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Abstract: The recent Kunming-Montreal Global Biodiversity Framework (GBF) sets ambitious 690 

goals, but no clear pathway for how zero loss of important biodiversity areas and halting human-

induced extinction of threatened species will be achieved. We assembled a multi-taxa tracking 

dataset (11 million geopositions from 15,845 tracked individuals across 121 species) to provide a 

global assessment of space use of highly mobile marine megafauna, showing that 63% of the 

area they cover is used 80% of the time as important migratory corridors or residence areas. The 695 

GBF 30% threshold (Target 3) will be insufficient for marine megafauna’s effective conservation 

leaving important areas exposed to major anthropogenic threats. Coupling area protection with 

mitigation strategies (e.g., fishing regulation, wildlife-traffic separation) will be essential to reach 

international goals and conserve biodiversity. 

One-Sentence Summary: We provide a basis to design a global network of marine protected 700 

areas to conserve marine megafauna biodiversity. 
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Main Text: 

Together with the recently finalised United Nations High Seas Treaty (1, 2), the Kunming-

Montreal Global Biodiversity Framework (GBF) (3, 4) seeks to protect, conserve and manage at 705 

least 30% of oceans. This is a necessary step to support halting the loss of marine biodiversity 

(GBF Target 3), which has been particularly acute for large marine species (5-7). These include 

several iconic large marine vertebrates that have been driven to extinction by overexploitation 

(e.g., the Steller’s sea cow – Hydrodamalis gigas, the great auk – Pinguinus impennis, and the 

Japanese sea lion – Zalophus japonicus), and many others currently showing precipitous declines 710 

in abundance (e.g., the hawksbill turtle – Eretmochelys imbricata, shortfin mako shark – Isurus 

oxyrinchus and North Atlantic right whale – Eubalaena glacialis). These mobile and highly 

migratory marine vertebrates, hereafter marine megafauna, can act as ecosystem and climate 

sentinels (8; being good surrogates for other biodiversity) and hold key functional roles that 

assist in structuring and maintaining ecosystems (9-11). However, close to a third of species 715 

across marine megafauna taxa are now threatened with extinction (5, 12-18). 

Certain characteristics of marine megafauna, such as K-selected life history traits, place them at 

priority for systematic conservation planning (i.e., high vulnerability and high irreplaceability; 

19), and make the ‘effective conservation’ outlined in GBF Target 3 urgently needed. Many also 

migrate 1000s of km crossing multiple exclusive economic zones (EEZs) and areas beyond 720 

national jurisdictions (ABNJ) presenting a challenge for area-based conservation approaches 

(20). Importantly, such approaches are traditionally based on known geographical ranges 

reflecting historically known boundaries (18) or static maps of occurrence (21). However, 

devising a management plan that effectively conserves migratory species within Ecologically 

and Biologically Significant Areas (22) requires an understanding of how the species use space. 725 

Particularly, detecting important marine megafauna areas used for key life-history events, such 

as breeding or feeding and migratory behaviours, henceforth IMMegAs (to use a term similar to 

those recognised by IUCN, such as IMMA – Important Marine Mammal Areas or ISRA – 

Important Shark and Ray Areas) are only tractable using telemetry data (20, 23-27). Despite the 

challenges associated with collating such data at global scale (28), the detection of global 730 

IMMegAs is essential to understand marine megafauna conservation needs to inform global 

treaties, and should therefore be prioritised for creating the network of marine protected areas 

aimed by GBF (i.e., the planned increase to 30% of area protection). 

Using telemetry data to understand global space-use by marine 
megafauna 735 

We assembled a telemetry dataset unparalleled in size and scope (as the result of a global effort 

initiated by the MegaMove project; 29) by accepting voluntary contributions of tracking data of 

highly mobile marine vertebrates - here referred to as marine megafauna, despite some 

(particularly flying birds) being under the 45 Kg threshold (10). Our dataset encompasses over 

three decades of tracked movements (1985 – 2018) from 15,845 individuals across 121 species, 740 

which after curation (30), resulted in 12,794 individual tracks from 111 species, covering 71.7 % 

of the area of the world’s oceans (Fig. 1). Species include flying birds (hereafter birds), cetaceans 

(mostly whales but also dolphins), fishes (mostly sharks), penguins, polar bears (Ursus 

maritimus), seals, sirenians (i.e., dugongs and manatees), and turtles. See fig. S1 for latitudinal 

and longitudinal coverage of the dataset, and tables S1-S3, respectively, for lists of species 745 

tracked, tracking data details, and species-specific information. According to global assessments 

by the International Union for the Conservation of Nature (IUCN; 18), of the 111 species 
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considered, ~ 70% have decreasing (54 species) or unknown (23 species) population trends, and 

more than 50% (58 species) have a threatened conservation status of Critically Endangered (CR), 

Endangered (EN), or Vulnerable (VU) (table S4). 750 

Five main regions exhibited the highest effective number of tracked species (as calculated based 

on the Shannon entropy; 31): the central Indian Ocean, northeast Pacific, Atlantic northeast and 

northwest, and around Mozambique/South Africa. A few other locations empirically known as 

having high animal occurrence also showed high number of species (fig. S2). Areas where more 

tracking data could be made available include southeast Asia, north of Europe (e.g., Spitsbergen 755 

and Greenland), Australia, central Pacific Ocean, and western Africa (particularly the southwest 

Atlantic and Gulf of Guinea) (Fig. 1, fig. S2). 

Using properties of the movement detected in the tracking dataset, including speed, direction and 

movement coherence (30) (fig. S12-S13), we identified IMMegAs based on key behaviours 

reflected in residency or migratory (including nomadic or dispersive) behaviour. We did this by 760 

using an approach (30) able to evaluate these behaviours collectively across multiple tracks 

without relying on interpolation across highly variable sampling intervals. This is not possible 

with the traditionally used state-space models that are typically designed to detect behavioural 

states on single tracks after interpolating position estimates (e.g., 32). 

We then assessed how much of the IMMegAs occurred within existing marine protected areas 765 

(MPA, including marine parks; 33) or exclusive economic zones (EEZs; 34) (shown in fig. S3). 

We used an optimization algorithm to estimate what configuration of the area covered by our 

tracking dataset would yield the best selection for setting protected areas for marine megafauna, 

giving priority to grid-cells that are used for both residency and migratory behaviours across 

multiple taxa (30). For comparison, we repeated this procedure after developing statistical 770 

models to predict areas likely to be used for residency or migration for each taxon within the 

areas covered by our tracking dataset (30). For data used as input for the models see Table 2. 

After this modelling procedure, we considered the priority grid-cells as those resulting in highest 

probabilities (i.e., >0.5 and closest to 1) of being an important area across taxa. 

Finally, we assessed the extent to which the GBF’s planned increase to 30% in area protection 775 

could assist with reducing impacts from marine megafauna’s exposure to anthropogenic threats 

with a global footprint (35), such as fishing (36-38), shipping (39-41), warming (42-45), plastic 

(46, 47) and noise pollution (48, 49). We identified these as threats based on the IUCN Threats 

Classification Scheme (TCS) v3.3 (50) complemented with information from existing literature 

(12, 51-53) and expert knowledge (fig. S4, and see table S4 for details). We then obtained 780 

available global threat data for fishing intensity (54), shipping density (55), plastic density (46, 

56), and warming (57, 58), and considered noise to be ubiquitous (based on 59) as no noise 

dataset is currently available at the resolution needed for a global analyses (but see e.g., 60). 

Known biases (61-63) associated with uneven sampling and with tagging individuals in known 

aggregations or colonies were reduced in our analyses as far as possible by using multiple 785 

tagging sites for each species and, where applicable, by normalising data to allow for direct 

comparisons across species and taxa. From specific tests to assess the influence of (i) tagging 

location bias, (ii) temporal resolution of tracking data (i.e., including only one location per 

individual per day, in addition to all locations detected), and (iii) spatial resolution (i.e., repeating 

all procedures at 0.5°, 1° and 2° grid-cells), we found that these potential confounding factors 790 

had negligible effects on our main conclusions (fig. S5 – S8). Finally, randomisation of tracks 

confirmed animals are selectively using space for important behaviours (fig. S14). 
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Detected ecologically important areas for marine megafauna and extent 
of existing threats 795 

We found that, on average, 66.1% of the total area covered by our tracking data was used as 

migratory corridors (50%) or residencies (44.8%) (Fig. 2A), with ~29% used for both behaviours 

(30); noting that for sirenians, data were insufficient to detect migratory behaviours (fig. S9). 

Animals spent on average 90% of their tracked time (estimated using one position per day) 

within areas where we detected these behaviours (Fig. 2B). Most of this time (~80%) was spent 800 

in areas used for residency (or both residency and migration) (fig. S10), with considerable 

overlap across both behaviours. 

On average, only 7.5% of the entire area covered by our tracking dataset occurred inside MPAs 

(which currently cover ~8% of the global ocean), with ~5% corresponding to areas of detected 

residency or migratory behaviours (Fig. 2). Similarly, animals spent a greater amount of time 805 

outside, than inside, MPAs (on average >85%). The time spent inside MPAs corresponded, on 

average, to 13.6% of all time animals spent displaying residency or migratory behaviours 

(ranging between 0.3% for polar bears and 23.9% for penguins) (Fig. 2). The results indicate 

limited opportunity for significant conservation of marine megafauna within the current extent of 

global MPAs, which were mainly designed to protect specific habitats rather than threatened 810 

mobile marine megafauna. However, conservation efforts could be considerably improved in the 

future by specifically including IMMegAs in new MPA placement. 

All space-use and identified residency and migratory behaviours occurred with a ~40-60% split 

respectively between EEZs and the high seas (which respectively cover 41.3% and 58.7% of the 

oceans) (Fig. 2). Similar split of space-use between EEZ and high seas was obtained across each 815 

taxa, with clear exceptions for sirenians and polar bears (for which most movements occurred 

inside EEZs). Despite this pattern of space-use slightly biased towards the high seas, most time 

(on average 74.1 %, of which 67.1% corresponded to detected migration or residency) was spent 

inside, rather than outside, EEZs, and ranged from 61.5 % for flying birds to 90.2% for cetaceans 

(Fig. 2). Although protection of high seas IMMegAs is urgently needed, the large proportion of 820 

time animals spend conducting important behaviours within EEZs suggests that an initial focus 

on enhancing protection within EEZs could provide the fastest  benefits for marine megafauna 

conservation, particularly because implementation may be easier. 

To identify what areas could be prioritised for protection, we used an optimisation algorithm (fig. 

S15 – S16) to select a total of 30% of the 71.7% area covered by our tracking dataset (i.e., 21.3% 825 

of the global ocean; Fig. 3). We did this because our tracking dataset does not cover the entire 

ocean, and also to allow for later additions of new protected areas if other IMMegAs are 

identified once new tracking data are available. The optimisation algorithm aims to highlight 

which areas could provide higher representativeness of IMMegAs, but also to indicate where the 

additional protected areas could be complementary to existing MPAs (sensu 19), which currently 830 

fail to represent marine megafauna space-use (25; Fig. 3). Our results show that 30% area 

protection allows coverage of only less than half of the IMMegAs we discovered (41.6% and 

38.8%, respectively, based on data and model predictions; fig. S17) , leaving ~60% unprotected 

(58.4%, and61.2% based on data and model predictions, respectively) (Fig. 3). 

Our complemented IUCN Threats Classification Scheme(50) (table S4) showed that commercial 835 

fishing and climate change affect more than 80% of the species included in our dataset (fig. S4). 
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Shipping has impacts on species across all taxa, including all turtles, sirenians, polar bears, most 

species of cetaceans considered, plus five birds, four fishes, five seals, and one penguin. Plastic 

pollution is a threat for all turtles and seals (but not yet listed on IUCN for leopard seals – 

Hydrurga leptonyx), most cetaceans, and ~35% of birds. Some fishes are also listed as 840 

potentially being affected by this threat including two manta rays and five sharks. Noise is listed 

as affecting all cetaceans, some seals, both sirenians, and also the polar bear, but for the latter 

this is likely due to potential disturbance of maternal dens on land. 

Overlaying the identified (and predicted) areas used by marine megafauna for migration or 

residency behaviours at a global scale with each of the major global anthropogenic threats 845 

considered here (fig. S11), we found that > 96% of IMMegAs are exposed to plastic pollution, 

shipping and warming, and ~75% to fishing. This exposure includes overlaps within the areas of 

highest pressure observed for most threats, for example, in the North Atlantic, where we detected 

important areas for birds, cetaceans, fishes and turtles (Fig. 2 and fig. S9). 

