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ISO/TS 12913–2:2018 (Method A) includes eight attributes for the characterization of the perceived 

affective quality of soundscapes and also categorizes sound sources into three main types: ‗nature‘, 

‗human‘ and ‗noise‘. This work investigates the interrelationships between soundscape attributes and 

sound categories according to ISO/TS 12913-2:2018. For this purpose, the sound stimuli were 

categorized based on their most prevalent components and subsequently listening tests (n=30 

participants) were performed, using the Greek-translated attributes of the soundscape circumplex. 

Statistical analysis was performed and principal component analysis (PCA) was applied to further 

access the soundscape perception of participants. Results revealed large differentiation between 

combinations of attributes. The variability explained in the monotonous-pleasant relationship shows 

a strong negative correlation for human sounds (       ) and a positive correlation for noise 

sounds (      ). In the monotonous-chaotic relationship there is a strong negative correlation for 

noise sounds (       ) and a positive correlation for human sounds (      ). In the vibrant-

pleasant relationship there is a negative correlation for noise sounds (       ) and a positive 

correlation for human sounds (      ). In conclusion, this study sheds new light on the 

interrelationships between perceptual attributes and sound categories, which are important for a 

more accurate assessment of the perceived affective quality of soundscapes. 
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I. INTRODUCTION  

Soundscape research is a rapidly growing field according to the increasing number of related 

publications (To et al., 2018), thematic collections in primary acoustics journals(Aletta et al., 2025)  

and the interest from policy makers and related stakeholders in recent years (Kang, 2023). Adopting 

a multidisciplinary approach that represents a paradigm shift from traditional noise control policies, 

it redefines how we view the acoustic environment, placing importance on human experience and 

highlighting sound as an essential resource rather than just a disturbance. Soundscape is defined 

(ISO: Geneva, 2014) as the ‗acoustic environment as perceived or experienced and/or understood 

by a person or people, in context‘. Therefore, soundscape is understood as a perceptual construct, 

distinguished from the physical phenomenon (acoustic environment) and exists through human 

perception of the acoustic environment. The field offers innovative strategies for urban sound 

management taking into account both objective and subjective criteria, as for example in a noise 

control intervention study (Van Renterghem et al., 2021) of a raised berm alongside a highway. 

Before-and-after assessments of both objective noise levels and subjective human responses showed 

significantly improvement of the acoustic perception and well-being despite practical and design 

constraints. In addition, the field aiming to enhance urban experiences, by intentionally designing 

and managing the auditory environment. For example in the case of urban squares (Yang and Kang, 

2005) more pleasurable, natural, and culturally meaningful sound experiences can be created by 

incorporating positive sound elements, such as natural sounds and soundmarks like fountains or 

singing birds that can attract people and promote relaxation and social interaction. Therefore, the 

soundscape research approach can inform urban design (Brambilla and Maffei, 2010), and develop 

comprehensive policies that prioritize the quality of sound environments for the well-being of 

individuals and communities (Oberman et al., 2020). Overall, soundscape research is drawing interest 
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from various disciplines and stakeholders due to its potential impact on human well-being and 

quality of life (Kang and Aletta, 2018; Qiu et al., 2018). 

An important aspect of soundscape research addressed by the ISO 12913 series is the accurate 

assessment of the soundscape perception of a population group. The scope of ISO/TS 

12913-2:2018 (ISO: Geneva, 2018) is to specify requirements and supporting information on data 

collection and reporting for soundscape studies, investigations and applications. The ISO/TS 12913-

2:2018 standard's scope further extends to provide comparable datasets and soundscape 

characterizations across different locations, times and samples of people (e.g.(Aletta and Torresin, 

2023)), as well as allowing for replicability studies and offering inputs for modelling algorithms in 

soundscape prediction and design tasks. The ISO/TS 12913-2:2018 (ISO: Geneva, 2018) highlights 

the importance of harmonizing and standardizing soundscape research and practice, emphasizing 

the need for a systematic collection of good soundscape design examples and case studies across 

sectors, including researchers, practitioners and policy makers (Kang, 2023). The standard is a 

particularly important part of the ISO 12913 series that deals with soundscape definition, conceptual 

framework, data collection and reporting requirements. 

For the assessment of soundscape perception and various related aspects (Ramírez-Esparza et al., 

2024), a large number of studies have addressed the issue. For instance, a study comparing the 

soundscape experience of public spaces in European and Chinese contexts (Aletta et al., 2023a) 

found that a positive correlation between perceived pleasantness and natural sounds was stronger 

for European participants. For Chinese participants, vibrant soundscapes were positively correlated 

with perceived dominance of natural sounds, whereas in Europe, they were associated more with 

human-generated sounds. An on-site survey was conducted in a study by (Zhu et al., 2023) to obtain 

the perceptual soundscape dimensions in outdoor public spaces in urban high-rise residential 

communities based on evaluations of residents. Among the results, it was found that in enclosed 
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communities, sounds from human beings dominated, leading to higher scores in relaxation and 

communication and a lower score in quietness, distinct from non-enclosed communities where 

traffic noise dominated. The assessment of the influence of residence location (city, town, village) on 

the perception of soundscape in a study (Papadakis et al., 2023) revealed that village residents 

perceived technological sounds as more chaotic than the city residents; city residents perceived 

natural sounds as more monotonous, more uneventful and less vibrant compared to village residents 

indicating that urbanization and cultural context can influence soundscape perception. A study by 

Efranian et al. (Erfanian et al., 2021) aimed to assess the influence of psychological well-being and 

demographic factors including age, gender, occupation status and education levels on the 

dimensions of the soundscape circumplex, i.e., pleasantness and eventfulness. Psychological well-

being was positively associated with perceived pleasantness, while there was a negative association 

with eventfulness only for males. Occupation status was identified as a significant factor for both 

dimensions. The aim of the study by Yu and Kang (Yu and Kang, 2008) was to analyse the effects of 

social, demographical and behavioural factors as well as long-term sound experience on the 

subjective evaluation of sound level in urban open public spaces. Among factors, occupation and 

education were found to correlate to the sound level evaluation more than other factors. Compared 

to the social, demographical and behavioral factors, the long-term sound experience, i.e. the acoustic 

environment at home, significantly affect the sound level evaluation in urban open spaces. Finally, in 

a study by Yu and Kang (Yu and Kang, 2014), cross-cultural differences were found between UK 

and Taiwan in a number of aspects, including choosing and evaluating the living environment, noise 

noticeability, annoyance and sleep disturbance, activities and sound preference (e.g. Taipei residents 

having higher noticeability of noise sources). 

