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Abstract— Rehabilitation following total knee replacement 

(TKR) principally aims to reduce pain and restore knee muscle 

strength and function, which necessitates objective monitoring. 

Given the growing interest in wearable technologies for 

rehabilitation, this paper investigates the feasibility of using 

electrical impedance tomography (EIT) to monitor and estimate 

muscle activity, specifically focusing on resultant knee angle 

(KA) and muscle strength (MS). A data collection system was 

designed to simultaneously capture EIT data, kinematic and 

physiological reference data, namely KA and MS, followed by 

two experiments. Data processing methods, such as region of 

interest (ROI) selection and modelling of the correlation 

between EIT and reference data, were used to assess feasibility. 

The results indicate that the long short-term memory (LSTM) 

model achieved an R² value of 0.97, suggesting a strong 

correlation between the EIT data and KA. While EIT 

demonstrated potential in detecting KA, it did not show 

effectiveness in capturing changes in muscle activity and MS 

during isometric contractions. 

Keywords—Electrical impedance tomography, knee Angle 

and muscle strength monitoring, total knee replacement. 

I. INTRODUCTION 

Total knee replacement (TKR) surgery involves replacing 
an osteoarthritic knee joint with an artificial implant aimed at 
relieving pain and improving mobility. Annually, 
approximately 700,000 patients undergo TKR surgery in the 
United States [1], with comparable surgical rates observed in 
numerous European countries, ranging from 120 to 200 
surgeries per 100,000 people [2]. Despite the high success rate 
of TKR surgery, common post-surgical complications and 
long recovery periods are inevitably associated. The thigh 
muscles, such as the quadriceps and hamstrings, exhibit 
significant strength deficits post-surgery, often requiring 
extensive rehabilitation to recover fully [3]. In clinical 
practice, assessing functional recovery is crucial for 
monitoring progress and tailoring conservative interventions, 
which commonly aim to restore activities of daily living 
(ADLs) and physical activity. Isokinetic dynamometers are 
typically used for recovery practice and quantitative 
assessment [4], and inertial measurement units (IMUs) [5] are 
employed in research to measure muscle strength (MS), range 
of motion (ROM), and knee angle (KA). However, these tools 
often fail to balance portability and accuracy in home 
settings [6]. Wearable solutions are beneficial for improving 
the ability to monitor post-operative recovery. 

Electrical impedance tomography (EIT) is a technology used 
to reconstruct the impedance distribution within the human 

body. Its wearability and high temporal resolution have 
demonstrated value in various applications, including non-

 
(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 1. (a) Sequence of EIT measurements; (b) Overall architecture of 

the data collection system; (c) Setup showing a user wearing the EIT 

system. 
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invasive monitoring of lung function, cardiac monitoring, and 
more recently, as potential solutions for monitoring leg 
motion, as preliminarily illustrated in [7], [8] 

Yet, quantitative studies on the correlation between KA 
and MS in lower limb movements using EIT have not 
been reported. This study aims to investigate whether EIT can 
effectively establish a strong correlation with KA and MS 
using a custom-designed data collection system. The system 
consists of an EIT system, a vision-based KA capture 
mechanism, and an MS capture mechanism and is applied in 
experiments with human participants. 

The rest of the paper is organised as follows. Section II 
describes the design of the data collection system, including 
both its hardware and software. Section III describes the 
experiment design and setup for KA and MS measurements, 
along with the data processing mechanism. Section IV 
includes data analysis and a discussion of the experimental 
results. Concluding remarks are presented in Section V. 

II. DATA COLLECTION SYSTEM DESIGN 

The data collection system is built based on a high-
performance EIT system controller [9], which is managed by 
a field programmable gate array (FPGA). Integrated with the 
functions of control, waveform generation, digital 
demodulation, and UART communications, the system is used 
to capture data from the leg’s muscle activities. The EIT 
operation mainly consists of the current injection and voltage 
recording executed in a fixed sequence, as shown in Fig. 1(a). 
A complete rotational measurement corresponds to an EIT 
frame, which consists of 16 distinct positions for the current 
injection, and at each current position, 16 voltage 
measurements are recorded. Each frame consists of 256 
measurements. For instance, in the first cycle, current is 
injected between electrode 1 (E1) and electrode 2 (E2). During 
this cycle, voltage measurements start at E1 and E2 and then 
sequentially shift around the electrodes in a number-
increasing direction, ending at electrodes E16 and E1. In the 
second cycle, current injection begins between E2 and E3, 
with voltage measurements starting at E2 and E3 and 
continuing through to E1 and E2 after a number-increasing 
shift. After completing a full frame of 256 measurements, the 
data undergoes in-phase/quadrature-phase (I/Q) demodulation 
within the EIT system, and the processed I/Q data is 
subsequently transferred to the host computer via UART. The 
Python library – pyEIT [10] was employed to reconstruct the 
EIT images containing 1024 pixels using the 256 
measurements. The EIT image reflects the thigh cross-section 
in terms of conductivity distribution and is eventually linked 
to the physical reference data, KA and MS, which are 
collected simultaneously with the EIT data.  