 850 

Mitigation strategies will be needed in addition to the proposed increase 
in area protection to safeguard marine megafauna 

Our results reveal that the 30% threshold is insufficient to encompass all IMMegAs globally 

(Fig. 3), leaving significant conservation risks for marine megafauna. Considering the ubiquity 

of existing threats, which are pervasive in the IMMegAs we detected (Fig. 3, fig. S11), and the 855 

limited scope of the 30% GBF target for area protection, attaining the goal of zero loss of 

important biodiversity areas and halting human-induced mortality of threatened species seems 

unlikely (noting some management measures already in place for some species, table S5). 

Shipping and fishing can in part be alleviated by increasing MPAs (particularly if the highest 

level of protection is afforded; 64), which can also help reduce noise pollution. However, plastic 860 

pollution or climate change impacts will not be alleviated with the planned increase in area 

protection (even if MPAs can assist improving species resistance and resilience; 65). Therefore, 

attaining the goal of zero loss of important biodiversity areas will need further action to mitigate 

anthropogenic pressures. 

To reduce exposure of marine megafauna to existing threats and achieve the goals set out in the 865 

GBF, the introduction of additional forms of ocean management will be needed, including 

greater scrutiny of practices and additional direct management decisions with increased 

enforcement. For example, direct mortality can be reduced by applying fishing thresholds and 

enforcing standards in fishing operations (including modifications to gear) (66-70), and by 

developing wildlife-ship traffic separation schemes and slow-down areas (71, 72) (e.g., to 2.16 870 

Knots; 73). If applied in tandem with the increase in protected areas, such interventions will 

afford marine megafauna a much greater spatial protection from the major threats of 

industrialised fishing (23) and shipping (41) known to cause direct mortality (Table 1). 

Our analyses show that animals spend the majority of their time within jurisdictions, which 

presents an opportunity for marine megafauna conservation because individual countries regulate 875 

and control most operations within their borders and are therefore able to implement mitigation 

measures to manage species that use their EEZs. Management of IMMegAs in the high seas, 

outside national jurisdictions, would benefit from better integration into the United Nations 

Convention for the Law of the Sea (UNCLOS), and should be considered in the ongoing process 

to better regulate biological resources in the high seas (1, 2). For shipping threats specifically, 880 
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International Maritime Organisation regulations can reduce impacts and propel conservation 

success. For example, the double hull policy resulted in an average reduction of up to 62% in the 

size of oil spills (74). Engaging (and better regulating) the private sector is another timely way to 

advance conservation (e.g., 75), as environmental damage is increasingly recognised as a threat 

to financial stability (75, 76). Past management decisions, either involving the private sector 885 

(e.g., end of the whaling industry following the moratorium by the International Convention for 

Regulation on Whaling; 77) or by listing species on CITES (Convention on International Trade 

in Endangered Species; 78) have demonstrated success by leading to populations’ recovery. 

However, the drivers of contrasting trajectories of similar populations or species (e.g., right 

whales increase in the Southern Ocean versus decrease in the North Atlantic) are not well 890 

understood and likely relate to different exposure to anthropogenic threats. 

Creating a larger network of marine protected areas will also greatly benefit from following a 

systematic conservation planning framework. Although our aim was to identify IMMegAs 

(rather than outlining what the final 30% of area protection should look like), we followed the 

initial necessary steps of that framework, including: (i) using marine megafauna biodiversity data 895 

(as surrogate for marine biodiversity), (ii) using the set targets from the GBF and UN High Seas 

Treaty as goal, (iii) focusing on complementing existing MPAs, and (iv) selecting IMMegAs for 

potential inclusion as MPAs. We then provide a scenario for up to 30% extension of MPAs to 

show that even if all areas selected specifically included IMMegAs, the 30% protection would 

still be insufficient to reach set targets, and other mitigation measures will be needed. To follow 900 

a systematic conservation planning approach, the final selection of protected areas should also 

take into consideration aspects not considered here, such as ecosystems of high ecological 

significance or habitat types that are not yet well represented, as well as considerations of equity 

and principles of environmental justice (79). It is, however, likely that the final selection of areas 

for protection will end up being designed to minimise impacts to stakeholders (including the 905 

fishing, shipping, energy production and tourism industries). Such possible result further 

reinforces our conclusion that relying on the 30% area protection will be insufficient to reach the 

goal of zero loss of important biodiversity areas and halt human-induced mortality of threatened 

species, and that additional mitigation measures are needed before it is too late. 

The work we provide here shows the power of assembling tracking datasets to answer pressing 910 

conservation concerns. The continued expansion of MegaMove through voluntary contributions 

will foster greater collaborations allowing to fill data gaps and further reduce biases. Whereas 

our tracking data covers about 71% of ocean space, the tagging effort was neither random nor 

uniform in space and time, and 29% of the ocean space was not covered by our dataset 

(including the central and northwest Pacific ocean).We suggest that statistical models using 915 

existing tracking data as input could be used to develop refined global species distributions 

taking into account animal movements associated with short-term changes in environmental 

parameters to project the likelihood of encountering animals in areas underexplored by telemetry 

or bio-logging (80-82). 

We also recognise that the available threat distribution data we used here are incomplete and do 920 

not include, for example, illegal or artisanal fishing fleets, nor discrimination across fishing gear 

(which affects species differently). This means that a more detailed spatio-temporal analysis of 

exposure to threats, as well as an assessment of the vulnerability of different species to specific 

threats, is required to quantify their potential impacts on species’ life-history characteristics. 

Consideration of the phylogenetic diversity of marine megafauna by examining evolutionary 925 

drivers could also be relevant to improve spatial maps. Nevertheless, the IMMegAs we have 



 

21 

 

identified are key to inform the expansion of existing MPAs to reach the 30% target both within 

EEZs and in the High Seas. 
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Fig. 1. Tracked movements of marine megafauna at the global scale. 

A) Map of the total number of 12,794 unique individual track locations in the global dataset at 1⁰ 

resolution showing the global coverage of 71.7% of the global ocean. B) Maps per taxon 

showing the number of unique individual track locations within each 1° grid-cell. From top left 1750 

to bottom right, maps per taxon show 6324 individual tracks for 39 species of flying birds, 749 

for cetaceans including 11 whales and 3 delphinid species, 1760 for fishes including 23 shark 

species, 2 manta rays, and 1 ocean sunfish, 1324 for 6 species of penguins, 65 for polar bears, 

1698 for 16 species of seals, 28 for sirenians including dugongs and West Indian manatees, and 

846 for all 7 sea turtles. The latitudinal and longitudinal coverage of tracked data is displayed in 1755 

fig. S1. For reference, the first position obtained for each tracked individual (i.e., representing 

tagging locations), as well as captured and expected global biodiversity are given in fig. S2. 

Maps showing the spatial extent of space use per species at 1° resolution can be seen in the data 

repository. 

  1760 
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Fig. 2. Global space-use of marine megafauna and time spent in different behaviours. 

Fractions of area (A) and time (B) used by animals globally (left plots), within and outside 

exclusive economic zones (EEZs) (middle plots), and within and outside existing marine 

protected areas (MPAs) (right plots), showing how much of the movements corresponded to 

detected migratory corridors or residency. Results are shown across all species together (top bar) 1765 

and for each taxon (as displayed in legend). For each taxon, the light grey portion in the bars 

indicates movement where no behaviours were detected. Species in each taxon group include 

flying birds (listed as birds), cetaceans (mostly whales but also dolphins), fishes (mostly sharks), 

penguins, polar bears (Ursus maritimus), seals, sirenians (i.e., dugongs and manatees), and 

turtles. C) Map of detected migratory corridors, residence areas and both corridors and 1770 

residencies across taxa. Grey indicates grid-cells where tracking data were available but no 

specific behaviour was identified for any taxon. Light blue areas depict regions where we did not 

have tracking data. Maps of detected behaviours per taxon can be seen in fig. S9. 
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 1775 

Fig. 3. Increase in area protection to 30% will leave ~60% of IMMegAs exposed to major 

anthropogenic threats. 

A) Maps depicting average threat intensities for major anthropogenic threats with a global 

footprint: (from top to bottom) fishing, shipping, plastic pollution and sea surface temperature 

(SST) warming. Displayed with an orange colour palette are the threat intensities occurring 1780 

inside IMMegAs, while a grey colour palette is used to show the threat intensities outside 

IMMegAs. Note that we considered noise to be ubiquitous, as no noise dataset is currently 

available at the resolution needed for a global analyses. B) Maps showing how much the increase 

in marine protected areas (MPAs) from the current 8% (purple) to 30% (green) would cover 

from our prioritization of IMMegAs detected from movement data (top map) and from our 1785 

model predictions (bottom results). Note that coverage by MPAs only translates into protection 

from the anthropogenic threats considered if they are designated with the highest level of 

protection (i.e., with no activities allowed), and even then MPAs could only be effective for 

protection from fishing and shipping, leaving plastic and warming threats to continue to affect 

species. In addition to the increase in the current extent of MPAs, the introduction of mitigation 1790 

strategies will assist in reducing the impact of existing threats and therefore the likelihood of 

human-induced extinctions. 
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 1793 

Table 1. Evidence of impacts from overlap of marine megafauna with anthropogenic 1794 

threats. Examples of the range of impacts derived from the overlap of marine megafauna 1795 

with anthropogenic threats such as climate warming, plastic pollution, shipping, noise 1796 

pollution, and fishing. SST: sea surface temperature; UV: ultraviolet. 1797 
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Entanglement Ingestion Ingestion 

Death of 

shearwater and 

northern gannet 

due to plastic 

ingestion (92) 

Stranded sperm 

whale stomachs with 

large amounts of 

plastic debris (93) 

Threatened filter-

feeding 

elasmobranchs by 

microplastic (94) 

Plastic ingestion may 

have caused death (95) 

Mortality of fur 

seals due to 

entanglement in 

marine debris (96) 

Death of West 

Indian manatees 

from ingestion of 

plastic debris (97) 

50% probability 

of mortality when 

turtles ingest 

pieces of plastic 

(98) 

S
H

IP
P

IN
G

 Habitat loss Ship strike Ship strike Noise effects Ship strike Propeller strike Ship strike Ship strike 

Habitat loss for 

Common Eider’s 

avoiding shipping 

traffic (99) 

Increased ship strikes 

with humpback 

whales in shipping 

lanes (39) 

Mortality of whale 

sharks correlated with 

risk of collision with 

ships (41) 

Population collapse 

concomitantly with 

increase in noise (100) 

Increased 

vulnerability of 

polar bears to 

vessel strike (101) 

Propeller strikes 

affect harbor seals 

(102) 

Death of manatees 

due to boat 

collisions (103) 

Decreased 

survival of green 

turtles due to boat 

strikes (104) 

N
O

IS
E

 

- 

Behav. change 

- - 

Disturbance Physical damage Behav. change 

- 

Change in humpback 

whales foraging 

activity due to ship 

noise (105) 

Disturbance of 

maternal dens due 

to seismic surveys 

(106) 

Temporary hearing 

loss of grey and 

harbor seals around 

the British Isles 

(107) 

Reduced foraging 

habitat for manatees 

due to boat noise 

(108) 

F
IS

H
IN

G
 

By-catch By-catch Mortality Reduced prey 

- 

Entanglement Entanglement By-catch 

High bycatch of 

seabirds in 

longline fisheries 

(38) 

Higher rates of 

dolphin bycatch in a 

trawl fishery (109) 

Greater mortality of 

pelagic sharks where 

sharks have higher 

exposure to longline 

fisheries (62) 

Decreased population 

size of prey species 

with increased fishing 

of Antarctic Krill (87) 

Increased 

entanglement of 

Cape fur seals 

associated with 

fishing (110) 

Manatee mortalities 

from entanglement 

in fishing gear 

(111) 

High levels of 

turtle bycatch in 

fishing gear 

hotspots (37) 

1798 
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Table 2. Summary of the logistic modelling inputs and results per taxon 1799 

Results of the generalized linear models relating the probability of a grid-cell to be used as residence or for migratory behaviours with 1800 

the set of environmental variables included in each model. Shown are the results for the highest ranked model according to the weight 1801 

of the Akaike’s Information Criteria (wAIC), as well as the number of parameters (k), the percentage of deviance explained (pcdev) 1802 

and Kappa. Grey indicates the models not used to estimate the important marine megafauna areas (IMMegAs) derived from our 1803 

modelling predictions (as presented in Fig. 3 and fig. S11). Species in each taxon group include flying birds (listed as birds), cetaceans 1804 