The topic of soundscape perception has been extensively studied in relation to park 

environments, where much of the relevant research in the field was originated. A study by (Ferguson 
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et al., 2024) found that visitors' perception was influenced by the urban density of theirresidence, 

with visitors from louder, denser urban areas rating park soundscapes as less pleasant. As the 

authors stated, this suggests that exposure to high levels of urban noise may lead to habituation or a 

comfort in urban sounds, which can affect the perception of natural soundscapes in parks. The 

investigation of how individuals‘ personal views on tranquility affect perception of the sonic 

environment in cases of urban parks (Filipan et al., 2017), showed that visitors who associate 

tranquillity with natural sounds or with silence are more often found amongst those that report 

hearing mechanical sounds (e.g. traffic, airplanes, machines) a lot. These findings suggested that park 

visitors pay attention more to the sounds they do not expect to hear and that the higher their 

expectations about the soundscape, the more critical they become in their appraisal of the 

soundscape. Another study (Guo et al., 2022) examined the capacity of urban parks to contribute to 

soundscape restorativeness, understood here as contributions to peoples' recovery from attentional 

fatigue and reflection on life issues. Age was the most influential social and demographic 

characteristic affecting the perceived soundscape restorativeness, followed by gender, while 

occupation and educational background showed only limited effects. Using an on-site questionnaire 

in urban recreational forest parks, a study by (Fang et al., 2021) exploring dimensions of social, 

demographic and behavioral attributes found that participants of higher education and higher socio-

economic status showed lower tolerance towards some sounds (e.g. motorbikes, dogs, surrounding 

speech, footsteps) and females generally showed higher sensitivity and lower tolerance than males 

towards several sounds (e.g. insects, playing children, and engines).  

An important aspect of soundscape perception is the interrelationships between soundscape 

attributes and sound categories. Regarding the categorization, in ISO/TS 12913–2:2018 it is stated 

that: ‗The investigated acoustic environment should be characterized by identifying what sound 

sources can be heard in the area and how dominant they are‘. In addition, it is stated that: ‗in general, 
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sound sources can be divided into three main types: sounds of technology; sounds of nature; sounds 

of human beings‘. Examples of technological sounds include those from transportation, like the 

sounds of cars, buses, trains and air planes, as well as those from industry including warning signals 

and sounds from constructions, plants and machineries. Examples of natural sounds are singing 

birds, flowing water and wind in vegetation. Examples of the sounds of human beings are mainly 

voices, footsteps and children at play. However, most relevant studies have focused on general 

differences between sound categories rather than specific differences in these interrelationships. For 

example, in a study about the role of soundscape in nature-based rehabilitation (Cerwén et al., 2016), 

it was found that patients frequently referred to natural sounds as being part of a pleasant and quiet 

experience that supported recovery and induced ‗soft fascination‘. Technological (noise) sounds 

were experienced as disturbing, while perception of human sounds varied depending on loudness 

and the social context. In similar studies, natural sounds were primarily associated with positive 

emotions, whereas mechanical and industrial sounds were linked to negative emotions (Moscoso et 

al., 2018).  In addition, (Nilsson et al., 2007) found that the degree to which nature sounds and 

technological (noise) sounds are heard within the soundscapes is a strong predictor of perceived 

soundscape quality and road-traffic noise annoyance. Further, to enhance ―comfort‖ aspects of 

soundscape quality, ‗human‘ sounds originating from human activity were found to be critical to 

positively influence perception of comfort, contributing to a more favorable overall soundscape (Jo 

and Jeon, 2020a).  In a study of assessment of soundscape quality in suburban green areas and city 

parks (Nilsson and Berglund, 2006), the effect of natural (e.g., bird song and sounds from water), 

and technological sounds (e.g. traffic noise) was examined as well as the relationship in terms of 

equivalent sound levels in order to achieve satisfactory soundscape quality. (Ma et al., 2021) 

concluded that the preferences for soundscape elements after principal component analysis (PCA) 

could be classified into the three principal components: ‗natural sounds‘, ‗human-made sounds‘ and 
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‗mechanical sounds‘. In a more relevant study about the interrelationships between soundscape 

attributes and sound categories, some associations were investigated in urban parks and it was found 

that a resulting increase in human activity had a negative relationship with calmness, a positive 

relationship with liveliness and a negative relationship with confusion, with regards to the emotions 

elicited by the park's soundscape. The greater the number of people who used the parks, regardless 

of whether they stayed or not and the more their activities did not involve great movement (walking 

or less movement), the higher the perception of vibrancy (Jo and Jeon, 2020b).  In relation to the 

aforementioned findings, it has been proposed that developing specific descriptors related to 

perceived sound sources—such as technology, humans, and nature—can enhance predictive models 

in soundscape studies, thereby improving our ability to understand and manage these environments 

(Aletta et al., 2016). The common denominator across these findings appears to be the complexity 

and interdependence among soundscape attributes and sound categories. This understanding is 

crucial for both theoretical advancements and practical applications, as it emphasizes the need for 

integrated approaches in research and practice. 

