nature neuroscience

Article

https://doi.org/10.1038/s41593-024-01607-5

Natural language instructionsinduce
compositional generalizationin networks

of neurons

Received: 13 May 2023 Reidar Riveland ®

Accepted: 15 February 2024

& Alexandre Pouget®

Published online: 18 March 2024

W Check for updates

A fundamental human cognitive feat is to interpret linguistic instructions
in order to perform novel tasks without explicit task experience. Yet,
the neural computations that might be used to accomplish this remain

poorly understood. We use advances in natural language processing to
create aneural model of generalization based on linguistic instructions.
Models are trained on a set of common psychophysical tasks, and receive
instructions embedded by a pretrained language model. Our best models
can performa previously unseen task with an average performance of 83%
correct based solely on linguistic instructions (that is, zero-shot learning).
We found that language scaffolds sensorimotor representations such that

activity for interrelated tasks shares acommon geometry with the semantic
representations of instructions, allowing language to cue the proper
composition of practiced skills in unseen settings. We show how this model
generates alinguistic description of anovel task it has identified using only
motor feedback, which can subsequently guide a partner model to perform

the task. Our models offer several experimentally testable predictions
outlining how linguistic information must be represented to facilitate
flexible and general cognition in the human brain.

In a laboratory setting, animals require numerous trials in order to
acquire a new behavioral task. This is in part because the only means
of communication with nonlinguistic animals is simple positive and
negative reinforcement signals. By contrast, itiscommon to give writ-
ten or verbal instructions to humans, which allows them to perform
new tasksrelatively quickly. Further, once humans have learned atask,
they can typically describe the solution with natural language. The dual
ability to use an instruction to perform a novel task and, conversely,
produce alinguistic description of the demands of a task once it has
beenlearned are two unique cornerstones of human communication.
Yet, the computational principles that underlie these abilities remain
poorly understood.

One influential systems-level explanation posits that flexible
interregional connectivity in the prefrontal cortex allows for the
reuse of practiced sensorimotor representations in novel settings".

More recently, multiple studies have observed that when subjects
arerequired to flexibly recruit different stimulus-response patterns,
neural representations are organized according to the abstract struc-
ture of the task set>. Lastly, recent modeling work has shown that a
multitasking recurrent neural network (RNN) will share dynamical
motifs across tasks with similar demands®. This work forms a strong
basis for explanations of flexible cognition in humans but leaves
open the question of how linguistic information can reconfigure
a sensorimotor network so that it performs a novel task well on
the first attempt. Overall, it remains unclear what representational
structure we should expect from brain areas that are responsible for
integrating linguisticinformationin order to reorganize sensorimo-
tor mappings on the fly.

These questions become all the more pressing given that recent
advancesinmachinelearning have led to artificial systems that exhibit
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human-like language skills”®. Recent works have matched neural data
recorded during passive listening and reading tasks to activations in
autoregressive language models (that is, GPT?), arguing that thereisa
fundamentally predictive component to language comprehension'®".
Additionally, some high-profile machine learning models do show
the ability to use natural language as a prompt to perform a linguistic
task or render animage, but the outputs of these models are difficult
tointerpretintermsofasensorimotor mapping that we might expect
to occurin abiological system' ™, Alternatively, recent work on mul-
timodal interactive agents may be more interpretable in terms of the
actions they take, but utilize a perceptual hierarchy that fuses vision
and language at early stages of processing, making them difficult to
map onto functionally and anatomically distinct language and vision
areasin human brains”.

We, therefore, seek to leverage the power of language models
in a way that results in testable neural predictions detailing how the
human brain processes natural language in order to generalize across
sensorimotor tasks.

To that end, we train an RNN (sensorimotor-RNN) model on a set
of simple psychophysical tasks where models process instructions for
eachtask using apretrained language model. We find thatembedding
instructions with models tuned to sentence-level semantics allow
sensorimotor-RNNs to perform a novel task at 83% correct, on aver-
age. Generalization in our models is supported by a representational
geometry that captures task subcomponents and is shared between
instruction embeddings and sensorimotor activity, thereby allowing
a composition of practice skills in a novel setting. We also find that
individual neurons modulate their tuning based on the semantics
of instructions. We demonstrate how a network trained to interpret
linguistic instructions can invert this understanding and produce a
linguistic description of a previously unseen task based on the informa-
tionin motor feedback signals. We end by discussing how these results
canguideresearch ontheneural basis of language-based generalization
inthe human brain.

Results

Instructed models and task set

We train sensorimotor-RNNs onaset of 50 interrelated psychophysical
tasks that require various cognitive capacities that are well studied in
the literature'®. Two example tasks are presented in Fig. 1a,b as they
might appear in a laboratory setting. For all tasks, models receive
asensory input and task-identifying information and must output
motor response activity (Fig. 1c). Input stimuli are encoded by two
one-dimensional maps of neurons, each representing a differentinput
modality, with periodic Gaussian tuning curves to angles (over (0, 2m)).
Output responses are encoded in the same way. Inputs also include a
single fixation unit. After theinput fixation s off, the model can respond
to the input stimuli. Our 50 tasks are roughly divided into 5 groups,
‘Go’,‘Decision-making’,‘Comparison’, ‘Duration’ And ‘Matching’, where
within-group tasks share similar sensory input structures but may
require divergent responses. Forinstance, in the decision-making (DM)
task, the network must respond inthe direction of the stimulus with the
highest contrast, whereas in the anti-decision-making (AntiDM) task,
thenetwork responds to the stimulus with the weakest contrast (Fig. 1a).
Thus, networks must properly infer the task demands for a given trial
from task-identifyinginformation in order to perform all tasks simul-
taneously (see Methods for task details; see Supplementary Fig. 13
for example trials of all tasks).

Inour models, task-identifying input is either nonlinguistic or lin-
guistic. We use two nonlinguistic control models. First, in SIMPLENET,
the identity of a task is represented by one of 50 orthogonal rule vec-
tors. Second, STRUCTURENET uses a set of 10 orthogonal structure
vectors, eachrepresenting adimension of the task set (that s, respond
weakest versus strongest direction), and tasks are encoded using com-
binations of these vectors (see Supplementary Notes 3 for the full set of

structure combinations). As aresult, STRUCTURENET fully captures all
the relevantrelationships among tasks, whereas SIMPLENET encodes
none of this structure.

Instructed models use a pretrained transformer architecture' to
embed natural language instructions for the tasks at hand. For each
task, there is a corresponding set of 20 unique instructions (15 train-
ing, 5 validation; see Supplementary Notes 2 for the full instruction
set). We test various types of language models that share the same
basic architecture but differ in their size and also their pretraining
objective. We tested two autoregressive models, astandard and alarge
version of GPT2, which we call GPT and GPT (XL), respectively. Previous
work has demonstrated that GPT activations can account for various
neural signatures of reading and listening". BERT is trained to identify
masked words within a piece of text?, but it also uses an unsupervised
sentence-level objective, in which the network is given two sentences
and must determine whether they follow each other in the original
text. SBERT is trained like BERT but receives additional tuning on the
Stanford Natural Language Inference task, a hand-labeled dataset
detailing the logical relationship between two candidate sentences
(Methods)?** Lastly, we use the language embedder from CLIP, amul-
timodal model that learns ajoint embedding space ofimages and text
captions?. We call a sensorimotor-RNN using a given language model
LANGUAGEMODELNET and append a letter indicating its size. The
various sizes of models are given in Fig. 1c. For each language model,
we apply a pooling method to the last hidden state of the transformer
and pass this fixed-length representation through aset of linear weights
that are trained during task learning. This results in a 64-dimensional
instructionembedding across all models (Methods). Language model
weights are frozen unless otherwise specified. Finally, as a control, we
alsotestabag-of-words (BoW) embedding scheme that only uses word
count statistics to embed each instruction.

First, we verify our models can perform all tasks simultaneously.
For instructed models to perform well, they must infer the common
semantic content between 15 distinctinstruction formulations for each
task. Wefind thatall ourinstructed models canlearn all tasks simultane-
ously except for GPTNET, where performance asymptotes are below
the 95% threshold for some tasks. Hence, we relax the performance
threshold to 85% for models that use GPT (Supplementary Fig. 1; see
Methods for training details). We additionally tested all architectures
onvalidation instructions (Supplementary Fig. 2). SBERTNET (L) and
SBERTNET are our best-performing models, achieving an average
performance of 97% and 94%, respectively, on validationinstructions,
demonstrating that these networks infer the proper semantic content
even for entirely novel instructions.

