung in different

orientations.

This approach validates the concept that mathematical models can accu-
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rately capture multi-variate lung behaviour, with demonstrated predictive fi-

delity, and can be used for in-silico experimentation to provide clinical inference

and aid decision making.
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2 Impact Statement

The research presented in this thesis has the potential to significantly impact

both academic scholarship and clinical practice, particularly in the field of pul-

monary mechanics and critical care. By developing an advanced mathematical

model that simulates lung deformation and function across various body posi-

tions, this work sheds light on the relationship between gravity, patient posi-

tioning, and pulmonary mechanics. This understanding is crucial for improving

care in patients requiring mechanical ventilation, especially those suffering from

acute respiratory distress syndrome (ARDS), chronic lung diseases, or severe

respiratory failure as seen during the COVID-19 pandemic.

From an academic perspective, the contributions of this thesis extend across

multiple disciplines, including applied mathematics, biomedical engineering, and

pulmonary physiology. The integration of poroelasticity into lung mechan-

ics modelling is novel, offering a detailed mathematical framework for under-

standing how lung tissue deforms under different gravitational and mechanical

forces. This interdisciplinary approach could stimulate further research in com-

putational biology, particularly in refining mathematical models that account

for individual patient variability, an area of increasing importance in precision

medicine.

Beyond academia, the clinical implications of this work are substantial. The

mathematical models developed offer new tools for understanding how patient

positioning impacts lung function, particularly in the distribution of ventila-

tion and blood flow to different lung regions. This knowledge is highly relevant

for optimising treatment strategies in the ICU, where patients often need me-

chanical ventilation to survive. By better understanding the mechanics of lung

deformation, clinicians can tailor patient positioning to improve lung function

and reduce the risk of VILI, a common complication in mechanically ventilated

19



patients.

One of the most immediate potential impacts of this research lies in its

application to patients with ARDS, a condition exacerbated by improper venti-

lation strategies. By using the models developed in this thesis, clinicians could

simulate the effects of various positioning strategies before applying them in

practice, potentially lowering mortality rates and shortening ICU stays. Addi-

tionally, the insights from this work could lead to more personalised treatment

protocols, accounting for individual variations in lung structure and response to

gravity.

In the broader healthcare context, the findings from this thesis could inform

public health policy and clinical guidelines. For example, during the COVID-19

pandemic, prone positioning became a widely adopted strategy to improve lung

function in critically ill patients. Insights into the extent and distributions of

VILI in different positions demonstrate a clear area for treatment development.

Over time, this research could help shape ventilator management protocols,

reduce healthcare costs associated with prolonged ICU care, and ultimately im-

prove the quality of life for patients suffering from severe respiratory conditions.
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3 Introduction

The CHIMERA (Collaborative Healthcare Innovation through Mathematics,

EngineeRing and AI) hub at UCL aims to use mathematical modelling and

critically-ill patient data to improve health care protocols and overall improve

the treatment of patients. In an intensive care setting, many patients require

intervention using a mechanical ventilator in order to maintain normal lung

function and ensure the best possible outcome. The programming and proper

utilization of mechanical ventilators relies on an accurate understanding of pul-

monary physiology, and this has been an area of significant research in recent

years. Collecting patient data has allowed for the creation of mathematical

models of the human lung which can be experimented with in order to explore

possible strategies for effective treatment. A number of models of mechanical

ventilation have been explored in this hub, however, there are many areas that

are still to be developed. One such area is the influence of patient positioning

on pulmonary function. There is evidence that the position of a patient, as well

as the time spent in that position can drastically improve the expected outcome

[2]. Manoeuvring the posture of a patient is a common treatment strategy in the

ICU, and a number of positions are regularly used [3]. The upright position sees

a patient either stood up or sat at a 90◦ angle such that their torso is completely

vertical. The supine position has the patient lay flat on their back, which is one

of the most commonly seen positions due to comfort for the patient and ease

of access for the clinicians. Equally, Fowler’s position is often utilised and sees

the patient sat at a 45% incline from horizontal. The prone position (laying

a patient flat on their front) has garnered increasing interest and is associated

with a measurable improvement in patient condition. This position has been as-

sociated with a significant improvement in patient condition [4]. The attention

on this position in particular has come with the emergence of Covid-19 in 2019
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which resulted in a global pandemic [5]. Evidence of survival improvement in

non-Covid patients was applied to Covid-diagnosed patients, such as the 2021

study which found that in patients with hypoxaemic respiratory failure due to

COVID-19, awake proning reduced the incidence of treatment failure and the

need for intubation [6].

Although the benefits of altering patient position are known, the precise

mechanics behind the differences in pulmonary function between postures are

still being explored. One key concept is deformation of lung tissue under gravity,

and how this moves and redistributes the length of the lung. The substantial

volume of soft tissue in the lungs will predictably be influenced by gravity to a

quantifiable degree. Past work in this area has focused on animal studies for data

collection [7, 8, 9], with results indicating a significant correlation between height

of the lung against gravity and a number of key indicators of lung health, such as

blood flow and gas volume. Recently, work has been undertaken to explore this

phenomenon in humans, with interesting results ranging from external pressures

placed on the lung due to gravity [10] and deformation of lung tissue due to its

own weight. The data collected in these studies have given results that clearly

indicate the importance of including such phenomena when treating a patient.

For example, tissue stress and strain occur in a vertical gradient with highest

levels at the apex of the lung [11], resulting in alveoli at the top of the lung being

over-distended and those at the bottom being compressed [12, 13]. It has also

been shown that these gradients result in a regional distribution of airflow and

bloodflow to the alveoli, which in turn alters the ventilation/perfusion match

and the efficiency of gas exchange across the lung [14]. This project will collate

the current works on body positioning and gravity as they relate to pulmonary

function, and use findings to create a mathematical model which can accurately

replicate human physiology. Such a model allows the simulation of possible
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treatment strategies in order to understand not only the expected outcome

for the patient, but also the individual mechanics that are contributing to the

outcome.

3.1 Literature Review

The primary purpose of this research is to create a model which can explore

the intricate effects of body positioning on pulmonary function, and the subse-

quent outcome for the patient. However, lung function cannot be defined by one

single variable, and so it is important to evaluate the contributions of various

pulmonary factors to overall lung health. Therefore, the literature will be pre-

sented in sections. First, we will establish the clinical context and motivations

behind the thesis, exploring the use of patient positioning in the ICU. We will

then go into detail on the precise mechanisms that are influenced by shifting po-

sitions, and how these contribute to the overall function of the lung and health

of the patient. At this point we will evaluate the current modelling efforts,

both their successes and limitations, before finally diving into the poroelastic

framework.

3.1.1 Clinical Context and Motivation: Patient Positioning in Crit-

ical Care

It is widely accepted that altering a patient’s position can significantly affect

their pulmonary function. A 2014 study by Naitoh and collaborators [2], in-

volving twenty healthy individuals, investigated the impacts of body position on

pulmonary function and chest wall motion. They found that forced expiratory

volume (FEV) measurably decreased by an average of 0.4L/s when subjects

moved from a sitting position to any of the six recumbent positions. Tho-

racic expansion also declined by approximately 30% in all recumbent positions
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compared to sitting, with similar changes observed in both supine and prone

positions. However, this study had limitations, including a small and skewed

sample size (15 out of 20 subjects were male), and the use of only young, healthy

participants (between the ages of 20 and 43), making its direct applicability to

critically ill ICU patients limited due to substantial differences in pulmonary

function associated with age and underlying lung conditions.

A systematic review by Mezidi and Guérin in 2018 [15] assessed available

data on the effects of body position in mechanically ventilated Acute Respi-

ratory Distress Syndrome (ARDS) patients. Their general findings indicated

an increase in functional residual capacity (FRC) when patients moved from

supine to either sitting or prone, as well as an increase in oxygenation. Res-

piratory resistance was found to decrease in an upright stance and increase in

lateral positions, while prone positioning showed either a decrease or no signifi-

cant change. The review highlighted variations in methodology between studies,

such as the time patients were left in prone position (from ‘a few minutes’ to

2 hours) and cohort sizes (from ten to 41 patients). A deeper dive into the

papers included in the meta-analysis expands on these findings: Blanch et al.

[16] observed a 15% rise in PaO2/FIO2 (a measure of oxygenation) in 16 out

of 23 ARDS patients when moved from supine to prone, an improvement more

pronounced in patients receiving ventilation for a shorter duration since ARDS

diagnosis. Servillo (1997) also reported increased oxygenation in 10 out of 12

ARDS patients when moved from dorsal to ventral decubitus (supine to prone)

Ḣowever, this study had a small sample size and included patients with various

other diagnoses that could impact lung function. Measurements were also taken

after only 15 minutes in the prone position, a much shorter duration than in

other studies. A meta-analysis by Munshi (2017), involving over 2000 patients,

reinforced the importance of proning duration, finding a significantly lower risk
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of mortality and higher PaO2/FIO2 on Day 4 in patients who received at least

12 hours of proning. Despite variations in methodology and duration across

studies, the consistent finding was an improvement in oxygenation when pa-

tients were moved to the prone position. It is also noted that the current health

of the patient significantly impacts the expected results of proning, necessitating

the incorporation of specific and localised impacts of different conditions into

any clinically relevant model.

The prone position has garnered increasing interest due to its association

with significant improvement in patient condition. The emergence of the SARS-

CoV-2 (COVID-19) virus in 2019, leading to a global pandemic, brought par-

ticular attention to proning, as many patients developed severe breathing diffi-

culties, pneumonia, and ARDS. Evidence suggests that proning may markedly

improve the survival of COVID-19 patients. A large multinational meta-trial

by Ehrmann and colleagues (2021) [6] studied 1121 awake COVID-19 patients

and found that awake prone positioning reduced the risk of treatment failure

(defined as death or requiring intubation) from 46% in standard care to 40% in

the proned group. Patients proned for at least 8 hours per day showed a sig-

nificantly lower treatment failure rate (17%) compared to those proned for less

than 8 hours (48%). Ghelichkhani and Esmaeli [17] suggested that prone posi-

tioning is effective in COVID-19 due to the prevalence of ARDS among patients

(up to 17% of cases). Proning improves ARDS outcomes by increasing recruit-

ment in dorsal regions, improving chest wall elastance, enhancing tidal volume,

and increasing end-expiratory lung volume. It also reduces over-distension in

dorsal (non-dependent) lung regions, improving oxygenation. While Li and Ma

[18] noted key distinctions between COVID-19-related ARDS and non-COVID

ARDS (e.g., longer time before symptom onset), they suggested similar treat-

ment methods should be effective. Park et al. [19] found that prone positioning
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had the same effectiveness in treating COVID ARDS as in standard ARDS,

though improvements in oxygenation and static respiratory compliance were

initially higher in COVID ARDS patients. However, debates persist, with Gat-

tinoni and Marini [20] highlighting unique characteristics of COVID ARDS,

such as unusually high lung compliance, which questioned whether standard

ARDS treatments (e.g., high PEEP levels) were always appropriate. This debate

underscores the continuing progress and evolving understanding in pulmonary

physiology, suggesting that the precise mechanics behind positional changes still

require deeper exploration.

Ultimately, while the benefits of altering patient position are known and in-

creasingly applied in clinical practice, the precise underlying mechanisms that

drive the differences in pulmonary function between postures are still being ex-

plored. This highlights the critical need for a comprehensive and detailed math-

ematical model that can accurately replicate human physiology and provide

insights into these mechanisms, not only to understand the expected outcome

but also the individual mechanics contributing to it.

3.1.2 Physiological Mechanisms Influencing Regional Pulmonary Me-

chanics

Understanding the spatial and temporal variability of pulmonary mechanics is

essential for developing physiologically accurate models of lung behaviour. This

section explores the fundamental physiological mechanisms that govern regional

differences in lung deformation, ventilation, and perfusion, with a particular em-

phasis on the influence of gravity, body position, and external mechanical forces.

These factors interact with the intrinsic material properties of lung tissue and

the complex geometry of the pulmonary system to produce highly heteroge-

neous mechanical behaviour. A detailed review of how gravitational gradients,

pleural pressures, and anatomical constraints affect lung mechanics—alongside
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their implications for ventilation-perfusion (V/Q) matching—provides critical

context for modelling the lung as a deformable medium. This understanding

lays the groundwork for transitioning from classical solid mechanics approaches

to more advanced poroelastic models, where both tissue deformation and fluid

transport are tightly coupled within a unified framework.

In the study of pulmonary mechanics, the understanding of regional lung

function, particularly ventilation and perfusion distribution, has evolved sig-

nificantly, moving beyond initial gravity-centric models to incorporate complex

structural and mechanical factors. Early investigations, such as those by West

and Dollery [7, 14, 21], established that in erect humans, pulmonary blood flow

decreases from the base to the apex. There are critiques that can be made of

these early works, such as the use of a canine lung as a proxy, or the use of

radioactive Xenon 133 which has made the experiments un-replicable within

modern ethical guidelines. The groundwork for pulmonary bloodflow distribu-

tion however, has been crucial in the ongoing study of regional lung mechanics.

This distribution was traditionally explained by West’s three-zone model [7],

which posits that flow is determined by the interplay of pulmonary arterial,

alveolar, and venous pressures.

West depicted that the lung should be separated into three ‘zones’, as shown

in Figure 1. Zone 1 occurs above the point at which pulmonary arterial pres-

sure and alveolar pressure are equal. In this zone, alveolar pressure is such that

it exceeds perfusion pressures. This results in blood flow being completely re-

stricted, and no perfusion is seen in this zone. Zone 2 occurs below the point at

which pulmonary arterial pressure and alveolar pressure are equal, but above

the point at which pulmonary venous and alveolar pressure are equal. In this

zone, blood flow increases down the lung in a linear pattern due to the steady

increase in arterial pressure. Finally, zone 3 occurs below the point at which
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Figure 1: Diagram representing West’s theoretical three-zone model, which
posits that pulmonary blood flow distribution is determined by the interplay
of pulmonary arterial Pa, alveolar PA, and pulmonary venous Pv pressures,
with zones aligning vertically parallel to gravity. Zone 1 PA > Pa > Pv restricts
blood flow, Zone 2 Pa > PA > Pv shows linear blood flow increase, and Zone
3 Pa > Pv > PA also shows linear blood flow increase but with a shallower
gradient. [7].

pulmonary venous pressure and alveolar pressure are equal. This zone also sees

a linear relationship between distance down the lung and blood flow, but with

a significantly shallower gradient than in zone 2. The boundaries for the zones

were stated to be as follows:

Zone1 ⇒ PAlv > Part > Pven

Zone2 ⇒ Part > PAlv > Pven

Zone3 ⇒ Part > Pven > PAlv

(1)
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where PAlv, Part and Pven represent alveolar pressure, pulmonary arterial pres-

sure and pulmonary venous pressure respectively. Zones align vertically parallel

to gravity.

Critiques have been made that gravity alone cannot account for the hetero-

geneity in pulmonary bloodflow. For instance, Hughes et al. (1968) challenged

the sufficiency of West’s model, observing that in the bottom (dependent) zones

of the upright lung, blood flow decreases despite increasing hydrostatic pressure

[22]. They argued that this phenomenon "is impossible to explain" solely on the

basis of pulmonary arterial, alveolar, and venous pressures, suggesting instead

that added resistance to flow lies in larger, extra-alveolar vessels influenced by

interstitial pressure. This extended model, incorporating interstitial pressure

effects, provided a more comprehensive explanation for blood flow distribution,

particularly at lower lung volumes where this added resistance was more marked.

This discourse highlights the need for a coupled model which can incorporate

both the gravitational gradients of bloodflow as well as the complexity of the

vascular structures.

Further on from perfusion variation, significant work has gone into the un-

derstanding of the mechanics present in the lung tissue itself, and how this

contributes to spatial heterogeneity. The concept of the "Slinky effect" has

emerged to explain how lung tissue deforms under its own weight, impacting

perfusion measurements, shown in Figure 2 [12]. In the upright position, the

lung’s own weight causes the apex to be more expanded and the base to be

more compressed. This results in a vertical gradient of tissue deformation,

with greater alveolar distension at the apex and smaller, denser alveoli at the

base. The term captures how gravity causes a progressive increase in tissue

compression and pleural pressure from top to bottom, influencing both venti-

lation distribution and regional lung mechanics. Hopkins et al. (2007) utilised
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Figure 2: Schematic representation of strain-stress distribution and its impact
on alveolar size distribution between the supine and prone position. The Slinky
effect of a triangular-shaped spring suspended from its apex (supine position)
causes higher strain and larger variation in the distribution of alveolar sizes
due to the effects of gravity and a steeper stress production during mechanical
inspiration in the upper lung regions. In contrast, suspending the spring by its
base across a wider surface area (prone position) produces a more even strain and
more homogeneous distribution of alveolar size that lessens inhomogeneity in
stress development throughout the lungs during mechanical inspiration. Taken
from [23].

functional MRI in supine humans to demonstrate that both perfusion and lung

density exhibit vertical gradients [13]. However, when perfusion was normalised

for regional lung density, the apparent vertical gradient in perfusion was not

significantly different from zero. This key insight suggests that a substantial

part of the observed vertical perfusion gradient in intact lungs is an artefact of

measurement arising from the gravitational compression of dorsal (dependent)

lung regions, which increases local tissue (and thus capillary) density. The

importance of gravity in lung density distribution has been explored between

horizontal patient positions as well as in the upright. In the upright position,
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the lungs are suspended vertically, allowing gravity to act directly along their

long axis. This results in a pronounced deformation gradient, where the apex is

more distended and the base is more compressed, leading to significant differ-

ences in alveolar size, compliance, and ventilation. In the supine position, the

lungs lie horizontally and gravity acts from the ventral to the dorsal [24]. This

shifts the deformation gradient dorsally, compressing the posterior lung regions

and reducing ventilation there. While the Slinky effect persists in supine, the

gradient is less steep than in upright. In the prone position, although the lungs

remain horizontal, due to the anatomical shape of the lungs and reduced influ-

ence from the heart and abdominal contents, tissue deformation is more evenly

distributed. As a result, the Slinky effect is minimized in prone, leading to more

uniform tissue density and ventilation [24]. This position-dependent variation in

the Slinky effect has important implications for ventilation–perfusion matching

and clinical strategies such as prone positioning in respiratory failure.

Patient positioning profoundly influences lung mechanics and gas exchange,

with studies consistently showing a more uniform distribution of ventilation and

perfusion in prone compared to supine postures. Bryan et al. (1964) initially

demonstrated that while upright subjects exhibit apex-to-base gradients in ven-

tilation and perfusion, these distributions become "much more uniform" in the

supine position, although a front-to-back perfusion gradient persists [25]. More

recently, Henderson et al. [24], using functional MRI, confirmed that gravita-

tional gradients in both ventilation and perfusion are indeed less pronounced

in the prone posture than in the supine. However, it is noteworthy that their

study found the overall heterogeneity (relative dispersion) of ventilation, perfu-

sion, and regional ventilation-perfusion ratio (V̇A/Q̇) was not statistically sig-

nificantly different between postures in healthy lungs. This particular finding

is crucial when looking toward ICU integration, as stark contrasts have been
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found between healthy and diseased lungs.

V/Q ratio heterogeneity is a crucial indicator of impaired lung function in

non-healthy lungs, reflecting an imbalance between regional airflow and blood

flow. In morbidly obese individuals, reduced lung volumes and elevated pleural

pressures can lead to airway closure, causing abnormalities in V/Q distribution

and hypoxaemia [26, 27, 28, 29]. For patients with ARDS and lung injury, there

is significant topographic heterogeneity, with dependent lung regions often de-

recruited or filled with fluid due to increased lung weight from oedema, leading

to greater V/Q mismatch [30]. However, prone positioning in ARDS can sig-

nificantly improve V/Q matching by promoting a more uniform distribution of

alveolar size and tissue stress, thereby mitigating the gravitational and com-

pressive effects and reducing the non-uniform risk of ventilator-induced lung

injury [23]. Additionally, factors like heterogeneous hypoxic pulmonary vaso-

constriction and the varied impact of positive end-expiratory pressure (PEEP)

on perfusion distribution in different postures further contribute to V/Q mis-

matching in injured lungs.

In conclusion, the interplay between gravity, body positioning, and external

mechanical forces shapes a highly heterogeneous landscape of lung deformation,

ventilation, and perfusion. These physiological mechanisms—while fundamen-

tally grounded in classical principles of fluid and solid mechanics—are modu-

lated by the lung’s complex geometry, compliant tissue structure, and dynamic

interactions with surrounding organs. Clinical studies and imaging data un-

derscore the importance of these factors in both healthy and diseased lungs,

revealing how regional mechanics influence gas exchange and injury suscepti-

bility. However, to translate this physiological understanding into predictive

capability, it must be formalized through robust mathematical frameworks.
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3.1.3 Physiological Models of the Pulmonary System

Our continuing progression in the improvement of healthcare rests on centuries

of research, whether it be through the recorded experimentation of live patients,

or the post-mortem study of deceased individuals. This however, comes with

many drawbacks as it is often slow, ethically complex and requires expensive

equipment. This is why theoretical modelling is so valuable. Using mathematics,

we can simulate experimental ideas through models, and test theories without

the need for extensive human trials. Physiological models use mathematics

to replicate human anatomy, through equations and iterative systems fitted to

parameters collected from real medical data [31]. The computational modelling

of human processes is an ever-growing field, with new and intriguing works being

published rapidly. A search for “physiological model” on PubMed yields over

250,000 results, with over half of these being published in the last decade [32].

This progression is driven by an increasing demand for in-silico experimentation

of human physiology, and supported by the constantly advancing mathematical

tools and techniques at our disposal [33].

Due to the complexities of modelling lung mechanics, a number of different

pressure measurements can be used. For reference, a visual diagram of these

pressures can be seen in Figure 3, and can be referred to throughout the thesis

if needed.

We can use these models to explore the underlying mechanisms of human

physiology, and predict the response behaviour to a particular treatment strat-

egy. In pulmonary medicine, mathematical models have successfully been used

to better understand lung function and have resulted in a notable improvement

to patient outcomes. In 2017, Rahaman used a simplistic approximation of vis-

coelastic lung behaviour to explore the effects of mechanical ventilation and the

contributing factors to ventilator induced lung injury (VILI) [35]. They found
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Figure 3: Reference diagram detailing various respiratory system pressures rel-
evant to lung mechanics modelling. Key pressures include:,
Pawo - airway opening pressure.
Palv - alveolar pressure.
Ppl - intra-pleural pressure.
Pbs - body surface pressure.
Paw - airway pressure.
Ptp = Palv − Ppl - transpulmonary pressure.
Ptt = Palv − Pbs - trans-thoracic pressure.
Pta = Paw − Palv - trans-airway pressure.
Ptr = Pawo − Pbs - trans-respiratory pressure.
taken from [34]

that in the ARDS lung, the forced pressures of mechanical ventilation caused

significant stress in the system, but these could be minimised with the correct

treatment strategies, such as proning the patient, and recommended that target-

ing transpulmonary pressure would be an effective strategy to limit VILI. The

focus on minimising VILI is a key area in pulmonary modelling. In a highly-cited

paper by Gattinoni et al, it was posited that the ventilator-associated causes of

lung injury could be evaluated as a single parameter, the so-called mechanical

power [36]. They computed the following equation for mechanical power:
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Powerrs = RR ·
{
∆V 2 ·

[
1

2
· ELrs +RR · (1 + I : E)

60 · I : E
·Raw

]
+∆V · PEEP

}
(2)

where ∆V is the tidal volume, ELrsis the elastance of the respiratory system,

I : E is the inspiratory-to-expiratory time ratio, RR is the respiratory rate,

and Raw is the airway resistance. They found that mechanical power increased

exponentially by adjusting the settings for tidal volumes, airway pressure and

respiratory rate. This equation utilises the values set at the ventilator itself.

By programming this into ventilators, clinicians can easily see how adjustments

they are making are affecting mechanical power and how this increases injury

risk for the patient.

This is the primary goal for mechanistic models, to give clinicians insight

into the under-lying mechanics of the system such that they can tailor care

for the best possible outcome. Creating the most accurate possible lung anal-

ogy through mathematics and simulation, gives the best chance of accurately

predicting a patient’s response to a particular treatment.

The mechanical behaviour of lung tissue under various forces has been mod-

elled using diverse approaches that elucidate the intricate balance of stresses

and strains governing pulmonary function. These models aim to capture the

deformation of lung parenchyma due to gravity, internal pressures, and exter-

nal mechanical forces. The following section focuses on mechanical models that

describe the deformation of lung tissue, highlighting key studies and their con-

tributions to the field.

Continuum mechanics models treat the lung as a deformable solid, using

mathematical descriptions of stress and strain distributions. This approach is

exemplified by the work of Hubmayr et al. [30], who analysed the interplay

of regional mechanical properties in healthy and injured lungs. They argued
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that the lung’s response to deformation could vary significantly depending on

localized tissue damage, a key consideration for designing protective ventilation

strategies.

One of the earliest and most influential works in this area was by West and

Matthews in 1972 [11], who modelled the lung parenchyma using a finite element

approach to explore the distribution of stress and strain due to its own weight

in the upright position. The model consisted of a solid elastic structure using a

round-topped trapezoid as a lung-shaped analogy. This shape was assessed at

two different widths to find the most physiologically relevant model. The derived

equations for stiffness were solved using a finite element approach, dividing the

lung into 864 elements for the wider shape, and 444 for the narrower shape,

in which The stiffness of each element is determined and then assembled to

represent the complete structure, allowing the calculation of internal stress and

strain. For the three-dimensional bodies, the elements used were tetrahedrons.

Loads were assumed to act at the corner points, or nodes, of these elements. A

non-linear stress-strain relationship was used, giving elasticity described by the

equation

E = 0.8E0/(0.8− ϵ),

where E0 is the modulus at zero strain and ϵ is the strain. This closely matched

experimental data from excised dog lung strips [37]. Specific constraints were

applied to the nodes (corner points) of the model elements to simulate the

lung’s support and symmetry within the chest cavity; some nodes were fixed,

some could only move vertically, and nodes on the surface were constrained not

to move perpendicular to the boundary but were free to slide tangentially.

The main findings highlight the significant impact of the lung’s weight on

regional stresses, strains, and surface pressures, particularly in the upright posi-

tion. In the upright lung, the parenchyma was found to be most expanded at the
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apex and least at the base. This regional difference was substantial, with apical

units being about 3.7 times larger by volume than basal units for a lung model

with an elastic modulus (E0) of 1.25 g/cm2. Inflation of the lung dramatically

reduced this distortion, with relatively small increases in overall lung volume

causing substantial decreases in volume distortion. Tissue displacement also oc-

curred, with maximum sag happening about halfway down the lung. Expanding

the lung to 5.5 times its relaxed volume (linear strain of 0.765) significantly re-

duced the maximum displacement from 2.8cm at FRC to just 0.12cm when

weight was applied (for E0 = 2.5g/cm2. The inverted lung showed less marked

regional differences in expansion and displacement compared to the upright pos-

ture. The analysis also revealed important distributions of stress and surface

pressure. In the upright lung, the largest changes in stress were in the vertical

direction, and expanding stresses were maximal at the apex in both vertical and

lateral directions. For a lung at FRC with E0 = 2.5g/cm2, the vertical expand-

ing stress near the apex was 5.52g/cm2, over 300% greater than the uniform

stress of 1.63 g/cm2 in the weightless state. The maximum vertical stress at the

apex showed a minimum when plotted against lung volume, occurring around

25% of total lung capacity (TLC) for an E0 of 2.5g/cm2, suggesting this is near

the normal breathing range. The surface pressure (analogous to intra-pleural

pressure) increased near the top and decreased near the bottom when weight

was applied. At FRC, for a model with E0 = 2.5g/cm2, the difference in surface

pressure between the apex and base was 4.9cmH2O. This difference was larger

when the elastic modulus was smaller, increasing to 7.9cmH2O water when E0

was 0.63g/cm2, contrasting with the prediction of 5.8cmH2O water based solely

on specific gravity. Inflation of the lung reduced these regional pressure dif-

ferences, resulting in a difference of about 2.2cmH2O between apex and base

at high lung volumes near TLC. Vertical acceleration amplified these regional
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differences; for example, under 3 G acceleration (with E0 = 2.5g/cm2), apical

elements became over 5 times larger by volume than those at the base. The

study suggests that the high stresses near the upright apex might contribute to

the vulnerability of upper lobes in certain lung diseases.

West and Matthews acknowledge several key limitations stemming from the

lack of precise data on lung tissue properties and necessary modelling simpli-

fications. A primary assumption was that the lung parenchyma behaves as a

homogeneous, isotropic elastic material with uniform properties in all direc-

tions. However, the authors note that the real lung is not homogeneous, and

while some experiments suggest isotropic behaviour in excised lobes or strips,

this isn’t definitively known for the whole lung. They used a specific non-linear

stress-strain relationship based on tissue strip data, but the crucial elastic mod-

ulus at zero strain (E0) was uncertain, with values chosen to yield reasonable

surface pressures at functional residual capacity (FRC). Similarly, data for Pois-

son’s ratio was unavailable, leading to a value of 0.3 being used, although vary-

ing it significantly altered stress and strain magnitudes, not just the pattern.

The analysis also didn’t account for the fact that an unevenly expanded ma-

terial becomes anisotropic at large strains, particularly at the apex with low

E0, introducing inconsistencies where strain in one direction exceeds others.

Time-dependent behaviours like hysteresis and adaptation were also omitted,

presumed to cause small errors in equilibrium states. Furthermore, the model

assumed the entire weight of the lung is supported at its periphery, despite some

evidence suggesting the chest wall provides partial support. The analysis also

simplified the scenario by keeping the external shape of the lung and chest cage

constant during expansion, though real shapes change, and it did not include

the additional increase in dependent density caused by increased regional blood

volume due to lack of data. While a modification was made to account for high
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bulk modulus under compression (analogous to airway closure), the authors

found it had "little difference apart from reducing the compression of the most

dependent regions at very low volumes". These factors mean that while the

study provides valuable insights into the pattern of gravity’s effects, the precise

magnitudes calculated are dependent on the chosen parameters and inherent

modelling simplifications.

As data on these tissue properties has become more readily available, models

have been created with expand on West and Matthew’s foundation. Tawhai et

al. (2009) employed a finite element analysis of the left human lung, with model

geometries derived from multi-detector row computed tomography (MDCT)

imaging of two subjects at functional residual capacity (FRC). One subject

was a healthy male (subject 1), and the other a female with small airway dis-

ease (subject 2). A key methodological point was creating a prone model by

simply reversing gravity on the supine lung shape, thus deliberately isolating

the effect of gravity direction from confounding factors like displacement of

the heart, chest wall, or diaphragm. The lung tissue was assumed to be a

compressible, non-linearly elastic continuum with homogeneous and isotropic

properties. Simulations were performed by first expanding the lung model in

zero gravity and then incrementally adding the gravitational load. The primary

results focused on regional tissue density and elastic recoil pressure (analogous

to pleural pressure) gradients in the dorsoventral (gravitational) axis at FRC.

The study found that the magnitude of the density gradient in supine was ap-

proximately double that of the prone lung, specifically -4.33%/cm for subject 1

and -4.96%/cm for subject 2 in supine, compared to -2.72%/cm for subject 1

and -2.51%/cm for subject 2 in prone. Correspondingly, the estimated pleural

pressure gradients (Ppl) were also larger for supine, at 0.54cmH2O/cm (subject

1) and 0.56cmH2O/cm (subject 2) for supine, versus 0.29cmH2O/cm (subject
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1) and 0.27cmH2O/cm (subject 2) for prone. These findings indicated that a

smaller prone gradient was predicted even without shape changes of the chest

cavity or the effect of heart support. The model estimates for supine density

and the trend of smaller gradients prone were consistent with measurements

from the MDCT imaging of the subjects and independent studies.

Despite its advancements, the Tawhai et al. study acknowledged several

limitations inherent in the modelling approach. A primary limitation was that

the model, by design, considered the effect of posture on density distribution

independent of the displacement of the chest cavity, diaphragm, and heart that

would typically accompany a change in posture. While this isolated the effect of

gravity direction and shape, it did not represent the full physiological scenario.

The model also did not account for potential shifts in regional blood content

that occur with postural changes. The analysis assumed lung tissue was a

homogeneous and isotropic elastic material, an assumption the authors note

is not fully accurate for real lung tissue, which is heterogeneous and whose

isotropy is not definitively known, particularly in relation to airway and vessel

orientation. This assumption may be especially problematic when extending the

model to disease states, where regional properties can vary significantly. The

modelling of the left lung neglected the oblique fissure, which could affect tissue

displacement and potentially regional heterogeneity. The material law used

lumped together tissue elasticity and surface forces and was only applied to the

static condition at FRC, not accounting for the interplay between these forces

during dynamic processes. The coefficients in the strain energy density function

were chosen to produce physiologically reasonable pressures rather than being

directly derived from experimental measurements. Lastly, the specific choice of

the reference state volume might not be perfectly accurate but was selected to

facilitate comparison between subjects. While the study was an important step,
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particularly for understanding mechanical factors in injured lungs, the authors

noted the model was not yet complete for studying disease states which involve

regional pathology and potentially independent lobe motion.