A potential theoretical explanation for the interrelationships between soundscape attributes and 

sound categories, based on Bartlett's schema theory (Bartlett, 1995), could be that individuals use 

mental frameworks (schemata) to organize and interpret the complex auditory environment. 

Bartlett's theory suggests that people do not passively record sensory information but actively 

reconstruct it using pre-existing knowledge structures or schemata, which influence perception and 

memory. Applying this to soundscapes, listeners categorize sounds (e.g., natural, human, 

technological) based on their prior experiences and cultural context, which form their auditory 

schemata. These schemata shape how soundscape attributes are perceived and related to sound 

categories. For example, a person‘s schema for a "natural" soundscape may emphasize bird songs 

and rustling leaves with specific acoustic qualities, while a "traffic" soundscape schema might focus 
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on engine noise and honking, influencing the perceived pleasantness or eventfulness of the 

environment. This approach may potentially account for previous studies involving the 

corresponding category formation of soundscapes (Bones et al., 2018). 

The aim of this study is the assessment of soundscape perception by investigating the 

interrelationships between soundscape attributes and sound categories according to ISO/TS 12913-

2:2018 in the case of residents of Chania, Greece. This study originates from the Soundscape 

Attributes Translation Project (SATP) (Aletta et al., 2023b; Aletta et al., 2024), an international 

collaboration of scholars and institutions, that aims to provide standardized assessments of urban 

sound environments across languages, countries and cultures with the ultimate goal of facilitating 

cross-cultural studies as well as the further expansion of the field. Building on the novel observation 

of previously undocumented interrelationships between soundscape attributes and sound categories, 

this study aims to fill a critical gap in the existing literature. To our knowledge, these specific 

relationships have not been explored before, making our findings a significant contribution to the 

field. By revealing these nuanced connections, our work challenges the common assumption that 

soundscape attributes are universally generalizable across different sound categories. This insight 

calls for more refined and context-sensitive approaches to soundscape assessment and 

interpretation. Ultimately, we believe our investigation not only advances theoretical understanding 

but also lays the groundwork for future research avenues in soundscape perception, thereby offering 

both practical and scholarly value. 

II. METHODS 

Listening tests were performed to evaluate the perceived affective quality of eight response 

scales according to Method A of ISO/TS 12913-2:2018 (ISO: Geneva, 2018). Details about 

translated attributes, audio stimuli, participants, test procedures, sound categorization and data 

analysis follow. 
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A. ISO/TS 12913-2:2018 attributes (Greek translation) 

ISO/TS 12913-2:2018 (Method A) (ISO: Geneva, 2018)  includes a list of eight response scales 

(pleasant, annoying, eventful, uneventful, vibrant, monotonous, calm, chaotic) with an affective 

attribute in the heading in English for the assessment of perceived affective quality. For the 

application of the method for Chania residents (Greece), Greek translations of the attributes were 

used (Papadakis et al., 2022). Greek translations based on an translation approach of a combined 

technique of forward translation, synthesis, back translation, pre-test and a committee approach 

(Cha et al., 2007). Additionally, the implementation of the method was carried out by bicultural 

translators, which is recommended to enhance the reliability of the results (Hambleton and Kanjee, 

1995). This translation approach proved effective in avoiding translation issues that may arise (e.g., 

the paradox of equivalence), while within its application, challenges such as ‗non-equivalence‘ were 

adequately addressed (Papadakis et al., 2024). 

B.  Audio stimuli 

The audio stimuli were recorded as part of the Soundscape Attributes Translation Project 

(SATP) (Aletta et al., 2023b; Aletta et al., 2024). They consist of 27 audio stimuli that were recorded 

in public areas by operators equipped with a binaural audio acquisition device. Operators conducted 

recordings while standing and maintaining a distance of at least 1m from reflecting surfaces, 

capturing sound indicative of a common usage scenario, as recommended by Mitchell et al. (Mitchell 

et al., 2020). The recordings were made using the head-mounted binaural data acquisition device 

SQobold with BHSII by HEAD Acoustics, set at the resolution of 24 bit/44 kHz. Calibration was 

applied with the use of a calibration adapter and a sound level calibrator (¼―) emitting a reference 

signal (1 kHz sine wave at 94 dB SPL) thereby ensuring consistent and comparable measurements. 

For the sake of the experiment, all the 27 audio samples were trimmed to be exactly 30-seconds 

long, and a 10 ms fades were applied at the start and the end, while exporting the recordings to the 
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common audio format, using the ArtemiS SUITE (v. 12.6). No additional filtering or audio 

manipulations were conducted. The collection of audio samples displayed exposure conditions that 

extended between 44.9 dB(A) and 90.8 dB(A) LAeq, as measured by Bhan et al (Bhan, 2021). The 

selection of audio stimuli aimed to capture a broad range of typical urban sounds that are prevalent 

in cities across the world (i.e., not posing risks of sounding ―unfamiliar‖). This includes acoustic 

environments with varied sound sources compositions, which had the potential to elicit the full 

spectrum of assessments on either of the soundscape attributes scales scored by the participants. 

C. Participants 

Thirty residents of Chania, Greece took part in the listening tests  (19 males, 11 females, Mage= 

26.1 years, SDage=3.6 years). All participants reported no hearing impairment. Chania, in the island of 

Crete, Greece has a population of 53.910 residents (Hellenic Statistical Authority, 2023). The 

majority of the population lives in dense urban clusters and some of the population in semi-dense 

urban clusters. According to (Eurostat, 2021), the degree of urbanization in Chania can be classified 

as a dense town (Papadakis et al., 2023). Chania is a popular tourist destination, with a rich cultural 

heritage and a unique sound environment. The soundscape of Chania is influenced by various 

factors, including road traffic, tourist activities and natural sounds. The study was approved by the 

Committee on Ethics and Deontology of Research (C.E.D.R), Technical University of Crete 

(Project identification code: Protocol number 20/29.09.2020) in Greece. 