 Fig. 1(b) shows the overall system architecture. With the 
EIT system, the front-end sensors consist of 16 electrodes 
securely mounted on 3D-printed plastic bases. These 
electrodes make skin contact for current injection and voltage 
measurement.  

 The depth camera shown in Fig. 1(b) is an Intel RealSense 
D435i used for leg angle detection. The KA measurement 
process involves using a colour filter to identify and extract 
two markers placed on the calf. The angle is calculated 
between the line connecting these two markers and the 
perpendicular line based on their 3D coordinates. All 

operations related to the depth camera are developed based on 
Pyrealsense2.  

 A digital force gauge (SBT308) was deployed as the 
extension force sensor shown in Fig. 1(c). To record the 
extension force, an extension sensor was attached to a 
resistance band and used to measure the MS of the thigh. 

III. EXPERIMENTAL VALIDATION 

Two experiments involving KA and MS, alongside EIT 
measurements, were designed to assess the feasibility of using 
EIT for detecting knee movements. Five healthy volunteers 
for each experiment were recruited (a total of 10 males). 
Participant characteristics were: (1) subjects were healthy 
adults not previously diagnosed with any disease of the knee 
and corresponding muscle; (2) were 22 to 25 years old; (3) had 
a body mass index (BMI) lower than 35 kg/m2; (4) had 
provided informed consent [This study was approved by the 
Ethics Committee of University College London, ID: 
27647/004]. 

 

For both experiments, the participants were asked to place 
the EIT system on their thigh first. A total of 16 electrodes 
were to be placed evenly on the subject’s proximal thigh and 
one-third of the thigh length from the superior border of the 
patella. The first electrode was positioned directly opposite the 
patella. Fig. 1(c) illustrates a diagram of the participant 
wearing the EIT system. The specific steps of the two 
experiments are described below. Fig. 2 depicts the 
movements of the experiments. 

(1) KA: These exercises started with the knee joint positioned 
at a resting angle of 90°, following a starting signal for 
data acquisition. The knee was then extended to 
predetermined angles, reaching up to 0° at an angular 
velocity of 30 ±10 ° /sec, and held at the target angle for 
3 seconds. After completing each set of exercises, a stop 
signal was given to mark the end of the set. Participants 
were given 5 minutes of rest between each set to prevent 
fatigue and were instructed to repeat the exercises five 
times in total.  
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Fig. 2. (a) The movement of the KA experiment. (b) The movement of 

the MS experiment.  
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(2) MS: Muscle strength during isometric contractions was 
measured as follows. The participant was asked to 
maintain a sitting position, with the EIT placement 
requirements identical to the previous experiment. One 
side of the extension sensor was attached to the ankle, 
while the other side was connected to the resistance 
band held by an assistant. After initialising the system, 
each participant was required to maintain the knee at a 
specific angle. At the same time, the assistant pulled the 
resistance band at a steady velocity, with the pulling force 
registered. Three angle levels, 0°, 45°, and 90°, were 
applied for the experiment; each angle formed one set of 
measurements. 

 Throughout these activities, changes in EIT, along with 
changes in physical reference data (KA or MS), were 
simultaneously recorded and tagged with timestamps. Based 
on these timestamps, the EIT data and reference data were 
effectively aligned using polynomial interpolation methods. 

 Essential pre-processing steps were applied to ensure data 
integrity. To reduce computational load, the collected data 
was segmented, treating each movement cycle as the smallest 
unit for analysis. In the KA experiment, one movement cycle 
began at 90° and ended at 0°, while in the MS experiment, one 
movement cycle started from a forceless state to a maximum 
force state.  

 In addition, to minimise the negative impact of errors, data 
cleaning was performed at both the dataset level and the unit 
level. At the dataset level, statistical metrics such as the mean 
and root mean square (RMS) were calculated for each unit. 
Units containing obvious outliers were identified and 
removed. At the individual unit level, the primary concern was 
the presence of outliers. To address this, polynomial fitting 
was first employed to estimate the trend of the EIT signal. The 
estimated trend was then subtracted from the original data to 
isolate the deviations. Outliers were subsequently detected 
and removed from the detrended data. The estimated trend 
was then re-added to the cleaned data. Finally, wavelet 
transform denoising was applied to remove the high-
frequency components, further refining the EIT signal.  

 To obtain insight into the correlation between KA and MS, 
the Pearson correlation coefficient (ρ) between the value of 
each pixel in the EIT images was calculated. Subsequently, 
pixels with high ρ values are selected as the region of interest 
(ROI), indicating that changes in EIT image pixel values 

within these regions are strongly correlated with variations in 
the physical reference data, namely KA and MS. After the 
ROI selection, the dimensionality of the EIT data was reduced 
from 𝑁𝑖 × 1024  to 𝑁𝑖 × 𝑀 (𝑀 <<  1024),  where 𝑁𝑖 
indicates the length of the 𝑖 unit, 𝑀 represents the number of 
features after dimensionality reduction, significantly 
decreasing the computational load for subsequent model 
fitting. Given the long-time sequence of the input data, simpler 
models such as the multilayer perceptron (MLP) and recurrent 
neural network (RNN) may struggle to capture long-term 
dependencies between EIT and physical reference data. A 
long short-term memory (LSTM) network with a single 
hidden layer comprising 128 neurons was employed for 
analysis, offering balanced accuracy, and computational 
efficiency. The structure of the designed model is shown in 
Fig. 3.  To address the issue of unequal time series lengths, a 
masking technique using the maximum length of the units 
within the dataset was applied to pad the time series, ensuring 
that all input datasets conform to the same format. Therefore, 
the input data, after ROI selection, is in the shape of an 
𝑁𝑚𝑎𝑥 × 𝑀  matrix. Following the transformation by the 
model, the output is reduced to 𝑁𝑚𝑎𝑥 × 1. Based on the length 

