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Natural language instructions induce 
compositional generalization in networks  
of neurons

Reidar Riveland       & Alexandre Pouget    

A fundamental human cognitive feat is to interpret linguistic instructions 
in order to perform novel tasks without explicit task experience. Yet, 
the neural computations that might be used to accomplish this remain 
poorly understood. We use advances in natural language processing to 
create a neural model of generalization based on linguistic instructions. 
Models are trained on a set of common psychophysical tasks, and receive 
instructions embedded by a pretrained language model. Our best models 
can perform a previously unseen task with an average performance of 83% 
correct based solely on linguistic instructions (that is, zero-shot learning). 
We found that language scaffolds sensorimotor representations such that 
activity for interrelated tasks shares a common geometry with the semantic 
representations of instructions, allowing language to cue the proper 
composition of practiced skills in unseen settings. We show how this model 
generates a linguistic description of a novel task it has identified using only 
motor feedback, which can subsequently guide a partner model to perform 
the task. Our models offer several experimentally testable predictions 
outlining how linguistic information must be represented to facilitate 
flexible and general cognition in the human brain.

In a laboratory setting, animals require numerous trials in order to 
acquire a new behavioral task. This is in part because the only means 
of communication with nonlinguistic animals is simple positive and 
negative reinforcement signals. By contrast, it is common to give writ-
ten or verbal instructions to humans, which allows them to perform 
new tasks relatively quickly. Further, once humans have learned a task, 
they can typically describe the solution with natural language. The dual 
ability to use an instruction to perform a novel task and, conversely, 
produce a linguistic description of the demands of a task once it has 
been learned are two unique cornerstones of human communication. 
Yet, the computational principles that underlie these abilities remain 
poorly understood.

One influential systems-level explanation posits that flexible 
interregional connectivity in the prefrontal cortex allows for the 
reuse of practiced sensorimotor representations in novel settings1,2. 

More recently, multiple studies have observed that when subjects 
are required to flexibly recruit different stimulus-response patterns, 
neural representations are organized according to the abstract struc-
ture of the task set3–5. Lastly, recent modeling work has shown that a 
multitasking recurrent neural network (RNN) will share dynamical 
motifs across tasks with similar demands6. This work forms a strong 
basis for explanations of flexible cognition in humans but leaves 
open the question of how linguistic information can reconfigure 
a sensorimotor network so that it performs a novel task well on 
the first attempt. Overall, it remains unclear what representational 
structure we should expect from brain areas that are responsible for 
integrating linguistic information in order to reorganize sensorimo-
tor mappings on the fly.

These questions become all the more pressing given that recent 
advances in machine learning have led to artificial systems that exhibit 

Received: 13 May 2023

Accepted: 15 February 2024

Published online: 18 March 2024

 Check for updates

Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland.  e-mail: reidar.riveland@unige.ch

http://www.nature.com/natureneuroscience
https://doi.org/10.1038/s41593-024-01607-5
http://orcid.org/0000-0003-1510-290X
http://orcid.org/0000-0003-3054-6365
http://crossmark.crossref.org/dialog/?doi=10.1038/s41593-024-01607-5&domain=pdf
mailto:reidar.riveland@unige.ch


Nature Neuroscience | Volume 27 | May 2024 | 988–999 989

Article https://doi.org/10.1038/s41593-024-01607-5

structure combinations). As a result, STRUCTURENET fully captures all 
the relevant relationships among tasks, whereas SIMPLENET encodes 
none of this structure.

Instructed models use a pretrained transformer architecture19 to 
embed natural language instructions for the tasks at hand. For each 
task, there is a corresponding set of 20 unique instructions (15 train-
ing, 5 validation; see Supplementary Notes 2 for the full instruction 
set). We test various types of language models that share the same 
basic architecture but differ in their size and also their pretraining 
objective. We tested two autoregressive models, a standard and a large 
version of GPT2, which we call GPT and GPT (XL), respectively. Previous 
work has demonstrated that GPT activations can account for various 
neural signatures of reading and listening11. BERT is trained to identify 
masked words within a piece of text20, but it also uses an unsupervised 
sentence-level objective, in which the network is given two sentences 
and must determine whether they follow each other in the original 
text. SBERT is trained like BERT but receives additional tuning on the 
Stanford Natural Language Inference task, a hand-labeled dataset 
detailing the logical relationship between two candidate sentences 
(Methods)21,22. Lastly, we use the language embedder from CLIP, a mul-
timodal model that learns a joint embedding space of images and text 
captions23. We call a sensorimotor-RNN using a given language model 
LANGUAGEMODELNET and append a letter indicating its size. The 
various sizes of models are given in Fig. 1c. For each language model, 
we apply a pooling method to the last hidden state of the transformer 
and pass this fixed-length representation through a set of linear weights 
that are trained during task learning. This results in a 64-dimensional 
instruction embedding across all models (Methods). Language model 
weights are frozen unless otherwise specified. Finally, as a control, we 
also test a bag-of-words (BoW) embedding scheme that only uses word 
count statistics to embed each instruction.

First, we verify our models can perform all tasks simultaneously. 
For instructed models to perform well, they must infer the common 
semantic content between 15 distinct instruction formulations for each 
task. We find that all our instructed models can learn all tasks simultane-
ously except for GPTNET, where performance asymptotes are below 
the 95% threshold for some tasks. Hence, we relax the performance 
threshold to 85% for models that use GPT (Supplementary Fig. 1; see 
Methods for training details). We additionally tested all architectures 
on validation instructions (Supplementary Fig. 2). SBERTNET (L) and 
SBERTNET are our best-performing models, achieving an average 
performance of 97% and 94%, respectively, on validation instructions, 
demonstrating that these networks infer the proper semantic content 
even for entirely novel instructions.

Generalization to novel tasks
We next examined the extent to which different language models aided 
generalization to novel tasks. We trained individual networks on 45 
tasks and then tested performance when exposed to the five held-out 
tasks. We use unequal-variance t-tests to make comparisons among the 
performance of different models. Figure 2 shows results with P values 
for the most relevant comparisons (a full matrix of comparisons across 
all models can be found in Supplementary Figs. 3 and 4)

Our uninstructed control model SIMPLENET performs at 39%, on 
average, on the first presentation of a novel task (zero-shot generaliza-
tion). This serves as a baseline for generalization. Note that despite the 
orthogonality of task rules provided to SIMPLENET, exposure to the 
task set allows models to learn patterns that are common to all tasks (for 
example, always repress response during fixation). Therefore, 39% is 
not chance-level performance per se, but rather performance achieved 
by a network trained and tested on a task set with some common 
requirements for responding. GPTNET, exhibits a zero-shot generaliza-
tion of 57%. This is a significant improvement over SIMPLENET (t = 8.32, 
P = 8.24 × 10−16). Strikingly, increasing the size of GPT by an order of 
magnitude to the 1.5 billion parameters used by GPT (XL) only resulted 

human-like language skills7,8. Recent works have matched neural data 
recorded during passive listening and reading tasks to activations in 
autoregressive language models (that is, GPT9), arguing that there is a 
fundamentally predictive component to language comprehension10,11. 
Additionally, some high-profile machine learning models do show 
the ability to use natural language as a prompt to perform a linguistic 
task or render an image, but the outputs of these models are difficult 
to interpret in terms of a sensorimotor mapping that we might expect 
to occur in a biological system12–14. Alternatively, recent work on mul-
timodal interactive agents may be more interpretable in terms of the 
actions they take, but utilize a perceptual hierarchy that fuses vision 
and language at early stages of processing, making them difficult to 
map onto functionally and anatomically distinct language and vision 
areas in human brains15–17.

We, therefore, seek to leverage the power of language models 
in a way that results in testable neural predictions detailing how the 
human brain processes natural language in order to generalize across 
sensorimotor tasks.

To that end, we train an RNN (sensorimotor-RNN) model on a set 
of simple psychophysical tasks where models process instructions for 
each task using a pretrained language model. We find that embedding 
instructions with models tuned to sentence-level semantics allow 
sensorimotor-RNNs to perform a novel task at 83% correct, on aver-
age. Generalization in our models is supported by a representational 
geometry that captures task subcomponents and is shared between 
instruction embeddings and sensorimotor activity, thereby allowing 
a composition of practice skills in a novel setting. We also find that 
individual neurons modulate their tuning based on the semantics 
of instructions. We demonstrate how a network trained to interpret 
linguistic instructions can invert this understanding and produce a 
linguistic description of a previously unseen task based on the informa-
tion in motor feedback signals. We end by discussing how these results 
can guide research on the neural basis of language-based generalization 
in the human brain.

Results
Instructed models and task set
We train sensorimotor-RNNs on a set of 50 interrelated psychophysical 
tasks that require various cognitive capacities that are well studied in 
the literature18. Two example tasks are presented in Fig. 1a,b as they 
might appear in a laboratory setting. For all tasks, models receive 
a sensory input and task-identifying information and must output 
motor response activity (Fig. 1c). Input stimuli are encoded by two 
one-dimensional maps of neurons, each representing a different input 
modality, with periodic Gaussian tuning curves to angles (over (0, 2π)). 
Output responses are encoded in the same way. Inputs also include a 
single fixation unit. After the input fixation is off, the model can respond 
to the input stimuli. Our 50 tasks are roughly divided into 5 groups, 
‘Go’, ‘Decision-making’, ‘Comparison’, ‘Duration’ And ‘Matching’, where 
within-group tasks share similar sensory input structures but may 
require divergent responses. For instance, in the decision-making (DM) 
task, the network must respond in the direction of the stimulus with the 
highest contrast, whereas in the anti-decision-making (AntiDM) task, 
the network responds to the stimulus with the weakest contrast (Fig. 1a).  
Thus, networks must properly infer the task demands for a given trial 
from task-identifying information in order to perform all tasks simul-
taneously (see Methods for task details; see Supplementary Fig. 13  
for example trials of all tasks).