(mostly whales but also dolphins), fishes (mostly sharks), penguins, polar bears (Ursus maritimus), seals, sirenians (i.e., dugongs and 1805 

manatees), and turtles. 1806 

 1807 

Taxon 

Input Results 

Number of grid-cells with: Residence Behaviour Migratory Behaviour 

Presence Residency Migration Model k wAIC pcdev Kappa Model k wAIC pcdev Kappa 

Birds 35,875 13,448 9,128 2 19 1.000 4.13 0.22 2 19 1.000 11.19 0.33 

Cetaceans 4,397 1,501 1,758 2 19 1.000 16.52 0.44 2 19 0.980 12.62 0.29 

Fishes 15,648 4,346 4,252 2 19 1.000 14.44 0.38 2 19 1.000 12.56 0.30 

Penguins 1,385 446 452 1 17 1.000 13.62 0.4 2 19 1.000 40.16 0.56 

Polar 

bear 

1,124 451 803 
2 14 0.995 24.78 0.33 2 14 1.000 27.78 0.48 

Seals 11,358 5,510 7,175 2 19 1.000 3.12 0.22 2 19 1.000 14.91 0.30 

Sirenians 114 27 0 - - - - - - - - - - 
Turtles 10,360 3,462 3,370 3 7 1.000 7.71 0.28 2 19 1.000 5.18 0.17 

 1808 
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Materials and Methods 1931 

Fieldwork and deployment of tracking devices 1932 

 1933 

Birds 1934 

Birds were all caught at nest sites either whilst incubating or attending chicks, except for some 1935 

northern gannets (Morus bassanus, immature birds at the main colony), Trindade petrels 1936 

(Pterodroma arminjoniana, non-breeding adult birds resting at the main colony), and great 1937 

shearwaters (Ardenna gravis, attracted to a vessel at-sea using bait). Birds were captured using 1938 

noose poles, crook poles, drop traps, net launchers, nets (landing, mist, purse or handheld), or 1939 

removed by hand from their burrows. Tags were typically attached to the auxiliary leg band or 1940 

taped to the mantle, scapular, dorsal contour, or tail feathers. Chest or leg-loop harnesses were 1941 

used for herring gulls (Larus argentatus), ivory gulls (Pagophila eburnea), some Ross’s gulls 1942 

(Rhodostethia rosea), and some northern fulmars (Fulmarus glacialis). For great shearwaters, 1943 

tags were attached dorsally using four subcutaneous Prolene sutures. In all cases, total instrument 1944 

mass was <5% of body mass to minimise effects on flight efficiency and all birds were handled 1945 

for less than 20 minutes. 1946 

 1947 

Cetaceans 1948 

Smaller cetaceans (e.g., beluga - Delphinapterus leucas, bottlenose dolphins - Tursiops 1949 

truncatus, narwhal - Monodon monoceros) were captured using seine or stationary nets. The 1950 

animals were then brought to the surface, disentangled, and secured using hoop nets and loop 1951 

ropes. In the case of bottlenose dolphins, animals were brought aboard the research vessel as part 1952 

of capture-release health assessments. Tags were attached using nylon pins attached to the dorsal 1953 

ridge or fin. Killer whales (Orcinus orca) were targeted from shore using crossbows and tags 1954 

were attached to the dorsal fin using subdermal darts. Other cetaceans, such as blue - 1955 

Balaenoptera musculus, bowhead - Balaena mysticetus, gray - Eschrichtius robustus, humpback 1956 

- Megaptera novaeangliae, pilot - Globicephala macrorhynchus and G. melas, right - Eubalaena 1957 

glacialis and E. australis, and sei whales - Balaenoptera borealis, were approached using a small 1958 

research vessel. Tags were deployed using crossbows, air-powered applicator systems, or long 1959 

fibreglass poles. Tags were attached to the dorsal fin (either anterior-to or at-the-base-of) using 1960 

subdermal anchors or barbs and petals, which were sterilised and/or treated with antibiotic 1961 

coatings prior to deployment. 1962 

 1963 

Fishes 1964 

Fish, mostly sharks, were typically captured with baited hooks, bagan lift nets, or in purse-seine 1965 

nets, then brought alongside the vessel and restrained in a sling or with straps, secured to a 1966 

raisable platform, or taken aboard for tagging. If brought aboard, fish were on deck an average of 1967 

approximately 3 minutes; the exceptions to this were white sharks - Carcharodon carcharias 1968 

(average duration of restraint: 12 mins) and tiger sharks - Galeocerdo cuvier (some were placed 1969 

in tanks with running seawater and moved to deeper isobaths as part of a shark attack mitigation 1970 

strategy). Manta rays - Mobula birostris and M. alfredi, and some copper - Carcharhinus 1971 

brachyurus, Galapagos - Carcharhinus galapagensis, scalloped hammerhead - Sphyrna lewini, 1972 

whale - Rhincodon typus, and white sharks were tagged whilst free-swimming in the water 1973 
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column using pneumatic spear guns or rubber-propelled hand spears. The majority of sunfish 1974 

(Mola mola) and some porbeagle sharks (Lamna nasus) were captured as bycatch in fisheries 1975 

targeting tuna. Tags were typically attached using a tether affixed to a dart, which was implanted 1976 

in the dorsal musculature or anchored to the first (or second in bluefin tuna - Thunnus thynnus; 1977 

removed from analyses) dorsal fin. For some sunfish, tags were attached to the base of the caudal 1978 

fin. For some of the blue - Prionace glauca, bull - Carcharhinus leucas, mako - Isurus 1979 

oxyrinchus and I. paucus, sandbar - Carcharhinus plumbeus, scalloped hammerhead, silky - 1980 

Carcharhinus falciformis, tiger, whale, and white sharks, tags were attached to the first dorsal fin 1981 

using metal bolts, neoprene and high-carbon steel washers, and steel nuts. For some white 1982 

sharks, tags were mounted on a custom-built spring clamp that was placed on the first dorsal fin. 1983 

 1984 

Penguins 1985 

Penguins were captured and released on land at nesting sites. Tags were attached to the dorsal 1986 

plumage using waterproof tape and/or epoxy glue, and in some cases secured under a bed of 1987 

feathers using a small cable tie. 1988 

 1989 

Polar bears 1990 

Adult female polar bears (Ursus maritimus) were located via helicopter and immobilised with a 1991 

rapid-injection dart. Tags were attached using satellite collars. 1992 

 1993 

Seals 1994 

Seals were approached whilst onshore or in shallow waters surrounding haul-out sites and 1995 

captured using hoop nets, tangle nets, beach seine nets, and/or remote syringe darts. Once 1996 

captured, seals were manually restrained, sedated, or anaesthetised. Tags were attached to the 1997 

head or along the dorsal midline using quick-setting epoxy glue. 1998 

 1999 

Sirenians 2000 

Manatees (Trichechus manatus) were located via an aerial observer and individuals were 2001 

captured in a net deployed from a specialised capture boat. Dugongs (Dugong dugon) were 2002 

captured using a ‘rodeo’ technique, where a personal watercraft is used to closely pursue an 2003 

individual dugong until fatigued. The dugong is then caught around the peduncle region by a 2004 

catcher leaping off the boat, and the animal is restrained at the water surface by several people. 2005 

For all sirenians, tags were tethered to the animal using a peduncle belt. 2006 

 2007 

Turtles 2008 

Turtles were primarily adult females captured at nesting beaches after a successful nesting event. 2009 

In some cases, adult and juvenile turtles were captured at sea (both in the vicinity of nesting 2010 

beaches or at foraging grounds) using tangle nets, dip nets, a “rodeo” technique, or by hand as 2011 

they rested at the surface. Some turtles were found stranded or were incidentally captured by 2012 

local fishers, then handed into conservation organisations for tagging and release. For hard-2013 

shelled turtles, tags were attached to the carapace or head with quick-setting epoxy glue, a 2014 

fiberglass and polyester resin, or in the case of flatback turtles (Natator depressus), by using a 2015 
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specially-designed harness. Leatherback turtles (Dermochelys coriacea) were tagged via direct 2016 

attachment surgical technique (tags were directly attached by drilling into the central-dorsal ridge 2017 

and affixing with nylon or metal ties), tow technique (hole drilled in caudal peduncle and tag 2018 

towed), or harness technique. Where post-hatchlings were used, they were collected from the 2019 

nest, reared by head-starting programs, and then selected for tagging based on their size and 2020 

swimming abilities. Post-hatchlings were tagged using an acrylic-silicone-neoprene attachment 2021 

method, which for larger individuals sometimes also included drilling through the keratin part of 2022 

the carapace crest and securing the tag with nylon ties.  2023 
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Animal ethics information 2024 

Data providers obtained all licenses and ethical permissions required for data collection in their 2025 

jurisdictions and ensured that each animal was handled and tagged by trained personnel. Details 2026 

per taxon are presented below with name initials indicating the responsible co-author. 2027 

 2028 

Birds (flying) 2029 

Tagging of black-browed albatrosses (Thalassarche melanophris) at Diego Ramirez Islands was 2030 

conducted under a permit provided by the Chilean Antarctic Institute (J.A.A.). 2031 

Audouin’s gull (Ichthyaetus audouinii) tagging was conducted with permission from the Catalan 2032 

and Balearic Islands Governments, and Scopoli’s shearwater (Calonectris diomedea) tagging 2033 

was conducted with permission from the Balearic and Valencian Governments, as well as the 2034 

Spanish Government (J.M.A.). 2035 

The sooty tern (Onychoprion fuscatus) tracking project in Seychelles was approved by the 2036 

Seychelles Bureau of Standards and supported by the owners of Bird Island (C.F.). 2037 

Tagging procedures on little penguins (Eudyptula minor), crested terns (Thalasseus bergii), and 2038 

short-tailed shearwaters (Ardenna tenuirostris) off South Australia were conducted under 2039 

approval by the South Australian Department of Primary Industry and Regions (PIRSA) Animal 2040 

Ethics Committee (32-12) and the South Australian Department for Environment and Water 2041 

(DEW) (Scientific Permit A24684) (S.D.G.). 2042 

Broad-billed prion (Pachyptila vittata) fieldwork on Rangatira was conducted with the 2043 

permission and cooperation of the New Zealand Department for Conservation and would not 2044 

have been possible without the support of the Chatham Island Area Office. Northern gannets 2045 

were ringed and loggers deployed with permits and approval from the British Trust for 2046 

Ornithology (BTO) and Scottish Natural Heritage (W.J.G.). 2047 

All tracking of northern gannets, razorbills (Alca torda), Atlantic puffins (Fratercula arctica), 2048 

and Manx shearwaters (Puffinus puffinus) in the Republic of Ireland were approved by the 2049 

University College Cork (UCC) Animal Ethics Committee (2013/032 and 2019/001) and 2050 

conducted under permits by the BTO (C/6143) and Irish National Parks and Wildlife Service 2051 

(26/2010, 011/2013, 018/2014, 016/2015, 025/2016, 082/2017, C051/2011, C116/2012, 2052 

C039/2013, C075/2014, C087/2015, C100/2016, C87/2017) (M.J.). 2053 

Barau’s petrel (Pterodroma baraui) tracking work was authorized by Centre de Recherches sur 2054 

la Biologie des Populations d'Oiseaux (CRBPO) permit number PP609, Ethic Committee of 2055 

Réunion Island, Parc National de La Réunion, and direction de l'environnement, de 2056 

l'aménagement et du logement de La Réunion (DEAL-Réunion). Red-tailed tropic bird 2057 

(Phaethon rubricauda) tagging was authorized by Permit Le Corre PP616, Terres Australes et 2058 

Antarctiques Françaises (TAAF), Mauritius National Park, and Madagascar National Parks. 2059 

White-tailed tropicbird (Phaethon lepturus) tracking was conducted with research approval by 2060 

CRBPO (PP616) and the Seychelles Bureau of Standard (SBS). Sooty tern tagging was 2061 

authorized by PP616 M. Le Corre, Seychelles Bureau of Standard, and TAAF. Wedge-tailed 2062 

shearwater (Ardenna pacifica) tagging was authorized by CRBPO permit PP616, Ethical 2063 

committee of Réunion Island, Institutional Authorizations from DEAL-Réunion, Conservatoire 2064 

du Littoral Réunion, Mauritius National Parks and Conservation Service, and Seychelles Bureau 2065 

of Standard (M.L.C.). 2066 
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Common eider (Somateria mollissima) tagging was conducted under Environment Canada 2067 

(ECCC) Animal Care Permits, Canadian Wildlife Service (CWS) Scientific Permit NUN-SCI-2068 

04-02, and Nunavut Wildlife Research Permit WL1028. Herring gull tagging was conducted 2069 

under Nunavut Wildlife Research Permit WL2008–1028; CWS Scientific Permit NUN-SCI-08-2070 