Generalization to novel tasks

We next examined the extent to which different language models aided
generalization to novel tasks. We trained individual networks on 45
tasks and then tested performance when exposed to the five held-out
tasks. We use unequal-variance t-tests to make comparisons among the
performance of different models. Figure 2 shows results with Pvalues
for the most relevant comparisons (a full matrix of comparisons across
allmodels can be found in Supplementary Figs. 3 and 4)

Our uninstructed control model SIMPLENET performs at 39%, on
average, on the first presentation of anovel task (zero-shot generaliza-
tion). This serves as abaseline for generalization. Note that despite the
orthogonality of task rules provided to SIMPLENET, exposure to the
task set allows modelstolearn patterns that are commonto all tasks (for
example, always repress response during fixation). Therefore, 39% is
not chance-level performance per se, but rather performance achieved
by a network trained and tested on a task set with some common
requirements for responding. GPTNET, exhibits a zero-shot generaliza-
tion of 57%. Thisis asignificantimprovement over SIMPLENET (¢=8.32,
P=8.24 x107®). Strikingly, increasing the size of GPT by an order of
magnitude to the1.5billion parameters used by GPT (XL) only resulted
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Fig.1| Tasks and models. a,b, lllustrations of example trials as they might appear
inalaboratory setting. The trial is instructed, then stimuli are presented with
different angles and strengths of contrast. The agent must then respond with the
proper angle during the response period. a, An example AntiDM trial where the
agent must respond to the angle presented with the least intensity. b, An example
COMP1 trial where the agent must respond to the first angle if it is presented with
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@® SimpleNet - orthogonal rule vector for each task

@ sbertNet (L) - supervised sentence pretraining (~300M parameters)
sbertNet - supervised sentence pretraining (~I00M parameters)

@ clipNet (S) - multimodal language/vision pretraining (~60M parameters)

bertNet - masked word prediction pretraining (~100M parameters)

gptNet (XL) -

next word prediction pretraining (~1.5B parameters)
® gptNet - next word prediction pretraining (~100M parameters)

bowNet - shallow word inclusion statistics

higher intensity than the second angle otherwise repress response. ¢, Diagram of
modelinputs and outputs. Sensory inputs (fixation unit, modality 1, modality 2)
areshowninred and model outputs (fixation output, motor output) are shown in
green. Models also receive arule vector (blue) or the embedding that results from
passing task instructions through a pretrained language model (gray). A list of
models tested is provided in the inset.

inmodest gains over BOWNET (64%), with GPTNET (XL) achieving 68%
onheld-outtasks (¢ =2.04, P= 0.047). By contrast, CLIPNET (S), which
uses 4% of the number of parameters utilized by GPTNET (XL), is none-
theless able to achieve the same performance (68% correct, t = 0.146,
P=0.88). Likewise, BERTNET achieves a generalization performance
thatlagsonly 2% behind GPTNETXL inthe mean (¢=-1.122, P= 0.262).
By contrast, models with knowledge of sentence-level semantics show
marked improvements ingeneralization, with SBERTNET performing

anunseentaskat79% correct on average. Finally, our best-performing
model, SBERTNET (L), can execute a never-before-seen task with a
performance of 83% correct, on average, lagging just a few percent-
age points behind STRUCTURENET (88% correct), which receives the
structure of the task set hand-coded inits rule vectors.

Figure 2b shows a histogram of the number of tasks for which each
model achieves a given level of performance. Again, SBERTNET (L)
manages to performover 20 tasks set nearly perfectly in the zero-shot
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Fig.2|Model performance on novel tasks. a, Learning curves for the first

100 exposures to held-out tasks averaged over all tasks. Data are presented as
the mean + s.d. across different n = 5 random initializations of sensorimotor-
RNN weights. For all subplots, asterisks indicate significant differences among
performance according to a two-sided unequal-variance ¢-test. Most relevant
comparisons are presented in plots (for all subplots, not significant (NS),
P>0.05,*P<0.05,*P<0.01,**P<0.001; STRUCTURENET versus SBERTNET
(L):t=3.761,P=1.89 x 10™*; SBERTNET (L) versus SBERTNET: = 2.19, P= 0.029;
SBERTNET versus CLIPNET: = 6.22, P=1.02 x 10°%; CLIPNET versus BERTNET:
t=1.037, P=0.300; BERTNET versus GPTNET (XL): ¢t =-1.122, P=0.262; GPTNET
(XL) versus GPTNET: t=6.22, P=1.04 x10™%; GPTNET versus BOWNET: t = -3.346,
P=8.85%10"*; BOWNET versus SIMPLENET: ¢ =10.25, P=2.091 x 10 %). A full table
of pairwise comparisons can be found in Supplementary Fig. 3. b, Distribution
of generalization performance (that is, first exposure to novel task) across
models. c-f, Performance across different test conditions for n = 5 different
random initialization of sensorimotor-RNN weights where each point indicates
average performance across tasks for a given initialization. ¢, Generalization
performance for tasks where instructions are swapped at test time
(STRUCTURENET versus SBERTNET (L): t =-0.15, P=0.875; SBERTNET (L) versus
SBERTNET: t=-2.102, P=0.036; SBERTNET versus CLIPNET: ¢ =-0.162, P= 0.871;
CLIPNET versus BERTNET: £ =0.315, P=0.752; BERTNET versus GPTNET (XL):
t=0.781, P=0.435; GPTNET (XL) versus GPTNET: £ =1.071, P= 0.285; GPTNET
versus BOWNET: ¢t =-2.702, P=0.007; BOWNET versus SIMPLENET: t =-3.471,
P=5.633"*). Afull table of pairwise comparisons can be found in Supplementary
Fig.4.d, Generalization performance for models where tasks from the same
family are held out during training (STRUCTURENET versus SBERTNET (L):
t=0.629,P=0.530; SBERTNET (L) versus SBERTNET: t=-0.668, P= 0.504;
SBERTNET versus CLIPNET: ¢ =8.043, P=7.757 x10™5; CLIPNET versus BERTNET:
t=-0.306,P=0.759; BERTNET versus GPTNET (XL): = 0.163, P= 0.869; GPTNET

(XL) versus GPTNET: ¢t =1.534, P=0.126; GPTNET versus BOWNET: t = -6.418,
P=3.26 x107; BOWNET versus SIMPLENET: t =14.23, P = 8.561 ). A full table of
pairwise comparisons can be found in Supplementary Fig. 4. e, Generalization
performance for models where the last layers of language models are allowed to
fine-tune to the loss from sensorimotor tasks (STRUCTURENET versus SBERTNET
(L):t=1.203,P=0.229; SBERTNET (L) versus SBERTNET: t =2.399, P= 0.016;
SBERTNET versus CLIPNET: =5.186, P=3.251 x107; CLIPNET versus BERTNET:
t=-3.002, P=0.002; BERTNET versus GPTNET (XL): ¢ = 0.522, P= 0.601; GPTNET
(XL) versus GPTNET: ¢ =2.631, P=0.009; GPTNET versus BOWNET: t = 4.440,
P=1.134 x 1075, BOWNET versus SIMPLENET: £ =10.255, P=2.091 x 107%).

A full table of pairwise comparisons can be found in Supplementary Fig. 4.

f, Average difference in performance between tasks that use standard imperative
instructions and those that use instructions with conditional clauses and require
asimple deductive reasoning component. Colored asterisks at the bottom of
the plot show Pvalues for a two-sided, unequal-variance ¢t-test between the null
distribution constructed using random splits of the task set (transparent points
represent mean differences for random splits; STRUCTURENET: t = -36.46,
P=4.34x10"; SBERTNET (L): t=-16.38,P=3.02 x 105, SBERTNET: £ = -15.35,
P=3.920x1075; CLIPNET: t =-44.68, P=5.32 x103; BERTNET: t = -25.51,

P=3.14 %1078 GPTNET (XL): t=-16.99, P=3.61 x 10"% GPTNET: £ =-9.150,
P=0.0002; BOWNET: t=-70.99, P=4.566 x 10"; SIMPLENET: £ =19.60,
P=5.82x107°), and asterisks at the top of plot indicate P-value results froma
t-test comparing differences with STRUCTURENET and our other instructed
models (versus SBERTNET (L): £=3.702, P=0.0168; versus SBERTNET: t = 6.592,
P=0.002; versus CLIPNET: ¢ = 30.35, P=2.367 x 107; versus BERTNET: t =7.234,
P=0.0007;versus GPTNET (XL): t=5.282, P=0.004; versus GPTNET: t = -1.745,
P=0.149; versus BOWNET: t = 75.04, P=9.96 x 10™"; versus SIMPLENET: t = -30.95,
P=2.86 x107°; see Methods and Supplementary Fig. 6. for full comparisons).
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setting (for individual task performance for all models across tasks,
see Supplementary Fig. 3).

Tovalidate that our best-performing models leveraged the seman-
tics of instructions, we presented the sensory input for one held-out
task while providing the linguistic instructions for a different held-out
task. Models that truly rely on linguistic information should be most
penalized by this manipulation and, as predicted, we saw the largest
decrease in performance for our best models (Fig. 2c).

We also tested a more stringent hold-out procedure where we
purposefully chose 4-6 tasks from the same family of tasks to hold
out during training (Fig. 2d). Overall, performance decreased in this
more difficult setting, although our best-performing models still
showed strong generalization, with SBERTNET (L) and SBERTNET
achieving 71% and 72% correct on novel tasks, respectively, which was
not significantly different from STRUCTURENET at 72% (¢ = 0.629,
P=0.529; t=0.064, P=0.948; for SBERTNET (L) and SBERTNET,
respectively).

In addition, we tested models in a setting where we allow the
weights of language models to tune according to the loss experienced
during sensorimotor training (see Methods for tuning details). This
manipulation improved the generalization performance across all
models, and for our best-performing model, SBERTNET (L), we see
that generalizationis as strongasfor STRUCTURENET (86%, t =1.204,
P=0.229).

Following ref. 18, we tested models in a setting where task-type
information for a given task was represented as a composition of
information for related tasks in the training set (that is, AntiDM-
Mod1 = (rule(AntiDMMod2) - rule(DMMod2)) + rule(DMMod1)). In
this setting, we did find that the performance of SIMPLENET improved
(60% correct). However, when we combined embedded instructions
according to the same compositional rules, our linguistic models
dramatically outperformed SIMPLENET. This suggests that training
inthe context of language more readily allows a simple compositional
scheme to successfully configure task responses (see Supplementary
Fig.5 for full results and compositional encodings).

Finally, we tested a version of each model where outputs of lan-
guage models are passed through aset of nonlinear layers, as opposed
to the linear mapping used in the preceding results. We found that
this manipulation reduced performance, suggesting that this added
power leads to overfitting on training tasks, and that a simpler linear
mappingisbetter suited to generalization (see Methods for details and
Supplementary Fig. 4 for full results).

