
Nature Neuroscience | Volume 27 | May 2024 | 988–999 988

nature neuroscience

Article https://doi.org/10.1038/s41593-024-01607-5

Natural language instructions induce
compositional generalization in networks
of neurons

Reidar Riveland      & Alexandre Pouget    

A fundamental human cognitive feat is to interpret linguistic instructions
in order to perform novel tasks without explicit task experience. Yet,
the neural computations that might be used to accomplish this remain
poorly understood. We use advances in natural language processing to
create a neural model of generalization based on linguistic instructions.
Models are trained on a set of common psychophysical tasks, and receive
instructions embedded by a pretrained language model. Our best models
can perform a previously unseen task with an average performance of 83%
correct based solely on linguistic instructions (that is, zero-shot learning).
We found that language scaffolds sensorimotor representations such that
activity for interrelated tasks shares a common geometry with the semantic
representations of instructions, allowing language to cue the proper
composition of practiced skills in unseen settings. We show how this model
generates a linguistic description of a novel task it has identified using only
motor feedback, which can subsequently guide a partner model to perform
the task. Our models offer several experimentally testable predictions
outlining how linguistic information must be represented to facilitate
flexible and general cognition in the human brain.

In a laboratory setting, animals require numerous trials in order to
acquire a new behavioral task. This is in part because the only means
of communication with nonlinguistic animals is simple positive and
negative reinforcement signals. By contrast, it is common to give writ-
ten or verbal instructions to humans, which allows them to perform
new tasks relatively quickly. Further, once humans have learned a task,
they can typically describe the solution with natural language. The dual
ability to use an instruction to perform a novel task and, conversely,
produce a linguistic description of the demands of a task once it has
been learned are two unique cornerstones of human communication.
Yet, the computational principles that underlie these abilities remain
poorly understood.

One influential systems-level explanation posits that flexible
interregional connectivity in the prefrontal cortex allows for the
reuse of practiced sensorimotor representations in novel settings1,2.

More recently, multiple studies have observed that when subjects
are required to flexibly recruit different stimulus-response patterns,
neural representations are organized according to the abstract struc-
ture of the task set3–5. Lastly, recent modeling work has shown that a
multitasking recurrent neural network (RNN) will share dynamical
motifs across tasks with similar demands6. This work forms a strong
basis for explanations of flexible cognition in humans but leaves
open the question of how linguistic information can reconfigure
a sensorimotor network so that it performs a novel task well on
the first attempt. Overall, it remains unclear what representational
structure we should expect from brain areas that are responsible for
integrating linguistic information in order to reorganize sensorimo-
tor mappings on the fly.

These questions become all the more pressing given that recent
advances in machine learning have led to artificial systems that exhibit

Received: 13 May 2023

Accepted: 15 February 2024

Published online: 18 March 2024

 Check for updates

Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland.  e-mail: reidar.riveland@unige.ch

http://www.nature.com/natureneuroscience
https://doi.org/10.1038/s41593-024-01607-5
http://orcid.org/0000-0003-1510-290X
http://orcid.org/0000-0003-3054-6365
http://crossmark.crossref.org/dialog/?doi=10.1038/s41593-024-01607-5&domain=pdf
mailto:reidar.riveland@unige.ch

Nature Neuroscience | Volume 27 | May 2024 | 988–999 989

Article https://doi.org/10.1038/s41593-024-01607-5

structure combinations). As a result, STRUCTURENET fully captures all
the relevant relationships among tasks, whereas SIMPLENET encodes
none of this structure.

Instructed models use a pretrained transformer architecture19 to
embed natural language instructions for the tasks at hand. For each
task, there is a corresponding set of 20 unique instructions (15 train-
ing, 5 validation; see Supplementary Notes 2 for the full instruction
set). We test various types of language models that share the same
basic architecture but differ in their size and also their pretraining
objective. We tested two autoregressive models, a standard and a large
version of GPT2, which we call GPT and GPT (XL), respectively. Previous
work has demonstrated that GPT activations can account for various
neural signatures of reading and listening11. BERT is trained to identify
masked words within a piece of text20, but it also uses an unsupervised
sentence-level objective, in which the network is given two sentences
and must determine whether they follow each other in the original
text. SBERT is trained like BERT but receives additional tuning on the
Stanford Natural Language Inference task, a hand-labeled dataset
detailing the logical relationship between two candidate sentences
(Methods)21,22. Lastly, we use the language embedder from CLIP, a mul-
timodal model that learns a joint embedding space of images and text
captions23. We call a sensorimotor-RNN using a given language model
LANGUAGEMODELNET and append a letter indicating its size. The
various sizes of models are given in Fig. 1c. For each language model,
we apply a pooling method to the last hidden state of the transformer
and pass this fixed-length representation through a set of linear weights
that are trained during task learning. This results in a 64-dimensional
instruction embedding across all models (Methods). Language model
weights are frozen unless otherwise specified. Finally, as a control, we
also test a bag-of-words (BoW) embedding scheme that only uses word
count statistics to embed each instruction.

First, we verify our models can perform all tasks simultaneously.
For instructed models to perform well, they must infer the common
semantic content between 15 distinct instruction formulations for each
task. We find that all our instructed models can learn all tasks simultane-
ously except for GPTNET, where performance asymptotes are below
the 95% threshold for some tasks. Hence, we relax the performance
threshold to 85% for models that use GPT (Supplementary Fig. 1; see
Methods for training details). We additionally tested all architectures
on validation instructions (Supplementary Fig. 2). SBERTNET (L) and
SBERTNET are our best-performing models, achieving an average
performance of 97% and 94%, respectively, on validation instructions,
demonstrating that these networks infer the proper semantic content
even for entirely novel instructions.

Generalization to novel tasks
We next examined the extent to which different language models aided
generalization to novel tasks. We trained individual networks on 45
tasks and then tested performance when exposed to the five held-out
tasks. We use unequal-variance t-tests to make comparisons among the
performance of different models. Figure 2 shows results with P values
for the most relevant comparisons (a full matrix of comparisons across
all models can be found in Supplementary Figs. 3 and 4)

Our uninstructed control model SIMPLENET performs at 39%, on
average, on the first presentation of a novel task (zero-shot generaliza-
tion). This serves as a baseline for generalization. Note that despite the
orthogonality of task rules provided to SIMPLENET, exposure to the
task set allows models to learn patterns that are common to all tasks (for
example, always repress response during fixation). Therefore, 39% is
not chance-level performance per se, but rather performance achieved
by a network trained and tested on a task set with some common
requirements for responding. GPTNET, exhibits a zero-shot generaliza-
tion of 57%. This is a significant improvement over SIMPLENET (t = 8.32,
P = 8.24 × 10−16). Strikingly, increasing the size of GPT by an order of
magnitude to the 1.5 billion parameters used by GPT (XL) only resulted

human-like language skills7,8. Recent works have matched neural data
recorded during passive listening and reading tasks to activations in
autoregressive language models (that is, GPT9), arguing that there is a
fundamentally predictive component to language comprehension10,11.
Additionally, some high-profile machine learning models do show
the ability to use natural language as a prompt to perform a linguistic
task or render an image, but the outputs of these models are difficult
to interpret in terms of a sensorimotor mapping that we might expect
to occur in a biological system12–14. Alternatively, recent work on mul-
timodal interactive agents may be more interpretable in terms of the
actions they take, but utilize a perceptual hierarchy that fuses vision
and language at early stages of processing, making them difficult to
map onto functionally and anatomically distinct language and vision
areas in human brains15–17.

We, therefore, seek to leverage the power of language models
in a way that results in testable neural predictions detailing how the
human brain processes natural language in order to generalize across
sensorimotor tasks.

To that end, we train an RNN (sensorimotor-RNN) model on a set
of simple psychophysical tasks where models process instructions for
each task using a pretrained language model. We find that embedding
instructions with models tuned to sentence-level semantics allow
sensorimotor-RNNs to perform a novel task at 83% correct, on aver-
age. Generalization in our models is supported by a representational
geometry that captures task subcomponents and is shared between
instruction embeddings and sensorimotor activity, thereby allowing
a composition of practice skills in a novel setting. We also find that
individual neurons modulate their tuning based on the semantics
of instructions. We demonstrate how a network trained to interpret
linguistic instructions can invert this understanding and produce a
linguistic description of a previously unseen task based on the informa-
tion in motor feedback signals. We end by discussing how these results
can guide research on the neural basis of language-based generalization
in the human brain.

Results
Instructed models and task set
We train sensorimotor-RNNs on a set of 50 interrelated psychophysical
tasks that require various cognitive capacities that are well studied in
the literature18. Two example tasks are presented in Fig. 1a,b as they
might appear in a laboratory setting. For all tasks, models receive
a sensory input and task-identifying information and must output
motor response activity (Fig. 1c). Input stimuli are encoded by two
one-dimensional maps of neurons, each representing a different input
modality, with periodic Gaussian tuning curves to angles (over (0, 2π)).
Output responses are encoded in the same way. Inputs also include a
single fixation unit. After the input fixation is off, the model can respond
to the input stimuli. Our 50 tasks are roughly divided into 5 groups,
‘Go’, ‘Decision-making’, ‘Comparison’, ‘Duration’ And ‘Matching’, where
within-group tasks share similar sensory input structures but may
require divergent responses. For instance, in the decision-making (DM)
task, the network must respond in the direction of the stimulus with the
highest contrast, whereas in the anti-decision-making (AntiDM) task,
the network responds to the stimulus with the weakest contrast (Fig. 1a).
Thus, networks must properly infer the task demands for a given trial
from task-identifying information in order to perform all tasks simul-
taneously (see Methods for task details; see Supplementary Fig. 13
for example trials of all tasks).

In our models, task-identifying input is either nonlinguistic or lin-
guistic. We use two nonlinguistic control models. First, in SIMPLENET,
the identity of a task is represented by one of 50 orthogonal rule vec-
tors. Second, STRUCTURENET uses a set of 10 orthogonal structure
vectors, each representing a dimension of the task set (that is, respond
weakest versus strongest direction), and tasks are encoded using com-
binations of these vectors (see Supplementary Notes 3 for the full set of

http://www.nature.com/natureneuroscience

Nature Neuroscience | Volume 27 | May 2024 | 988–999 990

Article https://doi.org/10.1038/s41593-024-01607-5

in modest gains over BOWNET (64%), with GPTNET (XL) achieving 68%
on held-out tasks (t = 2.04, P = 0.047). By contrast, CLIPNET (S), which
uses 4% of the number of parameters utilized by GPTNET (XL), is none-
theless able to achieve the same performance (68% correct, t = 0.146,
P = 0.88). Likewise, BERTNET achieves a generalization performance
that lags only 2% behind GPTNETXL in the mean (t = −1.122, P = 0.262).
By contrast, models with knowledge of sentence-level semantics show
marked improvements in generalization, with SBERTNET performing

an unseen task at 79% correct on average. Finally, our best-performing
model, SBERTNET (L), can execute a never-before-seen task with a
performance of 83% correct, on average, lagging just a few percent-
age points behind STRUCTURENET (88% correct), which receives the
structure of the task set hand-coded in its rule vectors.

Figure 2b shows a histogram of the number of tasks for which each
model achieves a given level of performance. Again, SBERTNET (L)
manages to perform over 20 tasks set nearly perfectly in the zero-shot

"Go in the direction
presented with

weakest intensity"

"Select the initial stimulus
if is stronger than the

final stimulus otherwise
do not respond"

a bExample AntiDM trial Example COMP1 trial

c

...

0

2π

2π

0

1

Sensorimotor-RNN

0

...
...

...
. ..