04, SC2761; and ECCC Animal Care permits EC-PN-08-026. Ivory gull tagging was conducted 2071 

under CWS Banding Permit number 10694; CWS Scientific Permit NUN-SCI-09-02; and 2072 

Nunavut Wildlife Research License WL2010-032. Northern fulmar collections were in 2073 

accordance with Canadian Council on Animal Care guidelines, and were conducted under the 2074 

following permits: research (NUN-SCI-03-02, WL000190, WL000714), animal care 2075 

(2003PNR017, 2004PNR021, 2005PNR021), and land use (59A/7-2-2). Parasitic jaeger 2076 

(Stercorarius parasiticus) tagging was conducted under CWS Banding Permit 10694; Animal 2077 

Care EC-PNR-11-020, Scientific Permit NUN-SCI-09-01, and Territorial Permit WL 2010-042. 2078 

Ross’s gull tagging was conducted under CWS Banding Permit 10694; Animal Care Permit EC-2079 

PNR-11-020; Scientific Permit NUN-SCI-09-01; and Territorial Permit WL 2010-042. Sabine’s 2080 

gull (Xema sabini) tagging was conducted under permits CWS Animal Care EC-PN-11-020, 2081 

CWS Scientific Permit NUN-SCI-09-01, Government of Nunavut Wildlife Research Licence 2082 

WL 2010-042, Nunavut Water Board licence 3BC-TER0811, Indian and Northern Affairs Land 2083 

Use Reserve 068H16001, and CWS Banding Permit 10694. Thick-billed murre (Uria lomvia) 2084 

tagging was conducted under Canadian scientific and access permits (NUN-SCI-08-55, NUN-2085 

MBS-12-03, NUN-SCI-12-04, WRP2013040), banding permit (10694, 10322), and animal care 2086 

(0800AG01) (M.L. Mallory). 2087 

Tagging work followed the ethical standards set out by the Mauritian Wildlife Foundation and its 2088 

partner and consulting organisations, the North of England Zoological Society, the Durrell 2089 

Wildlife Conservation Trust, and the International Zoo Vet Group (M.A.C.N.). 2090 

Permission to capture and tag Ascension frigatebirds (Fregata aquila) was granted by the 2091 

Conservation Department of the Ascension Island Government. The attachment of devices met 2092 

the ethical guidelines of the Special Methods Panel of the BTO. King eiders (Somateria 2093 

spectabilis) were handled with approval by the University of Alaska Fairbanks Institutional 2094 

Animal Care and Use Committee (IACUC) (protocol #05-29) and CWS Animal Care Committee 2095 

(permit #PNR007). Masked booby (Sula dactylatra) tagging was carried out under permission 2096 

and with collaboration of the St Helena Environmental Management Directorate. The capture 2097 

and handling of birds and attachment of unconventional marks was carried out under licence 2098 

from the BTO. Permission to capture and tag birds was granted by the Environmental 2099 

Management Directorate on St Helena. The attachment of GPS devices met the ethical guidelines 2100 

of the Special Methods Panel of the BTO. Tagging of Murphy’s petrels (Pterodroma ultima) 2101 

followed all applicable international, national, and/or institutional guidelines for the care and use 2102 

of animals. Permission to access Henderson Island in order to conduct scientific research in 2015 2103 

was granted by the Government of the Pitcairn Islands (S. Oppel). 2104 

Tagging work was conducted under approval by the Portuguese Government Instituto de 2105 

Conservação da Natureza e Florestas (ICNF) under licenses 188/2010/ CAPT, 152/2011/CAPT, 2106 

101/2012/CAPT, 99/2013/CAPT, 203/2014/CAPT, 169/2015/CAPT, and 89/2011/CAPT 2107 

(V.H.P.). 2108 

Tagging work was authorized by the Government of South Georgia and the South Sandwich 2109 

Islands (R.A.P.). 2110 
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Tagging procedures were conducted under approval by the Portuguese Government ICNF 2111 

(permit 89/2011/CAPT) and in compliance with Portuguese laws No. 140/99, No. 49/2005, No. 2112 

316/89, and No. 180/2008 (J.A.R.). 2113 

Buller’s albatross (Thalassarche bulleri) tagging was approved by the Southland Conservancy, 2114 

Department of Conservation, New Zealand (P.M.S.). 2115 

Sooty shearwater (Ardenna grisea) ethics was approved by the IACUC at the University of 2116 

California Santa Cruz and approval for the research was provided by the Whenua Hou 2117 

Management Committee, Rakiura Titi Islands Administering Body, and Southland Department 2118 

of Conservation in New Zealand. Black-footed (Phoebastria nigripes) and Laysan albatross 2119 

(Phoebastria immutabilis) tagging in the Hawaiian Islands was approved by the University of 2120 

California Santa Cruz and San Jose State University IACUCs under Master Bird Banding permit 2121 

23411. Laysan albatross tagging on Guadalupe Island, Mexico was approved by University of 2122 

California Santa Cruz IACUC under Master Banding Permit 20768.Western gull (Larus 2123 

occidentalis) tagging was conducted under permission granted by Año Nuevo State Park, 2124 

California State Parks, California Department of Fish and Wildlife, and the US Fish and Wildlife 2125 

Farallon Islands National Wildlife Refuge (SUP# 81641). All research protocols were approved 2126 

by the San Jose State University IACUC (protocol 979) (S.A.S.). 2127 

Common murre (Uria aalge) field work was conducted under Kukulget Inc. land crossing 2128 

permits, University of Alaska Fairbanks IACUC protocol #471022, US Fish and Wildlife Service 2129 

(USFWS) scientific collection permit #MB70337A, A. Kitaysky’s Master Banding permit 2130 

#23350, and Alaska Department of Fish and Game’s permits #19-140, 18-131, 17-104, 16-089. 2131 

Streaked shearwater (Calonectris leucomelas) tagging procedures were approved by the Animal 2132 

Experimental Committee of the University of Tokyo and conducted in accordance with the 2133 

Guidelines for the Care of Experimental Animals, with fieldwork conducted under permits from 2134 

the Ministry of the Environment and the Agency for Cultural Affairs. Thick-billed murre tagging 2135 

was conducted under Kukulget Inc. land crossing permits, UAF IACUC protocol #471022, 2136 

USFWS scientific collection permit #MB70337A, A. Kitaysky’s Master Banding permit #23350, 2137 

and Alaska Department of Fish and Game’s permits #19-140, 18-131, 17-104, 16-089. (A. 2138 

Takahashi). 2139 

Capture and tagging of Northern fulmar in Scotland was carried out under licences from the 2140 

BTO (Licence No: AO/4939) and UK Home Office (Licence No: PIL 60/698) following review 2141 

by the University of Aberdeen ethics committee (P.M.T.). 2142 

Northern gannet capture and tagging on St Kilda was carried out with permission from the 2143 

National Trust for Scotland and Scottish Natural Heritage and under licence from BTO (Licence 2144 

No: A2332 with a specific unconventional methods endorsement) (S. Wanless). 2145 

Tagging procedures were conducted with approval from the US Department of the Interior 2146 

#21963, Massachusetts Division of Fisheries and Wildlife #058.19SCB, Stellwagen Bank 2147 

National Marine Sanctuary Permit # SBNMS-2019-001, and the Long Island University IACUC 2148 

(D.N.W.). 2149 

Northern gannet capture and tagging was carried out under licences from the BTO and Natural 2150 

England, with approval of the Royal Society of the Protection of Birds (L.J.W.). 2151 

Tagging work was conducted with permits from the Ministry of the Environment: No.060609001 2152 

for Sangan Island and No.18–340 for Mikura Island (T.Y.). 2153 
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 2154 

Cetaceans 2155 

Tagging was undertaken under US National Marine Fisheries Service (NMFS) Scientific 2156 

Research Permits No. 17096, 731-1774, and 15330. Tagging was undertaken under protocols 2157 

approved by the Cascadia Research Collective IACUC (R.W.B.). 2158 

Tagging was conducted under University of Auckland Animal Ethics AEC001587, New Zealand 2159 

Department of Conservation Permit #44388-MAR, and approval from local Maori tribes (iwi) 2160 

Ngāti Kuri and Te Aupōuri (R.C.). 2161 

Tagging was undertaken with the permission of the Environment Department of the province 2162 

Sud of New Caledonia and of the Government of New Caledonia under permits 383-2163 

2010/ARR/DENV, 33313-2010/ARR/DENV, 3616-2011/ARR/DENV, 3157-2012/ARR/DENV, 2164 

1045-2014/ARR/DENV, 151-2015/ARR/DENV, 1105-2016/ARR/DENV, 899-2165 

2017/ARR/DENV, 2220-2018/ARR/DENV, 2016-1391/GNC, 2017-1107/GNC and 2018-2166 

923/GNC (C. Garrigue). 2167 

Tagging procedures were approved by Fisheries and Oceans Canada (DFO) Freshwater Institute 2168 

Animal Care Committee (AUP # FWI-ACC-2002, 2003, 2004, 2005, 2006 and 2007) and under 2169 

DFO License to Fish for Scientific Purposes #S-02/03 to 05/06-1019-NU and #S-12/13-1024-2170 

NU, S-13/14-1009-NU and S-16/17 1005-NU (S.H.F.). 2171 

Tagging was conducted under permits 11-101/VP/MPEEIA:SG and 12-100/VP/MPEEIA:SG 2172 

issued by the Secretary-General of the Union of the Comoros, permits 105/DEAL//SEPR/2012 2173 

and 148/DEAL/SEPR/2012 issued by Direction de l'Environnement, de l'Aménagement et du 2174 

Logement de Mayotte, and permit FR1397600001-E issued by Direction de l'environnement, de 2175 

l'aménagement et du logement (DEAL) Mayotte (S.F.). 2176 

Tagging was conducted under NMFS permits (numbers 14907, 14809, and 14856) and ACA 2177 

Permits (2009-013 and 2015-011). All animal work was approved and conducted under Duke 2178 

University IACUC A049-122-02 and the Oregon State University Animal Care and Use Protocol 2179 

(ACUP) 4513 (A.S.F.). 2180 

Beluga tagging was carried out with Animal Care Approval and Research Permits issued by the 2181 

Canadian Government (M.O.H.). 2182 

Deployment of satellite tags on southern right whales at the Head of Bight, South Australia were 2183 

conducted under approval by the South Australian Department of Primary Industries and 2184 

Regions (PIRSA) Animal Ethics Committee (32-12), and under the following permits: PIRSA 2185 

Fisheries Exemption (ME9902712), Department of Environment Water and Natural Resources 2186 

(DEWNR) Permit and Licence to Undertake Scientific Research (A24684-12), Environment 2187 

Protection and Biodiversity Conservation Act Cetacean Permit (20014-0004), Access to 2188 

Biological Resources in a Commonwealth Area for Non-commercial Purposes (AU-COM2014-2189 

248), Approval for Activity in Commonwealth Marine Reserve (CMR-14-000196) and DEW 2190 

Marine Parks Permit (MO00024-2) (A.I.M., S.D.G., and R.H.). 2191 

Beluga tagging was carried out under Animal Use Protocol permit number FWI‐ACC‐2015‐018 2192 

and DFO license S-12/13-1022-NU. Narwhal tagging was carried out under Animal Use 2193 

Protocol number FWI-ACC-2016-030 from the DFO Animal Care Committee (under the 2194 

Canadian Council on Animal Care) and a DFO License to Fish for Scientific Purpose License S-2195 

16/17-1037-NU (M. Marcoux). 2196 
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Sei whale fieldwork and tagging was approved by the Regional Directorate of the Environment/ 2197 

Regional Government of the Azores under research permit 7/CN/2005, issued to the Department 2198 

of Oceanography and Fisheries of the University of the Azores (E.O.). 2199 

Whale tagging was authorized by the NMFS under permit numbers 841 (for blue, bowhead, 2200 

gray, and humpback whales), 369-1440 (for blue, fin - Balaenoptera physalus, gray, humpback 2201 

and northern right whales), and 369-1757 (for blue, gray, and southern right whales). Tagging in 2202 

Mexican waters was conducted under permits issued by the Secretaría de Medio Ambiente y 2203 

Recursos Naturales, Mexico (permit number DOO 02.8319 and SGPA/DGVS 0576). Southern 2204 

right whale tagging was also authorised under a permit issued by the South African Department 2205 

of Environmental Affairs and Tourism in terms of Regulation 58 of the Marine Living Resources 2206 

