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Abstract 

Background: Bayesian cost-effectiveness analysis (CEA) requires the specification of prior distributions for all 

parameters to be empirically estimated via Bayes’ rule. When costs are modelled via Log-Normal distributions, 

Uniform prior distributions are commonly applied on the logarithm-scale standard deviations for costs due to its 

ease of implementation. However, the consequences of placing wide Uniform priors on standard deviations of log 

costs for the interpretation of original-scale CEA results remain unclear. The purpose of our study is to explore the 

impact of using Uniform priors for the standard deviations of cost data on CEA conclusions when costs are assumed 

to be log-normally distributed. 

Methods: The analysis has been performed using individual-level cost-utility data from a randomised controlled 

trial. Costs are initially jointly modelled with QALYs using Log-Normal and Beta distributions respectively. 

Uniform prior distributions with different upper bounds are applied to log-scale standard deviations in the cost Log-

Normal model. We compare the performance of Uniform priors under the Log-Normal distribution with other 

distributional assumptions for costs. A simulation study has then been conducted to explore the impact of these 

models and prior choices on cost estimates in CEAs.  

Results: Results show that the choice of Uniform priors on standard deviations of log costs in Log-Normal model 

can substantially induce large fluctuations in cost estimates, and thus potentially affect the final estimates of the 

intervention being cost-effective compared to other distributional assumptions. This is potentially driven by the 

occurrence of zero values in cost data. 

Conclusion: Bayesian CEAs may be sensitive to the choice of upper bounds of the Uniform priors for the standard 

deviations of log costs in Log-Normal models, particularly when data contain zero values. Our results suggest that 

caution should be made when Uniform distributions with large upper bounds are used. 
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Key Points 

• Bayesian cost-effectiveness analyses are sensitive to the choice of upper bounds of the Uniform prior 

distributions on log cost standard deviations when costs data are assumed to be log-normally distributed. 

• Caution should be given to the potential consequences of applying Uniform distributions on cost standard 

deviations as minimally informative priors based on both distributional model assumptions and actual 

characteristics of the data. 

• It is more conservative to choose models that are more robust to the upper bounds of Uniform prior 

distributions and is also necessary to consider alternative priors to assess the robustness of posterior results. 
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1 Introduction 

Bayesian analysis has become increasingly popular in cost-effectiveness analysis (CEA), over the years [1–4]. One 

of the reasons behind its popularity stems from its ability to incorporate external evidence or elicited expert opinions 

into the analysis in a principled way, through prior distributions. However, in cases where genuine information is 

lacking, “minimally informative” prior distributions are often used, at least as a starting point [5,6]. 

While common in Bayesian CEAs [7], the implementation of models based on scarce contextual information in real 

applications can be challenging. Given that CEA data are usually skewed, simple assumptions such as a Normal 

distribution to describe sampling variability are less likely to hold. Alternative choices (e.g. modelling sampling 

variability using a Gamma distribution to cater for skewness and positivity of the individual costs) are often 

specified using classical parameters whose ``physical’’ interpretations, while meaningful, may be less immediately 

intuitive to health economists. For instance, unlike the Normal distribution which is naturally parameterised by a 

population mean and standard deviation, a Gamma distribution is usually indexed by a rate and a shape parameter 

(rather than its mean and standard deviation), which are difficult to understand in a health economics context and 

complicate the natural interpretation and elicitation of prior beliefs [8]. 

The Uniform distribution on a suitable large and positive range is often considered as the default choice for a 

minimally informative prior concerning the standard deviation of costs [9–11]. However, slight differences exist in 

the specification of the Uniform prior under different distributional assumptions in the analysis of cost data. Uniform 

priors tend to be placed on the original scale of standard deviations or their functions when costs are assumed to 

follow a Normal or Gamma distribution [8–10,12], while it is straightforward to directly assign priors on standard 

deviations of log costs when costs are modelled through a Log-Normal distribution [13]. 

In the general Bayesian statistical literature, it has been already recognised that placing vague Uniform priors on 

log-scale standard deviations in Log-Normal models is often a sensitive choice, which exerts a potentially notable 

influence on posterior results [14,15]. Alternative options of minimally informative priors for variance or standard 

deviation have been suggested in the wider statistical literature. For example, Gelman recommended the half-t 

family of prior distributions on the original-scale standard deviation [16], but the article primarily focused on 

hierarchical Normal models, which may not always align with CEA data. Under the choice of a Log-Normal 

distribution, Zellner proposed the use of diffuse priors [17], although the method encounters the difficulty of 

summarising the posterior distribution of the mean on its original scale. Fabrizi and Trivisano proposed a 

generalised inverse Gaussian prior on the log-scale variance of the Log-Normal distribution, allowing for finite 

posterior mean estimates [18]. Yet, the application of these priors from statistical literature to CEAs poses 

challenges in interpretation since they are less intuitive compared with a Uniform prior distribution. 