In our models, task-identifying input is either nonlinguistic or lin-
guistic. We use two nonlinguistic control models. First, in SIMPLENET, 
the identity of a task is represented by one of 50 orthogonal rule vec-
tors. Second, STRUCTURENET uses a set of 10 orthogonal structure 
vectors, each representing a dimension of the task set (that is, respond 
weakest versus strongest direction), and tasks are encoded using com-
binations of these vectors (see Supplementary Notes 3 for the full set of 
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in modest gains over BOWNET (64%), with GPTNET (XL) achieving 68% 
on held-out tasks (t = 2.04, P = 0.047). By contrast, CLIPNET (S), which 
uses 4% of the number of parameters utilized by GPTNET (XL), is none-
theless able to achieve the same performance (68% correct, t = 0.146, 
P = 0.88). Likewise, BERTNET achieves a generalization performance 
that lags only 2% behind GPTNETXL in the mean (t = −1.122, P = 0.262). 
By contrast, models with knowledge of sentence-level semantics show 
marked improvements in generalization, with SBERTNET performing 

an unseen task at 79% correct on average. Finally, our best-performing 
model, SBERTNET (L), can execute a never-before-seen task with a 
performance of 83% correct, on average, lagging just a few percent-
age points behind STRUCTURENET (88% correct), which receives the 
structure of the task set hand-coded in its rule vectors.

Figure 2b shows a histogram of the number of tasks for which each 
model achieves a given level of performance. Again, SBERTNET (L) 
manages to perform over 20 tasks set nearly perfectly in the zero-shot 

"Go in the direction 
presented with 

weakest intensity"

"Select the initial stimulus
if is stronger than the

final stimulus otherwise
do not respond"

a bExample AntiDM trial Example COMP1 trial

c

...

0

2π

2π

0

1

Sensorimotor-RNN

0

...
...

...
. ..

Embedding

Language model

"Go in the direction presented 
with weakest intensity"

AntiDM rule vector

Fixation unit

Modality 1

Modality 2

Se
ns

or
y 

in
pu

t
In

st
ru

ct
io

n 
em

be
dd

in
g

Ru
le

 v
ec

to
r

O
R

0

1
Fixation output

0

2π
Motor output

Response

Language models

StructureNet - rule vectors with hand-coded task structure 

SimpleNet - orthogonal rule vector for each task

sbertNet (L) - supervised sentence pretraining (~300M parameters)

sbertNet - supervised sentence pretraining (~100M parameters)

clipNet (S) - multimodal language/vision pretraining (~60M parameters)

bertNet - masked word prediction pretraining (~100M parameters)

gptNet (XL) - next word prediction pretraining (~1.5B parameters)

gptNet - next word prediction pretraining (~100M parameters)

bowNet - shallow word inclusion statistics 

Rule-based models

Fig. 1 | Tasks and models. a,b, Illustrations of example trials as they might appear 
in a laboratory setting. The trial is instructed, then stimuli are presented with 
different angles and strengths of contrast. The agent must then respond with the 
proper angle during the response period. a, An example AntiDM trial where the 
agent must respond to the angle presented with the least intensity. b, An example 
COMP1 trial where the agent must respond to the first angle if it is presented with 

higher intensity than the second angle otherwise repress response. c, Diagram of 
model inputs and outputs. Sensory inputs (fixation unit, modality 1, modality 2) 
are shown in red and model outputs (fixation output, motor output) are shown in 
green. Models also receive a rule vector (blue) or the embedding that results from 
passing task instructions through a pretrained language model (gray). A list of 
models tested is provided in the inset.
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Fig. 2 | Model performance on novel tasks. a, Learning curves for the first 
100 exposures to held-out tasks averaged over all tasks. Data are presented as 
the mean ± s.d. across different n = 5 random initializations of sensorimotor-
RNN weights. For all subplots, asterisks indicate significant differences among 
performance according to a two-sided unequal-variance t-test. Most relevant 
comparisons are presented in plots (for all subplots, not significant (NS), 
P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001; STRUCTURENET versus SBERTNET 
(L): t = 3.761, P = 1.89 × 10−4; SBERTNET (L) versus SBERTNET: t = 2.19, P = 0.029; 
SBERTNET versus CLIPNET: t = 6.22, P = 1.02 × 10−9; CLIPNET versus BERTNET: 
t = 1.037, P = 0.300; BERTNET versus GPTNET (XL): t = −1.122, P = 0.262; GPTNET 
(XL) versus GPTNET: t = 6.22, P = 1.04 × 10−9; GPTNET versus BOWNET: t = −3.346, 
P = 8.85 × 10−4; BOWNET versus SIMPLENET: t = 10.25, P = 2.091 × 10−22). A full table 
of pairwise comparisons can be found in Supplementary Fig. 3. b, Distribution 
of generalization performance (that is, first exposure to novel task) across 
models. c–f, Performance across different test conditions for n = 5 different 
random initialization of sensorimotor-RNN weights where each point indicates 
average performance across tasks for a given initialization. c, Generalization 
performance for tasks where instructions are swapped at test time 
(STRUCTURENET versus SBERTNET (L): t = −0.15, P = 0.875; SBERTNET (L) versus 
SBERTNET: t = −2.102, P = 0.036; SBERTNET versus CLIPNET: t = −0.162, P = 0.871; 
CLIPNET versus BERTNET: t = 0.315, P = 0.752; BERTNET versus GPTNET (XL): 
t = 0.781, P = 0.435; GPTNET (XL) versus GPTNET: t = 1.071, P = 0.285; GPTNET 
versus BOWNET: t = −2.702, P = 0.007; BOWNET versus SIMPLENET: t = −3.471, 
P = 5.633−4). A full table of pairwise comparisons can be found in Supplementary 
Fig. 4. d, Generalization performance for models where tasks from the same 
family are held out during training (STRUCTURENET versus SBERTNET (L): 
t = 0.629, P = 0.530; SBERTNET (L) versus SBERTNET: t = −0.668, P = 0.504; 
SBERTNET versus CLIPNET: t = 8.043, P = 7.757 × 10−15; CLIPNET versus BERTNET: 
t = −0.306, P = 0.759; BERTNET versus GPTNET (XL): t = 0.163, P = 0.869; GPTNET 

(XL) versus GPTNET: t = 1.534, P = 0.126; GPTNET versus BOWNET: t = −6.418, 
P = 3.26 × 10−10; BOWNET versus SIMPLENET: t = 14.23, P = 8.561−39). A full table of 
pairwise comparisons can be found in Supplementary Fig. 4. e, Generalization 
performance for models where the last layers of language models are allowed to 
fine-tune to the loss from sensorimotor tasks (STRUCTURENET versus SBERTNET 
(L): t = 1.203, P = 0.229; SBERTNET (L) versus SBERTNET: t = 2.399, P = 0.016; 
SBERTNET versus CLIPNET: t = 5.186, P = 3.251 × 10−7; CLIPNET versus BERTNET: 
t = −3.002, P = 0.002; BERTNET versus GPTNET (XL): t = 0.522, P = 0.601; GPTNET 
(XL) versus GPTNET: t = 2.631, P = 0.009; GPTNET versus BOWNET: t = 4.440, 
P = 1.134 × 10−5; BOWNET versus SIMPLENET: t = 10.255, P = 2.091 × 10−22).  
A full table of pairwise comparisons can be found in Supplementary Fig. 4.  
f, Average difference in performance between tasks that use standard imperative 
instructions and those that use instructions with conditional clauses and require 
a simple deductive reasoning component. Colored asterisks at the bottom of 
the plot show P values for a two-sided, unequal-variance t-test between the null 
distribution constructed using random splits of the task set (transparent points 
represent mean differences for random splits; STRUCTURENET: t = −36.46, 
P = 4.34 × 10−23; SBERTNET (L): t = −16.38, P = 3.02 × 10−5; SBERTNET: t = −15.35, 
P = 3.920 × 10−5; CLIPNET: t = −44.68, P = 5.32 × 10−13; BERTNET: t = −25.51, 
P = 3.14 × 10−8; GPTNET (XL): t = −16.99, P = 3.61 × 10−6; GPTNET: t = −9.150, 
P = 0.0002; BOWNET: t = −70.99, P = 4.566 × 10−35; SIMPLENET: t = 19.60, 
P = 5.82 × 10−6), and asterisks at the top of plot indicate P-value results from a 
t-test comparing differences with STRUCTURENET and our other instructed 
models (versus SBERTNET (L): t = 3.702, P = 0.0168; versus SBERTNET: t = 6.592, 
P = 0.002; versus CLIPNET: t = 30.35, P = 2.367 × 10−7; versus BERTNET: t = 7.234, 
P = 0.0007; versus GPTNET (XL): t = 5.282, P = 0.004; versus GPTNET: t = −1.745, 
P = 0.149; versus BOWNET: t = 75.04, P = 9.96 × 10−11; versus SIMPLENET: t = −30.95, 
P = 2.86 × 10−6; see Methods and Supplementary Fig. 6. for full comparisons).
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setting (for individual task performance for all models across tasks, 
see Supplementary Fig. 3).

To validate that our best-performing models leveraged the seman-
tics of instructions, we presented the sensory input for one held-out 
task while providing the linguistic instructions for a different held-out 
task. Models that truly rely on linguistic information should be most 
penalized by this manipulation and, as predicted, we saw the largest 
decrease in performance for our best models (Fig. 2c).

We also tested a more stringent hold-out procedure where we 
purposefully chose 4–6 tasks from the same family of tasks to hold 
out during training (Fig. 2d). Overall, performance decreased in this 
more difficult setting, although our best-performing models still 
showed strong generalization, with SBERTNET (L) and SBERTNET 
achieving 71% and 72% correct on novel tasks, respectively, which was 
not significantly different from STRUCTURENET at 72% (t = 0.629, 
P = 0.529; t = 0.064, P = 0.948; for SBERTNET (L) and SBERTNET,  
respectively).

In addition, we tested models in a setting where we allow the 
weights of language models to tune according to the loss experienced 
during sensorimotor training (see Methods for tuning details). This 
manipulation improved the generalization performance across all 
models, and for our best-performing model, SBERTNET (L), we see 
that generalization is as strong as for STRUCTURENET (86%, t = 1.204, 
P = 0.229).

Following ref. 18, we tested models in a setting where task-type 
information for a given task was represented as a composition of 
information for related tasks in the training set (that is, AntiDM-
Mod1 = (rule(AntiDMMod2) − rule(DMMod2)) + rule(DMMod1)). In 
this setting, we did find that the performance of SIMPLENET improved 
(60% correct). However, when we combined embedded instructions 
according to the same compositional rules, our linguistic models 
dramatically outperformed SIMPLENET. This suggests that training 
in the context of language more readily allows a simple compositional 
scheme to successfully configure task responses (see Supplementary 
Fig. 5 for full results and compositional encodings).