The discrepancy in performance between our instructed mod-
els suggests that in order to represent linguistic information such
that it can successfully configure sensorimotor networks, it is not
sufficient to simply use any very powerful language processing sys-
tem. Rather, model success can be delineated by the extent to which
they are exposed to sentence-level semantics during pretraining.
Our best-performing models SBERTNET (L) and SBERTNET are
explicitly trained to produce good sentence embeddings, whereas
our worst-performing model, GPTNET, is only tuned to the statistics
of upcoming words. Both CLIPNET (S) and BERTNET are exposed to
some form of sentence-level knowledge. CLIPNET (S) is interested
in sentence-level representations, but trains these representations
using the statistics of corresponding vision representations. BERTNET
performs a two-way classification of whether or not input sentences
are adjacent in the training corpus. That the 1.5 billion parameters of
GPTNET (XL) doesn’'t markedly improve performance relative to these
comparatively small models speaks to the fact that model size isn’t the
determining factor. Lastly, although BoW removes key elements of
linguistic meaning (that s, syntax), the simple use of word occurrences
encodes information primarily about the similarities and differences
between the sentences. Forinstance, simply representing the inclusion
or exclusion of the words ‘stronger’ or ‘weaker” is highly informative
about the meaning of the instruction.

We also investigated which features of language make it difficult
for our models to generalize. Thirty of our tasks require processing
instructions with a conditional clause structure (for example, COMP1)
as opposed to a simple imperative (for example, AntiDM). Tasks that
are instructed using conditional clauses also require a simple form
of deductive reasoning (if p then g else s). Neuroimaging literature
exploring the relationship between such deductive processes and
language areas has reached differing conclusions, with some early
studies showing that deduction recruits regions that are thought to
support syntactic computations*2* and follow-up studies claiming
that deduction can be reliably dissociated from language areas®°.
One theory for this variation in results is that baseline tasks used to
isolate deductive reasoning in earlier studies used linguistic stimuli
that required only superficial processing® .

To explore thisissue, we calculated the average difference in per-
formance between tasks with and without conditional clauses/deduc-
tivereasoning requirements (Fig. 2f). All our models performed worse
on these tasks relative to a set of random shuffles. However, we also
saw anadditional effect between STRUCTURENET and our instructed
models, which performed worse than STRUCTURENET by a statisti-
cally significant margin (see Supplementary Fig. 6 for full compari-
sons). Thisisa crucial comparison because STRUCTURENET performs
deductive tasks without relying on language. Hence, the decrease in
performance between STRUCTURENET and instructed models is in
part due to the difficulty inherent in parsing syntactically more com-
plicated language. The implication is that we may see engagement of
linguistic areas in deductive reasoning tasks, but this may simply be
due to the increased syntactic demands of corresponding instruc-
tions (rather than processes that recruit linguistic areas to explicitly
aid in the deduction). This result largely agrees with two reviews of
the deductive reasoning literature, which concluded that the effects
inlanguage areas seenin early studies were likely due to the syntactic
complexity of test stimuli***2

Shared structure inlanguage and sensorimotor networks
Wethenturnedto aninvestigation of the representational scheme that
supports generalization. First, we note that like in other multitasking
models, units in our sensorimotor-RNNs exhibited functional clus-
tering, where similar subsets of neurons show high variance across
similar sets of tasks (Supplementary Fig. 7). Moreover, we found that
models canlearn unseentasks by only training sensorimotor-RNNinput
weights and keeping the recurrent dynamics constant (Supplementary
Fig.8). Past work has shown that these properties are characteristic of
networks that can reuse the same set of underlying neural resources
across different settings®'®. We then examined the geometry that exists
between the neural representations of related tasks. We plotted the
first three principal components (PCs) of sensorimotor-RNN hidden
activity at stimulus onset in SIMPLENET, GPTNETXL, SBERTNET (L)
and STRUCTURENET performing modality-specific DM and AntiDM
tasks. Here, models receive input for a decision-making task in both
modalities but must only attend to the stimuliin the modality relevant
for the current task. Importantly, AntiDMModl is held out of training
in the following examples. In addition, we plotted the PCs of either
the rule vectors or the instruction embeddings in each task (Fig. 3).
For STRUCTURENET, hidden activity is factorized along task-
relevant axes, namely a consistent ‘Pro’ versus ‘Anti’ directionin activ-
ity space (solid arrows), and a‘Mod1’ versus ‘Mod2’ direction (dashed
arrows). Importantly, this structure is maintained even for AntiDM-
Modl, which has been held out of training, allowing STRUCTURENET
to achieve a performance of 92% correct on this unseen task. This
factorization is also reflected in the PCs of rule embeddings. Strik-
ingly, SBERTNET (L) also organizes its representations in a way that
captures the essential compositional nature of the task set using only
the structure that it has inferred from the semantics of instructions.
This is the case for language embeddings, which maintain abstract
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Fig. 3 |Structured representations in instructed models. a-d, The first three
PCs of sensorimotor hidden activity and task-info representations for models
trained with AntiDMMod1 held out. Solid arrows represent an abstract ‘Pro’
versus ‘Anti’ axis, and dashed arrows represent an abstract ‘Mod1’ versus ‘Mod2’
axis.a, STRUCTURENET. b, SBERTNET (L). ¢, GPTNET (XL).d, SIMPLENET.

e, Correlation between held-out task CCGP and zero-shot performance
(Pearson’sr=0.606, P=1.57 x107*).f, CCGP scores for held-out tasks for
eachlayer in the model hierarchy. Significance scores indicate P-value results
from pairwise two-sided unequal-variance t-tests performed among model

distributions of CCGP scores on held-out tasks for sensorimotor-RNN
(NSP>0.05,*P<0.05,*P<0.01,**P<0.001; STRUCTURENET versus SBERTNET
(L):t=13.67, P=2.44 x107%; SBERTNET (L) versus SBERTNET: £ = 5.061,

P=5.84 x107; SBERTNET versus CLIPNET: ¢ =2.809, P= 0.005; CLIPNET versus
BERTNET: ¢ =0.278, P=0.780; BERTNET versus GPTNET (XL): £t =2.505, P=0.012;
GPTNET (XL) versus GPTNET: £=3.180, P= 0.001; GPTNET versus BOWNET:
t=-4.176,P=3.50 x10~; BOWNET versus SIMPLENET: £ =23.0.8, P=1.10"%; see
Supplementary Fig. 9 for full comparisons as well as ¢-test results for embedding
layer CCGP scores).

axesacross AntiDMModlinstructions (again, held out of training). As
aresult, SBERTNET (L) is able to use these relevant axes for AntiDM-
Modlsensorimotor-RNN representations, leading to ageneralization
performance of 82%. By contrast, GPTNET (XL) fails to properly infer a
distinct ‘Pro’ versus ‘Anti’ axesin either sensorimotor-RNN representa-
tions or language embeddings leading to a zero-shot performance of
6% on AntiDMMod1 (Fig. 3b). Finally, we find that the orthogonal rule
vectors used by simpleNet preclude any structure between practiced
and held-out tasks, resulting in a performance of 22%.

To more precisely quantify this structure, we measure the
cross-conditional generalization performance (CCGP) of these

representations’. CCGP measures the ability of a linear decoder
trained to differentiate one set of conditions (that is, DMMod2 and
AntiDMMod2) to generalize to an analogous set of test conditions
(that is, DMMod1 and AntiDMMod]1). Intuitively, this captures the
extent to which models have learned to place sensorimotor activity
along abstract task axes (that is, the ‘Anti’ dimension). Notably, high
CCGPscoresandrelated measures have been observed in experiments
thatrequired human participants to flexibly switch between different
interrelated tasks**.

Wemeasured CCGPscoresamongrepresentationsinsensorimotor-
RNNs for tasks that have been held out of training (Methods) and found
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astrong correlation between CCGP scores and zero-shot performance
(Fig. 3e). Additionally, we find that swapping task instructions for
held-out tasks dramatically reduces CCGP scores for all our instructed
models, indicating that the semantic of instructionsis crucial for main-
taining structured representations (Supplementary Fig. 9).

We then looked at how structure emerges in the language pro-
cessing hierarchy. CCGP decoding scores for different layers in our
model are shown in Fig. 3f. For each instructed model, scores for 12
transformer layers (or thelast 12 layers for SBERTNET (L) and GPTNET
(XL)), the 64-dimensional embedding layer and the Sensorimotor-RNN
task representations are plotted. We also plotted CCGP scores for
the rule embeddings used in our nonlinguistic models. Among
models, there was a notable discrepancy in how abstract structure
emerges. Autoregressive models (GPTNETXL, GPTNET), BERTNET
and CLIPNET (S), showed a low CCGP throughout language model
layers followed by a jump in the embedding layer. This is because
weights feeding into the embedding layer are tuned during sensori-
motor training. The implication of this spike is that most of the use-
ful representational processing in these models actually does not
occurinthe pretrained language model per se, but ratherinthelinear
readout, which is exposed to task structure via training. By contrast,
our best-performing models SBERTNET and SBERTNET (L) use lan-
guage representations where high CCGP scores emerge gradually in
theintermediate layers of their respective language models. Because
semantic representations already have such a structure, most of the
compositional inference involved in generalization can occur in the
comparatively powerful language processing hierarchy. As a result,
representations are already well organized in the last layer of language
models,andalinear readoutin the embedding layer is sufficient for the
sensorimotor-RNN to correctly infer the geometry of the task set and
generalize well.

This analysis strongly suggests that models exhibiting generaliza-
tiondo so by leveraging structured semantic representations to prop-
erly relate practiced and novel tasks in sensorimotor space, thereby
allowing a composition of practiced behaviors in an unseen setting.

Semantic modulation of single-unit tuning properties

Next, we examined tuning profiles of individual units in our
sensorimotor-RNNs. We found that individual neurons are tuned toa
variety of task-relevant variables. Critically, however, we find neurons
where this tuning varies predictably within a task group and is modu-
lated by the semantic content of instructions in a way that reflects task
demands.

For instance, in the ‘Go’ family of tasks, unit 42 shows direction
selectivity that shifts by m between ‘Pro” and ‘Anti’ tasks, reflecting
the relationship of task demands in each context (Fig. 4a). This flip in
selectivity is observed even for the AntiGo task, which was held out
during training.