The objective of this study is to investigate how setting Uniform priors for the standard deviations of a cost Log-

Normal distribution may affect the overall CEAs. Our focus is different from identifying the “optimal” prior from a 

statistical viewpoint, but is more specialised in the context of health economic evaluations. So far, there has been 

little discussion regarding the choice of prior distributions in CEAs. It remains poorly understood to what extent the 

application of Uniform distributions as minimally informative priors for standard deviations of log costs in Log-

Normal models can function to easily convey specific beliefs about cost standard deviations on their natural scale. 

The study will explore the impact of using Uniform prior distributions for the log-scale standard deviations of cost 

data on cost-effectiveness results when costs are assumed to be log-normally distributed using a real case study. The 

Log-Normal model will be compared to models with other distributional assumptions in terms of their CEA results. 

Based on these, recommendations will be formulated regarding the use of Uniform prior distributions for cost 

standard deviations in Bayesian CEAs. 
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2 Materials and Methods 

2.1 Case Study 

The ORBIT trial is a randomised controlled trial that compares the cost-effectiveness of the intervention, online-

delivered therapist-supported exposure and response prevention, with the control, online education, among children 

having Tourette syndrome or chronic tics disorder from a health care perspective over 6 months [19]. A total of 224 

patients had been randomly assigned to the two treatment arms: 112 were randomised to the intervention and 112 to 

the control. Cost and utility data were collected at baseline, 3 months and 6 months. The total costs and quality-

adjusted life years (QALYs) [20] were estimated at 6 months using the costs and utility data at each time point. 

Complete cases, defined as patients with fully observed health care costs and utility scores at the three data 

collection time points, are used to streamline the analysis (71 in the control and 62 in the intervention). The decision 

is made because we will concentrate on providing a comprehensive insight into how the choice of Uniform priors 

with various upper bounds can influence cost-effectiveness conclusions and consider that a complete case analysis is 

adequate to serve this purpose. 

 

2.2 Statistical models 

Analyses are performed within a Bayesian framework using a joint modelling approach [21]. The joint distribution 

of costs (𝑐) and QALYs (𝑒), denoted as 𝑝(𝑐, 𝑒), is parameterised by the product of a conditional distribution of costs 

given QALYs, 𝑝(𝑐 ∣ 𝑒), and a marginal distribution of QALYs, 𝑝(𝑒), to capture the correlation between the 

outcomes. Apart from the Log-Normal distribution, Normal and Gamma distributions are considered for cost data to 

illustrate the extent to which different distributional assumptions can influence the impact of Uniform priors for cost 

standard deviations on cost-effectiveness results. Normal and Beta distributions are applied to QALYs: the former is 

chosen following the original health economic analysis of the trial, while the latter is used to reflect the potential 

skewness of QALYs. 

The following notation is used: let 𝑐𝑖𝑡 and 𝑒𝑖𝑡 denote total costs and QALYs for patient 𝑖 in each treatment arm 𝑡 

respectively. The treatment indicator 𝑡 is dropped to simplify model specification. 

 

2.2.1 Normal model 

The first model, assuming that both costs and QALYs are normally distributed, is undertaken to mimic the 

assumptions of routine CEAs. It can be thought of as a Bayesian equivalent to seemingly unrelated regression 

(SUR) [22] but re-expressed by using the aforementioned product formulation of the conditional distribution of costs 

given QALYs and the distribution of QALYs. 

We model costs conditional on QALYs as: 

𝑐𝑖 ∣ 𝑒𝑖 ∼ Normal(𝜇𝑐𝑖 , 𝜎𝑐
2)

𝜇𝑐𝑖 = 𝛼0 + 𝛼1(𝑐0𝑖 − 𝑐‾0) + 𝛼2(𝑒𝑖 − 𝑒‾) + 𝛼3𝑠𝑖
 

where 𝜇𝑐𝑖 and 𝜎𝑐 are the (individual-level) mean and the (population-level) standard deviation of the costs. 

Covariates are selected based on the original health economics analysis: (𝑐0𝑖 − 𝑐‾0) is the centred baseline costs, 

(𝑒𝑖 − 𝑒‾) is the centered QALYs while 𝑠𝑖 is the site at which individual 𝑖 has been treated. 𝛼0 is the intercept, 𝛼1 

represents the impact of baseline costs on total costs, 𝛼2 quantifies the association between costs and QALYs while 

𝛼3 represents the effects of site. 
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QALYs are modelled as: 

𝑒𝑖 ∼ Normal(𝜇𝑒𝑖 , 𝜎𝑒
2)

𝜇𝑒𝑖 = 𝛽0 + 𝛽1(𝑢0𝑖 − 𝑢‾0) + 𝛽2𝑠𝑖
 

where the parameters 𝜇𝑒𝑖 and 𝜎𝑒 are the (individual-level) mean and the (population-level) standard deviation for 

QALY. In line with the original economic evaluation, centred version of utility values at baseline (𝑢0𝑖 − 𝑢‾0) and 

site 𝑠𝑖 are included as covariates in the QALY model. 