Act (no. 18 of 1998). Sperm whale (Physeter macrocephalus) tagging was conducted under 2207 

permits # 08159 and SGPA/DGVS 01102 by the Secretaría de Medio Ambiente y Recursos 2208 

Naturales of Mexico, and the NMFS under permit numbers 369-1757. For all eight species, 2209 

research was approved by the Oregon State University IACUC (D.M. Palacios and B.M.). 2210 

Tagging was approved by the University of Pretoria's Ethics Committee (EC023-10; EC077-15) 2211 

and permitted by the Prince Edward Islands Management Committee (PEIMC 17/12, 1/2013 and 2212 

1/2014) (R.R.R. and P.J.N.B.). 2213 

Blue, fin and sei whale fieldwork and tagging were approved by the Regional Directorate of the 2214 

Environment/Regional Government of the Azores, under research permits: 20/2009/DRA (blue, 2215 

fin and sei whales), 16/2010/DRA (blue and fin whales), 51/2011/DRA (blue and fin whales), 2216 

30/2015/DRA (blue whale), 37/2016/DRA (blue whale), 31/2012/DRA (fin whale), 2217 

20/2013/DRA (fin whale), 34/2014/DRA (fin whale), 76/2007/DRA (sei whale) (M.A. Silva). 2218 

Short-finned pilot whales were tagged under authorization from NMFS. Bottlenose dolphin 2219 

tagging was conducted under NMFS Scientific Research Permit No. 15543 and approved by 2220 

Mote Marine Laboratory’s IACUC (R.S.W.). 2221 

 2222 

Fishes 2223 

Tagging procedures were approved by the Committee on Ethics for the Use of Animals of the 2224 

Universidade Federal Rural de Pernambuco (CEUA #23082.009679/2009 and 2225 

#23082.025519/2014). Work permits granted by the Instituto Chico Mendes para a Conservação 2226 

da Biodiversidade (ICMBio #43305–6 and #15083-8) (A.S.A.). 2227 

Tagging in the Philippines was performed in collaboration with the respective Regional Offices 2228 

of the Department of Environment and Natural Resources, the Department of Agriculture-Bureau 2229 

of Fisheries and Aquatic Resources and the Palawan Council for Sustainable Development 2230 

(Wildlife Gratuitous Permit 2017-13). All research in Tubbataha Reefs Natural Park was done in 2231 

collaboration with the Tubbataha Management Office (G.A.). 2232 

Tagging procedures in the Bay of Biscay followed established guidelines that met ethical 2233 

reviews, with scientists limiting handling time and stress as much as possible during attachment 2234 

(I.A.). 2235 

Tagging procedures were approved and conducted under Australian Fisheries Management 2236 

Authority Scientific Permit #901193 and Great Barrier Reef Marine Park Authority G11/33231.1 2237 

(A. Barnett). 2238 
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All procedures for whale shark tagging in the Red Sea were approved by the Institutional 2239 

Biosafety and Bioethics Committee (IBEC) of the King Abdullah University of Science and 2240 

Technology. KAUST IBEC serves as the registered (HAP-02-J-042) local committee for all 2241 

National Committee of Bioethics (NCBE)-regulated activities including animal-related research. 2242 

(M.L. Berumen and J.E.M.C.). 2243 

Tagging was conducted with the permission of Chico Mendes Institute for Biodiversity 2244 

Conservation (number 50119-1), of the Brazilian Ministry of the Environment. Shark capture 2245 

and tagging methods were approved by the Commission of Ethics on the Usage of Animals of 2246 

Federal Rural University of Pernambuco (licence number 054/2013, protocol number 2247 

23082.022567/2012) (N.P.A.B.). 2248 

Tagging procedures were approved by Stanford University IACUC, the National Oceanic and 2249 

Atmospheric Administration (NOAA), and the California Department of Fish and Wildlife 2250 

(B.A.B.). 2251 

Tagging of blue, porbeagle and shortfin mako sharks in the northwest Atlantic was conducted in 2252 

accordance with the animal care guidelines of DFO and the Canadian Council on Animal Care 2253 

(S.E.C.). 2254 

Tagging was conducted with approval by the Province Sud of New Caledonia under permit 2255 

6024-4916/DENV/SMer and authorization issued by Affaires Maritimes for Chesterfield field 2256 

trips (C110-3510-263/MM) (E.E.G.C.). 2257 

Tagging was conducted with approval by South African Institute for Aquatic Biodiversity 2258 

Animal Ethics (Ref#25/4/1/7/5_2019-04) (R.D.). 2259 

Whale sharks in Madagascar were tagged by Centre National de Recherches Océano- graphiques 2260 

(CNRO) in July 2016 under permit number No 16-12-CNRO-N (S. Diamant). 2261 

Tagging was conducted under permit from the St Helena Government (SHG 20-SRE-01) 2262 

(A.D.M.D.). 2263 

Blue sharks (tagged in Irish waters) were tagged under license AE191130/I007 AE19130/P002 2264 

and issued by the Irish Health Products Regulatory Authority (HPRA) and complied with the EU 2265 

Directive 2010/63/EU for scientific research on animals (T.K.D.). 2266 

Manta ray tagging procedures were approved by the Raja Ampat Marine Protected Area 2267 

Management Authority and were in accordance with the protocols established by Conservation 2268 

International Indonesia's and University of Auckland's Animal Ethics Committees (University of 2269 

Auckland AEC approval #002228). Whale shark tagging was conducted under permits issued by 2270 

the Cendrawasih Bay National Park Authority (SIMAKSI SI.18/BBTNTC-2/TEK/2015, 2271 

SIMAKSI SI.46/BBTNTC-2/TEK/2015, and SIMAKSI SI.05/BBTNTC-2/TEK/2016). Tagging 2272 

procedures were approved by the Cenderawasih Bay National Park Authority and are in 2273 

accordance with the protocols established by Conservation International Indonesia's animal 2274 

ethics review committee (A. Sianipar, E.S. and M.V.E.). 2275 

Great white sharks were tagged in New Zealand waters according to the protocols specified in 2276 

Department of Conservation Animal Ethics Committee approvals AEC278, AEC216 and 2277 

AEC260. Mako and porbeagle sharks were tagged according to the code of practice for ethical 2278 

conduct of tagging carried out by the National Institute of Water and Atmospheric Research 2279 

(NIWA Animal Ethics Committee 2009) (M.P.F., B.F. and C.A.D.). 2280 
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Tagging was approved by Griffith University ethics (ENV/16/08/AEC) and Ocean and Coast 2281 

Research animal ethics approval (CA 2010/11/482), with fieldwork conducted under permits 2282 

6024-4916/DENV/SMer (New Caledonia), G10 33187.2 (Great Barrier Reef Marine Park 2283 

Authority), 143005 (Queensland Fisheries), QS2010 GS065 (Great Sandy Marine Park) and 2284 

LHIMP/R/2012/009 (Lord Howe Island) (J.G. and J.M.W.). 2285 

Tagging was conducted under permit MAF/LIA/22 to conduct scientific marine animal research 2286 

supplied by the Department of Marine Resources, Bahamas to Bimini Biological Field Station 2287 

Foundation (T.L.G.). 2288 

Tagging was conducted under permits from the NMFS Highly Migratory Species Division and 2289 

under the University of Miami IACUC. Additionally, blacktip shark tagging was conducted 2290 

under permits from Florida Fish and Wildlife, Everglades National Parks; bull shark tagging was 2291 

conducted under permits from the Florida Keys National Marine Sanctuary, Florida Fish and 2292 

Wildlife, and the Biscayne and Everglades National Parks; and great hammerhead shark and 2293 

tiger shark tagging was conducted under permits from the Florida Keys National Marine 2294 

Sanctuary, Florida Fish and Wildlife, Bahamas Department of Marine Resources, and the 2295 

Biscayne and Everglades National Parks (N.H.). 2296 

Tagging procedures were conducted under Galapagos National Park Permits PC-13-01, PC-37-2297 

11. PC-01-14, PC-51-15, PC-69-16, PC-34-17, and MAE-PNG/CDS-2012-0020. Field methods 2298 

were also approved under University of California, Davis IACUC #16022 (A.R.H.). 2299 

Tagging procedures were approved by the University of Windsor Animal Care Committee with a 2300 

permit through Coastal Oceans Research and Development – Indian Ocean (CORDIO) (N.E. 2301 

Hussey). 2302 

Tagging was conducted under Flinders University Animal Welfare Ethics Permits E349 and 2303 

E360, and was authorised by the Victorian Department of Primary Industries under General 2304 

Research Permit RP1048 and PIRSA Ministerial Exemptions Section 115: 9902064 and 9902094 2305 

(C.H.). 2306 

Tagging procedures for scalloped hammerhead and Galapagos sharks were approved by the 2307 

Zoological Society of London’s ethics committee under the project code BPE/0708. Research 2308 

tagging activities around Mikomoto Island, Japan, were communicated to and approved by 2309 

fisheries officers within the Japanese government (a formal research permit was not required) 2310 

(D.M.P.J.). 2311 

For South African white sharks, all research methods were approved and conducted under the 2312 

South African Department of Environmental Affairs: Oceans and Coasts permitting authority 2313 

(Permit #RES2012/OCEARCH/umbrella-project) (A.A.K.). 2314 

Tagging was conducted with the full approval of the Instituto Chico Mendes de Conservação da 2315 

Biodiversidade of the Brazilian Ministry of the Environment (permit no. 14124) (B.C.L.M.). 2316 

Tagging procedures were reviewed and approved by the Seychelles Bureau of Standards, the 2317 

Seychelles Ministry of Environment, Energy and Climate Change, and The University of 2318 

Western Australia (RA/3/100/1480) (L.R.P.). 2319 

Tagging was conducted under Direcção-Geral de Alimentação e Veterinária ethics approvals 2320 

from Decreto-lei N° 129/92 (6 de julho); Portaria N° 1005/92 (23 de outubro) (N.Q.). 2321 
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Tagging was carried out under the general auspices of Consejo Nacional de Ciencia y Tecnología 2322 

(CONACYT), Dirección General de Vida Silvestre (DGVS), Secretaría del Medio Ambiente y 2323 

Recursos Naturales (SEMARNAT), and Comisión Natural de Áreas Naturales Protegidas 2324 

(CONANP). These are the relevant Mexican authorities governing all research actions on 2325 

wildlife and protected animals and areas in Mexico. CONACYT registration: RENIECYT No. 2326 

030 (currently 1602199) and 13920. DGVS authorization numbers are: SGPA/DGVS/02677/08, 2327 

SGPA/DGVS/02888/09, SGPA/DGVS/03848/10, SGPA/DGVS/03155/11, 2328 

SGPA/DGVS/03362/12, SGPA/DGVS/05555/16 and SGPA/DGVS/05970/17 (D.R.). 2329 

All tagging was conducted under animal ethics approvals from Murdoch University's Animal 2330 

Ethics Committee (permit numbers: W2058/7; W2402/11; R2926/17) and an animal ethics 2331 

permit from The University of Queensland: SBS/085/18/WA/INTERNATIONAL. Permits to 2332 

conduct research on wildlife in Western Australia were issued by the Western Australian 2333 

Department of Environment and Conservation (DEC) (permit numbers: SF007471; SF007949; 2334 

SF008572) and Department of Parks and Wildlife (DPaW) (permit numbers: SF009184; 2335 

SF009897; SF010414; SF010781; 08-000533-2; 08-002082-2) (S.D.R.). 2336 

Tagging was conducted with permission by the Qatar Ministry of Environment (D.P.R.). 2337 

Tagging in Mozambique was compliant with ethics guidelines from the University of 2338 

Queensland’s Animal Ethics Committee and was conducted under their approval certificate 2339 

GPEM/186/10/MMF/WCS/SF. Madagascan fieldwork was conducted with the approval of and 2340 

in partnership with the CNRO in Madagascar. Filipino fieldwork was performed in collaboration 2341 

with the respective Regional Offices of the Department of Environment and Natural Resources, 2342 

the Department of Agriculture-Bureau of Fisheries and Aquatic Resources and the Palawan 2343 

Council for Sustainable Development (Wildlife Gratuitous Permit 2017-13) (C.A.R.). 2344 

Tagging methods for broadnose sevengill sharks (Notorynchus cepedianus) were approved by 2345 

the University of Tasmania Animal Ethics Committee (Approval No A0011590) (J.M.S.). 2346 

Tagging procedures were approved by the Marine Biological Association of the UK (MBA) 2347 

Animal Welfare Ethical Review Body (AWERB) and licensed by the UK Home Office through 2348 

Personal and Project Licences under the Animals (Scientific Procedures) Act 1986 (D.W.S.). 2349 