Embedding

Language model

"Go in the direction presented
with weakest intensity"

AntiDM rule vector

Fixation unit

Modality 1

Modality 2

Se
ns

or
y

in
pu

t
In

st
ru

ct
io

n
em

be
dd

in
g

Ru
le

 v
ec

to
r

O
R

0

1
Fixation output

0

2π
Motor output

Response

Language models

StructureNet - rule vectors with hand-coded task structure

SimpleNet - orthogonal rule vector for each task

sbertNet (L) - supervised sentence pretraining (~300M parameters)

sbertNet - supervised sentence pretraining (~100M parameters)

clipNet (S) - multimodal language/vision pretraining (~60M parameters)

bertNet - masked word prediction pretraining (~100M parameters)

gptNet (XL) - next word prediction pretraining (~1.5B parameters)

gptNet - next word prediction pretraining (~100M parameters)

bowNet - shallow word inclusion statistics

Rule-based models

Fig. 1 | Tasks and models. a,b, Illustrations of example trials as they might appear
in a laboratory setting. The trial is instructed, then stimuli are presented with
different angles and strengths of contrast. The agent must then respond with the
proper angle during the response period. a, An example AntiDM trial where the
agent must respond to the angle presented with the least intensity. b, An example
COMP1 trial where the agent must respond to the first angle if it is presented with

higher intensity than the second angle otherwise repress response. c, Diagram of
model inputs and outputs. Sensory inputs (fixation unit, modality 1, modality 2)
are shown in red and model outputs (fixation output, motor output) are shown in
green. Models also receive a rule vector (blue) or the embedding that results from
passing task instructions through a pretrained language model (gray). A list of
models tested is provided in the inset.

http://www.nature.com/natureneuroscience

Nature Neuroscience | Volume 27 | May 2024 | 988–999 991

Article https://doi.org/10.1038/s41593-024-01607-5

a bPerformance on novel tasks Distribution of performance on novel tasks (%)

c d e f
Generalization with

swapped instructions
Generalization with
grouped holdouts

Generalization with
tuned language models

E�ects of conditional clauses/
deductive tasks on generalization

*

*
NS

* ***

NS NS

NS NS*** *** *** ***NS **** *** ** **

Pe
rc

en
t c

or
re

ct
 (%

)

Pe
rc

en
t c

or
re

ct
 (%

)

Pe
rc

en
t c

or
re

ct
 (%

)

* **

NS

∆
Pe

rc
en

t c
or

re
ct

co

nd
iti

on
al

s/
de

du
ct

iv
e

ta
sk

s
(%

)

**
*

**
*

**
*

**
*

**
*

**
* **
* **

*
**

*

NS100

90

80

70

60

50

40

30

20

10

0

100

90

80

70

60

50

40

30

20

10

0

100

90

80

70

60

50

40

30

20

10

0

20

10

–50

–40

–30

–20

–10

0

100

90

80

70

60

50

Pe
rc

en
ta

ge
 c

or
re

ct
 (%

)

40

30

20

10

0
0 20 40 60 80 100

Exposures to novel task

30

20

10

0

N
um

be
r o

f t
as

ks

30

20

10

0

30

20

10

0

ClipNet (S)Models
structureNet
sbertNet (L)
sbertNet
clipNet (S)
bertNet
gptNet (XL)
gptNet
bowNet
simpleNet

structureNet sbertNet (L)

bertNet

bowNetgptNet

90
–1

00
80

–9
0

70
–8

0
60

–7
0

50
–6

0
40

–5
0

30
–4

0
20

–3
0

10
–2

0
0–

10

90
–1

00
80

–9
0

70
–8

0
60

–7
0

50
–6

0
40

–5
0

30
–4

0
20

–3
0

10
–2

0
0–

10

90
–1

00
80

–9
0

70
–8

0
60

–7
0

50
–6

0
40

–5
0

30
–4

0
20

–3
0

10
–2

0
0–

10

simpleNet

gptNet (XL)

sbertNet

Fig. 2 | Model performance on novel tasks. a, Learning curves for the first
100 exposures to held-out tasks averaged over all tasks. Data are presented as
the mean ± s.d. across different n = 5 random initializations of sensorimotor-
RNN weights. For all subplots, asterisks indicate significant differences among
performance according to a two-sided unequal-variance t-test. Most relevant
comparisons are presented in plots (for all subplots, not significant (NS),
P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001; STRUCTURENET versus SBERTNET
(L): t = 3.761, P = 1.89 × 10−4; SBERTNET (L) versus SBERTNET: t = 2.19, P = 0.029;
SBERTNET versus CLIPNET: t = 6.22, P = 1.02 × 10−9; CLIPNET versus BERTNET:
t = 1.037, P = 0.300; BERTNET versus GPTNET (XL): t = −1.122, P = 0.262; GPTNET
(XL) versus GPTNET: t = 6.22, P = 1.04 × 10−9; GPTNET versus BOWNET: t = −3.346,
P = 8.85 × 10−4; BOWNET versus SIMPLENET: t = 10.25, P = 2.091 × 10−22). A full table
of pairwise comparisons can be found in Supplementary Fig. 3. b, Distribution
of generalization performance (that is, first exposure to novel task) across
models. c–f, Performance across different test conditions for n = 5 different
random initialization of sensorimotor-RNN weights where each point indicates
average performance across tasks for a given initialization. c, Generalization
performance for tasks where instructions are swapped at test time
(STRUCTURENET versus SBERTNET (L): t = −0.15, P = 0.875; SBERTNET (L) versus
SBERTNET: t = −2.102, P = 0.036; SBERTNET versus CLIPNET: t = −0.162, P = 0.871;
CLIPNET versus BERTNET: t = 0.315, P = 0.752; BERTNET versus GPTNET (XL):
t = 0.781, P = 0.435; GPTNET (XL) versus GPTNET: t = 1.071, P = 0.285; GPTNET
versus BOWNET: t = −2.702, P = 0.007; BOWNET versus SIMPLENET: t = −3.471,
P = 5.633−4). A full table of pairwise comparisons can be found in Supplementary
Fig. 4. d, Generalization performance for models where tasks from the same
family are held out during training (STRUCTURENET versus SBERTNET (L):
t = 0.629, P = 0.530; SBERTNET (L) versus SBERTNET: t = −0.668, P = 0.504;
SBERTNET versus CLIPNET: t = 8.043, P = 7.757 × 10−15; CLIPNET versus BERTNET:
t = −0.306, P = 0.759; BERTNET versus GPTNET (XL): t = 0.163, P = 0.869; GPTNET

(XL) versus GPTNET: t = 1.534, P = 0.126; GPTNET versus BOWNET: t = −6.418,
P = 3.26 × 10−10; BOWNET versus SIMPLENET: t = 14.23, P = 8.561−39). A full table of
pairwise comparisons can be found in Supplementary Fig. 4. e, Generalization
performance for models where the last layers of language models are allowed to
fine-tune to the loss from sensorimotor tasks (STRUCTURENET versus SBERTNET
(L): t = 1.203, P = 0.229; SBERTNET (L) versus SBERTNET: t = 2.399, P = 0.016;
SBERTNET versus CLIPNET: t = 5.186, P = 3.251 × 10−7; CLIPNET versus BERTNET:
t = −3.002, P = 0.002; BERTNET versus GPTNET (XL): t = 0.522, P = 0.601; GPTNET
(XL) versus GPTNET: t = 2.631, P = 0.009; GPTNET versus BOWNET: t = 4.440,
P = 1.134 × 10−5; BOWNET versus SIMPLENET: t = 10.255, P = 2.091 × 10−22).
A full table of pairwise comparisons can be found in Supplementary Fig. 4.
f, Average difference in performance between tasks that use standard imperative
instructions and those that use instructions with conditional clauses and require
a simple deductive reasoning component. Colored asterisks at the bottom of
the plot show P values for a two-sided, unequal-variance t-test between the null
distribution constructed using random splits of the task set (transparent points
represent mean differences for random splits; STRUCTURENET: t = −36.46,
P = 4.34 × 10−23; SBERTNET (L): t = −16.38, P = 3.02 × 10−5; SBERTNET: t = −15.35,
P = 3.920 × 10−5; CLIPNET: t = −44.68, P = 5.32 × 10−13; BERTNET: t = −25.51,
P = 3.14 × 10−8; GPTNET (XL): t = −16.99, P = 3.61 × 10−6; GPTNET: t = −9.150,
P = 0.0002; BOWNET: t = −70.99, P = 4.566 × 10−35; SIMPLENET: t = 19.60,
P = 5.82 × 10−6), and asterisks at the top of plot indicate P-value results from a
t-test comparing differences with STRUCTURENET and our other instructed
models (versus SBERTNET (L): t = 3.702, P = 0.0168; versus SBERTNET: t = 6.592,
P = 0.002; versus CLIPNET: t = 30.35, P = 2.367 × 10−7; versus BERTNET: t = 7.234,
P = 0.0007; versus GPTNET (XL): t = 5.282, P = 0.004; versus GPTNET: t = −1.745,
P = 0.149; versus BOWNET: t = 75.04, P = 9.96 × 10−11; versus SIMPLENET: t = −30.95,
P = 2.86 × 10−6; see Methods and Supplementary Fig. 6. for full comparisons).

http://www.nature.com/natureneuroscience

Nature Neuroscience | Volume 27 | May 2024 | 988–999 992

Article https://doi.org/10.1038/s41593-024-01607-5

setting (for individual task performance for all models across tasks,
see Supplementary Fig. 3).

To validate that our best-performing models leveraged the seman-
tics of instructions, we presented the sensory input for one held-out
task while providing the linguistic instructions for a different held-out
task. Models that truly rely on linguistic information should be most
penalized by this manipulation and, as predicted, we saw the largest
decrease in performance for our best models (Fig. 2c).

We also tested a more stringent hold-out procedure where we
purposefully chose 4–6 tasks from the same family of tasks to hold
out during training (Fig. 2d). Overall, performance decreased in this
more difficult setting, although our best-performing models still
showed strong generalization, with SBERTNET (L) and SBERTNET
achieving 71% and 72% correct on novel tasks, respectively, which was
not significantly different from STRUCTURENET at 72% (t = 0.629,
P = 0.529; t = 0.064, P = 0.948; for SBERTNET (L) and SBERTNET,
respectively).

In addition, we tested models in a setting where we allow the
weights of language models to tune according to the loss experienced
during sensorimotor training (see Methods for tuning details). This
manipulation improved the generalization performance across all
models, and for our best-performing model, SBERTNET (L), we see
that generalization is as strong as for STRUCTURENET (86%, t = 1.204,
P = 0.229).

Following ref. 18, we tested models in a setting where task-type
information for a given task was represented as a composition of
information for related tasks in the training set (that is, AntiDM-
Mod1 = (rule(AntiDMMod2) − rule(DMMod2)) + rule(DMMod1)). In
this setting, we did find that the performance of SIMPLENET improved
(60% correct). However, when we combined embedded instructions
according to the same compositional rules, our linguistic models
dramatically outperformed SIMPLENET. This suggests that training
in the context of language more readily allows a simple compositional
scheme to successfully configure task responses (see Supplementary
Fig. 5 for full results and compositional encodings).

Finally, we tested a version of each model where outputs of lan-
guage models are passed through a set of nonlinear layers, as opposed
to the linear mapping used in the preceding results. We found that
this manipulation reduced performance, suggesting that this added
power leads to overfitting on training tasks, and that a simpler linear
mapping is better suited to generalization (see Methods for details and
Supplementary Fig. 4 for full results).

The discrepancy in performance between our instructed mod-
els suggests that in order to represent linguistic information such
that it can successfully configure sensorimotor networks, it is not
sufficient to simply use any very powerful language processing sys-
tem. Rather, model success can be delineated by the extent to which
they are exposed to sentence-level semantics during pretraining.
Our best-performing models SBERTNET (L) and SBERTNET are
explicitly trained to produce good sentence embeddings, whereas
our worst-performing model, GPTNET, is only tuned to the statistics
of upcoming words. Both CLIPNET (S) and BERTNET are exposed to
some form of sentence-level knowledge. CLIPNET (S) is interested
in sentence-level representations, but trains these representations
using the statistics of corresponding vision representations. BERTNET
performs a two-way classification of whether or not input sentences
are adjacent in the training corpus. That the 1.5 billion parameters of
GPTNET (XL) doesn’t markedly improve performance relative to these
comparatively small models speaks to the fact that model size isn’t the
determining factor. Lastly, although BoW removes key elements of
linguistic meaning (that is, syntax), the simple use of word occurrences
encodes information primarily about the similarities and differences
between the sentences. For instance, simply representing the inclusion
or exclusion of the words ‘stronger’ or ‘weaker’ is highly informative
about the meaning of the instruction.

We also investigated which features of language make it difficult
for our models to generalize. Thirty of our tasks require processing
instructions with a conditional clause structure (for example, COMP1)
as opposed to a simple imperative (for example, AntiDM). Tasks that
are instructed using conditional clauses also require a simple form
of deductive reasoning (if p then q else s). Neuroimaging literature
exploring the relationship between such deductive processes and
language areas has reached differing conclusions, with some early
studies showing that deduction recruits regions that are thought to
support syntactic computations24–26 and follow-up studies claiming
that deduction can be reliably dissociated from language areas27–30.
One theory for this variation in results is that baseline tasks used to
isolate deductive reasoning in earlier studies used linguistic stimuli
that required only superficial processing31,32.

To explore this issue, we calculated the average difference in per-
formance between tasks with and without conditional clauses/deduc-
tive reasoning requirements (Fig. 2f). All our models performed worse
on these tasks relative to a set of random shuffles. However, we also
saw an additional effect between STRUCTURENET and our instructed
models, which performed worse than STRUCTURENET by a statisti-
cally significant margin (see Supplementary Fig. 6 for full compari-
sons). This is a crucial comparison because STRUCTURENET performs
deductive tasks without relying on language. Hence, the decrease in
performance between STRUCTURENET and instructed models is in
part due to the difficulty inherent in parsing syntactically more com-
plicated language. The implication is that we may see engagement of
linguistic areas in deductive reasoning tasks, but this may simply be
due to the increased syntactic demands of corresponding instruc-
tions (rather than processes that recruit linguistic areas to explicitly
aid in the deduction). This result largely agrees with two reviews of
the deductive reasoning literature, which concluded that the effects
in language areas seen in early studies were likely due to the syntactic
complexity of test stimuli31,32.

Shared structure in language and sensorimotor networks
We then turned to an investigation of the representational scheme that
supports generalization. First, we note that like in other multitasking
models, units in our sensorimotor-RNNs exhibited functional clus-
tering, where similar subsets of neurons show high variance across
similar sets of tasks (Supplementary Fig. 7). Moreover, we found that
models can learn unseen tasks by only training sensorimotor-RNN input
weights and keeping the recurrent dynamics constant (Supplementary
Fig. 8). Past work has shown that these properties are characteristic of
networks that can reuse the same set of underlying neural resources
across different settings6,18. We then examined the geometry that exists
between the neural representations of related tasks. We plotted the
first three principal components (PCs) of sensorimotor-RNN hidden
activity at stimulus onset in SIMPLENET, GPTNETXL, SBERTNET (L)
and STRUCTURENET performing modality-specific DM and AntiDM
tasks. Here, models receive input for a decision-making task in both
modalities but must only attend to the stimuli in the modality relevant
for the current task. Importantly, AntiDMMod1 is held out of training
in the following examples. In addition, we plotted the PCs of either
the rule vectors or the instruction embeddings in each task (Fig. 3).