Suitable priors are specified for parameters to complete the model (see Appendix A for details and Appendix D for 

prior sensitivity assessment): vague priors are assigned to the regression coefficients and Uniform priors are 

assumed for the standard deviations. 

 

2.2.2 Gamma model for cost, Beta model for QALY 

Since cost data are often right-skewed and non-negative, the cost component of the model above is expanded by 

assuming a Gamma distribution to reflect these features [23–25]. To facilitate prior specification and improve 

interpretability, the Gamma distribution for the costs given QALYs is re-parameterised by defining the shape 

parameter 𝜁𝑐𝑖 = 𝜇𝑐𝑖𝜏𝑐𝑖 and the rate parameter 𝜏𝑐𝑖 = 𝜇𝑐𝑖/𝜎𝑐
2, where 𝜇𝑐𝑖 and 𝜎𝑐 describe the (individual-level) mean 

and the (population-level) standard deviation of the costs, respectively. This parameterisation allows priors to be 

placed directly on more intuitive parameters such as cost standard deviation and avoids the difficulty of formalising 

straightforward prior knowledge for the shape and rate parameters. A log link function is used to connect the 

conditional mean costs given QALYs and relevant covariates. Since some participants accrued zero costs in the trial, 

we re-scale the observed values for the costs by adding a small constant 𝜖 = 1 to the original data [8]. We note that 

modifying the data is necessary only to fit Gamma distributions to costs and has minimal impact on the conclusions 

under the overall scope of the study. 

The costs conditional on the QALYs are modelled as: 

𝑐𝑖 ∣ 𝑒𝑖 ∼ Gamma(𝜇𝑐𝑖𝜏𝑐𝑖 , 𝜏𝑐𝑖)

log(𝜇𝑐𝑖) = 𝛼0 + 𝛼1(𝑐0𝑖 − 𝑐‾0) + 𝛼2(𝑒𝑖 − 𝑒‾) + 𝛼3𝑠𝑖
 

The QALYs’ empirical distributions also show some degree of skewness, and are theoretically restricted within the 

range (0,0.5) in the ORBIT trial. Following the recommendation of previous research [26], a Beta distribution is 

fitted to the QALYs to capture the skewness of the outcome. The distribution of the QALYs is parameterised by two 

shape parameters 𝜅𝑒𝑖 = 𝜇𝑒𝑖𝜙𝑒𝑖  and 𝛾𝑒𝑖 = (1 − 𝜇𝑒𝑖)𝜙𝑒𝑖, where 𝜇𝑒𝑖 represents the (individual-level) mean while 𝜙𝑒𝑖 

is an (individual-level) scale parameter, defined as: 

𝜙𝑒𝑖 =
(1 − 𝜇𝑒𝑖)𝜇𝑒𝑖

𝜎𝑒
2

− 1 

Such parameterisation allows to construct the priors directly on the standard deviations of the QALYs and brings 

more intuitive understanding of the model. A logit link function is applied for the generalised linear model. 

The model for the QALYs can be expressed as: 

𝑒𝑖 ∼ Beta(𝜇𝑒𝑖𝜙𝑒𝑖 , (1 − 𝜇𝑒𝑖)𝜙𝑒𝑖)

logit(𝜇𝑒𝑖) = 𝛽0 + 𝛽1(𝑢0𝑖 − 𝑢‾0) + 𝛽2𝑠𝑖
 

The model is completed by placing priors on the regression coefficients and the standard deviations: 

Normal(0, 1002) for the coefficients in the cost model, Normal(0, 22) for the coefficients in the QALY model given 

the use of logit link; wide Uniform priors have been given to cost standard deviations – they have been selected to 
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convey minimally information to the analysis and to ensure consistency with the Normal distribution choices for 

model comparisons throughout this study; although Uniform priors have been placed on the standard deviations of 

the QALYs, they are restricted using a Uniform(0, √𝜇𝑒(1 − 𝜇𝑒)) due to the property of Beta distribution [4]. 

 

2.2.3 Log-Normal model for cost, Beta model for QALY 

The model above is modified by assuming that the cost data are log-normally distributed, while maintaining the Beta 

distribution for the QALYs. 