For the ‘Matching’ family of tasks, unit 14 modulates activity
between ‘match’ (DMS, DMC) and ‘non-match’ (DNMS, DNMC) con-
ditions. In ‘non-match’ trials, the activity of this unit increases as the
distance between the two stimuliincreases. By contrast, for ‘matching’
tasks, this neuron is most active when the relative distance between
the two stimuli is small. Hence, in both cases this neuron modulates
its activity to represent when the model should respond, changing
selectivity to reflect opposing task demands between ‘match’ and
‘non-match’ trials. This is true even for DMS, which has been held out
of training.

Figure 4c shows traces of unit 3 activity in modality-specific ver-
sions of DM and AntiDM tasks (AntiDMMod1 is held out of training)
for different levels of contrast (contrast = Str;m; — Strqimz)- In all tasks,
we observed ramping activity where the rate of ramping is relative
to the strength of contrast. This motif of activity has been reported
in previous studies®**. However, in our models, we observe that an
evidence-accumulating neuron can swap the sign of its integration in

response toachangeinlinguisticinstructions, which allows models to
meet opposing demands of ‘Pro” and ‘Anti’ versions of the task, even
for previously unseen tasks.

Interestingly, we also found that unsuccessful models failed to
properly modulate tuning preferences. For example, with GPTNET
(XL), which failed to factorize along a ‘Pro’ versus ‘Anti’ axis (Fig. 3b)
and had poor generalization on AntiDMMod]l, we also find neurons
that failed to swap their sign of integration in the held-out setting
(Supplementary Fig.10).

Finally, we see a similar pattern in the time course of activity for
trials in the ‘Comparison’ family of tasks (Fig. 4d). In the COMP1 task,
the network must respond in the direction of the first stimulus if it
has higher intensity than the second stimulus, and must not respond
otherwise. In COMP2, it must only respond to the second stimulus if
the second stimulusis higher intensity. For ‘Anti’ versions, the demands
of stimulus ordering are the same except the model has to choose the
stimuli with the weakest contrast. Even with this added complexity,
we found individual neurons that modulate their tuning with respect
to task demands, even for held-out tasks (in this case COMP2). For
example, unit 82 is active when the network should repress response.
For ‘COMPY,, this unit is highly active with negative contrast (that is,
Strgimz > Straimy), DUt flips this sensitivity in COMP2 and is highly active
with positive contrast (thatis, strg;y,; > Strim,)- Importantly, this relation
isreversed when the goalis to select the weakest stimuli. Hence, despite
these subtle syntactic differences in instruction sets, the language
embedding can reverse the tuning of this unit in a task-appropriate
manner.

Linguisticcommunication between networks

We now seek to model the complementary human ability to describe a
particular sensorimotor skill with words once it has been acquired. To
dothis, weinverted the language-to-sensorimotor mapping our mod-
elslearn during training so that they can provide a linguistic descrip-
tion of a task based only on the state of sensorimotor units. First, we
constructed an output channel (production-RNN; Fig. 5a-c), which
is trained to map sensorimotor-RNN states to input instructions. We
then present the network with a series of example trials while with-
holding instructions for a specific task. During this phase all model
weights are frozen, and models receive motor feedback in order to
update the embedding layer activity in order to reduce the error of
the output (Fig. 5b). Once the activity in the embedding layer drives
sensorimotor units to achieve a performance criterion, we used the
production-RNNto decode alinguistic description of the current task.
Finally, to evaluate the quality of these instructions, we input them
into a partner model and measure performance across tasks (Fig. 5¢).
Allinstructing and partner models used in this section are instances
of SBERTNET (L) (Methods).

Some example decoded instructions for the AntiDMModl1 task
(Fig. 5d; see Supplementary Notes 4 for all decoded instructions). To
visualize decoded instructions across the task set, we plotted a confu-
sion matrix where both sensorimotor-RNN and production-RNN are
trained on all tasks (Fig. 5e). Note that many decoded instructions
were entirely ‘novel’ thatis, they were notincluded in the training set
for the production-RNN (Methods). Novel instructions made up 53%
of decoded instructions across all tasks.

To test the quality of these novel instructions, we evaluated a
partner model’s performance on instructions generated by the first
network (Fig. 5¢; results are shown in Fig. 5f). When the partner model
is trained on all tasks, performance on all decoded instructions was
93% on average across tasks. Communicating instructions to partner
models with tasks held out of training also resulted in good perfor-
mance (78%). Importantly, performance was maintained even for
‘novel’ instructions, where average performance was 88% for partner
models trained on all tasks and 75% for partner models with hold-out
tasks. Given that the instructing and partner models share the same
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Fig. 4 | Semantic modulation of single-unit tuning properties. a, Tuning curves
foraSBERTNET (L) sensorimotor-RNN unit that modulates tuning according

to task demandsin the ‘Go’ family. b, Tuning curves, for a SBERTNET (L)
sensorimotor-RNN unitin the ‘matching’ family of tasks plotted in terms of

difference in angle between two stimuli. ¢, Full activity traces for modality-
specific ‘DM’ and ‘AntiDM’ tasks for different levels of relative stimulus strength.
d, Full activity traces for tasks in the ‘comparison’ family of tasks for different
levels of relative stimulus strength.

architecture, one might expect that it is more efficient to forgo the
language component of communication and simply copy the embed-
ding inferred by one model into the input of the partner model. This
resulted in only 31% correct performance on average and 28% perfor-
mance whentesting partner models on held-out tasks. Although both
instructing and partner networks share the same architecture and the
same competencies, they nonetheless have different synaptic weights.
Hence, using a neural representation tuned for the set of weights within
the one agent won't necessarily produce good performance in the
other.

We also tested an instructing model using a sensorimotor-RNN
with tasks held out of training. We emphasize here that during training
the production-RNN attempts to decode from sensorimotor hidden
states induced by instructions for tasks the network has never expe-
rienced before (Fig. 5a), whereas during test time, instructions are
produced from sensorimotor states that emerge entirely as a result of
minimizing a motor error (Fig. 5b,c). We nonetheless find that, in this
setting, a partner model trained on all tasks performs at 82% correct,
while partner models with tasks held out of training perform at 73%.

Here, 77% of produced instructions are novel, so we see a very small
decrease of 1% when we test the same partner models only on novel
instructions. Like above, context representations induce a relatively
low performance of 30% and 37% correct for partners trained on all
tasks and with tasks held out, respectively.

Lastly, we tested our most extreme setting where tasks have been
held out for both sensorimotor-RNNs and production-RNNs (Fig. 5f).
We find that produced instructions induce a performance of 71% and
63% for partner models trained on all tasks and with tasks held out,
respectively. Although thisisadecrease in performance from our previ-
ous set-ups, the fact that models can produce sensible instructions at
allin this double held-out setting is striking. The fact that the system
succeeds to any extent speaks to strong inductive biases introduced
by training inthe context of rich, compositionally structured semantic
representations.

Discussion
In this study, we use the latest advances in natural language process-
ingtobuild tractable models of the ability to interpret instructions to
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guide actions in novel settings and the ability to produce a descrip-
tionofataskonceithasbeenlearned. RNNs canlearnto performaset
of psychophysical tasks simultaneously using a pretrained language
transformer to embed a natural language instruction for the current
task. Our best-performing models can leverage these embeddings to
perform abrand-new model with an average performance of 83% cor-
rect. Instructed models that generalize performance do so by leverag-
ing the shared compositional structure of instruction embeddings
and task representations, such that an inference about the relations
between practiced and novel instructions leads to a good inference
about what sensorimotor transformation is required for the unseen
task. Finally, we show a network can invert this information and pro-
vide alinguistic description for atask based only on the sensorimotor
contingency it observes.

Our models make several predictions for what neural representa-
tions to expect in brain areas that integrate linguistic information in
order to exert control over sensorimotor areas. Firstly, the CCGP analy-
sisof our model hierarchy suggests that when humans must generalize
across (or switchbetween) a set of related tasks based oninstructions,
the neural geometry observed among sensorimotor mappings should
also be present in semantic representations of instructions. This pre-
dictionis well grounded in the existing experimental literature where
multiple studies have observed the type of abstract structure we find in
our sensorimotor-RNNs also exists in sensorimotor areas of biological
brains***¥. Our models theorize that the emergence of an equivalent
task-related structure inlanguage areas is essential to instructed action
in humans. One intriguing candidate for an area that may support
such representations is the language selective subregion of the left
inferior frontal gyrus. This area is sensitive to both lexico-semantic
and syntactic aspects of sentence comprehension, is implicated in
tasks that require semantic control and lies anatomically adjacent to
another functional subregion of the left inferior frontal gyrus, which
is implicated in flexible cognition®*', We also predict that individ-
ual units involved in implementing sensorimotor mappings should
modulate their tuning properties onatrial-by-trial basis according to
the semantics of the input instructions, and that failure to modulate
tuning in the expected way should lead to poor generalization. This
prediction may be especially useful to interpret multiunit recordings
in humans. Finally, given that grounding linguistic knowledge in the
sensorimotor demands of the task set improved performance across
models (Fig. 2e), we predict that during learning the highest level of
the language processing hierarchy should likewise be shaped by the
embodied processes that accompany linguistic inputs, for example,
motor planning or affordance evaluation*.

Onenotable negative result of our study is the relatively poor gen-
eralization performance of GPTNET (XL), which used at least an order
of magnitude more parameters than other models. Thisis particularly
striking given thatactivity in these modelsis predictive of many behav-
ioral and neural signatures of human language processing'®". Given
this, future imaging studies may be guided by the representations
in both autoregressive models and our best-performing models to
delineate afullgradient of brainareasinvolvedin each stage of instruc-
tion following, from low-level next-word prediction to higher-level
structured-sentence representations to the sensorimotor control that
language informs.