D. Test procedures 

During the experiments, the audio stimuli were presented to the participants through 

circumaural, acoustically open headphones (Sennheiser HD 650), at the original sound level as 

recorded on site. An external audio interface was utilized to deliver the playback controlled by a 

digital audio workstation running on a laptop. Experiments were conducted in a controlled sound-

proof auditory environment, ensuring background noise stayed under 40 dB (A). All participants 
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were tested individually. The experiment lasted an average of 50 minutes per participant, accounting 

for instructions and breaks. After their arrival, all participants were requested to sign the informed 

consent form. The participants were introduced to a training session that focused on familiarizing 

them with the experiment procedure and clarifying the soundscape attributes meanings. All 

participants individually experienced the 27 audio stimuli in varying sequences over consecutive 

sessions. Following a 30-second exposure, the participants were asked to evaluate the soundscapes. 

Each of the attributes was presented with a 100-step visual analogue scale (VAS) of ‗attribute-

soundscape match‘ (i.e., the Greek translations of the attributes: pleasant, calm, uneventful, 

monotonous, annoying, chaotic, eventful and vibrant). The scale ranged from 0 (‗strongly disagree‘) 

to 100 (‗strongly agree‘). Each participant rated the soundscapes of the audio excerpts by placing a 

vertical mark on a scale, indicating the degree to which the attribute matched their perception of the 

soundscape. 

E. Sound categorization according to ISO/TS 12913–2:2018 

An important aspect of this research was the appropriate categorization of sound stimuli. The 

appropriate categorization was important to ensure methodological rigor and standardized data 

collection. In addition, appropriate categorization is important for future related research in order to 

achieve consistency and comparability, while facilitating interdisciplinary collaboration. The 

categorization was applied in accordance with ISO/TS 12913–2:2018 since, as stated in the standard, 

its purpose is to identify and harmonize the collection of data by which relevant information on the 

key components people, acoustic environment and context is obtained, measured and reported. In 

general, the ISO 12913 series on soundscape was developed in order to enable a broad international 

consensus and to provide a foundation for communication across disciplines and professions with 

an interest in soundscape. 
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For this study, the sound stimuli were categorized according to ISO/TS 12913–2:2018 based on 

their content and more specifically based on the dominance of sounds embedded in their natural 

context (3-fold categorization). Method A gives two options for the final categorization, a 3-fold one 

and a 4-fold one. In the categorizations it is stated that the term ―noise‖ is used instead of 

―technological sounds‖. Also, that the term ―noise‖ is not intended as a value judgment. The 

categorizations are presented in Table 1. Dominance was defined as sounds perceived as foreground 

during a large segment of the soundscape excerpts (Axelsson et al., 2010). Foreground sound is also 

specified in ISO/TS 12913–2:2018 as the sound to which attention of a listener is particularly 

directed and which can be associated with a specific source. Members of the research team 

independently listened to all 27 soundscape excerpts and agreed on their categorization. 

Accordingly, sound stimuli were categorized as ‗natural‘, ‗human‘ and ‗noise‘ (Appendix, Table III). 

TABLE I. Sound categorization according to ISO/TS 12913–2:2018 

Categorization according to ISO/TS 12913–2:2018 

3-fold Categorization 
Suggested Labeling 

(3-fold 
Categorization) 

4-fold Categorization 
Suggested Labeling  

(4-fold Categorization) 

Sounds from human beings (e.g., 
conversation, laughter, children at 

play, footsteps) 
Human 

Sounds from human beings (e.g., 
conversation, laughter, children at 

play, footsteps) 
Human 

Natural sounds (e.g., signing 
birds, flowing water, wind in 

vegetation) 
Natural 

Natural sounds (e.g., signing birds, 
flowing water, wind in vegetation) 

Natural 

Noise (e.g., traffic, construction, 
industry) 

Noise - - 

- - 
Traffic noise (e.g., cars, buses, 

trains, air planes) 
Traffic 

- - 
Other noise (e.g., sirens, 

construction, industry, loading of 
goods) 

Other 

 

F. Data analysis 

For the investigation of meaningful interrelationships in the data, initially Spearman correlation 

coefficients were calculated among paired combinations of the eight attributes and different sound 

categories. For each pair of sound categories, the sum of the absolute differences of the Spearman 
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correlation coefficients was calculated across all three possible combinations, and the combination 

with the largest sum was selected to be presented in the results. 

In addition, to identify interrelationships between soundscape attributes and sound categories, 

VizRank method (Leban et al., 2006) was applied. VizRank is a method which uses machine learning 

to automatically evaluate and rank possible data projections based on their ability to visually 

discriminate between different categories/classes. A new data set is constructed from the projection, 

containing the class value and two attributes: x and y positions of data points.  Projection usefulness 

is estimated by inducing a classifier, the k-nearest neighbor (k-NN) classifier (Mucherino et al., 2009) 

and evaluating its accuracy on this data set. Each projection is numerically evaluated with a value. 

Projections which provide perfect class separation receive higher value, while less informative 

projections receive lower values. k-NN is a machine learning method that predicts class value for an 

unlabeled example by analyzing its k neighboring examples. Each of the k neighbors votes for its 

class value and their vote is usually weighted according to the distance from the example. In 

VizRank method implementation, the votes are weighted using function       ⁄ , where t is the 

distance to the example and s is chosen so that the impact of the farthest of k examples is 0.001 

(Leban et al., 2006). The result of the voting is a probabilistic class prediction and the example can be 

labelled with the most probable class value. The method is used in various scientific fields (e.g. 

(Wang et al., 2021)) and in this study was implemented with the ‗Orange: data mining toolbox in 

Python‘ (Demšar et al., 2013). 