For STRUCTURENET, hidden activity is factorized along task-
relevant axes, namely a consistent ‘Pro’ versus ‘Anti’ direction in activ-
ity space (solid arrows), and a ‘Mod1’ versus ‘Mod2’ direction (dashed
arrows). Importantly, this structure is maintained even for AntiDM-
Mod1, which has been held out of training, allowing STRUCTURENET
to achieve a performance of 92% correct on this unseen task. This
factorization is also reflected in the PCs of rule embeddings. Strik-
ingly, SBERTNET (L) also organizes its representations in a way that
captures the essential compositional nature of the task set using only
the structure that it has inferred from the semantics of instructions.
This is the case for language embeddings, which maintain abstract

http://www.nature.com/natureneuroscience

Nature Neuroscience | Volume 27 | May 2024 | 988–999 993

Article https://doi.org/10.1038/s41593-024-01607-5

axes across AntiDMMod1 instructions (again, held out of training). As
a result, SBERTNET (L) is able to use these relevant axes for AntiDM-
Mod1 sensorimotor-RNN representations, leading to a generalization
performance of 82%. By contrast, GPTNET (XL) fails to properly infer a
distinct ‘Pro’ versus ‘Anti’ axes in either sensorimotor-RNN representa-
tions or language embeddings leading to a zero-shot performance of
6% on AntiDMMod1 (Fig. 3b). Finally, we find that the orthogonal rule
vectors used by simpleNet preclude any structure between practiced
and held-out tasks, resulting in a performance of 22%.

To more precisely quantify this structure, we measure the
cross-conditional generalization performance (CCGP) of these

representations3. CCGP measures the ability of a linear decoder
trained to differentiate one set of conditions (that is, DMMod2 and
AntiDMMod2) to generalize to an analogous set of test conditions
(that is, DMMod1 and AntiDMMod1). Intuitively, this captures the
extent to which models have learned to place sensorimotor activity
along abstract task axes (that is, the ‘Anti’ dimension). Notably, high
CCGP scores and related measures have been observed in experiments
that required human participants to flexibly switch between different
interrelated tasks4,33.

We measured CCGP scores among representations in sensorimotor-
RNNs for tasks that have been held out of training (Methods) and found

RN
N

 re
pr

es
en

ta
tio

ns

AntiDMMod1 - 22%AntiDMMod1 - 6%AntiDMMod1 - 82%

AntiDMMod1 heldout

Ta
sk

-in
fo

re

pr
es

en
ta

tio
ns

AntiDMMod1 - 92%

SIMPLENETGPTNET (XL)SBERTNET (L)STRUCTURENET

e f

RNN

Embedding
Language model layers

CCGP correlates with generalization CCGP across-model hierarchy

a b c d
DMMod1
AntiDMMod1

AntiDMMod2
DMMod2

ρ = 0.606
P < 0.001

NS

**

**

structureNet
sbertNet (L)
sbertNet
clipNet (S)
bertNet
gptNet (XL)
gptNet
bowNet
simpleNet

0

0.5

0.6

0.7

0.8

0.9

1.0

0.2 0.4 0.6 0.8 1.0

Zero-shot performance

H
ol

d-
ou

t t
as

k
C

C
G

P

0.5

0.6

0.7

0.8

0.9

1.0

H
ol

d-
ou

t t
as

k
C

C
G

P

Fig. 3 | Structured representations in instructed models. a–d, The first three
PCs of sensorimotor hidden activity and task-info representations for models
trained with AntiDMMod1 held out. Solid arrows represent an abstract ‘Pro’
versus ‘Anti’ axis, and dashed arrows represent an abstract ‘Mod1’ versus ‘Mod2’
axis. a, STRUCTURENET. b, SBERTNET (L). c, GPTNET (XL). d, SIMPLENET.
e, Correlation between held-out task CCGP and zero-shot performance
(Pearson’s r = 0.606, P = 1.57 × 10−46). f, CCGP scores for held-out tasks for
each layer in the model hierarchy. Significance scores indicate P-value results
from pairwise two-sided unequal-variance t-tests performed among model

distributions of CCGP scores on held-out tasks for sensorimotor-RNN
(NS P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001; STRUCTURENET versus SBERTNET
(L): t = 13.67, P = 2.44 × 10−36; SBERTNET (L) versus SBERTNET: t = 5.061,
P = 5.84 × 10−7; SBERTNET versus CLIPNET: t = 2.809, P = 0.005; CLIPNET versus
BERTNET: t = 0.278, P = 0.780; BERTNET versus GPTNET (XL): t = 2.505, P = 0.012;
GPTNET (XL) versus GPTNET: t = 3.180, P = 0.001; GPTNET versus BOWNET:
t = −4.176, P = 3.50 × 10−5; BOWNET versus SIMPLENET: t = 23.0.8, P = 1.10−80; see
Supplementary Fig. 9 for full comparisons as well as t-test results for embedding
layer CCGP scores).

http://www.nature.com/natureneuroscience

Nature Neuroscience | Volume 27 | May 2024 | 988–999 994

Article https://doi.org/10.1038/s41593-024-01607-5

a strong correlation between CCGP scores and zero-shot performance
(Fig. 3e). Additionally, we find that swapping task instructions for
held-out tasks dramatically reduces CCGP scores for all our instructed
models, indicating that the semantic of instructions is crucial for main-
taining structured representations (Supplementary Fig. 9).

We then looked at how structure emerges in the language pro-
cessing hierarchy. CCGP decoding scores for different layers in our
model are shown in Fig. 3f. For each instructed model, scores for 12
transformer layers (or the last 12 layers for SBERTNET (L) and GPTNET
(XL)), the 64-dimensional embedding layer and the Sensorimotor-RNN
task representations are plotted. We also plotted CCGP scores for
the rule embeddings used in our nonlinguistic models. Among
models, there was a notable discrepancy in how abstract structure
emerges. Autoregressive models (GPTNETXL, GPTNET), BERTNET
and CLIPNET (S), showed a low CCGP throughout language model
layers followed by a jump in the embedding layer. This is because
weights feeding into the embedding layer are tuned during sensori-
motor training. The implication of this spike is that most of the use-
ful representational processing in these models actually does not
occur in the pretrained language model per se, but rather in the linear
readout, which is exposed to task structure via training. By contrast,
our best-performing models SBERTNET and SBERTNET (L) use lan-
guage representations where high CCGP scores emerge gradually in
the intermediate layers of their respective language models. Because
semantic representations already have such a structure, most of the
compositional inference involved in generalization can occur in the
comparatively powerful language processing hierarchy. As a result,
representations are already well organized in the last layer of language
models, and a linear readout in the embedding layer is sufficient for the
sensorimotor-RNN to correctly infer the geometry of the task set and
generalize well.

This analysis strongly suggests that models exhibiting generaliza-
tion do so by leveraging structured semantic representations to prop-
erly relate practiced and novel tasks in sensorimotor space, thereby
allowing a composition of practiced behaviors in an unseen setting.

Semantic modulation of single-unit tuning properties
Next, we examined tuning profiles of individual units in our
sensorimotor-RNNs. We found that individual neurons are tuned to a
variety of task-relevant variables. Critically, however, we find neurons
where this tuning varies predictably within a task group and is modu-
lated by the semantic content of instructions in a way that reflects task
demands.

For instance, in the ‘Go’ family of tasks, unit 42 shows direction
selectivity that shifts by π between ‘Pro’ and ‘Anti’ tasks, reflecting
the relationship of task demands in each context (Fig. 4a). This flip in
selectivity is observed even for the AntiGo task, which was held out
during training.

For the ‘Matching’ family of tasks, unit 14 modulates activity
between ‘match’ (DMS, DMC) and ‘non-match’ (DNMS, DNMC) con-
ditions. In ‘non-match’ trials, the activity of this unit increases as the
distance between the two stimuli increases. By contrast, for ‘matching’
tasks, this neuron is most active when the relative distance between
the two stimuli is small. Hence, in both cases this neuron modulates
its activity to represent when the model should respond, changing
selectivity to reflect opposing task demands between ‘match’ and
‘non-match’ trials. This is true even for DMS, which has been held out
of training.

Figure 4c shows traces of unit 3 activity in modality-specific ver-
sions of DM and AntiDM tasks (AntiDMMod1 is held out of training)
for different levels of contrast (contrast = strstim1 − strstim2). In all tasks,
we observed ramping activity where the rate of ramping is relative
to the strength of contrast. This motif of activity has been reported
in previous studies34,35. However, in our models, we observe that an
evidence-accumulating neuron can swap the sign of its integration in

response to a change in linguistic instructions, which allows models to
meet opposing demands of ‘Pro’ and ‘Anti’ versions of the task, even
for previously unseen tasks.

Interestingly, we also found that unsuccessful models failed to
properly modulate tuning preferences. For example, with GPTNET
(XL), which failed to factorize along a ‘Pro’ versus ‘Anti’ axis (Fig. 3b)
and had poor generalization on AntiDMMod1, we also find neurons
that failed to swap their sign of integration in the held-out setting
(Supplementary Fig. 10).

Finally, we see a similar pattern in the time course of activity for
trials in the ‘Comparison’ family of tasks (Fig. 4d). In the COMP1 task,
the network must respond in the direction of the first stimulus if it
has higher intensity than the second stimulus, and must not respond
otherwise. In COMP2, it must only respond to the second stimulus if
the second stimulus is higher intensity. For ‘Anti’ versions, the demands
of stimulus ordering are the same except the model has to choose the
stimuli with the weakest contrast. Even with this added complexity,
we found individual neurons that modulate their tuning with respect
to task demands, even for held-out tasks (in this case COMP2). For
example, unit 82 is active when the network should repress response.
For ‘COMP1’, this unit is highly active with negative contrast (that is,
strstim2 > strstim1), but flips this sensitivity in COMP2 and is highly active
with positive contrast (that is, strstim1 > strstim2). Importantly, this relation
is reversed when the goal is to select the weakest stimuli. Hence, despite
these subtle syntactic differences in instruction sets, the language
embedding can reverse the tuning of this unit in a task-appropriate
manner.

Linguistic communication between networks
We now seek to model the complementary human ability to describe a
particular sensorimotor skill with words once it has been acquired. To
do this, we inverted the language-to-sensorimotor mapping our mod-
els learn during training so that they can provide a linguistic descrip-
tion of a task based only on the state of sensorimotor units. First, we
constructed an output channel (production-RNN; Fig. 5a–c), which
is trained to map sensorimotor-RNN states to input instructions. We
then present the network with a series of example trials while with-
holding instructions for a specific task. During this phase all model
weights are frozen, and models receive motor feedback in order to
update the embedding layer activity in order to reduce the error of
the output (Fig. 5b). Once the activity in the embedding layer drives
sensorimotor units to achieve a performance criterion, we used the
production-RNN to decode a linguistic description of the current task.
Finally, to evaluate the quality of these instructions, we input them
into a partner model and measure performance across tasks (Fig. 5c).
All instructing and partner models used in this section are instances
of SBERTNET (L) (Methods).

Some example decoded instructions for the AntiDMMod1 task
(Fig. 5d; see Supplementary Notes 4 for all decoded instructions). To
visualize decoded instructions across the task set, we plotted a confu-
sion matrix where both sensorimotor-RNN and production-RNN are
trained on all tasks (Fig. 5e). Note that many decoded instructions
were entirely ‘novel’, that is, they were not included in the training set
for the production-RNN (Methods). Novel instructions made up 53%
of decoded instructions across all tasks.

To test the quality of these novel instructions, we evaluated a
partner model’s performance on instructions generated by the first
network (Fig. 5c; results are shown in Fig. 5f). When the partner model
is trained on all tasks, performance on all decoded instructions was
93% on average across tasks. Communicating instructions to partner
models with tasks held out of training also resulted in good perfor-
mance (78%). Importantly, performance was maintained even for
‘novel’ instructions, where average performance was 88% for partner
models trained on all tasks and 75% for partner models with hold-out
tasks. Given that the instructing and partner models share the same

http://www.nature.com/natureneuroscience

Nature Neuroscience | Volume 27 | May 2024 | 988–999 995

Article https://doi.org/10.1038/s41593-024-01607-5

architecture, one might expect that it is more efficient to forgo the
language component of communication and simply copy the embed-
ding inferred by one model into the input of the partner model. This
resulted in only 31% correct performance on average and 28% perfor-
mance when testing partner models on held-out tasks. Although both
instructing and partner networks share the same architecture and the
same competencies, they nonetheless have different synaptic weights.
Hence, using a neural representation tuned for the set of weights within
the one agent won’t necessarily produce good performance in the
other.

We also tested an instructing model using a sensorimotor-RNN
with tasks held out of training. We emphasize here that during training
the production-RNN attempts to decode from sensorimotor hidden
states induced by instructions for tasks the network has never expe-
rienced before (Fig. 5a), whereas during test time, instructions are
produced from sensorimotor states that emerge entirely as a result of
minimizing a motor error (Fig. 5b,c). We nonetheless find that, in this
setting, a partner model trained on all tasks performs at 82% correct,
while partner models with tasks held out of training perform at 73%.

Here, 77% of produced instructions are novel, so we see a very small
decrease of 1% when we test the same partner models only on novel
instructions. Like above, context representations induce a relatively
low performance of 30% and 37% correct for partners trained on all
tasks and with tasks held out, respectively.