Another study by Swan, Clark, and Tawhai (2012) aimed to develop a math-

ematical model to predict the topographic distribution of ventilation in the up-

right healthy human lung [38]. This was motivated by the technical difficulties

in obtaining high-resolution imaging of lung function in the upright posture.

The model integrates several factors: an anatomically based structure, tissue

deformation due to gravity, and airway resistance. Subject-specific structural

models for the lungs and conducting airways were derived from MDCT imag-

ing of a healthy male subject, initially acquired in the supine position at Total

Lung Capacity (TLC) and then scaled to the subject’s upright Functional Resid-

ual Capacity (FRC) volume. The model assumed the lung tissue behaves as a

compressible, non-linearly elastic continuum with homogeneous and isotropic

properties. Tissue deformation under gravity was predicted using a continuum

model, which in turn determined the initial pre-inspiratory configuration of the

lung and the elastic recoil pressure and compliance of individual acini. Airflow

was simulated in an anatomically based conducting airway tree coupled to ge-

ometrically simplified terminal acinar units, each represented as an individual

compartment with varying volume-dependent compliances. The airflow in con-

ducting airways was modelled primarily as Poiseuille flow with an additional

correction for energy losses at bifurcations based on experimental data. The

model coupled flow and tissue elasticity, with the flow driven by a temporally

changing pleural pressure applied uniformly across the pleural surface.

The primary findings of the study confirmed experimental evidence that in

the healthy lungs, tissue compliance has a far greater effect than airway resis-

tance on the spatial distribution of ventilation. The model predicted significant
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spatial variation in intrinsic tissue properties. Due to gravitational deforma-

tion of the lung tissue within the curvilinear lung shape, the acini in the apical

region of the upright lung were predicted to be, on average, more expanded

at FRC than those in the basal region. This differential expansion results in

a non-uniform distribution of acinar compliance, with less compliance in the

more expanded apical units. The model predicted that ventilation to bottom

(dependent) regions was greater than to top (non-dependent) regions, exhibit-

ing a gravitational gradient, quantified as 1.4% or 1.5% per cm depending on

the calculation method. An iso-gravitational heterogeneity was also imposed on

this distribution due to the complex deformation of the curvilinear geometry.

The study demonstrated that assuming a uniform or linear distribution of tis-

sue compliance, rather than one derived from soft tissue mechanics, significantly

reduced predicted ventilation heterogeneity. The minimal effect of airway resis-

tance on the spatial ventilation distribution was attributed to the low viscosity

of air.

Despite its advancements, the model has several acknowledged limitations.

The model assumed that each acinus functions mechanically independently of

its neighbours, which may not be accurate. The simulation of the upright pos-

ture used a lung shape derived from supine MDCT data, not accounting for the

typical postural changes in the chest wall, diaphragm displacement, or heart

support. While the study isolated the effect of gravity direction, it did not rep-

resent the full physiological scenario where these structures change shape with

posture. The model also assumed that the change in pleural pressure is uniform

at all locations during breathing, whereas in reality, it may vary regionally. The

lung tissue was assumed to be a homogeneous and isotropic elastic material, de-

spite known heterogeneity and potential anisotropy in real lung tissue, especially

in disease. The modelling of the left lung neglected the oblique fissure, which
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could influence tissue displacement. The coupling between the tissue mechanics

model (determining pre-inspiratory volumes and compliance) and the airflow

model was described as "weak," as they were not solved concurrently, and the

airflow model assumed isotropic acinar expansion during breathing. The study

lacked direct subject-specific validation data for the upright posture, relying

instead on comparisons with population data trends. Finally, while the model

included a correction for flow disturbances at bifurcations based on experimental

data, it still relied on assumptions of laminar flow and did not fully account for

factors like the turbulent laryngeal jet or the wide variation in airway geometries

In summary, modelling lung tissue as a solid continuum has provided valu-

able insights into its deformation under physiological loading, capturing essen-

tial mechanical behaviours such as elasticity, anisotropy, and large deformations.

However, this approach inherently neglects the complex structures and hetero-

geneity present in the lung. To more accurately represent the complex biome-

chanical environment of the lung, particularly the interactions between tissue

deformation and airflow or fluid movement, a poroelastic framework becomes a

natural and necessary extension. This transition enables the coupling of solid

mechanics with fluid transport, offering a more comprehensive and physiologi-

cally relevant model of lung function.

3.1.4 Poroelasticity and its Application to Pulmonary Mechanics

Poroelasticity is a framework used to describe the mechanical response of mate-

rials that contain a freely moving fluid within a porous structure [39]. It models

these materials as a coupled system consisting of a solid skeleton and the pore

fluid. The theory accounts for fundamental coupled mechanisms: an increase in

pore pressure can induce a dilation (expansion) of the solid material, and con-

versely, compression of the solid material can cause a rise in the pore pressure,

particularly if the fluid is prevented from escaping. These interactions between
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the interstitial fluid and the porous solid bestow an apparent time-dependent

character to the mechanical properties of the material. The theory defines key

quantities including the solid displacement vector and the specific discharge vec-

tor (fluid motion relative to the solid), as well as stress quantities like the total

stress tensor and the scalar pore pressure. The core of the theory lies in its con-

stitutive equations, which are based on assumptions of linearity and reversibility,

relating stress and strain (solid strain and the variation of fluid content). To

form a complete mathematical system, these constitutive laws are combined

with balance laws for mass (continuity equation for the fluid phase) and mo-

mentum (equilibrium equations for the bulk material), and a transport law like

Darcy’s law for fluid flow in the porous media. These governing equations are

often formulated as coupled field equations, such as Navier-type equations for

displacement and diffusion-type equations for pore pressure or variation of fluid

content, which contain coupling terms reflecting the interaction between the

solid deformation and the fluid dynamics.

The theoretical basis of poroelasticity originates in the early 20th century

with the pioneering work of Karl Terzaghi (1923) [40], who formulated the theory

of one-dimensional consolidation to describe the time-dependent settlement of

saturated soils under mechanical loading. Terzaghi introduced the principle of

effective stress, asserting that the deformation of a porous medium is governed

not by the total applied stress, but by the portion transmitted through the solid

skeleton—termed the effective stress. This is given by

σ
′
= σ − p, (3)

where σ
′
is the effective stress, σ is the total stress, and p is the pore pressure

of the interstitial fluid. Terzaghi’s model assumes a fully saturated, incompress-

ible fluid and a linear elastic solid matrix, and it describes fluid flow using
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Darcy’s law under the assumption of small deformations and uniaxial strain.

While powerful, this model is limited to one-dimensional, quasi-static scenarios,

and does not account for the dynamic interactions between the solid and fluid

phases in a general three-dimensional setting.

A major advance came with Maurice Biot’s formulation of the general theory

of poroelasticity in 1941, which extended Terzaghi’s [40] ideas to a fully coupled,

three-dimensional dynamic theory for fluid-saturated porous media [41]. Biot

derived a set of governing equations that couple the linear elasticity of the porous

solid skeleton with Darcy’s law for fluid flow, and incorporated inertial effects of

both the solid and fluid phases. This theory introduces a second-order partial

differential equation system that simultaneously conserves linear momentum

and mass for each phase, under the assumption of small deformations. The

solid and fluid motions are interdependent: deformation of the porous matrix

generates pore pressure gradients, which in turn drive fluid flow and further

influence the stress state of the solid.

Biot’s theory also introduced constitutive relations that link stress and strain

in the solid matrix with pore pressure and fluid content variations, leading to the

formulation of Biot’s modulus and other poroelastic parameters. Importantly,

Biot’s framework reduced to Terzaghi’s one-dimensional consolidation theory

as a special case, but extended its applicability to a broad range of problems

including wave propagation in saturated soils, hydro-mechanical coupling in

geotechnical systems, and, more recently, soft tissue biomechanics.

Together, the contributions of Terzaghi and Biot laid the theoretical ground-

work for modern poroelastic models, enabling a more comprehensive under-

standing of fluid-structure interactions in porous, deformable media—a po-

tentially influential framework for modelling physiological tissues such as lung

parenchyma, where the interplay between airflow and tissue deformation is fun-
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damental.

Biological tissues are multi-phasic materials composed of a solid phase (struc-

tural macromolecules, cells) and a fluid phase (water, solutes, blood, air) [42],

making poroelastic modelling a logical framework for their mathematical explo-

ration. Considering that over 60% of cellular content is water, treating living

cells as single-phase materials is counter-intuitive. Recent work suggests that

the cytoplasm of living cells behaves as a poroelastic material [43]. In this

framework, the cytoplasm is viewed as a biphasic material: a porous elastic

solid meshwork (cytoskeleton, organelles, macromolecules) bathed in an inter-

stitial fluid (cytosol). The rate of cellular shape change is thought to be limited

by the rate at which intracellular water can redistribute within the cytoplasm.

Moeendarbary et al. (2013) investigated this using AFM micro-indentation

tests on various cell types, including HeLa and MDCK cells [43]. Their ex-

periments, applying rapid force (<35-100ms rise time), showed that cellular

force-relaxation at short timescales (<0.5s) exhibited characteristics consistent

with a poroelastic response. They found that the poroelastic diffusion con-

stant Dp scaled with changes in cell volume induced by osmotic pressure, which

modulated cytoplasmic pore size without altering the cytoskeleton. For HeLa

cells, Dp was around 41 ± 11 m2/s. They also probed the influence of the cy-

toskeleton, finding that F-actin strongly affected both cellular elasticity E and

hydraulic pore size ξ, with the change in pore size dominating in setting Dp.

Microtubules and keratin intermediate filaments were found to play a less sig-

nificant role. Their study validated that, at short timescales, cellular responses

are consistent with poroelastic behaviour driven by water redistribution. A

key insight was that the hydraulic pore size (ξ) is distinct from the cytoskele-

ton entanglement length (λ), and ξ is influenced by both the cytoskeleton and

macromolecular crowding. Limitations discussed include that previous studies
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using shear rheology or lower sampling rates might have missed these poroelastic

effects.

Poroelasticity has also been used in the modelling of large and complex or-

gans such as the heart. Chapelle et al. (2010) developed a poroelastic model for

cardiac perfusion valid for large strains and compatible with incompressibility

[44], deriving their formulation from a free energy function for thermodynamic

consistency. The model treats the myocardium as an active poroelastic material,

combining a passive poroelastic component with an active contractile compo-

nent. The fluid (blood) in small arteries and capillaries is modelled as flowing

through a single poroelastic compartment, with the venous network represented

as a sink term. Fluid enters via a distributed source (small arteries) and leaves

via a distributed sink (small veins).

Simulations using this model on an idealized left ventricle geometry with

active fibres reproduced several key phenomena observed in cardiac perfusion.

During contraction, the myocardium volume decreases, pressure rises, and flow

from small arteries is significantly reduced (flow impediment). Simultaneously,

blood is squeezed out of the capillaries into the small veins (rise of venous

flow). Conversely, during relaxation, flow into capillaries increases, filling their

capacitance. The model correctly showed that flow is mainly during the systolic

phase in small arteries and mainly during the diastolic phase in small veins,

characteristic of the coronary network. It also reproduced the fact that flow

impediment is higher in the sub-endocardium than the sub-epicardium, showing

pressure and flow vary non-linearly across the myocardium wall.

The application of poroelasticity to lung modelling offers a sophisticated

biomechanical framework for understanding the complex interplay between tis-

sue deformation and air flow during respiration. This approach is particularly

well-suited to the lung because the parenchyma, the spongy tissue responsible
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for gas exchange, can be effectively idealised as a saturated porous medium, due

to the dense network of alveoli and capillaries [45]. In this idealisation, the solid

phase is represented by the tissue network, which includes the alveolar walls,

capillaries, and structural fibres like collagen and elastin, while the fluid phase

filling the pores is the air within the alveoli and ducts. The large difference in

scale between the microscopic structure of individual alveoli (around 0.02 cm)

and the macroscopic scale of lung segments (around 4 cm) supports the use of

a continuum model based on averaging techniques, such as poroelasticity [46].

Berger et al. (2015) developed a novel lung ventilation model that tightly

couples tissue deformation with ventilation. The model represents the lung

parenchyma as a continuum poroelastic material [46]. In this framework, the

tissue forms the solid phase and the air in the alveoli is the fluid phase. Key

assumptions include the incompressibility of both phases and neglecting accel-

erations and viscous stress compared to drag forces. The model uses a Neo-

Hookean strain-energy law for tissue elasticity and Darcy’s law for fluid flow

through the porous parenchyma. The conducting airways are modelled as a

pipe network where flow is assumed to be laminar (Poiseuille flow). The cou-

pling between the poroelastic parenchyma and the airway network is achieved

by dividing the lung into subdomains, each linked to a terminal branch of the

airway tree. The fluid flux from a distal airway branch serves as a source term

for the porous medium in its subdomain. Conversely, the pressure at the end of

a distal airway branch determines the average pressure within the tissue of that

subdomain.

The model equations are solved numerically using the Finite Element Method

(FEM) with a stabilised mixed formulation. The model utilises anatomical data

from CT scans for lung geometry and airway tree structure, with distal airways

generated algorithmically. Instead of prescribing pleural pressure, which is dif-
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ficult to measure, the model is driven by deformation boundary conditions on

the lung surface, estimated from image registration between respiratory phases.

Simulations using this coupled model produced physiologically realistic results

for global lung mechanics during normal breathing. A significant finding was

the strong correlation between airway resistance and regional tissue expansion

(ventilation); increased airway resistance led to decreased ventilation. Similarly,

pressure in the poroelastic tissue became more negative with increasing airway

resistance, creating pressure gradients that can drive collateral ventilation. Sim-

ulations of pathological conditions provided valuable insights. Localised airway

constriction resulted in decreased mean tissue expansion and increased hetero-

geneity within the constricted region, with surrounding tissue compensating

by expanding more. This regional difference created large elastic stresses near

the boundary of the constricted area. Localised reduction in tissue elasticity

led to increased expansion (hyper-inflation) and decreased elastic stress within

the weakened region, but dramatically increased heterogeneity and resulted in

under-inflation of the immediately surrounding tissue. The model also revealed

dynamic hysteresis in the pressure-volume curves, especially at faster breathing

rates. This hysteresis is attributed to the delayed filling and emptying of differ-

ent lung regions due to heterogeneity in airway resistance, leading to increased

work of breathing and greater pressure heterogeneity at higher frequencies.

The Berger et al. (2015) model, while advanced, presents several limitations.

Firstly, the model relies on simplifying assumptions about lung tissue and air

flow behaviour, such as assuming both solid and fluid phases are incompressible.

Secondly, the choice of a Neo-Hookean strain-energy law for tissue mechanics

means the model does not produce classical hysteresis effects attributed to the

viscoelastic properties of lung tissue components like elastin and collagen, al-

though it does show dynamic hysteresis from delayed regional filling/emptying.
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Thirdly, the model’s boundary conditions are derived from image registration

between different respiratory phases rather than direct measurement of pleu-

ral pressure, with the paper noting the use of a simple registration method.

Fourthly, the model incorporates a realistic airway tree geometry from CT data

for proximal airways, but the distal airway tree is generated algorithmically

rather than being patient-specific, requiring inferred parameters like radii. Ad-

ditionally, the numerical solution employs an approximate linearization in the

Newton algorithm, only treating the elasticity term as non-linear. Finally, the

current model does not include gas exchange, and achieving patient-specific

parametrisation for tissue elasticity and distal airway properties using advanced

imaging is identified as necessary future work.

Seyfi et al. (2016) presented a biomechanical model for predicting breathing-

induced human lung deformation, validated using data from human subjects

undergoing radiotherapy [47]. The model uses a subject-specific poroelastic

framework where the lung parenchyma is treated as a continuous poroelastic

medium composed of a solid tissue matrix and air in the pores (alveoli and

ducts). The simulation employs a porous fluid-structure interaction (PFSI)

technique to solve the coupled airflow and structural dynamics, incorporating

Darcy’s law for fluid flow and a Lagrangian formulation for the solid structure.

A key methodological contribution is the use of patient-specific lung geome-

try derived from 4DCT scans of two patients, and estimating heterogeneous,

spatially-dependent elastic properties for each patient’s lung using an inverse

analysis methodology that integrates 4DCT registration data and pulmonary

function tests. Boundary conditions included a periodic pressure profile on the

lung surface derived from pressure-volume curves and a stress-free inlet at the

hilum, with gravity considered in the supine position relevant to radiotherapy.

The Seyfi et al. (2016) model successfully predicts lung displacement during
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the breathing cycle, showing good agreement with displacement data derived

from 4DCT image registration of the same patients. The predicted absolute dis-

placement typically increases from the lung’s interior to its surface and from top

to bottom. Validation showed the average prediction error over most of the lung

was within 3mm, considered clinically acceptable for radiotherapy. Crucially,

the model’s accuracy was significantly improved by incorporating the hetero-

geneity of lung tissue properties, resulting in substantially lower errors com-

pared to a homogeneous model. Compared to the Berger et al. (2015) model

[46], Seyfi’s work distinguishes itself by its explicit subject-specific parametri-

sation of tissue elasticity derived from patient imaging data using an inverse

method, whereas Berger’s model used uniform values and noted patient-specific

parametrisation as future work. Seyfi also performed direct validation of pre-

dicted tissue displacement against image registration data, while Berger used

image registration to define surface deformation boundary conditions, but vali-

dated primarily against global physiological measures and correlations. Further-

more, Seyfi used pressure boundary conditions on the lung surface, contrasting

with Berger’s use of deformation boundary conditions. The application focus of

Seyfi’s model is specifically on tumour localization and motion management for

radiotherapy, whereas Berger’s focus was broader, aiming to understand coupled

mechanics in health and disease states like COPD and fibrosis.

These poroelastic models have demonstrated the ability to produce physio-

logically realistic results for global lung mechanics, such as tidal volume and flow

rates during normal breathing. More importantly, they provide coupled insights

into regional ventilation and tissue deformation. Simulations have revealed cor-

relations between airway resistance and regional tissue expansion, showing that

ventilation decreases as resistance increases, while tissue pressure becomes more

negative. The models can capture phenomena like collateral ventilation, driven
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by pressure gradients between well-ventilated and less-ventilated regions. Fur-

thermore, simulating pathological conditions such as localised airway constric-

tion or tissue weakening provides insights into the mechanics of respiratory

diseases, showing how changes in mechanical properties lead to decreased ven-

tilation, increased heterogeneity, altered stress distributions, and hyperinflation

in affected regions. The heterogeneity of lung properties and airway resistance

can also lead to dynamic hysteresis in pressure-volume curves, particularly at

faster breathing rates, caused by the delayed filling and emptying of different

lung regions.

While powerful, the application of poroelasticity to lung modelling faces chal-

lenges. Some models make simplifying assumptions about material linearity or

the absence of classical tissue viscoelasticity. Patient-specific parametrisation

of material properties and the detailed structure of the distal airway tree, often

beyond the resolution of standard clinical imaging, remains a significant hurdle.

Accurately modelling the mechanical interaction between the lung and the chest

wall, as well as the influence of heart motion, is also necessary to improve model

accuracy, particularly in regions near these structures. The high detail of data

required for the parametrisation of these models makes them very computa-

tionally involved beyond the scope of bedside ICU study. In order to make the

findings of these papers relevant clinically, a simplified model is required that

can make quick and effective predictions.

3.1.5 Concluding Remarks

This literature review has explored the multifaceted physiological, clinical, and

mathematical foundations necessary for understanding pulmonary mechanics in

critically ill patients, particularly those undergoing mechanical ventilation. A

clear consensus has emerged from clinical studies: patient positioning, espe-

cially transitioning from supine to prone, can significantly improve lung func-

52



tion by promoting more homogeneous distributions of ventilation and perfusion,

thereby mitigating the risk of ventilator-induced lung injury (VILI) and improv-

ing patient outcomes in conditions such as Acute Respiratory Distress Syndrome

(ARDS).

The physiological underpinnings of these observations—namely gravitational

gradients in tissue deformation, regional differences in alveolar mechanics, and

the dynamic coupling between ventilation and perfusion—demonstrate a com-

plex interplay that is not easily captured by empirical study alone. Traditional

solid mechanics models of lung deformation, while useful, are inherently limited

in their ability to represent fluid-structure interactions essential to respiratory

dynamics.

Poroelastic theory provides a compelling framework for bridging this gap,

offering a mathematically rigorous approach to modelling the lung as a biphasic

system of deformable tissue and air. Recent advances in poroelastic modelling

have shown promise in simulating both global and regional lung mechanics, yet

these models are often computationally intensive and require simplification for

bedside clinical application.

Moving forward, the development of a physiologically realistic yet compu-

tationally tractable mathematical model of lung tissue mechanics, grounded in

poroelastic theory, is not only a logical extension of current research but a nec-

essary step toward personalised critical care. Such a model would allow for

predictive simulations of patient-specific responses to positioning and ventila-

tion strategies, thereby equipping clinicians with a powerful tool to optimise

treatment plans, reduce the risk of iatrogenic injury, and ultimately improve

outcomes for mechanically ventilated patients.
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3.2 Outline of Modelling Chapters

Moving forward from the literature review, the clear clinical consensus regard-

ing the significant impact of patient positioning on lung function, particularly

in critically ill mechanically ventilated patients, underscores a critical gap in

our understanding. While empirical studies consistently demonstrate that pos-

tures like prone positioning can improve ventilation and perfusion distribution

and mitigate ventilator-induced lung injury, the precise underlying mechanisms

that drive these differences remain under-explored. Traditional solid mechanics

models, while valuable for understanding tissue deformation, inherently lack the

capacity to represent the complex fluid-structure interactions essential to respi-

ratory dynamics. Therefore, the subsequent chapters of this thesis are driven by

the urgent need to develop a comprehensive and detailed mathematical model

that can accurately replicate human physiology and provide deep insights into

these mechanisms, moving beyond mere observation to predictive capabilities

for personalised critical care.

The remainder of this thesis will present a series of progressively complex

mathematical models, each building upon the insights of the last, to mechanis-

tically explore the effects of gravity and patient positioning on lung mechanics.

Chapter 4: Static Modelling of Lung Tissue Deformation

This chapter initiates the mathematical modelling framework by focusing on

the static deformation of lung tissue due to gravity. It aims to determine how

different simplified lung shape analogies (cylinder, cone, and truncated cone)

can represent the gravitational influence on alveolar displacement in upright,

supine, and prone positions. The chapter derives the Bar Equation to calculate

tissue deformation and demonstrates that the truncated cone most accurately

reflects physiological distribution seen in human data, leading to its selection for
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subsequent modelling. Initial insights into regional alveolar volume, ventilation,

and perfusion distributions across positions are also established.

Chapter 5: Linear Poroelastic Lung Model

This chapter transitions from static analysis to a dynamic framework by

introducing a linear poroelastic model. The model couples solid tissue deforma-

tion with fluid (air) flow to simulate lung dynamics across the breathing cycle

and assess the initial effects of patient positioning. It establishes the govern-

ing equations for the system, incorporating Terzaghi’s consolidation problem

as a foundational concept. The chapter details the Finite Difference Method

(Crank-Nicolson approach) for solving these coupled equations, addressing and

resolving numerical instabilities through relaxation methods. Results demon-

strate that the model can accurately replicate lung behaviour under ventilator

waveforms, showing that the prone position leads to more uniform pore pres-

sures and reduced inspiratory pressure spikes compared to upright and supine

positions.

Chapter 6: Non-linear Poroelastic Lung Model

Recognizing the limitations of linear assumptions, this chapter develops a

fully non-linear poroelastic model. It incorporates strain-dependent elastic prop-

erties, including time-dependent alveolar recruitment and de-recruitment, which

are influenced by threshold opening and closing pressures and spatial hetero-

geneity. Neo-Hookean hyperelasticity is integrated to model non-linear porosity

and permeability interactions, which are dynamically linked to tissue deforma-

tion. The model successfully reproduces the characteristic S-shaped pressure-

volume curve of the lung, including the lower and upper inflection points, which

are crucial for understanding alveolar recruitment and over-distension.
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Chapter 7: A Coupled Pulmonary Model based on Non-linear Poroe-

lastics

This final modelling chapter synthesizes previous advancements by integrat-

ing the non-linear poroelastic lung tissue model with key external physiological

systems. It connects to the branching upper airways to account for resistance

and flow dynamics. The model also incorporates pulmonary blood circulation

and external thoracic pressures to predict regional ventilation-perfusion (V/Q)

ratios across different patient positions. A significant focus is placed on as-

sessing localized mechanical power delivery and its role in ventilator-induced

lung injury. Findings demonstrate that prone positioning substantially reduces

the proportion of lung tissue at high risk of VILI and promotes more uniform

mechanical power distribution.
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4 Static Modelling of Lung Tissue Deformation

4.1 Introduction

This chapter initiates the development of a foundational mathematical model

by focusing on the static deformation of lung tissue due to gravity. The primary

objective is to evaluate how different simplified lung shape analogies (cylinder,

cone, and truncated cone) can represent the gravitational influence on alveo-

lar displacement in upright, supine, and prone positions. We hypothesize that

gravity plays a significant role in lung tissue deformation, even in a static state,

and that selecting the most physiologically accurate geometric analogy is crucial

for subsequent dynamic modelling. The key clinical questions this chapter ad-

dresses is: How does a patient’s body position influence the static gravitational

deformation of their lung tissue, and can a simplified anatomical representation

capture this effect in a succinct and reliable way to give real-world clinical appli-

cability? This foundational step is necessary to establish a reliable baseline for

understanding gravity’s impact before integrating more complex physiological

dynamics observed during breathing and mechanical ventilation.

4.2 Tissue Deformation

The first aspect to be modelled is the deformation of the alveoli due to the

weight of the lung. It has been well documented that the distortion of lung

tissue due to gravity has a measurable impact on alveolar parameters, such as

volume, resistance and vertical position [10, 11, 12, 13], and so this mechanism

must be developed to begin with, before alveolar parameters are calculated

and used as a measure of lung function. When studying deformation as a

direct result of gravity, it is possible to simplify the elements involved to a

one-dimensional approach, as discussed in the literature review portion of this
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Figure 4: A simplistic model illustrating lung tissue deformation, representing
the lung as a series of discrete alveolar sacs (masses m) connected by elastic
springs, with deformation (x) occurring vertically. This model assumes the top
and bottom of the lung are fixed, confining deformation internally.

thesis. In this model all measurements are taken vertically with respect to each

isogravitational plane. In order to select the best approach, a number of model

types were explored before selecting the most appropriate for the study question.

One of the more simplistic model set-up of tissue deformation likens the lung

components to a series of weights and springs connected in series. Represented

in Figure 4, this model equates the alveolar sacs to weights of mass m, connected
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via elastic springs. The top and bottom of the lung are fixed in place by setting

all deformation at the boundaries to zero, as to ensure that all deformation

occurs within the lung and does not affect the overall lung size.

Due to the immense count of alveoli (274-790 million) in an adult human

lung, it is impractical to model each alveolus as a separate mass. Therefore,

the masses instead represent all the alveoli on an isogravitational plane denoted

here as “alveolar zones” for simplicity. The number of zones can be increased

or decreased to adjust model complexity and biological accuracy. It should be

noted that summarising all alveoli in the same plane into one unit nullifies the

within-plane heterogeneity discussed in the review above. Therefore it is more

sensible to treat the alveolar units in the model as the average value of all alveoli

in that plane. Here, x represents the displacement of each zone vertically, and

k represents the spring constant as denoted in Hooke’s Law.

The issue with this model however, is that it equates the lung to a series

of discrete compartments. This is not the case, as deformation is seen as a

continuous phenomenon across the lung [13]. Although the number of masses

in the system could theoretically be increased until results mimic those of the

continuous deformation seen experimentally, this would make the model unnec-

essarily complex and computationally far more time consuming. Hence, a model

is required which can represent the lung as a continuous object in which defor-

mation is not assessed discretely. An appropriate method for this is a continuum

approach that incorporates solid mechanics.

Solid mechanics studies the deformation of solid materials in which forces act

along the entire body continuously. Although often used to assess rigid materi-

als such as metals and plastics, the use of solid mechanics to explore biological

soft tissues has been well documented and verified [48]. Figure 5 represents the

lung as a solid bar with a volume load k(x) which acts across the entirety of
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Figure 5: Representation of lung deformation using a solid mechanics continuum
approach. The left image shows the typical bar analogy, where the lung is
modelled as a continuous solid bar with a volume load acting across its entirety,
and fixed at both ends to ensure internal deformation. The right image provides
a visual comparison to an anatomical lung shape.

the structure. The bar has a variable cross-sectional area A and tissue elastic-

ity E. As with the model in Figure 4, the bar is fixed at both ends such that

deformation is all internal. In this model however, the “alveolar zones” are not

expressed discretely, and so each isogravitational plane can be assessed continu-

ously across the lung, allowing for a more realistic representation of lung tissue.

The solid mechanics approach also allows far greater customisation, creating the

ability to explore the impacts of minute details in the lungs structure. It is this

ease of tailoring the model to a specific research question that makes it such an
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effective choice for this study, and as such is the one used going forward.

4.3 Derivation of the Bar Equation

Due to the continuous nature of the solid mechanics model, lung tissue deforma-

tion can be calculated using differential equations. Taking the bar representation

in Figure 5, the equation for the bar can be derived using three components that

describe it’s behaviour.

Firstly, finding the equilibrium of the bar. Take some random element from

the bar, with a normal force acting upon it N , and the force of it’s own weight

load k(x)A, as illustrated in Figure 6.

Figure 6: A random, infinitely small element of the solid bar model, illustrating
the normal force (N) acting upon it and the force of its own weight load k(x)A,
used to derive the equilibrium equation for lung tissue deformation.

Here x is the original position of the element and ∆x represents the distance

that x is displaced downwards. The equilibrium of this element occurs when

the normal force acting upon it N plus the force of it’s own weight k(x)A equal

zero. Taking this across the distance x+∆x gives the equation:

N(x+∆x)−N(x) +

∫ x+∆x

x

k(x)Adx = 0 (4)
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If this element is set to be infinitely small, it can be assumed that both

cross-sectional area and volume load are constant across it’s length, thus the

equation becomes:

N(x+∆x)−N(x) + k(x)A∆x = 0 (5)

and is subsequently rearranged to

N(x+∆x)−N(x)

∆x
+ k(x)A = 0 (6)

Finally, to assess this element as infinitely small, take the limit of the ex-

pression as ∆x tends to 0.

lim
∆x→ 0

N(x+∆x)−N(x)

∆x
+ k(x)A (7)

∴ N
′
+ k(x)A = 0 (8)

This gives our equation for the equilibrium of the bar as 8. The second

component required to derive the bar equation is Hooke’s Law, which states

that stress σ equals strain ϵ multiplied by elasticity E. This gives the equation

for normal force of the bar as:

N(x) = E(x)A(x)ϵ(x) (9)

The final component required is the definition of normal strain which states

that strain ϵ equals the derivative of displacement u(x), such that:

ϵ(x) =
du(x)

dx
(10)
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When taking these three components together, combine equations 8, 9 and

10 to give:

N
′
+KA =

d

dx
(EAϵ) + k(x)A =

d

dx

(
EA

du

dx

)
+ k(x)A = 0 (11)

In the case of the lung model deforming under gravity, our volume load simply

represents the force of the lungs own weight and can therefore be expressed as

the density ρ multiplied by gravity g, where ρ and g are constants in height.

Which gives the final Bar Equation as:

d

dx

(
EA

du

dx

)
+ ρgA = 0 (12)

This differential equation can be used to calculate the deformation across

the bar and is now ready to be modified to represent a physiological model of

the lung.

4.4 Lung Deformation in the Upright Position

In order to use the bar equation to calculate tissue deformation in the lung,

an appropriate shape must be selected as a lung analogy. CT scans along with

other imaging techniques are regularly used to assess the shape and condition of

a patient’s lungs, and these have been incorporated into mathematical models

of lung mechanics effectively [10, 38]. However, the use of imaging data to

build an anatomical lung model is very computationally intense, which can

make the model too slow for real-time decision making. For simplicity, the

lung can instead be equated to a 3-dimensional shape. The literature presents

three commonly used shapes to represent the lung for study purposes: the

cylinder, the cone, and the truncated cone [49, 50]. In order to create the most

informed model possible in this study, each of these shapes is used to model the
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Figure 7: Three analogies for lung shape used in this paper. A represents a
cylinder with radius r, B represents a cone with base radius r, C represents a
truncated cone with base radius rb and top radius rt. Each shape has height L
and is subject to weight load ρg.

deformation throughout the lung before selecting the most appropriate shape

to proceed with the project. The set up of these shapes can be seen in Figure 7

To begin, the cylinder, being most simplistic shape, was assessed using the

bar equation. The cylinder is created as shown in Figure 7A, with radius r,

height L and subject to the weight load ρg. The deformation of the element

at distance x from the top of the lung is denoted as u(x). For the purposes of

this section of the report, elasticity is constant across the length of the lung.

