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ABSTRACT: The chemical structure of fuels significantly
influences the properties of ignition and energy release during
combustion, making the exploration of molecular structure−
property relationships a key focus for the research and development
of new sustainable fuels. Given the vast combinatorial possibilities
of potential fuel candidates, prioritization is essential. This study
explored the use of generative modeling to propose novel molecular
structures for future fuels. Specifically, the long short-term memory
(LSTM) autoregressive model was fine-tuned using a hill-climb
optimization algorithm to generate structures optimized for high-
knock resistance. The generated compounds, unseen during
training, were evaluated for their physical properties and research
octane number (RON). The generated molecules contained
features commonly associated with knock resistance, such as branching and aromaticity, while also uncovering unconventional
structures, including oxygenates with ether linkages. This work underscores the promise of generative modeling in fuel design and
highlights the strategic advantage of initiating molecular generation from predefined fragments related to known feedstocks and
production processes to enhance practicality in synthesis and resource utilization.

■ INTRODUCTION
Global energy demand was projected to increase in the next
decade,1 while climate change was estimated to result in
economic losses of up to 10% of global GDP at +3 °C, with the
most severe impacts occurring in poorer, low-latitude
countries.2 Consequently, renewable fuels have emerged as a
sustainable alternative energy source,3 including biofuels
produced from various biomaterials such as algae, corn oil,
and sugar cane and synthetic fuels such as those derived from
renewable hydrogen and captured carbon dioxide.4 Research
by5 demonstrated the relationship between the molecular
structure of biofuels and their ignition properties.

The relationship between molecular structure and properties
was widely studied in the pharmaceutical industry, where one
key machine learning method used was de novo molecular
design.6 De novo molecular design refers to the process of
automatically proposing novel chemical structures that
optimally satisfy a desired molecular profile.7 Most of the
approaches used machine learning models to generate graph-
based chemical structures,8−10 SMILES strings,11,12 or a
combination of both.13 This extensive research also led to
benchmarking and comparing these methods by Brown et al.14

and Nigam et al.15

In the fuel domain, de novo molecular design has been
adopted16 to propose novel fuel molecular structures
optimized for combustion properties such as the research
octane number (RON).17 For example, a graph-based

generative model in Rittig et al.18 used RON as the target
property, generating both known high-knock-resistant com-
pounds and a previously unknown compound that was
experimentally validated. Furthermore, recognizing that real
fuel compositions consist of multiple chemical structures,
Kuzhagaliyeva et al.19 proposed designing fuel mixtures using
generative machine learning. More recently, an evolutionary
algorithm was introduced by Fleitmann et al.20 to generate fuel
molecular structures by identifying optimal combinations of
predefined molecular fragments that enhance knock resistance
while satisfying physicochemical and combustion property
constraints.

This study proposes a SMILES-based de novo design
approach for future fuels using a long short-term memory
(LSTM) model,21 fine-tuned with a hill-climb algorithm22 to
generate high-knock-resistant compounds. The novelty lies in
the application of a language model specifically tailored to
generate SMILES representations for high-knock-resistant
fuels. Unlike previous machine-learning-based generative
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studies, this approach leverages an autoregressive modeling
framework, enabling molecular structure generation by
sequentially appending new SMILES symbols to a fixed
fragment without model retraining. In contrast, one-shot
generative models such as GANs23 and VAEs24 lack this
capability, making them less suitable for controlled molecular
design in this context.

Oxygen was selected as the base fragment, as bioderived
chemicals often contain oxygen prior to upgrading. Therefore,
the unique capability of autoregressive models was utilized to
generate molecules targeted by RON values plausibly
produced from biomass. Furthermore, only newly generated
SMILES representations (since the model is sequence-based)
that were not present in the training data were evaluated for
their physical properties, aligning with the goal of de novo
design to create novel structures. This is in contrast to
screening methods,25 where potential fuel candidates are
limited to the SMILES data set used.

■ METHODOLOGY
Overview. In this study, molecules were represented by

SMILES strings, a linear notation derived from representations
of molecular structures based on graphs.26 Quantitative
structure−activity relationship (QSAR) models were devel-
oped to predict fuel properties�including research octane
number (RON), density, boiling point, viscosity, and enthalpy
of combustion based on their SMILES representations.