Lastly, we tested our most extreme setting where tasks have been
held out for both sensorimotor-RNNs and production-RNNs (Fig. 5f).
We find that produced instructions induce a performance of 71% and
63% for partner models trained on all tasks and with tasks held out,
respectively. Although this is a decrease in performance from our previ-
ous set-ups, the fact that models can produce sensible instructions at
all in this double held-out setting is striking. The fact that the system
succeeds to any extent speaks to strong inductive biases introduced
by training in the context of rich, compositionally structured semantic
representations.

Discussion
In this study, we use the latest advances in natural language process-
ing to build tractable models of the ability to interpret instructions to

a b

d

c DMMod1 AntiDMMod1 (held out)

Neural response for unit 3

Stim. 1 Stim. 1Stim. 2 Stim. 2 Stim. 2

Neural response for unit 220

C
ontrast

Tuning curves for unit 42 Tuning curves for unit 14

DMMod2 AntiDMMod2

COMP1 COMP2 (held out) AntiCOMP1

Stim. 1 Stim. 2 Stim. 1

AntiCOMP2

16

14

12

10

8

6

4

2

0

0
2

Direction

Stim. onset
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Reponse Stim. onset Reponse Stim. onset Reponse Stim. onset Reponse

∆0.3

∆–0.3

ππ
2

3π 2π
0

2

4

6

8

Go
AntiGo

DNMC

DNMS
DMC

DMS

AntiRTGo
RTGo

U
ni

t a
ct

iv
ity

U
ni

t a
ct

iv
ity

U
ni

t a
ct

iv
ity

U
ni

t a
ct

iv
ity

0

∆ direction
2
π π

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0

0.5

0.6

0.7

0.8

0.4

0.3

0.2

0.1

0

0.5

1.0

1.5

2.0

2.5

0

0.2

0.4

0.6

0.8

1.0

1.4

1.2

0

0.2

0.4

0.6

0.8

1.0

1.2

0

1

2

3

4

5

0

1

2

3

4

5

2– π
2– π

Fig. 4 | Semantic modulation of single-unit tuning properties. a, Tuning curves
for a SBERTNET (L) sensorimotor-RNN unit that modulates tuning according
to task demands in the ‘Go’ family. b, Tuning curves, for a SBERTNET (L)
sensorimotor-RNN unit in the ‘matching’ family of tasks plotted in terms of

difference in angle between two stimuli. c, Full activity traces for modality-
specific ‘DM’ and ‘AntiDM’ tasks for different levels of relative stimulus strength.
d, Full activity traces for tasks in the ‘comparison’ family of tasks for different
levels of relative stimulus strength.

http://www.nature.com/natureneuroscience

Nature Neuroscience | Volume 27 | May 2024 | 988–999 996

Article https://doi.org/10.1038/s41593-024-01607-5

a bSelf-supervised language
production training

Motor feedback without
instructions

c Partner model testing

Embedding

Language model

Sensory input

Motor output

ProductionRNN

? Decoded instruction

Sensory input

Motor output

Embedding

Language model

Instructing model Partner model

Embedding

Language model

?

Decoded instruction

Sensory input

Motor output

Motor feedback

ProductionRN
N

Embedding

Language model

Task instruction

Decoded instruction

Sensory input

Task instruction

Motor output

ProductionRN
N

d Example 'AntiDMMod1' produced instructions

‘select the stimulus in the �rst modality that is presented with least intensity‘
‘focus only on the �rst modality and choose the orientation with lowest intensity‘
‘attend to the �rst modality and select the weakest direction‘

‘pick the direction which appears with minimal intensity in the �rst modality‘,
‘opt for the stimulus that appears weakest in the �rst modality‘
‘respond to the stimulus in the �rst modality that has lowest strength‘

Ground truth
instructions

e Decoded instruction confusion matrix

Produced instruction

In
pu

t–
ou

tp
ut

 ta
sk

 fo
r p

ro
du

ct
io

n

Production-RNN training

All tasks Tasks held out

Se
ns

or
im

ot
or

-R
N

N
 tr

ai
ni

ng%
 of Produced instructions

Al
l t

as
ks

 (%
)

Ta
sk

s
he

ld
 o

ut
 (%

)

f
100

100

90
80
70
60
50
40
30
20
10
0

0

100
90
80
70
60
50
40
30
20
10
0

100
90
80
70
60
50
40
30
20
10
0

Partner model performance
Go

GoMod1
AntiGoMod1

AntiGoMod2

AntiDM
MultiDM

AntiMultiDM
DMMod1

AntiDMMod1
DMMod2

AntiDMMod2
ConDM

ConAntiDM
COMP1
COMP2

MultiCOMP1
MultiCOMP2

AntiCOMP1
AntiCOMP2

AntiMultiCOMP1
AntiMultiCOMP2

COMP1Mod1
COMP2Mod1
COMP1Mod2
COMP2Mod2

MultiDur1
MultiDur2

AntiDur1
AntiDur2

AntiMultiDur1
AntiMultiDur2

Dur1Mod1
Dur2Mod1
Dur1Mod2
Dur2Mod2

DMS
DNMS

DMC
DNMC

Dur1
Dur2

GoMod2

AntiGo
RTGo

RTGoMod1

RTGoMod2

DM

AntiRTGo

AntiRTGoMod1

AntiRTGoMod2

Go

GoMod1

AntiG
oMod1

AntiG
oMod2

AntiD
M

MultiD
M

AntiM
ultiD

M

DMMod1

AntiD
MMod1

DMMod2

AntiD
MMod2

ConDM

ConAntiD
M

COMP1

COMP2

MultiC
OMP1

MultiC
OMP2

AntiC
OMP1

AntiC
OMP2

AntiM
ultiC

OMP1

AntiM
ultiC

OMP2

COMP1M
od1

COMP2M
od1

COMP1M
od2

COMP2M
od2

MultiD
ur1

MultiD
ur2

AntiD
ur1

AntiD
ur2

AntiM
ultiD

ur1

AntiM
ultiD

ur2

Dur1M
od1

Dur2M
od1

Dur1M
od2

Dur2M
od2

Nove
l

DMS
DNMS

DMC
DNMC

Dur1
Dur2

GoMod2

AntiG
o

RTG
o

RTG
oMod1

RTG
oMod2 DM

AntiR
TG

o

AntiR
TG

oMod1

AntiR
TG

oMod2

All instructions

Novel instructions

Embeddings

Multitask partner

Holdout partner

Fig. 5 | Communication between networks. a, Illustration of self-supervised
training procedure for the language production network (blue). The red dashed
line indicates gradient flow. b, Illustration of motor feedback used to drive
task performance in the absence of linguistic instructions. c, Illustration of the
partner model evaluation procedure used to evaluate the quality of instructions
generated from the instructing model. d, Three example instructions produced
from sensorimotor activity evoked by embeddings inferred in b for an
AntiDMMod1 task. e, Confusion matrix of instructions produced again using
the method described in b. y axis indicates input–output task used to infer an
embedding, and x axis indicates whether the instruction produced from the

resulting sensorimotor activity was included in one of the instruction sets used
during self-supervised training or else was a ‘novel’ formulation. f, Performance
of partner models in different training regimes given produced instructions
or direct input of embedding vectors. Each point represents the average
performance of a partner model across tasks using instructions from decoders
train with different random initializations. Dots indicate the partner model
was trained on all tasks, whereas diamonds indicate performance on held-out
tasks. Axes indicate the training regime of the instructing model. Full statistical
comparisons of performance can be found in Supplementary Fig. 12.

http://www.nature.com/natureneuroscience

Nature Neuroscience | Volume 27 | May 2024 | 988–999 997

Article https://doi.org/10.1038/s41593-024-01607-5

guide actions in novel settings and the ability to produce a descrip-
tion of a task once it has been learned. RNNs can learn to perform a set
of psychophysical tasks simultaneously using a pretrained language
transformer to embed a natural language instruction for the current
task. Our best-performing models can leverage these embeddings to
perform a brand-new model with an average performance of 83% cor-
rect. Instructed models that generalize performance do so by leverag-
ing the shared compositional structure of instruction embeddings
and task representations, such that an inference about the relations
between practiced and novel instructions leads to a good inference
about what sensorimotor transformation is required for the unseen
task. Finally, we show a network can invert this information and pro-
vide a linguistic description for a task based only on the sensorimotor
contingency it observes.

Our models make several predictions for what neural representa-
tions to expect in brain areas that integrate linguistic information in
order to exert control over sensorimotor areas. Firstly, the CCGP analy-
sis of our model hierarchy suggests that when humans must generalize
across (or switch between) a set of related tasks based on instructions,
the neural geometry observed among sensorimotor mappings should
also be present in semantic representations of instructions. This pre-
diction is well grounded in the existing experimental literature where
multiple studies have observed the type of abstract structure we find in
our sensorimotor-RNNs also exists in sensorimotor areas of biological
brains3,36,37. Our models theorize that the emergence of an equivalent
task-related structure in language areas is essential to instructed action
in humans. One intriguing candidate for an area that may support
such representations is the language selective subregion of the left
inferior frontal gyrus. This area is sensitive to both lexico-semantic
and syntactic aspects of sentence comprehension, is implicated in
tasks that require semantic control and lies anatomically adjacent to
another functional subregion of the left inferior frontal gyrus, which
is implicated in flexible cognition38–41. We also predict that individ-
ual units involved in implementing sensorimotor mappings should
modulate their tuning properties on a trial-by-trial basis according to
the semantics of the input instructions, and that failure to modulate
tuning in the expected way should lead to poor generalization. This
prediction may be especially useful to interpret multiunit recordings
in humans. Finally, given that grounding linguistic knowledge in the
sensorimotor demands of the task set improved performance across
models (Fig. 2e), we predict that during learning the highest level of
the language processing hierarchy should likewise be shaped by the
embodied processes that accompany linguistic inputs, for example,
motor planning or affordance evaluation42.

One notable negative result of our study is the relatively poor gen-
eralization performance of GPTNET (XL), which used at least an order
of magnitude more parameters than other models. This is particularly
striking given that activity in these models is predictive of many behav-
ioral and neural signatures of human language processing10,11. Given
this, future imaging studies may be guided by the representations
in both autoregressive models and our best-performing models to
delineate a full gradient of brain areas involved in each stage of instruc-
tion following, from low-level next-word prediction to higher-level
structured-sentence representations to the sensorimotor control that
language informs.

Our models may guide future work comparing compositional
representations in nonlinguistic subjects like nonhuman primates.
Comparison of task switching (without linguistic instructions)
between humans and nonhuman primates indicates that both use
abstract rule representations, although humans can make switches
much more rapidly43. One intriguing parallel in our analyses is the
use of compositional rules vectors (Supplementary Fig. 5). Even in
the case of nonlinguistic SIMPLENET, using these vectors boosted
generalization. Importantly, however, this compositionality is much
stronger for our best-performing instructed models. This suggests

that language endows agents with a more flexible organization of
task subcomponents, which can be recombined in a broader variety
of contexts.

Our results also highlight the advantages of linguistic commu-
nication. Networks can compress the information they have gained
through experience of motor feedback and transfer that knowledge
to a partner network via natural language. Although rudimentary in
our example, the ability to endogenously produce a description of
how to accomplish a task after a period of practice is a hallmark human
language skill. The failure to transfer performance by sharing latent
representations demonstrates that to communicate information in a
group of independent networks of neurons, it needs to pass through a
representational medium that is equally interpretable by all members
of the group. In humans and for our best-performing instructed mod-
els, this medium is language.

A series of works in reinforcement learning has investigated using
language and language-like schemes to aid agent performance. Agents
receive language information through step-by-step descriptions of
action sequences44,45, or by learning policies conditioned on a lan-
guage goal46,47. These studies often deviate from natural language
and receive linguistic inputs that are parsed or simply refer directly
to environmental objects. Some larger versions of the pretrained
language models we use to embed instructions also display instruc-
tions following behavior, that is, GPT-3 (ref. 7), PALM12, LaMDA13 and
InstructGPT48 in the modality of language and DALL-E8 and Stable Dif-
fusion14 in a language to image modality. The semantic and syntactic
understanding displayed in these models is impressive. However, the
outputs of these models are difficult to interpret in terms of guiding
the dynamics of a downstream action plan. Finally, recent work has
sought to engineer instruction following agents that can function in
complex or even real-world environments16–18. While these models
exhibit impressive behavioral repertoires, they rely on perceptual
systems that fuse linguistic and visual information making them dif-
ficult to compare to language representations in human brains, which
emerge from a set of areas specialized for processing language. In all,
none of these models offer a testable representational account of how
language might be used to induce generalization over sensorimotor
mappings in the brain.

Our models by contrast make tractable predictions for what popu-
lation and single-unit neural representations are required to support
compositional generalization and can guide future experimental work
examining the interplay of linguistic and sensorimotor skills in humans.
By developing interpretable models that can both understand instruc-
tions as guiding a particular sensorimotor response, and communicate
the results of sensorimotor learning as an intelligible linguistic instruc-
tion, we have begun to explain the power of language in encoding
and transferring knowledge in networks of neurons.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41593-024-01607-5.

References
1.	 Cole, M. W. et al. Multi-task connectivity reveals flexible hubs for

adaptive task control. Nature Neurosci. 16, 1348–1355 (2013).
2.	 Miller, E. K. & Cohen, J. D. An integrative theory of prefrontal

cortex function. Annu. Rev. Neurosci. 24, 167–202 (2001).
3.	 Bernardi, S. et al. The geometry of abstraction in the

hippocampus and prefrontal cortex. Cell 183, 954–967 (2020).
4.	 Minxha, J., Adolphs, R., Fusi, S., Mamelak, A. N. & Rutishauser, U.