Finally, we tested a version of each model where outputs of lan-
guage models are passed through a set of nonlinear layers, as opposed 
to the linear mapping used in the preceding results. We found that 
this manipulation reduced performance, suggesting that this added 
power leads to overfitting on training tasks, and that a simpler linear 
mapping is better suited to generalization (see Methods for details and 
Supplementary Fig. 4 for full results).

The discrepancy in performance between our instructed mod-
els suggests that in order to represent linguistic information such 
that it can successfully configure sensorimotor networks, it is not 
sufficient to simply use any very powerful language processing sys-
tem. Rather, model success can be delineated by the extent to which 
they are exposed to sentence-level semantics during pretraining. 
Our best-performing models SBERTNET (L) and SBERTNET are 
explicitly trained to produce good sentence embeddings, whereas 
our worst-performing model, GPTNET, is only tuned to the statistics 
of upcoming words. Both CLIPNET (S) and BERTNET are exposed to 
some form of sentence-level knowledge. CLIPNET (S) is interested 
in sentence-level representations, but trains these representations 
using the statistics of corresponding vision representations. BERTNET 
performs a two-way classification of whether or not input sentences 
are adjacent in the training corpus. That the 1.5 billion parameters of 
GPTNET (XL) doesn’t markedly improve performance relative to these 
comparatively small models speaks to the fact that model size isn’t the 
determining factor. Lastly, although BoW removes key elements of 
linguistic meaning (that is, syntax), the simple use of word occurrences 
encodes information primarily about the similarities and differences 
between the sentences. For instance, simply representing the inclusion 
or exclusion of the words ‘stronger’ or ‘weaker’ is highly informative 
about the meaning of the instruction.

We also investigated which features of language make it difficult 
for our models to generalize. Thirty of our tasks require processing 
instructions with a conditional clause structure (for example, COMP1) 
as opposed to a simple imperative (for example, AntiDM). Tasks that 
are instructed using conditional clauses also require a simple form 
of deductive reasoning (if p then q else s). Neuroimaging literature 
exploring the relationship between such deductive processes and 
language areas has reached differing conclusions, with some early 
studies showing that deduction recruits regions that are thought to 
support syntactic computations24–26 and follow-up studies claiming 
that deduction can be reliably dissociated from language areas27–30. 
One theory for this variation in results is that baseline tasks used to 
isolate deductive reasoning in earlier studies used linguistic stimuli 
that required only superficial processing31,32.

To explore this issue, we calculated the average difference in per-
formance between tasks with and without conditional clauses/deduc-
tive reasoning requirements (Fig. 2f). All our models performed worse 
on these tasks relative to a set of random shuffles. However, we also 
saw an additional effect between STRUCTURENET and our instructed 
models, which performed worse than STRUCTURENET by a statisti-
cally significant margin (see Supplementary Fig. 6 for full compari-
sons). This is a crucial comparison because STRUCTURENET performs 
deductive tasks without relying on language. Hence, the decrease in 
performance between STRUCTURENET and instructed models is in 
part due to the difficulty inherent in parsing syntactically more com-
plicated language. The implication is that we may see engagement of 
linguistic areas in deductive reasoning tasks, but this may simply be 
due to the increased syntactic demands of corresponding instruc-
tions (rather than processes that recruit linguistic areas to explicitly 
aid in the deduction). This result largely agrees with two reviews of 
the deductive reasoning literature, which concluded that the effects 
in language areas seen in early studies were likely due to the syntactic 
complexity of test stimuli31,32.

Shared structure in language and sensorimotor networks
We then turned to an investigation of the representational scheme that 
supports generalization. First, we note that like in other multitasking 
models, units in our sensorimotor-RNNs exhibited functional clus-
tering, where similar subsets of neurons show high variance across 
similar sets of tasks (Supplementary Fig. 7). Moreover, we found that 
models can learn unseen tasks by only training sensorimotor-RNN input 
weights and keeping the recurrent dynamics constant (Supplementary 
Fig. 8). Past work has shown that these properties are characteristic of 
networks that can reuse the same set of underlying neural resources 
across different settings6,18. We then examined the geometry that exists 
between the neural representations of related tasks. We plotted the 
first three principal components (PCs) of sensorimotor-RNN hidden 
activity at stimulus onset in SIMPLENET, GPTNETXL, SBERTNET (L) 
and STRUCTURENET performing modality-specific DM and AntiDM 
tasks. Here, models receive input for a decision-making task in both 
modalities but must only attend to the stimuli in the modality relevant 
for the current task. Importantly, AntiDMMod1 is held out of training 
in the following examples. In addition, we plotted the PCs of either 
the rule vectors or the instruction embeddings in each task (Fig. 3).

For STRUCTURENET, hidden activity is factorized along task- 
relevant axes, namely a consistent ‘Pro’ versus ‘Anti’ direction in activ-
ity space (solid arrows), and a ‘Mod1’ versus ‘Mod2’ direction (dashed 
arrows). Importantly, this structure is maintained even for AntiDM-
Mod1, which has been held out of training, allowing STRUCTURENET 
to achieve a performance of 92% correct on this unseen task. This 
factorization is also reflected in the PCs of rule embeddings. Strik-
ingly, SBERTNET (L) also organizes its representations in a way that 
captures the essential compositional nature of the task set using only 
the structure that it has inferred from the semantics of instructions. 
This is the case for language embeddings, which maintain abstract 
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axes across AntiDMMod1 instructions (again, held out of training). As 
a result, SBERTNET (L) is able to use these relevant axes for AntiDM-
Mod1 sensorimotor-RNN representations, leading to a generalization 
performance of 82%. By contrast, GPTNET (XL) fails to properly infer a 
distinct ‘Pro’ versus ‘Anti’ axes in either sensorimotor-RNN representa-
tions or language embeddings leading to a zero-shot performance of 
6% on AntiDMMod1 (Fig. 3b). Finally, we find that the orthogonal rule 
vectors used by simpleNet preclude any structure between practiced 
and held-out tasks, resulting in a performance of 22%.

To more precisely quantify this structure, we measure the 
cross-conditional generalization performance (CCGP) of these 

representations3. CCGP measures the ability of a linear decoder 
trained to differentiate one set of conditions (that is, DMMod2 and 
AntiDMMod2) to generalize to an analogous set of test conditions 
(that is, DMMod1 and AntiDMMod1). Intuitively, this captures the 
extent to which models have learned to place sensorimotor activity 
along abstract task axes (that is, the ‘Anti’ dimension). Notably, high 
CCGP scores and related measures have been observed in experiments 
that required human participants to flexibly switch between different 
interrelated tasks4,33.

We measured CCGP scores among representations in sensorimotor- 
RNNs for tasks that have been held out of training (Methods) and found 
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Fig. 3 | Structured representations in instructed models. a–d, The first three 
PCs of sensorimotor hidden activity and task-info representations for models 
trained with AntiDMMod1 held out. Solid arrows represent an abstract ‘Pro’ 
versus ‘Anti’ axis, and dashed arrows represent an abstract ‘Mod1’ versus ‘Mod2’ 
axis. a, STRUCTURENET. b, SBERTNET (L). c, GPTNET (XL). d, SIMPLENET.  
e, Correlation between held-out task CCGP and zero-shot performance 
(Pearson’s r = 0.606, P = 1.57 × 10−46). f, CCGP scores for held-out tasks for 
each layer in the model hierarchy. Significance scores indicate P-value results 
from pairwise two-sided unequal-variance t-tests performed among model 

distributions of CCGP scores on held-out tasks for sensorimotor-RNN  
(NS P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001; STRUCTURENET versus SBERTNET 
(L): t = 13.67, P = 2.44 × 10−36; SBERTNET (L) versus SBERTNET: t = 5.061, 
P = 5.84 × 10−7; SBERTNET versus CLIPNET: t = 2.809, P = 0.005; CLIPNET versus 
BERTNET: t = 0.278, P = 0.780; BERTNET versus GPTNET (XL): t = 2.505, P = 0.012; 
GPTNET (XL) versus GPTNET: t = 3.180, P = 0.001; GPTNET versus BOWNET: 
t = −4.176, P = 3.50 × 10−5; BOWNET versus SIMPLENET: t = 23.0.8, P = 1.10−80; see 
Supplementary Fig. 9 for full comparisons as well as t-test results for embedding 
layer CCGP scores).
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a strong correlation between CCGP scores and zero-shot performance 
(Fig. 3e). Additionally, we find that swapping task instructions for 
held-out tasks dramatically reduces CCGP scores for all our instructed 
models, indicating that the semantic of instructions is crucial for main-
taining structured representations (Supplementary Fig. 9).

We then looked at how structure emerges in the language pro-
cessing hierarchy. CCGP decoding scores for different layers in our 
model are shown in Fig. 3f. For each instructed model, scores for 12 
transformer layers (or the last 12 layers for SBERTNET (L) and GPTNET 
(XL)), the 64-dimensional embedding layer and the Sensorimotor-RNN 
task representations are plotted. We also plotted CCGP scores for 
the rule embeddings used in our nonlinguistic models. Among 
models, there was a notable discrepancy in how abstract structure 
emerges. Autoregressive models (GPTNETXL, GPTNET), BERTNET 
and CLIPNET (S), showed a low CCGP throughout language model 
layers followed by a jump in the embedding layer. This is because 
weights feeding into the embedding layer are tuned during sensori-
motor training. The implication of this spike is that most of the use-
ful representational processing in these models actually does not 
occur in the pretrained language model per se, but rather in the linear 
readout, which is exposed to task structure via training. By contrast, 
our best-performing models SBERTNET and SBERTNET (L) use lan-
guage representations where high CCGP scores emerge gradually in 
the intermediate layers of their respective language models. Because 
semantic representations already have such a structure, most of the 
compositional inference involved in generalization can occur in the 
comparatively powerful language processing hierarchy. As a result, 
representations are already well organized in the last layer of language 
models, and a linear readout in the embedding layer is sufficient for the 
sensorimotor-RNN to correctly infer the geometry of the task set and  
generalize well.

This analysis strongly suggests that models exhibiting generaliza-
tion do so by leveraging structured semantic representations to prop-
erly relate practiced and novel tasks in sensorimotor space, thereby 
allowing a composition of practiced behaviors in an unseen setting.

Semantic modulation of single-unit tuning properties
Next, we examined tuning profiles of individual units in our 
sensorimotor-RNNs. We found that individual neurons are tuned to a 
variety of task-relevant variables. Critically, however, we find neurons 
where this tuning varies predictably within a task group and is modu-
lated by the semantic content of instructions in a way that reflects task 
demands.