Thereafter, a generative autoregressive LSTM model was
trained on the QM927 data set, which consists of small, stable
organic molecules, to capture the syntactic and contextual
patterns of SMILES representations for small organic
compounds. Spark ignition fuels typically do not contain
more than 9 heavy atoms, aligning with the composition of the
QM927 data set. The model was subsequently fine-tuned using
a hill-climbing algorithm, which iteratively refined the model
by leveraging the top-performing molecules to enhance the
RON of the generated compounds.

While other fuel properties are also important in
determining the performance of spark ignition engines, for
example, the enthalpy of vaporization, enthalpy of combustion,
viscosity, and flame propagation characteristics, RON was
selected for the development of this model and as the target
fuel property for novel molecule generation because of the
availability of a relatively large experimentally determined data
set.

The performance of these molecules was evaluated by using
the developed RON QSAR model. To ensure that the
generated molecules exhibited sensible physical properties,
additional QSAR models for the density, boiling point,
viscosity, and enthalpy of combustion were used to filter the
generated compounds.

The two types of molecular generation performed in this
study were initiated either from scratch or by leveraging the
LSTM cell memory initialized with an oxygen atom.
Data Sets. The research octane number (RON) data set

for single-component hydrocarbons and oxygenates was
compiled from the Supporting Information provided in
published studies, including Whitmore et al.,28 vom Lehn et
al.,29 and Abdul Jameel et al.30 Additionally, the data set used
by Liu et al.31�who modeled RON�was obtained directly
from the authors upon request. The research octane number
data set used in this study is included in the (RON_data
set.xlsx) file available in the manuscript Supporting Informa-

tion. Viscosity data were sourced from a study on biofuel
viscosity prediction.32 Data on boiling point, enthalpy of
combustion, and density were retrieved from the Handbook of
Thermodynamic and Physical Properties of Chemical Com-
pounds.33

Modeling Fuel Properties. The descriptor-calculation
software Mordred,34 in combination with RDKit,35 was used to
calculate 894 molecular descriptors from the SMILES
representations of each molecule in the fuel property data
sets (Table 1). To address the high dimensionality of the

resulting data set, descriptors with a normalized variance below
0.001 were removed. Furthermore, highly correlated descrip-
tors (with a coefficient of determination exceeding 95%) were
eliminated, according to standard QSAR data preprocessing
practices.36

Subsequently, QSAR models for fuel properties were
developed using a factorial experimental design, involving
four machine learning algorithms and four variable selection
methods to identify the optimal combination of descriptors,
algorithms, and hyperparameters. The machine learning
algorithms used were multilayer perceptron (MLP), support
vector machine (SVM), gradient boosting machine (GBM),
and random forest (RF). Table 2 summarizes the algorithm
parameters and their respective tuning ranges. The Supporting
Information includes the parameters found in Table S1.

The variable selection methods included elastic net,
sequential feature selector using two learning algorithms (a
linear model and SVM), and an approach without variable
selection.

Each data set was divided into a test set (20%), which was
not used in any form of modeling. The remaining 80% of the
data was used for a 5-fold cross-validation to compare the
performance of the variable selection methods with the trained
machine learning algorithms. Negative mean square error
(NMSE) was used to measure the quality of the cross-
validation. The Optuna Python module37 was employed to
optimize the machine learning hyperparameters, maximizing
the NMSE on the cross-validation.
Generative Model. A generative model was developed

using an autoregressive LSTM architecture to predict the next
SMILES symbol based on the sequence of preceding symbols,
enabling the generation of valid organic compounds. The
model was trained on the QM938 data set, with SMILES
sequences representing molecules as inputs. Each sequence
consisted of atom and bond symbols, starting with a “START”
token to mark the beginning of the sequence. To ensure
consistency in sequence lengths, shorter sequences were
padded with “PAD” tokens. The ground truth labels were
created by shifting the input sequence one step to the left,
excluding the “START” token, and appending an “END” token
to signify termination.

Each SMILES symbol, along with the “START”, “PAD”, and
“END” tokens, was represented by a unique integer. This

Table 1. Data Set Sizes

fuel property size

RON 362
boiling point 5549
enthalpy of combustion 2057
density 3930
viscosity 1554
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integer corresponded to a specific row in an embedding matrix
(Figure 1), allowing the model to learn vector representations
for each symbol during training.