Smooth hammerhead shark (Sphyrna zygaena) tagging was approved by the Massachusetts 2350 

Division of Marine Fisheries. Porbeagle shark tagging was approved by the University of 2351 

Massachusetts, Dartmouth IACUC (Protocol #05-07). White shark tagging was conducted under 2352 

Exempted Fishing Permits (SHK-EFP-11-04, SHK-EFP-12-08, SHK-EFP-13-01, SHK-EFP-14-2353 

03) issued to the Massachusetts Division of Marine Fisheries by the NMFS Highly Migratory 2354 

Species Management Division (G. Skomal). 2355 

Tagging procedures were approved by the University of California, San Diego IACUC (protocol 2356 

S12116) (J.D. Stewart). 2357 

Whale shark tagging procedures were approved by the University of Western Australia 2358 

(RA/3/100/1110; RA/3/100/1437), University of Adelaide (S-2009-109), or Charles Darwin 2359 

University Animal Ethics Committees (M.T. and M.G.M.). 2360 

Tagging data according to protocols approved by the South African Department of 2361 

Environmental Affairs: Oceans and Coasts (now the Department of Forestry, Fisheries and the 2362 

Environment) and adhered to the legal requirements of South Africa. All research methods were 2363 
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approved and conducted under the South African Department of Environmental Affairs: Oceans 2364 

and Coasts permitting authority (Permit #RES2012/OCEARCH/KOCK) (A. Towner). 2365 

Tagging procedures were approved by the Nova Southeastern University IACUC (#064-398-15-2366 

0203) (B.M.W.). 2367 

Tagging was conducted under permits given by the Subsecreataría de Pesca y Acuicultura de 2368 

Chile. Resolución exenta (Undersecretary of Fishing and Aquaculture) (P.M.Z.). 2369 

 2370 

Penguins 2371 
 2372 

Tagging procedures for little penguins from Montague Island were approved by the Macquarie 2373 

University Animal Ethics Committee (Animal Research Authority2014/057), and work was 2374 

conducted under Office of Environment and Heritage NSW Scientific Licence SL100746 (G.C. 2375 

and R.H.). 2376 

Tagging procedures were conducted under approval from Monash University Animal Ethics 2377 

Committee (approval numbers BSCI/2006/12, BSCI/2010/22, BSCI/2011/33), Phillip Island 2378 

Animal Experimentation Ethics Committee (approval numbers 3.2007, 2.2010, 3.2011, 2.2014, 2379 

7.2017), and research permit issued by the Department of Sustainability and Environment of 2380 

Victoria, Australia (permit numbers 10003848, 10004360, 10005601, 10005605, 10006148, 2381 

10007320, 10008506) (A. Chiaradia). 2382 

Tagging procedures on little penguins off South Australia, were conducted under approval by the 2383 

South Australian Department of Primary Industries and Regions (PIRSA) Animal Ethics 2384 

Committee (32-12), and Department for Environment and Water (DEW) (Scientific Permit 2385 

A24684) (S.D.G.). 2386 

Tagging procedures were approved by the Australian Animal Ethics Committee (Department for 2387 

the Environment and Heritage) and the University of Tasmania Animal Ethics Committee Work 2388 

was carried out under Macquarie Island special permits M1/3/95 and MI/13/96 (M.A.H.). 2389 

Tagging procedures were permitted under US Antarctic Conservation Act Permits (Permit 2390 

#2017-012). Field protocols were approved by the University of California San Diego IACUC 2391 

(S05480) (data used courtesy of Jefferson T. Hinke). 2392 

Adelie penguin (Pygoscelis adeliae) tagging procedures were approved by the TAAF ethic 2393 

committee and the French regional ethic committee. King penguin (Aptenodytes patagonicus) 2394 

handling procedures were approved by the Ethical Committee of the French Polar Institute 2395 

(Institut Polaire Paul-Emile Victor). Authorizations to enter the king penguin breeding site 2396 

(permits nos. 2005–191, 2006–67) and handle birds (permits nos. 99/346/AUT, 00/240/AUT, 2397 

01/315/AUT, 01/322/AUT, 2003–113, 2003–114, 2004–182, 2004–183, 2005–203 and 2006–73) 2398 

were delivered by the French Ministère de l’Aménagement du Territoire et de l’Environnement 2399 

(MATE) and TAAF (Y.R.). 2400 

Animal handling procedures were approved by the joint University of Cambridge / British 2401 

Antarctic Survey Animal Ethics Committee (P.N.T.). 2402 

Tagging procedures were approved by the Animal Ethics Committee of the Australian Antarctic 2403 

Division (ATEP-12-13-4086-4088-SUMMER) (B.W.). 2404 

 2405 
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Polar bears 2406 

Tagging procedures were conducted under USFWS research permit MA 690038 Animal Care 2407 

and Use Committees of the US Geological Survey (assurance no. 2010–3) (A.M.P.). 2408 

 2409 

Seals 2410 

Tagging was permitted by the Russian Federal Veterinary and Agricultural Control Service 2411 

(Rosselkhoznadzor, Kamchatka and Koryakia regions, Permit No. 1194) and was approved by 2412 

the Alaska Sea Life Center IACUC (R.D.A.). 2413 

Tagging procedures were approved by the Adelaide University Animal Ethics (permit S80-2004) 2414 

and South Australia Department for Environment and Heritage (permit A24684-3) (A.M.M.B.). 2415 

Weddell seals (Leptonychotes weddellii) tagged in Dumont d'Urville, Adélie Land by LOCEAN 2416 

laboratory were treated in accordance with the Institut Paul-Emile Victor (IPEV) ethical and 2417 

Polar Environment Committees guidelines (J. Charrassin). 2418 

Animal use protocols for northern elephant seal tagging was reviewed and approved by the 2419 

University of California at Santa Cruz IACUC and followed the guidelines established by the 2420 

ethics committee of the Society of Marine Mammalogy. Research was carried out under NMFS 2421 

permits: #786-1463 and #87-143. Southern elephant seal (Mirounga leonina) captures were 2422 

conducted under NMFS permit No. 87-1851-00. All animal procedures were approved by the 2423 

IACUC at University of California Santa Cruz. Weddell seal handling protocols were approved 2424 

by the University of Alaska Anchorage and University of California Santa Cruz's IACUCs. 2425 

Research and sample import to the United States were authorized under the Marine Mammal 2426 

permit No. 87-1851-04 issued by the Office of Protected Resources, NMFS. Research activities 2427 

on southern elephant seals and Weddell seals were also approved through Antarctic Conservation 2428 

Act permits while at McMurdo Station (D.P.C. and P.W.R.). 2429 

Ringed seal (Pusa hispida) handling and tagging was approved by the University of Windsor 2430 

Animal Care Committee (AUPP #12-12,13-10) and a DFO License to Fish for Scientific 2431 

Purposes (S-12/13-1019-NU) (S.H.F. and D.J.Y.). 2432 

Australian sea lion (Neophoca cinerea) tagging procedures were approved by the PIRSA Animal 2433 

Ethics Committee (32-12), South Australian DEW (Scientific Permit A24684), and Western 2434 

Australian Department of Environment and Conservation (Licence to Take Fauna for Scientific 2435 

Purposes SF009529). Long-nosed fur seal tagging procedures were approved by the PIRSA 2436 

Animal Ethics Committee (32-12) South Australian DEW, Scientific (Permit A24684) (S.D.G.). 2437 

Tagging procedures for Australian fur seal (Arctocephalus pusillus doriferus) and New Zealand 2438 

fur seal (Arctocephalus forsteri) were approved by the Macquarie University Animal Ethics 2439 

Committee (Animal Research Authority2014/057), and work conducted under Office of 2440 

Environment and Heritage NSW Scientific Licence SL100746. Weddell seal tagging procedures 2441 

were approved by Macquarie University (#3223) ARA 2014_057 (R.H.) or approved by the 2442 

New Zealand Department of Conservation, Ministry of Foreign Affairs and Trade, and NIWA 2443 

Animal Ethics Panel (DOC-69331-MAR) (M.P.). 2444 

Animal Ethics were obtained from NIWA to manipulate New Zealand sea lions (Phocarctos 2445 

hookeri) at Campbell Island, with the proviso that all work was undertaken with approval from 2446 

the Department of Conservation and the NZ Department of Conservation permit issued under the 2447 
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Marine Mammal Protection Act (1978). Southern elephant seal tagging procedures were 2448 

approved by University of Tasmania Animal Ethics (permit A0014523) (M.A.H.). 2449 

All animal captures and procedures were authorised under NMFS permits (numbers 87-1593 and 2450 

87-1851-00) and approved by the University of California, Santa Cruz IACUC. Fieldwork in 2451 

Antarctica was approved by the Antarctic Conservation Act (L.A. Huckstadt). 2452 

Tagging procedures were approved by the UCC Animal Ethics Committee, Irish National Parks 2453 

& Wildlife Service, and HPRA (M.J.). 2454 

Southern elephant seals, Antarctic fur seals (Arctocephalus gazella), Weddell seals, crabeater 2455 

seals (Lobodon carcinophaga) and leopard seals (Hydrurga leptonyx) were tagged under ethics 2456 

and permits provided by the Brazilian Antarctic Programme "in lieu" of SCAR as their local 2457 

representatives for all the field work conducted on pinnipeds at Elephant Island, South Shetlands 2458 

(M.M.C.M.). 2459 

Tagging procedures were conducted under the permit #572/208 approved by the National 2460 

Administration of Aquatic Resources, Ministry of Livestock, Agriculture and Fisheries 2461 

(DINARA), Uruguay (F.G.R.). 2462 

Tagging procedures were approved by the Dirección Nacional del Antártico, Buenos Aires, 2463 

Argentina, and were carried out according to the Scientific Committee on Antarctic Research 2464 

Code of Conduct for Animal Experiments under University of New South Wales Animal Care 2465 

and Ethics Committee (Protocols 08/103B and 11/112A), and the Animal Care and Ethics 2466 

Committee of the Antarctic Science Advisory Committee (permit number 1144) (T.L.R.). 2467 

Northern fur seal (Callorhinus ursinus) tagging in the Pacific North East and Pacific East Central 2468 

was conducted in accordance with and under the authority of the United States Marine Mammal 2469 

Protection Act (NMFS Permits 782–1455 and 782–1708). At the time this work was conducted 2470 

there was no additional requirement for review of these procedures by an institutional review 2471 

board or ethics committee. In 2010, a NMFS IACUC was established for the Alaska Fisheries 2472 

and Northwest Fisheries Science Centers and the capture and handling protocols were reviewed 2473 

and approved by this committee (J.T.S. and R.R.). 2474 

Harbor seal (Phoca vitulina) studies in Scotland were carried out under UK Home Office licence 2475 

under the Animal (Scientific Procedures) Act 1986 (PIL nos. 60/3303, 60/4009 and 70/7806), 2476 

following approval by the University of St Andrews animal welfare and ethics committee. 2477 

Licences to capture and release animals in the wild for research were also granted by Marine 2478 

Scotland Licensing (P.M.T.). 2479 

Animal handling and instrumentation complied with animal care regulations and applicable 2480 

national laws of Ecuador. This research was approved by the Chancellor’s Animal Research 2481 

Committee at University of California, Santa Cruz. The appropriate animal use and care 2482 

committee of Ecuador (Parque Nacional Galapagos) approved all research protocols. This work 2483 

was performed under the permit No PC-11-08 and PC-043-09 and authorization No. 084 ⁄ 06 2484 

PNG of the National Park service, Galapagos (S.V.). 2485 

Grey (Halichoerus grypus) and harbor seals were caught under licenses Number 05/475/AUT, 2486 

05/485/AUT, 06/82/AUT, 07/481/AUT, 08/346/DEROG, 08/347/DEROG, 10/102/DEROG, 2487 

11/873/DEROG, 11/874/DEROG, and 13/422/DEROG delivered by the French ministry of the 2488 

environment (C.V.).  2489 
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California sea lion (Zalophus californianus) capture and procedures were approved by the 2490 

University of California Santa Cruz Chancellor’s Animal Research Committee (CARC) protocol 2491 

(COST 01.10) and authorized under National Marine Fisheries Service permit number 87-1593-2492 

05 (M.J. Weise) 2493 

 2494 

Sirenians 2495 

Dugong tagging was conducted under the conditions of ethics permit DEC AEC 2009/11 2496 

(R.A.C.). 2497 

Permits required to capture and satellite track dugongs were obtained from the James Cook 2498 

University Animal Ethics Committee (Permits A1735 and A1936) and the North (60912155-2499 

2013/JJC) and South (3157- 2012/ARR/DENV) Provinces of New Caledonia (C.C.). 2500 