Finally, principal Components Analysis (PCA) was applied on the rating scale data for perceived 

affective quality, to assess the results from the participants. For each of the eight attributes of 

perceived affective quality, arithmetic mean values were calculated for the 27 locations across the 

participants. This resulted in a 27 locations × 8 adjectives data matrix, which was subjected to a 

PCA. To identify the optimized orthogonal components, varimax rotation with Kaiser 
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Normalization was applied (Kaiser, 1959). The statistical analysis was performed with the aid of 

SPSS 26 for Windows. 

III. RESULTS 

A.   Relationships between attributes - Comparison per sound categories 

Various approaches were followed for the assessment of the results and to investigate 

relationships between the attributes. The cumulative participant (n=30) ratings for each of the eight 

attributes are presented in figure 1 for all 27 sound stimuli (total), as well as differentiated by sound 

category (nature, human, noise) (figure 1). The overall results as well as the results per sound 

category are presented side by side for a common comparison as well as to avoid redundancy of 

data. For summarizing of the data, boxplots are included which present the median, minimum, first 

quartile, third quartile and maximum. In the same figure, violin plots are presented to compare the 

distribution of data between groups. 

In order to assess the strength of the associations between the perceptual attributes as well as to 

find particular relationships between them, the Spearman correlation coefficients were calculated. 

The results are presented in a correlation matrix (figure 2) for the total sound stimuli and for the 

different sound categories (human, natural, noise). 

Figure 3 presents scatter plots that highlight relationships between attributes where there is a 

noticeable differentiation between the sound categories. These plots focus on the combinations that 

have the largest sum of the absolute differences of the Spearman correlation coefficients between 

the sound categories. This approach helps to visually identify how different sound categories behave 

in relation to specific attributes. The results reveals notable differences in sound categories correlate 

with attributes like monotonous, vibrant, and eventful. These correlations show nuanced patterns 
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across different sound types, highlighting that sound perception is closely linked to contextual and 

categorical characteristics. 

In figure 3(a), the variability explained in the monotonous-pleasant relationship shows a strong 

negative correlation for human sounds (       ) and a weak positive correlation for noise 

sounds (      ) (the following thresholds for interpretation are followed regarding the 

correlation coefficient:|   | < 0.2: negligible, 0.2 ≤ |   | < 0.4: weak, 0.4 ≤ |   | < 0.6: 

moderate,0.6 ≤ |   | < 0.8: strong, |   | ≥ 0.8: very strong). In figure 3(b), in the monotonous-

chaotic relationship there is a strong negative correlation for noise sounds (       ) and a weak 

positive correlation for human sounds (      ). In figure 3(c), in the monotonous-pleasant 

relationship there is a positive correlation with noise and natural sounds (       and        

respectfully) and a negative correlation with human sounds (       ). Regarding monotonous-

annoying relationship (figure 3(d)), there is a positive correlation with human sounds (        

and a negative with noise sounds (          

Regarding vibrant, in figure 3(e) it is shown that in the vibrant-pleasant relationship there is a 

moderate correlation with noise sounds (       ) and a positive correlation with human and 

natural sounds (       and        respectively). In figure 3(f), regarding vibrant-annoying 

relationship, there is a higher positive correlation for noise sounds (      ) in comparison to 

human (      ) and natural sounds (      ). The same applies in the vibrant-chaotic 

relationships where there is higher positive correlation for noise sounds (      ) in comparison 

to human (      ) and natural sounds (      ). Finally, in figure 3(h) regarding the eventful-

pleasant relationship there is a negative correlation for noise and natural sounds while in the 

uneventful-pleasant relationship there is a positive correlation for noise and natural sounds.  
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Figure 4, on the other hand, displays scatter plots that show strong linear associations —either 

positive or negative—across all sound categories. Given the large number of possible attribute 

combinations (28 in total), not all combinations are included. For example, combinations of 

attributes like eventful-uneventful and pleasant-annoying represent opposing aspects of soundscapes 

and are expected to have linear associations (Axelsson et al., 2010). The findings presented in figure 

4 reveal linear associations across various sound categories. 

In figure 5, alternative 2-dimensional scatter plot visualizations are included. For each 

combination of attributes, the nearest neighbors in the projected 2D space were calculated as 

discussed in section 2.6 (VizRank method (Leban et al., 2006)). The added value of the 

representation using VizRank methods lies in the fact that it provides an alternative approach for 

exploring informative two-dimensional projections of multidimensional data. While a scatter plot 

merely visualizes the relationship between two selected attributes, VizRank systematically evaluates 

numerous possible attribute pairs and ranks them according to their effectiveness in separating 

classes or revealing meaningful patterns. The total score of the projection is the average number of 

same-colored neighbors. Computation for numeric colors is similar, except that the coefficient of 

determination is used for measuring the local homogeneity of the projection. Scatter plots with the 

higher total scores are presented.  
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c) Eventful d) Uneventful 

 

  
e) Vibrant f) Monotonous 
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FIG 1.  Box plots including median, minimum, first quartile, third quartile and maximum and violin 

plots of the ratings of the eight attributes of ISO/TS 12913-2:2018 in the case of total sound stimuli 

and for different sound categories (human, natural, noise) 
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c) Noise d) Total 

FIG.2.  Spearman correlation coefficient matrix for ISO/TS 12913-2:2018 attributes in the case of 

total sound stimuli and for different sound categories (human, natural, noise) 
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FIG.3. Scatter plots with noticeable differentiation between sound categories (human, natural, 

noise). R2 values of attribute combinations for different sound categories are presented in the 

Appendix (Table IV). Data points represent the mean values of VAS for the sound stimuli among 

attribute combinations and different sound categories. Shaded areas represent regression lines with 

95% confidence interval. Density plots shown on the margins represent distributions of each 

attribute involved in the scatter plot. 
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a) Chaotic-Annoying b) Chaotic- Calm c) Chaotic-Pleasant 

   

d) Eventful-Chaotic e) Monotonous-Eventful f) Monotonous-Vibrant 

 

 

FIG.4. Scatter plots with a strong correlation (negative, positive) for all sound categories (human, 

natural, noise). Data points represent the mean values of VAS for the sound stimuli among attribute 

combinations and different sound categories. Shaded areas represent regression lines with 95% 

confidence interval. Density plots shown on the margins represent distributions of each attribute 

involved in the scatter plot. 
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g) Monotonous-Pleasant h) Annoying-Eventful i) Chaotic-Pleasant 

 

FIG.5. Scatter plot visualization where data points represent the mean values of VAS for the sound 

stimuli among attribute combinations and different sound categories (human, natural, noise). The 

numeric color score represents the local homogeneity of the projection measured by the coefficient 

of determination (R²). 