The cylindrical shape also means that cross-sectional area is constant across the

length as well. This allows the Bar Equation to be simplified as such:

d

dx

(
EA

du

dx

)
+ ρgA = (EAu

′
)
′
+ ρgA = 0 (13)

Which is rearranged to

u
′′
= −ρg

E
(14)
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This can then be integrated twice to find u

u(x) = − ρg

2E
x2 + c1x+ c2 (15)

To find the values of terms c1 and c2 we fix the top and bottom of the lungs

such that all deformation occurs within the shape, as discussed previously. To

achieve this, set boundary conditions at u(0) = 0 and u(L) = 0. This gives

deformation in a uniform cylinder as:

u(x) = − ρg

2E
x2 +

ρgL

2E
x (16)

The second shape modelled was the cone, as can be seen in Figure 7B. The

cone has base radius r, height L and again has the weight load ρg. Unlike the

cylinder however, the cross-sectional area A is no longer constant across the

shape, and is instead a function of distance from the apex x. This means the

Bar Equation cannot be simplified in the same way as seen in 13, instead giving:

d

dx

(
EA

du

dx

)
+ ρgA = E(A(x)u

′
)
′
+ ρgA(x) = 0 (17)

Using the Quotient Rule this becomes

u
′′
AE + u

′
A

′
E +Aρg = 0 (18)

Due to the nature of a cone, the function A(x) can be determined as a circle

at distance x from the apex of the shape, which is simply calculated as

A(x) = π
(rx
L

)2
(19)
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Substituting A(x) into 18 gives

u
′′
π
r2

L2
x2E + u

′
2π

r2

L2
xE + π

r2

L2
x2ρg = 0 (20)

Simplified to

u
′′
+

2

x
u

′
+
ρg

E
= 0 (21)

When solving this second order differential equation, boundary conditions

are once again needed. However, the pointed top of the cone creates some issue,

as cross-sectional area is assumed to be zero and so the finite solution cannot

be sustained at an infinitesimally small point. To fix this, boundary conditions

are instead set at u(1) = 0 and u(L) = 0. Solving for u using these boundary

conditions gives the deformation equation for a cone as:

u(x) =
ρg(x− 1)(L2 + L− x2 − x)

6Ex
(22)

Despite this being a relatively common analogy for lung shape, the harsh

point at the top of the cone is far from physiologically accurate and forces

assumptions to be made, which may affect results. To fix this, the final shape

analysed is the truncated cone, as shown in Figure 7C, which mimics the nature

of the cone but with the top point being removed. Again, the truncated cone

has height L and the weight load ρg. This time though there is both a base

radius rb and a top radius rt, which can easily be adjusted to replicate physical

lung shape as closely as possible.

Taking the Bar Equation for a non-constant cross-sectional area as in 18,

the function for A(x) can be derived as the area of the circle at a distance x

from the apex of the shape. For the truncated cone, A(x) becomes:

A(x) = π

(
xrb − xrt + Lrt

L

)2

(23)
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Substituting into (17) gives

u
′′
= −2u

′
(

rb − rt
xrb − xrt + Lrt

)
− ρg

E
(24)

Now that point has been removed from the cone, there is now a definable

area at both the base and apex of the shape, and so the boundary conditions

can once again be set to u(0) = 0 and u(L) = 0, fixing the lung far more

accurately in the chest cavity. This gives the final equation for deformation in

the truncated cone as:

u(x) =
ρgx(L− x)(Lrb + 2Lrt + xrb − xrt)

6E(Lrt + xrb − xrt)
(25)

4.5 Lung Deformation in the Horizontal Position

Placing the patient flat on their back in the supine position is a common ma-

noeuvrer in the ICU [51], and has been shown in the literature review portion of

this paper to significantly alter lung function. In order to model this position,

each of the three shapes is turned 90◦ on to their side. Deformation is once again

measured in the direction of gravity. Thus, a new variable is required for the

height of the lung against gravity, denoted h. Variables and measurements are

adjusted accordingly. Figure 8 contains the visual representation of the three

shapes in supine position.

For each of the three shapes, there is a non-constant cross-sectional area;

therefore we take the bar equation in the form shown in 18.

To evaluate deformation in shapes with non-constant cross-sectional area, a

finite difference method was employed. The governing differential equation was

discretised using central difference approximations for both first and second

derivatives, resulting in a second-order accurate scheme. This approach yields

a tridiagonal system of linear equations, which captures the spatial variation in
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Figure 8: Three analogies for lung shape used in this paper in the horizontal
positions. A represents a cylinder with radius r, B represents a cone with base
radius r, C represents a truncated cone with base radius rb and top radius rt.
Each shape has height h (parallel to gravity), length L, and is subject to weight
load ρg.

geometry through the coefficients. The method is well-suited for solving bound-

ary value problems involving variable material properties or geometry, such as

those encountered in structural and physiological modelling. This method is

detailed below.

First taking the equation

Au
′′
+A

′
u

′
= −αA (26)

where α = k
E . Expanded at xi with interval ∆ gives

Ai

(
ui+1 − 2ui + ui−1

∆2

)
+

(
Ai+1 −Ai−1

2∆

)(
ui+1 − ui−1

2∆

)
= −αAi (27)

Separating variables gives

ui−1

(
Ai +

∆

2
(Ai−1 −Ai+1)

)
+ ui (−2Ai) + ui+1

(
Ai +

∆

2
(Ai+1 −Ai−1)

)
= −α∆2Ai

(28)
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This can be rewritten in matrix form as:

1 0 0 · · · 0

a b c · · · 0

. . . . . . . . .

0 · · · a b c

0 · · · 0 0 1





u0

u1
...

uN−1

uN


=



0

−α∆2A1

...

−α∆2AN−1

0


(29)

where

a = Ai +
∆

2
(Ai−1 −Ai+1) (30)

b = −2Ai (31)

c = Ai +
∆

2
(Ai+1 −Ai−1) (32)

Setting the first and last entries in the tri-diagonal matrix to 1, and the first

and last entries in the constant matrix to 0, produces the boundary conditions

u0 = 0 and uN = 0. N is the number of points between 0 and h with the

interval ∆.

This method is consistent for each shape, with Ai being the cross-sectional

area at a distance x from the top of the lung. For the horizontal cylinder, the

cross-sectional area will be a rectangle with the area

A(x) = 2L
√
x(h− x) (33)

For the cone, when turned to it’s side the function for cross-sectional area
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becomes more complex such that

A(x) =


Lh2

(√
1− k21 − k21cosh

−1 1
k1

)
, x < h

2 .

Lh
2 , x = h

2 .

Lh2

(√
1− k22 − k22cosh

−1 1
k2

)
, x > h

2 .

(34)

Where k1 = 1− 2xh and k2 = 1− 2h−xh .

Similarly for the truncated cone in the horizontal position

A(x) =


L(b− t)

(√
1− k21 − k21cosh

−1 1
k1

)
, x < b− t.

L
2

(
2
√
t2 − (b− x)2 + 2

√
b2 − (b− x)2

)
, b− t ≤ x ≤ b+ t

L(b− t)
(√

1− k22 − k22cosh
−1 1

k2

)
, x > b+ t.

(35)

where k1(x) = 1 − x
b−t and k2(x) = 1 − 2b−x

b−t . These can then be solved as

a series of linear equations, using the Tridiagonal Matrix Algorithm (TMA)

often referred to as the Thomas algorithm - a streamlined version of Gaussian

elimination specifically designed for tridiagonal matrices. It performs a forward

elimination followed by back substitution in linear time, making it ideal for large

one-dimensional problems.

4.6 Comparing Deformation For Each Shape

In order to choose the most physiologically accurate shape to take forward in

this project, each shape is compared in both the upright and supine position.

Making the model as effective as possible for clinical decision making relies on

a deformation simulation method that most accurately mimics results collected

from patients in previous studies.

Figure 9 shows the deformation from the original position in mm for each

shape in both the upright and supine positions. One clear observation from the

graphs is that deformation levels are consistent between shapes in the supine
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Figure 9: Alveolar deformation from original position against gravity (mm),
in the upright (black) and supine (red) positions. A represents the cylinder
analogy, B represents the cone analogy and C represents the truncated cone
analogy.

position. This is due to the shapes all being symmetrical about their mid-

line when placed horizontally. Deformation is maximal at 50% of total lung

height, with roughly a 2.5mm displacement downwards. There is a much more

noticeable difference between the shapes in the upright position. The constant

cross-section of the cylinder results in a symmetrical deformation curve, with

maximal displacement of 6mm occurring at 50% of total lung height. This is not

what we would expect of the lung under the Slinky Effect [23,24,25], in which we

expect to see a bottom heavy deformation curve. The cone shape results in the
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bottom heavy curve as expected, with a far more skewed displacement. Maximal

displacement is 6.75mm occurring at 25% of total lung height. It must be noted

that due to the boundary condition for the cone being set at 1cm from the apex

(as discussed previously), the deformation curve does not start at 100% of total

lung height, which may produce inaccurate results. For the truncated cone in the

upright position, deformation is slightly skewed towards the bottom of the lung,

but to a lesser extent than the cone. Maximal displacement is 6.5mm at 40% of

total lung height. In order to choose the most physiologically accurate shape for

the model, these curves must be compared to data collected in humans. Tissue

displacement due to gravity is impossible to directly measure without comparing

to a gravity-free environment, but can be assessed by measuring regional tissue

density of the lung.

As a representation of regional tissue density, the model was used to calculate

the number of alveolar units at a particular height up the lung. The lung was

separated into cm increments, with 100 alveolar units per cm spread uniformly

before the addition of gravity. When gravity was added, the new positions of

each alveolar unit was calculated and the number in each cm of lung height

was recorded. Note, the actual number of alveoli in the human lungs can vary

from 274-790 million [52]. In order to model the alveoli effectively as a 1-D

approximation, a single alveolar unit represents all the alveoli within the same

iso-gravitational plane.

Figure 10A illustrates the number of alveolar units at each level of the total

lung height for the three shapes in the upright position. To compare with this,

Figure 10B is taken from a 2007 paper by Hopkins et al [13], in which the

regional tissue density of a human subject was calculated from MRI imaging.

Included here are the range of densities within a single iso-gravitational plane,

and the average density in a single plane. The cylinder results in a large number
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Figure 10: Comparison of regional lung characteristics in the upright position.
A displays the model’s calculated number of alveolar units per cm of total lung
height for the cylinder, cone, and truncated cone analogies. B presents data
from Hopkins et al. [13] on the regional density of lung tissue in a human
subject, derived from MRI imaging. The truncated cone analogy (A) most
accurately reflects the physiological distribution seen in human data (B).

of alveoli being present in the bottom 10% of the lung, significantly more than

is observed in the human subject or the other two shapes. The cone can be

seen to give an extremely small number of alveolar units in the top 10 − 20%

of the lung, which is physiologically inaccurate when Figure 10B is used as a

comparison. The most accurate shape is the truncated cone, which does not

show the extremes at the top and bottom of the lung. When this result is

combined with the deformation curves, it becomes clear that the truncated

cone represents the most physiologically relevant model and as such will be the

one used going forward.

The truncated cone model is used to determine the new height of each alve-

olar unit, as the initial distance from the top of the lung (xcm), added to the

level of displacement downward due to gravity (u(x)mm). This gives the new
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height as:

i = x+ u(x) (36)

where i is the index for the new alveolar height.

4.7 Prone position

The current model framework does not contain a distinction between Supine

and Prone positions, instead modelling the overall mechanics of the lung per-

pendicular to gravity. Therefore, equations must be expanded to replicate the

observed differences between these horizontal positions. From the literature re-

view of this thesis, the observable changes from supine to prone position have

been discussed, with the primary finding being the differing uniformity of cer-

tain mechanics. When compared to the supine position, prone position is found

to reduce the level of alveolar distension in the ARDS lung [17], resulting in

a more uniform distribution of ventilation and perfusion across all tissue [24].

Aside from the external pressures of the chest wall and organ placement, Tawhai

in 2009 attributed this uniformity to a more consistent elastic gradient in prone

position [10]. To model deformation in the proned lung, the tissue elasticity is

to be made non-constant, such that this relationship can be replicated.

Taking the initial derived bar equation as in 12, a non-constant cross-sectional

area will be set according to the truncated cone reference shape, proven the most

physiologically accurate analogy in Figures 9 and 10. Tissue elasticity (E) is

now also variable in space, and so must be reassessed as a function of x. This

gives the new bar equation as

d

dx

(
E(x)A(x)

du

dx

)
+ ρgA(x) = 0 (37)
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Which expanded becomes

E
′
Au

′
+ EA

′
u

′
+ EAu

′′
+ ρgA = 0 (38)

As before, using the second order centred finite difference method to assess

the equation at xi with interval ∆ gives

AiEi

(
ui+1 − 2ui + ui−1

∆2

)
+ Ei

(
Ai+1 −Ai−1

2∆

)(
ui+1 − ui−1

2∆

)
+

Ai

(
Ei+1 − Ei−1

2∆

)(
ui+1 − ui−1

2∆

)
= −αAi (39)

This can be rewritten in matrix form as:

1 0 0 · · · 0

a b c · · · 0

. . . . . . . . .

0 · · · a b c

0 · · · 0 0 1





u0

u1
...

uN−1

uN


=



0

−α∆2A1

...

−α∆2AN−1

0


(40)

where

a = AiEi −
∆

2
(Ai (Ei+1 − Ei−1) + Ei (Ai+1 −Ai−1))

b = −2AiEi

c = AiEi +
∆

2
(Ai (Ei+1 − Ei−1) + Ei (Ai+1 −Ai−1))

As before, setting the first and last entries in the tri-diagonal matrix to 1,

and the first and last entries in the constant matrix to 0, produces the boundary

conditions u0 = 0 and uN = 0. Using the horizontal cross-sectional area for the
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Figure 11: Alveolar deformation from original position against gravity (mm),
in the upright (black) and supine (blue) and prone (red) positions, using the
truncated cone shape analogy.

truncated cone as in 35. In order to differentiate between supine and prone elas-

ticity, E is set to 1 for all values of x in prone position, and as a linear gradient

from 0 to 1 in supine. This is based on experimental findings which suggest

lung tissue elasticity is more uniform in the prone position than in the supine,

such as in mechanically ventilated pigs [53] and estimates for multidetector row

computed tomography imaging in humans [10]. The system of equations created

in the matrix notation are again solved using the Tridiagonal Matrix Algorithm

(Thomas algorithm).

Figure 11 depicts the deformation from the reference position of the lung

against gravity in the upright, supine and prone positions. There are two main
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observations that can be made for prone position. Firstly, the overall level of

deformation is significantly shorter, reaching a maximum displacement half of

that in the supine position. The other observation is that the shape of the

deformation curve is more uniform in the prone position, not displaying the

obvious bottom-heavy curve as seen in the upright position.

Petersson et al. (2007), a study on healthy volunteers, utilized quantitative

Single Photon Emission Computed Tomography (SPECT) with fixed radiotrac-

ers to assess how changes in posture affect regional lung tissue distribution [54].

Their research explicitly concluded that a change from the supine to the prone

posture primarily causes a change in the vertical distribution of lung tissue.

Quantitatively, they found that the gradient in lung density was consistently

smaller in the prone posture compared to supine, with mean gradients of 0.027

in prone versus 0.051 in supine. This demonstrates that the density gradient in

the prone posture was approximately half the magnitude of the supine gradi-

ent, directly aligning with the static model prediction that prone deformation is

roughly half that of supine. The smaller density gradient in prone also indicates

a more uniform tissue distribution, as seen in the model.

Tawhai et al. (2009) further validates these points through finite-element

analysis of human lung mechanics, deliberately isolating the effect of gravity

by modelling the prone lung as a gravity-reversed supine shape, thereby ex-

cluding confounding factors like heart or diaphragm displacement [10]. Their

simulations confirmed that the magnitude of the density gradient in the supine

lung was nearly twice as large as for the prone lung (e.g., Subject 1 showed

−4.33%/cm in supine vs. −2.72%/cm in prone; Subject 2 showed −4.96%/cm

in supine vs. −2.51%/cm in prone). Importantly, they observed that displace-

ments due to gravity in the prone model were smaller than prone throughout

most of the tissue compared to supine. Their findings also explicitly state that

77



an underlying feature of the normal lung in the prone posture is a more uniform

density distribution and less heterogeneity in density or elastic recoil pressure

than when in the supine posture. This provides strong empirical and concep-

tual backing for the modelling assumption that tissue elasticity is more uniform

in the prone position, leading to the observed smoother and less exaggerated

deformation curve in Figure 11.

4.8 Alveolar Ventilation

Each alveolar unit now has a distinct location, with parameters relative to its

vertical height against gravity. These parameters can then be used to calculate

regional ventilation across the lung. To ensure that this model can be easily

integrated into a larger model of mechanical ventilation, such as a digital twin,

calculations are made using equations similar to those found in the literature.

Set values were taken from a theoretical “healthy patient”, not affected by ARDS

or other pulmonary conditions [55].

For a single alveolar compartment i, the ventilation is defined as the volume

of air moving in/out of the ith alveolus in a single sampling interval. This is

calculated as:

Flowcompi =
PTrachea − Pcompi

RUpperAirway +Rcompi
(41)

where PTrachea is the tracheal pressure and is set to 100cmH20, RUpperAirway

is the upper airway resistance and is set to 0.004kPaL−1min−1, Rcompi is the

inlet resistance of the ith compartment and is set to 0.001kPaml−1min−1, in

accordance with the “healthy patient” subject. Pcompi is determined as

Pcompi = STalvi (Vcompi − Vcol)
2 − Pexti (42)
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Here STalvi is the stiffness of the ith alveolar compartment and is set to

0.05cmH20. Vcol is the constant collapse volume of the unit, i.e. the volume

threshold at which the unit closes, and is set to 6ml. Vcompi is the volume of

air inside the ith alveolar unit, and Pexti is the external pressure applied to the

ith compartment, which are determined by the displacement model.

4.9 Alveolar Perfusion

As with alveolar ventilation, alveolar perfusion can also be calculated using

parameters derived from the displacement model. As before, set values are

chosen in accordance to the “healthy patient” subject model.

For a single alveolar compartment i, the perfusion is defined as the volume

of blood passing through the ith capillary unit in a single sampling interval.

This can be calculated as:

Qcompi =
COnon−shunted · PV Rtotal

Ri
(43)

where COnon−shunted is the non-shunted bloodflow, PV Rtotal is the total

pulmonary vascular resistance, and Ri is the resistance of the ith capillary unit.

Although an accurate equation, this version does not allow the integration of

elements seen to influence regional perfusion in the literature, and as such has

been modified for better manipulation of displacement-influenced variables. The

perfusion equation used is instead

Qcompi =
∆P

Ri
(44)

Here bloodflow to the ith capillary unit is determined by the dominant pres-

sure gradient ∆P between the pulmonary artery Pa, the pulmonary vein Pv, and

the ith alveolar unit Pcompi . Pulmonary arterial and venous pressures are set
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using a hydrostatic gradient vertically down the lung. This phenomena is well

observed [7] and values are set to linear gradients 7−24mmHg and 6−12mmHg

from apex to base for Pa and Pv respectively. The dominant pressure gradient

is determined by the inequalities defined by West, such that the bloodflow in

the ith capillary unit is calculated by the difference between the two interacting

pressures in a a particular zone. This is defined as:

Qcompi =


0, if Pcompi > Pa > Pv.

Pa−Pcompi
PV Rcompi

, if Pa > Pcompi > Pv.

Pa−Pv
PV Rcompi

, if Pa > Pv > Pcompi ,

(45)

which is in accordance with West’s Zones of the lung [21]. When alveolar pres-

sure is larger than pulmonary arterial and venous pressures, the capillary col-

lapses and so bloodflow is zero. When pulmonary arterial pressure exceeds alve-

olar pressure, but pulmonary venous pressure does not, bloodflow is determined

by the gradient between the pulmonary artery and the capillary unit. Finally,

when both pulmonary arterial and venous pressures exceed alveolar pressure,

bloodflow is simply determined by the gradient between the pulmonary artery

and vein.

4.10 V/Q Ratio

As discussed earlier in the literature review section of this report, ventilation-

perfusion matching is an observable parameter often used by clinicians to mon-

itor lung condition [56]. Given that ventilation and perfusion have been de-

termined as above, the ventilation-perfusion ration can simply be calculated

as: (
V

Q

)
compi

=
Flowcompi
Qcompi

(46)
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4.11 Results

Figure 12 displays various indicators of lung function relative to patient position-

ing and percentage of total lung height. Note, results are displayed relative to

the average value across the lung, for a clearer visual representation of changes

due to height up the lung (1 on the x axis represents the average). The relative

volume of the alveolar units is shown in Figure 12A. In all positions, alveoli are

smaller towards the base of the lung, as is expected from the Slinky Effect [12,

13, 38], however the range in alveolar sizes varies significantly. In the upright

position, the bottom 45% of the lung is comprised of much smaller than average

alveoli, with the bottom 30% being over half the size of average. On the other

hand, from 60% of total lung height upwards, alveolar size increases drastically

from double the average volume to 6 times the average volume. This is con-

sistent with the large distension expected at the apex of the lung. In supine

position, alveolar unit volumes are far more consistent, increasing to only 2.5

times the average volume at the apex of the lung. This observation is even more

prominent in the prone position, in which alveolar size varies only 50% from the

average.

The model’s demonstration of significantly smaller alveoli at the lung base in

the upright position, coupled with drastic over-distension at the apex, provides

a crucial static baseline for understanding regional lung injury risk. In the ICU,

this gravitational predisposition suggests that dependent lung regions may be

more prone to collapse (atelectasis) and derecruitment, while non-dependent

regions face higher risk of over-distension and subsequent ventilator-induced

lung injury (VILI) even before dynamic breathing is considered. The greater

uniformity in alveolar size observed in supine and, especially, prone positions

highlights why these postures are clinically favoured to mitigate such regional

disparities and promote more homogeneous lung mechanics.
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Figure 12: Comparison of lung function between upright,supine and prone po-
sitions. A displays the relative volume of each alveolar unit. B displays the
relative ventilation of each alveolar unit. C displays the relative perfusion of
each alveolar unit. D displays the ventilation-perfusion ratio as a function of
total lung height.

Figure 12B displays the relative ventilation of the alveolar units across the

lung height. The primary difference between positions is the variation from the

average ventilation, which is noted here as the mean ventilation value across the

whole lung height. For upright this is from 90% of the average at the apex of

the lung, to 105% at the base. For supine position, variation is slightly smaller,

from 94% at the apex to 105% at the base. For prone position, the smallest
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variation in ventilation is seen, from 97% at the apex to 104% at the base. In

each case, this gradient of increasing ventilation towards the base of the lung is

to be expected [24, 25, 57].

Figure 12C displays the relative perfusion of the alveolar units across the

lung height. For all positions, the three Zones of the lung [7, 21] can be clearly

seen. Zone 1, in which no blood flow can occur, exists at the apex of the

lung, with Zone 2 towards the centre and Zone 3 at the base. The positioning

differences are seen at the heights at which these zones occur. In the prone

position, Zone 1 is smallest, only seen in the top 5% of the lung compared to

10% in the supine position and 20% in the upright position. This is of significant

importance, as Zone 1 is expected only to occur during mechanical ventilation

[58], and therefore minimising this zone will reduce the number of un-perfused

alveoli and increase gas-exchange. In all positions, Zone 2 occurs for roughly

10% of the total lung height. Zone 3 is seen through the bottom 85% in the

prone position, 80% in the supine position and the bottom 65% in the upright

position. In this zone there is a clear linear relationship between lung height

and perfusion as is expected [7]. In prone position, this gradient is steeper,

meaning a more uniform perfusion throughout the lung. The main finding of

this simulation is that prone position results in more of the lung being well-

perfused, with more consistent perfusion levels across the lung.

Finally, Figure 12D shows the ventilation-perfusion ratio across the lung.

The theoretical ideal ventilation-perfusion ratio is 1, such that blood flow and

air flow are equal and maximal gas exchange can occur [56]. Although 1 is

considered a theoretical ideal, in healthy individuals the average ratio is closer

to 0.8 [59]. This of course, is not constant across the entirety of the lungs,

but is expected to occur at roughly 50% of total lung height. This can be

seen accurate in all positions. Due to the mechanical ventilation used in this
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simulation, perfusion is zero at the top of the lung, and as such the ventilation-

perfusion ratio is undetermined, resulting in the curve tapering off at 85% total

height in prone 75% total height in supine and 65% total height in upright.

4.12 Concluding Remarks

This chapter established a crucial foundation for the thesis by introducing the

mathematical modelling framework through the lens of gravity-induced static

deformation of deflated lung tissue. Before progressing to the complex dynamics

of breathing and mechanical ventilation, it was essential to first isolate and

understand the passive mechanical effects of gravity.

To address the limitations of simplistic discrete models—such as mass-spring

systems, which fail to capture continuous tissue behaviour, a continuum ap-

proach grounded in solid mechanics was employed. This led to the derivation of

the Bar Equation, offering improved physiological accuracy and computational

efficiency for describing deformation along isogravitational planes. A central

goal was to compare three simplified lung geometries—cylinder, cone, and trun-

cated cone—across multiple body positions (upright, supine, prone), enabling

selection of the most anatomically faithful model for use in later dynamic sim-

ulations.

The static model developed here is particularly relevant for passive or se-

dated patients, such as those under mechanical ventilation, general anaesthesia,

or neuromuscular blockade. In these contexts, gravitational pre-deformation

of lung tissue significantly affects subsequent mechanical behaviour. By quan-

tifying spatial strain heterogeneity across different postures, this chapter pro-

vides a mechanistic explanation for observed clinical phenomena such as regional

ventilation-perfusion mismatch and dependent collapse. These insights support

early interventions, such as pre-emptive prone positioning, to distribute stress
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more evenly and preserve alveolar integrity from the outset of care.

While the model is less applicable to awake, spontaneously breathing pa-

tients, where diaphragm motion, chest wall mechanics, and muscular compen-

sation play major roles, it nevertheless offers a baseline understanding of the

passive gravitational component shaping lung configuration in all individuals.

Beyond ARDS management, this framework has implications for surgical

positioning and secretion clearance. In procedures requiring prolonged prone

or lateral decubitus positioning, understanding deformation patterns can guide

posture to preserve pulmonary function. Similarly, gravitational effects on tissue

shape impact mucus distribution; prone positioning can enhance drainage from

posterior regions, offering therapeutic value in diseases such as bronchiectasis

or cystic fibrosis.

The chapter’s novelty lies in its systematic evaluation of simplified lung ge-

ometries under gravitational load across multiple postures, setting it apart from

prior models such as the spring-mass system by Swan et al [38]. This compara-

tive analysis informs both the anatomical assumptions and governing equations

for the advanced poroelastic models that follow. By explicitly linking posture,

geometry, and gravitational mechanics in a static state, this work forms a co-

herent and physiologically grounded precursor to dynamic respiratory modelling

and reinforces the thesis’s broader emphasis on patient positioning as a deter-

minant of lung function.
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5 Linear Poroelastic Lung Model

5.1 Introduction

Building upon the static analysis of lung deformation, this chapter introduces a

dynamic framework using linear poroelasticity to model the lung’s mechanical

behaviour. The objective is to establish a basic poroelastic model that cou-

ples solid tissue deformation with fluid (air) flow, capable of simulating lung

dynamics across the breathing cycle and assessing the initial effects of patient

positioning. I hypothesize that a linear poroelastic approach, despite its sim-

plifications, can effectively represent the fundamental interaction between lung

tissue and airflow, offering initial insights into how gravity and posture influ-

ence internal lung pressures and displacements during ventilation. The central

clinical question explored is: Can a simplified (linear) poroelastic model ade-

quately capture how patient positioning affects lung deformation and internal

pressures throughout the breathing cycle, and how do these effects compare

across upright, supine, and prone postures? This phase is essential as it transi-

tions from a static understanding to a dynamic system, providing a preliminary

computational tool to explore time-dependent lung function under mechanical

ventilation.

Poroelasticity is a field in mechanics which defines a material as consisting

of two separate phases, a deformable solid skeleton interspersed with fluid filled

pores [39]. The efficacy of using a poroelastic approach to model soft tissues

has been well-established in recent years, and is now being used to explore full

organ systems such as the lungs [42, 43, 44, 46]. Further details of this have

been discussed previously in the Literature Review section of this thesis. In

this chapter, I will establish the basis for a poroelastic model of the lung using

linear relationships, before expanding into different patient positions across the

breathing cycle.
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5.2 Terzaghi’s Problem

The poroelastic framework has been used in the field of geomechanics with

great success since the early 20th century. In 1923, Terzaghi posited his theory

of consolidation, stating that deformations in an element of soil were controlled

solely by the flow of fluid through the pores between the solid particles, resulting

in both the solid and fluid portions of the system being incompressible [40]. He

modelled this as a one-dimensional linear problem, providing a starting point to

explore a better understanding of the one-dimensional lung deformation model.

Figure 13: Visual representation of Terzaghi’s consolidation problem, depicting
a soil sample confined by an impermeable ring with a closed base. The sample
is submerged in water, allowing fluid to drain freely from its exposed upper
boundary, and subjected to a constant perpendicular stress.

Terzaghi’s consolidation problem is set out as follows: a soil sample is con-

fined by an impermeable ring with a closed base, such that there is only one

direction for displacement to occur. This ring is then submerged into a container

of water, allowing water to be in direct contact with the exposed boundary of

the soil. The boundary is said to be fully drained, meaning water is allowed

to escape freely. The soil sample is loaded at this boundary with constant

perpendicular stress. A visual representation of this can be seen in Figure 13.
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In modelling the lung as a poroelastic organ, particularly in scenarios in-

volving interstitial fluid dynamics such as pulmonary oedema or mechanical

ventilation, it is instructive to draw on analogies from classical porous media

theory. In Terzaghi’s consolidation problem, an applied external load is initially

supported by the pore fluid, resulting in elevated pore pressure. As fluid slowly

drains through permeable boundaries, the pore pressure dissipates and the load

is gradually transferred to the soil skeleton, causing consolidation. This process

mirrors the behaviour of lung parenchyma when conceptualized as a saturated,

deformable "wet sponge": the tissue matrix (analogous to the soil skeleton) is

immersed in interstitial fluid, and under external loading—such as gravity, pos-

tural changes, or ventilator-induced pressures—fluid pressure initially increases

within the lung. Over time, interstitial fluid redistributes or drains (via lym-

phatic pathways or local permeation), and the mechanical load is transferred

to the tissue structure itself. Key parameters in both systems—such as per-

meability, compressibility of the solid matrix, and fluid viscosity—govern the

rate and pattern of pressure dissipation and deformation. Thus, by demon-

strating Terzaghi’s problem within a mathematical lung model, we capture the

essence of time-dependent fluid-structure interactions, providing a physically

grounded framework to explore pulmonary mechanics under both physiological

and pathological conditions.

This is an example of confined compression, and should result in fluid being

expelled from the soil element. This system can be mathematically represented

using the storage equation.

α
∂ε

∂t
+ S

∂p

∂t
= ∇ κ

upsilon

(
∇p− ρfg

)
(47)

where α is Biot’s coefficient, ε is the volume change of the solid material, S

is the storativity of the system, p is the pore pressure, κ is the permeability
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coefficient, υ is the unit weight of the fluid, ρf is the density of the pore fluid,

and g is the applied force vector. ∇ is shorthand for ∂
∂z . As the soil is confined

on all but one side, the applied force vector can be assumed to be a gravitational

force in z, such that

g =


0

0

−g

 (48)

Assuming flow only on the vertical z axis, 47 becomes

α
∂ε

∂t
+ S

∂p

∂t
= ∇κ

υ
(∇p) (49)

For a one-dimensional problem, the volume change of the system is equal to

the vertical strain. As the system is linear, the elastic behaviour of the material

can be assessed using the vertical effective stress as

∂ε

∂t
= − 1

K + 4
3G

(
∂σzz
∂t

− α
∂p

∂t

)
(50)

where K is the compression modulus of the porous medium, G is the shear mod-

ulus of the porous medium and σzz is the total stress of the system. Substituting

this into 49 gives

(
S + α2 1

K + 4
3G

)
∂p

∂z
= α · 1

K + 4
3G

· ∂σzz
∂t

+
∂

∂z

(
κ

υ
· ∂p
∂t

)
(51)

this is the general equation for consolidation in one-dimension.