Flexible recruitment of memory-based choice representations by
the human medial frontal cortex. Science 368, eaba3313 (2020).

http://www.nature.com/natureneuroscience
https://doi.org/10.1038/s41593-024-01607-5

Nature Neuroscience | Volume 27 | May 2024 | 988–999 998

Article https://doi.org/10.1038/s41593-024-01607-5

5.	 Takuya, I. et al. Compositional generalization through abstract
representations in human and artificial neural networks. In Proc.
36th Conference on Neural Information Processing Systems
(eds Koyejo, S. et al.) 32225–32239 (Curran Associates, Inc., 2022).

6.	 Driscoll, L., Shenoy, K. & Sussillo, D. Flexible multitask computation
in recurrent networks utilizes shared dynamical motifs. Preprint at
bioRxiv https://doi.org/10.1101/2022.08.15.503870 (2022).

7.	 Brown, Tom, et al. Language models are few-shot learners.
In Proc. 34th International Conference on Neural Information
Processing Systems 1877–1901 (Curran Associates Inc., 2020).

8.	 Ramesh, A. et al. Zero-shot text-to-image generation. In Proc. 38th
International Conference on Machine Learning (eds Marina, M. &
Tong, Z.) 8821–8831 (PMLR, 2021).

9.	 Radford, A. et al. Language models are unsupervised multitask
learners. OpenAI 1, 9 (2019).

10.	 Schrimpf, M. et al. The neural architecture of language: integrative
modeling converges on predictive processing. Proc. Natl Acad.
Sci. USA https://doi.org/10.1073/pnas.2105646118 (2021).

11.	 Goldstein, A. et al. Shared computational principles for language
processing in humans and deep language models. Nature
Neurosci. 25, 369–380 (2022).

12.	 Chowdhery, A. et al. Palm: scaling language modeling with
pathways. J. Mach. Learn. Res. 24, 11324–11436 (2023).

13.	 Thoppilan, R. et al. Lamda: language models for dialog
applications. Preprint at https://arxiv.org/abs/2201.08239 (2022).

14.	 Rombach, R. et al. High-resolution image synthesis with latent
diffusion models. In Proc. 2022 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) 10674–10685 (IEEE, 2022).

15.	 Zitkovich, B. et al. Rt-2: vision-language-action models transfer
web knowledge to robotic control. In Proc. 7th Conference on
Robot Learning (eds Tan, J. et al.) 2165-2183 (PMLR, 2023).

16.	 Abramson, J. et al. Imitating interactive intelligence. Preprint at
https://arxiv.org/abs/2012.05672 (2021).

17.	 DeepMind Interactive Agents Team. Creating multimodal
interactive agents with imitation and self-supervised learning.
Preprint at https://arxiv.org/abs/2112.03763 (2022).

18.	 Yang, G. R., Joglekar, M. R., Song, H. F., Newsome, W. T. & Wang,
X.-J. Task representations in neural networks trained to perform
many cognitive tasks. Nat. Neurosci. 22, 297–306 (2019).

19.	 Vaswani, A. et al. Attention is all you need. In Proc. 31st
International Conference on Neural Information Processing
Systems 6000–6010 (Curran Associates Inc., 2017).

20.	 Devlin, J., Chang, M., Lee, K. & Toutanova, K. BERT: pre-training
of deep bidirectional transformers for language understanding.
Preprint at http://arxiv.org/abs/1810.04805 (2018).

21.	 Reimers, N. & Gurevych, I. Sentence-bert: Sentence embeddings
using siamese bert-networks. Preprint at https://arxiv.org/
abs/1908.10084 (2019).

22.	 Bowman, S. R., Angeli, G., Potts, C. & Manning, C. D. A large
annotated corpus for learning natural language inference.
Preprint at http://arxiv.org/abs/1508.05326 (2015).

23.	 Radford, A. et al. "Learning transferable visual models from
natural language supervision. In Proc. 38th International
Conference on Machine Learning (eds Marina, M. & Tong, Z.)
8748–8763 (PMLR, 2021).

24.	 Goel, V., Gold, B., Kapur, S. & Houle, S. Neuroanatomical correlates
of human reasoning. J. Cogn. Neurosci. 10, 293–302 (1998).

25.	 Goel, V., Buchel, C., Frith, C. & Dolan, R. J. Dissociation of
mechanisms underlying syllogistic reasoning. Neuroimage 12,
504–514 (2000).

26.	 Reverberi, C. et al. Neural basis of generation of conclusions in
elementary deduction. Neuroimage 38, 752–762 (2007).

27.	 Noveck, I. A., Goel, V. & Smith, K. W. The neural basis of
conditional reasoning with arbitrary content. Cortex 40, 613–622
(2004).

28.	 Monti, M. M., Osherson, D. N., Martinez, M. J. & Parsons, L. M.
Functional neuroanatomy of deductive inference:
a language-independent distributed network. Neuroimage 37,
1005–1016 (2007).

29.	 Monti, M. M., Parsons, L. M. & Osherson, D. N. The boundaries of
language and thought in deductive inference. Proc. Natl Acad.
Sci. USA 106, 12554–12559 (2009).

30.	 Coetzee, J. P. & Monti, M. M. At the core of reasoning: dissociating
deductive and non-deductive load. Hum. Brain Mapp. 39,
1850–1861 (2018).

31.	 Monti, M. M. & Osherson, D. N. Logic, language and the brain.
Brain Res. 1428, 33–42 (2012).

32.	 Prado, J. The relationship between deductive reasoning and the
syntax of language in broca’s area: a review of the neuroimaging
literature. L’année Psychol. 118, 289–315 (2018).

33.	 Ito, T., Yang, G. R., Laurent, P., Schultz, D. H. & Cole, M. W.
Constructing neural network models from brain data reveals
representational transformations linked to adaptive behavior.
Nat. Commun. 13, 673 (2022).

34.	 Shadlen, M. N. & Newsome, W. T. Neural basis of a perceptual
decision in the parietal cortex (area lip) of the rhesus monkey.
J. Neurophysiol. 86, 1916–1936 (2001).

35.	 Huk, A. C. & Shadlen, M. N. Neural activity in macaque parietal
cortex reflects temporal integration of visual motion signals
during perceptual decision making. J. Neurosci. 25, 10420–10436
(2005).

36.	 Panichello, M. F. & Buschman, T. J. Shared mechanisms underlie
the control of working memory and attention. Nature 592,
601–605 (2021).

37.	 Nieh, E. H. et al. Geometry of abstract learned knowledge in the
hippocampus. Nature 595, 80–84 (2021).

38.	 Fedorenko, E. & Blank, I. A. Broca’s area is not a natural kind.
Trends Cogn. Sci. 24, 270–284 (2020).

39.	 Fedorenko, E., Duncan, J. & Kanwisher, N. Language-selective and
domain-general regions lie side by side within broca’s area. Curr.
Biol. 22, 2059–2062 (2012).

40.	 Gao, Z. et al. Distinct and common neural coding of semantic and
non-semantic control demands. NeuroImage 236, 118230 (2021).

41.	 Duncan, J. The multiple-demand (MD) system of the primate
brain: mental programs for intelligent behaviour. Trends Cogn.
Sci. 14, 172–179 (2010).

42.	 Buccino, G., Colagé, I., Gobbi, N. & Bonaccorso, G. Grounding
meaning in experience: a broad perspective on embodied
language. Neurosci. Biobehav. Rev. 69, 69–78 (2016).

43.	 Mansouri, F. A., Freedman, D. J. & Buckley, M. J. Emergence of
abstract rules in the primate brain. Nat. Rev. Neurosci. 21, 595–610
(2020).

44.	 Oh, J. Singh, S., Lee, H. & Kohli, P. Zero-shot task generalization
with multi-task deep reinforcement learning. In Proc. 34th
International Conference on Machine Learning 2661–2670 (JMLR.
org, 2017).

45.	 Chaplot, D. S., Mysore Sathyendra, K., Pasumarthi, R. K.,
Rajagopal, D., & Salakhutdinov, R. Gated-attention architectures
for task-oriented language grounding. In Proc. 32nd AAAI
Conference on Artificial Intelligence Vol. 32 (AAAI Press, 2018).

46.	 Sharma, P., Torralba, A. & Andreas, J. Skill induction and
planning with latent language. Preprint at https://arxiv.org/
abs/2110.01517(2021).

47.	 Jiang, Y., Gu, S., Murphy, K. & Finn, C. Language as an abstraction
for hierarchical deep reinforcement learning. In Proc. 33rd
International Conference on Neural Information Processing
Systems 9419–943132 (Curran Associates Inc., 2019).

48.	 Ouyang, L. et al. Training language models to follow instructions
with human feedback. In Advances in Neural Information
Processing Systems 27730–27744 (Curran Associates, Inc., 2022).

http://www.nature.com/natureneuroscience
https://doi.org/10.1101/2022.08.15.503870
https://doi.org/10.1073/pnas.2105646118
https://arxiv.org/abs/2201.08239
https://arxiv.org/abs/2012.05672
https://arxiv.org/abs/2112.03763
http://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1508.05326
https://arxiv.org/abs/2110.01517
https://arxiv.org/abs/2110.01517

Nature Neuroscience | Volume 27 | May 2024 | 988–999 999

Article https://doi.org/10.1038/s41593-024-01607-5

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2024

http://www.nature.com/natureneuroscience
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Nature Neuroscience

Article https://doi.org/10.1038/s41593-024-01607-5

Methods
Model architecture
Sensorimotor-RNN. The base model architecture and task structure
used in this paper follows18. All networks of sensorimotor units denoted
sensorimotor-RNN are gated recurrent units (GRU)49 using rectified
linear unit (ReLU) nonlinearities with 256 hidden units each. Inputs to
the networks consist of (1) sensory inputs, Xt and (2) task-identifying
information, It. We initialize hidden activity in the GRU as h0 ∈ ℝ256 with
values set to 0.1. All networks of sensorimotor units use the same hid-
den state initialization, so we omit h0 in network equations. At each
time step, a readout layer Linearout decodes motor activity, ̂yt, from the
activity of recurrent hidden units, ht, according to:

ht = SensorimotorRNN(Xt, It;ht−1) ht ∈ ℝ256

̂yt = σ(Linearout(ht)) ̂yt ∈ ℝ33

where σ denotes the sigmoid function. Sensory inputs Xt are made up
of three channels, two sensory modalities xmod 1,t and xmod2,t, and a fixa-
tion channel xfix,t. Both xmod 1,t, xmod2,t ∈ ℝ32 and stimuli in these modali-
ties are represented as hills of activity with peaks determined by units’
preferred directions around a one-dimensional circular variable. For
an input at direction θ, the activity of a given input unit ui with preferred
direction θi is

ui = str × 0.8exp [−0.5 × (8|θ − θi|
π)

2

]

where str is the coefficient describing stimulus strength. The fixation
channel xfix,t ∈ ℝ1 is a single unit simulating a fixation cue for the net-
work. In all, sensory input Xt = (xmod1,t, xmod2,t, xfix,t) ∈ ℝ65. Motor output,
̂yt consists of both a 32-dimensional ring representing directional

responses to the input stimulus as well as a single unit representing
model fixation, so that ̂yt ∈ ℝ33.

For all models, task-identifying information It ∈ ℝ64 .
Task-identifying information is presented throughout the duration of
a trial and remains constant such that It = It′∀t, t′. For all models, task-
identifying info It and sensory input Xt are concatenated as inputs to
the sensorimotor-RNN.

Nonlinguistic models. For SIMPLENET, we generate a set of 64-
dimensional orthogonal task rules by constructing an orthogonal
matrix using the Python package scipy.stats.ortho_group, and assign
rows of this matrix to each task type. For STRUCTURENET, we generate a
set of ten orthogonal, 64-dimensional vectors in the same manner, and
each of these represents a dimension of the task set (that is, respond
weakest versus strongest direction, respond in the same versus oppo-
site direction, pay attention only to stimuli in the first modality, and
so on). Rule vectors for tasks are then simple combinations of each of
these ten basis vectors. For a full description of structure rule vectors,
see Supplementary Note 3.

We also test SIMPLENETPLUS and STRUCTURENETPLUS, which
use an additional hidden layer with 128 units and ReLU nonlinearities
to process orthogonal tasks rules It into a vector ̄It which is used by
sensorimotor-RNN as task-identifying information.

̄It
′ = ReLU(LinearRuleEmb1(It)) ̄It

′ ∈ ℝ128

̄It
′ = ReLU(LinearRuleEmb2(I′t)) ̄It

′ ∈ ℝ128

̄It = ReLU(LinearRuleEmb3(It
′)) ̄It ∈ ℝ64

Full results for these models are included in Supplementary Fig. 4.