This setup enabled the model to capture the sequential
dependences and contextual patterns inherent in molecular
representations. For example, the SMILES sequence for
ethanol was used as the input, while the corresponding output
sequence was a one-symbol-shifted version of the input (Figure
1). By treating molecules as sequences, the model leveraged
techniques from natural language processing to generate
syntactically and semantically valid SMILES representations.
Model Architecture. As depicted in Figure 1, the model

architecture consisted of four key components: an embedding
layer, an LSTM layer with two hidden layers, a linear layer, and
a softmax activation layer:

1. Embedding layer: this layer converts input tokens into
dense vectors. It takes an input size of 27, corresponding
to the number of unique symbols in the QM938 SMILES
data set plus the special tokens (start, end, and padding),
and maps each token to a dense vector of size 100. This
transforms the input symbols into a continuous vector
space. The weights are initialized randomly, with values
sampled from a uniform distribution between −1 and 1,
divided by the square root of the embedding dimension.

2. LSTM layer: the model’s core consists of an LSTM cell
with two layers. Each LSTM layer has 512 hidden units.
This component processes the sequential data, capturing
temporal dependencies and patterns. The LSTM layer’s
weights are initialized using orthogonal initialization for
weight matrices and uniform initialization for bias
vectors. The hidden and cell states are initialized to
zeros.

3. Linear layer: following the LSTM layers, a fully
connected (linear) layer is used to map the LSTM
outputs to the desired output size. This layer has 27
output units, corresponding to the number of unique
symbols in the QM938 SMILES data set plus the special

tokens (start, end, and padding). The weights are
initialized with values sampled from a uniform
distribution. The range is determined by the square
root of the inverse of the input size of the weight matrix.

4. Softmax activation layer: finally, a softmax activation
function is applied to the output of the linear layer. This
layer converts the raw output scores into probabilities,
enabling the model to predict the likelihood of each
possible symbol.

Training Procedure. The training was conducted over 10
epochs with a batch of 64 molecules each sampled from the
QM938 data set. Adam optimizer39 was used with a constant
learning rate of 10−3, using default settings for other
parameters as provided by PyTorch.40 A custom cross-entropy
loss function was used, which computed the loss for each
symbol in the sequence, excluding padding symbols by using a
mask. The loss for each sequence was averaged by the number
of unpadded symbols, and the average loss across the batch is
returned.

Fine-Tuning Generative Model. To bias molecular
generation toward compounds with potentially high RON
values, a hill-climbing algorithm22 was employed to fine-tune
the generative model. This algorithm iteratively adjusts the
model’s weights by retraining it on a subset of generated
molecules with the highest predicted RON values.

An additional constraint was introduced because the
generative model was initially trained on compounds
containing atoms not typically found in biofuels. If a generated
compound contained such atoms, like nitrogen or fluorine,
which are atypical for fuels, then the RON prediction was
multiplied by −1. Similarly, invalid molecules were assigned a
score of −1000. Both nonfuel-like and invalid molecules were
thus excluded from selection as top-performing candidates.
The exact implementation of the hill-climb algorithm is
provided in Algorithm 1.
Molecular Generation. The molecules were generated

recursively using eqs 1−4, where each step t produced a

Table 2. Model Parameter Grid

algorithm parameter parameter parameter

SVM 10−3 < C < 103 10−3 < γ < 10−1 2 < d < 10
RF 2 < maxdepth < 64 4 < maxleafnodes < 20 5 < maxfeatures < 30
MLP 10−5 < lr < 10−2 10−4 < α < 10−1 3 < batch size < 10
GBM 2 < maxdepth < 10 5 × 10−2 < lr < 10−1 5 < maxfeatures < 30
GBM 20 < n trees < 300 0.2 < subsample < 0.9

Figure 1. Example of an autoregressive model processing ethanol for training.
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symbol st from the SMILES vocabulary, including “PAD” and
“END” tokens

E sh c h c, LSTM( , , )t t t t t1 1 1= [ ] (1)

y W h bt tout out= · + (2)

P s k s s
T

y
( , ..., ) softmaxt t

t
1 1

i
k
jjj y

{
zzz= | =

(3)

s P s s ssample ( ( , ..., ))t t t1 1= | (4)

Here, E[st−1] represents the embedding of symbol st−1, and
ht and ct are the LSTM states. The output yt is computed via a
dense layer with the learned parameters Wout and bout. The
token probabilities are adjusted by temperature T, where a
lower T enforces deterministic sampling and a higher T
increases randomness.