For Terzaghi’s problem, at time t = 0, a vertical load is applied of magnitude

q. For t > 0, σzz is constant and so 51 simplifies to

∂p

∂t
= cv

∂2p

∂z2
, (52)

89



where cv is the consolidation coefficient such that

cv =
κ

υ
(
S + α2 · 1

K+ 4
3G

) (53)

For the initial condition, assumed to be at the moment of loading, there has

not yet been any fluid lost from the soil. This gives the condition

t = 0 : p = p0 = B · q =
α · 1

K+ 4
3G

S + α2 · 1
K+ 4

3G

· q (54)

where B is Skempton’s coefficient. Boundary conditions need to be defined at

the base of the soil, z = 0, and at the top free-boundary of the soil, z = h.

Boundary conditions are

t > 0, z = 0 :
∂p

∂z
= 0 (55)

t > 0, z = h : p = 0 (56)

With the initial problem set up, the system can now be solved. We begin by

taking the Laplace transform as suggested by Carslaw and Jaeger in 1948 [60].

p =

∫ ∞

0

pe−st dt (57)

that transforms the one-dimensional consolidation equation 51 into

d2p

dz2
= λ2

(
p− p0

s

)
(58)

where λ2 = s
cv

. The solution of this equation will be in the form

p =
p0
s

+Acosh(λz) +Bsinh(λz) (59)
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where A and B are integration constants. From the boundary conditions set

up in 55 we can calculate constants as

t > 0, z = 0,
∂p

∂z
= 0 : B = 0 (60)

t > 0, z = h, p = 0 : A = − p0
cosh(λh)

(61)

Giving the solution as

p =
p0
s

− p0
s

· cosh(λz)
cosh(λh)

(62)

To invert the transformed solution, Churchill in 1972 suggested using the

complex inversion integral

p =
1

2πi

∫ γ+i∞

γ−i∞
p · est ds (63)

with γ set to insure there are no singularities to the right of the integration [61].

This integral can be can be calculated by using a half-circle closed contour

to the left of the integration path, as dictated by Churchill. Assuming that

the integrand is singular, and that half-circle itself does not contribute to the

integral solution. Using residue-theorem, the integral can be defined as the sum

of the poles within the contour such that

p =

N∑
ψ

R
{
pest

}
(64)

where R is the corresponding residue. Finding the poles of 62 requires looking

at the terms separately. The first term is simple in that it has one pole at s = 0

with a residue of p0. The second term also has a pole at s = 0 with a residue

of −p0, cancelling out the residue of the first term. The second has poles at all
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zeros of cosh(λh):

λψ = ± (2ψ − 1)
iπ

2h
(65)

sψ = − (2ψ − 1)
2 cπ

2

4h2
(66)

For all positive integer values of ψ.

For the simple pole at s = sψ, the residue can be defined

Rψ =

{
−p0 cosh(λx)e

st

d
dss · cosh(λh)

}
s=sψ

(67)

Evaluating the differential and using the poles at the zeros of cosh(λh), the

residue becomes

Rψ =
4p0
π

· (−1)ψ−1

2v − 1
· cos

(
(2ψ − 1)

zπ

2h

)
· e−(2ψ−1)2· cvtπ

2

4h2 (68)

Using the definition set in 64, the final solution can thus be taken in the

standard used form of p/p0 as

p

p0
=

4

π

∞∑
ψ=1

(−1)ψ−1

2ψ − 1
· cos

(
(2ψ − 1)

zπ

2h

)
· e−(2ψ−1)2· cvtπ

2

4h2 (69)

Figure 14 shows the analytical solution for Terzaghi’s problem for varying

values of the time parameter cvt
h2 . The relative change in pore pressures p/p0

are plotted against the relative height of the pore z/h. For reference the top

of the soil sample is at z/h = 1 and the base at z/h = 0. This shows that

the relative pressure of the pores is higher towards the base of the sample, as

is expected [62]. The other interesting observation from this graph, is that as

cvt
h2 increases, pore pressures have been reduced to almost zero, suggesting the

sample has been fully consolidated.

92



Figure 14: Analytical solution for Terzaghi’s consolidation problem, illustrating
the relative change in pore pressures p/p0 against relative height z/h for various
values of the time parameter cvt/h2. The graph shows higher pore pressures
towards the base z/h = 0 and a reduction to near-zero pressures as the time
parameter increases, indicating full consolidation of the sample

Although the concept of consolidation itself is not directly applicable to a

deforming soft tissue structure such as the lung, Terzaghi’s Problem does present

a very clear symmetry to the pore behaviour of the alveoli. The increasing

pressures towards the base of the sample here, can be assumed a direct result of

the applied vertical load at the top of the sample. In a spontaneously breathing

subject, it is the load applied by the chest wall and diaphragm which forces
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air out of the alveoli [63]. Terzaghi’s theories of consolidation thus raise an

interesting question on how these external forces effect the pressures of the

alveoli based on their vertical height within the lung. The next portion of this

project will therefore focus on using a one-dimensional theory of poroelasticity

to model the soft tissues of the lung with the alveolar pores.

5.3 Derivation of The Governing Equations

The basis for a poroelastic framework relies on the conservation of the full

system. For this one-dimensional lung model, the governing equations are the

conservation of mass of the material, the conservation of the air in the pores

and the conservation of momentum of the solid skeleton.

Figure 15: Reference diagram for the proposed one-dimensional poroelastic
model of the lung. The lung is represented as a structure with pores aligned
against gravity, where u denotes the deformation of pores at a specific gravita-
tional plane (height x) over time t.

For reference, Figure 15 depicts a visual representation of the proposed
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model. The lung will be modelled as a one-dimensional structure with pores

aligned against gravity. The deformation of pores at a particular gravitational

plane, height x, is denoted as u over time t.

The mass balance for the solid phase of the system can be defined as

∂(1− ϕ)ρs

∂t
+∇ · ((1− ϕ)ρsvs) = 0 (70)

where ϕ is the porosity, ρs is the density of the solid and vs is the velocity of

the solid skeleton. In this 1-D problem, ∇ represent the partial derivation ∂
∂x .

For this model, the density of the solid tissue is assumed constant, and as such

can be factored out, making the mass balance for the solid phase

∂(1− ϕ)

∂t
+∇ · ((1− ϕ)vs) = 0 (71)

The mass balance for the fluid phase is given as

∂ϕρf

∂t
+∇ ·

(
ϕρfvf

)
= ρfS(x, t) (72)

Where ρf is the density of the fluid and vf is the velocity of the fluid. S(x, t) is

some input source term. Again, assuming the density of the air in the system

is constant, this can be factored out yielding the equation

∂ϕ

∂t
+∇ ·

(
ϕvf

)
= S(x, t) (73)

Adding together 71 and 73 gives

∇ · ((1− ϕ)vs) +∇ ·
(
ϕvf

)
= S(x, t) (74)
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By defining fluid flux z to be

z = ϕ
(
vf − vs

)
, (75)

74 can be simplified to

∇ · (vs + z) = S(x, t). (76)

We restate the velocity of the solid skeleton in terms of deformation according

to

vs =
∂

∂t
(u(X, t)) , (77)

where X is the position of the particle in the reference state. This gives the

final equation for the balance of mass of the system as

∇
(
∂

∂t
(u(X, t)) + z

)
= S(x, t) (78)

The conservation of fluid momentum in the system can be simulated using

Darcy’s Law, such that

κ−1z +∇p = ρfg, (79)

where κ is the permeability, p is the pressure and g is the applied acceleration,

in this case gravity. It can be argued that ρfg is negligible in the system as the

direct impacts of gravity on air in the lung can be assumed zero. This makes

the equation for the conservation of fluid momentum

κ−1z +∇p = 0 (80)

Finally, the conservation of solid momentum of the system can be thought of

as the deformation of the lung tissue with time. This can be taken directly from

the model derived previously in Chapter 4 of this thesis. However, interpreting
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this to allow displacement over time requires some adjustments. The density

must now be refined to specifically the density of the solid portion of the system.

There must also be the inclusion of a pressure input that can force deformation

based on in/out flow of air. Over the breathing cycle this is defined as a pressure

input for the inhalation phase, and output for the exhalation phase. This gives

the equation of solid momentum for this model as

∂

∂x

(
EA

∂u

∂x
− pA

)
= −Aρs(1− ϕ)g (81)

Where E is tissue elasticity, A is the cross-sectional area of the tissue, and g is

the acceleration due to gravity. For the purposes of the model going forward,

78 and 80 will be combined by substituting the fluid flux z such that

∇ ·
(
∂u

∂t
− κ · ∇p

)
= S(x, t) (82)

To begin, the model will be set up according to the cylinder analogy in the

upright position, such that the equations can be solved with a constant cross-

sectional area A and tissue elasticity E. Expanding the derivatives for the model

81 and 82, gives the final series of equations for the linear poroelastic model.

∂2u

∂x∂t
− κ

∂2p

∂x2
= S(x, t) (83)

∂

∂x

(
E
∂u

∂x
− p

)
= −ρs(1− ϕ)g (84)
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5.4 Non-Dimensionalisation of the Equations

Due to the large number of parameters in this lung model, variables are non-

dimensionalised for easier computation by scaling them to realistic physiologi-

cally relevant values. Variables are non-dimensionalised as follows:

x∗ = H∗x (85)

t∗ = T ∗t (86)

u∗ = H∗u (87)

p∗ = P ∗
∞ +MAP ∗p (88)

where H∗ is the total height of the lung, T ∗ is the maximum time for the

simulation, P ∗
∞ is the maximum pressure in the alveolar pores and MAP ∗ is

the mean airway pressure. This gives the non-dimensionalised differentials as

∂u∗

∂x∗
=
H∗

H∗ · ∂u
∂x

(89)

∂p∗

∂x∗
=
MAP ∗

H∗ · ∂p
∂x

(90)

∂2u∗

∂x∗2
=

1

H∗ · ∂
2u

∂x2
(91)

∂2p∗

∂x∗2
=
MAP ∗

H∗2 · ∂
2p

∂x2
(92)

∂2u∗

∂x∗∂t∗
=

1

T ∗ · ∂
2u

∂x∂t
(93)

Substituting these normalisations into the model 83 and 84

1

T ∗ · ∂
2u

∂x∂t
− κMAP ∗

H∗2 · ∂
2p

∂x2
= S(x, t) (94)

E

H∗ · ∂
2u

∂x2
− MAP ∗

H∗ · ∂p
∂x

= −ρs(1− ϕ)g (95)
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For the remainder of this thesis, we assume that all variables have been normal-

ized in this manner.

5.5 The Finite Difference Method

Due to the complexity of these coupled equations, iterative methods will be em-

ployed. The finite difference method used here is the Crank-Nicolson approach

for partial differential equations, as published by J. Crank and P.Nicolson in

1947 [64]. This method gives second-order convergence in both time and space.

A visual representation of the method can be seen in Figure 16.

Figure 16: Visual representation of the Crank-Nicolson method, a finite differ-
ence scheme used for solving partial differential equations in a one-dimensional
problem. The grid shows spatial index i and time index j, illustrating how the
method achieves second-order convergence in both space and time.
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For any variable θji = θ(xi, tj) the finite expansion can be written as

θ ≈ θji + θj+1
i

2
(96)

∂θ

∂x
≈
θj+1
i+1 + θji+1 − θj+1

i−1 − θji−1

4∆x
(97)

∂2θ

∂x2
≈
θj+1
i−1 − 2θj+1

i + θj+1
i+1 + θji−1 − 2θji + θji+1

2∆x2
(98)

∂2θ

∂x∂t
≈
θj+1
i+1 − θji+1 − θj+1

i−1 + θji−1

2∆x∆t
(99)

Substituting in the finite difference approximations to 94 yields

1

T ∗

[
uj+1
i+1 − uji+1 − uj+1

i−1 + uji−1

2∆x∆t

]
−

κMAP ∗

H∗2

[
pj+1
i−1 − 2pj+1

i + pj+1
i+1 + pji−1 − 2pji + pji+1

2∆x2

]
= Si,j

This can be rearranged in order to solve using the Gauss-Seidel method by

moving all j + 1 terms to the left hand side of the equation, and all j terms to

the right. This gives

1

T ∗

[
uj+1
i+1 − uj+1

i−1

2∆x∆t

]
− κMAP ∗

H∗2

[
pj+1
i−1 − 2pj+1

i + pj+1
i+1

2∆x2

]
=

Si,j −
1

T ∗

[
uji+1 − uji−1

2∆x∆t

]
+
κMAP ∗

H∗2

[
pji−1 − 2pji + pji+1

2∆x2

]

For ease of notation going forward, constants can be grouped to give

α(uj+1
i+1−u

j+1
i−1 )−β(p

j+1
i−1−2pj+1

i +pj+1
i+1 ) = S−α(uji+1−u

j
i−1)+β(p

j
i−1−2pji+p

j
i+1)

(100)

where α = 1
T∗·2∆x∆t , β = κMAP∗

H∗2·2∆x2 and S = Si,j .
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Similarly, substituting the finite difference approximations into 95 gives

E

H∗

[
uj+1
i−1 − 2uj+1

i + uj+1
i+1 + uji−1 − 2uji + uji+1

2∆x2

]
−

MAP∗
H∗

[
pj+1
i+1 + pji+1 − pj+1

i−1 − pji−1

4∆x

]
= −ρs(1− ϕ)g

As before, moving j + 1 terms to the left hand side gives

E

H∗

[
uj+1
i−1 − 2uj+1

i + uj+1
i+1

2∆x2

]
− MAP∗

H∗

[
pj+1
i+1 − pj+1

i−1

4∆x

]
=

− ρs(1− ϕ)g − E

H∗

[
uji−1 − 2uji + uji+1

2∆x2

]
+
MAP∗
H∗

[
pji+1 − pji−1

4∆x

]

Collecting constants to give

Γ
(
uj+1
i−1 − 2uj+1

i + uj+1
i+1

)
−Ξ

(
pj+1
i+1 − pj+1

i−1

)
= ζ−Γ

(
uji−1 − 2uji + uji+1

)
+Ξ

(
pji+1 − pji−1

)
(101)

where Γ = E
H∗·2∆x2 , Ξ = MAP∗

H∗·4∆x and ζ = −ρs(1− ϕ)g.

100 and 101 can now be solved as a coupled system for the unknowns u and

p. In order to solve this using Gauss-Seidel iteration, a reference solution is

required for time t0 = 0, and 4 boundary conditions must be set for the values

at which i = 0, n. The boundaries here are for the pressure and deformation at

the base and apex of the lung vertically. These conditions are set based on the

problem being explored.
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5.6 Model Validation

The simplest demonstration of this model is through the Swelling Problem. In

this test fluid is only introduced to the system at a single location, and then can

spread throughout the system (taken from a 2010 example by Chapelle [44]).

In this case, air will only be allowed to enter/exit the lung at the base (x = 0).

The source must be set to zero for every value of x such that the fluid flow

is driven only by the imposed pressure gradient. This gradient is imposed by

setting the pressure to zero at the top boundary and to some input function

fn(t) at the base boundary. Displacement is set to zero at the base and as a

stress-free boundary at the apex. The boundaries can be then set up as follows.

p(0, t) = fn(t)

p(n, t) = 0

u(0, t) = 0

∂u

∂x
(n, t) = 0

The Dirichlet boundaries can be substituted in to 100 and 101 immediately.

The Neumann boundary however, must be expanded to fit the finite difference

scheme. This is done using a one sided expansion such that

∂θ

∂x
(n, t) ≈

3θjn − 4θjn−1 + θjn−2

2∆x
= 0

The equations can now be coupled and solved using Gauss-Seidel iterative

methods in the form of the matrix equation

Aλj+1 = Bλj + C (102)

Here, A is a matrix containing the parameters for the j+1 terms, B is a matrix
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containing the parameters for the j terms, and C is a solution vector containing

the constants. λ is a vector containing the unknowns u and p at t = j, j + 1

respectively. The problem is initialised by setting displacement and pressures

to zero across the system.

Figure 17 shows the results to the swelling problem as set out above. The

most pressing observation here is the significant fluctuations in the pressure

field, which are not to be expected from the iterative methods used.

Figure 17: Initial displacement and pressure solutions for the swelling problem,
where fluid is introduced only at the base x = 0 via a constant input function
(right-most plot). Displacements and pressures are plotted for all pores on each
isogravitational plane. The red line indicates the base of the lung at x = 0. Note
the significant, unnatural fluctuations observed in the pressure field, indicating
numerical instability.
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Poroelastic computations have been found to exhibit these unnatural pore-

pressure oscillations when solved using finite methods. A 1981 paper aimed

to explore the impacts of mesh size on the extent of these fluctuations in one-

dimensional consolidation problems [65]. They found that there is a minimum

time-step criteria that when broken can result in violent fluctuations in the pres-

sure field. Further to this, a 1994 paper determined the stability and convergence

of Biot’s consolidation problem when using finite element approximations [66].

They found that these pressure oscillations are caused by instability in the ap-

proximation of compressiblity in the initial conditions, and can be seen to decay

in time.

In order to overcome these instabilities and remove the pore pressure os-

cillations, a relaxation method is proposed. Here the values calculated from

the Gauss-Seidel method will be used to incrementally increase the values from

the previous time-step until a designated convergence is achieved. The relaxed

values are calculated as

ψj+1 = ψj +RF ·
(
ψ(j+1)∗ − ψj

)
(103)

where ψj+1 is the new used value, ψj is the previous used value, ψj+1∗ is the

new predicted value, and RF is the relaxation factor. RF = 1 indicates no

relaxation. RF < 1 indicates under-relaxation. This process is repeated until

a set convergence is reached, such that the norm of the difference between the

predicted and relaxed values is below a given error tolerance.

A visual representation of the iterative methods used is shown using the flow

diagram in Figure 18. Here both the Gauss-Seidel iterations and the relaxation

methods can be seen, from t = 0 until the max time steps have been reached.

The model initializes the reference state with zero displacements and pressures

across the system at t = 0. Subsequently, the current value of the input wave-
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Figure 18: Flow diagram illustrating the iterative methods implemented to solve
the poroelastic model. The process includes solving matrix equations using
Gauss-Seidel iterations for initial predictions, followed by a relaxation loop to
ensure convergence and remove unnatural pore-pressure oscillations, repeating
until the maximum time steps are reached.

form is substituted into solution vector C, and parameter matrices A and B

are updated as required. The matrix equation is solved using a Gauss-Seidel

iteration to obtain the initial prediction, which then enters the relaxation loop.
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Figure 19: Displacement and pressure solutions to the swelling problem using a
relaxation iteration with the relaxation factor set to 0.7. The input is set to a
constant as in the right-most plot. Displacements and pressures are plotted for
all pores on each isogravitational plane. The red line represents the base of the
lung at x = 0.

Relaxed values iteratively replace predicted values until the norm of the dif-

ference between these vectors falls below the predefined error tolerance. Upon

achieving convergence, the predicted value is adopted as the final solution, and

the simulation advances to the next time-step, repeating until the maximum

simulation time is reached.

Using the relaxation methods to solve the swelling problem, the unnatural
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pore-pressure oscillations are removed. The relaxation factor RF is set here

to 0.7 representing under-relaxation of the predicted solution. Figure 19 shows

the relaxed solutions to the swelling problem. With the unnatural oscillations

removed, the behaviour of the system can be observed more accurately. In

the pressure field (middle plot) the base of the lung at x = 0 can be seen

to mirror the input function exactly, as is to be expected from the set up of

the swelling problem. Through the rest of the lung, pressures increase rapidly

until plateauing after 20 inflation steps. At this point, pressures are uniformly

distributed across the height of the lung. Upon removal of the input, pressures

quickly return to zero. In the displacement field, there is a small settling of the

lung before the introduction of any input, this is analogous to the results from

the solid mechanics static deformation model presented earlier in this thesis,

and represents the ’Slinky Effect’ of the lung under it’s own weight. After

the input function is switched on, the lung displaces rapidly until plateauing

after 20 inflation steps as in the pressure waves. Here, it can be seen that

relative displacement is greater at the base of the lung, as is expected from a

single-point inflation source. The displacement at the base of the lung is shown

in red, and is fixed to zero throughout. This swelling experiment provides

useful insight into the mechanical behaviours of the lung, however, is not an

accurate representation of mechanical ventilation. In order to create a more

physiologically relevant simulation, the model must be returned to an input

source effecting each alveolar unit on every iso-gravitational plane.

5.7 Source Problem

The reintroduction of the source can be achieved by setting new boundary con-

ditions. As before displacement is set to zero at the base of the lung and is

imposed as a stress-free boundary at the apex. Here, the pressure conditions
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must be set to contain all air within the system and not to allow any to escape

through the boundaries. This is achieved by setting the fluid flux z to zero.

From 80, we can rearrange to find z such that

z = − ∇p
κ−1

(104)

∴ for the zero flux we have

− ∇p
κ−1

= 0 (105)

Given that permeability κ is set to be a non-zero constant we can take that

∇p must equal zero for this condition to be enforced. This gives the boundary

conditions as

u(0, t) = 0

∂u

∂x
(n, t) = 0

∂p

∂x
(0, t) = 0

∂p

∂x
(n, t) = 0

The three Neumann boundary conditions must be expanded via the finite method

as before such that

∂θ

∂x
(0, t) ≈ −3θj0 + 4θj1 − θj2

2∆x
= 0

∂θ

∂x
(n, t) ≈

3θjn − 4θjn−1 + θjn−2

2∆x
= 0

Solving using Gauss-Seidel iterations and implementing the relaxation iterative

method as shown previously in Figure 18, the source problem can be simulated.

Figure 20 depicts the simulations of the source problem for three different

input functions. The first row models the lung mechanics with a constant source
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Figure 20: Displacement and pressure solutions to the source problem using a
relaxation iteration with the relaxation factor set to 0.7. Simulations are shown
for three different input functions, shown in the right-hand column. Displace-
ments and pressures are plotted for all pores on each isogravitational plane. In
each instance, the base of the lung at x = 0 is plotted in black, the first iteration
up from the base is plotted in blue, and the apex of the lung at x = n is plotted
in red. All other internal nodes are plotted in grey.

pressure applied for 20 iterations. Here both the displacement and pressures can

be seen to increase linearly after inflation is begun, and then remain constant

when input is returned to zero. This is due to the lack of an exit for the air

in the system. The zero-flux boundaries are set such that no fluid can enter or

escape the lung, unless it is done via the source function itself. This means that

a deflation function is required in the input. The second row of plots adds a
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deflation in the form of a negative constant, equal to that of the inflation. The

displacement can now be seen to return to zero after the complete deflation. At

it’s maximum inflation, the nth node reaches a displacement of 350% the lung

height at FRC, which represents an increase in total lung size to 3 times that

at functional residual capacity. In the last row of plots, the input function is

set to more accurately mimic the real functions used by mechanical ventilators

for ICU patients. Here deflation is a linear increase from −1 to 0, such that

the total area under the curve is equal to that of the inflation function and

therefore the total amount of air entering the system is the same as the total

amount of air leaving. This is done by doubling the number of iterations for

the deflation portion. Here the displacements and pressures return to zero in a

sloping descent,as opposed to the linear descent in the middle row plots.

A one-dimensional poroelastic model of the lung connected to a mechanical

ventilator input waveform has now been established. In its current form, the

model does not have the capacity to vary the patient position, as it assumes a

constant cross-sectional area. In order to be used for the exploration of lung

mechanics in different body positions, the governing equations must be adjusted

to account for lung shape and elasticity variations in space.

5.8 Patient Positioning in the Poroelastic Framework

The purpose of this project is to explore the impacts of patient positioning on

lung function, by ways of the specific effects of gravity on underlying tissue

mechanics. In order to adjust the current model to include the different body

positions, the governing equations must be modified. The differences between

the two positions can be equated to two factors, the changes in cross-sectional

area of the lung as the shape is oriented against gravity, and the change in

elasticity of the lung [10]. This means that equations must include a non-
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constant cross-sectional area A and tissue elasticity E, such that they are both

functions of space.

The equation for the conservation of mass of the system 78 and for the

conservation of the fluid momentum 80 do not contain any variables for the

cross-section or tissue elasticity, and so remain unchanged. The equation for

the conservation of solid momentum however, must be updated. Setting both

A and E to functions of x, means 81 must be written in the form

∂

∂x

(
E(x)A(x)

∂u

∂x
− pA(x)

)
= −A(x)ρs(1− ϕ)g (106)

Expanding by the product rule, this becomes

E(x)A(x)
∂2u

∂x2
+
∂u

∂x
·
(
E(x)A

′
(x) + E

′
(x)A(x)

)
− pA

′
(x)− p

′
A(x) = −A(x)ζ

(107)

where ζ = ρs(1− ϕ)g. The normalisation of the parameters as before is stated

in 85-93. Setting A and E to functions of x means these must also be non-

dimensionalised, such that

A∗ = Â∗A (108)

E∗ = Ê∗E (109)

∂A∗

∂x
=
Â∗

H∗ · ∂A
∂x

(110)

∂E∗

∂x
=
Ê∗

H∗ · ∂E
∂x

(111)

This makes the non-dimensionalised equation for the conservation of solid mo-
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mentum as

Ê∗E · Â∗A

H∗ · u
′′
+

(
Ê∗E · Â∗A

′

H∗ +
Ê∗E

′ · Â∗A

H∗

)
u

′
−

(P ∗
∞ +MAP ∗p) · Â∗A

′

H∗ −−MAP ∗

H∗ · p
′
Â∗A = −Â∗Aζ

which can be simplified to

Ê∗E ·Au
′′
+
(
Ê∗EA

′
+AÊ∗E

′
)
u

′
−(P ∗

∞ +MAP ∗p)A
′
−MAP ∗p

′
A = −H∗Aζ

(112)

This is expanded as before using a Crank-Nicholson approach visually shown

in Figure 16, according to 96-99, again moving all j + 1 terms to the left-hand

side.

uj+1
i−1 ·

[
Ê∗EA

2∆x2
− Ê∗EA

′
+ Ê∗E

′
A

4∆x

]
− uj+1

i ·

[
Ê∗EA

∆x2

]
+

uj+1
i+1 ·

[
Ê∗EA

2∆x2
+
Ê∗EA

′
+ Ê∗E

′
A

4∆x

]
+ pj+1

i−1 ·
[
MAP ∗A

4∆x

]
−

pj+1
i ·

[
MAP ∗A

′

2

]
− pj+1

i+1 ·
[
MAP ∗A

4∆x

]
=

uji−1 ·

[
− Ê

∗EA

2∆x2
+
Ê∗EA

′
+ Ê∗E

′
A

4∆x

]
+ uji ·

[
Ê∗EA

∆x2

]
+

uji+1 ·

[
− Ê

∗EA

2∆x2
− Ê∗EA

′
+ Ê∗E

′
A

4∆x

]
− pji−1 ·

[
MAP ∗A

4∆x

]
+

pji ·

[
MAP ∗A

′

2

]
+ pji+1 ·

[
MAP ∗A

4∆x

]
−H∗Aζ + P ∗

∞A
′

Cross-sectional area and tissue elasticity are both functions of x that are

assumed to remain constant in time, they can therefore be determined by preset

functions in this model. This allows us to group terms in the equation for
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simplicity to become

(Ω− δ)uj+1
i−1 − 2Ωuj+1

i + (Ω + δ)uj+1
i−1 + ωpj+1

i−1 − µpj+1
i − ωpj+1

i+1 =

(δ − Ω)uji−1 + 2Ωuji + (−Ω− δ)uji−1 − ωpji−1 + µpji + ωpji+1 + χ (113)

Where notation Ω = Ê∗EA
2∆x2 , δ = Ê∗EA

′
+Ê∗E

′
A

4∆x , ω = MAP∗A
4∆x , µ = MAP∗A

′

2 and

χ = −H∗Aζ + P ∗
∞A

′
.

The functions for cross-sectional area will be set using the truncated cone shape

analogy as in Sections 4.4-4.5 of this thesis, shown in 23 for the upright position,

and in 35 for the prone and supine positions. Tissue elasticity will be set as

before, as constant in the upright and prone positions, and a linear gradient

from 0 to 1 in the supine position.

5.9 Steady-State Solutions

The governing equations for the linear poroelastic model with non-constant

area and tissue elasticity are set above. The complexity of these equations

when coupled, given the two unknown variables p and u, makes a numerical

solution the most appropriate method for solving the system. However, there

are a number of theoretical solutions that can be verified analytically. These

exist at the points where the model converges in time and reaches a point of

equilibrium in both the pressure and displacement fields. These are defined as

steady-state scenarios.

The first steady-state scenario exists when there is no air introduced to the

lung, such that the source is zero throughout. This is comparable to the scenario

in which the lung is simply allowed to deform under it’s own weight, as discussed
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previously in the slinky effect. The equations for this system are

∂2u

∂x∂t
− κ

∂2p

∂x2
= S(x, t) (83)

∂

∂x

(
E(x)A(x)

∂u

∂x
− pA(x)

)
= −A(x)ρs(1− ϕ)g (106)

for reference, setting S(x, t) = 0. As the system is assumed to have reached

equilibrium, there is no time variation remaining. Subsequently, derivatives in

time become zero, making 83

−κp
′′
= 0 (114)

As κ is defined as a non-zero constant, we have that p
′′

must equal zero in this

steady state. This implies that p must be a linear function of x and will be

chosen here to be the simplest linear function such that p = x. Substituting

this into 106 gives

∂

∂x

(
E(x)A(x)

∂u

∂x
− xA(x)

)
= −A(x)ρs(1− ϕ)g (115)

which can be fully expanded to

EAu
′′
+
(
EA

′
+ E

′
A
)
u

′
− xA

′
= A−Aρs(1− ϕ)g (116)

Solving for u requires set boundary conditions, given here as a fixed boundary

at the base, u(0) = 0 and a stress-free boundary at the apex, u
′
(n) = 0. The

normalised system sets the maximum height of x to 1, such that n = 1. Using

these conditions, u′ can be found as

u′(x) =
1− ρs(1− ϕ)g

E
x+

ρs(1− ϕ)g

EA

∫
xA′dx+

C

EA
(117)

In order to find a solution for u, we must know explicitly the function A(x) and
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E(x). These are taken according to the functions set in sections 4.4 and 4.5

of this thesis. The full workings for these solutions for general linear functions

A(x) = ax+ b and E(x) = cx+ d are shown in Appendix A1.

To validate the finite-difference approximations for the model in the chosen

positions here, they will be compared to the steady state solution. This is done

by setting up the initial problem in the same manner, with no source function,

and allowing the simulation to run for a long period of time until convergence

is reached.

Figure 21 shows the analytical solution to the steady state scenario with

no input source, plotted against the finite-difference approximate solution to

the same scenario, in the upright position. Plotted are the final displacements

of each alveoli against their height in the reference position. Displacements

are the total distance moved, not inclusive of the direction. In this scenario

with the lung settling under its own weight, displacement will always be in

a downward direction with gravity. It can be clearly observed that the finite

difference approach demonstrates high fidelity with the analytical solution.

Figure 22 shows the steady state solutions to the no-source problem for

the upright, supine and prone positions. It can clearly be seen that the lung

deforms most significantly in the upright position, with the prone position being

the smallest deformation, roughly half of that seen in the upright orientation.

This is comparable to the results seen in Figure 11, which uses a solid mechanics

approach to model lung deformation, however with the notable difference that

the lung is fixed and both the top and the bottom, unlike in this poroelastic

approach, which sees the lung fixed only at the bottom.

A second steady state scenario exists when the source is reintroduced to the

system. When the input is set to a positive constant, the lung can be expected

to continue deforming as pressures increase, as air is trapped within the lung.
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Figure 21: Final displacement in the steady-state scenario with no input source,
depicting the lung deforming under its own weight in the upright position. The
analytical steady-state solution (solid line) is plotted against the results from
the numerical finite-difference approach (dashed line), demonstrating good ap-
proximation between the two methods.

If however, the lungs boundaries are considered ’leaky’ in that air is able to

pass out of the system at the extremities, then the system will eventually reach

a state of convergence. In order to set this, the zero-flux boundary conditions

must be removed, and replaced with one zero-pressure boundary. This gives the

conditions as
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Figure 22: Final displacement in the steady-state scenario with no input source,
showing lung deformation under its own weight in the upright, supine, and prone
positions. The lung deforms most significantly in the upright position, while the
prone position exhibits the smallest deformation, approximately half that of the
upright orientation.

p(0, t) = 0

p(n, t) = 0

u(0, t) = 0

∂u

∂x
(n, t) = 0

Again taking 83 and 106, assume to variation in time and setting the source to
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a constant of 1. When normalised, 83 becomes

−κMAP ∗

H∗2 · p
′′
= 1 (118)

Integrating twice to find p using boundary conditions to determine constants

of integration, with the maximum height n = 1.

p =
H∗2

2κMAP ∗

(
x− x2

)
(119)

Substituting this into 106 and expanding this fully gives

EÊ∗Au
′′
+
(
Ê∗EA

′
+ Ê∗AE

′
)
u

′
+

(
AH∗2

κ
− H∗

2κ

)
x+

A
′
H∗2x2

2κ
=

−H∗Aρs(1− ϕ)f + P ∗
∞ +

AH∗

2κ
(120)

Using the displacement boundary conditions to solve for u we get a general

solution in the form of an integral equation

u(x) =

∫
1

α(x)

(∫ x

0

α(s) · β(s)ds−
∫ n

0

α(s) · β(s)ds · α(x)
α(n)

)
dx (121)

where

α(x) = e
∫
E∗EA′+E∗E′A

E∗EA dx

β(x) =
P ∗
∞ −H∗Aρs (1− ϕ) g + AH∗

2κ −
(
AH∗2

κ − H∗

2κ

)
x+ A′H∗2x2

2κ

E∗EA

(122)

This can then be solved with the explicit functions for cross-sectional area and

elasticity stated above.