The cost Log-Normal model can be written as: 

𝑐𝑖 ∣ 𝑒𝑖 ∼ Log-Normal(𝜈𝑐𝑖 , 𝛿𝑐
2)

𝜈𝑐𝑖 = 𝛼0 + 𝛼1(𝑐0𝑖 − 𝑐‾0) + 𝛼2(𝑒𝑖 − 𝑒‾) + 𝛼3𝑠𝑖
 

It should be noted the 𝜈𝑐𝑖  and 𝛿𝑐 in the Log-Normal model are now (individual-level) mean and (population-level) 

standard deviation of costs on the log scale respectively. To obtain the mean (𝜇𝑐𝑖) and standard deviation (𝜎𝑐𝑖) of 

costs on their original scale for each individual 𝑖, the following expressions could be used: 

𝜇𝑐𝑖 = exp (𝜈𝑐𝑖 +
𝛿𝑐
2

2
)

𝜎𝑐𝑖 = √[exp(𝛿𝑐
2) − 1]exp(2𝜈𝑐𝑖 + 𝛿𝑐

2)

 

Similar to the Gamma distribution, the Log-Normal distribution requires the data to be positive, necessitating the 

addition of a small value (𝜖 = 1) to the original cost data. Vague Normal prior distributions are assigned to 

regression coefficient parameters. 

Uniform priors with different upper bounds are considered for the standard deviations of log costs in Log-Normal 

distribution (see Appendix A) to assess their impact on the cost-effectiveness results. Specifically, to ensure the 

comparability across models with different distributional assumptions, the Uniform prior distributions on the log-

cost standard deviation in the Log-Normal models are intended to lead to reasonable and comparable ranges to those 

on the original cost scale in other models. The exact upper bound values to be considered in the Log-Normal model 

may depend on the mean of the data, given the mathematical properties of the Log-Normal distribution. When the 

actual mean costs are large, a Uniform prior distribution with a large upper bound on log-cost standard deviation 

may produce unrealistic results. An illustration of the potential impact of the Uniform priors for log-scale standard 

deviation on original-scale standard deviation is provided in Appendix B. Therefore, Uniform prior distributions 

with narrower and reasonable ranges have been chosen for the Log-Normal models, compared to those in the 

Normal and Gamma models. 

 

2.3 Implementation 

All models are fitted in JAGS [27], a program for Bayesian inference based on Markov Chain Monte Carlo 

(MCMC) via the R2jags package in R version 4.0.3 [28]. We run two chains, each with 52,000 iterations, and 

discarded the first 2,000 iterations from each chain as a burn-in phase. A thinning rate of 10 has also been applied to 

reduce autocorrelation, leading to a total sample of 10,000 iterations for inference. Convergence is assessed through 

potential scale reduction statistics, 𝑅̂ [29], and a visual inspection on trace plots. To overcome the difficulty in 

model convergence arising from the differing scales of costs and QALYs, the original cost data have been scaled 

down by a factor of 10, but the resulting inferences are robust to the choice of the scaling factor. Model fit is 
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assessed through posterior predictive checks (see Appendix C) and compared by deviance information criterion 

(DIC) [30]. 

Given the main focus of our study, cost estimates are initially reported for the CEA models to identify how much the 

marginal mean costs can be affected by different upper bounds of the Uniform distributions. Mean costs with 

different distributional assumptions are also compared to investigate whether the influence brought by the Uniform 

prior distributions on cost standard deviations is sensitive to the choice of cost distributions. After that, the impact of 

using Uniform prior distributions on cost-effectiveness results is explored using cost-effectiveness plane [31] and 

cost-effectiveness acceptability curve (CEAC) [32]. 

3 Results 

3.1 ORBIT trial data 

Both costs and QALYs show some degree of skewness (Fig. 1). Most of the cost data are below £2,000 with 3 

participants as an exception in each treatment arm. A comparable proportion of participants with zero health care 

costs in both treatment arms are observed: 5/62 (8.06%) participants accrue zero costs in the intervention while 6/71 

(8.45%) participants in the control. QALYs mostly lie between 0.3 and 0.5 with no participant having a perfect 

health status of 0.5 by the end of the 6-month follow-up. 

 

Fig. 1 Distribution of trial cost data by treatment arms. QALY=Quality-Adjusted Life-Years. 
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3.2 Cost analysis 

The specification of a Uniform distribution as the prior on standard deviation for log costs in the Log-Normal model 

influences results when zero values exist in the cost data (Table 1). Compared to the Normal and Gamma models, 

the model fit and cost estimates from the Log-Normal models are more sensitive to the choice of upper bounds for 

the Uniform priors. The Log-Normal models with the two lowest upper bound values for the Uniform prior present 

higher DIC values than the others, suggesting a poorer fit to the data, which has also been confirmed via posterior 

predictive check (see Appendix C). Improvements in model fit can be observed when the upper bound of the 

Uniform prior distribution increases. Although the DICs of the Log-Normal models with Uniform(0,2) and 

Uniform(0,3) are similar, the two models produce different scales of cost estimates: the incremental mean costs of 

the intervention compared to the control are £344 (95% credible intervals: -£2,258, £3,256) with Uniform(0,2) but 

they jump to £1,301 (95% CIs: -£4,169, £8,699) when Uniform(0,3) is applied. The Normal models do not fit the 

data well, as their DIC values are higher than those of the Gamma models and most Log-Normal models. In 

contrast, the Gamma models show the best fit to the data, as confirmed by both DIC and posterior predictive checks. 