For instance, in the ‘Go’ family of tasks, unit 42 shows direction 
selectivity that shifts by π between ‘Pro’ and ‘Anti’ tasks, reflecting 
the relationship of task demands in each context (Fig. 4a). This flip in 
selectivity is observed even for the AntiGo task, which was held out 
during training.

For the ‘Matching’ family of tasks, unit 14 modulates activity 
between ‘match’ (DMS, DMC) and ‘non-match’ (DNMS, DNMC) con-
ditions. In ‘non-match’ trials, the activity of this unit increases as the 
distance between the two stimuli increases. By contrast, for ‘matching’ 
tasks, this neuron is most active when the relative distance between 
the two stimuli is small. Hence, in both cases this neuron modulates 
its activity to represent when the model should respond, changing 
selectivity to reflect opposing task demands between ‘match’ and 
‘non-match’ trials. This is true even for DMS, which has been held out 
of training.

Figure 4c shows traces of unit 3 activity in modality-specific ver-
sions of DM and AntiDM tasks (AntiDMMod1 is held out of training) 
for different levels of contrast (contrast = strstim1 − strstim2). In all tasks, 
we observed ramping activity where the rate of ramping is relative 
to the strength of contrast. This motif of activity has been reported 
in previous studies34,35. However, in our models, we observe that an 
evidence-accumulating neuron can swap the sign of its integration in 

response to a change in linguistic instructions, which allows models to 
meet opposing demands of ‘Pro’ and ‘Anti’ versions of the task, even 
for previously unseen tasks.

Interestingly, we also found that unsuccessful models failed to 
properly modulate tuning preferences. For example, with GPTNET 
(XL), which failed to factorize along a ‘Pro’ versus ‘Anti’ axis (Fig. 3b) 
and had poor generalization on AntiDMMod1, we also find neurons 
that failed to swap their sign of integration in the held-out setting 
(Supplementary Fig. 10).

Finally, we see a similar pattern in the time course of activity for 
trials in the ‘Comparison’ family of tasks (Fig. 4d). In the COMP1 task, 
the network must respond in the direction of the first stimulus if it 
has higher intensity than the second stimulus, and must not respond 
otherwise. In COMP2, it must only respond to the second stimulus if 
the second stimulus is higher intensity. For ‘Anti’ versions, the demands 
of stimulus ordering are the same except the model has to choose the 
stimuli with the weakest contrast. Even with this added complexity, 
we found individual neurons that modulate their tuning with respect 
to task demands, even for held-out tasks (in this case COMP2). For 
example, unit 82 is active when the network should repress response. 
For ‘COMP1’, this unit is highly active with negative contrast (that is, 
strstim2 > strstim1), but flips this sensitivity in COMP2 and is highly active 
with positive contrast (that is, strstim1 > strstim2). Importantly, this relation 
is reversed when the goal is to select the weakest stimuli. Hence, despite 
these subtle syntactic differences in instruction sets, the language 
embedding can reverse the tuning of this unit in a task-appropriate 
manner.

Linguistic communication between networks
We now seek to model the complementary human ability to describe a 
particular sensorimotor skill with words once it has been acquired. To 
do this, we inverted the language-to-sensorimotor mapping our mod-
els learn during training so that they can provide a linguistic descrip-
tion of a task based only on the state of sensorimotor units. First, we 
constructed an output channel (production-RNN; Fig. 5a–c), which 
is trained to map sensorimotor-RNN states to input instructions. We 
then present the network with a series of example trials while with-
holding instructions for a specific task. During this phase all model 
weights are frozen, and models receive motor feedback in order to 
update the embedding layer activity in order to reduce the error of 
the output (Fig. 5b). Once the activity in the embedding layer drives 
sensorimotor units to achieve a performance criterion, we used the 
production-RNN to decode a linguistic description of the current task. 
Finally, to evaluate the quality of these instructions, we input them 
into a partner model and measure performance across tasks (Fig. 5c). 
All instructing and partner models used in this section are instances 
of SBERTNET (L) (Methods).

Some example decoded instructions for the AntiDMMod1 task 
(Fig. 5d; see Supplementary Notes 4 for all decoded instructions). To 
visualize decoded instructions across the task set, we plotted a confu-
sion matrix where both sensorimotor-RNN and production-RNN are 
trained on all tasks (Fig. 5e). Note that many decoded instructions 
were entirely ‘novel’, that is, they were not included in the training set 
for the production-RNN (Methods). Novel instructions made up 53% 
of decoded instructions across all tasks.

To test the quality of these novel instructions, we evaluated a 
partner model’s performance on instructions generated by the first 
network (Fig. 5c; results are shown in Fig. 5f). When the partner model 
is trained on all tasks, performance on all decoded instructions was 
93% on average across tasks. Communicating instructions to partner 
models with tasks held out of training also resulted in good perfor-
mance (78%). Importantly, performance was maintained even for 
‘novel’ instructions, where average performance was 88% for partner 
models trained on all tasks and 75% for partner models with hold-out 
tasks. Given that the instructing and partner models share the same 
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architecture, one might expect that it is more efficient to forgo the 
language component of communication and simply copy the embed-
ding inferred by one model into the input of the partner model. This 
resulted in only 31% correct performance on average and 28% perfor-
mance when testing partner models on held-out tasks. Although both 
instructing and partner networks share the same architecture and the 
same competencies, they nonetheless have different synaptic weights. 
Hence, using a neural representation tuned for the set of weights within 
the one agent won’t necessarily produce good performance in the  
other.

We also tested an instructing model using a sensorimotor-RNN 
with tasks held out of training. We emphasize here that during training 
the production-RNN attempts to decode from sensorimotor hidden 
states induced by instructions for tasks the network has never expe-
rienced before (Fig. 5a), whereas during test time, instructions are 
produced from sensorimotor states that emerge entirely as a result of 
minimizing a motor error (Fig. 5b,c). We nonetheless find that, in this 
setting, a partner model trained on all tasks performs at 82% correct, 
while partner models with tasks held out of training perform at 73%. 

Here, 77% of produced instructions are novel, so we see a very small 
decrease of 1% when we test the same partner models only on novel 
instructions. Like above, context representations induce a relatively 
low performance of 30% and 37% correct for partners trained on all 
tasks and with tasks held out, respectively.

Lastly, we tested our most extreme setting where tasks have been 
held out for both sensorimotor-RNNs and production-RNNs (Fig. 5f). 
We find that produced instructions induce a performance of 71% and 
63% for partner models trained on all tasks and with tasks held out, 
respectively. Although this is a decrease in performance from our previ-
ous set-ups, the fact that models can produce sensible instructions at 
all in this double held-out setting is striking. The fact that the system 
succeeds to any extent speaks to strong inductive biases introduced 
by training in the context of rich, compositionally structured semantic 
representations.

Discussion
In this study, we use the latest advances in natural language process-
ing to build tractable models of the ability to interpret instructions to 
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guide actions in novel settings and the ability to produce a descrip-
tion of a task once it has been learned. RNNs can learn to perform a set 
of psychophysical tasks simultaneously using a pretrained language 
transformer to embed a natural language instruction for the current 
task. Our best-performing models can leverage these embeddings to  
perform a brand-new model with an average performance of 83% cor-
rect. Instructed models that generalize performance do so by leverag-
ing the shared compositional structure of instruction embeddings 
and task representations, such that an inference about the relations 
between practiced and novel instructions leads to a good inference 
about what sensorimotor transformation is required for the unseen 
task. Finally, we show a network can invert this information and pro-
vide a linguistic description for a task based only on the sensorimotor 
contingency it observes.

Our models make several predictions for what neural representa-
tions to expect in brain areas that integrate linguistic information in 
order to exert control over sensorimotor areas. Firstly, the CCGP analy-
sis of our model hierarchy suggests that when humans must generalize 
across (or switch between) a set of related tasks based on instructions, 
the neural geometry observed among sensorimotor mappings should 
also be present in semantic representations of instructions. This pre-
diction is well grounded in the existing experimental literature where 
multiple studies have observed the type of abstract structure we find in 
our sensorimotor-RNNs also exists in sensorimotor areas of biological 
brains3,36,37. Our models theorize that the emergence of an equivalent 
task-related structure in language areas is essential to instructed action 
in humans. One intriguing candidate for an area that may support 
such representations is the language selective subregion of the left 
inferior frontal gyrus. This area is sensitive to both lexico-semantic 
and syntactic aspects of sentence comprehension, is implicated in 
tasks that require semantic control and lies anatomically adjacent to 
another functional subregion of the left inferior frontal gyrus, which 
is implicated in flexible cognition38–41. We also predict that individ-
ual units involved in implementing sensorimotor mappings should 
modulate their tuning properties on a trial-by-trial basis according to 
the semantics of the input instructions, and that failure to modulate 
tuning in the expected way should lead to poor generalization. This 
prediction may be especially useful to interpret multiunit recordings 
in humans. Finally, given that grounding linguistic knowledge in the 
sensorimotor demands of the task set improved performance across 
models (Fig. 2e), we predict that during learning the highest level of 
the language processing hierarchy should likewise be shaped by the 
embodied processes that accompany linguistic inputs, for example, 
motor planning or affordance evaluation42.

One notable negative result of our study is the relatively poor gen-
eralization performance of GPTNET (XL), which used at least an order 
of magnitude more parameters than other models. This is particularly 
striking given that activity in these models is predictive of many behav-
ioral and neural signatures of human language processing10,11. Given 
this, future imaging studies may be guided by the representations 
in both autoregressive models and our best-performing models to 
delineate a full gradient of brain areas involved in each stage of instruc-
tion following, from low-level next-word prediction to higher-level 
structured-sentence representations to the sensorimotor control that 
language informs.

Our models may guide future work comparing compositional 
representations in nonlinguistic subjects like nonhuman primates. 
Comparison of task switching (without linguistic instructions) 
between humans and nonhuman primates indicates that both use 
abstract rule representations, although humans can make switches 
much more rapidly43. One intriguing parallel in our analyses is the 
use of compositional rules vectors (Supplementary Fig. 5). Even in 
the case of nonlinguistic SIMPLENET, using these vectors boosted 
generalization. Importantly, however, this compositionality is much 
stronger for our best-performing instructed models. This suggests 

that language endows agents with a more flexible organization of 
task subcomponents, which can be recombined in a broader variety  
of contexts.