B. Principal Component Analysis 

Principal component analysis was performed on the rating scale data for perceived affective 

quality. The Kaiser–Meyer–Olkin (KMO) test was applied to determine how suited the data is for 

factor analysis. The test measures sampling adequacy for each variable in the model and the 

complete model. KMO test had a value of 0.804 indicating the sampling is adequate. The 

recommended cut-off values for the KMO statistic vary across studies, but usually values below 0.50 

are incompatible with analysis (Cureton and D'Agostino 2013). In addition, Bartlett's Test of 

Sphericity was applied, which provides information about whether the correlations in the data are 

strong enough to use a dimension-reduction technique such as principal components or common 

factor analysis. Bartlett's Test of Sphericity had a value less than 0.001, indicating that the factor 

analysis is appropriate. A commonly acknowledged cut-off value for determining the significance of 

the Sphericity Test is p < 0.05 (Field, 2024).After PCA, two components with Eigenvalues larger 

than 1 were obtained. Components 1 and 2 explained 48.14 % and 44.66 % of the variance in the 

 Human  Natural  Noise 
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data set, respectively. Figure 6 presents the uncorrected component loadings of the eight attribute 

scales. 
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Pleasantness (Component 1) 

FIG.6. Component loading plots of the eight attributes of ISO/TS 12913-2:2018 (Greek translations 

of the attributes are also included) 

IV. DISCUSSION 

A. Relationships between attributes - Comparison per sound categories 

1. Scatter plots with a noticeable differentiation between sound categories (human, 

natural, noise) 

Perhaps the most novel and important finding of this research involves relationships of 

attributes in which there is a large differentiation between the sound categories. Figure 3 includes the 

scatter plots of attribute pairs with the largest sum of the absolute differences of the Spearman 

correlation coefficients between the sound categories. In addition, for an overall demonstration of 

these discrepancies, Table 2 includes the attribute combinations with the noticeable differentiations. 



 23 

The results have been sorted into three categories: those related to the attribute monotonous, those 

related to the attribute vibrant and those related to the attributes eventful-uneventful.  

The present study reveals distinct and meaningful relationships between soundscape attributes—

such as monotonous, vibrant, and eventful—and different sound categories, including human, noise, 

and natural sounds. These relationships provide nuanced insights into how auditory perception 

varies depending on the type of sound and its contextual characteristics. For instance, pleasant 

human sounds are perceived as less monotonous, whereas this relationship is reversed for noise 

sounds, where pleasantness correlates with increased monotony. This diametrical pattern may be 

explained by the informational content embedded in human sounds. Human sounds often carry rich 

linguistic and paralinguistic cues that require active cognitive processing, thereby reducing the sense 

of monotony. Listeners engage with these sounds by interpreting speech, tone, and emotional 

nuances, which enhances their vibrancy and reduces boredom. In contrast, noise sounds—such as 

mechanical or environmental noise—lack this semantic richness and are often perceived as repetitive 

or unvarying, leading to a positive association between monotony and pleasantness only in specific 

contexts (e.g., steady white noise used for relaxation). Similarly, natural sounds like bird songs and 

rustling leaves are generally associated with higher pleasantness and eventfulness, reflecting their 

dynamic acoustic qualities and positive cultural schemata. The vibrant and eventful nature of these 

sounds aligns with listeners‘ expectations and prior experiences of natural environments, which are 

often linked to relaxation and well-being. These findings can be theoretically framed through 

Bartlett‘s schema theory (Bartlett, 1995), which posits that individuals interpret sensory information 

by actively reconstructing it using pre-existing mental frameworks or schemata. Applied to 

soundscape perception, listeners categorize sounds based on learned auditory schemata shaped by 

prior experience and cultural context. For example, a ―natural‖ soundscape schema emphasizes 

dynamic, pleasant sounds like bird songs, while a ―traffic‖ schema highlights mechanical noise and 
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honking, often perceived as less pleasant and more monotonous. These schemata influence how 

attributes such as pleasantness and monotony are perceived and interrelated across sound categories. 

The approach used in this study—examining the interplay between soundscape attributes and sound 

categories—provides a valuable framework for future research. It enables a deeper understanding of 

how soundscapes are perceived in different contexts, such as urban versus rural environments, or 

across cultural boundaries. By verbalizing and interpreting these correlations, researchers can better 

identify the cognitive and emotional mechanisms underlying soundscape perception, which can 

inform soundscape design aimed at enhancing well-being or reducing auditory discomfort. In 

conclusion, the differentiated relationships observed between sound categories and soundscape 

attributes underscore the complexity of auditory perception. They highlight the importance of 

considering both the acoustic properties of sounds and the listener‘s cognitive schemata to fully 

understand how soundscapes are experienced. This enriched understanding lays a foundation for 

advancing research and practical applications in soundscape management and design. 

TABLE II. Attribute combinations with noticeable differentiation between sound categories 

(human, natural, noise). Spearman correlations and colour maps of the combinations are included in 

the table.  