 

Table 1 Marginal mean and incremental mean cost estimates, with 95% credible intervals in parentheses, for models 

with different Uniform prior distributions on cost standard deviations. Note: Costs are measured using British pound 

(£). DIC = Deviance Information Criteria; Con = Control; Int = Intervention. 

Prior DIC Costs (Con) Costs (Int) Incremental Costs 

Normal model        

Uniform(0,1000) 948.8 476 (320, 632) 598 (421, 775) 123 (-102, 366) 

Uniform(0,10000) 948.8 476 (320, 632) 598 (421, 775) 123 (-102, 366) 

Gamma model        

Uniform(0,1000) 718.7 537 (388, 692) 709 (451, 970) 171 (-128, 484) 

Uniform(0,10000) 718.4 535 (393, 697) 710 (469, 982) 174 (-131, 480) 

Log-Normal model        

Uniform(0,3) 744.4 2,095 (497, 4,761) 3,396 (620, 8,279) 1,301 (-4,169, 8,699) 

Uniform(0,2) 740.1 1,610 (489, 3,266) 1,954 (651, 3,868) 344 (-2,258, 3,256) 

Uniform(0,1) 919.3 412 (260, 585) 468 (287, 667) 56 (-208, 335) 

Uniform(0,0.8) 1126.9 337 (241, 453) 386 (265, 518) 49 (-127, 215) 

 

Mean cost estimates by treatment arms, incremental mean costs and their 95% CIs are graphically compared across 

models with different distributional assumptions and prior distributions (Fig. 2). Unlike with the Normal and 

Gamma model, the Log-Normal model exhibits large variations in cost estimates based on the choice of the Uniform 

priors for standard deviations of log costs. The use of Uniform(0,0.8) and Uniform(0,1) — the two Uniform priors 

associated with a poorer fit to the data — results in comparable cost estimates to those produced from the Normal 

and Gamma models. In contrast, the other two Uniform priors, which have shown a better model fit, can inflate the 

mean cost estimates in the two treatment arms (and thus incremental mean costs), even when the upper bound of the 
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Uniform prior distribution has been limited to 2. The Normal and Gamma models are more robust to the choice of 

upper bounds of the Uniform priors compared to the Log-Normal model, producing similar results across the 

different upper bound values explored. 

 

Fig. 2 Marginal mean cost by treatment arms, incremental mean costs and their 95% credible intervals of Normal, 

Gamma and Log-Normal models with different Uniform prior distributions on cost standard deviations. 

 

3.3 Cost-effectiveness results 

Fig. 3 shows the cost-effectiveness planes of models based on different distributional assumptions and varying 

Uniform priors for cost standard deviations. Here we specifically focus on the cost-effectiveness planes for the two 

Uniform distributions with a better fit to the data — Uniform(0,2) and Uniform(0,3) — as priors on the standard 

deviations of log costs in Log-Normal models. The decision is made because the Uniform(0,0.8) and Uniform(0,1) 

(though their cost-effectiveness planes show similar patterns to Normal and Gamma models) appear too restrictive 

for the data based on both their DIC values and posterior predictive checks.  

The cost-effectiveness planes illustrate how sensitive the cost-effectiveness results are to the choice of models and 

upper bounds of the Uniform prior distributions for cost standard deviations. The pairs of incremental costs and 

QALYs, and the associated incremental cost-effectiveness ratio (ICER), predominantly fall below the willingness-

to-pay threshold of £30,000 in the Normal and Gamma models, supporting the cost-effectiveness of the intervention. 

Conversely, the Log-Normal models present much higher incremental costs and ICERs compared to models with 

other distributional assumptions. 

The sensitivity of the cost-effectiveness results to the upper bounds of the Uniform priors may be affected by model 

distributional assumptions. As shown in Fig. 3: panels (a) and (b) for the Normal model, and panels (c) and (d) for 
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the Gamma model, the two models are robust to the upper bounds of the Uniform prior distributions for their cost 

standard deviations. In contrast, the results of the Log-Normal models can be greatly influenced by the Uniform 

prior distributions used for the standard deviations of log costs, as illustrated in Fig. 3 panels (e) and (f). An increase 

in the upper bounds of the Uniform priors can bring more extreme values and substantial uncertainty to the 

incremental mean costs, thus becoming less likely to conclude that intervention is cost-effective. 

 

Fig. 3 Cost-effectiveness planes across Normal, Gamma and Log-Normal models with Uniform priors for cost 

standard deviations. The grey dashed line represents a willingness-to-pay threshold at £20,000 while the black 

dashed line represents a threshold at £30,000. The orange dot in each sub-figure denotes the incremental cost-
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effectiveness ratio (ICER) of each model. The Uniform priors are placed on standard deviation of original costs in 

Normal and Gamma models while allocated to standard deviations of log costs in Log-Normal models. 