Our results also highlight the advantages of linguistic commu-
nication. Networks can compress the information they have gained 
through experience of motor feedback and transfer that knowledge 
to a partner network via natural language. Although rudimentary in 
our example, the ability to endogenously produce a description of 
how to accomplish a task after a period of practice is a hallmark human 
language skill. The failure to transfer performance by sharing latent 
representations demonstrates that to communicate information in a 
group of independent networks of neurons, it needs to pass through a 
representational medium that is equally interpretable by all members 
of the group. In humans and for our best-performing instructed mod-
els, this medium is language.

A series of works in reinforcement learning has investigated using 
language and language-like schemes to aid agent performance. Agents 
receive language information through step-by-step descriptions of 
action sequences44,45, or by learning policies conditioned on a lan-
guage goal46,47. These studies often deviate from natural language 
and receive linguistic inputs that are parsed or simply refer directly 
to environmental objects. Some larger versions of the pretrained 
language models we use to embed instructions also display instruc-
tions following behavior, that is, GPT-3 (ref. 7), PALM12, LaMDA13 and 
InstructGPT48 in the modality of language and DALL-E8 and Stable Dif-
fusion14 in a language to image modality. The semantic and syntactic 
understanding displayed in these models is impressive. However, the 
outputs of these models are difficult to interpret in terms of guiding 
the dynamics of a downstream action plan. Finally, recent work has 
sought to engineer instruction following agents that can function in 
complex or even real-world environments16–18. While these models 
exhibit impressive behavioral repertoires, they rely on perceptual 
systems that fuse linguistic and visual information making them dif-
ficult to compare to language representations in human brains, which 
emerge from a set of areas specialized for processing language. In all, 
none of these models offer a testable representational account of how 
language might be used to induce generalization over sensorimotor  
mappings in the brain.

Our models by contrast make tractable predictions for what popu-
lation and single-unit neural representations are required to support 
compositional generalization and can guide future experimental work 
examining the interplay of linguistic and sensorimotor skills in humans. 
By developing interpretable models that can both understand instruc-
tions as guiding a particular sensorimotor response, and communicate 
the results of sensorimotor learning as an intelligible linguistic instruc-
tion, we have begun to explain the power of language in encoding  
and transferring knowledge in networks of neurons.

Online content
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Methods
Model architecture
Sensorimotor-RNN. The base model architecture and task structure 
used in this paper follows18. All networks of sensorimotor units denoted 
sensorimotor-RNN are gated recurrent units (GRU)49 using rectified 
linear unit (ReLU) nonlinearities with 256 hidden units each. Inputs to 
the networks consist of (1) sensory inputs, Xt and (2) task-identifying 
information, It. We initialize hidden activity in the GRU as h0 ∈ ℝ256 with 
values set to 0.1. All networks of sensorimotor units use the same hid-
den state initialization, so we omit h0 in network equations. At each 
time step, a readout layer Linearout decodes motor activity, ̂yt, from the 
activity of recurrent hidden units, ht, according to:

ht = SensorimotorRNN(Xt, It;ht−1) ht ∈ ℝ256

̂yt = σ(Linearout(ht)) ̂yt ∈ ℝ33

where σ denotes the sigmoid function. Sensory inputs Xt are made up 
of three channels, two sensory modalities xmod 1,t and xmod2,t, and a fixa-
tion channel xfix,t. Both xmod 1,t, xmod2,t ∈ ℝ32 and stimuli in these modali-
ties are represented as hills of activity with peaks determined by units’ 
preferred directions around a one-dimensional circular variable. For 
an input at direction θ, the activity of a given input unit ui with preferred 
direction θi is

ui = str × 0.8exp [−0.5 × (8|θ − θi|
π )

2

]

where str is the coefficient describing stimulus strength. The fixation 
channel xfix,t ∈ ℝ1 is a single unit simulating a fixation cue for the net-
work. In all, sensory input Xt = (xmod1,t, xmod2,t, xfix,t) ∈ ℝ65. Motor output, 
̂yt  consists of both a 32-dimensional ring representing directional 

responses to the input stimulus as well as a single unit representing 
model fixation, so that ̂yt ∈ ℝ33.

For all models, task-identifying information It ∈ ℝ64 . 
Task-identifying information is presented throughout the duration of 
a trial and remains constant such that It = It′∀t, t′. For all models, task- 
identifying info It and sensory input Xt are concatenated as inputs to 
the sensorimotor-RNN.

Nonlinguistic models. For SIMPLENET, we generate a set of 64- 
dimensional orthogonal task rules by constructing an orthogonal 
matrix using the Python package scipy.stats.ortho_group, and assign 
rows of this matrix to each task type. For STRUCTURENET, we generate a 
set of ten orthogonal, 64-dimensional vectors in the same manner, and 
each of these represents a dimension of the task set (that is, respond 
weakest versus strongest direction, respond in the same versus oppo-
site direction, pay attention only to stimuli in the first modality, and 
so on). Rule vectors for tasks are then simple combinations of each of 
these ten basis vectors. For a full description of structure rule vectors, 
see Supplementary Note 3.

We also test SIMPLENETPLUS and STRUCTURENETPLUS, which 
use an additional hidden layer with 128 units and ReLU nonlinearities 
to process orthogonal tasks rules It into a vector ̄It  which is used by 
sensorimotor-RNN as task-identifying information.

̄It
′ = ReLU(LinearRuleEmb1(It)) ̄It

′ ∈ ℝ128

̄It
′ = ReLU(LinearRuleEmb2(I′t)) ̄It

′ ∈ ℝ128

̄It = ReLU(LinearRuleEmb3(It
′)) ̄It ∈ ℝ64

Full results for these models are included in Supplementary Fig. 4.

Pretrained transformers. The main language models we test use 
pretrained transformer architectures to produce I. Importantly, 

transformers differ in the type of pretraining objective used to tune 
the model parameters. GPT is trained to predict the next word given a 
context of words9. GPT (XL) follows the same objective but trains for 
longer on a larger dataset50. Both models are fully autoregressive. BERT, 
by contrast, takes bidirectional language inputs and is tasked with 
predicting masked words that appear in the middle of input phrases. 
Additionally, BERT is trained on a simple sentence prediction task 
where the model must determine if input sentence 1 is followed by 
input sentence 2 in the training corpus. Extending this principle, SBERT 
is explicitly trained to produce fixed-length embeddings of whole 
sentences21. It takes pretrained BERT networks and uses them in a sia-
mese architecture51, which allows the weights of the model to be tuned 
in a supervised fashion according to the Stanford Natural Language 
Inference dataset22. Natural language inference is a three-way catego-
rization task where the network must infer the logical relationship 
between sentences: whether a premise sentence implies, contradicts or 
is unrelated to a hypothesis sentence. Finally, CLIP is trained to jointly 
embed images and language23. It uses data from captioned images and 
is asked to properly categorize which text and images pairs match or 
are mismatched in the dataset via a contrastive loss.

Importantly, the natural output of a transformer is a matrix of size 
dimtrans. × 𝒯𝒯 , the inherent dimensionality of the transformer by the 
length of the input sequence. To create an embedding space for sen-
tences it is standard practice to apply a pooling method to the trans-
former output, which produces a fixed-length representation for each 
instruction.

For GPT, GPT (XL), BERT and SBERT, we use an average pooling 
method. Suppose we have an input instruction w1…w𝒯𝒯 . Following 
standard practice with pretrained language models, the input to our 
transformers is tokenized with special ‘cls’ and ‘eos’ tokens at the begin-
ning and end of the input sequence. We then compute I as follows:

htran. = transformer([cls] ,w1…w𝒯𝒯 , [eos]), htran. ∈ ℝdimtrans.×𝒯𝒯𝒯2

hI = mean(htran.), hI ∈ ℝdimtrans.

I = Linearembed(hI) I ∈ ℝ64

We chose this average pooling method primarily because a previ-
ous study21 found that this resulted in the highest-performing SBERT 
embeddings. Another alternative would be to simply use the final hid-
den representation of the ‘cls’ token as a summary of the information 
in the entire sequence (given that BERT architectures are bidirectional, 
this token will have access to the whole sequence).

htran. = transformer( [cls] ,w1…w𝒯𝒯 , [eos] ), htran. ∈ ℝdimtrans.×𝒯𝒯𝒯2

hI = (htran.cls ) hI ∈ ℝdimtrans.

Where htran.cls  denote the last hidden representation for the ‘cls’ token. 
Ref. 21 found this pooling method performed worse than average pool-
ing, so we don’t include these alternatives in our results. For GPT and 
GPT (XL), we also tested a pooling method where the fixed-length 
representation for a sequence was taken from the transformer output 
of the ‘eos’ token. In this case:

htran. = transformer( [cls] ,w1…w𝒯𝒯 , [eos] ), htran. ∈ ℝdimtrans.× 𝒯𝒯𝒯2

hI = (htran.eos ), hI ∈ ℝdimtrans.

I = Linearembed(hI), I ∈ ℝ64

We found that GPT failed to achieve even a relaxed performance  
criterion of 85% across tasks using this pooling method, and GPT (XL) 
performed worse than with average pooling, so we omitted these 
models from the main results (Supplementary Fig. 11). For CLIP  
models we use the same pooling method as in the original multiModal 
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training procedure, which takes the outputs of the [cls] token as 
described above.

For all the above models, we also tested a version where the infor-
mation from the pretrained transformers is passed through a multilayer 
perceptron with a single hidden layer of 256 hidden units and ReLU 
nonlinearities. We found that this manipulation reduced performance 
across all models, verifying that a simple linear embedding is beneficial 
to generalization performance.

For GPT, BERT and SBERT, dimtrans. = 768  and each model uses  
a total of ~100 million parameters; for SBERT (L) dimtrans. = 1,024 and 
the model uses ~300 million parameters; GPT (XL) dimtrans. = 1,600 and 
the model uses ~1.5 billion parameters; for CLIP, dimtrans. = 512 and the 
model uses ~60 million parameters. Full PyTorch implementations, 
including all pretrained weights and model hyperparameters, can be 
accessed at the Huggingface library (https://huggingface.co/docs/
transformers/)52.