Pretrained transformers. The main language models we test use
pretrained transformer architectures to produce I. Importantly,

transformers differ in the type of pretraining objective used to tune
the model parameters. GPT is trained to predict the next word given a
context of words9. GPT (XL) follows the same objective but trains for
longer on a larger dataset50. Both models are fully autoregressive. BERT,
by contrast, takes bidirectional language inputs and is tasked with
predicting masked words that appear in the middle of input phrases.
Additionally, BERT is trained on a simple sentence prediction task
where the model must determine if input sentence 1 is followed by
input sentence 2 in the training corpus. Extending this principle, SBERT
is explicitly trained to produce fixed-length embeddings of whole
sentences21. It takes pretrained BERT networks and uses them in a sia-
mese architecture51, which allows the weights of the model to be tuned
in a supervised fashion according to the Stanford Natural Language
Inference dataset22. Natural language inference is a three-way catego-
rization task where the network must infer the logical relationship
between sentences: whether a premise sentence implies, contradicts or
is unrelated to a hypothesis sentence. Finally, CLIP is trained to jointly
embed images and language23. It uses data from captioned images and
is asked to properly categorize which text and images pairs match or
are mismatched in the dataset via a contrastive loss.

Importantly, the natural output of a transformer is a matrix of size
dimtrans. × 𝒯𝒯 , the inherent dimensionality of the transformer by the
length of the input sequence. To create an embedding space for sen-
tences it is standard practice to apply a pooling method to the trans-
former output, which produces a fixed-length representation for each
instruction.

For GPT, GPT (XL), BERT and SBERT, we use an average pooling
method. Suppose we have an input instruction w1…w𝒯𝒯 . Following
standard practice with pretrained language models, the input to our
transformers is tokenized with special ‘cls’ and ‘eos’ tokens at the begin-
ning and end of the input sequence. We then compute I as follows:

htran. = transformer([cls] ,w1…w𝒯𝒯 , [eos]), htran. ∈ ℝdimtrans.×𝒯𝒯𝒯2

hI = mean(htran.), hI ∈ ℝdimtrans.

I = Linearembed(hI) I ∈ ℝ64

We chose this average pooling method primarily because a previ-
ous study21 found that this resulted in the highest-performing SBERT
embeddings. Another alternative would be to simply use the final hid-
den representation of the ‘cls’ token as a summary of the information
in the entire sequence (given that BERT architectures are bidirectional,
this token will have access to the whole sequence).

htran. = transformer([cls] ,w1…w𝒯𝒯 , [eos]), htran. ∈ ℝdimtrans.×𝒯𝒯𝒯2

hI = (htran.cls) hI ∈ ℝdimtrans.

Where htran.cls denote the last hidden representation for the ‘cls’ token.
Ref. 21 found this pooling method performed worse than average pool-
ing, so we don’t include these alternatives in our results. For GPT and
GPT (XL), we also tested a pooling method where the fixed-length
representation for a sequence was taken from the transformer output
of the ‘eos’ token. In this case:

htran. = transformer([cls] ,w1…w𝒯𝒯 , [eos]), htran. ∈ ℝdimtrans.× 𝒯𝒯𝒯2

hI = (htran.eos), hI ∈ ℝdimtrans.

I = Linearembed(hI), I ∈ ℝ64

We found that GPT failed to achieve even a relaxed performance
criterion of 85% across tasks using this pooling method, and GPT (XL)
performed worse than with average pooling, so we omitted these
models from the main results (Supplementary Fig. 11). For CLIP
models we use the same pooling method as in the original multiModal

http://www.nature.com/natureneuroscience

Nature Neuroscience

Article https://doi.org/10.1038/s41593-024-01607-5

training procedure, which takes the outputs of the [cls] token as
described above.

For all the above models, we also tested a version where the infor-
mation from the pretrained transformers is passed through a multilayer
perceptron with a single hidden layer of 256 hidden units and ReLU
nonlinearities. We found that this manipulation reduced performance
across all models, verifying that a simple linear embedding is beneficial
to generalization performance.

For GPT, BERT and SBERT, dimtrans. = 768 and each model uses
a total of ~100 million parameters; for SBERT (L) dimtrans. = 1,024 and
the model uses ~300 million parameters; GPT (XL) dimtrans. = 1,600 and
the model uses ~1.5 billion parameters; for CLIP, dimtrans. = 512 and the
model uses ~60 million parameters. Full PyTorch implementations,
including all pretrained weights and model hyperparameters, can be
accessed at the Huggingface library (https://huggingface.co/docs/
transformers/)52.

BoW model. For our BoW model, instructions are represented as a vec-
tor of binary activations the size of the instruction vocabulary, where
each unit indicates the inclusion or exclusion of the associated word in
the current instruction. For our instruction set, ∣vocab∣ = 181. This vec-
tor is then projected through a linear layer into 64-dimensional space.

hBoWi = {
1 if wi ∈ (w1…w𝒯𝒯)

0 otherwise
hBoW ∈ ℝ|vocab|

I = Linearembed(hBoW), I ∈ ℝ64

Blank slate language models. Given that tuning the last layers of
language models resulted in improved performance (Fig. 2e), we tested
two additional models to determine if training a blank slate language
model trained exclusively on the loss from sensorimotor tasks would
improve performance. These models consist of passing BoW represen-
tations through a multilayer perceptron and passing pretrained BERT
word embeddings through one layer of a randomly initialized BERT
encoder. Both models performed poorly compared to pretrained
models (Supplementary Fig. 4.5), confirming that language pretraining
is essential to generalization.

Tasks sets
Tasks were divided into five interrelated subgroups: ‘go’,
‘decision-making’, ‘matching’, and ‘comparison’ and ‘duration’. Depend-
ing on the task, multiple stimuli may appear during the stimulus epoch.
Also, depending on the task, models may be required to respond in a
particular direction or repress response altogether. Unless otherwise
specified, zero-mean Gaussian noise is added independently at each
time step and to each input unit and the variance of this noise is drawn
randomly from 𝕌𝕌𝕌0.1,0.15]. The timing of stimuli differs among the tasks
type. However, for all tasks, trials can be divided into preparatory,
stimulus and response epochs. The stimulus epoch can be subdivided
into three parts—stim1, delay and stim23—although these distinct parts
aren’t used by all tasks. A trial lasts for a total of T = 150 time steps. Let
durepoch denote the duration in simulated time steps of a given epoch.
Then

durresponse ∼ {i|20 < i ≤ 25; i ∈ ℕ}

durstim1,durstim2 ∼ {i|37 < i ≤ 50; i ∈ ℕ}

durdelay ∼ {i|15 < i ≤ 25; i ∈ ℕ}

durprep. = 150 − (durresponse + durstim1 + durstim2 + durdelay)

For tasks that don’t utilize a delay structure, stim1, stim2 and delay
epochs are grouped together in a single stimulus epoch where
durstimulus = durstim1 + durstim2 + durdelay . Unless otherwise specified, a

fixation cue with a constant strength strfix = 1 is activated throughout
the preparatory and stimulus epochs. For example trials of each task,
see Supplementary Fig. 13.

‘Go’ tasks. The ‘Go’ family of tasks includes ‘Go’, ‘RTGo’, ‘AntiGo’,
‘AntiRTGo’ and modality-specific versions of each task denoted with
either ‘Mod1’ and ‘Mod2’. In both the ‘Go’ and ‘AntiGo’ tasks, a single
stimulus is presented at the beginning of the stimulus epoch. The
direction of the presented stimulus is generated by drawing from a
uniform distribution between 0 and 2π, that is, θstim ∼ 𝕌𝕌𝕌0, 2π]. The
stimulus will appear in either modality 1 or modality 2 with equal prob-
ability. The strength of the stimulus is given by strstim ∼ 𝕌𝕌𝕌1.0, 1.2]. In the
‘Go’ task, the target response is in the same direction as the presented
stimulus, that is, θstim = θtarget, while in the ‘AntiGo’ task the direction
of the response should be in the opposite of the stimulus direction,
θstim + π = θtarget. For modality-specific versions of each task, a stimulus
direction is drawn in each modality θstim,mod1 ∼ 𝕌𝕌𝕌0, 2π] and
θstim,mod2 ∼ 𝕌𝕌𝕌0, 2π] and for modality-specific Go-type tasks

θtarget = {
θstim,mod1 if Mod1 task

θstim,mod2 if Mod2 task

while for modality-specific AntiGo-type tasks

θtarget = {
θstim,mod1 + π if Mod1 task

θstim,mod2 + π if Mod2 task

For ‘RT’ versions of the ‘Go’ tasks, stimuli are only presented during
the response epoch and the fixation cue is never extinguished. Thus,
the presence of the stimulus itself serves as the response cue and the
model must respond as quickly as possible. Otherwise, stimuli persist
through the duration of the stimulus epoch.

‘Decision-making’ tasks. The ‘decision-making’ family of tasks
includes ‘DM’ (decision-making), ‘AntiDM’, ‘MultiDM’ (multisensory
decision-making), ‘AntiMultiDM,’ modality-specific versions of each
of these tasks and, finally, confidence-based versions of ‘DM’ and
‘AntiDM.’ For all tasks in this group, two stimuli are presented simulta-
neously and persist throughout the duration of the stimulus epoch.
They are drawn according to θstim1 ∼ 𝕌𝕌𝕌0, 2π] and θstim2 ∼ 𝕌𝕌
𝕌(θstim1 − 0.2π,θstim1 − 0.6π) ∪ (θstim1 + 0.2π,θstim1 + 0.6π)]. A base strength
applied to both stimuli is drawn such that strbase ∼ 𝕌𝕌𝕌1.0, 1.2]. A contrast
is drawn from a discrete distribution such that c ~ {−0.175, −0.15, −0.1,
0.1, 0.15, 0.175} so the stimulus strength associated with each direction
in a trial are given by strstim1 = strbase + c and strstim2 = strbase − c.

For the ‘DM’ task,

θtarget = {
θstim1 if strstim1 > strstim2
θstim2 otherwise

and for the the ‘AntiDM’ task,

θtarget = {
θstim1 if strstim1 < strstim2
θstim2 otherwise

For these versions of the tasks, the stimuli are presented in either
modality 1 or modality 2 with equal probability. For the multisensory
versions of each task, stimuli directions are drawn in the same manner
and presented across both modalities so that θstim1,mod1 = θstim1,mod2
and θstim2,mod1 = θstim2,mod2 . Base strengths are drawn independently
for each modality. Contrasts for both modalities are drawn
from a discrete distribution such that cmod 1, cmod2 ∼ {0.2,0.175,
0.15,0.125, −0.125, −0.15, −0.175, −0.2} . If both |cmod 1| − |cmod2| = 0 then
contrasts are redrawn to avoid zero-contrast trials during training.
If both cmod 1 and cmod2 have the same sign, then contrasts are

http://www.nature.com/natureneuroscience
https://huggingface.co/docs/transformers/
https://huggingface.co/docs/transformers/

Nature Neuroscience

Article https://doi.org/10.1038/s41593-024-01607-5

redrawn to ensure that the trial requires integrating over both
modalities as opposed to simply performing a ‘DM’ task in a
single modality. Criteria for target responses are measured as the
strength of a given direction summed over both modalities. So, for
‘MultiDM’

θtarget =
⎧⎪
⎨⎪
⎩

θstim1,mod 1 if strstim1,mod1 + strstim1,mod2 > strstim2,mod1
+strstim2,mod2

θstim2,mod1 otherwise

and for ‘AntiMultiDM’

θtarget =
⎧⎪
⎨⎪
⎩

θstim1,mod 1 if strstim1,mod1 + strstim1,mod2 < strstim2,mod1
+strstim2,mod2

θstim2,mod1 otherwise

Stimuli for modality-specific versions of each task are generated
in the same way as multisensory versions of the task. Criteria for target
response are the same as standard versions of ‘DM’ and ‘AntiDM’ tasks
applied only to stimuli in the relevant modality.

In confidence-based decision-making tasks (‘ConDM’ and ‘ConAn-
tiDM’), the stimuli directions are drawn in the same way as above.
Stimuli are shown in either modality 1 or modality 2 with equal prob-
ability. In each trial, strbase = 1. The contrast and noise for each trial is
based on the thresholded performance of a SIMPLENET model trained
on all tasks except ‘ConDM’ and ‘ConAntiDM’. Once this model has been
trained, we establish a threshold across levels of noise and contrasts for
which the model can perform a ‘DM’ or an ‘AntiDM’ task at 95% correct.
We then draw contrasts and noises for trials from above and below this
threshold with equal probability during training. In trials where the
noise and contrast levels fell below the 95% correct threshold, the model
must repress response, and otherwise perform the decision-making
task (either ‘DM’ or ‘AntiDM’).

‘Comparison’ tasks. Our comparison task group includes ‘COMP1’,
‘COMP2’, ‘MultiCOMP1’, ‘MultiCOMP2’, ‘Anti’ versions of each of
these tasks, as well as modality-specific versions of ‘COMP1’ and
‘COMP2’ tasks. This group of tasks is designed to extend the basic
decision-making framework into a setting with more complex con-
trol demands. These tasks utilize the delay structure in the stimulus
epoch so that stim1 appears only during the stim1 epoch, followed
by a delay, and finally stim2. This provides a temporal ordering on
the stimuli. In ‘COMP1’, the model must respond to the first stimulus
only if it has greater strength than the second and otherwise repress
a response that is

θtarget = {
θstim1 if strstim1 > strstim2
repress otherwise

Likewise, in ‘COMP2’, the model must respond to the second direc-
tion if it presented with greater strength than the first otherwise repress
response that is

θtarget = {
θstim2 if strstim2 > strstim1
repress otherwise

In ‘Anti’ versions of the task the ordering criteria is the same except
for stimuli with least strength, that is, for ‘AntiCOMP1’

θtarget = {
θstim1 if strstim1 < strstim2
repress otherwise

and for ‘AntiCOMP2’

θtarget = {
θstim2 if strstim2 < strstim1
repress otherwise

In multisensory settings, the criteria for target direction are
analogous to the multisensory decision-making tasks where strength
is integrated across modalities. Likewise, for modality-specific ver-
sions, the criteria are only applied to stimuli in the relevant modality.
Stimuli directions and strength for each of these tasks are drawn from
the same distributions as the analogous task in the ‘decision-making’
family. However, during training, we make sure to balance trials where
responses are required and trials where models must repress response.