Our models may guide future work comparing compositional
representations in nonlinguistic subjects like nonhuman primates.
Comparison of task switching (without linguistic instructions)
between humans and nonhuman primates indicates that both use
abstract rule representations, although humans can make switches
much more rapidly*. One intriguing parallel in our analyses is the
use of compositional rules vectors (Supplementary Fig. 5). Even in
the case of nonlinguistic SIMPLENET, using these vectors boosted
generalization. Importantly, however, this compositionality is much
stronger for our best-performing instructed models. This suggests

that language endows agents with a more flexible organization of
task subcomponents, which can be recombined in a broader variety
of contexts.

Our results also highlight the advantages of linguistic commu-
nication. Networks can compress the information they have gained
through experience of motor feedback and transfer that knowledge
to a partner network via natural language. Although rudimentary in
our example, the ability to endogenously produce a description of
howtoaccomplish atask afteraperiod of practiceisahallmark human
language skill. The failure to transfer performance by sharing latent
representations demonstrates that to communicate informationina
group of independent networks of neurons, it needs to pass through a
representational medium thatis equally interpretable by all members
ofthe group. In humans and for our best-performing instructed mod-
els, this mediumis language.

Aseries of worksinreinforcementlearning hasinvestigated using
language and language-like schemes to aid agent performance. Agents
receive language information through step-by-step descriptions of
action sequences***, or by learning policies conditioned on a lan-
guage goal***. These studies often deviate from natural language
and receive linguistic inputs that are parsed or simply refer directly
to environmental objects. Some larger versions of the pretrained
language models we use to embed instructions also display instruc-
tions following behavior, that is, GPT-3 (ref. 7), PALM", LaMDA" and
InstructGPT**in the modality of language and DALL-E® and Stable Dif-
fusion' in a language to image modality. The semantic and syntactic
understanding displayed inthese models is impressive. However, the
outputs of these models are difficult to interpret in terms of guiding
the dynamics of a downstream action plan. Finally, recent work has
sought to engineer instruction following agents that can function in
complex or even real-world environments'®*®, While these models
exhibit impressive behavioral repertoires, they rely on perceptual
systems that fuse linguistic and visual information making them dif-
ficult to compare to language representationsin human brains, which
emerge fromaset of areas specialized for processing language. In all,
none of these models offer atestable representational account of how
language might be used to induce generalization over sensorimotor
mappingsin the brain.

Our models by contrast make tractable predictions for what popu-
lation and single-unit neural representations are required to support
compositional generalization and can guide future experimental work
examiningtheinterplay of linguistic and sensorimotor skillsin humans.
By developinginterpretable models that can both understandinstruc-
tions as guiding a particular sensorimotor response, and communicate
the results of sensorimotor learning as anintelligible linguistic instruc-
tion, we have begun to explain the power of language in encoding
and transferring knowledge in networks of neurons.

Online content
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maries, source data, extended data, supplementary information,
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Methods

Model architecture

Sensorimotor-RNN. The base model architecture and task structure
used in this paper follows'. All networks of sensorimotor units denoted
sensorimotor-RNN are gated recurrent units (GRU)*’ using rectified
linear unit (ReLU) nonlinearities with 256 hidden units each. Inputs to
the networks consist of (1) sensory inputs, X, and (2) task-identifying
information, /.. We initialize hidden activity inthe GRU as h° € RZ>®with
values set to 0.1. All networks of sensorimotor units use the same hid-
den state initialization, so we omit h° in network equations. At each
timestep, areadoutlayer Linear,, decodes motor activity, y;, fromthe
activity of recurrent hidden units, h,, according to:

h, = SensorimotorRNN(Xt,I,;ht_l) h, € R%5®

Y, = a(Linearout(h,)) Y, € R®

where g denotes the sigmoid function. Sensory inputs X, are made up
of three channels, two sensory modalities X041, and Xinoq2,, and afixa-
tion channelxg, .. Both X041, Xmod 2, € R*2and stimuliin these modali-
ties are represented as hills of activity with peaks determined by units’
preferred directions around a one-dimensional circular variable. For
aninputatdirection 6, the activity of agiveninput unit u;with preferred
direction ;is

2
u; = str x 0.8 exp [—0.5 X (M) ]

where stris the coefficient describing stimulus strength. The fixation
channel xg,, € R!is a single unit simulating a fixation cue for the net-
work.Inall, sensoryinput X; = (Xpoq1.e» Xmodz,e» Xix,e) € R%. Motor output,
¥, consists of both a 32-dimensional ring representing directional
responses to the input stimulus as well as a single unit representing
model fixation, so that y, € R33,

For all models, task-identifying information /, € R%.
Task-identifyinginformationis presented throughout the duration of
atrial and remains constant such that /, = 1, v¢, ¢'. For all models, task-
identifying info /,and sensory input X, are concatenated as inputs to
the sensorimotor-RNN.

Nonlinguistic models. For SIMPLENET, we generate a set of 64-
dimensional orthogonal task rules by constructing an orthogonal
matrix using the Python package scipy.stats.ortho_group, and assign
rows of this matrix to each task type. For STRUCTURENET, we generate a
set of tenorthogonal, 64-dimensional vectors in the same manner, and
each of these represents a dimension of the task set (that is, respond
weakest versus strongest direction, respond in the same versus oppo-
site direction, pay attention only to stimuli in the first modality, and
soon). Rule vectors for tasks are then simple combinations of each of
these tenbasis vectors. For afull description of structure rule vectors,
see Supplementary Note 3.

We also test SIMPLENETPLUS and STRUCTURENETPLUS, which
use an additional hidden layer with 128 units and ReLU nonlinearities
to process orthogonal tasks rules /,into a vector 7, which is used by
sensorimotor-RNN as task-identifying information.

I;' = ReLU(Lineargeempr(I)) /; € RS
I, = ReLU(Lineargeempa(I)) /; € R18

I, = ReLU(Linearyiegmp3 (I ) fz € R®*
Full results for these models are included in Supplementary Fig. 4.

Pretrained transformers. The main language models we test use
pretrained transformer architectures to produce /. Importantly,

transformers differ in the type of pretraining objective used to tune
the model parameters. GPT is trained to predict the next word given a
context of words’. GPT (XL) follows the same objective but trains for
longeronalarger dataset®. Both models are fully autoregressive. BERT,
by contrast, takes bidirectional language inputs and is tasked with
predicting masked words that appear in the middle of input phrases.
Additionally, BERT is trained on a simple sentence prediction task
where the model must determine if input sentence 1is followed by
inputsentence2inthetraining corpus. Extending this principle, SBERT
is explicitly trained to produce fixed-length embeddings of whole
sentences”. It takes pretrained BERT networks and uses themin a sia-
mese architecture®, which allows the weights of the model to be tuned
in a supervised fashion according to the Stanford Natural Language
Inference dataset?. Natural language inference is a three-way catego-
rization task where the network must infer the logical relationship
between sentences: whether a premise sentence implies, contradicts or
isunrelated to ahypothesis sentence. Finally, CLIPis trained to jointly
embed images and language?®. It uses data from captioned images and
is asked to properly categorize which text and images pairs match or
are mismatched in the dataset via a contrastive loss.

Importantly, the natural output of a transformer is amatrix of size
dimg,ns. X 7, the inherent dimensionality of the transformer by the
length of the input sequence. To create an embedding space for sen-
tences it is standard practice to apply a pooling method to the trans-
former output, which produces afixed-length representation for each
instruction.

For GPT, GPT (XL), BERT and SBERT, we use an average pooling
method. Suppose we have an input instruction w; ... w,-. Following
standard practice with pretrained language models, the input to our
transformersis tokenized with special ‘cls’and ‘eos’ tokens at the begin-
ning and end of the input sequence. We then compute/as follows:

ptran. — transformer([cls] Wy ... Wy, [eos]), htran. g RdiMuans, X7+2

hl — mean(htran.)’ hl e Rdim“a"&

I = Lineargmpeq(h') I e R%*

We chose this average pooling method primarily because a previ-
ous study” found that this resulted in the highest-performing SBERT
embeddings. Another alternative would be to simply use the final hid-
den representation of the ‘cls’ token as a summary of the information
inthe entire sequence (given that BERT architectures are bidirectional,
this token will have access to the whole sequence).

ptran. — transformer( [cls],w; ... ws, [eos] ) htran. g RAiMuans, X 77+2

hl - (htran.

e h e RYiMerans.

Where A5 denote the last hidden representation for the ‘cls’ token.
Ref.21found this pooling method performed worse than average pool-
ing, so we don’tinclude these alternatives in our results. For GPT and
GPT (XL), we also tested a pooling method where the fixed-length
representation for asequence was taken from the transformer output
of the ‘eos’ token. In this case:

htran- — transformer( [cls],w; ... wy, [eos] ) htran. g RAIMians. X T+2

hl = (htran. X

/ dim,
o h! € R91Merans.

I = Linearempeq (), I e R%*

We found that GPT failed to achieve even a relaxed performance
criterion of 85% across tasks using this pooling method, and GPT (XL)
performed worse than with average pooling, so we omitted these
models from the main results (Supplementary Fig. 11). For CLIP
models we use the same pooling method asin the original multiModal
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training procedure, which takes the outputs of the [cls] token as
described above.

For allthe above models, we also tested a version where the infor-
mationfromthe pretrained transformersis passed through a multilayer
perceptron with a single hidden layer of 256 hidden units and ReLU
nonlinearities. We found that this manipulation reduced performance
across allmodels, verifying that asimple linear embedding is beneficial
to generalization performance.

For GPT, BERT and SBERT, dim,,; = 768 and each model uses
a total of <100 million parameters; for SBERT (L) dimy,ns. = 1,024 and
the model uses~300 million parameters; GPT (XL) dimy,ns. = 1,600and
the model uses ~1.5 billion parameters; for CLIP, dim,,,s. = 512and the
model uses ~60 million parameters. Full PyTorch implementations,
including all pretrained weights and model hyperparameters, can be
accessed at the Huggingface library (https://huggingface.co/docs/
transformers/)*.