BoW model. For our BoW model, instructions are represented as a vec-
tor of binary activations the size of the instruction vocabulary, where 
each unit indicates the inclusion or exclusion of the associated word in 
the current instruction. For our instruction set, ∣vocab∣ = 181. This vec-
tor is then projected through a linear layer into 64-dimensional space.

hBoWi = {
1 if wi ∈ (w1…w𝒯𝒯)

0 otherwise
hBoW ∈ ℝ|vocab|

I = Linearembed(hBoW), I ∈ ℝ64

Blank slate language models. Given that tuning the last layers of 
language models resulted in improved performance (Fig. 2e), we tested 
two additional models to determine if training a blank slate language 
model trained exclusively on the loss from sensorimotor tasks would 
improve performance. These models consist of passing BoW represen-
tations through a multilayer perceptron and passing pretrained BERT 
word embeddings through one layer of a randomly initialized BERT  
encoder. Both models performed poorly compared to pretrained 
models (Supplementary Fig. 4.5), confirming that language pretraining 
is essential to generalization.

Tasks sets
Tasks were divided into five interrelated subgroups: ‘go’, 
‘decision-making’, ‘matching’, and ‘comparison’ and ‘duration’. Depend-
ing on the task, multiple stimuli may appear during the stimulus epoch. 
Also, depending on the task, models may be required to respond in a 
particular direction or repress response altogether. Unless otherwise 
specified, zero-mean Gaussian noise is added independently at each 
time step and to each input unit and the variance of this noise is drawn 
randomly from 𝕌𝕌𝕌0.1,0.15]. The timing of stimuli differs among the tasks 
type. However, for all tasks, trials can be divided into preparatory, 
stimulus and response epochs. The stimulus epoch can be subdivided 
into three parts—stim1, delay and stim23—although these distinct parts 
aren’t used by all tasks. A trial lasts for a total of T = 150 time steps. Let 
durepoch denote the duration in simulated time steps of a given epoch. 
Then

durresponse ∼ {i|20 < i ≤ 25; i ∈ ℕ}

durstim1,durstim2 ∼ {i|37 < i ≤ 50; i ∈ ℕ}

durdelay ∼ {i|15 < i ≤ 25; i ∈ ℕ}

durprep. = 150 − (durresponse + durstim1 + durstim2 + durdelay)

For tasks that don’t utilize a delay structure, stim1, stim2 and delay 
epochs are grouped together in a single stimulus epoch where 
durstimulus = durstim1 + durstim2 + durdelay . Unless otherwise specified, a 

fixation cue with a constant strength strfix = 1 is activated throughout 
the preparatory and stimulus epochs. For example trials of each task, 
see Supplementary Fig. 13.

‘Go’ tasks. The ‘Go’ family of tasks includes ‘Go’, ‘RTGo’, ‘AntiGo’, 
‘AntiRTGo’ and modality-specific versions of each task denoted with 
either ‘Mod1’ and ‘Mod2’. In both the ‘Go’ and ‘AntiGo’ tasks, a single 
stimulus is presented at the beginning of the stimulus epoch. The 
direction of the presented stimulus is generated by drawing from a 
uniform distribution between 0 and 2π, that is, θstim ∼ 𝕌𝕌𝕌0, 2π]. The 
stimulus will appear in either modality 1 or modality 2 with equal prob-
ability. The strength of the stimulus is given by strstim ∼ 𝕌𝕌𝕌1.0, 1.2]. In the 
‘Go’ task, the target response is in the same direction as the presented 
stimulus, that is, θstim = θtarget, while in the ‘AntiGo’ task the direction 
of the response should be in the opposite of the stimulus direction, 
θstim + π = θtarget. For modality-specific versions of each task, a stimulus 
direction is drawn in each modality θstim,mod1 ∼ 𝕌𝕌𝕌0, 2π]  and 
θstim,mod2 ∼ 𝕌𝕌𝕌0, 2π] and for modality-specific Go-type tasks

θtarget = {
θstim,mod1 if Mod1 task

θstim,mod2 if Mod2 task

while for modality-specific AntiGo-type tasks

θtarget = {
θstim,mod1 + π if Mod1 task

θstim,mod2 + π if Mod2 task

For ‘RT’ versions of the ‘Go’ tasks, stimuli are only presented during 
the response epoch and the fixation cue is never extinguished. Thus, 
the presence of the stimulus itself serves as the response cue and the 
model must respond as quickly as possible. Otherwise, stimuli persist 
through the duration of the stimulus epoch.

‘Decision-making’ tasks. The ‘decision-making’ family of tasks 
includes ‘DM’ (decision-making), ‘AntiDM’, ‘MultiDM’ (multisensory 
decision-making), ‘AntiMultiDM,’ modality-specific versions of each 
of these tasks and, finally, confidence-based versions of ‘DM’ and 
‘AntiDM.’ For all tasks in this group, two stimuli are presented simulta-
neously and persist throughout the duration of the stimulus epoch. 
They are drawn according to θstim1 ∼ 𝕌𝕌𝕌0, 2π]  and θstim2 ∼ 𝕌𝕌
𝕌(θstim1 − 0.2π,θstim1 − 0.6π) ∪ (θstim1 + 0.2π,θstim1 + 0.6π)]. A base strength 
applied to both stimuli is drawn such that strbase ∼ 𝕌𝕌𝕌1.0, 1.2]. A contrast 
is drawn from a discrete distribution such that c ~ {−0.175, −0.15, −0.1, 
0.1, 0.15, 0.175} so the stimulus strength associated with each direction 
in a trial are given by strstim1 = strbase + c and strstim2 = strbase − c.

For the ‘DM’ task,

θtarget = {
θstim1 if strstim1 > strstim2
θstim2 otherwise

and for the the ‘AntiDM’ task,

θtarget = {
θstim1 if strstim1 < strstim2
θstim2 otherwise

For these versions of the tasks, the stimuli are presented in either 
modality 1 or modality 2 with equal probability. For the multisensory 
versions of each task, stimuli directions are drawn in the same manner 
and presented across both modalities so that θstim1,mod1 = θstim1,mod2  
and θstim2,mod1 = θstim2,mod2 . Base strengths are drawn independently 
for each modality. Contrasts for both modalities are drawn  
from a discrete distribution such that cmod 1, cmod2 ∼ {0.2,0.175,
0.15,0.125, −0.125, −0.15, −0.175, −0.2} . If both |cmod 1| − |cmod2| = 0  then 
contrasts are redrawn to avoid zero-contrast trials during training. 
If both cmod 1  and cmod2  have the same sign, then contrasts are  
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redrawn to ensure that the trial requires integrating over both  
modalities as opposed to simply performing a ‘DM’ task in a  
single modality. Criteria for target responses are measured as the 
strength of a given direction summed over both modalities. So, for 
‘MultiDM’

θtarget =
⎧⎪
⎨⎪
⎩

θstim1,mod 1 if strstim1,mod1 + strstim1,mod2 > strstim2,mod1
+strstim2,mod2

θstim2,mod1 otherwise

and for ‘AntiMultiDM’

θtarget =
⎧⎪
⎨⎪
⎩

θstim1,mod 1 if strstim1,mod1 + strstim1,mod2 < strstim2,mod1
+strstim2,mod2

θstim2,mod1 otherwise

Stimuli for modality-specific versions of each task are generated 
in the same way as multisensory versions of the task. Criteria for target 
response are the same as standard versions of ‘DM’ and ‘AntiDM’ tasks 
applied only to stimuli in the relevant modality.

In confidence-based decision-making tasks (‘ConDM’ and ‘ConAn-
tiDM’), the stimuli directions are drawn in the same way as above. 
Stimuli are shown in either modality 1 or modality 2 with equal prob-
ability. In each trial, strbase = 1. The contrast and noise for each trial is 
based on the thresholded performance of a SIMPLENET model trained 
on all tasks except ‘ConDM’ and ‘ConAntiDM’. Once this model has been 
trained, we establish a threshold across levels of noise and contrasts for 
which the model can perform a ‘DM’ or an ‘AntiDM’ task at 95% correct. 
We then draw contrasts and noises for trials from above and below this 
threshold with equal probability during training. In trials where the 
noise and contrast levels fell below the 95% correct threshold, the model 
must repress response, and otherwise perform the decision-making 
task (either ‘DM’ or ‘AntiDM’).

‘Comparison’ tasks. Our comparison task group includes ‘COMP1’, 
‘COMP2’, ‘MultiCOMP1’, ‘MultiCOMP2’, ‘Anti’ versions of each of 
these tasks, as well as modality-specific versions of ‘COMP1’ and 
‘COMP2’ tasks. This group of tasks is designed to extend the basic 
decision-making framework into a setting with more complex con-
trol demands. These tasks utilize the delay structure in the stimulus 
epoch so that stim1 appears only during the stim1 epoch, followed 
by a delay, and finally stim2. This provides a temporal ordering on 
the stimuli. In ‘COMP1’, the model must respond to the first stimulus 
only if it has greater strength than the second and otherwise repress 
a response that is

θtarget = {
θstim1 if strstim1 > strstim2
repress otherwise

Likewise, in ‘COMP2’, the model must respond to the second direc-
tion if it presented with greater strength than the first otherwise repress 
response that is

θtarget = {
θstim2 if strstim2 > strstim1
repress otherwise

In ‘Anti’ versions of the task the ordering criteria is the same except 
for stimuli with least strength, that is, for ‘AntiCOMP1’

θtarget = {
θstim1 if strstim1 < strstim2
repress otherwise

and for ‘AntiCOMP2’

θtarget = {
θstim2 if strstim2 < strstim1
repress otherwise

In multisensory settings, the criteria for target direction are 
analogous to the multisensory decision-making tasks where strength 
is integrated across modalities. Likewise, for modality-specific ver-
sions, the criteria are only applied to stimuli in the relevant modality. 
Stimuli directions and strength for each of these tasks are drawn from 
the same distributions as the analogous task in the ‘decision-making’ 
family. However, during training, we make sure to balance trials where 
responses are required and trials where models must repress response.