For molecule generation, recursion starts from

s h 0 c 0START, ,0 0 0= = = (5)

For fragment-based generation, predefined fragments smile1,
..., and smileN sequentially update the LSTM states before
proceeding with (1−4). Specifically, the initial states h0, c0 are
iteratively updated using (1 and 2) for each fragment symbol
smilei before sampling new tokens. This ensures that the
generated molecules incorporate the structural constraints
imposed by the fragment.
Molecular Validation. To evaluate the properties of the

generated molecules, three key criteria were used: validity,
uniqueness, and novelty:

• Validity: a generated molecule was considered valid if its
molecular structure adhered to known chemical rules.
The RDKit35 Python package was used to verify the
correctness of the generated SMILES sequences.

• Uniqueness: a molecule was classified as unique if it was
structurally distinct from all other valid molecules within
the generated data set.

• Novelty: a molecule was considered novel if it did not
appear in existing data sets, specifically the QM938 data
set and the RON regression model data sets, as
determined by checking the presence of its generated
SMILES string in these data sets.

Subsequently, developed fuel property regression models
were used to predict density, boiling point, viscosity, and
enthalpy of combustion for the most promising novel
compounds, which were predicted to have a high RON. An
acceptable range for each fuel physical property was suggested
by considering gasoline specifications ASTM International,41

European Committee for 189 Standardization (CEN)42 but
with extended limits so as not to preclude the inclusion of any
generated novel molecules with potential as practical fuels
when utilized as blending components or with additives. For
example, an extended density range was considered so as not

to preclude generated molecules containing multiple oxygen
atoms. Therefore, only molecules that met the following
physical property criteria were retained for further consid-
eration: the enthalpy of combustion is equal to or greater than
25,000 kJ/kg, a boiling point of between 303 and 493 K, a
density of less than 1000 mg/cm3, and a viscosity less than 1
mPa·S.

■ RESULTS
Fuel Property Modeling. Figure 2 shows the best-

performing regression models for fuel properties, such as
RON, density, boiling point, viscosity, and combustion
enthalpy. Models with larger data sets, such as viscosity
(1554 data points), boiling point (5549 data points), and
density (3,930 data points), generally had the lowest mean
percentage error. For example, the boiling point predictions
were highly accurate with a mean absolute percentage error
(MAPE) of 0.01, an R2 of 0.99, and a mean absolute error
(MAE) of 2.64.

Among all of the property prediction models developed, the
RON model exhibited the weakest performance, which is
attributed to its limited training set (362 unique data points).
It showed higher prediction errors (MAE = 5.22, MAPE =
0.10) and lower explanatory power (R2 = 0.82) compared to
the other fuel property models. It can also be seen from Figure
2a that the model systematically underestimates the RON
values for high-octane compounds, particularly ethyl buta-
noate, methyl acetate, and multisubstituted aromatics (o-
xylene, p-xylene, and indene); further underpredicted mole-
cules are identified in the Supporting Information, Figure S2.
This bias can be attributed to the presence of these
compounds in regions of chemical space far from most of
the training set, leading to underprediction of two specific
molecule groups: polar oxygenates and sterically hindered
aromatics.

Substructure analysis of the underpredicted molecules
revealed that this bias originates from critical deficiencies in
the training set. For example, the underprediction of indene
arises from the complete absence of fused aromatics in the
training data; the low accuracy for methyl acetate and ethyl
butanoate reflects the under-representation of esters (only 15
examples). Similarly, the systematic underestimation of o- and
p-xylene is linked to the limited diversity of ortho- and meta-
substituted aromatics (28 examples each), which hinders the
model’s ability to learn substituent-position effects.

Although the model performs worse in terms of R2

compared to vom Lehn et al.43 (R2 = 0.91) and Schweidtmann
et al.44 (R2 = 0.94), it achieves satisfactory ranking ability
(Spearman’s ρ = 0.89), which is sufficient for its primary role:
guiding molecular optimization in the hill-climb algorithm.
Future improvements should focus on:

• Expanding training data diversity, especially for oxygen-
ates and polyfunctional aromatics

• Incorporating quantum-chemical descriptors to better
capture electronic structure effects

The viscosity model showed a slight bias toward higher
values by 0.004 Pa·s, attributed to a skewed data set that
followed a logarithmic normal distribution. Specifically, 998
compounds had viscosities below 0.0002 Pa·s, compared to
556 with higher values. Furthermore, the viscosity was
underpredicted for seven compounds, suggesting the presence
of outliers.