Figure 23 shows the analytical steady state solution to the ’leaky’ boundary

problem, plotted against the numerical finite-difference approximation of the

same problem. Again the plots are essentially identical, and thus the finite
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Figure 23: Final displacement in the steady state scenario with constant source
and ’leaky’ boundary in the upright position. The analytical steady state solu-
tion is plot against the results from the numerical finite-difference approach.

difference approximation is a good representation of the full model.
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Figure 24: Final displacement in the steady-state scenario with a constant source
and ’leaky’ boundaries, across upright, supine, and prone positions. The lung
exhibits the most significant deformation in the upright position, whereas the
prone position demonstrates the smallest deformation, roughly a 50% reduction
compared to the upright orientation.

Figure 24 shows the steady state solutions to the ’leaky’ boundary problem

for the upright, supine and prone positions. It can clearly be seen that the lung

deforms most significantly in the upright position, with the prone position being

the smallest deformation, a roughly 50% reduction of that seen in the upright

orientation.
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The final scenario to be discussed in this chapter involves the re-introduction

of the zero-flux boundaries such that air is trapped within the lung, and can only

enter/exit based on the input source given. As long as there is a positive source,

the lung should continue expanding and pressures should continue to increase,

meaning no steady-state solution can exist. Proof of this can be completed using

the normalisation of 83 with time dependency removed such that

−κMAP ∗

H∗2 · p
′′
= S (123)

This can be rearranged to find p
′
giving

p
′
= − H∗2S

κMAP ∗ · x+ C (124)

Solving this requires the boundary conditions, which for a zero-flux boundaries

are given as p
′
(0) = p

′
(n) = 0. The x = 0 boundary gives C = 0. With n = 1

this would mean
H∗2S

κMAP ∗ = 0 (125)

Given that H∗, κ and MAP ∗ are all non-zero constants, the equation is only

solvable an the instance that S = 0. Therefore, there is no steady-state scenario

with a non-zero constant source.

5.10 Results for Patient Positioning

Having proved the efficacy of a numerical approximation to deformation in the

poroelastic framework when using a non-constant cross-sectional area and tissue

elasticity, the model can be used to explore the system with realistic ventila-

tor waveforms. The governing equations have been expanded using a Crank-

Nicholson approximation and normalised. These can now be set up in the form
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of the matrix equation

Aλj+1 = Bλj + C

and then solved using the Gauss-Seidel iterative method. As before the cross-

sectional areas are set to the truncated cone analogy.

Figure 25 plots the numerical solution to the problem in the upright, supine

and prone positions, over a two-breath cycle. The breath cycle is set using a

common ventilator waveform as the input function, shown in the final plot for

reference. In the displacement field, in all positions the lung can be seen to

expand to TLC at just under 4 times the size at FRC. However, it is important

to note that the reference lung height is the measurement parallel to gravity, and

as such is larger in the upright position than in the supine and prone positions

(25cm to 16cm respectively, from average lung measurements [67]). This means

that overall displacement is much higher in the upright position than in the

horizontal positions.

The model suggests that while the lung expands to approximately four times

its Functional Residual Capacity (FRC) in all positions, the overall displace-

ment is notably higher in the upright position compared to horizontal positions

(supine and prone) due to a larger reference lung height parallel to gravity.

Several studies corroborate these findings. Yamada and colleagues in 2020 con-

ducted a study using CT scans in healthy subjects to measure lung volumes [68].

They found that inspiratory and expiratory bilateral upper lobe, lower lobe, and

total lung volumes, were significantly higher (5.3 to 14.7% increases) in stand-

ing and sitting positions compared to the supine position. Volume changes from

expiration to inspiration were also significantly higher in standing and sitting

positions for the total lung and its lobes. Similarly, a 2022 study in patients

with Idiopathic Pulmonary Fibrosis (IPF), total lung and lobe volumes were

consistently larger in the standing position than in the supine position [69]. In
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Figure 25: Simulated ventilator waveform data for the source problem using
a relaxation iteration with relaxation factor 0.7. Row A is upright, row B is
supine, row C is prone.
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this linear poroelastic model, there is negligible difference in displacements and

volumes between the supine and prone positions.

In the pressure field however, there is a clear difference between positions.

The plots included highlighted lines for the apex and base of the lung, such that

the spatial variation in pore pressures can be monitored. In the upright position,

there is a significant difference between the pore pressure at the base and at the

apex, with the apex pore pressure spiking at maximum inflation. The largest

observed variation here is of 25% of the maximum. In the supine position, this

is reduced to 5% variation at the maximum inflation spike. In prone position,

variation is negligible, with the base and apex pore pressures being observably

identical. The spatial uniformity of alveolar mechanics in prone position is well

documented, and generally credited as the contributing factor to improved lung

function in this position [10, 24, 17]. Maximum pressures in prone are also less

than those in the upright and supine positions, a roughly 10% decrease. This is

an interesting observation given the link between reduction in airway pressures

and decreased risk of ventilator induced lung injury in the prone position [70].

The significant reduction in the inspiratory pressure spike and the remark-

able uniformity of pore pressures observed in the prone position (Figure 25C)

compared to upright (Figure 25A) and supine (Figure 25B) positions offers

quantitative support for its clinical efficacy in reducing ventilator-induced lung

injury (VILI). Lower peak alveolar pressures and reduced spatial pressure gra-

dients directly translate to decreased mechanical stress on the delicate lung

parenchyma, potentially minimizing barotrauma and volutrauma in critical care

patients. This linear model, despite its simplifications, provides initial mech-

anistic insight into why prone positioning is a valuable strategy for clinicians

aiming to distribute ventilatory forces more evenly and protect the lung from

injurious pressures.
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5.11 Concluding Remarks

This chapter explored the applicability of the poroelastic framework to mod-

elling lung mechanics under gravity. The findings demonstrate that the lung

is well suited to a poroelastic approach, with model outputs replicating experi-

mental observations across various patient positions. Numerical approximations

of the linear poroelastic model proved highly accurate in this context and were

validated against analytical steady-state solutions.

However, the current model’s reliance on linear assumptions represents a

significant limitation. Linear poroelasticity assumes small, proportional tissue

deformations and uniform material properties—assumptions that do not reflect

the large, heterogeneous, and non-linear strains observed in real lungs during

breathing, especially in pathological conditions such as pulmonary oedema or

fibrosis. These simplifications exclude critical phenomena like alveolar recruit-

ment/derecruitment, airflow resistance changes, and surface tension-driven me-

chanics—key components of dynamic lung behaviour and disease progression in

conditions such as ARDS.

Despite these limitations, the model yields clinically relevant insights, par-

ticularly for sedated or mechanically ventilated patients. It quantitatively il-

lustrates how body position affects internal pressure gradients and stress dis-

tributions, showing that upright and supine positions produce steep vertical

gradients, while the prone position equalizes these forces, reducing mechanical

heterogeneity. This provides a mechanistic explanation for the protective effect

of prone positioning, widely adopted in ARDS to mitigate local overdistension

and collapse.

From a clinical standpoint, the linear poroelastic model offers a conceptual

framework for several key applications:

• COVID-19 management: In early-phase COVID-19 ARDS characterized
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by relatively preserved compliance, steep pressure gradients can exacer-

bate patient self-inflicted lung injury (P-SILI). The model supports early

proning as a means to blunt vertical pressure disparities and reduce re-

gional strain.

• Secretion clearance and chest physiotherapy: By illustrating how gravity

and air pressure interact, the model reinforces the physiological basis for

postural drainage techniques that use body orientation to assist mucus

mobilization and clearance.

• Ventilator-induced lung injury (VILI) prevention: For patients with asym-

metric lung injury (e.g., post-surgical or unilateral disease), the model aids

in predicting how positioning influences local stress patterns—potentially

guiding strategies to avoid secondary trauma in compromised regions.

Although its simplifications limit direct application to awake, spontaneously

breathing patients—where active diaphragm and chest wall mechanics are sig-

nificant—the model still contributes an understanding of passive gravitational

effects in the lung during ventilation.

In conclusion, this chapter validates the potential of poroelastic modelling as

a predictive and explanatory tool in critical care. The insights gained establish a

strong foundation for more advanced simulations. The next phase of this project

will extend the framework into the non-linear regime, aiming to capture the

complex, patient-specific dynamics of the ventilated lung with greater precision

and clinical relevance.
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6 Non-linear Poroelastic Lung Model

6.1 Introduction

Recognizing the limitations of linear models in capturing the intricate mechan-

ical behaviour of lung tissue, this chapter aims to develop a fully non-linear

poroelastic model. The objective is to incorporate strain-dependent elastic

properties and account for geometrical and material non-linearities, such as

time-dependent alveolar recruitment/derecruitment and variable porosity and

permeability. I hypothesize that introducing Neo-Hookean hyperelasticity and

non-linear porosity/permeability will significantly enhance the physiological ac-

curacy of the model, particularly in replicating complex phenomena like the

S-shaped pressure-volume curve and accurately depicting alveolar recruitment

and over-distension during the breathing cycle. The clinical question driving

this chapter is: How do the inherent non-linear mechanical properties of lung

tissue, including alveolar recruitment and stiffening, influence lung mechanics

during mechanical ventilation across different patient positions, and how can

a more accurate representation of these non-linearities inform protective ven-

tilation strategies? This advancement is crucial for moving beyond simplified

assumptions towards a more realistic and clinically applicable model, capable

of informing precision medicine approaches in critical care.

Non-linear poroelasticity incorporates strain-dependent elastic properties

and accounts for geometrical and material non-linearities, providing a more

realistic representation of lung tissue behaviour, especially when subjected to

high levels of stress or strain [47]. This non-linear approach also considers the

non-uniform distribution of air and fluid within the lung tissue, which can sig-

nificantly affect mechanical responses.
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6.2 Time-dependent Alveolar Recruitment

One phenomena that requires non-linear dynamics is alveolar recruitment. Alve-

olar recruitment refers to the process of reopening collapsed alveoli, during

breathing or mechanical ventilation [71]. In a non-linear system, this process is

particularly complex, as the mechanical behaviour of lung tissue deviates from

simple linear elasticity, especially under high strain conditions. Alveoli open in a

highly non-linear manner due to factors such as surface tension, tissue elasticity,

and fluid dynamics within the lung.

In a non-linear model, alveolar recruitment is influenced by the threshold

pressures required to overcome the collapse, which vary non-linearly with lung

volume and applied forces. As the lung inflates, recruitment occurs more dy-

namically, with individual alveoli or groups of alveoli opening suddenly, rather

than uniformly across the lung. This non-linear behaviour is crucial for ac-

curately capturing the lung’s mechanical response, as it affects gas exchange

efficiency and the overall distribution of ventilation. Modelling alveolar recruit-

ment in a non-linear framework provides a more realistic understanding of lung

function, especially in pathological conditions such as acute respiratory distress

syndrome (ARDS), where the recruitment dynamics are significantly altered.

Modelling alveolar recruitment as a time-dependent phenomenon has been

well established in literature, and has been validated in both human trials and

mouse models [72, 73, 74]. Bates and Irvin in 2002 created a mathematical

model of alveolar recruitment and de-recruitment, which gives room for signifi-

cant expansion into a spatially heterogeneous system as required for this project

[75]. In this model, each alveolus can be either fully open or fully closed, which

is analogous to the alveolar popping seen in experimental study. The trajectory

of each individual alveolus between these states is determined by the addition

of a new coordinate between 0 and 1, shown in Figure 26, where 0 is fully closed
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and 1 is fully open.

Figure 26: Visual representation of the virtual trajectory along which alveolar
coordinate x moves between the limits 0 (fully closed) and 1 (fully open) with
respect to the current airway pressure Paw and the critical opening and closing
pressures Po and Pc. As depicted in [72].

The alveoli can move along the trajectory based on the compartmental pres-

sure Paw, but will remain in the same state until it hits 0 or 1. The direction x

moves along the trajectory is based on where the compartmental pressure sits

with respect to the threshold opening Po and closing pressures Pc. The coor-

dinate will move towards 0 when Paw falls below Pc, and will move towards 1

when Paw rises above Po.

Figure 27: Visual representation of the rate of change of x, dx
dt , as a function

of pressure. Constants so and sc give the slopes for this rate increase once Paw
passes the critical pressures Po and Pc. As depicted in [72].

The speed with which x moves along the virtual trajectory is proportional
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to the difference between Paw and the threshold pressures. The more Paw drop

below Pc, the quicker it moves, for example. Constants of proportionality are

so for opening directions and sc for closing directions. This is represented in

Figure 27. This can be summarised by the equation for the rate of change of x

at the ith alveolus with respect to time as:

dxi(t)

dt
=


soi (Paw − Poi) , if Paw > Poi .

sci (Paw − Pci) , if Paw < Pci .

0, otherwise.

(126)

The new value for x at the ith alveolus at each time step is calculated using

a first-order Euler integration as

xi(t) = xi(t−∆t) +
dxi(t)

dt
∆t (127)

The result of this setup is that there is a time delay between an alveolus

reaching a threshold pressure and it changing state, which is much more analo-

gous to the waterfall phenomena observed in the lungs [76]. This model setup

allows for significant manipulation of pressures and threshold, which makes it a

perfect test system for the importance of spatial heterogeneity in recruitment.

We used a number of test scenarios to explore the importance of this phenomena

in regional recruitment behaviour.

Figure 28 shows three scenarios simulated using this time-dependent recruit-

ment model. In each case, the input pressure wave from the ventilator remains

the same, and is simulated for two breaths. The count of open alveoli per unit

area at each iso-gravitational plane is determined and utilized to calculate the

percentage of the plane open at any particular time-step. Figure 28A depicts

the results simulated when there is no regional variation in alveolar pressure,

and threshold opening and closing pressures are constant throughout the lung.
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Figure 28: The regional recruitment of alveoli represented by the percentage
of each plane open in different test scenarios. A depicts complete uniformity
in the lung and the threshold pressures. B samples threshold pressures from a
normal distribution to introduce some randomness. C adds spatial variation in
both the thresholds and in the local compartmental pressures, to explore higher
heterogeneity.

It can clearly be seen that the whole lung pops open and closed as a single unit,

with the increase and decrease of input pressure. Figure 28B introduces an ele-

ment of randomness into the threshold opening and closing threshold pressures,
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where the exact values for each alveolar unit is taken from a normal distribution

about the average, such that:

Poi ∈ N (µPo , σPo)

Pci ∈ N (µPc , σPc)

where N(µ, σ) is the normal distribution with mean µ and standard deviation

σ. Here there is a minimal degree of observable variation in the closing of the

alveoli, indicating negligible heterogeneity.

In Figure 28C, the model now incorporates more significant spatial hetero-

geneity. Here, the threshold opening pressures are not only drawn from a normal

distribution, they are also at a gradient from the bottom (dependent) to the top

(non-dependent) region of the lung. This is in accordance with the results found

by Scaramuzzo et al in 2020 [77], who used electrical impedance tomography to

quantify the regional distribution of opening and closing pressures due to grav-

ity in the lung parenchyma. Their finding being that the alveoli in the bottom

(dependent) region of the lung have a higher opening and closing threshold than

those in the top (non-dependent). This simulation also includes a gradient in

the local alveolar pressure according to the results shown in the linear poroelas-

tic model in Figure 25. This results in variation in the total percentage of open

lung tissue. When the model begins with a full closed lung, the most dependent

regions only open to 50%, where as the least dependent region open up to 100%,

with all internal point spread between.

Visualising the impact of this waterfall alveolar model on the lung as a whole

is best achieved by modelling the total volume of the lung against the airway

pressures. To calculate the total lung volume in this model, we use the cylinder

analogy as proposed in Chapter 4 of this thesis. Here, however, at each plane of

the lung, the height of that particular section is determined by the percentage of
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open alveoli. The pressure is taken as the Mean Airway Pressure of the system.

Figure 29: The S-shaped pressure-volume curve generated by the simulated wa-
terfall model, incorporating full spatial heterogeneity in alveolar pressures and
threshold opening/closing pressures. The curve exhibits a lower inflection point
(LIP) at low volumes where alveoli non-linearly recruit, a linear middle portion
as more alveoli open, and an upper inflection point (UIP) at high volumes where
compliance decreases due to full inflation.

Figure 29 shows the pressure-volume curve created by the waterfall model

with full spatial heterogeneity in alveolar pressures and in threshold opening

and closing pressures. The shape of this curve is accurate to the "S-shaped"

curve we generally expect in the lung [78], and is characterised by three re-

gions. The lowest volumes and pressures of this graph are referred to as the

lower inflection point (LIP). At low lung volumes, most alveoli are collapsed
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(atelectasis). This portion of the curve is flat, indicating that increasing pres-

sure does not significantly increase lung volume. The gradual popping open of

the alveoli in this section is highly non-linear. The second region is the Linear

middle portion. As pressure increases, more alveoli are recruited, and the lung

becomes more compliant. Here, the curve rises steeply as lung volume increases

with relatively smaller increases in pressure. In the final section, the increasing

pressures are no longer opening new alveoli, and dynamics become non-linear

again. This is the upper inflection point (UIP). At high lung volumes, the lung

is fully recruited, and compliance decreases again. This part of the curve flat-

tens, indicating that further increases in pressure lead to little increase in lung

volume, as most alveoli are already inflated.

Replicating these findings within a poroelastic framework is going to require

significant alterations to the equations and constitutive relationships between

parameters. The model must be expanded to include the specific dynamics

observed in the lower inflection point and the upper inflection point of the

pressure-volume curve.

6.3 Non-Linear Porosity and Permeability Interactions

The lower inflection point is the region in which alveolar recruitment is the dom-

inant relationship. In the waterfall model, this was achieved by measuring the

percentage of alveoli open in each region of the lung based on their threshold

pressures. Within the poroelastic framework there are two underlying param-

eters that control this phenomenon, this is porosity ϕ and the permeability κ.

Porosity refers to the fraction of the lung tissue that is occupied by air-filled

spaces (alveoli and airways). It indicates how much space is available for air

or fluid to occupy. Permeability refers to the ability of the porous tissue to

allow fluids (air or liquid) to flow through it, influenced by the structure of the
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alveolar-capillary network. These are both well-embedded into the governing

equation for the linear system (83-84). Previously, these have both been set as

constants in space and time, which means that the percentage of the lung com-

prised of air remains constant throughout the breathing cycle; this is far from

reality. Instead, the ratio of air to tissue should be determined by the amount

of air already in the system, and how far the alveoli themselves have expanded

from a reference position. The permeability of the lung, will in turn be affected

by this non-linearity as the greater the void spaces in the tissue, the easier it is

for fluid to be transmitted.

There are a number of models that have been proposed to incorporate non-

linearity into the porosity and permeability variables. For this paper, I have

chosen the Neo-Hookean Hyperelastic framework. Neo-Hookean hyperelasticity

is a fundamental model in the theory of nonlinear elasticity, particularly de-

scribing the behaviour of rubber-like materials. It was introduced by Ronald

Rivlin in the mid-20th century as an extension of Hooke’s law to large deforma-

tions [79, 80]. Unlike linear elasticity, which assumes small strains, neo-Hookean

materials can undergo significant stretches while maintaining elasticity. Rivlin’s

contribution established the neo-Hookean model as a baseline for understand-

ing more complex hyperelastic models, as it provides an essential framework for

rubber elasticity and large strain mechanics.

The model is based on a strain-energy function W , which describes the

energy stored in the material as a function of its deformation. For a neo-Hookean

material, the strain-energy function depends only on the first invariant I1 of the

deformation tensor, and here shall take the form

W =
Λ

2
(I1 − 3)− Λ ln (J) (128)

Where
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Λ = Lame 1st parameter, shear modulus

I1 = First invariant of the right Cauchy-Green deformation tensor C

J = detF

F = deformation gradient tensor =
(
∂ui
∂Xj

)
ij

u = deformation

X = reference coordinate

Under the additional assumption of isotropy

I1 = ∥F∥2 = trC (129)

where ∥ · ∥ denotes the Frobenius norm such that tr is the matrix trace.

This gives the right Cauchy-Green tensor as

C = FTF (130)

and the left Cauchy-Green tensor, referred to as the Finger deformation tensor,

as

B = FFT (131)

In order to integrate the hyperelastic relationships into a poroelastic model,

porosity and permeability will need to be recalculated based on the given strain-

energy function in 128. They can be updated to a hyperelastic context as

deformation-dependent tensors. These coefficients depend on the skeleton de-

formation. Since its walls are incompressible, we can write:
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ϕ = 1− 1− ϕ0
J

(132)

Assuming further that the deformation of parenchyma is mainly volumetric

and that the walls are thin (so that the shape of the pores remains the same,

the only change being its size), we can also write:

κ = J
2
3 · κ0 (133)

where ϕ0, κ0 are the reference state values for the porosity and permeability

respectively.

These new formulas can now be incorporated into the governing equations

83 and 84, and solved using the numerical methods as set out in section 6.5 of

this thesis. Figure 30 shows the simulated waveform data for both this model

and the linear equivalent, with the lung in the upright position. Reference state

values at t = 0 are ϕ0 = 0.7 and κ0 = 10−5m3skg−1 as in [46]. A porosity value

of 0.7 is analogous to 70% of the total lung volume comprising of air cavities,

which concurs with experimental findings for the lung at FRC [49].

When we compare this simulation to the upright linear model, as in Figure

25A, there are a number of observable differences as well as important similari-

ties. The total displacement magnitude remains consistent between the models,

and alveolar distribution between the base and apex is unchanged. The primary

difference lies in pressure distributions across the lung. In the non-linear model,

pressures exhibit visibly greater spatial consistency across the lung. There is

also a substantial reduction in the magnitude of the inspiratory spike, referred

to as the pure resistive pressure drop [81]. The pure resistive pressure drop

in the context of pulmonary mechanics refers to the region of the lung where

significant resistance to airflow occurs due to various factors, including the me-
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Figure 30: Simulated ventilator waveform data for non-linear neo-Hookean hy-
perelastic model of porosity and permeability, compared to the linear model.
Lung is in the upright position and simulated over two breathing cycles. Linear
is the top row and non-linear is the bottom.
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chanical properties of the lung tissue and the airways. There are a number of

reasons for these observations.

Non-linear poroelasticity accounts for strain-dependent stiffness: as the lung

inflates, the tissue becomes stiffer, leading to more gradual and controlled de-

formation. In contrast, linear model assumes constant stiffness, which overes-

timates stress concentrations near high-flow zones and underestimates it else-

where. This means non-linear models distribute ventilation and interstitial pres-

sures more evenly, especially at moderate to high lung volumes. In the linear

model, the material does not stiffen as it deforms. Thus, during rapid inflation

(like inspiration), it tends to accumulate stress quickly at boundaries, causing a

sharp spike in airway/alveolar pressure. The non-linear model naturally damps

this response. As the tissue stiffens with volume, it limits the rapid volume-

dependent increase in stress, creating a smoother, slower rise in pressure, i.e.,

no sudden spike. Also, porosity–strain coupling in non-linear poroelastic models

buffers abrupt volume transitions, distributing pressure over time and space. Al-

though the macroscopic (global) deformation is matched between models (same

tidal volume/displacement), the non-linear model requires more local pressure to

reach those deformations—because stiffness increases with stretch. This means

at higher lung volumes, non-linear models reflect the increased alveolar recoil

pressure that is physiologically observed, resulting in higher local and average

pressures, even if displacement is similar.

We can explore this further by tracking the average values for porosity and

permeability throughout the breathing cycle.

Figure 31 illustrates the dynamic changes in average permeability and poros-

ity over a two-breath cycle. It indicates that porosity, which represents the frac-

tion of lung tissue occupied by air-filled spaces, increases from approximately

0.7 at functional residual capacity (FRC) to 0.92 at the end of inspiration. The
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Figure 31: Average values for permeability (m2) and porosity across the lung,
over a two-breath cycle.

model also shows that permeability increases to 2.5 times its reference value

during inspiration. These dynamic changes are strongly supported by specific

experimental findings from medical imaging and morphological studies.

The dynamic behaviour of porosity is directly reinforced by studies quantify-

ing lung density and volume changes. For instance, Brown et al. (2015) utilized

CT scans to measure lung tissue density in a large cohort of human subjects at

both full inspiration (total lung capacity, TLC) and end expiration (FRC) [82].

Their results revealed a strong correlation, with larger lungs exhibiting lower

mean lung density. Critically, they found that the mean lung density decreased
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as the lung inflated from FRC to TLC. Since Hounsfield units (HU) directly

measure tissue density, with -1000 HU representing air and 0 HU representing

water, a decrease in density signifies an increase in air content, or porosity.

The theoretical curve presented by Brown et al., which modelled lung density

changes based on air inflation while assuming a fixed tissue volume of 900 mL,

remarkably closely matched their empirical data from 500 subjects at both FRC

and TLC. This finding robustly supports the non-linear model’s premise that

overall lung volume changes are primarily accommodated by variations in air

volume (porosity) rather than changes in tissue volume or the formation of

new alveoli. Converting Brown et al.’s observed HU ranges to porosity (using

the approximation ϕ = −HU/1000 as HU approaches -1000 for air and 0 for

water, simplifying the fraction calculation with given HU values [83]), the visu-

ally estimated FRC densities of approximately -650 to -800 HU correspond to

porosities of 0.65 to 0.80, which encompasses this model’s initial porosity value

of 0.7. Similarly, their observed TLC densities, ranging from roughly -800 to

-900 HU, correspond to porosities of 0.80 to 0.90, aligning well with this model’s

end-inspiratory porosity of 0.92.

Further validation for porosity dynamics comes from Choi et al. (2013), who

employed a mass-preserving image registration technique on CT images of hu-

man lungs at TLC and FRC [83]. Their research explicitly demonstrated that

the difference in tissue volume (TV) between TLC and FRC was negligible, ap-

proximately 0.03 to 0.04 litres in normal subjects and severe asthmatics, respec-

tively. This supports the fundamental assumption in the non-linear poroelastic

model that tissue volume remains largely constant during lung deformation,

with changes in total lung volume primarily attributed to changes in air vol-

ume (AV). Choi et al. reported average air volumes of 1.57 litres at FRC and

4.14 litres at TLC for normal subjects, representing a significant increase in air
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content with inflation. Their methodology for calculating air fraction (porosity)

using specific Hounsfield unit values (with HUair at -1000 and HUtissue at 55)

provides a direct link between CT intensity and porosity, empirically demon-

strating that as the lung inflates, the air fraction (porosity) increases. While the

sources do not directly provide specific numerical values for permeability, the

observed changes in porosity indirectly validate the permeability dynamics in

Figure 31. Permeability is inherently linked to the size and connectivity of air

spaces; as porosity increases during inspiration (as quantitatively supported by

the aforementioned studies), the pathways for airflow naturally become larger

and more open, thereby increasing permeability. The non-linear poroelastic

model inherently couples porosity and permeability to tissue deformation, es-

tablishing a robust physiological basis for the model’s dynamic permeability

behaviour.

These simulations are a promising result for the neo-hookean non-linear

model of the lung, and display more physiologically relevant dynamics than

those of the linear model. Porosity and permeability now being coupled to the

tissue deformation has resulted in temporal dynamics accurate to those found in

experimental literature utilising a range of computer imaging techniques. How-

ever, they do not capture all the key features of the lung’s complex material

mechanics.

Figure 32 shows the simulated pressure-volume curve for the poroelastic lung

with non-linear porosity and permeability. Both the values and general shape of

this curve are accurate to experimental findings, however two regions are lacking

in dynamical complexity. Region A, highlighted in blue, is the area in which

alveolar recruitment and airway resistance are the dominant mechanics. This is

analogous to the Lower Inflection Point depicted in Figure 29. In this model the

region is not changing in a continuous manner. Conversely, region B, highlighted
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Figure 32: Pressure-volume curve for the poroelastic lung with non-linear poros-
ity and permeability. Region A is the alveolar recruitment zone and region B is
the alveolar over-distension zone. The red dotted line represents a theoretical
pressure-volume curve taken from [78].

in green, is the area in which alveolar distension is the dominant mechanism. We

would expect this region to exhibit the typical "S-shape" commonly associated

with the lung pressure-volume curve [78]. This is a complex elastic response in

which the alveoli stiffen at higher pressures, and is not captured by porosity-

permeability interactions.

Although the inclusion of deformation-dependent permeability and porosity

has captured the general relationship between pressure and volume in the lung

over the breathing cycle, the more intricate dynamics surround recruitment
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and over distension are lost. This requires further extension to the non-linear

poroelastic model.

6.4 Neo-Hookean Hyperelasticity Governing Equations

In the real world, many materials do not behave linearly under large deforma-

tions. If elasticity were constant, as in classical Hookean models, it would fail

to capture how materials actually behave under varying loads or strains. Bio-

logical tissues, for example, tend to exhibit stiffening as they are stretched to

their upper limits [44, 47]. This requires a significant increase in complexity as

alveolar elasticity must now not only a function of spatial location, but also of

the extent to which that alveolus has already stretched and deformed from it’s

reference state. In the Neo-Hookean framework, this is achieved by evaluating

elasticity as a spatial tensor.

These derivations are based in part on the FEBio: Finite Elements for

Biomechanics software suite as presented in [84]. In order to make elasticity

deformation-dependent, we first define a new variable J̄ which represents the

pore volume ratio:

J̄ =
J − 1 + ϕ0

ϕ0
(134)

which in turn means that

ϕ = ϕ0 ·
J̄

J
(135)

∂J̄

∂J
=

1

ϕ0
(136)

such that when ϕ = 0 the pore is closed.
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We now define a modified deformation gradient

F̄ =

(
J̄

J

) 1
3

· F (137)

such that det
(
F̄
)
= J̄ .

The corresponding modified right Cauchy-Green tensor becomes

C̄ = F̄T · F̄ =

(
J̄

J

) 2
3

C (138)

so that
∂C̄
∂C

=

(
J̄

J

) 2
3

·
(

ϕs0
3 (J − ϕs0)

C ⊗ C−1 + I ⊙ I
)

(139)

where ϕs0 is the solid portion of the material such that ϕs0 = 1− ϕ0.

Using these modified parameters in the constitutive relationship:

W̄ =
Λ

2

(
Ī1 − 3

)
− Λ ln

(
J̄
)

(140)

where Ī1 = trC̄. This relation shows that the material develops an infinite

strain energy density as J̄ approaches zero. Λ is Lamé’s 1st parameter, referred

to as the shear modulus.

From this expression, the 2nd Piola-Kirchhoff stress is given by

S = 2
∂W̄

∂C
= Λ

[(
J̄

J

) 2
3

I +
1

J − ϕs0

(
ϕs0

(
J̄

J

) 2
3 I1
3

− J

)
C−1

]
(141)

When C = I, it can be verified that S = 0. The corresponding Cauchy stress

is

σ =
Λ

J

[(
J̄

J

) 2
3

b +
1

J − ϕs0

(
ϕs0

(
J̄

J

) 2
3 I1
3

− J

)
I

]
(142)

where b is the left Cauchy-Green tensor.
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The material elasticity tensor is given as

C = 2
∂S
∂C

=
2

3
g(J)

(
I ⊗ C−1 + C−1 ⊗ I

)
+

(
J
dg

dJ

I1
3

+ J
dh

dJ

)
C−1 ⊗ C−1

− 2

(
g(J)

I1
3

+ h(J)

)
C−1 ⊙ C−1

(143)

where

f(J) = Λ

(
J̄

J

) 2
3

g(J) =
ϕs0

J − ϕs0
f(J)

h(J) = −µ J

J − ϕs0

and

J
dg

dJ
= Λ

(2ϕs0 − 3J)ϕs0

3 (J − ϕs0)
2

(
J̄

J

) 2
3

J
dh

dJ
= Λ

Jϕs0

(J − ϕs0)
2

The spatial elasticity tensor is thus evaluated as

C =J−1

[
2

3
g(J) (b ⊗ I + I ⊗ b) +

(
J
dg

dJ

I1
3

+ J
dh

dJ

)
I ⊗ I − 2

(
g(J)

I1
3

+ h(J)

)
I ⊙ I

]
(144)

This tensor is currently configured for a three-dimensional system. However,

the poroelastic lung model developed during this project is one-dimensional in

order to directly explore the gravitational impacts on lung dynamics. Therefore,

144 must be reduced to a single dimension.
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6.5 Reduction to 1-Dimensional System

To reduce 144 from into a single dimension, parallel to gravity, we focus on

the scenario where deformations occur only along the vertical (x) axis and set

deformations along the other axes to zero.