‘Duration’ tasks. The ‘duration’ family of tasks includes ‘Dur1’, ‘Dur2’, 
‘MultiDur1’, ‘MultiDur2’, ‘Anti’ versions of each of these tasks and 
modality-specific versions of ‘Dur1’ and ‘Dur2’ tasks. These tasks require 
models to perform a time estimation task with the added demand or 
stimuli ordering determining relevance for response. Like in ‘com-
parison’ tasks, stim1 is presented followed by a delay and then stim2. 
For ‘Dur1’ trials

θtarget = {
θstim1 if durstim1 > durstim2
repress otherwise

Likewise, for ‘Dur2’

θtarget = {
θstim2 if durstim2 > durstim1
repress otherwise

In ‘Anti’ versions of these tasks, the correct response is in the direction 
of the stimulus with the shortest duration given the ordering criteria 
is met. Hence, for ‘AntiDur1’

θtarget = {
θstim1 if durstim1 < durstim2
repress otherwise

and for ‘AntiDur2’

θtarget = {
θstim2 if durstim2 < durstim1
repress otherwise

Across these tasks directions are drawn according to θstim1 ∼ 𝕌𝕌𝕌0, 2π]  
and θstim2 ∼ 𝕌𝕌𝕌(θstim1 − 0.2π,θstim1 − 0.6π) ∪ (θstim1 + 0.2π,θstim1 + 0.6π)] . 
Stimulus strengths are drawn according to strstim1, strstim2 ∼ 𝕌𝕌𝕌0.8, 1.2]. 
To set the duration of each stimulus, we first draw durlong ∼  
{i|35 < i ≤ 50, i ∈ ℕ}  and durshort ∼ {i|25 < i ≤ (durlong − 8), i ∈ ℕ} . During 
training, we determine which trials for a given task should and should 
not require a response in order to evenly balance repress and respond 
trials. We then assign durlong and durshort to either stim1 or stim2 so that 
the trial requires the appropriate response given the particular task type.

Again, criteria for correct response in the multisensory and 
modality-specific versions of each tasks follow analogous tasks in the 
‘decision-making’ and ‘comparison’ groups where multisensory versions 
of the task require integrating total duration over each modality, and 
modality-specific tasks require only considering durations in the given 
task modality. For multisensory tasks, we draw duration value 
durlong ∼ {i|75 < i ≤ 100, i ∈ ℕ} and then split this value durlong0 = durlong ×  
0.55 and durlong1 = durlong × 0.45. We also draw a value durshort = durlong −  
Δdur where Δdur ∼ {i|15 < i ≤ 25, i ∈ ℕ} . This value is then subdivided 
further into dur short0 = dur long1 + Δdur short where Δdurshort ∼  
{i|19 < i ≤ 15, i ∈ ℕ} and durshort1 = durShort − durshort0. Short and long dura-
tions can then be allocated to the ordered stimuli according to task type. 
Drawing durations in this manner ensures that, like in ‘decision-making’ 
and ‘comparison’ groups, correct answers truly require models to inte-
grate durations over both modalities, rather than simply performing 
the task in a given modality to achieve correct responses.

‘Matching’ tasks. The ‘matching’ family of tasks consists of ‘DMS’ 
(delay match to stimulus), ‘DNMS’ (delay non-match to stimulus), ‘DMC’ 
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(delay match to category) and ‘DMNC’ (delay non-match to category) 
tasks. For all tasks, stim1 is presented at the beginning of the stimulus 
epoch, followed by a delay, and the presentation of stim2. The stimulus 
strength is drawn according to strstim1, strstim2 ∼ 𝕌𝕌𝕌0.8, 1.2] . The input 
modality for any given trial is chosen at random with equal probability. 
In both ‘DMS’ and ‘DNMS’ tasks, trials are constructed as ‘matching 
stim’ trials or ‘mismatching stim’ trials with equal probability. In ‘match-
ing stim’ trials θstim1 ∼ 𝕌𝕌𝕌0, 2π]  and θstim2 = θstim1 . In ‘mismatch stim’  
trials, θstim1 ∼ 𝕌𝕌𝕌0, 2π] and

θstim2 ∼ 𝕌𝕌𝕌(θstim1 − 0.2π,θstim1 − 0.6π) ∪ (θstim1 + 0.2π,θstim1 + 0.6π)].

For ‘DMS’, models must respond in the displayed direction if the stimuli 
match, otherwise repress response,

θtarget = {
θstim1 if θstim1 = θstim2
repress otherwise

and for ‘DNMS’, models must respond to the second direction if both 
directions are mismatched,

θtarget = {
θstim2 if θstim1 ≠ θstim2
repress otherwise

‘DMC’ and ‘DNMC’ tasks are organized in a similar manner. The stimulus 
input space is divided evenly into two categories such that 
cat1 = {θ: 0 < θ≤π} and cat2 = {θ: π < θ≤2π}. For ‘DMC’ and ‘DNMC’ tasks, 
trials are constructed as ‘matching cat.’ trials or ‘mismatching cat.’ trials 
with equal probability. In ‘matching cat.’ trials θstim1 ∼ 𝕌𝕌𝕌0, 2π]  and 
θstim2 ∼ 𝕌𝕌(catstim1), where 𝕌𝕌(catstim1) is a uniform draw from the category 
of stim1. In ‘mismatch stim’ trials, θstim1 ∼ 𝕌𝕌𝕌0, 2π] and θstim2 ∼ 𝕌𝕌(−catstim1) 
where −catstim1 is the opposite category as stim1. For ‘DMC’, the model 
must respond in the first direction if both stimuli are presented in the 
same category otherwise repress response,

θtarget = {
θstim1 if catstim1 = catstim2
repress otherwise

and for ‘DNMC’, the model should respond to the second direction if 
both stimuli are presented in opposite categories otherwise repress 
response,

θtarget = {
θstim2 if catstim1 ≠ catstim2
repress otherwise

Target output and correct criteria
The target output y ∈ ℝ33×T  for a trial entails maintaining fixation in 
y1 = yfix during the stimulus epoch, and then either responding in the 
correct direction or repressing activity in the remaining target response 
units y2…33 in the response epoch. Since the model should maintain 
fixation until response, target for fixation is set at yfix = 0.85 during 
preparatory and stimulus epochs and yfix = 0.05 in the response epoch. 
When a response is not required, as in the preparatory and stimulus 
epochs and with repressed activity in the response epoch, unit i takes 
on a target activity of yi = 0.05. Alternatively, when there is a target 
direction for response,

yi = 0.8exp [−0.5 × (
8|θtarget − θi|

π )
2

] + 0.05

where θi is the preferred direction for unit i. Like in sensory stimuli, 
preferred directions for target units are evenly spaced values from 
[0, 2π] allocated to the 32 response units.

For a model response to count as correct, it must maintain fixation, 
that is, ̂yfix > 0.5 during preparatory and stimulus epochs. When no 

response is required ̂yi < 0.15. When a response is required, response 
activity is decoded using a population vector method and 
θresp. ∈ (θtarget −

π
10
,θtarget +

π
10
) . If the model fails to meet any of these 

criteria, the trial response is incorrect.

Model training
Again following ref. 18, model parameters are updated in a supervised 
fashion according to a masked mean squared error loss (mMSE) com-
puted between the model motor response, ̂y1…T = ̂y , and the target, 
y1…T = y, for each trial.

L = mMSE( y, ̂y) = mask × ⟨( yt − ̂yt)
2⟩

t

Here, the multiplication sign denotes element-wise multiplication. 
Masks weigh the importance of different trial epochs. During prepara-
tory and stimulus epochs, mask weights are set to 1; during the first five 
time steps of the response epoch, the mask value is set to 0; and during 
the remainder of the response epoch, the mask weight is set to 5. The 
mask value for the fixation is twice that of other values at all time steps.

For all models, we update Θ = {sensorimotor-RNN, Linearout} dur-
ing training on our task set. For instructed models, we additionally 
update Linearembed in the process of normal training. We train models 
using standard PyTorch machinery and an Adam optimizer. An epoch 
consists of 2,400 mini-batches, with each mini-batch consisting of 64 
trials. For all models, we use the same initial learning rate as in ref. 18, 
lr = 0.001. We found that in the later phases of training, model perfor-
mance oscillated based on which latest task presented during training, 
so we decayed the learning rate for each epoch by a factor of γ = 0.95, 
which allowed performance to converge smoothly. Following ref. 18, 
models train until they reach a threshold performance of 95% across 
all tasks (and train for a minimum of 35 epochs). We found that train-
ing for GPTNET tended to asymptote below performance threshold 
for multisensory versions of comparison tasks. This held true over 
a variety of training hyperparameters and learning rate scheduler 
regimes. Hence, we relax the performance threshold of GPTNET to 
85%. For each model type, we train five models that start from five dif-
ferent random initializations. Where applicable, results are averaged 
over these initializations.

Language model fine-tuning. When fine-tuning models, we allow 
the gradient from the motor loss experienced during sensorimotor 
training to fine-tune the weights in the final layers of the transformer 
language models. During normal training, we checkpoint a copy of 
our instructed models after training for 30 epochs. We then add the 
last three transformer layers to the set of trainable parameters, and 
reset the learning rates to lr = 1 × 10−4 for Θ = {sensorimotor-RNN,  
Linearout} and lrlang = 3 × 10−4 for Θlang = {Linearembed, transformer−3,−2,−1} 
where transformer−3,−2,−1 denotes the parameters of the last three layers 
of the relevant transformer architecture. We used these reduced learn-
ing rates to avoid completely erasing preexisting linguistic knowledge. 
Similarly for RNN parameters, we found the above learning rate avoided 
catastrophic forgetting of sensorimotor knowledge while also allowing 
the RNN to adapt to updated language embeddings across all models. 
Autoregressive models were much more sensitive to this procedure, 
often collapsing at the beginning of fine-tuning. Hence, for GPTNETXL 
and GPTNET, we used lrlang = 5 × 10−5, which resulted in robust learning. 
Models train until they reach a threshold performance of 95% across 
training tasks or 85% correct for GPTNET.

Hold-out testing
During hold-out testing, we present models with 100 batches of one 
of the tasks that had been held out of training. For the instructed 
model, the only weights allowed to update during this phase are 
Θ = {sensorimotor-RNN, Linearout, Linearembed}. All weights of SIM-
PLENET and STRUCTURENET are trainable in this context. In this 
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hold-out setting, we found that in more difficult tasks for some of our 
more poorly performing models, the standard hyperparameters we 
used during training resulted in unstable learning curves for novel 
tasks. To stabilize performance and thereby create fair comparisons 
across models, we used an increased batch size of 256. We then began 
with the standard learning rate of 0.001 and decreased this by incre-
ments of 0.0005 until all models showed robust learning curves. This 
resulted in a learning rate of 8 × 10−4. All additional results shown in the 
Supplementary Information section 4 follow this procedure.