‘Duration’ tasks. The ‘duration’ family of tasks includes ‘Dur1’, ‘Dur2’,
‘MultiDur1’, ‘MultiDur2’, ‘Anti’ versions of each of these tasks and
modality-specific versions of ‘Dur1’ and ‘Dur2’ tasks. These tasks require
models to perform a time estimation task with the added demand or
stimuli ordering determining relevance for response. Like in ‘com-
parison’ tasks, stim1 is presented followed by a delay and then stim2.
For ‘Dur1’ trials

θtarget = {
θstim1 if durstim1 > durstim2
repress otherwise

Likewise, for ‘Dur2’

θtarget = {
θstim2 if durstim2 > durstim1
repress otherwise

In ‘Anti’ versions of these tasks, the correct response is in the direction
of the stimulus with the shortest duration given the ordering criteria
is met. Hence, for ‘AntiDur1’

θtarget = {
θstim1 if durstim1 < durstim2
repress otherwise

and for ‘AntiDur2’

θtarget = {
θstim2 if durstim2 < durstim1
repress otherwise

Across these tasks directions are drawn according to θstim1 ∼ 𝕌𝕌𝕌0, 2π]
and θstim2 ∼ 𝕌𝕌𝕌(θstim1 − 0.2π,θstim1 − 0.6π) ∪ (θstim1 + 0.2π,θstim1 + 0.6π)] .
Stimulus strengths are drawn according to strstim1, strstim2 ∼ 𝕌𝕌𝕌0.8, 1.2].
To set the duration of each stimulus, we first draw durlong ∼
{i|35 < i ≤ 50, i ∈ ℕ} and durshort ∼ {i|25 < i ≤ (durlong − 8), i ∈ ℕ} . During
training, we determine which trials for a given task should and should
not require a response in order to evenly balance repress and respond
trials. We then assign durlong and durshort to either stim1 or stim2 so that
the trial requires the appropriate response given the particular task type.

Again, criteria for correct response in the multisensory and
modality-specific versions of each tasks follow analogous tasks in the
‘decision-making’ and ‘comparison’ groups where multisensory versions
of the task require integrating total duration over each modality, and
modality-specific tasks require only considering durations in the given
task modality. For multisensory tasks, we draw duration value
durlong ∼ {i|75 < i ≤ 100, i ∈ ℕ} and then split this value durlong0 = durlong × 
0.55 and durlong1 = durlong × 0.45. We also draw a value durshort = durlong − 
Δdur where Δdur ∼ {i|15 < i ≤ 25, i ∈ ℕ} . This value is then subdivided
further into dur short0 = dur long1 + Δdur short where Δdurshort ∼
{i|19 < i ≤ 15, i ∈ ℕ} and durshort1 = durShort − durshort0. Short and long dura-
tions can then be allocated to the ordered stimuli according to task type.
Drawing durations in this manner ensures that, like in ‘decision-making’
and ‘comparison’ groups, correct answers truly require models to inte-
grate durations over both modalities, rather than simply performing
the task in a given modality to achieve correct responses.

‘Matching’ tasks. The ‘matching’ family of tasks consists of ‘DMS’
(delay match to stimulus), ‘DNMS’ (delay non-match to stimulus), ‘DMC’

http://www.nature.com/natureneuroscience

Nature Neuroscience

Article https://doi.org/10.1038/s41593-024-01607-5

(delay match to category) and ‘DMNC’ (delay non-match to category)
tasks. For all tasks, stim1 is presented at the beginning of the stimulus
epoch, followed by a delay, and the presentation of stim2. The stimulus
strength is drawn according to strstim1, strstim2 ∼ 𝕌𝕌𝕌0.8, 1.2] . The input
modality for any given trial is chosen at random with equal probability.
In both ‘DMS’ and ‘DNMS’ tasks, trials are constructed as ‘matching
stim’ trials or ‘mismatching stim’ trials with equal probability. In ‘match-
ing stim’ trials θstim1 ∼ 𝕌𝕌𝕌0, 2π] and θstim2 = θstim1 . In ‘mismatch stim’
trials, θstim1 ∼ 𝕌𝕌𝕌0, 2π] and

θstim2 ∼ 𝕌𝕌𝕌(θstim1 − 0.2π,θstim1 − 0.6π) ∪ (θstim1 + 0.2π,θstim1 + 0.6π)].

For ‘DMS’, models must respond in the displayed direction if the stimuli
match, otherwise repress response,

θtarget = {
θstim1 if θstim1 = θstim2
repress otherwise

and for ‘DNMS’, models must respond to the second direction if both
directions are mismatched,

θtarget = {
θstim2 if θstim1 ≠ θstim2
repress otherwise

‘DMC’ and ‘DNMC’ tasks are organized in a similar manner. The stimulus
input space is divided evenly into two categories such that
cat1 = {θ: 0 < θ≤π} and cat2 = {θ: π < θ≤2π}. For ‘DMC’ and ‘DNMC’ tasks,
trials are constructed as ‘matching cat.’ trials or ‘mismatching cat.’ trials
with equal probability. In ‘matching cat.’ trials θstim1 ∼ 𝕌𝕌𝕌0, 2π] and
θstim2 ∼ 𝕌𝕌(catstim1), where 𝕌𝕌(catstim1) is a uniform draw from the category
of stim1. In ‘mismatch stim’ trials, θstim1 ∼ 𝕌𝕌𝕌0, 2π] and θstim2 ∼ 𝕌𝕌(−catstim1)
where −catstim1 is the opposite category as stim1. For ‘DMC’, the model
must respond in the first direction if both stimuli are presented in the
same category otherwise repress response,

θtarget = {
θstim1 if catstim1 = catstim2
repress otherwise

and for ‘DNMC’, the model should respond to the second direction if
both stimuli are presented in opposite categories otherwise repress
response,

θtarget = {
θstim2 if catstim1 ≠ catstim2
repress otherwise

Target output and correct criteria
The target output y ∈ ℝ33×T for a trial entails maintaining fixation in
y1 = yfix during the stimulus epoch, and then either responding in the
correct direction or repressing activity in the remaining target response
units y2…33 in the response epoch. Since the model should maintain
fixation until response, target for fixation is set at yfix = 0.85 during
preparatory and stimulus epochs and yfix = 0.05 in the response epoch.
When a response is not required, as in the preparatory and stimulus
epochs and with repressed activity in the response epoch, unit i takes
on a target activity of yi = 0.05. Alternatively, when there is a target
direction for response,

yi = 0.8exp [−0.5 × (
8|θtarget − θi|

π)
2

] + 0.05

where θi is the preferred direction for unit i. Like in sensory stimuli,
preferred directions for target units are evenly spaced values from
[0, 2π] allocated to the 32 response units.

For a model response to count as correct, it must maintain fixation,
that is, ̂yfix > 0.5 during preparatory and stimulus epochs. When no

response is required ̂yi < 0.15. When a response is required, response
activity is decoded using a population vector method and
θresp. ∈ (θtarget −

π
10
,θtarget +

π
10
) . If the model fails to meet any of these

criteria, the trial response is incorrect.

Model training
Again following ref. 18, model parameters are updated in a supervised
fashion according to a masked mean squared error loss (mMSE) com-
puted between the model motor response, ̂y1…T = ̂y , and the target,
y1…T = y, for each trial.

L = mMSE(y, ̂y) = mask × ⟨(yt − ̂yt)
2⟩

t

Here, the multiplication sign denotes element-wise multiplication.
Masks weigh the importance of different trial epochs. During prepara-
tory and stimulus epochs, mask weights are set to 1; during the first five
time steps of the response epoch, the mask value is set to 0; and during
the remainder of the response epoch, the mask weight is set to 5. The
mask value for the fixation is twice that of other values at all time steps.

For all models, we update Θ = {sensorimotor-RNN, Linearout} dur-
ing training on our task set. For instructed models, we additionally
update Linearembed in the process of normal training. We train models
using standard PyTorch machinery and an Adam optimizer. An epoch
consists of 2,400 mini-batches, with each mini-batch consisting of 64
trials. For all models, we use the same initial learning rate as in ref. 18,
lr = 0.001. We found that in the later phases of training, model perfor-
mance oscillated based on which latest task presented during training,
so we decayed the learning rate for each epoch by a factor of γ = 0.95,
which allowed performance to converge smoothly. Following ref. 18,
models train until they reach a threshold performance of 95% across
all tasks (and train for a minimum of 35 epochs). We found that train-
ing for GPTNET tended to asymptote below performance threshold
for multisensory versions of comparison tasks. This held true over
a variety of training hyperparameters and learning rate scheduler
regimes. Hence, we relax the performance threshold of GPTNET to
85%. For each model type, we train five models that start from five dif-
ferent random initializations. Where applicable, results are averaged
over these initializations.

Language model fine-tuning. When fine-tuning models, we allow
the gradient from the motor loss experienced during sensorimotor
training to fine-tune the weights in the final layers of the transformer
language models. During normal training, we checkpoint a copy of
our instructed models after training for 30 epochs. We then add the
last three transformer layers to the set of trainable parameters, and
reset the learning rates to lr = 1 × 10−4 for Θ = {sensorimotor-RNN, 
Linearout} and lrlang = 3 × 10−4 for Θlang = {Linearembed, transformer−3,−2,−1}
where transformer−3,−2,−1 denotes the parameters of the last three layers
of the relevant transformer architecture. We used these reduced learn-
ing rates to avoid completely erasing preexisting linguistic knowledge.
Similarly for RNN parameters, we found the above learning rate avoided
catastrophic forgetting of sensorimotor knowledge while also allowing
the RNN to adapt to updated language embeddings across all models.
Autoregressive models were much more sensitive to this procedure,
often collapsing at the beginning of fine-tuning. Hence, for GPTNETXL
and GPTNET, we used lrlang = 5 × 10−5, which resulted in robust learning.
Models train until they reach a threshold performance of 95% across
training tasks or 85% correct for GPTNET.

Hold-out testing
During hold-out testing, we present models with 100 batches of one
of the tasks that had been held out of training. For the instructed
model, the only weights allowed to update during this phase are
Θ = {sensorimotor-RNN, Linearout, Linearembed}. All weights of SIM-
PLENET and STRUCTURENET are trainable in this context. In this

http://www.nature.com/natureneuroscience

Nature Neuroscience

Article https://doi.org/10.1038/s41593-024-01607-5

hold-out setting, we found that in more difficult tasks for some of our
more poorly performing models, the standard hyperparameters we
used during training resulted in unstable learning curves for novel
tasks. To stabilize performance and thereby create fair comparisons
across models, we used an increased batch size of 256. We then began
with the standard learning rate of 0.001 and decreased this by incre-
ments of 0.0005 until all models showed robust learning curves. This
resulted in a learning rate of 8 × 10−4. All additional results shown in the
Supplementary Information section 4 follow this procedure.

CCGP calculation
To calculate CCGP, we trained a linear decoder on a pair of tasks and
then tested that decoder on alternative pairs of tasks that have an analo-
gous relationship. We grouped tasks into eight dichotomies: ‘Go’ versus
‘Anti’, ‘Standard’ versus ‘RT’, ‘Weakest’ versus ‘Strongest’, ‘Longest’
versus ‘Shortest’, ‘First Stim.’ versus ‘Second Stim’, ‘Stim Match’ versus
‘Category Match’, ‘Matching’ versus ‘Non-Matching’ and ‘Mod1’ versus
‘Mod2’. As an example, the ‘Go’ versus ‘Anti’ dichotomy includes (‘Go’,
‘AntiGo’), (‘GoMod1’, ‘AntiGoMod1’), (‘GoMod2’, ‘AntiGoMod2’), (‘RTGo’,
‘AntiRTGo’), (‘RTGoMod1’, ‘AntiRTGoMod1’) and (‘RTGoMod2’, ‘AntiRT-
GoMod2’) task pairs. For ‘RNN’ task representations, we extracted activ-
ity at the time of stimulus onset for 250 example trials. For language
representations, we input the instruction sets for relevant tasks to our
language model and directly analyze activity in the ‘embedding’ layer
or take the sequence-averaged activity in each transformer layer. For
nonlinguistic models, we simply analyze the space of rule vectors. Train
and test conditions for decoders were determined by dichotomies
identified across the task set (Supplementary Note 1). To train and test
decoders, we used sklearn.svm.LinearSVC Python package. The CCGP
score for a given task is the average decoding score achieved across
all dichotomies where the task in question was part of either the train
set or the test set. For model scores reported in the main text, we only
calculate CCGP scores for models where the task in question has been
held out of training. In Supplementary Fig. 9, we report scores on tasks
where models have been trained on all tasks, and for models where
instructions have been switched for the hold-out task.

For Fig. 3e, we calculated Pearson’s r correlation coefficient
between performance on held-out tasks and CCGP scores per task, as
well as a P-value testing against the null hypothesis that these metrics
are uncorrelated and normally distributed (using the scipy.stats.pear-
sonr function). Full statistical tests for CCGP scores of both RNN and
embedding layers from Fig. 3f can be found in Supplementary Fig. 9.
Note that transformer language models use the same set of pretrained
weights among random initialization of Sensorimotor-RNNs, thus for
language model layers, the Fig. 3f plots show the absolute scores of
those language models.