Tagging procedures were approved by the Charles Darwin University Animal Ethics Committee 2501 

and wildlife research permits were obtained from the Parks and Wildlife Commission of the 2502 

Northern Territory (S.D.W.). 2503 

Manatee tagging procedures were carried out in accordance with the USFWS Permits 2504 

MA107933-1 and MA37808A-0, Alabama Department of Conservation and Natural Resources, 2505 

and Alabama Division of Wildlife and Freshwater Fisheries annual permits. Approvals obtained 2506 

by the University of South Alabama IACUC for protocols 581568 and 1038636 (R.H.C.). 2507 

 2508 

Turtles 2509 

Tagging was conducted under permits from Dirección General del Medi Natural de la 2510 

Generalitat Valenciana, Generalitat de Catalunya, Consejeria de Medio Ambiente y Ordenación 2511 

del Territorio de la Junta de Andalucia, and Región de Murcia. A general permit for tagging 2512 

adult females was obtained from Ministerio para la Transición Ecológica y el Reto Demográfico 2513 

(GPM/BDM/AUTSPP/23/2020) (S.A. and E.J. Belda). 2514 

The Indonesian Institute of Sciences provided research permits for telemetry deployments at the 2515 

nesting beaches. Telemetry deployments at California foraging grounds were conducted under 2516 

Endangered Species Act permit nos. 1159, 1227, and 1596 (S.R.B.). 2517 

Queensland Scientific purposes permit and a University of Queensland Animal Ethics permit 2518 

(H.A.C.). 2519 

Tagging procedures were conducted under permits granted by the Commonwealth of Dominica 2520 

Ministry of Agriculture and Forestry to Domenicia’s Sea Turtle Conservation Organisation Inc 2521 

(R.W.C.). 2522 

Green turtle (Chelonia mydas) tagging procedures were carried out in compliance with Mexican 2523 

regulations (permit SGPADGVS/SEMARNAT, Mexico, No.09583/15). Hawksbill turtle 2524 

(Eretmochelys imbricata) tagging was carried out in compliance with Mexican regulations 2525 

(permit SGPADGVS/SEMARNAT Mexico, No.09583/15) (E. Cuevas-Flores). 2526 

Loggerhead turtles (Caretta caretta) were handled under license “Nº 04/IFCN/2018- FAU 2527 

MAO” and previous licenses issued by the Government of the Autonomous Region of Madeira 2528 

(T.D.). 2529 

Leatherback turtle tagging procedures were conducted under NMFS Endangered Species Act 2530 

Section 10 Permits #1557 and #15672, University of New Hampshire IACUC #060501 and 2531 
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#090402, and University of Massachusetts IACUC #2010-0019. Turtle disentanglement was 2532 

conducted under the authority of NOAA 50 CFR Part 222.310 (K.L.D.). 2533 

All sea turtle research was conducted under NMFS Permit 1260 and 16733 to take protected 2534 

species for scientific purposes and USFWS permits TE-676379-4 and TE676379-5 issued to the 2535 

NMFS Southeast Fisheries Science Centre (SEFSC) and according to IACUC-reviewed 2536 

procedures outlined in the NMFS SEFSC Sea Turtle Research Techniques Manual (L.L.D.). 2537 

Loggerhead and green turtle tagging procedures were conducted under permit issued by the 2538 

wildlife agencies of Buenos Aires and Río Negro provinces and the National Wildlife Agency of 2539 

Argentina (V.G.C.). 2540 

Green turtle tagging procedures were conducted within the Statia National Marine Park 2541 

programme and complied with all relevant national legislation. Hawksbill turtle tagging was 2542 

conducted within the Statia National Marine Park and St Maarten Marine Park programmes and 2543 

complied with all relevant national legislation (N.E.). 2544 

Leatherback turtle tagging procedures were reviewed by the University of New Hampshire 2545 

IACUC (060501) (B.J.G.). 2546 

Leatherback turtle were tagged under permit number SGPA/DGVS/08562/17. Green and 2547 

hawksbill turtle tagging procedures were authorized by the SEMARNAT (permit numbers 2548 

150496–213–03, 280597–213–03, 190698–213–03, 280499–213–03, SGPA/DGVS/002m 2549 

SGPA/DGVS/05137/12, SGPA/GDVS/02259/14, and SGPA/DGVS/04478/15) (C.E.H.). 2550 

Tagging procedures were approved by Swansea University and Deakin University Ethics 2551 

Committees and the British Indian Ocean Territory (BIOT) Administration of the UK Foreign 2552 

and Commonwealth Office. Research was endorsed through research permits (0002SE12, 2553 

0007SE15, 0002SE17, 0006SE18) from the Commissioner for BIOT and research complied with 2554 

all relevant local and national legislation (G.C.H.). 2555 

Sea turtle tagging procedures and fieldwork were directly approved by the Centro 2556 

TAMAR/IBAMA/ICMBio. Fundação ProjetoTAMAR has MMA/IICMBio/SISBIO Nº 42760 2557 

permit (P.H.L. and E.A.P.S.). 2558 

Tagging procedures for rehabilitated loggerhead sea turtles were conducted under the 2559 

authorization of blanket permit from USFWS to NOAA NMFS. Loggerhead sea turtles acquired 2560 

via capture or incidental capture were taken under the authority of NMFS Research permit 16134 2561 

(G.L.). 2562 

Green turtle tagging procedures were conducted with permission from the Administrator of 2563 

Ascension Island. Leatherback turtle tagging was conducted under permits from Ezemvelo 2564 

KwaZulu Natal Wildlife. Loggerhead turtle tagging was conducted with approval from the 2565 

ethical committee of the University of Pisa (P.L.). 2566 

Tagging procedures were authorized under the Peru Instituto Nacional de Recursos Naturales 2567 

(INRENA) permits 015-2002-INRENA-J-DGFFS-DCB, 070-2003-INRENA-IFFS-DCB, 068-2568 

2004-INRENA-IFFS-DCB, 025-2005-INRENA-IFFS-DCB and 002-2006-INRENA-IFFS-DCB 2569 

(J.C.M.). 2570 

Tagging operations were authorized by the Dirección General de Sostenibilidad de la Costa y del 2571 

Mar (Ref DIV/BDM/AUTSSP/58/2015, Spanish Government) (D.M.). 2572 
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Green turtle tagging was conducted under permits of NOAA, Federated States of Micronesia, 2573 

and Republic of Marshall Islands. Hawksbill turtle tagging was conducted under permits from 2574 

NOAA, the USFWS, the Hawai’i Division of State Parks, and the Mexico Comisión Nacional de 2575 

Áreas Naturales Protegidas (D.M. Parker). 2576 

Loggerhead turtles tagging procedures off of the Baja California Peninsula, Mexico, were 2577 

conducted in full compliance with CARC/IACUC protocol at UC Santa Cruz and research was 2578 

authorized by the Mexican government through SEMARNAP and SEMARNAT permits 2579 

150496- 213-03, 280597-213-03, 190698-213-03, 280499-213-03, 280700-213-03, 2580 

SGPA/DGVS/002 4661, SGPA/DGVS/10358, and SGPA/DGVS/03501/06 (H.P.). 2581 

Tagging procedures were authorised by the Environment Agency Abu Dhabi, the Environment 2582 

& Protected Areas Authority, Sharjah, the Environment Studies Center at Qatar University, the 2583 

Qatar Ministry of Environment, the Oman Ministry of Environment and Climate Affairs, and the 2584 

Department of Environment, Iran (N.J.P.). 2585 

Leatherback turtles tagging procedures were conducted under licence (# 27/01 and 73/08) from 2586 

the Fauna Department-Ministry of Cattle, Agriculture and Fishing of Uruguay (L.P. and M. 2587 

Lopez Mendilaharsu). 2588 

Tagging permissions were given by Oman's Ministry for Regional Municipalities, Environment 2589 

and Water Resources (A.F.R.). 2590 

Tagging was performed with the permit of the Environmental Ministry of the Dominican 2591 

Republic Government (J. Tomás). 2592 

Permissions for sea turtle rehabilitation work were given by the Dubai Wildlife Protection Office 2593 

(D.P.R.). 2594 

Tagging procedures were conducted under approval from the National Marine Park of Zakynthos 2595 

(permits from 2000–2012), the Animal Ethics Committee of Deakin University (B0X2015-17), 2596 

and the Greek Ministry of Environment (Permit: 151503/162) (G. Schofield). 2597 

Tagging procedures were conducted under approval from the Dakshin Foundation Animal 2598 

Research Ethics Review Committee. In the Andaman and Nicobar Islands, permits were issued 2599 

to tag ten leatherback sea turtles with satellite transmitters from the Ministry of Environment and 2600 

Forests (Wildlife Division), Government of India, on 16th December 2008 (F.No.1-4/2007 WL-I 2601 

(pt-1)). Research permits from the Forest Department, Andaman and Nicobar Islands 2602 

(CWLW/WL/47/393) and other relevant permits from the Andaman and Nicobar Administration 2603 

were also obtained to carry out the field work in Little Andaman Island (K.S.). 2604 

Tagging procedures were performed in accordance with the Stanford University Protocol for the 2605 

Care and Use of Laboratory Animals (APLAC no. 13848). The Costa Rican Ministry of Natural 2606 

Resources and the Environment provided research permits (G.L.S.). 2607 

Green turtle tagging was conducted under permit approved by the Western Australian 2608 

Department of Biodiversity, Conservation and Attractions. Tags were deployed by RPS Group – 2609 

Perth WA (lead by former employee D.W.) on behalf of Woodside Energy Group Ltd. 2610 

Tagging procedures were conducted under permission obtained from the Viceconsejería de 2611 

Medio Ambiente of the Gobierno de Canarias. Cape Verde did not require permission from the 2612 

government at that time (N.V.). 2613 
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Hawksbill turtle and olive Ridley turtle (Lepidochelys olivacea) tagging procedures were 2614 

conducted under approval from Charles Darwin University Animal Ethics Committee and 2615 

wildlife research permits (A4005) from Parks and Wildlife Commission of the Northern 2616 

Territory (S.D.W.). 2617 

Research protocols for capturing and deploying satellite transmitters on flatback turtles were 2618 

approved by an authorised ethics committee (SA 2015/11/531) and authority under the Nature 2619 

Conservation Act 1994 (I.B., C.A.M.H., A. Barnett, N.E.W.).  2620 
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Tracking data collection and processing 2621 

Tagging devices were deployed across more than three decades from 1985 to 2018 around the 2622 

global ocean, resulting in a total of almost 11 million positions (after data curation: 6,854,440 2623 

positions) collected with different sensor systems and technologies for transmitting data. These 2624 

included tagging devices using the Argos doppler-shift localization system (argos-system.org), 2625 

GPS (global positioning system) and Fastloc GPS, as well as light-level geolocation tags (also 2626 

termed global location sensor; GLS). Animals within taxa were captured (or tagged remotely) by 2627 

different teams using a range of methods after the responsible team leader obtained all licenses 2628 

and ethical permissions (see “Fieldwork and Data Collection”). All birds including penguins 2629 

were mostly caught at nest sites using poles, traps, or nets, and tags generally attached dorsally 2630 

or to a leg. Most cetaceans were tagged from the research vessel using crossbows, air-powered 2631 

systems or poles to get tags attached to the dorsal fin or its vicinity. Fishes were mostly captured 2632 

with baited hooks or purse-seine nets and tags typically attached to the first dorsal fin using a 2633 

tether affixed to a dart or by fixing it with stainless steel bolts. Satellite collars were used for 2634 

polar bears after immobilisation using rapid-injection darts. Seals were mostly captured with nets 2635 

and sedated before tag deployment on the head or along the dorsal midline. All sirenians were 2636 

tagged using a peduncle belt linked to the tag by a tether. Most turtles were captured at nesting 2637 

beaches or at sea using nets or the by-hand ‘rodeo’ technique and tags glued to their carapace, 2638 

except for leatherback turtles (Dermochelys coriacea) for which a harness (“backpack”), towed-2639 

tag or surgical techniques were used for attachment. All animal handling and tagging procedures 2640 

were completed by trained personnel under permissions granted by ethical review bodies and in 2641 

accordance with all relevant ethical regulations in the jurisdictions in which they were performed 2642 

with specific approvals obtained by each data owner who was individually responsible for 2643 

adhering to regulations and supervision of all procedures (details provided in “Animal Ethics 2644 

Information”). 2645 

Tracking datasets were collated after a lead author (representing each tagging research team) 2646 

provided three csv files, each including species metadata, tracking data, and the team description. 2647 