When confined to one dimension, the deformation gradient tensor F simpli-

fies as follows:

F =


∂ξ
∂X 0 0

0 1 0

0 0 1

 (145)

The Jacobian determinant J becomes:

J =
∂ξ

∂X
(146)

In this case, there is no deformation in the y- and z-axes, so we simplify the

tensors to only reflect changes along the x-axis.

The tensor b⊗ I + I ⊗ b reduces to a scalar because only the xx-component

remains non-zero. The second term I1 (the trace of the right Cauchy-Green

tensor) simply reduces to I1 = ( ∂ξ∂X )2.

In one dimension, the Cauchy stress tensor reduces to a scalar stress along

the x-axis. The elasticity tensor simplifies, reflecting only the normal stress com-

ponent along this axis. Thus, 144 becomes a function of only the x-component

of the stress and strain, which can be expressed as:

C1D = J−1

[
2

3
g(J) +

(
J
dg

dJ

I1
3

+ J
dh

dJ

)
− 2

(
g(J)

I1
3

+ h(J)

)]
(147)

where all quantities are now scalar values related to the deformation along the

x-axis; this is a zeroth rank tensor.

To fully integrate this with the poroelastic governing equations for the linear
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system (83,84), we now rewrite this tensor in terms of the deformation u. In

one dimension, the deformation gradient tensor F simplifies to:

F =
∂ξ

∂X
(148)

where ξ(X, t) = X + u(X, t), so:

F = 1 +
∂u

∂X
(149)

The Jacobian J becomes:

J = det(F ) = 1 +
∂u

∂X
(150)

Next, we rewrite the first invariant I1 in terms of u(X, t):

I1 =

(
1 +

∂u

∂X

)2

(151)

the reduced form of 144 becomes:

C1D = J−1

[
2

3
g(J) +

(
J
dg

dJ

I1
3

+ J
dh

dJ

)
− 2

(
g(J)

I1
3

+ h(J)

)]
(152)

Substitute J = 1 + ∂u
∂X and I1 =

(
1 + ∂u

∂X

)2
, yielding:

C1D =
1

1 + ∂u
∂X

[
2

3
g

(
1 +

∂u

∂X

)
+

((
1 +

∂u

∂X

)
dg

dJ

(
1 + ∂u

∂X

)2
3

+

(
1 +

∂u

∂X

)
dh

dJ

)

− 2

(
g

(
1 +

∂u

∂X

) (
1 + ∂u

∂X

)2
3

+ h

(
1 +

∂u

∂X

))
,

(153)
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where:

f(J) = Λ

(
J − 1 + φ0

J

)2/3

g(J) =
φs0

J − φs0
f(J)

h(J) = − Λ

J(J − φs0)

(154)

Substituting the Jacobian in terms of deformation, these become:

f(u) = Λ

(
φ0 +

∂u
∂X

1 + ∂u
∂X

) 2
3

g(u) =
φs0

1 + ∂u
∂X − φs0

Λ

(
φ0 +

∂u
∂X

1 + ∂u
∂X

) 2
3

h(u) = − Λ

(1 + ∂u
∂X )(1 + ∂u

∂X − φs0)
.

(155)

Moreover, the derivatives become:

df

dJ
= Λ · 2

3

(
φ0 +

∂u
∂X

1 + ∂u
∂X

)−1/3

· 1− φ0(
1 + ∂u

∂X

)2
dg

dJ
=

φs0(
1 + ∂u

∂X − φs0
)2Λ

(
φ0 +

∂u
∂X

1 + ∂u
∂X

)2/3

+
φs0

1 + ∂u
∂X − φs0

df

dJ

dh

dJ
= Λ

[
1(

1 + ∂u
∂X

)2 (
1 + ∂u

∂X − φs0
) + 1(

1 + ∂u
∂X

) (
1 + ∂u

∂X − φs0
)2
]

(156)

By substituting C1D for the constant elasticity E in the governing linear

equations, as well as the non-linear porosity and permeability functions de-

scribed in section 7.3, we can now simulate the full non-linear poro-hyperelastic

neo-Hookean model.
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6.6 Results for the Neo-Hookean Hyper-poroelastic Model

The non-linear aspects of this model have increased the complexity of the system

significantly, and so there are many variables that can now be explored. In

order to assess the dynamics of this model against the linear model, we begin

by simulating the ventilator waveform data in the upright position.

Figure 33: Simulated ventilator waveform data for fully non-linear neo-hookean
hyperelastic model of the lung. Lung is in the upright position and simulated
over two breathing cycles.

Figure 33 shows the waveform data for the fully non-linear model in the up-

right position, using the same set up as described for the linear and partially non-

linear models shown in Figure 30. As before ϕ0 = 0.7 and k0 = 10−5m3skg−1.

The overall displacement is unchanged between the models as expected. The

most important difference is in the pressure field. In the fully non-linear model,
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lower relative pressures are required to achieve the same level of displacement

we see in the previous simulations, as well as a significant reduction in spatial

variation in alveolar pressure at maximum inflation. This is due to the non-

linear elastance behaviour, coupled with the specific set up of this model. The

alveolar pressure here is calculated only as the internal air pressure resulting

from inflation, not including the complexities of pleural pressure and external

body pressures which give rise to non-uniformity in the lung experimentally.

There is also no accounting for the branching nature of the airways, which nat-

urally deliver a varying airflow to different alveolar regions. As such, we expect

to see a smoothing of the alveolar pressures at maximum inflation. This is an

important observation in this model, that the poroelastic framework must be

coupled with further physiological systems in order to fully capture the total

lung dynamics accurately.

Dynamics that are captured extremely well in this model are the non-linear

behaviours observed in the pressure-volume curve of the lung. The neo-Hookean

hyper-poroelastic elasticity equation contains functions for both the sequential

opening and closing of alveoli at low volumes, but also the stiffening of alveolar

tissue when they are over-distended at maximum inflation.

Figure 34 shows this pressure-volume curve. As for the partially non-linear

model in 32, two regions are highlighted; the region in which alveolar recruitment

and airway resistance are the dominant mechanics in region A (blue), and region

B (green), in which alveolar distension is the dominant mechanic.

The lower inflection point in region A, is no longer a segmented line, but is

now a smooth continuous curve. This means that the alveoli are opening in a

sequential waterfall pattern as discussed in section 7.2. Conversely, in region

B there is now a smooth descending curve as pressure decreases. This is the

area in which alveoli alveoli are becoming less stiff after over-distension, and so
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Figure 34: Pressure-volume curve for the fully non-linear poroelastic lung with
non-linear porosity and permeability and neo-Hookean hyper-poroelastic elas-
ticity. Region A is the alveolar recruitment zone and region B is the alveolar
over-distension zone. The red dotted line represents a theoretical pressure-
volume curve as in [78].

volume is decreasing slower than pressure.

The successful replication of the characteristic ’S-shaped’ pressure-volume

(P-V) curve, including the smoothly continuous lower inflection point (Region

A) and the curvilinear upper inflection point (Region B), is a critical advance-

ment for clinical relevance. In ICU practice, identifying these inflection points

is paramount for optimizing Positive End-Expiratory Pressure (PEEP) to max-

imize alveolar recruitment while avoiding over-distension. This model can serve

as an ’in-silico’ tool to predict patient-specific P-V curves, allowing clinicians
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to tailor PEEP settings to individual lung mechanics, thus minimizing atelec-

trauma (collapse) at low volumes and volutrauma (over-stretching) at high vol-

umes, crucial for protective ventilation strategies.

Figure 35: Alveolar compliance plotted against volume in the fully non-linear
model. Section A shows gradual increase in compliance as alveoli open (recruit-
ment zone). Section B represents a linear relationship where all alveoli are open
and compliance increases with expansion. Section C demonstrates decreasing
compliance as alveoli become over-distended, reflecting the stiffening of alveolar
tissue.

We can explore this deeper by tracking the change in alveolar compliance as

the volume of the alveolus increases. Here compliance is taken as the inverse

of elastance calculated using the neo-Hookean hyper-poroelastic equation. Fig-

ure 35 displays this dynamic split into three sections. In section A, alveolar

compliance gradually increases as the lung expands, with the non-linear curve
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reflected the popping open of alveoli in this region. This is due to the increased

pressure required to open the alveoli from its closed position. In section B, we

reach a linear relationship. Here, all alveoli are open and the compliance of the

alveoli increases in line with expansion. Finally, in section C we have reached a

point where the alveoli are beginning to become over-distended. This results in

the stiffening of the alveolar tissue and so compliance decreases again. This is

confirmation that alveolar tissue behaves much like that of a rubber balloon. A

similar compliance curve is seen in [85], as part of a digital twin model created

within the CHIMERA hub.

The dynamic changes in alveolar compliance, exhibiting initial increase (Sec-

tion A) and subsequent decrease (Section C) at high volumes, directly mirror

the ’rubber balloon’ analogy of lung mechanics. In a clinical context, under-

standing this non-linear compliance response is vital for preventing lung injury.

The model’s ability to show stiffening at high volumes (Section C) suggests

that exceeding certain tidal volumes can rapidly increase localized stress, even

with seemingly modest volume changes. This reinforces the principle of limiting

tidal volumes and using patient-specific data to avoid the injurious ’flat top’ of

the P-V curve, where further pressure increases yield minimal volume gain but

significant mechanical stress.

6.7 Concluding Remarks

This chapter extended the linear poroelastic framework to incorporate non-

linear dynamics, emphasizing the necessity of such enhancements for accurately

modelling lung tissue mechanics under both physiological and pathological con-

ditions. By integrating neo-Hookean hyperelasticity and non-linear interactions

of porosity and permeability, the model captures complex behaviours such as

alveolar recruitment, over-distension, and regional compliance changes during
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the breathing cycle. These features allow the model to reproduce the sigmoidal

pressure-volume (P–V) relationship observed experimentally, including critical

landmarks such as the lower and upper inflection points—parameters directly

relevant to clinical practices such as PEEP titration.

The model’s ability to reflect the complex interplay between geometry, time-

dependent tissue mechanics, and spatial gradients provides a deeper mechanistic

understanding of how ventilation strategies and body positioning influence alve-

olar dynamics. In particular, the finding that alveolar recruitment is more pro-

gressive and uniform in the prone position lends strong support to the clinical

use of proning as a lung-protective strategy. This suggests that prone posi-

tioning reduces the simultaneous presence of collapsed and overdistended units,

minimising mechanical heterogeneity, an insight especially relevant in the man-

agement of ARDS and COVID-19-associated ARDS, where lung injury is often

patchy and non-uniform. In such cases, the model supports strategies that

prioritise position-based optimisation over reliance on aggressive recruitment

manoeuvres or high PEEP levels, which carry a risk of further injury through

overdistension.

The model also offers predictive insights into the regional risk of ventilator-

induced lung injury (VILI), showing how variable tissue properties and gravity-

dependent deformation patterns affect local stress distributions. By simulating

these complex interactions, the model helps identify vulnerable regions (par-

ticularly in non-dependent, hyperinflated areas) and supports individualised

adjustment of ventilator pressures based on a patient’s postural mechanics and

injury profile. These findings reinforce the potential for personalised ventilation

strategies that go beyond protocolised care.

Importantly, this framework is also applicable beyond classical ARDS. In pa-

tients with traumatic injuries (such as rib fractures or post-lobectomy states),
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the model enables prediction of regional compliance loss and guides postural

strategies to offload or protect compromised regions. Similarly, for obese pa-

tients or those recovering from abdominal surgery—where elevated abdominal

pressures and diaphragm displacement alter baseline lung mechanics—the model

helps anticipate the potential benefits of prone or semi-prone positioning in re-

lieving dependent compression and improving overall ventilation distribution.

Although currently one-dimensional, this model’s high spatial resolution en-

ables detailed tracking of clinical parameters as they evolve over time and grav-

ity. This dimensional limitation was a deliberate design choice to ensure compu-

tational efficiency and facilitate future integration into digital twin frameworks

for real-time clinical decision support. Nonetheless, the lack of heterogeneity

in the coronal and axial planes must be acknowledged, particularly for diseases

like ARDS that exhibit strong spatial variation in multiple dimensions. The

exclusion of chest wall mechanics and interactions with branching airway struc-

tures also limits full physiological fidelity, especially for modelling the active

mechanics of awake, spontaneously breathing patients.

Despite these constraints, the non-linear model marks a substantial ad-

vance over its linear predecessor, more accurately reflecting the underlying bi-

ology of alveolar mechanics and providing insights of direct clinical relevance.

The successful replication of experimental findings—including improved P–V

curves and realistic pressure distributions, such as reduced inspiratory pressure

spikes—validates its use as a foundation for future, more comprehensive models.

The final chapter of this thesis will focus on coupling this non-linear poroelas-

tic model with additional physiological subsystems—such as branching airways,

vasculature, and chest wall mechanics—to more fully capture the complexity

of lung dynamics. Particular emphasis will be placed on how these systems

interact across different body positions, enabling high-granularity simulation of
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regional ventilation and perfusion. By preserving the unique spatial structure

of the current model, this future work aims to provide clinicians with precise,

position-sensitive tools for optimising respiratory care in diverse and critically

ill patient populations.
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7 A Coupled Pulmonary Model based on Non-

linear Poroelastics

7.1 Introduction

This final modelling chapter synthesizes the advancements from previous stages

to create a comprehensive, coupled pulmonary model designed for robust clini-

cal inference. The objective is to integrate the non-linear poroelastic lung tissue

model with key external physiological systems, including the branching upper

airways and pulmonary blood circulation, while also incorporating external tho-

racic pressures. I hypothesize that this fully coupled model will accurately pre-

dict regional ventilation-perfusion (V/Q) ratios across different patient positions

and reliably assess localized mechanical power delivery, thereby identifying ar-

eas at risk for ventilator-induced lung injury (VILI). The overarching clinical

questions addressed are: How do the complex interactions between mechanical

ventilation, airway structure, blood flow, external pressures, and patient posi-

tioning collectively influence regional gas exchange efficiency and the localized

risk of VILI? This comprehensive model is necessary for translating theoretical

understanding into actionable clinical insights, enabling in-silico experimenta-

tion to optimize ventilator settings and patient positioning strategies for im-

proved outcomes in mechanically ventilated patients.

The previous chapters of this thesis have focused on building and validating

a mathematical model of lung tissue based on biomechanical approaches. It

has been shown that these models can accurately replicate the distortion of the

alveoli throughout the breathing cycle, including complex phenomena such as

the Slinky Effect, alveolar recruitment and over distension. However, in order to

use these models for clinical inference, we need to account for the wider picture

of factors influencing the measurements taken at the ICU bedside. This will
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allow the model to eventually be parametrised using individual patient data.

In this chapter, we extend the model to incorporate the interaction between

the upper airways and the deeper pulmonary structures, critical in understand-

ing how the ventilator moves air through the respiratory system and to the

alveolar units. This allows for a more detailed exploration of ventilation and

perfusion as it varies spatially, by introducing external pressures, hydrostatic

gradients in blood flow, and the intricate nature of the lung’s branching airways

that give rise to the waveforms we see at the bedside. We also delve into how

patient positioning, whether upright, supine, or prone, affects the distribution of

ventilation and perfusion within the lung. The differences in these distributions

have a direct impact on the ventilation-perfusion (V/Q) ratio, an important

indicator of lung efficiency [14, 25]. A mismatch in V/Q can lead to regions of

the lung being either over-ventilated or under-perfused, resulting in impaired

gas exchange [57]. By analysing these positional effects within the poroelastic

model, we aim to provide a clearer understanding of how to optimize patient

care through positioning strategies.

Towards the end of this chapter, we will use this model to explore a number of

important clinical questions. Of particular interest within pulmonary modelling

currently is the concept of mechanical power as it relates to Ventilator-Induced

Lung Injury (VILI), and whether the ventilator outputs can be used to predict

the risk of damage to a patient’s lungs. Here, we will implement the mechanical

power formulation presented by Gattinoni in 2016 to assess ventilator-related

causes of lung injury [36]. This will then be extended into the poroelastic

model, to identify any regions of the lung most susceptible to trauma, and the

implications of this trauma on the overall mechanics of the tissue.
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7.2 Connection to Upper Airways

Regional ventilation in the lung is in part determined by the amount of air

reaching each of the terminal branches in the airway tree. This is due to the

complex fractal nature which is notably asymmetric, resulting in heterogeneity

in the volume of air arriving to an alveolus [38]. Airway resistances, pressures,

and flows all depend on the size and length of each airway segment as it varies

through the branch generations, and so a model needs to be able to incorporate

this phenomenon.

The branching airways in the human lung consist of over 16 million individ-

ual airway segments, and, with the asymmetrical bifurcations, this creates an

incredibly complex system. In order to visualise this, data was taken from a

paper published by Weibel in 1991, which has been well cited in the literature

as a base for the mathematical modelling of the airway tree [86]. This data is a

representation of the respiratory tract of an average adult with a lung volume

of 4800cm3 at roughly 75% total lung capacity.

Figure 36 depicts the key morphological variables of the airway structure,

separated into generation number. As standard, the trachea is noted as genera-

tion 0, the bronchi from 1-3 and so on until the alveolar sacks at generation 23.

As this thesis is concerned with patient receiving mechanical ventilation in the

ICU, a generation -1 has been added to represent an endotracheal tube of typi-

cal dimensions. The top left graph shows an exponential increase in the number

of branches with each successive generation, especially beyond generation 15.

The length of airways decreases sharply in the early generations, stabilizing at

a relatively small value after around generation 5. There is a notable peak at

generation 4, this is due to the specific shape of the pulmonary lobes, requir-

ing this bifurcation to be slightly longer. The average diameter of the airways

reduces rapidly through the generations. There is a slight increase from the

160



Figure 36: Graph of the representative data of the respiratory tract of an av-
erage adult with a lung volume of 4800cm3 at roughly 75% total lung capacity,
with respect to the tree generation. Top left: The number of segments in each
generation. Top right: The average length at each generation. Bottom left: The
average diameter at each generation. Bottom right: The total surface area at
each generation. Adapted from Weibel 1991 to include the endotracheal tube
[86].

endotracheal tube to the trachea, as the tube must be able to fit safely in the

trachea during mechanical ventilation. Despite the length and diameter of the
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airways decreasing as generation number increases, the shear number of seg-

ments at each generation increases so quickly that the total surface area of each

generation has an exponential increase. This can be seen in the bottom right

graph, and is a fantastic visual representation of the vast surface area of the

alveolar sacs, as to how the lung maximizes gas exchange so effectively.

It is these specific branching measurements that affect regional airflow to the

alveoli, as the varying pipe lengths and diameters significantly alter the local

resistance to flow and subsequent drop in pressure. Airflow through the majority

of the lung is laminar, with smooth flow and negligible mixing, although can

exhibit turbulent flows in the large trachea and main bronchi particularly during

high flow rates associated with heavy breathing [87]. For this model we will

assume all flow to a laminar approximation for simplicity. This means that

the pressure drop from the beginning of a particular segment to the end of

that segment can be described by Poiseuille’s law, neglecting inertial effects.

This law states that laminar flow rate of an incompressible fluid along a pipe is

proportional to the fourth power of the pipe’s radius [88], such that:

∆P =
8Lµq

πr4
, (157)

where ∆P is the pressure difference between the two ends of the pipe segment,

is the length of the segment, r is the radius of the segment, µ is the dynamic

viscosity of the fluid, and q is the volumetric flow rate of the fluid. We then can

take the resistance to flow in that segment as the ratio of the pressure difference

to the airflow.

R =
∆P

q
(158)
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Therefore the resistance is written

R =
8Lµ

πr4
(159)

In these equations we assume conservation of airflow through throughout the

airway tree. In order to complete the branching from the ventilator down to the

alveolar sacs, we must calculate the pressure at the end of each segment given

the pressure at the beginning, where this end pressure becomes the beginning

pressure for the next segment and so on. This allows us to estimate the pressure,

resistance and flow at the alveolar sacs, directly from the ventilator settings at

the endotracheal tube.

Pi,2 = Pi,1 −
8Liµ

πr4i
· q (160)

Here Pi,1 is the pressure at the beginning of the ith pipe segment, and Pi,2

is the pressure at the end of the ith pipe segment. The length of the ith pipe

is Li and the radius is ri. Finally, µ is the dynamic fluid viscosity of the air

in the branches, and q is the flow rate through the pipe segment. Flow rate is

calculated according to the cross-sectional area of the branch segment Ai and

the flow velocity v as q = Ai · v. We can now plot the pressure and resistance

changes through the branches using the data presented in Figure 37 [86].

Pressures and resistances are shown for a single tube at each generation, with

the model assuming all branches in the same generation are identical. Figure 37

shows a near linear drop in pressure from the endotracheal tube down to gen-

eration 4, and then an exponential decay in pressure down to the parenchyma.

This is because, after the 4th generation the pipes begin to become significantly

shorter and narrower. The resistances in Figure 38 show some interesting dy-

namics. We begin with zero resistance at the opening of the endotracheal tube
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Figure 37: Average pressure in each of the branch generations down the airway
tree.

Figure 38: Average resistance in each of the branch generations down the airway
tree.
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as we assume this is where flow begins, with resistance increasing significantly

by the start of the trachea. There is then a slight decline in resistance down

to generation 4. This is because the total cross-sectional area in these early

generations increases despite the individual airway diameters becoming smaller,

as seen in Figure 36. This is due to the multiplicative branching nature of

the airway tree. While the diameter of each branch decreases, the number of

branches increases, resulting in a larger combined cross-sectional area. After

this there is a sharp increase in resistance to the maximum resistance reached

at generation 6, the beginning of the terminal bronchioles. This is because the

airway diameter has become significantly smaller, but the total cross-sectional

area hasn’t yet increased enough to offset the narrowing. After this resistance

decreases exponentially down to the alveoli, as the total surface area is now

increasing rapidly, seen in Figure 36.

Having now proven the importance of airway structure and the precise me-

chanics apparent in the bifurcating tree, we now need to couple this network into

the existing poroelastic model. This can be achieved by replacing the source

term in the governing equations to a flux from the airway tree as it reaches the

parenchyma such that

∂2u

∂x∂t
− κ

∂2p

∂x2
= Φ(x)terminal (161)

where Φ(x)terminal is the air flux at the terminal node of the branching tree

at height x on the isogravitational plane set up.

Using 160 for the pressure drop from the beginning to end of one pipe seg-

ment, we can create a summarising equation for the total pressure drop from the

ventilator input to these terminal nodes. Summing resistances we can calculate

the the total pressure drop from the ventilator to the end of the N th airway

generation as
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∆P = q

N∑
i=1

Ri (162)

To find the outlet flux for the terminal branch, we require the pressures at

the start and end of this pipe. We assume that all flow is conserved through

the system. A visual representation of this is shown in Figure 39. Airflow q

travels from the ventilator at Pvent through to the endotracheal tube (ETT)

at generation -1. From there it travels through each of the airways to the

terminating branch at the end of generation 22 Pterm−1, to the alveoli opening

at generation 23 Pterm.

Figure 39: Visual representation of airflow through the branching airway net-
work in an intubated patient. Airflow originates from the ventilator Pvent,
passes through the endotracheal tube (ETT , generation −1), and continues
through successive airway generations to the terminal branch (Pterm− 1) and
ultimately the alveoli (Pterm), assuming conservation of flow throughout the
system.

166



The corresponding equations are

Pterm = Pvent − q

term∑
i=1

Ri (163)

Pterm−1 = Pvent − q

term−1∑
i=1

Ri (164)

Finally, the flux can be calculated using the Poiseuille equation as

Φterm =

(
Aterm
8πµ

)
· Pterm − Pterm−1

Lterm
(165)

where Aterm is the cross-sectional area of the terminal branch, and Lterm is

the length of the terminal branch.

Having now created a more intricate system for the delivery of air from the

ventilator to the alveoli, we can extend the model to include spatially varying

ventilation in the lung.

7.3 Ventilation and Perfusion

The importance of ventilation and perfusion variation was discussed in detail

in the literature review portion of this thesis (Section 3.14), and was modelled

briefly in the solid mechanics chapter (Sections 4.8-4.10). However, the tempo-

rally dynamic set up of the poroelastic model will require a much more intricate

set up. For the alveolar ventilation, we must couple the poroelastic model into

the upper airways network.

For a single alveolar compartment i, the ventilation is defined as the volume

of air moving in/out of the ith alveolus at a single timestep, according to 41.

This is calculated as:

Flowcompi =
PTrachea − Pcompi

RUpperAirway +Rcompi
(166)
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where PTrachea is the tracheal pressure, RUpperAirway is the upper airway re-

sistance, and Rcompi is the inlet resistance of the ith compartment. We take

the pressure in the ith alveolar compartment Pcompi as the pressure waveform

created by the poroelastic matrix, with inclusion for the non-linear stiffness of

the alveoli E and external pressure gradients according to

Pcompi = Ei (Vcompi − Vcol)
2 − Pexti (167)

as in equation 42. PTrachea is calculated using 163 as

Ptrachea = Pvent − q ·Rtrachea (168)

where

Rtrachea =
8 · Ltrachea · µ
π · r4trachea

Pvent is the pressure set at the ventilator; the opening of the endotracheal tube.

The resistance of the upper airways is a constant, and the resistance at the ith

compartment is calculated as

Rcompi =
8 · Lterm · µ
π · r4term

(169)

Ltrachea, rtrachea, Lterm and rterm are the length and radius of the trachea

and terminal airway respectively.

Substituting these into 41 gives the updated equation for airflow at the ith

compartment as

Flowcompi =
Pvent − q·8·Ltrachea·µ

π·r4trachea
− Pcompi

RUpperAirway +
8·Lterm·µ
π·r4term

(170)

We finally need to extend the pressure in the ith compartment to include the
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external pressures (Pext) exerted on the lungs by the rest of the body and gravity.

These pressures are taken from experimental studies performed to determine

the gradient parallel to gravity of the extrinsic pressures applied to the lung,

primarily results from Bryan in 1974 and West in [89, 90]. This gives the final

equation as

Flowcompi =
Pvent − q·8·Ltrachea·µ

π·r4trachea
− (Pcompi − Pext)

RUpperAirway +
8·Lterm·µ
π·r4term

(171)

A similar approach can be taken for the updating of the perfusion equation,

43, to fit into the poroelastic framework. For a single alveolar compartment i,

the perfusion is defined as the volume of blood passing through the ith capillary

unit in a single timestep.

Qcompi =
∆Pvessels
PV Ri

(172)

where ∆Pvessels is the pressure difference between pulmonary artery, vein and

the alveolus, according to West’s Zones of the lung [7]. The pulmonary vascular

resistance of the ith capillary unit which feed the alveolus, PV Ri, must be

calculated as it’s own branching tree system.

PV Ri =
8 · Lcapillary · µ
π · r4capillary

(173)

where µ is the dynamic viscosity of the blood, and Lcapillary and rcapillary are

the length and radius of the ith capillary respectively.

Combining these gives the overall estimated bloodflow at the ith alveolus as

Qcompi =
∆Pvessels · π · r4capillary

8 · Lcapillary · µ
(174)

Finally, we need to separate this equation by the laws of the West Zones of
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the lung, such that the dominant pressure interactions are controlling the flow.

Qcompi =


0, if Pcompi > Pa > Pv.

(Pa−Pcompi)·π·r
4
capillary

8·Lcapillary·µ , if Pa > Pcompi > Pv.

(Pa−Pv)·π·r4capillary
8·Lcapillary·µ , if Pa > Pv > Pcompi .

(175)

where Pa is the pressure in the pulmonary artery and Pv is the pressure in the

pulmonary vein. This allows us to calculate the ventilation perfusion ratio as

(
V

Q

)
compi

=
Flowcompi
Qcompi

, (176)

and we can now explore the gravitational distribution of perfusion, ventilation

and the V/Q ratio at different points in the breathing cycle.

It is important to note that not all air in the lung is contributing to gas

exchange. Dead space refers to areas within the respiratory system where venti-

lation occurs but gas exchange is absent. This includes anatomical dead space,

the volume of air in the conducting airways (like the trachea and bronchi) that

does not participate in gas exchange, and alveolar dead space, which is the vol-

ume of air in ventilated alveoli that are not perfused with blood. A notable

example of alveolar dead space occurs in West’s Zone 1, where alveolar pres-

sure exceeds perfusion pressures, completely restricting blood flow. The sum of

anatomical and alveolar dead space is termed physiological dead space. Con-

versely, a shunt occurs when blood flows through the pulmonary circulation but

does not participate in gas exchange, bypassing ventilated alveoli—effectively,

perfusion without ventilation. Understanding these concepts is essential, as the

mismatch between ventilation and perfusion (V/Q ratio) directly impacts the

efficiency of gas exchange and is a critical indicator of lung function. The model

in this thesis focusses only the air flow and blood flow in the lung, not gas
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exchange explicitly, therefore these features would need to be included if gas

exchange were to be modelled.

Figure 40: Relative airflow in the alveoli as a function of vertical height, at
FRC, TLC and 50% inflation. Lung is in the upright position.

Figure 40 illustrates the distribution of relative airflow as a function of verti-

cal lung height (expressed as a percentage of total lung height) at three different

lung volumes: Functional Residual Capacity (FRC), 50% inflation, and Total

Lung Capacity (TLC). The x-axis represents relative airflow, while the y-axis

represents the vertical position within the lung, with 0% being the base and

100% being the apex. At FRC, airflow is shown as uniform across the lung
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height, indicating that ventilation is zero throughout, which is characteristic of

a resting or end-expiratory state. At 50% inflation, the yellow curve demon-

strates a skew in airflow distribution, with greater airflow occurring in the lower

(dependent) regions of the lung. This reflects the gravitational gradient of pleu-

ral pressure and lung compliance. The base of the lung, being more compliant

at mid-inflation, receives more airflow compared to the apex. This is consistent

with biological reality: during normal tidal breathing, the lower parts of the lung

generally receive better ventilation due to increased compliance and favourable

pleural pressure. At TLC, the red curve becomes even more skewed, showing

dramatically increased airflow at the base and minimal airflow at the apex. This

results from reduced compliance at high lung volumes, particularly in the up-

per lung regions, which are already near maximal inflation and therefore resist

further expansion. Meanwhile, the lower lung regions can still accommodate

more volume, leading to a larger airflow directed there. Overall, this graph

reflects fundamental principles of pulmonary physiology, including the effects

of gravity, regional compliance, and pleural pressure gradients on ventilation

distribution. It illustrates how ventilation becomes more heterogeneous with

increasing lung inflation, favouring the dependent (lower) lung regions due to

their greater capacity to expand.

Figure 41 shows the relative perfusion to the alveoli at each isogravitational

plane, at FRC, TLC and 50% inflation. Of important note here are the size and

positions of each of the three West Zones, as these dynamics are essential to

understanding lung function. At all levels of lung inflation, perfusion is great-

est in the dependent (lower) regions of the lung and decreases steadily toward

the apex. This distribution pattern is primarily due to the effects of gravity

on pulmonary blood flow. Blood is a relatively heavy fluid, and under upright

conditions, hydrostatic pressure causes more blood to pool in the lower parts of
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Figure 41: Relative perfusion in the alveoli as a function of vertical height, at
FRC, TLC and 50% inflation. Lung is in the upright position.

the lung, enhancing perfusion there. At FRC, blood flow is maximised , with

only the top 17% of the lung falling into the Zone 1 category where blood flow

is entirely restricted by the size of the alveoli. From 65% to 83% we see Zone

2, where blood flow is controlled by the gradient between the pulmonary artery

and the pressure in the alveolus. The bottom 65% of the lung fall into Zone 3,

where blood flow is maximised and is simply a gradient between the pulmonary

artery and pulmonary vein. This aligns with known physiology: the pulmonary

vascular resistance is lower in the bottom (dependent) zones, promoting more

173



blood flow in these regions. As the alveoli expand to the mid-point of inflation,

more of the lung enters Zone 1, as the alveoli are now larger and constricting

the blood vessels. The top 50% of the lung is now unperfused. Approximately

15% falls into Zone 2 and the bottom 35% is in Zone 3. Finally, at TLC we

see almost the entire lung is now exhibiting the behaviour of West Zone 1, with

negligible blood flow. This is because nearly all alveoli are fully expanded and

blood vessels are being severely compressed. This is a very interesting observa-

tion, as the reduction of Zone 1 is one of the primary goals of clinicians when

selecting ventilator settings. During spontaneous breathing, Zone 1 is small, but

the forced pressures of mechanical ventilation create this dynamic. This graph

reflects the classic zone model of pulmonary perfusion [7], where gravity and

lung inflation influence vascular pressures and resistances, resulting in perfusion

being highest at the base and lowest at the apex. As lung volume increases,

overall perfusion decreases, especially in the upper lung, due to stretching and

compression of pulmonary vessels. This has direct implications for ventilation-

perfusion (V/Q) matching and gas exchange efficiency across different postures

and breathing states.