Conditional clause/deduction task analysis
We first split our task set into two groups (listed below): tasks that
included conditional clauses and simple deductive reasoning compo-
nents (30 tasks) and those where instructions include simple impera-
tives (20 tasks). We computed the difference in performance across
the mean of generalization performance for each group across random
initialization for each model (Fig. 2f). We compared these differences
to a null distribution constructed by performing a set of 50 random
shuffles of the task set into groups of 30 and 20 tasks and computing
differences in the same way, again using two-sided unequal-variance
t-tests. Because STRUCUTRENET is a nonlinguistic model, we then
compared performance of STRUCUTRENET to our instructed models
to disassociate the effects of performing tasks with a deductive reason-
ing component versus processing instructions with more complicated
conditional clause structure. Results of all statistical tests are reported
in Supplementary Fig. 6).

Simple imperative tasks include: ‘Go’, ‘AntiGo’, ‘RTGo’, ‘AntiRTGo’,
‘GoMod1’, ‘GoMod2’, ‘AntiGoMod1’, ‘AntiGoMod2’, ‘RTGoMod1’,

‘AntiRTGoMod2’, ‘RTGoMod2’, ‘AntiRTGoMod2’, ‘DM’, ‘AntiDM’,
‘MultiDM’, ‘AntiMultiDM’, ‘DMMod1’, ‘DMMod2’, ‘AntiDMMod1’ and
‘AntiDMMod2’.

Conditional clause/deduction tasks include: ‘ConDM’, ‘ConAn-
tiDM’, ‘Dur1’, ‘Dur2’, ‘MultiDur1’, ‘MultiDur2’, ‘AntiDur1’, ‘AntiDur2’,
‘AntiMultiDur1’, ‘AntiMultiDur2’, ‘Dur1Mod1’, ‘Dur1Mod2’, ‘Dur-
2Mod1’, ‘Dur2Mod2’, ‘COMP1’, ‘COMP2’, ‘MultiCOMP1’, ‘MultiCOMP2’,
‘AntiCOMP1’, ‘AntiCOMP2’, ‘AntiMultiCOMP1’, ‘AntiMultiCOMP2’,
‘COMP1Mod1’, ‘COMP1Mod2’, ‘COMP2Mod1’, ‘COMP2Mod2’, ‘DMS’,
‘DNMS’, ‘DMC’ and ‘DMNC’.

Language production training
Self-supervised language production network training. Our lan-
guage production framework is inspired by classic sequence-
to-sequence modeling using RNNs53. Our Production-RNN is a GRU
with 256 hidden units using ReLU nonlinearities. At each step in the
sequence, a set of decoder weights, Linearwords, attempts to decode the
next token, wτ+1, from the hidden state of the recurrent units. The hid-
den state of the Production-RNN is initialized by concatenating the
time average and maximum sensorimotor activity of a SBERTNET (L)
and passing that through weights Linearsm. The linguistic instruction
used to drive the initializing sensorimotor activity is in turn used as the
target set of tokens for the Production-RNN outputs. The first input to
the Production-RNN is always a special start-of-sentence token, and
the decoder runs until an end-of-sentence token is decoded or until
input reaches a length of 30 tokens. Suppose w1,k…w𝒯𝒯𝒯k ∈ Instruct

i
k is

the sequence of tokens in instruction k where k is in the instruction set
for task i and Xi is sensory input for a trial of task i. For brevity, we denote
the process by which language models embed instructions as Embed()
(see ‘Pretrained transformers’). The decoded token at the τth position,
ŵτ,k, is then given by

hsm
T = SensorimotorRNN (Xi, Embed (w1,k…w𝒯𝒯𝒯k)) hsm

T ∈ ℝT×256

sm_out = (meanT (hsm
T) ,max

T
(hsm

T) sm_out ∈ ℝ512

hdecoder0 = relu (Linearsm(sm_out)) hdecoder0 ∈ ℝ256

hdecoder0 = Dropout (hdecoder0) hdecoder0 ∈ ℝ256

hdecoderτ = ProductionRNN (ŵ1,k… ŵτ−1,k;hdecoder0) , hdecoderτ ∈ ℝ256

pŵτ,k = softmax (Linearwords (hdecoderτ,k)) pŵτ,k ∈ ℝ|vocab|,

ŵτ,k = argmax (pŵτ,k)

The model parameters Θproduction = {Linearsm, Linearwords, Production-
RNN} are trained using cross-entropy loss between the pŵτ,i and the
instruction token wτ,k provided to the sensorimotor-RNN as input. We
train for 80 epochs of 2,400 batches with 64 trials per batch and with
task type randomly interleaved. We found that using an initial learning
rate of 0.001 sometimes caused models to diverge in early phases of
training, so we opted for a learning rate of 1× 10−4, which led to stable
early training. To alleviate similar oscillation problems detected in
sensorimotor training, we also decayed the learning rate by γ = 0.99
per epoch. Additionally, the use of a dropout layer with a dropout rate
of 0.05 improved performance. We also used a teacher forcing curricu-
lum, where for some ratio of training batches, we input the ground
truth instruction token wτ,k at each time step instead of the models
decoded word ŵτ,k. At each epoch, teacher _forcing_ ratio = 0.5 × 80−epoch

80
.

Obtaining embedding layer activity using motor feedback. For a
task, i, we seek to optimize a set of embedding activity vectors Ei ∈ ℝ64
such that when they are input as task-identifying information, the
model will perform the task in question. Crucially, we freeze all model
weights Θ = {sensorimotor-RNN, Linearout, Linearembedding} and only
update Ei according to the standard supervised loss on the motor

http://www.nature.com/natureneuroscience

Nature Neuroscience

Article https://doi.org/10.1038/s41593-024-01607-5

output. For notional clarity, GRU dependence on the previous hidden
state ht−1 has been made implicit in the following equations.

̂y i = σ(Linearout (SensorimotorRNN(Xi, Ei)))

L = mMSE(y, ̂y)

We optimized a set of 25 embedding vectors for each task, again using
an Adam optimizer. Here the optimization space has many subopti-
mal local minimums corresponding to embeddings for related tasks.
Hence, we used a high initial learning rate of lr = 0.05, which we decayed
by γ = 0.8 for each epoch. This resulted in more robust learning than
lower learning rates. An epoch lasts for 800 batches with a batch length
of 64, and we train for a minimum of 1 epoch or until we reach a thresh-
old performance of 90% or 85% on ‘DMC’ and ‘DNMC’ tasks.

Producing task instructions. To produce task instructions, we sim-
ply use the set Ei as task-identifying information in the input of the
sensorimotor-RNN and use the Production-RNN to output instructions
based on the sensorimotor activity driven by Ei. For each task, we use the
set of embedding vectors to produce 50 instructions per task. We repeat
this process for each of the 5 initializations of sensorimotor-RNN,
resulting in 5 distinct language production networks, and 5 distinct
sets of learned embedding vectors. Reported results for each task are
averaged over these 5 networks. For the confusion matrix (Fig. 5d),
we report the average percentage that decoded instructions are in
the training instruction set for a given task or a novel instruction.
Partner model performance (Fig. 5e) for each network initialization
is computed by testing each of the 4 possible partner networks and
averaging over these results.

Sample sizes/randomization
No statistical methods were used to predetermine sample sizes
but following ref. 18 we used five different random weight initiali-
zations per language model tested. Randomization of weights was
carried out automatically in Python and PyTorch software packages.
Given this automated randomization of weights, we did not use
any blinding procedures in our study. No data were excluded from
analyses.

Software
All simulation and data analysis was performed in Python 3.7.11.
PyTorch 1.10 was used to implement and train models (this includes
Adam optimizer implementation). Transformers 4.16.2 was used to
implement language models and all pretrained weights for language
models were taken from the Huggingface repository (https://hug-
gingface.co/docs/transformers/). We also used scikit-learn 0.24.1 and
scipy 1.7.3 to perform analyses.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All weights for language transformers used in this study were taken
from pretrained models available on the Huggingface repository
(https://huggingface.co/docs/transformers/). Training data for
simulated psychophysical tasks were generated using code available

at https://github.com/ReidarRiveland/Instruct-RNN/. The full set of
trained model weights for all results is available upon request.

Code availability
All code used to train models and analyze results can be found at
https://github.com/ReidarRiveland/Instruct-RNN/.

References
49.	 Chung, J., Gulcehre, C., Cho, K. & Bengio, Y. Empirical evaluation

of gated recurrent neural networks on sequence modeling.
Preprint at https://arxiv.org/abs/1412.3555 (2014).

50.	 Radford, A. et al. Better language models and their implications.
https://openai.com/blog/better-language-models/ (2019).

51.	 Bromley, J. et al. Signature verification using a ‘siamese’ time
delay neural network. Int. J. Pattern Recognit. Artif. Intell. 7,
669–688 (1993).

52.	 Wolf, T. et al. Transformers: state-of-the-art natural language
processing. In Proc. 2020 Conference on Empirical Methods in
Natural Language Processing: System Demonstrations (eds Liu, Q. &
Schlangen, D.) 38–45 (Association for Computational Linguistics,
2020).

53.	 Sutskever, I., Vinyals, O. & Le., Q. V. Sequence to sequence
learning with neural networks. In Proc. 27th International
Conference on Neural Information Processing Systems 3104–3112
(MIT Press, 2014).

Acknowledgements
We thank N. Rungratsameetaweemana, T. Aquino and V. Borghesani
as well as N. Patel and P. Tano for their useful discussions during this
project. We are also appreciative to the University of Geneva for the
funding which made this research possible.

Author contributions
A.P. and R.R. conceived the project. R.R. wrote the code for model
simulations and performed analysis of model representations. A.P. and
R.R. wrote and revised the paper.

Funding
Open access funding provided by University of Geneva.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41593-024-01607-5.

Correspondence and requests for materials should be addressed to
Reidar Riveland.

Peer review information Nature Neuroscience thanks Blake Richards
and the other, anonymous, reviewer(s) for their contribution to the
peer review of this work.

Reprints and permissions information is available at
www.nature.com/reprints.

http://www.nature.com/natureneuroscience
https://huggingface.co/docs/transformers/
https://huggingface.co/docs/transformers/
https://huggingface.co/docs/transformers/
https://github.com/ReidarRiveland/Instruct-RNN/
https://github.com/ReidarRiveland/Instruct-RNN
https://arxiv.org/abs/1412.3555
https://openai.com/blog/better-language-models/
https://doi.org/10.1038/s41593-024-01607-5
http://www.nature.com/reprints

1

n
atu

re p
o

rtfo
lio

 | rep
o

rtin
g

 su
m

m
ary

A
p

ril 2
0

2
3

Corresponding author(s): Reidar Riveland

Last updated by author(s): Jan 18, 2024

Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency

in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Data was generated in simulation using Python 3.7.11. PyTorch 1.10 was used to implement

and train models (this includes Adam optimizer implementation). Transformers 4.16.2 was used

to implement language models and all pre-trained weights for language models were taken from

Huggingface repository (https://huggingface.co/docs/transformers/). Training, analysis, and plotting scripts available

at https://github.com/ReidarRiveland/Instruct-RNN.

Data analysis Data analysis performed in Python 3.7.11 (https://github.com/ReidarRiveland/Instruct-RNN). We also used scikit-learn 0.24.1 and scipy 1.7.3

to perform analyses.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

2

n
atu

re p
o

rtfo
lio

 | rep
o

rtin
g

 su
m

m
ary

A
p

ril 2
0

2
3

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets

- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All weights for language transformers used in this study were taken from pre-trained models available on the Huggingface repository (https://huggingface.co/docs/

transformers/). Training data for simulated psychophysical tasks was generated using code available at https://github.com/ReidarRiveland/Instruct-RNN. The full set

of trained model weights for all results included in the manuscript is available upon request.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),

and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender N/A

Reporting on race, ethnicity, or

other socially relevant

groupings

N/A

Population characteristics N/A

Recruitment N/A

Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size In cases applicable we analyzed the results from models that were trained across five different random initialization of parameters. This

choice was constrained by computational feasibility but is on par with other computational neuroscience studies (e.g. Yang et. al., Nature

Neuroscience, 2019).

Data exclusions None

Replication Models tested across the five different initializations yielded consistent results throughout experiments, both in performance and in analysis

of model representations. Exact random seeds are provide in code such that training and testing can be reproduced exactly.

Randomization Again, in the case of each model we used five different random initialization. The same set of five random seeds were used across each of

these conditions.

Blinding We did not use explicit blinding in the analysis and simulation was not performed blind to conditions. This is because all experiments were

executed automatically in computer code. All model weights that were not part of pre-trained language models were randomly initialized, in

which case the authors had no control over these initializations.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

3

n
atu

re p
o

rtfo
lio

 | rep
o

rtin
g

 su
m

m
ary

A
p

ril 2
0

2
3

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Novel plant genotypes N/A

Seed stocks N/A

Authentication N/A

Plants

	Natural language instructions induce compositional generalization in networks of neurons

	Results

	Instructed models and task set

	Generalization to novel tasks

	Shared structure in language and sensorimotor networks

	Semantic modulation of single-unit tuning properties

	Linguistic communication between networks

	Discussion

	Online content

	Fig. 1 Tasks and models.
	Fig. 2 Model performance on novel tasks.
	Fig. 3 Structured representations in instructed models.
	Fig. 4 Semantic modulation of single-unit tuning properties.
	Fig. 5 Communication between networks.