Energy & Fuels pubs.acs.org/EF Article

https://doi.org/10.1021/acs.energyfuels.5c01155
Energy Fuels 2025, 39, 13044−13053

13047

https://pubs.acs.org/doi/suppl/10.1021/acs.energyfuels.5c01155/suppl_file/ef5c01155_si_002.pdf
https://pubs.acs.org/doi/10.1021/acs.energyfuels.5c01155?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.energyfuels.5c01155?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.energyfuels.5c01155?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.energyfuels.5c01155?fig=&ref=pdf
pubs.acs.org/EF?ref=pdf
https://doi.org/10.1021/acs.energyfuels.5c01155?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Similarly, the enthalpy of the combustion model (2057 data
points) exhibited bias for values between 20,000 and 25,000
kJ/kg, often overpredicting values. For instance, it predicted

24,000 kJ/kg when the expected value was 20,000 kJ/kg. The
enthalpy data set included 61 compounds below 25,000 kJ/kg,
with 1996 compounds unevenly distributed between 25,000

Figure 2. Fuel property modeling, showing predicted and expected values for (a) octane, (b) boiling point, (c) enthalpy of combustion, (d)
density, and (e) viscosity.

Energy & Fuels pubs.acs.org/EF Article

https://doi.org/10.1021/acs.energyfuels.5c01155
Energy Fuels 2025, 39, 13044−13053

13048

https://pubs.acs.org/doi/10.1021/acs.energyfuels.5c01155?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.energyfuels.5c01155?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.energyfuels.5c01155?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.energyfuels.5c01155?fig=fig2&ref=pdf
pubs.acs.org/EF?ref=pdf
https://doi.org/10.1021/acs.energyfuels.5c01155?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


and 45,000 kJ/kg, yielding a mean of 39,941.08 kJ/kg and a
standard deviation of 5923.42 kJ/kg.

However, density predictions showed the lowest variance
among the models, indicating high reliability. In general, the
characteristics of the data set, such as size, distribution, and
potential outliers, significantly impacted the accuracy of the
model and introduced biases. These findings underscore the
importance of data quality and distribution in achieving
reliable predictions of the fuel properties.
Molecular Generation Analysis. Before the generative

model was fine-tuned using Algorithm 1, it was validated by
generating 1000 SMILES strings representing molecular
structures at different sampling temperatures (eq 3). Figure 3

illustrates the ratio of generated molecules that are valid and
novel. The generative model achieved a maximum validity of
0.971 at a temperature of 0.8 and a maximum novelty of 0.456
at a temperature of 1.8.

These results highlight the influence of the sampling
temperature on the diversity of generated molecular structures.
At a lower temperature of 0.8, the model produces many valid
molecules, 0.971, suggesting that it primarily generates well-
learned patterns from the training data. In contrast, at a higher
temperature of 1.8, the model explores less frequent patterns,
increasing novelty by 0.456 but likely reducing validity. This
trade-off emphasizes the importance of temperature tuning in
balancing the molecular diversity and reliability.

Figure 4 presents the distribution of modified RON in hill-
climbing iterations (Algorithm 1), with step zero representing
the initial state of the model. Negative RON prediction values
were assigned to valid compounds containing atoms
uncommon in hydrocarbons or oxygenated fuels such as
nitrogen and fluorine. The algorithm converged at step 9,
generating compounds with a mean RON value of 78.89 and a
median value of approximately 95. Despite convergence, the
mean RON value remained relatively low, likely because of the
continued generation of outlier compounds containing nonfuel
atoms.

Subsequently, the model generated 500 compounds, ranked
by predicted RON using the same model used in the hill-
climbing reward function. Among the 30 compounds with the
highest ranking, only five were novel and passed the filtering of
physical properties, meaning they were absent from both the
QM938 training data set and the RON data set used for fine-

tuning (Algorithm 1). Figure 5 illustrates the composition of
the generated compounds at each stage of the filtering process.

The 30 best-performing molecules are included in the
Supporting Information (Figure S1). An unusual feature in
these molecules was the presence of a cyclopropyl-containing
structure, such as 1-tert-Butyl-1-methylcyclopropane (Figure
S1. 21), incorporating triangular motifs that are less common
in practical fuels (and which were present in only a limited
number of the training data set compounds). Furthermore,
while methanol, a widely considered alternative fuel for spark
ignition engines,45 was identified, other methyl-oxygenates of
interest, for example, dimethyl carbonate and methyl
formate,46,47 were not present in the 30 best-performing
molecules (Figure S1).
Molecular Structures. Figure 6 presents the five novel

molecules and their predicted physical properties. The
generated molecules exhibit a high degree of compactness
and branching. For instance, 2,3,3,4-tetramethyl shares
structural similarities with 2,2,3,3-tetramethylpentane, a

Figure 3. Unique and novel molecules vs sampling temperature T.