BoW model. For our BoW model, instructions are represented as a vec-
tor of binary activations the size of the instruction vocabulary, where
eachunitindicates theinclusion orexclusion of the associated wordin
the currentinstruction. For our instruction set, [vocab| =181. This vec-
toristhenprojected throughalinear layerinto 64-dimensional space.

1 ifw, e ..wy)

h?ow — hBoW & Rlvocab\

0 otherwise

I = Linearqppeq(RB°W), I e R%*

Blank slate language models. Given that tuning the last layers of
language models resulted inimproved performance (Fig. 2e), we tested
two additional models to determine if training a blank slate language
model trained exclusively on the loss from sensorimotor tasks would
improve performance. These models consist of passing BoW represen-
tations through a multilayer perceptron and passing pretrained BERT
word embeddings through one layer of a randomly initialized BERT
encoder. Both models performed poorly compared to pretrained
models (Supplementary Fig. 4.5), confirming that language pretraining
is essential to generalization.

Tasks sets

Tasks were divided into five interrelated subgroups: ‘go’,
‘decision-making’,‘matching’,and ‘comparison’ and ‘duration’. Depend-
ing on the task, multiple stimuli may appear during the stimulus epoch.
Also, depending on the task, models may be required to respondin a
particular direction or repress response altogether. Unless otherwise
specified, zero-mean Gaussian noise is added independently at each
time step and to eachinput unitand the variance of this noise is drawn
randomly from U[0.1, 0.15]. The timing of stimuli differs among the tasks
type. However, for all tasks, trials can be divided into preparatory,
stimulus and response epochs. The stimulus epoch can be subdivided
into three parts—stiml, delay and stim23—although these distinct parts
aren’t used by all tasks. A trial lasts for a total of T=150 time steps. Let
dur.,,, denote the duration in simulated time steps of a given epoch.
Then

duresponse ~ {i120 < i < 25;i € N}

dur iy, dutrgiomy ~ {1137 < i < 50;i € N}

dUr geiay ~ {i|15 <i<25ie N}

durpep, =150 — (durresponse + durgim + durgim, + durdelay)

For tasks thatdon’t utilize adelay structure, stiml, stim2 and delay
epochs are grouped together in a single stimulus epoch where
durgimus = dUrgimi + AUrgimy + durge,y - Unless otherwise specified, a

fixation cue with a constant strength stry, = 1is activated throughout
the preparatory and stimulus epochs. For example trials of each task,
see Supplementary Fig.13.

‘Go’ tasks. The ‘Go’ family of tasks includes ‘Go’, ‘RTGo’, ‘AntiGo’,
‘AntiRTGo’” and modality-specific versions of each task denoted with
either ‘Modl’ and ‘Mod2’. In both the ‘Go’ and ‘AntiGo’ tasks, a single
stimulus is presented at the beginning of the stimulus epoch. The
direction of the presented stimulus is generated by drawing from a
uniform distribution between 0 and 2m, that is, 64, ~ U[0,2r]. The
stimulus willappearineither modality 1or modality 2 with equal prob-
ability. The strength of the stimulusis given by stry;,, ~ U[1.0,1.2].Inthe
‘Go’ task, the target responseisin the same direction as the presented
stimulus, that is, Oyim = Oarger, While in the ‘AntiGo’ task the direction
of the response should be in the opposite of the stimulus direction,
Bstim + T = Byarger- FOr modality-specific versions of each task, a stimulus
direction is drawn in each modality Oy moas ~ U[0,2m] and
Osim.mod2 ~ U[0,2m] and for modality-specific Go-type tasks

estim,modl if Modl task

0 =
areet {Gmm,modz if Mod2 task

while for modality-specific AntiGo-type tasks

Ostim,mod1 + T if Mod1task

6 =
areet { Ostim,mod2 + T if Mod2 task

For ‘RT’ versions of the ‘Go’ tasks, stimuli are only presented during
the response epoch and the fixation cue is never extinguished. Thus,
the presence of the stimulus itself serves as the response cue and the
model must respond as quickly as possible. Otherwise, stimuli persist
through the duration of the stimulus epoch.

‘Decision-making’ tasks. The ‘decision-making’ family of tasks
includes ‘DM’ (decision-making), ‘AntiDM’, ‘MultiDM’ (multisensory
decision-making), ‘AntiMultiDM, modality-specific versions of each
of these tasks and, finally, confidence-based versions of ‘DM’ and
‘AntiDM. For all tasksin this group, two stimuli are presented simulta-
neously and persist throughout the duration of the stimulus epoch.
They are drawn according to 6, ~U[0,2n] and O, ~U
[(Bstim1 — 0.2, Ogtiny — 0.610) U (Osim1 + 0.211, Oy + 0.6m)] Abase strength
applied toboth stimuliis drawn suchthat stry,,. ~ U[1.0,1.2]. Acontrast
is drawn from a discrete distribution such that ¢ - {-0.175,-0.15,-0.1,
0.1,0.15,0.175} so the stimulus strength associated with each direction
inatrial are given by stry;m; = Strpase + ¢ and strygimy = Strpgse — C-
For the ‘DM’ task,

estiml if Strstiml > StrstimZ

Btarget = {

Osim2  Otherwise

and for the the ‘AntiDM’ task,

estiml if Strstiml < StrstimZ

etar =
get .
otherwise

estimZ
For these versions of the tasks, the stimuli are presented in either
modality 1or modality 2 with equal probability. For the multisensory
versions of each task, stimuli directions are drawn in the same manner
and presented across both modalities so that ;1 moed: = Ostimimod2
and Ogimz.modi = Osim2,mod2- Base strengths are drawn independently
for each modality. Contrasts for both modalities are drawn
from a discrete distribution such that c;41,mod2 ~ {0.2,0.175,
0.15,0.125,-0.125,-0.15,—0.175,—0.2} . If both |Cimod1] = [Cmod2] = O then
contrasts are redrawn to avoid zero-contrast trials during training.
If both cpoq1 and cq2 have the same sign, then contrasts are
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redrawn to ensure that the trial requires integrating over both
modalities as opposed to simply performing a ‘DM’ task in a
single modality. Criteria for target responses are measured as the
strength of a given direction summed over both modalities. So, for
‘MultiDM’

Bstiml,modl if Strstiml,modl + srrstiml,modz > Strstimz,modl
Ocarget = +STstim2,mod2
Ostima,mod1~ Otherwise
and for ‘AntiMultiDM’
estiml,modl if Strstiml,modl + Strstiml,modz < StrstimZ,modl
Btarget = +StrstimZ,modZ
Osima,mod1 ~ Otherwise

Stimuli for modality-specific versions of each task are generated
inthe same way as multisensory versions of the task. Criteria for target
response are the same as standard versions of ‘DM’ and ‘AntiDM’ tasks
applied only to stimuli in the relevant modality.

In confidence-based decision-making tasks (‘ConDM’and ‘ConAn-
tiDM’), the stimuli directions are drawn in the same way as above.
Stimuli are shown in either modality 1 or modality 2 with equal prob-
ability. In each trial, str,,,. = 1. The contrast and noise for each trial is
based onthethresholded performance of aSIMPLENET model trained
onalltasks except ‘ConDM’and ‘ConAntiDM’. Once this model has been
trained, we establish a threshold across levels of noise and contrasts for
whichthe model can performa ‘DM’ or an‘AntiDM’ task at 95% correct.
We then draw contrasts and noises for trials from above and below this
threshold with equal probability during training. In trials where the
noise and contrast levels fell below the 95% correct threshold, the model
must repress response, and otherwise perform the decision-making
task (either ‘DM’ or ‘AntiDM’).

‘Comparison’ tasks. Our comparison task group includes ‘COMPT’,
‘COMP2’, ‘MultiCOMPY’, ‘MultiCOMP2’, ‘Anti’ versions of each of
these tasks, as well as modality-specific versions of ‘COMP1” and
‘COMP2’ tasks. This group of tasks is designed to extend the basic
decision-making framework into a setting with more complex con-
trol demands. These tasks utilize the delay structure in the stimulus
epoch so that stiml appears only during the stiml epoch, followed
by a delay, and finally stim2. This provides a temporal ordering on
the stimuli. In ‘COMPY’, the model must respond to the first stimulus
only if it has greater strength than the second and otherwise repress
aresponse thatis

estiml if Strstim1 > Srstima

Gtarget = {

Likewise, in‘COMP2’, the model must respond to the second direc-
tionifit presented with greater strength than the first otherwise repress
response thatis

repress  otherwise

estimz if Strgtimz > Strgtimy

etar =
get .
otherwise

In‘Anti’ versions of the task the ordering criteriais the same except
for stimuli with least strength, that s, for ‘AntiCOMPY’

repress

estiml if Strgtim1 < SUrgtima
etarget = .
repress otherwise
and for ‘AntiCOMP2’
Ostimz if Strgima < Strsgm
Gtarget = .
repress otherwise

In multisensory settings, the criteria for target direction are
analogous to the multisensory decision-making tasks where strength
is integrated across modalities. Likewise, for modality-specific ver-
sions, the criteria are only applied to stimuli in the relevant modality.
Stimulidirections and strength for each of these tasks are drawn from
the same distributions as the analogous task in the ‘decision-making’
family. However, during training, we make sure to balance trials where
responsesare required and trials where models must repress response.