    Noise Human Natural 

Monotonous Pleasant 0.25 -0.74 -0.14 

  Chaotic -0.76 0.21 0.03 

  Calm 0.43 -0.23 0.26 

  Annoying -0.21 0.36 -0.09 

Vibrant Pleasant -0.56 0.39 0.26 

  Annoying 0.58 0.29 0.21 

  Chaotic 0.94 0.36 0.14 

Eventful Pleasant -0.35 0.16 -0.21 

Uneventful Pleasant 0.39 -0.11 0.21 
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2. Descriptive statistics-Scatter plots with visualization-Scatter plots with strong 

correlation for all sound categories 

The descriptive statistics presented in figure 1 show in general that the noise sounds have the 

lowest values for the attribute pleasant and the highest in the attribute annoying, the human sounds 

have the highest values for the attributes eventful, vibrant and the lowest for the attributes 

uneventful, monotonous, while the nature sounds have the lowest value for the attribute chaotic and 

the highest for the attribute calm. Similar results were found in Axelsson et al. (Axelsson et al., 2010) 

where ‗soundscape excerpts dominated by technological (noise) sounds were found to be 

unpleasant, whereas soundscape excerpts dominated by natural sounds were pleasant and 

soundscape excerpts dominated by human sounds were eventful‘. In this study it was also stated that 

‗these relationships remained after controlling for the overall soundscape loudness, which shows 

that ‗informational‘ properties are substantial contributors to the perception of soundscape‘. In a 

study about the role of Soundscape in Nature-Based Rehabilitation (Cerwén et al., 2016), it was 

found that patients frequently referred to natural sounds as being part of a pleasant and ‗quiet‘ 

experience that supported recovery and induced ‗soft fascination‘. Technological (noise) sounds 

were experienced as disturbing, while perception of human sounds varied depending on loudness 

and the social context. In addition, some universal associations were found in a study: natural 

sounds were primarily associated with positive emotions, whereas mechanical and industrial sounds 

were linked to negative emotions (Moscoso et al., 2018). 

In addition to the descriptive statistics (figure 2), the scatter plot visualizations presented in 

figure 5 are useful to make some generalizations about the relationships of the attributes for 

different sound categories. For example, in figure 5(a) it is shown that noise sounds have the lowest 

values for the attribute pleasant, with a wide range for the values of the attribute uneventful. Natural 

sounds have the highest values for the attribute pleasant and the attribute uneventful, while human 
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sounds have medium to high values of the attribute pleasant and not high values for the attribute 

uneventful. Another typical example is in figure 5(i), in which noise sounds have a wide range for 

the attribute chaotic with generally low values for the attribute pleasant, natural sounds have low 

values for the attribute chaotic and high for the attribute pleasant, while human sounds have 

medium to high values for the attribute chaotic and attribute pleasant. 

Finally, in figure 4, scatter plots with a strong correlation (negative, positive) for all sound 

categories (a general trend is observed for all categories) are presented. In figure 4(a), an increase in 

the attribute "chaotic" is observed to correspond with a heightened level of annoyance across all 

sound categories, including noise, natural, and human sounds. In addition, an increase for the 

attribute chaotic causes a decrease for calmness and pleasantness (figures 4(b) and 4(c), respectively). 

In figure 4(d) it is shown that an increase in eventfulness causes an increase for the attribute chaotic. 

In figures 4(e) and 4(f) it is shown that an increase for the attribute monotonous causes a decrease in 

eventfulness and vibrancy.  

B. Principal Component Analysis 

The affective responses, per ISO/TS 12913-3, can be represented in a two-dimensional model 

(the circumplex) with pleasantness and eventfulness on the x and y axis and with two alternative 

dimensions representing environments that are chaotic versus calm, and environments that are 

monotonous versus vibrant at a 45° rotation from the main dimensions. Results of this research, 

presented in figure 6, show that all vectors are long, with their endpoints located close to the 

periphery of the graphs, represented by unit circles that correspond to the maximum length of the 

vectors. This shows that the PCA solution is mainly a two-dimensional plane, with limited variance 

in any other dimension. Second, all the vectors are organized in the same and expected order along 

the circumplex. They are also largely organized as expected in the two varimax-rotated components, 

easily interpreted to represent Pleasantness (Component 1) and Eventfulness (Component 2).  
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An important observation is that the attribute vibrant is positioned very close to eventful in the 

circumplex for the examined Greek population. This pattern aligns with findings from a previous 

study comparing Greek and English residents (Papadakis et al., 2023), where technological noise 

stimuli largely explained differences in the perception of vibrant. While the circumplex arrangement 

of vectors generally follows expected patterns, the notable deviation of vibrant from its anticipated 

diagonal position (45° between pleasantness and eventfulness) suggests a distinctive perceptual 

nuance. The possibility that semantic overlap in the Greek translations of vibrant and eventful might 

contribute to this pattern is acknowledged. However, to minimize such risks, a rigorous translation 

protocol was employed involving forward translation, synthesis, back-translation, pre-testing, and 

committee review (Cha et al., 2007). All steps were conducted by bicultural translators to ensure 

semantic and conceptual equivalence (Hambleton and Kanjee, 1995). Given these stringent 

measures, it is more plausible that the observed deviations reflect genuine cross-cultural differences 

in how residents of Chania perceive vibrant, rather than translation artifacts. This interpretation is 

further supported by the consistency of these findings with prior cross-cultural research, highlighting 

the influence of culturally specific environmental factors—such as technological noise—on 

soundscape attribute perception. Thus, the relation analysis between vibrant and eventful offers 

valuable insight into culturally grounded variations in soundscape experience. 

In studies, variations in the positions of perceptual attributes in the circumplex have been found 

(e.g. (Jeon et al., 2018)). Although the  circumplex model is very useful for representing the 

soundscape perception of a space as a whole, as it is stated in the ISO/TS 12913-3, the generality of 

the two-dimensional model is still under examination and requires further validation across 

languages and sites (Papadakis et al., 2024). Assessing the differences in soundscape perception 

between cultures and countries is a very interesting area of research which is expected to be 

thoroughly explored in the coming years. The circumplex model will serve as a valuable tool for this 
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purpose, providing a structured approach to understanding and evaluating the affective qualities of 

acoustic environments. 