CCGP calculation
To calculate CCGP, we trained a linear decoder on a pair of tasks and 
then tested that decoder on alternative pairs of tasks that have an analo-
gous relationship. We grouped tasks into eight dichotomies: ‘Go’ versus 
‘Anti’, ‘Standard’ versus ‘RT’, ‘Weakest’ versus ‘Strongest’, ‘Longest’ 
versus ‘Shortest’, ‘First Stim.’ versus ‘Second Stim’, ‘Stim Match’ versus 
‘Category Match’, ‘Matching’ versus ‘Non-Matching’ and ‘Mod1’ versus 
‘Mod2’. As an example, the ‘Go’ versus ‘Anti’ dichotomy includes (‘Go’, 
‘AntiGo’), (‘GoMod1’, ‘AntiGoMod1’), (‘GoMod2’, ‘AntiGoMod2’), (‘RTGo’, 
‘AntiRTGo’), (‘RTGoMod1’, ‘AntiRTGoMod1’) and (‘RTGoMod2’, ‘AntiRT-
GoMod2’) task pairs. For ‘RNN’ task representations, we extracted activ-
ity at the time of stimulus onset for 250 example trials. For language 
representations, we input the instruction sets for relevant tasks to our 
language model and directly analyze activity in the ‘embedding’ layer 
or take the sequence-averaged activity in each transformer layer. For 
nonlinguistic models, we simply analyze the space of rule vectors. Train 
and test conditions for decoders were determined by dichotomies 
identified across the task set (Supplementary Note 1). To train and test 
decoders, we used sklearn.svm.LinearSVC Python package. The CCGP 
score for a given task is the average decoding score achieved across 
all dichotomies where the task in question was part of either the train 
set or the test set. For model scores reported in the main text, we only 
calculate CCGP scores for models where the task in question has been 
held out of training. In Supplementary Fig. 9, we report scores on tasks 
where models have been trained on all tasks, and for models where 
instructions have been switched for the hold-out task.

For Fig. 3e, we calculated Pearson’s r correlation coefficient 
between performance on held-out tasks and CCGP scores per task, as 
well as a P-value testing against the null hypothesis that these metrics 
are uncorrelated and normally distributed (using the scipy.stats.pear-
sonr function). Full statistical tests for CCGP scores of both RNN and 
embedding layers from Fig. 3f can be found in Supplementary Fig. 9. 
Note that transformer language models use the same set of pretrained 
weights among random initialization of Sensorimotor-RNNs, thus for 
language model layers, the Fig. 3f plots show the absolute scores of 
those language models.

Conditional clause/deduction task analysis
We first split our task set into two groups (listed below): tasks that 
included conditional clauses and simple deductive reasoning compo-
nents (30 tasks) and those where instructions include simple impera-
tives (20 tasks). We computed the difference in performance across 
the mean of generalization performance for each group across random 
initialization for each model (Fig. 2f). We compared these differences 
to a null distribution constructed by performing a set of 50 random 
shuffles of the task set into groups of 30 and 20 tasks and computing 
differences in the same way, again using two-sided unequal-variance 
t-tests. Because STRUCUTRENET is a nonlinguistic model, we then 
compared performance of STRUCUTRENET to our instructed models 
to disassociate the effects of performing tasks with a deductive reason-
ing component versus processing instructions with more complicated 
conditional clause structure. Results of all statistical tests are reported 
in Supplementary Fig. 6).

Simple imperative tasks include: ‘Go’, ‘AntiGo’, ‘RTGo’, ‘AntiRTGo’, 
‘GoMod1’, ‘GoMod2’, ‘AntiGoMod1’, ‘AntiGoMod2’, ‘RTGoMod1’, 

‘AntiRTGoMod2’, ‘RTGoMod2’, ‘AntiRTGoMod2’, ‘DM’, ‘AntiDM’, 
‘MultiDM’, ‘AntiMultiDM’, ‘DMMod1’, ‘DMMod2’, ‘AntiDMMod1’ and 
‘AntiDMMod2’.

Conditional clause/deduction tasks include: ‘ConDM’, ‘ConAn-
tiDM’, ‘Dur1’, ‘Dur2’, ‘MultiDur1’, ‘MultiDur2’, ‘AntiDur1’, ‘AntiDur2’, 
‘AntiMultiDur1’, ‘AntiMultiDur2’, ‘Dur1Mod1’, ‘Dur1Mod2’, ‘Dur-
2Mod1’, ‘Dur2Mod2’, ‘COMP1’, ‘COMP2’, ‘MultiCOMP1’, ‘MultiCOMP2’, 
‘AntiCOMP1’, ‘AntiCOMP2’, ‘AntiMultiCOMP1’, ‘AntiMultiCOMP2’, 
‘COMP1Mod1’, ‘COMP1Mod2’, ‘COMP2Mod1’, ‘COMP2Mod2’, ‘DMS’, 
‘DNMS’, ‘DMC’ and ‘DMNC’.

Language production training
Self-supervised language production network training. Our lan-
guage production framework is inspired by classic sequence- 
to-sequence modeling using RNNs53. Our Production-RNN is a GRU 
with 256 hidden units using ReLU nonlinearities. At each step in the 
sequence, a set of decoder weights, Linearwords, attempts to decode the 
next token, wτ+1, from the hidden state of the recurrent units. The hid-
den state of the Production-RNN is initialized by concatenating the 
time average and maximum sensorimotor activity of a SBERTNET (L) 
and passing that through weights Linearsm. The linguistic instruction 
used to drive the initializing sensorimotor activity is in turn used as the 
target set of tokens for the Production-RNN outputs. The first input to 
the Production-RNN is always a special start-of-sentence token, and 
the decoder runs until an end-of-sentence token is decoded or until 
input reaches a length of 30 tokens. Suppose w1,k…w𝒯𝒯𝒯k ∈ Instruct

i
k  is 

the sequence of tokens in instruction k where k is in the instruction set 
for task i and Xi is sensory input for a trial of task i. For brevity, we denote 
the process by which language models embed instructions as Embed() 
(see ‘Pretrained transformers’). The decoded token at the τth position, 
ŵτ,k, is then given by

hsm
T = SensorimotorRNN (Xi, Embed (w1,k…w𝒯𝒯𝒯k)) hsm

T ∈ ℝT×256

sm_out = (meanT (hsm
T ) ,max

T
(hsm

T ) sm_out ∈ ℝ512

hdecoder0 = relu (Linearsm(sm_out)) hdecoder0 ∈ ℝ256

hdecoder0 = Dropout (hdecoder0 ) hdecoder0 ∈ ℝ256

hdecoderτ = ProductionRNN (ŵ1,k… ŵτ−1,k;hdecoder0 ) , hdecoderτ ∈ ℝ256

pŵτ,k = softmax (Linearwords (hdecoderτ,k )) pŵτ,k ∈ ℝ|vocab|,

ŵτ,k = argmax (pŵτ,k )

The model parameters Θproduction = {Linearsm, Linearwords, Production- 
RNN} are trained using cross-entropy loss between the pŵτ,i  and the 
instruction token wτ,k provided to the sensorimotor-RNN as input. We 
train for 80 epochs of 2,400 batches with 64 trials per batch and with 
task type randomly interleaved. We found that using an initial learning 
rate of 0.001 sometimes caused models to diverge in early phases of 
training, so we opted for a learning rate of 1× 10−4, which led to stable 
early training. To alleviate similar oscillation problems detected in 
sensorimotor training, we also decayed the learning rate by γ = 0.99 
per epoch. Additionally, the use of a dropout layer with a dropout rate 
of 0.05 improved performance. We also used a teacher forcing curricu-
lum, where for some ratio of training batches, we input the ground 
truth instruction token wτ,k at each time step instead of the models 
decoded word ŵτ,k. At each epoch, teacher _forcing_ ratio = 0.5 × 80−epoch

80
.

Obtaining embedding layer activity using motor feedback. For a 
task, i, we seek to optimize a set of embedding activity vectors Ei ∈ ℝ64 
such that when they are input as task-identifying information, the 
model will perform the task in question. Crucially, we freeze all model 
weights Θ = {sensorimotor-RNN, Linearout, Linearembedding} and only 
update Ei according to the standard supervised loss on the motor 
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output. For notional clarity, GRU dependence on the previous hidden 
state ht−1 has been made implicit in the following equations.

̂y i = σ(Linearout (SensorimotorRNN(Xi, Ei)) )

L = mMSE( y, ̂y)

We optimized a set of 25 embedding vectors for each task, again using 
an Adam optimizer. Here the optimization space has many subopti-
mal local minimums corresponding to embeddings for related tasks. 
Hence, we used a high initial learning rate of lr = 0.05, which we decayed 
by γ = 0.8 for each epoch. This resulted in more robust learning than 
lower learning rates. An epoch lasts for 800 batches with a batch length 
of 64, and we train for a minimum of 1 epoch or until we reach a thresh-
old performance of 90% or 85% on ‘DMC’ and ‘DNMC’ tasks.

Producing task instructions. To produce task instructions, we sim-
ply use the set Ei as task-identifying information in the input of the 
sensorimotor-RNN and use the Production-RNN to output instructions 
based on the sensorimotor activity driven by Ei. For each task, we use the 
set of embedding vectors to produce 50 instructions per task. We repeat 
this process for each of the 5 initializations of sensorimotor-RNN, 
resulting in 5 distinct language production networks, and 5 distinct 
sets of learned embedding vectors. Reported results for each task are 
averaged over these 5 networks. For the confusion matrix (Fig. 5d),  
we report the average percentage that decoded instructions are in 
the training instruction set for a given task or a novel instruction. 
Partner model performance (Fig. 5e) for each network initialization 
is computed by testing each of the 4 possible partner networks and 
averaging over these results.

Sample sizes/randomization
No statistical methods were used to predetermine sample sizes 
but following ref. 18 we used five different random weight initiali-
zations per language model tested. Randomization of weights was 
carried out automatically in Python and PyTorch software packages. 
Given this automated randomization of weights, we did not use 
any blinding procedures in our study. No data were excluded from  
analyses.

Software
All simulation and data analysis was performed in Python 3.7.11. 
PyTorch 1.10 was used to implement and train models (this includes 
Adam optimizer implementation). Transformers 4.16.2 was used to 
implement language models and all pretrained weights for language 
models were taken from the Huggingface repository (https://hug-
gingface.co/docs/transformers/). We also used scikit-learn 0.24.1 and 
scipy 1.7.3 to perform analyses.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All weights for language transformers used in this study were taken 
from pretrained models available on the Huggingface repository 
(https://huggingface.co/docs/transformers/). Training data for 
simulated psychophysical tasks were generated using code available 

at https://github.com/ReidarRiveland/Instruct-RNN/. The full set of 
trained model weights for all results is available upon request.

Code availability
All code used to train models and analyze results can be found at  
https://github.com/ReidarRiveland/Instruct-RNN/.
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