Figure 4. Fine-tuning of the generative model via hill climbing.

Figure 5. Composition of the molecular structures at each filtering
step.
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compound with a known research octane number of 114.
Furthermore, two of the generated molecules contain aromatic
rings, which are known to enhance knock resistance.48,49 The

smallest identified molecule, 3-methylbutan-2-ol, includes an
alcohol functional group, which can influence combustion
characteristics.

Figure 6. Generated molecules (empty token), SMILES absent in QM938 and RON data sets.

Figure 7. Generated molecules (oxygen token), SMILES absent in QM938 and RON data sets.
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To further explore oxygen incorporation in biofuel-like
structures, the trained model generated 3000 compounds, each
initialized with an oxygen atom to ensure its presence in the
final molecular structures. Increasing the number of generated
molecules from the original 500 to 3000 aimed to improve
structural diversity while adhering to the oxygen constraint.
Figure 7 showcases the oxygen-containing molecules that were
absent from both the QM938 training data set38 and the RON
fine-tuning data set.

Compared with the unconstrained generation in Figure 6, a
notable reduction in aromatic species was observed. Instead,
most of the generated compounds contained multiple oxygen
atoms and exhibited increased branching. The molecules also
displayed a broader range of oxygen-bearing functional groups,
including ketones and ethers, in Figure 7. The presence of
ether linkages is significant, as they are known to influence
RON.

Meanwhile, the presence of the hydroxyl group can be seen
to increase the fuel viscosity. For example, 1-methoxyethanol
(Figure 7A) and 3-methylbutane-1,2-diol (Figure 7B)
exhibited borderline viscosity values, which were chosen as
the threshold for physical property checks. Furthermore, some
structures, such as 4-methylhex-2-yn-1-ol (Figure 7C), feature
a triple bond, which can affect both RON and soot formation.

■ DISCUSSION
Properties of Generated Fuel-like Compounds. Two

of the five remaining molecules generated from the empty
token (eq 5), shown in Figure 6B,D, were aromatic. These
molecules were also highly branched, a combination of
structural properties known to increase RON.50 A similar
trend can be observed in molecules such as 3-methylbutan-2-ol
(Figure 6A) and another example in 2,2,4-trimethylpentan-3-ol
(Figure 6C), both of which feature two structural properties
associated with higher octane numbers: the presence of an
alcohol group and a highly branched structure. The remaining
molecule, depicted in Figure 6, also exhibited highly branched
characteristics. In addition, the compound predicted that RON
values were not beyond the typical range for the hydrocarbons.
In general, the compounds of Figure 6 did not have unfamiliar
molecular structural features.

The predicted combustion enthalpy was the lowest for 3-
methylbutan-2-ol (Figure 6A) and 2,2,4-trimethylpentan-3-ol
(Figure 6C), with values of 34,804 kJ/kg and 37,533 kJ/kg,
respectively. This result is consistent with the expectation that
the calorific value of the molecules decreases with an increase
in the number of oxygen atoms.

The other set of generated molecules, starting with the
oxygen symbol in Figure 7, exhibited considerably lower
predicted combustion enthalpies compared to the molecules in
Figure 6, again due to the abundance of oxygen atoms. As
expected, the molecule in Figure 7C (4-methylhex-2-yn-1-ol)
had the highest combustion enthalpy; it contains only one
oxygen atom.

From the RON perspective, the molecules in Figure 7
exhibited high branching and the presence of an alcohol group,
both of which are known to contribute to higher octane
numbers. However, the molecules (2-methylpropane-2-yl)-
oxymethanol in Figure 7D and 3-methylbutan-2-yloxymetha-
nol in Figure 7F included ether linkages, which are known to
decrease RON. This result was unexpected, given the objective
of the generative model.