Having now looked at each component separately, we can assess the ratio

between ventilation and perfusion as an indicator of gas exchange and overall

lung function.

Figure 42 shows the ventilation/perfusion ratio at the three levels of inflation

as a function of vertical lung height, in the upright position. The first obser-

vation to be made is in comparing this non-linear model to its solid mechanics

counterpart in Figure 12. It can clearly be seen that the non-linear framework

creates a much smoother curve for the ventilation perfusion ratio than in the

static model, where there is a clear disconnect between the three West Zones.

This continuity results from the more intricate ventilation relationship. Now
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Figure 42: Ventilation/perfusion ratio as a function of vertical height, at FRC,
TLC and 50% inflation. Lung is in the upright position

looking at the difference between inflation points, the height at which the curve

converges is most significant. At Functional Residual Capacity, the curve flat-

tens at just above 80% of the total lung height, this is because above this is the

Zone 1 portion, in which perfusion is zero. Therefore dividing ventilation by

perfusion in this area will not give a solution. This is analogous to the alveolar

dead space in which the alveoli are ventilated but no gas exchange can occur.

This is replicated at 50% inflation, where Zone 1 extends down to the top 50%

of the lung, and at Total Lung Capacity where 95% of the lung is in Zone 1.
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Theoretically, the ideal V/Q ratio is 1, and this is the aim when a patient

is receiving mechanical ventilation. There are many techniques a clinician may

implement in order to achieve this, but of primary focus here is in patient

manoeuvring. We can now use this non-linear Neo-Hookean Hyper-Poroelastic

model to explore the gravitational mechanics that change between positions.

7.4 Positions Comparison

Having coupled the non-linear poroelastic model with the complex structures of

the airway and vascular tree, it is now possible to explore in depth the mechan-

ical differences between patient positions that are observed experimentally. In

order to do this, a shape must be assigned to the lung model such that it can

be rotated accordingly. Here this is chosen to be the truncated cone analogy

which was explored in Chapter 4, and shown to be a physiologically relevant

shape whilst keeping mathematical complexity minimal.

The equations for the cross sectional area of the truncated cone are

A(x) = π

(
xb− xt+ Lt

L

)2

(23)

in the upright positions, and

Ax =


L(b− t)

(√
1− k21 − k21cosh

−1 1
k1

)
, x < b− t.

L
2

(
2
√
t2 − (b− x)2 + 2

√
b2 − (b− x)2

)
, b− t ≤ x ≤ b+ t

L(b− t)
(√

1− k22 − k22cosh
−1 1

k2

)
, x > b+ t.

(35)

Where k1 = 1 − x
b−t and k2 = 1 − 2b−x

b−t , in the horizontal positions. These

are shown visually in Figures 7 and 8. b is the radius of the larger base of

the truncated cone, and t is the radius of the smaller top. These functions are

substituted into the equation for the conservation of solid momentum, 81, as
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before.

A more significant adjustment is required for the varying elasticity between

patient positions, that is highly responsible for the deformation differences be-

tween supine and prone position despite the same cross-sectional area. In the

linear model, this was achieved by simply adding a spatial gradient to tissue

elasticity E, which could be set prior to simulation. In the non-linear model

however, elasticity is now a function of deformation itself according to the spatial

elasticity tensor of the neo-Hookean hyperelastic model, 144.

The simulated ventilator waveform data is shown in Figure 43. The three

positions are compared on total displacement and pressure at each isogravita-

tional plane, with the upright in row A, supine in row B and prone in row C.

This is directly comparable to the linear model of the ventilator waveform shown

in Figure 25.

If we initially compare the linear and non-linear models, there is a clear

difference in the pressure field, with average pressures being higher in the non-

linear model across all positions. This is due to the more complex stress-strain

behaviours in the non-linear. The relationship between stress and strain is no

longer proportional because, as the tissue deforms, the stiffness of the mate-

rial can increase towards the end of exhalation, requiring higher pressures to

achieve the same amount of deformation. The variation in pressure across lung

height is also much higher in the linear model, with pressures at each gravi-

tational plane being near uniform in the non-linear system. In the non-linear

poroelastic model, the lung tissue becomes stiffer as it stretches, especially at

higher volumes. This property allows the tissue to distribute stress more evenly

because regions of the lung that are more compliant (or less stiff) initially will

gradually stiffen as they expand. This adaptive stiffness limits over-distension

in certain areas, redistributing pressure and reducing large regional differences
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Figure 43: Simulated ventilator waveform data for the source problem in a fully
non-linear neo-Hookean model. Row A is upright, row B is supine, row C is
prone.
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in strain.

Between the positions themselves, the results are inline with the observa-

tions from the linear model. Pressures are highest in the upright lung, and

there is clear heterogeneity in pressures across the lung height. In the prone

and supine positions, the pressures are lower at full inflation, and significantly

more uniform across the lung height. There is little to no observable difference

between the prone and supine positions here, as the complex elastic behaviour is

the dominant factor. In actuality, the differences between the prone and supine

positions are heavily influenced by external factors such as extrinsic pressure,

and so these must be included for accurate comparison. We therefore add the

external pressures discussed in 42 to calculate the effective alveolar pressure.

This can then be extended to include the ventilation and perfusion calcula-

tions set in section 8.3 of this thesis. From the results presented in section 8.3,

it is shown that regional variation in ventilation/perfusion mismatch is most

significant at functional residual capacity, as so position comparisons will be

made at FRC.

Figure 44 shows the average ventilation to the alveoli in each isogravitational

plane, with the lung at functional residual capacity. In each position, airflow is

lowest at the apex and highest at the base, as is expected. Between positions,

the difference is in the spatial variation in ventilation. In the upright position,

there is a large gradient between the base and apex of the lung, with signifi-

cantly larger airflows at the base. This variation is marginally reduced in the

supine position, and approximately halved in the prone position, where consid-

erably greater uniformity across the lung is observed. In the prone position,

the external pressure gradient on the lung is much smaller, which allows air to

flow into the alveoli more efficiently. The higher tissue elastance in this position

also prevents the over-distension of the top alveoli and promotes recruitment,
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Figure 44: Ventilation at FRC as a function of lung height, in the upright,
supine and prone positions.

resulting in more even ventilation. Experimental work has focussed more signif-

icantly on the supine and prone positions. Johnson et al (2017) synthesised and

reviewed existing research on ventilation differences between pone and supine

positions, with highly insightful conclusions [91]. Studies utilising sophisticated

imaging techniques observed a much larger gradient in the spine position than

in the prone, due to a more homogenous distribution of pleural pressures [92,

93, 94, 95], which the model successfully captures.

Figure 45 shows the average perfusion of the capillaries feeding the alveoli
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Figure 45: Perfusion at FRC as a function of lung height, in the upright, supine
and prone positions.

in each isogravitational plane, with the lung at functional residual capacity. Of

most importance here, is the portion of the lung in each of the three West zones

in each position. In the upright position, the top 23% of the lung is in zone 1, in

which over-distended alveoli prevent all blood flow. Roughly 20% falls into zone

2, where alveolar pressure is the dominant factor, and the rest falls into zone 3.

Moving into the supine position, zone 1 and zone 2 are both reduced by 5%, with

67% now exhibiting zone 3 dynamics. Finally, in prone position only the top

9% of the lung is in zone 1, with roughly 20% in zone 2 and 70% in zone 3. This
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reduction in zone 1 in the prone position is of particular interest in a clinical

setting, as we want to minimise the number of alveoli unable to perform gas

exchange in order to improve overall lung function. Original research by Glenny

and colleagues in 1999, demonstrated that pulmonary perfusion heterogeneity

was greatest in the upright posture, averaging 65.3% [96]. In comparison, blood

flow variability was significantly less in the supine posture, averaging 52.0%,

and even less in the prone posture, averaging 43.8%. This decreasing trend

in heterogeneity from upright to supine to prone directly supports the idea of

increasing uniformity of perfusion gradients across these positions. Furthermore,

the contribution of gravity to this perfusion heterogeneity was estimated to be

25% in the upright posture, 7% in the supine posture, and only 5% in the prone

posture, reinforcing that gravity’s influence on flow distribution is greatest when

upright and least when prone, leading to varying levels of uniformity, as seen in

the model.

In order to look in more detail at the gas exchange capabilities throughout

the lung in the different positions, we can now look at the ventilation/perfusion

ratio.

Figure 46 shows the average V/Q ratio at the alveoli in each isogravitational

plane, with the lung at functional residual capacity. As is expected from the size

and location of West zone 1, each of these curves plateaus at a certain height up

the lung, above which no blood flow is present and the ratio has no solution. The

ideal V/Q ratio is 1, at which the airflow and bloodflow to the alveolus are even

and gas exchange is most efficient. This however, is not seen in the majority of

the lung, and so the clinical goal is to have as much of the lung close to this value

as possible. In the prone position, the lowest ratio is at 0.5 at the base of the

lung, meaning that bloodflow is double the airflow in this region. This is a much

better value than in the upright and supine positions, where the base exhibit
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Figure 46: Ventilation/perfusion ratios at FRC as a function of lung height, in
the upright, supine and prone positions.

ratios of 0.15 and 0.25 respectively. The height at which the curves converge

is akin to the start of zone 1 seen in Figure 45, 77% in the upright position,

82% in the supine position and 90% in the prone position. This is well founded

in experimental research. Nyren in 2010 explored V/Q gradients in healthy

patients who were anaesthetised and undergoing mechanical ventilation, which

is directly comparable to the structure of this model [97]. They found that the

vertical heterogeneity in V/Q ratio decreased from 31.4% in the supine position

to 16.4% in the prone position.
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This section determined that upright positioning results in increased pres-

sure variations across the lung, while supine and prone positions promote a

more uniform pressure distribution. Additionally, non-linear stress-strain re-

lationships inherent to lung tissue were noted to impact pressure distribution,

with significant increases in pressure at the apex during upright positioning,

indicating the potential for over-distension. The prone position demonstrated

the most uniform stress distribution, minimizing pressure discrepancies across

lung height. Positioning was also shown to impact regional bloodflow to the

lung, with large portions of the lung being unperfused in the upright position,

and minimal portions unperfused in prone. This observation is important when

discussing the mismatch in ventilation and perfusion across the lung, and why

certain positions promote more efficient gas exchange than others.

The detailed visualization of West’s Zones and the ventilation-perfusion

(V/Q) ratio across different lung heights and patient positions is directly action-

able for clinicians. The significant reduction of Zone 1 (unperfused, ventilated

lung) in the prone position, particularly at FRC and 50% inflation, quantita-

tively demonstrates how proning can improve overall gas exchange efficiency by

recruiting previously unperfused lung regions. This model suggests that clini-

cians can use patient positioning as a powerful tool to minimize alveolar dead

space and optimize V/Q matching, directly contributing to improved oxygena-

tion in critically ill patients, especially those with ARDS. The model’s ability

to show the V/Q ratio converging closer to the ideal value of 1 in the prone

position provides a compelling mechanistic reason for its clinical efficacy. This

finding supports the practice of prone positioning to rebalance regional airflow

and blood flow, crucial for enhancing gas exchange and reducing hypoxaemia in

mechanically ventilated patients.

With the non-linear neo-Hookean hyper-poroelastic model now fully opera-
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tional and providing insightful and physiologically relevant results, we can begin

to use it to explore important clinical questions. The findings from the positional

analysis underscore the significance of mechanical factors, such as pressure gra-

dients and tissue elasticity, in determining lung function. But more than this,

they can be used to assess the risk to the lung caused by these simulated stresses

from the ventilator. With prone positioning offering a balance of stress across

lung regions, it emerges as a key configuration for reducing over-distension risks,

a factor crucial to mitigating lung injury. This sets the stage for the upcoming

discussion on how mechanical power—the combined effect of volume, pressure,

and frequency—contributes to ventilator-induced lung injury (VILI), empha-

sizing the importance of positional adjustments in preventing damage during

mechanical ventilation.

7.5 Mechanical Power and VILI

In the management of mechanically ventilated patients, understanding the re-

lationship between mechanical power and lung injury is critical to optimizing

ventilator settings and minimizing damage. Ventilator-Induced Lung Injury

(VILI) arises from the mechanical forces exerted on lung tissues, which can lead

to over-distension and tissue stress [35]. Traditional approaches often focused

on controlling specific parameters like tidal volume and airway pressure. How-

ever, recent insights have emphasized the role of mechanical power—a holistic

measure integrating tidal volume, flow, and airway pressure—as a critical fac-

tor in predicting lung damage [36]. The mechanical power risk model provides

a particularly effective framework for this study because it captures both the

solid and fluid characteristics of lung tissue. The poroelastic model created in

this thesis accommodates the unique characteristics of lung deformation under

mechanical stress, such as alveolar recruitment and collapse, as well as stress dis-
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tribution across lung regions. By representing the lung as a poroelastic medium,

this study can simulate the nuanced behaviour of lung tissues under varied ven-

tilator settings, offering a more accurate prediction of injury sites and severity.

Thus, applying the poroelastic model allows us to better quantify mechanical

power’s impact on VILI and refine protective ventilation strategies tailored to

individual patient conditions.

For this study, the equation for the mechanical power will be derived follow-

ing the highly-credited work of Gattinoni et al in 2016 [36]. To begin we take the

traditional equation of motion for the mechanics of breathing as stated by Otis

et al in 1950 [98], and introduce a component for the Positive end-expiratory

pressure (PEEP), as determined by Marini and Crooke in 1993 [99].

This gives the pressure for the whole respiratory system PRS as

PRS = ELRS ·∆V +Raw · F + PEEP (177)

where ELRS is the elastance of the respiratory system, ∆V is the volume

change in the system (tidal volume), Raw is the resistance of the upper airways

and F is the airflow through the system. Each of the components in this equation

represents some dynamic pressure, such as

ELRS ·∆V = ∆P (178)

Raw · F = Ppeak − Pplat (179)

PEEP = Pend−expiration (180)

where ∆P is the pressure component generated by elastic recoil alone, Ppeak

is the peak pressure and Pplat is the plateau pressure such that Ppeak − Pplat is

the pressure component due to the motion of the system, and Pend−expiration
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is the pressure at the end of expiration. There is debate on the inclusion of

PEEP in this equation, as it itself is a static pressure [100]. However, PEEP

does generate a volume when first applied to the respiratory system, and as

such is integral in determining the energy change needed to increase the system

volume [101].

The energy required for each breath can be calculated by multiplying the

pressure equation 177 by the change in volume ∆V , such that

Ebreath = ELRS ·∆V ·∆V · 1
2
+Raw · F ·∆V + PEEP ·∆V (181)

The first term in the equation is multiplied by 1
2 as to approximate the

integral of the product ∆Px×∆V , as shown in the linear portion of pressure-

volume relationships depicted by Gattinoni [36].

We can now take the flow of air through the system F as the rate of volume

change ∆V over the whole inspiratory time period Tinsp. This gives the updated

equation for energy per breath as

Ebreath = ∆V 2 ·
(
ELRS · 1

2
+

1

Tinsp
·Raw

)
+ PEEP ·∆V (182)

As to explore the impact of the ventilator settings on the mechanical power

output, we can write Tinsp as a function of respiratory rate RR and inspiratory-

to-expiratory ratio I : E, where
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Tinsp
Texp

=
I

E
(183)

Tinsp + Texp = Ttotal (184)

Ttotal =
60

RR
(185)

∴ (186)

Tinsp = Ttotal ·
I : E

1 + I : E
(187)

Substituting this into 181 gives

Ebreath = ∆V 2 ·
(
ELRS · 1

2
+RR · 1 + I : E

60 · I : E
·Raw

)
+ PEEP ·∆V (188)

In order to convert this to an equation for mechanical power, we express it

in J/min, multiplying the product of the volume, expressed in litres, and the

pressure, expressed in cmH2O, by 0.098. This gives the final equation for the

mechanical power as

PowerRS = 0.098·RR·
[
∆V 2 ·

(
ELRS · 1

2
+RR · 1 + I : E

60 · I : E
·Raw

)
+ PEEP ·∆V

]
(189)

Within this equation there are multiple parameters that can be altered in

the ventilator settings, such as respiratory rate, inspiratory:expiratory ratio,

tidal volume and PEEP. Therefore we can explore how changing each of these

parameters individually effects the calculated mechanical power.

Figure 47 shows the impacts of various ventilator settings on the calculated

mechanical power. For each of the parameters in the mechanical power equation

that are directly controllable at the bedside, we cycle through a range of possible
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Figure 47: The impacts of ventilator settings on the calculated mechanical
power, varying a single parameter at a time. Top left shows the inspira-
tory:expiratory ratio (I:E), top right shows the tidal volume (TV), bottom left
shows the PEEP, and bottom right shows the respiratory rate (RR). When not
being varied, parameters are set as followed: I:E = 1, TV = 9ml/kg, PEEP =
5cmH2O, RR = 12bpm. All calculated from Eq 189.

values while keeping all other parameters constant. This ensures any changes

in the calculated mechanical power are solely due to the variable being studied.

It is generally accepted that a higher mechanical power results in greater risk of

lung injury, however the exact thresholds are significantly debated. For example,
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Guerin et al [102] found that a mechanical power above 12J/min resulted in a

worse survival likelihood over a 90 day period. Serpa Neto et al [103] and

Xie et al [104] put this threshold higher, suggesting that a mechanical power

above 17J/min increased the risk of mortality, where Parhar et al [105] put

this threshold even higher at 22J/min. Therefore, here we explore the value of

mechanical power directly, without applying a set threshold for risk of VILI.

The top left graph shows the effect of the inspiratory:expiratory ratio on

the mechanical power. Here the value of (I:E) plotted is calculated as I
E with

inspiratory time set to 1, such that an I
E value of 0.25 correlates to a I:E ratio

of 1:4, and a value of 2 corresponds to a ratio of 2:1 and so on. This curve ex-

hibits an exponential decay behaviour, such that as the expiratory time grows

significantly larger than the inspiratory time, the mechanical power increases

rapidly. Conversely, as the expiratory time falls below the inspiratory time, the

mechanical power begins to converge at value 15.4J/min. This relationship is

physiologically logical when considering the mechanical definition of power in

the respiratory system, which depends on airway pressures, inspiratory flow,

and tidal volume. At very low I:E ratios, inspiratory time is extremely short,

requiring rapid airflow to deliver the same tidal volume. This high inspiratory

flow leads to increased airway resistance and elevated pressure demands, sig-

nificantly raising the energy required per breath—hence the sharp increase in

mechanical power.

Conversely, as the I:E ratio increases, inspiratory time lengthens and the

airflow needed per unit time decreases. This reduces both resistive and elastic

workload on the lungs, resulting in a corresponding drop in mechanical power.

While the model suggests that mechanical power approaches zero at very high

I:E ratios, it is important to note that such extremes are not clinically sustain-

able, as they can compromise gas exchange and lead to issues such as dynamic
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hyperinflation or CO2 retention [106, 107]. Nonetheless, the trend highlights

the inverse relationship between inspiratory flow demand and mechanical en-

ergy expenditure, and emphasizes the potential for optimising I:E ratio as part

of lung-protective ventilation strategies.

The top right graph shows the effects of altering the tidal volume on mechan-

ical power. The relationship here is also non-linear due to the second-order ∆V

term in 189. At a tidal volume of 6ml/kg, the mechanical power is relatively low,

at a value of only 7.5J/min. Doubling the tidal volume to 12ml/kg, increases

mechanical power to 28J/min, an almost 4-fold increase. This means that as

tidal volume increases further, mechanical power will begin to rise much more

rapidly. Mechanical power is influenced by both the elastic and resistive compo-

nents of the respiratory system, and tidal volume directly affects both. As tidal

volume increases, more pressure is required to overcome the elastic recoil of the

lungs and chest wall, particularly if lung compliance is limited. Additionally,

higher tidal volumes often require increased inspiratory flow, which raises resis-

tive pressure due to airway resistance. Although the increase appears close to

linear over the physiological range, the slight non-linearity arises because both

pressure and flow—which scale with tidal volume—contribute multiplicatively to

the total energy delivered per breath. This reinforces the importance of limiting

tidal volume in protective ventilation strategies, as even modest increases can

lead to disproportionate rises in mechanical power and, consequently, greater

risk of ventilator-induced lung injury.

The bottom left graph shows the effects of increasing PEEP. This relation-

ship is clearly linear, with an increase in PEEP of 10cmH2O resulting in an in-

crease in mechanical power of 10J/min. This relationship is expected, as PEEP

adds a constant baseline pressure to each breath, increasing the total pressure

the ventilator must generate throughout the respiratory cycle. Since mechanical
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power is calculated as the energy transferred to the respiratory system per unit

time, and energy is directly related to pressure and volume, an increase in PEEP

raises the starting point of each breath’s pressure curve, thereby increasing the

total work done per breath in a linear fashion. Importantly, this added energy

does not contribute to tidal ventilation but rather maintains alveolar recruit-

ment and end-expiratory lung volume. While moderate increases in PEEP can

improve oxygenation and prevent alveolar collapse, this linear rise in mechanical

power highlights the need to carefully balance PEEP settings to avoid excessive

energy delivery and potential lung injury.

Respiratory rate in the bottom right graph also displays a linear relationship

with mechanical power. Rising from 6J/min at a respiratory rate of 5 breaths

per minute, to 28J/min at 20 breaths per minute. Mechanical power represents

the energy delivered to the lungs per unit time, and increasing the respiratory

rate means that more breaths—and therefore more energy—are delivered each

minute. Assuming tidal volume and pressures remain constant, each breath

requires a fixed amount of work, so doubling the respiratory rate effectively

doubles the total mechanical power. This linear relationship underscores the

role of respiratory rate as a key driver of energy transfer to the lung. While

increasing RR can help regulate CO2 clearance, it also raises the cumulative

mechanical stress on the lungs, which may contribute to ventilator-induced lung

injury (VILI) if not balanced appropriately with other ventilator settings. Thus,

optimizing RR is essential not only for gas exchange but also for minimizing total

energy exposure to the respiratory system.

The implications of these simulations are profound, as they demonstrate the

substantial impact that clinician-programmed ventilator settings can have on

generated mechanical power and, consequently, on patient risk. However, if we

wish to quantify the risk, we must chose an adequate parameter to function as
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a signifier. In order to do this we will asses the mechanical stresses and strains

applied to the lung with various settings and the associated mechanical power.

Dynamics stresses and strains are calculated as follows [108].

strain =
∆V

FRC
(190)

stress = E · strain (191)

In order to create a wide range of possible stresses, strains and mechanical

powers, we will systematically cycle through the range of possible values for each

of the ventilator settings, at each point mapping the calculated stress, strain and

mechanical power according to 189, 190 and 191.

Figure 48 reveals a sigmoidal (S-shaped) relationship between mechanical

power and strain, which reflects the non-linear mechanical properties of the

lung. Initially, as mechanical power increases from 0 to around 10 J/min, strain

rises relatively steadily from 0 to 2. This phase corresponds to the lung’s com-

pliant region, where increases in energy (mechanical power) result in effective

volume expansion. In this range, the lung is relatively easy to inflate, and small

increases in pressure and power produce meaningful increases in volume and

strain. Between 10 and 35 J/min, the curve begins to flatten, with strain in-

creasing more slowly from 2 to 3. This plateau represents the transitional phase,

where many alveoli are already recruited, and the lung becomes progressively

stiffer. Additional energy is now less effective at increasing lung volume, as

the lung tissue approaches its elastic limit and compliance decreases. This is

often associated with overdistension risk in mechanical ventilation. Beyond 35

J/min, strain begins to increase exponentially, despite further rises in mechani-

cal power. This late steepening suggests a non-physiological or injurious region,

where the lung may be forced beyond its safe inflation capacity. In this phase,
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Figure 48: The relationship between mechanical power and calculated mechan-
ical strain in the lung.

even small additional increases in mechanical power result in disproportionately

high strain, possibly indicating non-linear tissue stress, microstructural failure,

or volutrauma.

Experimental findings have focussed specifically on the normal operating

range of mechanical ventilators, which here is the initial slop of the graph be-

fore the plateau. Romitti et al investigated mechanical power levels of 3, 7, and

12 J/min in proned healthy pigs, and calculated the resultant strains [109]. In

this study, strain never exceeded 1.0. The 7J and 12J groups exhibited strain

levels that were approximately 50% and 100% greater than the 3J group, respec-

tively. This means that the Romitti study operated within the initial "compliant

region" (where strain rises relatively steadily from 0 to 2 for mechanical power
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up to around 10 J/min, according to Figure 48). The observation of higher

strain at higher mechanical power levels in Romitti’s study is consistent with

the positive slope in the initial phase the model. A similar result was found

in humans with ARDS, over the same mechanical power range. Pistillo et al

(2023) designed a prospective cohort study of 18 ARDS patients, adjusting ven-

tilator settings to achieve desired mechanical powers [110]. Specifically, specific

lung mechanical power (SLMP), which is transpulmonary mechanical power

normalised to end-expiratory lung volume, showed a very strong positive linear

correlation with strain (R = 0.97, R2 = 0.94, p < 0.00001). Similarly, specific

mechanical power (SMP), which normalises mechanical power of the respira-

tory system (MPRS) to the compliance of the respiratory system (CRS), also

had a positive correlation with strain (R = 0.68, R2 = 0.47, p = 0.001). SLMP

was here also only explored between 4.57 and 11J/min. The agreement of the

near linear phase of this sigmoid provides significant validation to the model,

and subsequently highlights the importance of dynamics outside of these normal

operating mechanical powers. Neither study provides data for the non-linear,

plateauing (transitional) or exponentially increasing (injurious) phases of the

curve, thus highlighting this as an area of particular interest going forward.

Overall, this curve captures the classic pressure–volume nonlinearity of the

lung, now expressed through the lens of mechanical power and strain. It high-

lights how energy delivery becomes inefficient—and potentially harmful—beyond

certain thresholds, emphasizing the need to limit mechanical power in clinical

settings to avoid entering the exponential, injury-prone region of the curve.

Figure 49 shows the relationship between mechanical power and mechani-

cal stress in the lung. In the initial phase, as mechanical power increases from

0 to around 15 J/min, stress rises steadily from 0 to approximately 4cmH2O.

This corresponds to the normal elastic behaviour of the lung, where tissue re-

195



Figure 49: The relationship between mechanical power and calculated mechan-
ical stress in the lung.

sponds proportionally to increased energy input. During this phase, alveoli are

recruited efficiently, and lung units expand with relatively low resistance, so

increases in mechanical power translate into predictable, moderate increases in

tissue stress. Between 15 and 30 J/min, the curve begins to flatten, with stress

increasing only slightly from 4 to 5cmH2O. This plateau reflects a transitional

zone, where the lung has reached a near-maximal recruitment state, and further

expansion becomes increasingly resisted by the stiffer structural elements of the

lung. Compliance is reduced in this region, and although energy input contin-

ues to rise, much of it is "lost" to overcoming resistive and elastic limits, rather

than further stretching the lung. This represents a protective ceiling beyond
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which the lung resists additional distension. Beyond 30 J/min, stress begins to

increase exponentially with further increases in mechanical power. This marks

the transition into a potentially injurious regime, where small increases in me-

chanical power lead to disproportionately large rises in mechanical stress. This

steep segment of the curve may reflect overdistension of alveoli, local tissue

damage, or nonlinear stiffening of the extracellular matrix. It highlights how

exceeding mechanical thresholds can rapidly push the lung into unsafe territory,

even if changes in volume (strain) appear modest.

The study discussed previously by Pistillo et al also calculates stress in the

lung as a result of mechanical power [110]. They demonstrated strong positive

linear correlations between normalised mechanical power and stress: SLMP and

stress (R = 0.9, R2 = 0.84, p = 0.00004) and SMP and stress (R = 0.86, R2 =

0.75, p = 0.00001). This supports the fundamental positive relationship between

mechanical power and stress. The maximal transpulmonary pressure at the end

of inspiration (defined as stress) was 18.1cmH2O, at a specific lung mechanical

power (SLMP) measured was 11 J/min/L. These values fall within the initial

phase of Figure 49 (0-11 J/min for mechanical power, 0-3 cmH2O for stress).

The difference between the model calculation of stress and the measured in

the study is a result of differing (but still comparable) stress calculations, as

the model calculates the elastic component of stress, a more precise mechanical

parameter. The consistently positive, linear correlations observed by Pistillo et

al. indicate that within the range of values studied, the relationship generally

aligns with the initial rising portion of the model.

Overall, this S-shaped curve illustrates that while the lung can absorb me-

chanical energy effectively up to a point, there are clear thresholds beyond which

additional mechanical power translates to harmful stress, emphasizing the im-

portance of mechanical power as a key determinant of ventilator-induced lung

197



injury risk.

The comprehensive analysis of how ventilator settings (I:E, TV, PEEP,

RR) impact mechanical power offers clinicians a quantitative guide for ’lung-

protective’ ventilation. The non-linear increases in stress and strain with rising

mechanical power underscore the importance of strict control over ventilatory

parameters to avoid exceeding the lung’s elastic limits and inducing injury. This

model can serve as a simulation platform for clinicians to predict the mechani-

cal power delivered by specific ventilator settings, allowing for proactive adjust-

ments to minimize VILI risk tailored to a patient’s current lung condition.

This section has magnified the use of mechanical power as an indicator of

lung injury, and the internal lung mechanics that contribute to this. However,

these equations explore the lung as a whole. The stresses and strains in the lung

are rarely uniform, which results in certain regions being at higher risk of injury

than others. This is where the spatio-temporal poroelastic model is extremely

useful, as we have separated these mechanics across the height axis, and so can

now calculate how the overall mechanical power effects the lung at high spatial

resolution and identify the most at-risk areas.

7.6 Localised damage in the poroelastic model

When exploring the effects of mechanical power on the risk of ventilator-induced

lung injury (VILI), it is important to remark that the risk of injury is not uniform

across the lung. As the underlying mechanics of the lung tissue vary with height,

so does the associated strain delivered from the ventilator. Therefore, using

the poroelastic model in order to these strains of immense importance to fully

understand patient risk.

Quantifying the regional impacts of ventilator mechanical power requires the

conversion of 189 to a spatially explicit equation, such that values are calculated
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for each alveolus instead of the lung as a whole. The mechanical power delivered

to the ith alveolus, Poweri, is calculated as follows:

Poweri = 0.098 ·RR ·
[
∆V 2

i ·
(
ELi ·

1

2
+RR · 1 + I : E

60 · I : E
·Ri

)
+ PEEP ·∆Vi

]
(192)

where the tidal volume is replaced by the change in volume of the ith alveolus,

∆Vi, the respiratory system elastance is replaced by the dynamic elasticity of

the ith alveolus, ELi, and the airway resistance is replaced by the resistance of

the terminal branch feeding the ith alveolus, Ri. RR, PEEP and I : E remain

constant spatially.

As this equation is not coupled into the poroelastic framework, and instead

is calculated separately at each time step, the model can be run in accordance

to the setup in chapter 7 of this thesis. ELi is calculated using the neo-Hookean

hyper-poroelastic framework set in 128, and Ri is calculated according to 159.

Figure 50 shows the results of this local estimation of mechanical power.

Lung is in the upright position and shown at FRC, TLC and 50% inflation.

At functional residual capacity, the mechanical power is constant across the

lung at 7J/min. This low value is due to the set PEEP which holds the lung

open and prevents alveolar collapse. As the lung begins to inflate, we see that

mechanical power is not being delivered to the lung evenly, instead showing

much higher levels in top (non-dependent) regions. This is understandable, as

we see higher pressures and over-distension towards the top of the lung, greatly

increasing the stress in those alveoli. At full inflation (TLC), this relationship

is more prominent, with the top of the lung receiving a mechanical power of

near 30J/min. This supports experimental findings, such as a 2007 study that

found top (non-dependent) regions of the lung had greater levels of alveolar

injury when mechanical ventilation was increased [111]. This highlights a key
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Figure 50: The local mechanical power delivered to the alveoli in each grav-
itational plane, at functional residual capacity, total lung capacity and 50%
inflation. Lung is in the upright position. %Total lung height goes from 0% at
the bottom to 100% at the top.

mechanism of regional overdistension, where well-aerated lung zones absorb the

majority of ventilatory energy—supporting the concept that ventilator-induced

lung injury (VILI) is driven not only by global power but by its uneven regional

distribution.

Having established that spatial variation in mechanical power delivery is

prominent in the lung, and can be captured using the poroelastic model, we can

now explore the impact of patient positioning on this relationship.