‘Duration’ tasks. The ‘duration’ family of tasks includes ‘Durl’, ‘Dur2’,
‘MultiDurl’, ‘MultiDur2’, ‘Anti’ versions of each of these tasks and
modality-specific versions of ‘Durl’and ‘Dur2’ tasks. These tasks require
models to perform a time estimation task with the added demand or
stimuli ordering determining relevance for response. Like in ‘com-
parison’ tasks, stimlis presented followed by a delay and then stim2.
For ‘Durl’ trials

estiml if durstiml > durstimz
etarget = .
repress otherwise
Likewise, for ‘Dur2’
estiml if durstimz > durstiml
etarget = .
repress otherwise

In‘Anti’ versions of these tasks, the correct responseisinthe direction
of the stimulus with the shortest duration given the ordering criteria
ismet. Hence, for ‘AntiDurl’

Bstiml if durstiml < durstimz
etarget = .
repress otherwise
and for ‘AntiDur2’
Bstimz if durstimz < durstiml
etarget = .
repress otherwise

Across these tasks directions are drawn according to O, ~ U[O, 21]
and estimz ~ U—J[(estiml —-0.2m, estiml —0.6mu (estiml +0.2m, estiml +0.6m)].
Stimulus strengths are drawn according to stry;m, Strsimz ~ U[0.8,1.2].
To set the duration of each stimulus, we first draw durig,g ~
{i|35 < i < 50,i € N} and durg,o, ~{il25 <i < (durigng — 8),i € N} . During
training, we determine which trials for a given task should and should
not require a response in order to evenly balance repress and respond
trials. We then assign dur,,,, and dur ., to either stiml or stim2 so that
thetrialrequiresthe appropriate response given the particular task type.

Again, criteria for correct response in the multisensory and
modality-specific versions of each tasks follow analogous tasks in the
‘decision-making’and ‘comparison’ groups where multisensory versions
of the task require integrating total duration over each modality, and
modality-specific tasks require only considering durationsinthe given
task modality. For multisensory tasks, we draw duration value
duriong ~ {i|75 < i <100,i € N}and thensplit this value duri,go = dr;gng
0.55 and duri,,g = duti,,, * 0.45. We also draw a value dur . = duri,, —
Adurwhere Adur ~ {i|l15 < i < 25,i € N}. This value is then subdivided
further into durgguo = durgng + Adurg,,,. where Adurgo ~
{il19 < i < 15,i € N}and dur g, = durg,o — durg,q.o- Shortand long dura-
tions canthenbeallocated to the ordered stimuliaccording to task type.
Drawing durations in this manner ensures that, like in ‘decision-making’
and ‘comparison’ groups, correct answerstruly require models tointe-
grate durations over both modalities, rather than simply performing
the taskin agiven modality to achieve correct responses.

‘Matching’ tasks. The ‘matching’ family of tasks consists of ‘DMS’
(delay matchto stimulus), ‘DNMS’ (delay non-match to stimulus), ' DMC’
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(delay matchto category) and ‘DMNC’ (delay non-match to category)
tasks. For all tasks, stimlis presented at the beginning of the stimulus
epoch, followed by adelay, and the presentation of stim2. The stimulus
strength is drawn according to strgmi, Streim2 ~ U[0.8,1.2]. The input
modality for any given trial is chosen at random with equal probability.
In both ‘DMS’ and ‘DNMS’ tasks, trials are constructed as ‘matching
stim’ trials or ‘mismatching stim’ trials with equal probability. In‘match-
ing stim’ trials O ~ U[0,2m] and Og;my = Ogimi - IN ‘Mmismatch stim’
trials, Om1 ~ U[O, 2] and

Gstimz ~ [U[(estiml —0.2m, estiml -0.6mu (estiml +0.2m, Gstiml +0.6m)].

For ‘DMS’, models must respond in the displayed direction if the stimuli
match, otherwise repress response,

estiml if estiml = estimz

etarget = {

repress  otherwise

and for ‘DNMS’, models must respond to the second direction if both
directions are mismatched,

if estiml # astimz

otherwise

estimz

etarget =
repress

‘DMC’ and ‘DNMC’ tasks are organized in a similar manner. The stimulus
input space is divided evenly into two categories such that
catl={f: 0 <f<m}and cat2 = {0: m < <2m}. For 'DMC’ and ‘DNMC’ tasks,
trials are constructed as ‘matching cat. trials or ‘mismatching cat. trials
with equal probability. In ‘matching cat. trials 0y, ~ U[0,2r] and
Oim2 ~ U(Catgim), Where U(catg;m;) is a uniform draw from the category
of stiml. In ‘mismatch stim’ trials, O, ~ U[O, 2rr]and Oy ~ U(—Catggim)
where —catg;,; is the opposite category as stiml. For ‘DMC’, the model
mustrespond in the first direction if both stimuli are presented in the
same category otherwise repress response,

Ostim if catyim; = Catyim

etar =
get .
otherwise

repress

and for ‘DNMC’, the model should respond to the second direction if
both stimuli are presented in opposite categories otherwise repress
response,

estimZ if Catgtim # Catstima

etar =
get .
otherwise

repress
Target output and correct criteria

The target output y € R33*7 for a trial entails maintaining fixation in
Y1 =Ysx during the stimulus epoch, and then either responding in the
correctdirectionor repressing activity in the remaining target response
units y,_,; in the response epoch. Since the model should maintain
fixation until response, target for fixation is set at y;, = 0.85 during
preparatory and stimulus epochs and yg, = 0.05 in the response epoch.
When aresponse is not required, as in the preparatory and stimulus
epochs and with repressed activity in the response epoch, unit i takes
on a target activity of y;= 0.05. Alternatively, when there is a target
direction for response,

810 areet — 0i\
yi=0.8exp [—0.5 x (%) ]+ 0.05

where 0, is the preferred direction for unit i. Like in sensory stimuli,
preferred directions for target units are evenly spaced values from
[0, 2m] allocated to the 32 response units.

Foramodel response to count as correct, it must maintain fixation,
thatis, y;, > 0.5 during preparatory and stimulus epochs. When no

response is required y, < 0.15. When aresponse is required, response
activity is decoded using a population vector method and
Bresp. € Brarger — lo, Brarger + %). If the model fails to meet any of these
criteria, the triafresponse isincorrect.

Model training

Againfollowingref.18, model parameters are updated inasupervised
fashion according to amasked mean squared error loss (MMSE) com-
puted between the model motor response, y, , =, and the target,
Y..r=), for eachtrial.

" 2
L = mMSE(y,y) = mask x <(yt - >t

Here, the multiplication sign denotes element-wise multiplication.
Masks weigh theimportance of different trial epochs. During prepara-
tory and stimulus epochs, mask weights are set to1; during the first five
time steps of the response epoch, the mask valueis set to 0; and during
the remainder of the response epoch, the mask weight is set to 5. The
mask value for the fixationis twice that of other values at all time steps.

Forallmodels, we update © = {sensorimotor-RNN, Linear,,} dur-
ing training on our task set. For instructed models, we additionally
update Linear .. in the process of normal training. We train models
using standard PyTorch machinery and an Adam optimizer. Anepoch
consists of 2,400 mini-batches, with each mini-batch consisting of 64
trials. For all models, we use the same initial learning rate as in ref. 18,
Ir=0.001. We found that in the later phases of training, model perfor-
mance oscillated based on which latest task presented during training,
so we decayed the learning rate for each epoch by a factor of y=0.95,
which allowed performance to converge smoothly. Following ref. 18,
models train until they reach a threshold performance of 95% across
all tasks (and train for a minimum of 35 epochs). We found that train-
ing for GPTNET tended to asymptote below performance threshold
for multisensory versions of comparison tasks. This held true over
avariety of training hyperparameters and learning rate scheduler
regimes. Hence, we relax the performance threshold of GPTNET to
85%. For eachmodel type, we train five models that start from five dif-
ferent random initializations. Where applicable, results are averaged
over theseinitializations.

Language model fine-tuning. When fine-tuning models, we allow
the gradient from the motor loss experienced during sensorimotor
training to fine-tune the weights in the final layers of the transformer
language models. During normal training, we checkpoint a copy of
our instructed models after training for 30 epochs. We then add the
last three transformer layers to the set of trainable parameters, and
reset the learning rates to [r=1x107* for O = {sensorimotor-RNN,
Linear,,} and [r™¢ =3 x 107 for ©"" = {Linear .4, transformer_;_, ;}
where transformer_; _, ; denotes the parameters of the last three layers
oftherelevant transformer architecture. We used these reduced learn-
ing rates to avoid completely erasing preexisting linguistic knowledge.
Similarly for RNN parameters, we found the above learning rate avoided
catastrophicforgetting of sensorimotor knowledge while also allowing
the RNN to adapt to updated language embeddings across all models.
Autoregressive models were much more sensitive to this procedure,
oftencollapsing at the beginning of fine-tuning. Hence, for GPFTNETXL
and GPTNET, we used [r™"¢ = 5 x 10~%, which resulted inrobust learning.
Models train until they reach a threshold performance of 95% across
training tasks or 85% correct for GPTNET.

Hold-out testing

During hold-out testing, we present models with 100 batches of one
of the tasks that had been held out of training. For the instructed
model, the only weights allowed to update during this phase are
O = {sensorimotor-RNN, Linear,,,, Linear.yy.q}. All weights of SIM-
PLENET and STRUCTURENET are trainable in this context. In this
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hold-out setting, we found that in more difficult tasks for some of our
more poorly performing models, the standard hyperparameters we
used during training resulted in unstable learning curves for novel
tasks. To stabilize performance and thereby create fair comparisons
across models, we used anincreased batch size of 256. We then began
with the standard learning rate of 0.001 and decreased this by incre-
ments of 0.0005 until all models showed robust learning curves. This
resultedinalearning rate of 8 x 107*. All additional results shownin the
Supplementary Information section 4 follow this procedure.