C. Limitations and future work 

The results of this study shed new light especially on the interrelationships between soundscape 

attributes and sound categories. However, a limitation of this study lays in the fact that these results 

are based on the assessment of the perception of residents only in the case of Chania, Greece. This 

limitation means that study findings need to be interpreted cautiously. For the generalizability of the 

results, further data collection is required for the investigations of the interrelationships between 

soundscape attributes and sound categories. 

However, this limitation also provides exciting possibilities for future research. Future studies 

could investigate the interrelationships between attributes for different sound categories in various 

cases such as different nationalities (Jeon et al., 2018), different age groups, education level (Yu and 

Kang, 2010) and different kinds of settlements (Papadakis et al., 2023). We hope that our study will 

serve as a framework for future research based on our approach and findings. 

V. CONCLUSIONS 

The aim of this study was to investigate the interrelationships between soundscape attributes and 

sound categories according to ISO/TS 12913-2:2018 and access the soundscape perception of 

residents of Chania, Greece. For this purpose listening tests were performed according to ISO/TS 

12913-2:2018 (Method A). Sound stimuli were categorized according to the prevalence of sounds 

based in their context into ‗natural‘, ‗human‘ and ‗noise‘ and statistical analysis was employed. 

Additionally, principal component analysis (PCA) was applied. The main conclusions of this study 

are: 



 29 

1. The findings of this research reveal relationships of attributes in which there is a 

significant differentiation between the sound categories (natural, human, noise). The 

results have been sorted into three categories: related to the attribute monotonous, to 

the attribute vibrant and to the attributes eventful-uneventful. 

2. Regarding monotonous, the variability explained in the monotonous-pleasant 

relationship shows a highly negative correlation for human sounds and a low positive 

correlation for noise sounds. In the monotonous-chaotic relationship there is a highly 

negative correlation for noise sounds and a low positive correlation for human sounds . 

In the monotonous-pleasant relationship there is a positive correlation with noise and 

natural sounds and a negative correlation with human sounds. Regarding monotonous-

annoying relationship, there is a positive correlation with human sounds and a negative 

with noise sounds   

3. Regarding vibrant, in the vibrant-pleasant relationship there is a negative correlation 

with noise sounds and a low positive correlation with human and natural sounds. 

Regarding vibrant-annoying relationship there is a higher positive correlation for noise 

sounds in comparison to human and natural sounds. The same applies in the vibrant-

chaotic relationships where there is higher positive correlation for noise sounds in 

comparison to human and natural sounds. 

4. Regarding the eventful-pleasant relationship there is a low negative correlation for noise 

and natural sounds while in the uneventful-pleasant relationship there is a low positive 

correlation for noise and natural sounds.  

5. Descriptive statistics showed in general that the noise sounds have the lowest values for 

the attribute pleasant and the highest in the attribute annoying, the human sounds have 

the highest values for the attributes eventful, vibrant and the lowest for the attributes 
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uneventful, monotonous, while the nature sounds have the lowest value for the attribute 

chaotic and the highest for the attribute calm. 

Taken together, the findings of this study suggest that analysis based on categorization of sound 

stimuli (natural, human, noise) proves to be particularly useful for further accessing and 

understanding the perceived affective quality of soundscapes. We hope that our findings will serve 

as a foundation for future research endeavours exploring this significant topic. 
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APPENDIX  

TABLE III. Categorization of sound stimuli of the study according to ISO/TS 12913–2:2018. 

Sound stimuli can be found  in a zenodo dataset (Oberman et al., 2022). 

Sound stimuli categorization 

Zenodo id ISO/TS 12913–2:2018 Categorization Foreground sound   Background sound 

CT301 Noise Technological Inaudible 

E01b Noise Technological Technological 

E11b Noise Technological Technological 

E12b Noise Technological Technological 

HR01 Noise Technological Technological 

KT01 Noise Technological Technological 

W01 Noise Technological Inaudible 
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W09 Noise Technological Inaudible 

W15 Noise Technological Technological 

W16 Noise Technological Technological-Human 

E02 Natural sounds Natural Natural-Technological  

N1 Natural sounds Natural Natural-Technological 

RPJ01 Natural sounds Natural Human-Natural 

VP01b Natural sounds Natural Natural 

W06 Natural sounds Natural Natural 

W22 Natural sounds Natural Human-Natural 

CG01 Sounds from human beings Human* Human 

CG04 Sounds from human beings Human Human 

CG07 Sounds from human beings Human Human 

E05 Sounds from human beings Human Natural 

E09 Sounds from human beings Human Human 

E10 Sounds from human beings Human Natural 

LS06 Sounds from human beings Human* Human 

OS01c Sounds from human beings Human Technological 

OS01d Sounds from human beings Human* Human  

W11a Sounds from human beings Human Technological 

W23a Sounds from human beings Human Human 

*For these human sounds, also music is heard in the foreground.  

 

TABLE IV. R2 values of attribute combinations for different sound categories presented in FIG. 

3. 

Categories Attribute Combinations (R2) 

 
Monotonous-

Pleasant 

Monotonous-

Chaotic 

Monotonous-

Calm 

Monotonous-

Annoying 

Vibrant-

Pleasant 

Vibrant-

Annoying 

Vibrant-

Chaotic 

Eventful-

Pleasant 

Uneventful-

Pleasant 

Noise 0.176 0.624 0.250 0.168 0.608 0.624 0.865 0.176 0.292 

Human 0.533 0.008 0.001 0.058 0.176 0.048 0.109 0.068 0.026 
Natural 0.449 0.090 0.026 0.003 0.123 0.168 0.026 0.003 0.032 
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