 

The CEACs show that the intervention is more likely to be cost-effective under the Normal and Gamma models 

compared to the Log-Normal models when a willingness-to-pay threshold reaches £30,000 or above (Fig. 4). When 

Uniform prior distributions are used for the log cost standard deviations in the Log-Normal models, the uncertainty 

in incremental mean costs reduces the probability of the intervention being cost-effective. As the upper bound of the 

Uniform prior distribution decreases to 2, the probability that the intervention is more cost-effective than the control 

increases. 



 12 



 13 

 

Fig. 4 Cost-effectiveness acceptability curves across Normal, Gamma and Log-Normal models with different 

Uniform prior distributions. The solid lines indicate results using Uniform priors with narrower ranges, 

i.e. Uniform(0,1000) for the Normal and Gamma models and Uniform(0,2) for the Log-Normal model; while the 

dashed lines represent results based on Uniform priors with wider ranges, i.e., Uniform(0,10000) for the Normal 

and Gamma models and Uniform(0,3) for the Log-Normal model. The green lines show CEACs from the Normal 

models; the red lines are for the Gamma models, and the blue lines are for the Log-Normal models. 

 

4 Simulations 

4.1 Simulation Overview 

Building upon the findings of the case study, a simulation study has been designed to further evaluate the 

performance of the Bayesian CEA models – i.e. Normal, Gamma and Log-Normal models with different Uniform 

prior distributions on cost standard deviations. We investigate the impact of these models and prior choices on cost 

estimates in CEAs, including the mean cost estimates for each treatment arm and their incremental costs. The aim of 

this simulation study is to explore how sensitive the Bayesian CEA cost models are to the choice of priors for cost 

standard deviations and how this sensitivity might vary across different scenarios.  

The simulation settings have been designed to reflect the common challenges that might be encountered in real-

world CEA applications, motivated by our case study. We consider a cost-effectiveness analysis alongside a simple, 
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six-month two-arm RCT when generating individual-level cost-effectiveness data. In this simulation study, we 

assume that baseline utilities and QALYs are normally distributed, however, such choice does not influence the 

conclusions of the entire study as we focus on the impact of prior distributions on cost estimates.  

 

4.2 Data Generating Process 

Cost data are often skewed, and prone to zero values, indicating no use of health care services. The findings from the 

case study suggest that the occurrence of zero values in cost data may lead to poor performance of the Log-Normal 

cost model; however, the impact of the proportion of zeros on its relative performance remains unclear. 

Additionally, Bayesian analyses are known to be sensitive to the prior specification when sample sizes are small 

[33]. Therefore, a total of eight scenarios are defined based on the three dimensions on cost – data skewness, 

proportion of zeros and sample size: 

• Data skewness: To account for different levels of skewness, the positive values in cost data are assumed to 

follow Gamma, and Log-Normal distributions, respectively. 

• Proportion of zero values: Scenarios with relatively low proportions of zeros (varying between 0% and 

10%) are considered to mimic real-world situations with either no or mild occurrences of zeros in cost data. 

For cases with higher proportions of zero values, a two-part model is recommended [34]. 

• Sample size: The total sample size is set to either 200 or 2000, representing 100 and 1000 participants per 

treatment arm, respectively, under the assumption of a 1:1 allocation rate between intervention and control 

groups. The sample size of 200 reflects the situation typified by the ORBIT trial, while the larger sample 

size of 2000 represents a typical high-sample-size scenario for trial-based CEAs. 

Initially, QALYs are generated from a Normal distribution, and then cost data are simulated from a two-part model 

to determine the presence of zero values. Further details of the data generating process are provided in Appendix E 

due to space limitations. 

We conduct 1000 simulations for each scenario and fit three CEA models with different Uniform priors using a 

Bayesian approach to align with the case study and allow a fair comparison within the simulation setting. Again, a 

constant value (𝜖 = 1) will be added to the Gamma and Log-Normal models in scenarios with zeros. The QALY 

model component in the Bivariate Normal model has been retained consistently for the Gamma and Log-Normal 

models.  

The focus of this simulation is the estimation of mean cost per treatment arm and incremental costs. To assess the 

relative performance in terms of treatment-specific mean costs and incremental costs across the Normal, Gamma 

and Log-Normal models with different Uniform priors on cost standard deviations, we compare their bias, empirical 

standard error (Empirical SE) and root mean squared error (RMSE) in each simulated scenario. The definitions of 

these performance measures are provided in the Appendix E.  

The Log-Normal distribution with Uniform priors whose ranges are more limited, i.e. Uniform (0,1) and a 

Uniform(0,0.8), cannot converge when cost data with a large sample size of 2000 follow a Gamma distribution and 

present no zeros. Data re-scaling has not been considered for this scenario as it may distort the original relationship 

between the data scale and the choice of prior, which does not align with the initial purpose of this study. Therefore, 

the Log-Normal models with these two Uniform priors will not be reported in this scenario. 
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4.3 Simulation Results 

Figure 5 graphically summarises the performance of the assessed models across different distributional assumptions 

and Uniform prior distributions for cost standard deviations when cost data are log-normally distributed. As 

expected, when cost data follow a Log-Normal distribution, the occurrence of zeros strongly undermines the 

performance of the Log-Normal models, regardless of whether the sample size (as shown in Fig 5, Column A and 

C). Under these scenarios, the Log-Normal model is highly sensitive to the upper bound values of the Uniform 

priors for cost standard deviation, influencing the mean cost estimates in terms of more bias in each treatment arm.  