 
 

Fig. 4. An example of the collected data in the knee angle experiment. 
First row displays image frames captured by the depth camera. Second 

row shows EIT images corresponding to different knee angles. Third row 

demonstrates the temporal changes in angles and the average EIT data 
over time. 

 

 

 
 

Fig. 5. The ROI selected to reflect the correlation between KA and EIT 

image pixels. 
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Fig. 3. The structure of the LSTM model.  The upper wave represents 
the averaged pixel value of  ROI, while the lower wave indicates the 

estimated result either KA or MS. 



of the mask, the output data is ultimately trimmed to match 
the original input length, serving as the estimation result.  

IV. RESULTS AND ANALYSIS 

A. Knee Angle (KA) Test Results 

A total of 108 units of movement cycle across 5 

participants were collected. One of the recorded units is 

shown in Fig. 4 as an example, which demonstrates a clear 

correlation between the KA and EIT ROIs data. After the data 

pre-processing steps mentioned, the ROIs were extracted 

through ρ calculation, as shown in Fig. 5. A dataset 

containing 28 characteristic columns was reformatted based 

on the ROIs and divided into training and test sets with a ratio 

of 0.8 for model training. Subsequently, the LSTM shown in 

Fig. 3 was trained to fit the two datasets, and its performance, 

along with that of a typical MLP and RNN model, is 

displayed in Fig. 6 for comparison. In this study, the 

coefficient of determination (R²) was used as a key 

performance indicator to evaluate the goodness of fit between 

the model and the test set. An R² value of 1 represents a 

perfect fit, with values closer to 1 indicating better model 

performance. In addition, absolute error was used to provide 

a more direct representation of the model’s prediction 

accuracy. The LSTM model achieved an R² value of 0.97 and 

an absolute error of 3.28° in angle prediction within the test 

sets, indicating a strong fit and high accuracy in estimating 

knee angle. Fig.7 showcases the absolute error over time of 

an example between the true value and the predicted value by 

the LSTM model. Based on the results, a conclusion could be 

drawn that EIT is able to detect the change of KA, and LSTM 

can be used to represent the correlation between EIT and KA. 

B. Muscle Strength (MS) Test Results 

A total of 120 units across five participants were collected. 
Unlike the distribution observed in the analysis of KA, the 
data for EIT exhibits irregularity with the MS changing. As 
observed in Fig. 8, data collected under three angle levels 
show no obvious correlation. When periodic loads were 
applied to the leg, the EIT data did not exhibit shifts related to 

the reference data, as seen in the KA experiment. Instead, the 
data remained in a state with significant noise. Additionally, 
the correlation coefficient ρ between the two was calculated 
across all pixels in the EIT distribution, which is visualised in 
Fig. 9. There are no significantly high ρ values observed in the 

results, showing that the highest ρ value does not exceed 0.2. 
Accordingly, it is reasonable to conclude that EIT 
demonstrates weak performance in detecting MS during 
isometric muscle contractions. 

V. CONCLUSION 

 In this study, two experiments were designed to evaluate 
the feasibility of using EIT for detecting KA and MS. The 
results revealed a strong correlation between EIT 
measurements and KA, with an R² value of 0.97. However, no 
evidence was found to suggest that EIT effectively captures 
changes during variations in MS during isometric muscle 
contractions. Based on these findings and the principles of EIT 
in monitoring bioimpedance, it is hypothesised that 
bioimpedance is primarily influenced by the composition of 
the tested area, including fat, muscle, and bone content. When 
the muscle is stretched, the composition of the cross-section 
changes significantly, leading to variations in bioimpedance, 
which explains the EIT's responsiveness to changes in KA. 
Conversely, during isometric contractions, the cross-sectional 
composition remains relatively stable regardless of the applied 
force, making EIT less sensitive in this context. Therefore, this 
study demonstrates that EIT is sensitive to significant changes 
in the cross-sectional area, providing a basis for defining the 
scope of EIT's applications in future research in TKR. 

 

 
Fig. 6. The performance of the MLP, RNN, and LSTM models was 
evaluated, with LSTM showing the best fit for modelling KA. 

 

 
Fig.7. The absolute error between the true value and the predicted 

value, with the absolute error no more than 4° in this example. 

 
Fig. 8. An example of the data collected during the MS experiment is 

presented. From top to bottom, the results correspond to knee angles of 
0°, 45°, and 90°. 

 

 
 

Fig. 9. The distribution of the Pearson correlation coefficient between 

EIT and MS. 
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