Interestingly, once the ether linkage is broken in these
molecules, the resulting fragments include ethanol (RON 108)
and 2-methylpropane (RON 92) for the molecule in Figure 7D
and ethanol (RON 108) and 2-methylbutane (RON 93) for
the molecule in Figure 7F.
Practical Applications and Implications for Fuel

Property Optimization. The aromatics in Figure 6B,D can
be synthesized through various methods, including pyrolysis,
for the processing of lignocellulosic biomass.51 The other
molecules in Figure 6 require additional postprocessing steps,
including hydrogenation at high temperatures.52 Meanwhile,
the branched alcohol shown in Figure 6A is an isomer of
isoamyl alcohol, which is industrially produced by microbial
fermentation.53

Regarding oxygenates (Figure 7), short-chain oxygenates can
also be produced from biomass via pyrolysis. The molecule 3-
methylbutane-1,2-diol (Figure 7B) can be produced from
cellulose.54 The molecules 1-hydroxy-3-methylbutan-2-one
(Figure 7G) and 1-hydroxy-4-methylpentan-3-one (Figure
7E) are fatty acids, which are naturally produced by plants.55

4-Methylhex-2-yn-1-ol (Figure 7C) is difficult to produce, as it
requires the removal of hydrogen from a triple bond, which is a
complex process. Furthermore, the presence of the triple bond
may lead to soot formation, as was shown by Ladommatos et
al.56 The short-chain ethers (Figure 7D,F) can, however, be
produced via etherification of various compounds from
renewable feedstocks, for example, alcohols and carbon
dioxide.57

Limitations and Future Directions. This section outlines
the limitations of this study and proposes future directions.
The primary limitations arise from the data set, the generative
modeling approach, and the evaluation of the generated
compounds. A significant limitation is the RON data set, which
provides reliable predictions primarily for a narrow range of
compounds and lacks a wide variety of oxygenates, which are
the primary types of biofuels. Consequently, the performance
of the fuel design algorithm is influenced by the predictive
accuracy of the RON model, particularly for high-octane
oxygenates. Nonetheless, the proposed framework is model-
agnostic and can be readily adapted to more accurate RON
predictors as they become available, thereby mitigating this
limitation in future applications.

Currently, molecules are generated by using a left-to-right
SMILES representation. This approach may limit the diversity
of the compounds generated, especially when the generation
process starts with a predefined molecular fragment. To
address this, adopting bidirectional LSTMs,58 which process
sequences in both directions (left-to-right and right-to-left),
could enhance compound diversity. However, an advantage of
the current approach utilizing SMILES strings for the
representation of the generated molecules is that language
models are inherently quick to perform text generation,
reducing the computational intensity of the process.

Additionally, the hill-climbing algorithm used to fine-tune
the generative model ranks compounds solely on the basis of
research octane number predictions. As a result, structural
optimization does not take physical properties. Therefore, the
ranking process should consider physical properties by first
filtering compounds on the basis of these properties and then
ranking them according to their octane predictions.

Another limitation is that the current physical property
filtering does not include key properties, such as miscibility,
which are essential for evaluating the real-world applicability of
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the generated molecules. Incorporating these properties into
the filtering process would ensure that the generated
compounds meet both the desired octane number and other
critical physical constraints.

This study is based on the use of single-component
hydrocarbons, some containing oxygen, and it is acknowledged
that when single components are blended, the resulting knock
resistance is not an average of the individual RON values due
to nonlinearities and synergies between the fuel molecules.

Finally, some generated compounds lack clear synthesis
pathways. This issue could be addressed by starting molecular
generation from predefined fragments that are already
recognized as intermediates in material processing, particularly
those with potential as fuel precursors.

■ CONCLUSIONS
This research established a baseline for the generation of fuel
compounds using a simple yet effective autoregressive model
combined with the hill-climb algorithm, which has been shown
to outperform graph-based generation in some cases by Brown
et al.14 In contrast to other studies, this approach considered
the physical properties of the generated compounds and
excluded molecules that were either already present in the
training data or found in the octane data sets. The results
showed that only 5 of the top 30 highest-ranked compounds
(from a total of 500 generated molecules) had reasonable fuel-
like physical properties, such as density, viscosity, boiling point,
and enthalpy of combustion, and were not present in the
training data or the RON regression model data set.
Furthermore, for molecules generated using the oxygen
token, 7 of the top 30 compounds ranked on the basis of
the RON predictions displayed reasonable physical properties
and were not present in the octane and QM938 data sets.
However, the remaining compounds after filtering displayed
structural features expected from high-knock-resistant com-
pounds.
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