In scenarios without zeros, the Log-Normal model still exhibits sensitivity to the prior selection. Specifically, 

estimates from Log-Normal models under wider Uniform priors – Uniform(0,2) and Uniform(0,3) – are less biased 

than those using narrower priors – i.e. Uniform(0,1) and Uniform(0,0.8). This finding suggests that the narrower 

Uniform prior may be overly restrictive for these scenarios. However, the Log-Normal models show robustness 

when the two wider Uniform prior distributions are used.  

The Normal and Gamma models seem to present higher degree of robustness to their prior specifications compared 

to the Log-Normal models. When there is no zero in the data, the Normal models have greater bias and RMSE than 

the Log-Normal models with wider Uniform priors, irrespective of sample size. The Normal model performance 

improves compared to the Log-Normal models with narrower Uniform priors when the sample size is large. 

Surprisingly, the Gamma models achieve comparable performance to that of the Log-Normal models with wider 

Uniform prior distributions, even when data are log-normally distributed and are fully positive.   
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Fig. 5 Relative performance of the Normal, Gamma, and Log-Normal models with different Uniform prior 

distributions when cost data are log-normally distributed. Each sub-figure reports the performance of the models in 

terms of their bias (with its 95% credible intervals), empirical SE, and RMSE arranged from top to bottom, for the 

estimation of mean costs per treatment arm and incremental costs. The column A of sub-figures presents model 

performance under scenarios with 10% zero values and a small sample size of 200, while the column B shows 

scenarios with no zero values and the small sample size. The remaining two columns (C and D) report model 

performance for scenarios with a larger sample size of 2000. 
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Models 

Scenarios 

10% Zeros, 

N = 200 

No Zero, 

N = 200 

10% Zeros, 

N = 2000 

No Zero, 

N = 2000 

Normal model     

Uniform(0,1000) -127 -117 -116 -81 

Uniform(0,10000) -140 -134 -117 -82 

Gamma model     

Uniform(0,1000) -91 -80 -120 -66 

Uniform(0,10000) -56 -33 -110 -62 

Log-Normal model     

Uniform(0,3) 459 977,821 -146 27,069 

Uniform(0,2) -320 68,408 -676 1,307 

Uniform(0,1) -171 13,904 -250 NA 

Uniform(0,0.8) -162 11,497 -229 NA 

Table 2 Bias in incremental costs of Normal, Gamma, and Log-Normal models with different Uniform prior 

distributions when cost data follow a Gamma distribution. 

 

In this simulation study, when the cost data follow a Gamma distribution, the relative performance of the Log-

Normal models is inferior to the other models. Taking the mean bias in incremental costs as an example, as 

illustrated in Table 2, the Log-Normal models show greater bias and variations to their prior selections compared to 

the Normal and Gamma models, especially when the data contain no zero values. This is likely due to the Gamma 

distribution being able to generate small cost values close to zero, without the need to add a small constant to the 

original data when fitting the Log-Normal models in these scenarios. Given this mismatch between the true 

underlying cost distribution and the Log-Normal model specification, and considering the presence of near-zero 

values, the performance of the Log-Normal models deteriorates substantially and becomes extremely sensitive to the 

choice of priors.  

In contrast, both Normal and Gamma models are more robust to the Uniform prior specification. They are generally 

less biased and more precise than the Log-Normal models across all four Gamma-distributed data scenarios. Full 

details on model relative performance, including bias in mean costs per treatment arm, empirical SE, and RMSE, are 

provided in Appendix E, given that they are similar to the findings for bias in incremental costs reported in Table 2.  

 

5 Discussion 

This study compares the impact of implementing Uniform prior distributions with different upper bounds on CEA 

results under a Bayesian modelling framework. These Uniform prior distributions are applied on log-scale cost 

standard deviations when costs are modelled using a Log-Normal distribution, and on original cost standard 

deviations when costs are assumed to follow a Normal or Gamma distribution. The analysis is initially based on a 

real case study with non-negligible proportion of patients having zero costs and then validated via a simulation 
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approach. Our study shows that Bayesian CEAs can be sensitive to the choice of upper bounds of the Uniform prior 

distributions for log cost standard deviations when cost data contain zero values and are assumed to be log-normally 

distributed. Unlike the Log-Normal distribution, the Normal and Gamma distributions have shown robustness to the 

upper bounds of Uniform distributions as the priors on the standard deviations of costs. 