CCGP calculation

To calculate CCGP, we trained a linear decoder on a pair of tasks and
thentested that decoder onalternative pairs of tasks that have an analo-
gousrelationship. We grouped tasksinto eight dichotomies: ‘Go’ versus
‘Anti’, ‘Standard’ versus ‘RT’, “‘Weakest’ versus ‘Strongest’, ‘Longest’
versus ‘Shortest’, ‘First Stim. versus ‘Second Stim’, ‘Stim Match’ versus
‘Category Match’,‘Matching’ versus ‘Non-Matching’ and ‘Mod1’ versus
‘Mod2’. As an example, the ‘Go’ versus ‘Anti’ dichotomy includes (‘Go’,
‘AntiGo’), (‘GoModT’,‘AntiGoModl’), (GoMod2’,'’AntiGoMod?2’), (RTG0’,
‘AntiRTG0’), (RTGoModT’,‘AntiRTGoMod1’) and (‘RTGoMod2’, ‘AntiRT-
GoMod2’) task pairs. For ‘RNN’ task representations, we extracted activ-
ity at the time of stimulus onset for 250 example trials. For language
representations, weinputtheinstruction sets for relevant tasks to our
language model and directly analyze activity in the ‘embedding’ layer
or take the sequence-averaged activity in each transformer layer. For
nonlinguistic models, we simply analyze the space of rule vectors. Train
and test conditions for decoders were determined by dichotomies
identified across the task set (Supplementary Note 1). To train and test
decoders, we used sklearn.svm.LinearSVC Python package. The CCGP
score for a given task is the average decoding score achieved across
alldichotomies where the task in question was part of either the train
set or the test set. For model scores reported in the main text, we only
calculate CCGP scores for models where the task in question hasbeen
held out of training. InSupplementary Fig. 9, we report scores on tasks
where models have been trained on all tasks, and for models where
instructions have been switched for the hold-out task.

For Fig. 3e, we calculated Pearson’s r correlation coefficient
between performance on held-out tasks and CCGP scores per task, as
wellas a P-value testing against the null hypothesis that these metrics
areuncorrelated and normally distributed (using the scipy.stats.pear-
sonr function). Full statistical tests for CCGP scores of both RNN and
embedding layers from Fig. 3f can be found in Supplementary Fig. 9.
Note that transformer language models use the same set of pretrained
weights amongrandominitialization of Sensorimotor-RNNs, thus for
language model layers, the Fig. 3f plots show the absolute scores of
those language models.

Conditional clause/deduction task analysis
We first split our task set into two groups (listed below): tasks that
included conditional clauses and simple deductive reasoning compo-
nents (30 tasks) and those where instructions include simple impera-
tives (20 tasks). We computed the difference in performance across
the mean of generalization performance for each group across random
initialization for eachmodel (Fig. 2f). We compared these differences
to a null distribution constructed by performing a set of 50 random
shuffles of the task set into groups of 30 and 20 tasks and computing
differences in the same way, again using two-sided unequal-variance
t-tests. Because STRUCUTRENET is a nonlinguistic model, we then
compared performance of STRUCUTRENET to our instructed models
to disassociate the effects of performing tasks with a deductive reason-
ing component versus processing instructions with more complicated
conditional clause structure. Results of all statistical tests are reported
inSupplementary Fig. 6).

Simpleimperative tasks include: ‘Go’, ‘AntiGo’,'RTGo’,‘AntiRTGo’,
‘GoModY’, ‘GoMod?2’, ‘AntiGoModT’, ‘AntiGoMod2’, ‘RTGoMod?,

‘AntiRTGoMod?2’, ‘RTGoMod?2’, ‘AntiRTGoMod?2’, ‘DM’, ‘AntiDM’,
‘MultiDM’, ‘AntiMultiDM’, ‘DMModT’, ‘DMMod?2’, ‘AntiDMMod1’ and
‘AntiDMMod?2".

Conditional clause/deduction tasks include: ‘ConDM’, ‘ConAn-
tiDM’, ‘Dur?l’, ‘Dur2’, ‘MultiDur?’, ‘MultiDur2’, ‘AntiDurl’, ‘AntiDur2’,
‘AntiMultiDurl’, ‘AntiMultiDur2’, ‘DurlModl’, ‘DurlMod?2’, ‘Dur-
2Mod1’, ‘Dur2Mod?2’, ‘COMPY’, ‘COMP2’, ‘MultiCOMPY’, ‘MultiCOMP2’,
‘AntiCOMPYT’, ‘AntiCOMP2’, ‘AntiMultiCOMPYT’, ‘AntiMultiCOMP2’,
‘COMP1Mod?’, ‘COMP1Mod2’, ‘COMP2Mod1’, ‘COMP2Mod?2’, ‘DMS,
‘DNMS’,‘DMC’ and ‘DMNC.

Language production training
Self-supervised language production network training. Our lan-
guage production framework is inspired by classic sequence-
to-sequence modeling using RNNs*>. Our Production-RNN is a GRU
with 256 hidden units using ReLU nonlinearities. At each step in the
sequence, aset of decoder weights, Linear,,,, attempts to decode the
next token, w,,;, fromthe hidden state of the recurrent units. The hid-
den state of the Production-RNN is initialized by concatenating the
time average and maximum sensorimotor activity of a SBERTNET (L)
and passing that through weights Linear,,,. The linguistic instruction
used todrive theinitializing sensorimotor activity isinturn used as the
target set of tokens for the Production-RNN outputs. The firstinput to
the Production-RNN is always a special start-of-sentence token, and
the decoder runs until an end-of-sentence token is decoded or until
input reaches alength of 30 tokens. Suppose w, 4 ... w4 € lnstructi is
thesequence of tokensininstruction kwhere kisintheinstructionset
fortaskiand X'is sensory input for a trial of task i. For brevity, we denote
the process by which language models embed instructions as Embed()
(see ‘Pretrained transformers’). The decoded token at the *" position,
w, s, is then given by

hs" = SensorimotorRNN (X', Embed (wy ... wyx)) A" € RT*256

sm_out = (meany (h™), max (hy™) sm_out € R

hdecoder = relu (Lineary, (sm_out)) decoder g 256

decoder _ decoder
hg = Dropout (ho )

hgecoder = ProductionRNN (dy ... thy_y ; B3E0%")

hdecoder e R256
0

hdecoder e R256
T

Pu,, = softmax (LinearwmdS (hf’f“der)) Pu,, € RIvocatl,

. = argmax (pg, )

The model parameters @Prdcton = {] jnear,,, Linear,,, Production-
RNN} are trained using cross-entropy loss between the p,,  and the
instruction token w, , provided to the sensorimotor-RNN as ihput. We
train for 80 epochs of 2,400 batches with 64 trials per batch and with
task type randomly interleaved. We found that using aninitial learning
rate of 0.001 sometimes caused models to diverge in early phases of
training, so we opted for a learning rate of 1x 10, which led to stable
early training. To alleviate similar oscillation problems detected in
sensorimotor training, we also decayed the learning rate by y = 0.99
per epoch. Additionally, the use of adropout layer with adropoutrate
of 0.05improved performance. We also used a teacher forcing curricu-
lum, where for some ratio of training batches, we input the ground
truth instruction token w,, at each time step instead of the models

decoded word w, . Ateachepoch, teacher forcing_ratio = 0.5 x 80’;(')’“‘1.

Obtaining embedding layer activity using motor feedback. For a
task, i, we seek to optimize a set of embedding activity vectors £ € R
such that when they are input as task-identifying information, the
model will perform the task in question. Crucially, we freeze allmodel
weights O = {sensorimotor-RNN, Linear,,,, Linear.ypeqqing} and only
update F according to the standard supervised loss on the motor
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output. For notional clarity, GRU dependence on the previous hidden
state h,, has been made implicit in the following equations.

yi= a(Linearout (SensorimotorRNN(Xf,Ef)))

L = mMSE(y.y)

We optimized aset of 25embedding vectors for each task, again using
an Adam optimizer. Here the optimization space has many subopti-
mal local minimums corresponding to embeddings for related tasks.
Hence, we used a highinitial learning rate of [r = 0.05, which we decayed
by y = 0.8 for each epoch. This resulted in more robust learning than
lower learning rates. Anepoch lasts for 800 batches with a batch length
of 64, and we train foraminimum of1epoch or until wereach athresh-
old performance of 90% or 85% on ‘DMC’ and ‘DNMC’ tasks.

Producing task instructions. To produce task instructions, we sim-
ply use the set F as task-identifying information in the input of the
sensorimotor-RNN and use the Production-RNN to outputinstructions
based on the sensorimotor activity drivenby E'. For each task, we use the
setofembedding vectors to produce 50 instructions per task. Werepeat
this process for each of the 5 initializations of sensorimotor-RNN,
resulting in 5 distinct language production networks, and 5 distinct
sets of learned embedding vectors. Reported results for each task are
averaged over these 5 networks. For the confusion matrix (Fig. 5d),
we report the average percentage that decoded instructions are in
the training instruction set for a given task or a novel instruction.
Partner model performance (Fig. 5e) for each network initialization
is computed by testing each of the 4 possible partner networks and
averaging over these results.

Samplessizes/randomization

No statistical methods were used to predetermine sample sizes
but following ref. 18 we used five different random weight initiali-
zations per language model tested. Randomization of weights was
carried out automatically in Python and PyTorch software packages.
Given this automated randomization of weights, we did not use
any blinding procedures in our study. No data were excluded from
analyses.

Software

All simulation and data analysis was performed in Python 3.7.11.
PyTorch 1.10 was used to implement and train models (this includes
Adam optimizer implementation). Transformers 4.16.2 was used to
implement language models and all pretrained weights for language
models were taken from the Huggingface repository (https://hug-
gingface.co/docs/transformers/). We also used scikit-learn 0.24.1and
scipy 1.7.3 to perform analyses.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All weights for language transformers used in this study were taken
from pretrained models available on the Huggingface repository
(https://huggingface.co/docs/transformers/). Training data for
simulated psychophysical tasks were generated using code available

at https://github.com/ReidarRiveland/Instruct-RNN/. The full set of
trained model weights for all results is available upon request.

Code availability
All code used to train models and analyze results can be found at
https://github.com/ReidarRiveland/Instruct-RNN/.
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