Figure 51 shows the variation with height in the local mechanical power
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Figure 51: The local mechanical power delivered to the alveoli in each gravita-
tional plane at total lung capacity, with the lung in the upright position, supine
position and prone position. A maximum safe threshold of 15J/min, taken
from experimental findings [102, 103, 104], and the theoretical "Safe Zone" is
highlighted green. %Total lung height goes from 0% at the bottom to 100% at
the top.

in the upright, supine and prone positions, with the lung inflated to TLC to

demonstrate the maximum stress point. In all positions, the lung shows higher

mechanical power in the non-dependent regions, however, the maximum me-

chanical power reached varies greatly between positions. In the upright position,

mechanical power reaches a maximum of 27J/min at the apex of the lung. This

is reduced to 25J/min in the supine position and further reduced to 17J/min

in the prone position. Further to this, if we choose a value of 15J/min as the
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threshold for safe ventilation, we can assess the proportion of the lung at risk

in each position. In the upright, nearly 50% of the lung is above the safe me-

chanical power threshold. In the supine position this drops to 20% and in the

prone position only 10% of the lung is identified as being at risk. This is a

highly notable finding, as experimental studies have demonstrated prone posi-

tioning to substantially reduce the risk of ventilator-induced lung injury, leading

to its frequent proposal as a protective strategy in viable patients [112]. How-

ever, this model provides greater insight into the possible distribution of risk

between positions which has not yet been explored experimentally. These find-

ings incorporate many of the mechanics which vary between positions, such as

pleural pressure gradients, regional inflation levels, differing compliances, and

even varying recruitment, highlighting the true complexities that mechanical

power can encompass.

Given the known variation in pressure distributions between each isogravita-

tional plane, it is logical to hypothesise that mechanical power and subsequent

VILI risk would also vary in directions other than gravitational. Expanding

the model into two dimensions could therefore provide unique insights into re-

gional risk for ventilated patients, even further than the insights the model has

currently given in one dimension.

A significant novel contribution of this model is its ability to predict localized

mechanical power delivery and associated VILI risk across different gravitational

planes. The finding that non-dependent lung regions consistently receive the

highest mechanical powers, regardless of position, provides crucial insight into

regional injury patterns often observed in ARDS. More importantly, the quanti-

tative demonstration that prone positioning substantially reduces the proportion

of lung tissue above the ’safe mechanical power threshold’ directly supports its

use as a powerful protective strategy against VILI. This offers clinicians a data-
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driven rationale for patient positioning, enabling them to redistribute stresses

and protect the most vulnerable lung regions, potentially leading to better pa-

tient outcomes and reduced long-term pulmonary complications. This granular

spatial resolution allows for a more precise assessment of VILI risk than tradi-

tional whole-lung mechanical power calculations, providing a roadmap for future

personalized ventilation strategies where ’safe zones’ can be dynamically iden-

tified and optimized for individual patients.

7.7 Concluding Remarks

This chapter has demonstrated the power and clinical relevance of the fully cou-

pled non-linear poroelastic lung model, which now integrates airway branching

geometry, perfusion dynamics, and thoracic pressure influences. This compre-

hensive framework allows simulation of whole-lung physiology across a variety of

clinical conditions and patient positions, capturing how regional lung mechanics

interact with vascular and ventilatory inputs to produce spatially heterogeneous

function.

By coupling the model with branching airways and blood supply, we showed

that regional differences in both ventilation and perfusion are not only measur-

able but are direct consequences of underlying lung tissue mechanics modulated

by gravity, posture, and airway resistance. Critically, this model was able to

replicate the known clinical phenomenon whereby prone positioning improves

ventilation-perfusion (V/Q) matching, reducing non-perfused (Zone 1) regions

and suggesting more efficient gas exchange. This finding provides a mechanistic

explanation for the frequently observed increase in PaO2/F iO2 ratios following

prone positioning in patients with moderate to severe ARDS, particularly when

conventional recruitment or neuromuscular blockade strategies have limited ef-

fect.
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In addition, the model explored one of the most pressing issues in ventila-

tor management: the spatial distribution of mechanical power and its role in

ventilator-induced lung injury (VILI). By calculating the time-resolved delivery

of mechanical energy to lung tissue, the model revealed a highly heterogeneous

pattern of power deposition, with the non-dependent regions (e.g., anterior lung

in supine, dorsal in prone) receiving disproportionately high energy loads. This

insight is critical: it shows that even in globally “protective” ventilation settings,

localised overdistension and stress concentration can persist and drive injury.

These findings align with experimental evidence but go beyond it by offering

precise, localised predictions of VILI risk that are difficult to measure clinically

or experimentally. Importantly, the model also demonstrated that these regional

risks are not fixed: by re-positioning the patient (e.g., from supine to prone), the

same ventilator settings can result in dramatically different distributions of me-

chanical power. In prone positioning, the model predicts a more uniform power

delivery profile, with reduced overdistension in the previously high-risk non-

dependent regions. This supports a more nuanced, position-aware ventilation

strategy, where body posture becomes an active tool for reducing local mechan-

ical trauma, alongside ventilator setting adjustments such as PEEP titration

and tidal volume modulation.

Beyond ARDS, the model offers explanatory power for conditions like early

COVID-19 pneumonia, where severe hypoxaemia may occur despite preserved

ventilation. In such cases, upright or supine positions may exacerbate V/Q mis-

match due to gravitational perfusion gradients. The model supports the role of

awake proning in non-intubated patients by showing how this intervention can

improve V/Q balance and oxygenation even in the absence of overt ventilatory

failure. This fully coupled model also holds significant value for surgical and

interventional planning. In cases such as prone neurosurgery, cardiothoracic
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procedures, or one-lung ventilation scenarios, understanding how ventilation

and perfusion shift with patient positioning is critical. The model offers a pre-

dictive tool to anticipate these shifts and optimise intraoperative gas exchange,

potentially reducing perioperative complications.

Furthermore, the model’s capacity to track mechanical power across the

breathing cycle and spatially map regions of elevated stress has no current

equivalent in experimental or clinical practice. This opens up opportunities for

personalised medicine: clinicians could eventually use model outputs to iden-

tify high-risk lung zones in individual patients and implement strategies such as

tailored positioning, targeted PEEP adjustments, and selective monitoring to

reduce VILI incidence.

For sedated and mechanically ventilated patients, this model offers robust

predictive capacity for both V/Q distribution and mechanical energy delivery.

It validates the use of prone positioning to minimise perfusion dead space, en-

hance oxygenation, and reduce VILI risk, offering a solid mechanistic rationale

for its early and repeated use in severe respiratory failure. For awake patients,

although the model does not explicitly incorporate active respiratory muscle

function, it nevertheless provides foundational insights into how gravitational

and thoracic pressure gradients shape ventilation and perfusion. These insights

support interventions like awake proning, particularly in resource-limited set-

tings or early disease phases where invasive ventilation is not yet required.

Despite its sophistication, the model remains limited by its dimensionality

and does not yet include active neuromuscular mechanics or real-time feedback

from patient-driven efforts. However, its high granularity and physiologically

informed coupling make it an ideal platform for future expansion. The ability

to replicate bedside phenomena—such as pressure-volume curves, oxygenation

shifts with posture, and regional stress distributions—using only ventilator input
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parameters affirms its translational potential.

In conclusion, this chapter marks the culmination of the thesis’s modelling

work by delivering a fully coupled, non-linear poroelastic lung model that mech-

anistically links ventilation, perfusion, posture, and injury risk. It serves as a

powerful research and clinical tool capable of simulating whole-lung behaviour

with unprecedented detail. Crucially, it offers the ability not only to explain

observed clinical phenomena but to anticipate them—enabling safer, more per-

sonalised, and physiologically grounded care strategies for patients with complex

respiratory needs.
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8 Conclusion

8.1 Review

In this thesis, we explored the impact of patient positioning and gravity on

pulmonary mechanics, focusing on critically ill patients who require mechanical

ventilation. This study aimed to uncover how different postures may influence

lung deformation, and the subsequent ventilation and perfusion across the lung,

and how these changes can inform clinical care. By developing a series of in-

creasingly sophisticated mathematical models using incorporating techniques

from solid mechanics, poroelasticity, geomechanics and structural engineering,

this research provides a framework to analyse and predict pulmonary responses

to various clinical conditions and interventions. Below is a summary of the

primary findings for each major section of the thesis.

The literature review established the groundwork by analysing existing re-

search on pulmonary function as influenced by body position. Studies indicate

that different positions affect lung function significantly, with prone positioning

shown to improve oxygenation and ventilation-perfusion matching in critically

ill patients. Moreover, it was found that gravity plays a substantial role in the

distribution of lung tissue deformation, ventilation, and perfusion. However,

there were gaps in the literature regarding the precise mechanics underlying

these effects and how they translate into real-world clinical settings. This re-

view highlighted the need for a mathematical approach to model lung behaviour

under varying positions, thus guiding the thesis’ focus for a comprehensive and

detailed mathematical model of lung tissue.

To establish a baseline understanding of lung tissue deformation, we began

with a static model that treated the lung as a solid, non-dynamic object. This

model provided initial insights into how gravity affects the lung when deflated

and allowed us to assess basic tissue deformation patterns in upright, supine,
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and prone positions. Results from this stage highlighted that the lung tissue

experiences increased strain in the upright position, with reduced deformation

in the prone orientation. This confirmed that gravity is indeed a significant

factor in pulmonary mechanics and laid the foundation for integrating dynamic

aspects into the model.

The development of linear and non-linear poroelastic models added com-

plexity, allowing the simulation of lung dynamics with airflow and the intrinsic

elasticity of lung tissue. The linear poroelastic model, based on simplified as-

sumptions, showed that lung tissue compliance and resistance varied with pa-

tient position, corroborating clinical observations of improved oxygenation and

perfusion in the prone position.

Building on this, the non-linear poroelastic model introduced hyperelas-

tic properties and time-dependent recruitment of alveolar units, resulting in

a more physiologically accurate depiction of lung behaviour. This advanced

model demonstrated that alveolar recruitment is more uniform in the prone

position, aligning with clinical findings of improved ventilation-perfusion ra-

tios in this posture. Furthermore, the model indicated that prone positioning

could mitigate regions of alveolar collapse and over distension, suggesting poten-

tial benefits in reducing ventilator-induced lung injury (VILI). These findings

support the clinical practice of prone positioning as a strategy to optimize ven-

tilation in ICU patients. Results from this section provided confidence in the

ability of the model to accurately predict lung behaviour throughout the breath-

ing cycle in a mechanically ventilated patient, and opened the way for in silico

experimentation and testing clinical theories.

In the final section, the model was extended to incorporate the intricate

branching structure of the upper airways, in a way which captured to overall

patterns of flows and resistance, without being too computationally complex.
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We also added the hydrostatic fluid column associated with pulmonary blood-

flow, in order to fully couple the poroelastic model the the cardiac system, with

special interest in the influence of external pressures put onto the alveoli by

the thoracic contents in different positions. Having established a baseline for

the upright lung across the breathing cycle from functional residual capacity

to total lung capacity, the lung and surrounding structures were rotated to the

prone and supine positions. Findings in this stage were an increases uniformity

in alveolar pressures in the horizontal positions, which in turn resulted in a

more uniform distribution of airflow and bloodflow. Of particular note here was

the impact of patient orientation on the size and location of West’s zones of

the lung, with the unperfused zone 1 being smallest in the prone position, and

largest in the upright. This resulted in a ventilation/perfusion ratio closer to

1 in the prone position, a finding which corroborates clinical and experimental

results.

Finally, the model was used to test a scenario of particular clinical impor-

tance; the ventilator mechanical power and the subsequent risk of ventilator

induced lung injury for the patient. After exploring how each ventilator setting

contributes to this calculated mechanical power, we assessed how it impacts

the two key indicators of lung damage relevant to the poroelastic model, the

dynamic stresses and strains. Findings here were that stress and strain increase

in a non-linear manner as mechanical power increases; increasing exponentially

after a certain mechanical power value. This not only validates the importance

of mechanical power on the risk of lung damage, but also helps to explain the

controversy between the exact value for a safe threshold of mechanical power

that can be given to a patient. Mechanical power was found to vary greatly

with lung height, with the non-dependent regions at the top of the lung receiv-

ing the highest power, and subsequently at the greatest risk of injury. However,
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these risk can be reduced by manoeuvring the patient into the prone position,

redistributing the stresses on the alveoli.

Overall, this thesis has provided an in-depth look into the importance of

mathematical modelling in aiding clinical decision making, and just how vital

it can be for the wellbeing of the patient. Through a series of mathematical

models, this thesis contributes a deeper understanding of how these mecha-

nisms work and offers a quantitative tool that could potentially assist clinicians

in optimizing patient care. By examining each position and developing models

that increasingly reflect physiological complexity, this study confirms the clini-

cal value of prone positioning, provides a framework for individualized patient

care, and lays the groundwork for further research in computational pulmonary

mechanics.

The progression from static to coupled non-linear models demonstrates a

quantitative tool that can bridge the gap between theoretical understanding

and actionable clinical guidance. Specifically, the findings on reduced pressure

heterogeneity, improved V/Q matching, and diminished localized VILI risk in

the prone position provide robust mechanistic support for this widely adopted

ICU strategy. This thesis confirms the potential of ’in-silico’ experimentation

to inform real-time bedside decisions, enabling clinicians to tailor ventilator

settings and patient positioning to individual physiological responses.

8.2 Novel Insights and Contributions to the Field of Pul-

monary Mechanics

The work presented in this thesis advances the field of pulmonary mechanics

by addressing several critical gaps in the existing literature and introducing a

novel mathematical framework for modelling lung deformation and function.

The most distinctive feature of this model is its explicit tracking of spatial
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variations across isogravitational planes. Unlike traditional models that treat

the lung as a single, homogeneous entity, this work accounts for regional differ-

ences in mechanics and physiology by separately modelling each isogravitational

plane. This enables a more precise representation of how gravity and body

position influence alveolar mechanics, ventilation-perfusion ratios, and tissue

stresses within specific regions of the lung. Most importantly, the model tracks

and outputs each of the parameters as they vary in space and time. By incorpo-

rating these spatial variations, the model provides a detailed understanding of

localized phenomena that are often obscured in whole-lung analyses, such as the

distribution of strain and stress, and their implications for ventilator-induced

lung injury (VILI).

A novel feature of the model is its ability to capture non-linear time-dependent

alveolar recruitment and de-recruitment against gravity. By dynamically linking

alveolar opening and closing pressures with regional mechanical properties, the

model provides a more accurate representation of lung behaviour under varying

ventilatory conditions. This contrasts with many existing models, which often

treat recruitment as a static or linear process.

This work introduces a unique capability to simulate the localized effects of

mechanical ventilation, particularly the distribution of strain and stress across

the lung under different ventilatory settings. By incorporating boundary condi-

tions specific to ventilator-induced pressure and flow, the model offers insights

into ventilator-induced lung injury (VILI) and helps identify strategies to min-

imize mechanical damage.

While previous models often include different postures, this thesis uniquely

investigates the internal mechanics of the lung in detail across these positions,

focusing on regional mechanics and their implications for ventilation-perfusion

dynamics. It also allows for a detailed exploration into the effects of positioning
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on regional recruitment, distribution of stress and strains, and risk of localised

ventilator induced damage.

The explicit tracking of spatial variations across isogravitational planes, com-

bined with the ability to simulate localized mechanical power and VILI risk,

represents a significant advancement. This allows clinicians to move beyond

’one-size-fits-all’ ventilation by identifying specific vulnerable lung regions and

dynamically adjusting strategies. The model’s capacity to predict the impact

of ventilator settings on localized stress and strain offers a powerful new di-

mension for developing truly protective and personalized ventilation protocols,

aiming to reduce iatrogenic injury and improve long-term outcomes for critically

ill patients.
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8.3 Future Work

This research has demonstrated the potential of poroelastic modelling to analyse

and predict the impact of patient positioning on pulmonary mechanics. How-

ever, further work is necessary to enhance the model’s precision, clinical ap-

plicability, and adaptability to diverse patient profiles. Future research should

address limitations identified in this study and extend the model to incorporate

additional physiological and mechanical complexities. Several promising direc-

tions for future work include enhancing patient specificity, refining mechanical

complexity, and broadening the model’s clinical applications.

8.3.1 Modelling Complex Fluid Dynamics in the Airways

Currently, the resistance and flow of air to the model is calculated according

to Poiseuille’s law of fluid dynamics, creating a simple function to summarise

dynamics from the ventilator to the terminal branches. However, this is a sig-

nificant simplification to a very complex system. In reality, the airways are

lined with mucus which not only provides a protective barrier, but also greatly

impacts the flow of air through the branching network [111]. By assessing the

mathematical nature of these secretions, we can create a more accurate model

of the airways. This will allow for a more intricate exploration of the local

stresses and strains in the airways to explore injury and damage. Moreover,

this will allow for the modelling of fluid build up and clinical removal techniques

such as suctioning, which are very common in mechanically ventilated patients.

These areas are currently being explored by members of the CHIMERA team at

UCL, including the mathematical modelling of pulmonary secretions as a non-

Newtonian fluid, and the analysis of pre and post-suctioning data to establish

differences in pressure volume curves. Mucus could be added as an extra phase

in the model iteration.
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8.3.2 Exploring Additional Patient Positions and Mobility

This thesis has focussed on three primary positions, upright, supine and prone.

Although these have provided fantastic insight into pulmonary mechanics due to

gravity, the positions most commonly used in the ICU setting differ from these.

Prone is being used more regularly since the Covid-19 pandemic, however supine

and upright are less common. More routinely used is the Fowler’s/Semi-Fowler’s

positions, a semi-reclined position which has the patient’s torso elevated at be-

tween 15-30◦ for low Fowler’s, 30-45◦ for semi-Fowler’s, 45-60◦ for standard

Fowler’s, and 60-90◦ for high Fowler’s. There is also particular interest in the

lateral positions, in which a patient is placed on their side, as this common for a

number of surgical procedures and airway clearance techniques, as well as in seiz-

ing and unconscious patients as an attempt to keep the airways open. However,

the addition of these positions requires a significantly more complex analogy for

lung shape, which can be rotated more freely than the current truncated cone.

There is also interest in the dynamics created moving between positions, as this

is a common approach when attempting to improve lung function. Simulating

continuous or frequent positional changes (e.g., rotations every few hours) could

help assess the benefits of regular patient repositioning as a strategy to improve

lung mechanics and alveolar recruitment, and prevent regional lung collapse.

8.3.3 Increasing Physiological Accuracy of Lung Shape Analogy

This thesis explore three shapes as an analogy to the lung; the cylinder, the

cone, and the truncated cone, finding that the truncated cone provided the

greatest physiological accuracy of the three. However, this is still a vast over-

simplification of the complex geometry of a physical lung. As the cross-sectional

area of the lung is computed as a function of x in the current model set-up, it

would be possible to import a more realistic set of value for cross-sectional
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area from data. This would require accurate imaging data of the lung shape in

different positions. This concept could also then be expanded to assess patient

specific differences in lung shape such as height and width of the lung relative

the patient’s own physiology.

8.3.4 Heterogeneity Within Each Isogravitational Plane

In Section 3.1 of this thesis, it was shown that multiple parameters that vary in

height up the lung, also vary within each isogravitational plane, such as venti-

lation and perfusion. Expanding the model to 2 dimensions would allow for the

exploration of local heterogeneity in lung mechanics influenced by factors other

than gravity. In order to do this, we could give each alveolus a second coordinate

in the y plane and update equations accordingly. A more simplistic approach

however, would be to create a 1.5 dimension model. Here, the existing set up

and calculation would remain as presented in this thesis, but each parameter

would now be represented as a vector of value ranges in the y axis.

8.3.5 Modelling Different Pathophysiologies with Regional Charac-

teristics

A key direction for future work is adapting the current models to simulate

various pathophysiological states, such as ARDS or COPD, with localized alter-

ations in compliance, resistance, and perfusion. Incorporating patient-specific

data, such as from personalized imaging (e.g. CT scans) or pulmonary func-

tion tests, could enable tailored simulations. This would assist in predicting

responses to therapeutic interventions like mechanical ventilation or prone po-

sitioning in diverse patient populations. The unique framework of this model

allows for local damage to added at any location in the lung, and parameters

adjusted accordingly. This means that disease-affected lung regions could be

replicated accurately from pulmonary oedema to the stiffening seen in fibrosis.
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8.3.6 Chest Wall and Diaphragm Considerations

To significantly enhance the model’s precision and clinical applicability, future

work must conceptually incorporate the mechanics of the chest wall and the

effects of the diaphragm, as these factors are known to profoundly influence po-

sitional changes in lung mechanics and are acknowledged as external pressures

applied to the lung by the contents of the thorax that require further refine-

ment. This is crucial because pleural pressure gradients and the diaphragm’s

load directly impact regional lung mechanics and vary with body position, pa-

tient age, and conditions such as obesity. Conceptual methods for integration

could involve dynamically determining the external pressure term within the

model based on a more comprehensive understanding of chest wall and ab-

dominal mechanics, potentially including deformable models of the chest wall

and diaphragm themselves, possibly using continuum mechanics or poroelastic

principles. Incorporating the chest wall and surrounding muscular systems will

also allow for a more precise exploration of lung mechanics in awake ventilated

patients, which the current model setup cannot do directly.

8.3.7 Validating with Experimental Data

Validation is crucial for ensuring that the developed models can accurately rep-

resent physiological behaviour and support clinical decision-making, particu-

larly as the model progresses from conceptual understanding to aiding real-time

clinical inference in an Intensive Care Unit (ICU) setting. While traditional ap-

proaches remain vital, future work should prioritize directly comparing model

outputs with a diverse range of experimental and clinical datasets to refine and

establish the model’s reliability. Some possibilities are listed below.

Traditional Experimental Data for Validation
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Comparisons with existing experimental datasets, whether derived from imag-

ing studies, cadaver models, or animal experiments, form a foundational aspect

of model validation.

Imaging Data (CT/MRI Scans)

• Regional Lung Density and Deformation: High-resolution CT and MRI

scans can quantify regional lung tissue density and deformation, confirm-

ing phenomena like the "Slinky Effect" where the lung deforms under its

own weight, causing varying tissue density from apex to base. The model’s

predicted displacement and changes in alveolar volume across vertical lung

height can be directly compared with these imaging results. For instance,

differences in tissue density gradients between supine and prone positions,

as observed experimentally, can be a validation target.

• Dynamic Changes (4D CT): More advanced 4D CT provides dynamic in-

formation throughout the breathing cycle, which can validate the model’s

time-dependent poroelastic dynamics, including parameters such as poros-

ity and permeability variations with inflation.

• Alveolar Recruitment and Over-distension: Imaging can visualize regional

alveolar opening and closing, especially in diseased states like ARDS,

which can be compared to the model’s time-dependent alveolar recruit-

ment dynamics. This also extends to validating the model’s prediction of

alveolar stiffening during over-distension at high lung volumes.

Animal Studies
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• Ventilation-Perfusion (V/Q) Distribution: Studies using radioactive trac-

ers (e.g., Xenon 133, radioactive CO2) in animals have provided extensive

data on regional ventilation and perfusion distribution across lung height

and between different positions. The model’s V/Q ratio predictions, espe-

cially the extent and behaviour of West’s Zones (Zone 1 where perfusion

is zero) at different lung volumes, can be rigorously validated against such

findings.

• Gravity’s Contribution to Perfusion Heterogeneity: Animal studies have

explored the degree to which gravity determines regional blood flow het-

erogeneity, and whether non-gravitational factors (e.g., vascular structure)

play a more significant role. The model’s ability to replicate these complex

interactions and quantify the relative influence of gravity versus structural

heterogeneity would be a strong validation point.

Patient-Specific Data Integration

• Integration into a Digital Twin Framework: A more immediately promis-

ing avenue for validation, particularly for clinical applicability, is the inte-

gration of the poroelastic lung model into a digital twin framework, such

as those developed within the CHIMERA hub. This approach allows for

continuous validation and refinement using real-world clinical data.

• Ventilator Waveforms: Comparing simulated pressure-volume (P-V) curves

and pressure-time/flow-time waveforms against those measured directly

from the mechanical ventilator provides a direct validation of the model’s

dynamic behaviour during inflation and deflation. This includes assessing
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the accuracy of the model’s representation of the Lower Inflection Point

(LIP) and Upper Inflection Point (UIP), which characterize alveolar re-

cruitment and over-distension, respectively.

• Blood Gas Analysis: Clinical measurements of arterial partial pressure of

oxygen (PaO2) and fraction of inspired oxygen (FIO2) ratio (PaO2/FIO2)

provide a direct measure of gas exchange efficiency. The model’s ability to

predict improvements in oxygenation with positional changes (e.g., prone

positioning) can be validated against this crucial clinical metric.

• Chest Wall Dynamics and Compliance: Patient data on chest wall motion

and overall lung and chest wall compliance in different body positions,

including variations due to patient age or obesity, can be used to validate

the model’s incorporation of external pressures and their impact on lung

mechanics. This helps validate the conceptual inclusion of chest wall and

diaphragm effects.

Predictive Testing and Clinical Trials

Digital twins enable "in-silico experimentation" where different ventilation

strategies or postural adjustments can be simulated and their predicted out-

comes compared to actual patient responses. This includes evaluating predicted

mechanical power and associated VILI risk in different lung regions and posi-

tions. Collaborating with clinical teams to incorporate this model into patient-

specific care plans and validating its predictive power in pilot studies would

represent a significant step forward in establishing the trust and utility of the

model in clinical settings. This also supports the model’s potential integra-
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tion into clinical guidelines and decision-support systems, as seen during the

COVID-19 pandemic with prone positioning.

Validation with Diseased Lung Data

The model’s ability to simulate various pathophysiological states (e.g., ARDS,

COPD) and localized alterations in compliance, resistance, and perfusion is crit-

ical for its clinical utility. Patient-specific data from diseased lungs, rather than

just healthy individuals, will be essential for validating the model’s predictions

of how lung injury affects tissue deformation, V/Q matching, and susceptibility

to VILI.
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9 Appendices

9.1 Additional workings

Equation 116:

EAu′′ + (EA′ + E′A)u′ − xA′ = A−Aρs(1− ϕ)g (9.1)

In the linear model, we assume ρs(1 − ϕ)g is constant and will be denoted

in this solution as γ. From the product rule we can take the first two equation

terms as:

EA′′ + (EA′ + E′A)u′ = (EAu′)′ (9.2)

∴

(EAu′)′ = xA′ +A(1− γ) (9.3)

Which expands to

EAu′ =

∫
xA′dx+

∫
A(1− γ)dx+ C (9.4)

Where C is a constant of integration. This can be rearranged to find the equation

for u′ as

u′ =
1

EA

∫
xA′dx+

1− γ

EA

∫
Adx+

C

EA
(9.5)

Using integration by parts this becomes

u′ =
1

EA

(∫
xA′dx+ (1− γ)

[
xA−

∫
xA′dx

]
+ C

)
(9.6)

which cancels down to

u′ =
1

EA

(
(1− γ)xA+ γ

∫
xA′dx+ C

)
(9.7)
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Finally, cancelling out A(x) terms we get the final equation for u′ as

u′ =
1− γ

E
x+

γ

EA

∫
xA′dx+

C

EA
(9.8)

In order to find an explicit solution for u(x), we require given functions for

cross-sectional area A(x) and elasticity E(x).

As an initial exploration, we will assume both are linear functions of x such

that they take the form

A(x) = ax+ b,

E(x) = cx+ d,

A′(x) = a,

E′(x) = c.

where a, b, c and d are constants.

Substituting this into our equation for u′ 9.5 we get

u′ =
(1− γ)x(ax+ b)

(ax+ b)(cx+ d)
+

γ

(ax+ b)(cx+ d)

∫
ax dx+

C

(ax+ b)(cx+ d)
(9.9)

which cancels to

u′ =
(1− γ)x

(cx+ d)
+

γ

(ax+ b)(cx+ d)

∫
ax dx+

C

(ax+ b)(cx+ d)
(9.10)

Solving the integral we get

u′ =
(1− γ)x

(cx+ d)
+

γax2

2(ax+ b)(cx+ d)
+

D

(ax+ b)(cx+ d)
(9.11)

where the constant D = γD + C.

In the non-dimensionalised model, x varies from 0 to 1, with x = 0 being the
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base of the lung and x = 1 being the top. Therefore, the boundary conditions to

the no-input simulation exist at u(0) = 0 and u′(1) = 0. Substituting u′(1) = 0

we can find the constant of integration as:

0 =
(1− γ)

(c+ d)
+

γa

2(a+ b)(c+ d)
+

D

(a+ b)(c+ d)
(9.12)

such that

D = −(1− γ) · (a+ b)− γa

2
(9.13)

This can be substituted back into equation 9.5 to give

u′ =
(1− γ)x

(cx+ d)
+

γax2

2(ax+ b)(cx+ d)
−
[
(2− γ)a+ 2(1− γ)b

2(ax+ b)(cx+ d)

]
(9.14)

We now need to integrate this again to find the equation for u(x). Each

term will be integrated separately, beginning with the first term

∫
(1− γ)x

cx+ d
dx = (1− γ)

∫
x

cx+ d
dx (9.15)

which is evaluated as

(1− γ) · 1

c2
(cx+ d− ln (cx+ d)) + C (9.16)

The second term requires a more intricate integration method due to the

quadratic denominator.

∫
γax2

2(ax+ b)(cx+ d)
dx =

γa

2

∫
x2

(ax+ b)(cx+ d)
dx (9.17)

We decompose the denominator such that for some constants A and B

x2

(ax+ b)(cx+ d)
=

A

ax+ b
+

B

cx+ d
(9.18)
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which is rearranged to give

x2 = A(cx+ d) +B(ax+ b) (9.19)

In order to find the values of A and B we chose values of x which eliminate

certain terms, in this case x = −b/a and x = −d/c such that

A = − b2

da2 − bca
,

B = − d2

bc2 − dac
.

This allows us to write the second term of the equation to be integrated as

γa

2

∫
− b2

(da2 − bca)(ax+ b)
− d2

(bc2 − dac)(cx+ d)
dx (9.20)

which becomes

γa

2

[
− b2

(da2 − bca)a
· ln (ax+ b)− d2

(bc2 − dac)c
· ln (cx+ d)

]
+ C (9.21)

The final term is solved in a similar manner. Where

∫
(2− γ)a+ 2(1− γ)b

2(ax+ b)(cx+ d)
dx =

(2− γ)a+ 2(1− γ)b

2

∫
1

(ax+ b)(cx+ d)
dx

(9.22)

We decompose the denominator for the fraction to be integrated such that

1

(ax+ b)(cx+ d)
=

A

ax+ b
+

B

cx+ d
(9.23)

which is rearranged to give

1 = A(cx+ d) +B(ax+ b) (9.24)
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As before we chose values of x which eliminate certain terms, x = −b/a and

x = −d/c such that

A =
a

da− cb
,

B =
c

bc− ad
.

These are then substituted back into the original term as

(2− γ)a+ 2(1− γ)b

2

∫
a

(da− cb)(ax+ b)
+

c

(bc− ad)(cx+ d)
dx (9.25)

giving the solution

(2− γ)a+ 2(1− γ)b

2

[
ln (ax+ b)

da− cb
+

ln (cx+ d)

bc− ad

]
+ C (9.26)

We can now recollect these terms to find the equation for u(x) as

u(x) = (1− γ) · 1

c2
(cx+ d− ln (cx+ d))

+
γa

2

[
− b2

(da2 − bca)a
· ln (ax+ b)− d2

(bc2 − dac)c
· ln (cx+ d)

]
− (2− γ)a+ 2(1− γ)b

2

[
ln (ax+ b)

da− cb
+

ln (cx+ d)

bc− ad

]
+ C

(9.27)

where C is the collected constants of integration, which we find by taking the

boundary condition u(0) = 0.

C = −

(
(1− γ) · 1

c2
(d− ln d) +

γa

2

[
− b2

(da2 − bca)a
· ln b− d2

(bc2 − dac)c
· ln d

]

− (2− γ)a+ 2(1− γ)b

2

[
ln b

da− cb
+

ln d

bc− ad

])
.

(9.28)

238



Thus, the final form solution for u(x) with some linear equation for E(x)

and A(x) is

u(x) =(1− γ) · 1

c2
(cx+ d− ln (cx+ d))

+
γa

2

[
− b2

(da2 − bca)a
· ln (ax+ b)− d2

(bc2 − dac)c
· ln (cx+ d)

]
− (2− γ)a+ 2(1− γ)b

2

[
ln (ax+ b)

da− cb
+

ln (cx+ d)

bc− ad

]
−

(
(1− γ) · 1

c2
(d− ln d) +

γa

2

[
− b2

(da2 − bca)a
· ln b− d2

(bc2 − dac)c
· ln d

]

− (2− γ)a+ 2(1− γ)b

2

[
ln b

da− cb
+

ln d

bc− ad

])
.

(9.29)
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