It is common to use Uniform distributions as the priors on standard deviations of cost data in Bayesian CEAs due to 

their benefits of conveying minimal information through the priors when limited knowledge about these parameters 

is available. The underlying belief is that given the lack of knowledge on variance parameters, the bounds for 

“minimally informative” Uniform priors are not expected to influence final conclusions substantially [35]. However, 

our study indicates the importance of recognising the appropriateness of Uniform prior distributions in applied 

Bayesian CEAs. The use of such priors can potentially bring “unwanted” information into the posterior inference 

and lead cost estimates towards unintended values. 

One potential reason for the overly large cost estimates found in our study is that the Uniform prior distribution is 

applied on the standard deviation of costs on the log scale rather than on the original scale in the Log-Normal 

distribution. Indeed, concerning the mathematical property of the Log-Normal distribution, when a Uniform prior 

distribution is assigned to the standard deviation of log costs, the magnitude of costs on its original scale can 

possibly, explosively increase to an extreme high level. In other words, even small upper bounds of Uniform priors 

can yield large standard deviations on original costs and thus lead to mean cost estimates that are unlikely to occur 

in reality. Using Uniform distribution as a minimally informative prior for the purpose of letting data dominate 

posterior inference is clearly not effective in most of the scenarios explored in our analysis. 

Another possible explanation is the characteristics of the actual data. Our case study features some typical 

characteristics of CEA data that may contribute to the poor performance of the Log-Normal model, which 

potentially drives the sensitivity of cost-effectiveness results to the Uniform prior distributions. These include small 

sample sizes, potential model misspecification for skewed data, and the existence of zero-cost observations. Our 

simulation shows that, if the data contain zero, the cost-effectiveness results would remain substantially sensitive to 

Uniform priors, even when sample size is increased and regardless of whether the data are generated from a Log-

Normal or Gamma distribution. This suggests that the sample size and model misspecification are less likely to be 

the primary driver of the sensitivity observed. Surprisingly, the performance of the Log-Normal model is extremely 

unreliable when cost data follow a Gamma distribution. This aligns with a previous simulation study that 

investigates parametric modelling options for costs based on data generated from parametric distributions [25].     

The excessively large cost estimates from our empirical analysis of trial data may be related to the existence of 

several observations with zero costs over time. In line with our case study, a previous study that focuses on Bayesian 

cost prediction using cohort data with excess zeros has also found that Log-Normal models could overestimate mean 

observed costs [36]. To date, very few Bayesian CEAs using Log-Normal distribution for costs report whether they 

encounter the same situation where a non-negligible proportion of zero occurs in the cost data. Our simulation study 

provides evidence that cost estimates – biased with the presence of zero values – can be unbiased and insensitive to 

appropriate Uniform prior distributions when all cost values are strictly positive. A related study that explores 

various modelling approaches to handle zero-cost data via a simulation approach supports our finding, highlighting  

the poor performance of the Log-Normal model under low, moderate and high proportions of zeros [34].  

Based on the aforementioned results, we recommend that the sensitivity of cost-effectiveness results to Uniform 

prior distributions with different upper bounds is assessed in any CEA involving individual-level zero cost data. A 

conservative alternative is to rely on models that are more robust to the upper bounds of Uniform prior distributions, 

for example, Gamma model, or those that can address the zero-cost feature, such as hurdle model (also referred as 

two-part model) [12,35]. 
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Despite the wide use of Bayesian methods in CEAs, no guidance exists that provides validated advice on prior 

elicitation from a statistical perspective, nor does it clearly illustrate the possible consequences resulting from the 

choice of prior distributions. Our study attempts to explore the influence of Uniform distributions as minimally 

informative prior distributions on standard deviations of costs in a CEA context through both a case study and a 

simulation approach. Limitations of our analysis include: first, the simulation study has not addressed whether and 

how much the poor performance of the Log-Normal model, and its sensitivity to the Uniform prior distributions, are 

influenced to the continuity correction for zero values, i.e. adding a constant of one to the original data. As a result, 

we could not explore any potential remedies for the issues introduced by CEA data containing zeros. Second, we did 

not compare different choices of minimally informative prior distributions and thus cannot make evidence-based 

recommendations for future applications. However, the current study structure – starting with an empirical analysis 

of real-world trial data and followed by a tailored simulation study – would be sufficient to support our primary 

goal, i.e. to reveal the potential impact of choosing Uniform prior distributions with large upper bounds as the log 

cost standard deviations of Log-Normal model in real applications.  

 

6 Conclusion 

Bayesian CEAs are sensitive to the choice of upper bounds of the Uniform prior distributions for standard deviations 

of log costs when they are assumed to follow a Log-Normal distribution. Our results suggest careful consideration 

should be given to the potential consequences of applying Uniform distributions on cost standard deviations as 

minimally informative priors based on both distributional model assumptions and actual characteristics of the data. 

It may be more conservative to consider alternative minimally or weakly informative priors to assess the robustness 

of posterior results. 
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