All datasets were requested with the least amount of processing possible, with all Argos, GPS 2648 

and fastloc GPS data (~90% of the tracking data) provided as ‘raw’ position estimates. GLS 2649 

positional data (for some birds and fishes only) were provided after estimation of longitude and 2650 

latitude from the ambient variables recorded in the device (i.e., light intensity and elapsed time, 2651 

but also depth and temperature for fishes). For birds, GLS position estimates provided were 2652 

obtained in two ways: (i) through the Geolight package(112) in R(113) after carrying out a pre- 2653 

and a post-calibration (seven days) to estimate an average value for the sun elevation parameter 2654 

needed for calculations, or (ii) through the BASTrack software suite (British Antarctic Survey) 2655 

after identifying sunrise and sunset times based on light curve thresholds and with longitude and 2656 

latitude calculated from the time of local midday and day length, respectively. The exception was 2657 

for the dataset for the hybrid complex of three Pterodroma species(114), referred here to as 2658 

Trindade Petrel (Pterodroma arminjoniana), for which the GLS positions were processed with 2659 

the R package TripEstimation(115). For fishes, GLS tracks were obtained using pop-up satellite 2660 

archival transmitters (PSAT) through satellite-relayed data or archived data from tags physically 2661 

recovered. Positions were obtained after data decoding using software provided by the 2662 

manufacturers (e.g., Wildlife Computers), where, similarly to bird data, longitude and latitude 2663 

are calculated from estimated local time of midnight or midday and day-length, respectively. 2664 

These PSAT GLS tracks were further processed with a continuous-time correlated random walk 2665 

(CTCRW) Kalman filter using the crawl package(116) in R to produce daily positions, after 2666 
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filtering with the unscented Kalman filter using sea surface temperature through the UKFSST 2667 

package in R and applying a bathymetric correction using the analyzepsat R add-on. PSAT data 2668 

also included shark tracking data from the Tagging of Pacific Predators (TOPP) program which 2669 

were downloaded from the Animal Tracking Network (ATN) hosted by the Integrated Ocean 2670 

Observing System (ioos.noaa.gov/project/atn/, downloaded September 2017) for integration in 2671 

the Global Shark Movement Project (GSMP; globalsharkmovement.org). These data obtained 2672 

through GSMP were processed as detailed in (62) to determine daily position data. 2673 

All data were checked for quality-control and to standardise formats of the multiple and disparate 2674 

datasets received. Poor data quality, lack of metadata, misidentified or incomplete tracks, 2675 

repeated tracks, or unsolicited processing before data submission (e.g., interpolation of Argos 2676 

tracked positions) led to the exclusion of 3,051 tracks from 10 species prior to analyses. All 2677 

datasets were run through a speed filter using the SDAfilter package in R to remove outlier 2678 

positions. Speeds used ranged for species between 5.4 – 35 m.s-1 (20 – 126 km.h-1) for birds, 1.6 2679 

– 7 m.s-1 (5.8 – 25 km.h-1) for cetaceans, 0.5 – 11.9 m.s-1 (1.9 – 42.8 km.h-1) for fishes, 2.1 – 4.2 2680 

m.s-1 (7.5 – 15 km.h-1) for penguins, 0.75 m.s-1 (2.7 km.h-1) for polar bears (but see (117)), 2.0 – 2681 

10.3 m.s-1 (7.2 – 37 km.h-1) for seals, 1.1 – 2.8 m.s-1 (4.1 – 10 km.h-1) for sirenians, and 1.4 – 2.8 2682 

m.s-1 (5 – 10 km.h-1) for turtles (refer to table S3 for details, and also for general morphometric 2683 

data per species). During this procedure, all Argos data resulting from unsuccessful satellite 2684 

uplinks (i.e., with location class Z) were removed from the dataset, keeping only location classes 2685 

B, A, 0, 1, 2, and 3, which have increasing accuracy from ~160 km to 0.3 km (118).Visual 2686 

inspection led to further removal of unrealistic GLS locations for some bird species (e.g., 2687 

longitude < 43ºW or > 98ºW, latitude < 8ºN or > 73ºN for Arctic herring gull – Larus 2688 

smithsonianus). A land mask was applied to all data using the rworldmap package in R and all 2689 

locations assigned to land were excluded from analyses. We created 1° grid-cells for all area 2690 

included in the world’s ocean, and all grid-cells where animal tracking data were not detected 2691 

have also been excluded from analyses. Because the area within each grid-cell varies 2692 

considerably with latitude, all results were calculated based on area following: 2693 

A(θ)  =  2Δϕ 𝑅2 [sin(θ𝑚𝑎𝑥) − sin(θ𝑚𝑖𝑛)] 2694 

where θ is latitude, ϕ is longitude and θ𝑚𝑎𝑥 and θ𝑚𝑖𝑛 are the bounding latitudes of the grid-cell, 2695 

and R is the average Earth’s radius (6,371 km). 2696 

 2697 

Addressing tracking data biases 2698 

The inherent biases in tracking datasets(63), such as the different data resolution and number of 2699 

positions resulting from different devices, higher number of positions commonly obtained 2700 

around tagging locations, and different track lengths obtained from devices deployed at the same 2701 

time, make analyses challenging. To alleviate some of these potential issues, we gridded data at 2702 

1⁰ resolution, keeping only the counts of unique individuals per species. We chose this resolution 2703 

because it encompasses most of the known accuracies for most tracking devices, including most 2704 

positions obtained by PSAT GLS(62), therefore alleviating most of the effects of position error 2705 

estimates on track accuracy. This resolution has also been proposed as the best resolution to use 2706 

when performing statistical analyses at large spatial scale(63, 119) or when using ‘big data’ 2707 

approaches(120). To further reduce any potential biases in track accuracy due to the lower 2708 

accuracy of GLS data and their limited daily locations (usually only 1 or 2), we repeated all 2709 

spatial analyses using only one position per day for each individual, calculated as the centre of 2710 



 

 

24 

 

mass of all position estimates obtained per individual in a given day, and also used this dataset 2711 

for all time-based calculations. We found these potential methodological biases led to no major 2712 

differences in the pattern of results obtained (fig. S5). Furthermore, to avoid overestimating 2713 

spatial overlaps due to the ‘addition’ of locations by interpolation methods – which can lead to 2714 

locations being introduced where the animals were likely to have been but which were not 2715 

detected by the tracking devices deployed – we considered all the positions that were detected, 2716 

rather than interpolating positions for all taxa, except as detailed above (e.g., for the PSAT GLS 2717 

daily position data for sharks derived from GSMP). Track interpolations, which are often 2718 

calculated between positions up to 20 days apart(61) can result in an additional source of 2719 

bias(63) and could inflate our globally important marine megafauna areas. By using only 2720 

detected positions (rather than interpolated) and focusing on unique detections for each 2721 

individual (instead of number of positions) within each 1⁰ grid-cell, we conservatively estimated 2722 

important marine megafauna areas that were also not affected by inflated detections around each 2723 

tagging location (i.e., only one position was considered for each individual within 1⁰ resolution 2724 

around the tagging location). To further understand the potential effects of the tagging location 2725 

bias, we also repeated our spatial analyses after removing all positions around the tagging 2726 

location where the probability of finding an individual following a random trajectory from the 2727 

tagging location was >10%. We did this by estimating the characteristic daily velocity (i.e., the 2728 

root mean square displacement, d) for each species, and then using this value to estimate the 2729 

diffusion constant (D) for a Brownian random walk, as D = d2/2T (with T = 1 day). We then 2730 

compared our curated tracks with those obtained from trajectories generated through a Brownian 2731 

random walk with that diffusion constant, when using similar starting locations for each track. 2732 

We used these trajectories to estimate the probability of an individual randomly arriving at the 2733 

same distance (or further) from each tagging location as that observed in the curated tracks, and 2734 

discarded all positions where this probability was >1%. We then used our curated tracks with 2735 

new starting positions matching the first location where the probability of randomly being at that 2736 

location estimate was <10%, to re-compute our spatial analyses, which resulted in similar 2737 

patterns obtained (fig. S6). Finally, to study the effects of spatial resolution on all our results, we 2738 

repeated all the analyses at 0.5⁰ and 2⁰ grid-cell resolutions and found similar patterns (see fig. 2739 

S7, fig. S8). All comparisons were made using the Jaccard similarity coefficient (or Jaccard 2740 

index), which is calculated by dividing the size of the intersection of two datasets by the size of 2741 

their union, and results in 0 for no intersection between the sets (i.e., complete dissimilarity) and 2742 

in 1 for equal sets (i.e., high similarity). 2743 

 2744 

Detection of key movement behaviours 2745 

To detect key movement behaviours such as migration (defining migratory corridors) or 2746 

residence (potentially indicating feeding, mating or resting areas) throughout the three decades of 2747 

tracking data in our multi-taxa global dataset, we used an algorithm based on statistical methods 2748 

commonly applied to big data analyses. Our algorithm uses a time series of displacements 2749 

calculated as the shortest great-circle distance, i.e., measured along the surface of the sphere, 2750 

between two consecutive tracked locations separated by predetermined time-windows (Tw) (as 2751 

done in 120) from 1 – 10 days. We then calculated the average displacement per individual and 2752 

normalised the displacements by the average displacement per species to account for disparities 2753 

in speed across the 111 species considered in our study. 2754 
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 2755 

Detection of migratory corridors 2756 

For detecting migratory corridors captured by our tracking dataset, we calculated how coherent 2757 

the movement direction was within each grid-cell for each species based on the displacements 2758 

calculated for Tw = 1 – 10 days. We did this because the results obtained for movement direction 2759 

can differ for long- and short-time windows, with the former likely to reflect long term 2760 

movements in a specific direction (i.e., ignoring potential return trips or other shorter changes in 2761 

direction, such as daily trips), and the latter likely to provide displacements that are 2762 

unrepresentative of potential migration (i.e., ‘noisy’ data). We then defined coherence (c) per 2763 

taxon, for each Tw and grid-cell, as the sum of the displacement vectors (wd) in a particular 2764 

direction (i.e., multiplied by the cosine and sine of the angle φ) and then divided by all 2765 

displacements in all directions, as: 2766 

𝐶𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒(𝑇𝑤 , 𝑐) =  
∑ 𝑤𝑑

𝐷
𝑑=1 (cos φ𝑑 , sin φ𝑑)

∑ 𝑤𝑑
𝐷
𝑑=1

 2767 

where D represents all displacements observed in each grid-cell. To scale results across taxa, we 2768 

multiplied the average monthly coherence by the ratio between the number of grid-cells with 2769 

observed displacements within each time window (Cdm) and the maximum number of grid-cells 2770 

observed over different time windows (max Cdm) for each taxon. 2771 

The selected taxon-specific displacements calculated for the Tw that resulted in the maximum 2772 

number of 1° grid-cells showing coherent movement for that taxon (i.e., ‘best Tw’; refer to fig. 2773 

S12) were then aggregated at temporal scales of 1, 2, 3, 4, 5, 6 and also 12 months. Considering 2774 

multiple temporal scales was necessary due to the differences in movement behaviour across the 2775 

many species considered in our study. For example, central place foragers return to start 2776 

locations (e.g., colony) in each trip. Using multiple temporal scales is therefore useful to allow 2777 

detection of movement corridors in both directions avoiding the cancellation of the displacement 2778 

vectors occurring in opposite directions (e.g., trip from nest to foraging location cancelled by the 2779 

reverse trip). Also, because migratory behaviour is largely unknown or incomplete for many 2780 

species (e.g., sharks), we included temporal scales up to 12 months to ensure we captured any 2781 

previously undetected long-term migration if present. To automate routines, these temporal 2782 

scales were programmatically defined considering one month as 365 days/12 (~ 30.4 days). We 2783 

then repeated the calculation of coherence at each temporal scale for each taxon to find sets of 2784 

neighbouring grid-cells where displacements obtained from the tracking dataset indicated 2785 

movement in the same direction. We did this by calculating the average direction of all observed 2786 

displacements at each grid-cell within each temporal scale (e.g., for a temporal scale of 3 2787 

months, we used displacements calculated between 0 and ~ 90 days) and clustering all grid-cells 2788 

that resulted in similar average direction (i.e., for which the cosine of the angle between their 2789 

directions is > 0.8, i.e., indicating similar direction of movement). 2790 

The clustering of grid-cells resulted in a high number of clusters for each taxon and temporal 2791 

scales. So, we computed the size distribution of clusters of grid-cells with similar average 2792 

direction for each temporal scale and plotted the cumulative distribution. Then using a Lorenz 2793 

curve as a parameter-free approach(121), we identified the intersection point between the slope 2794 

of the tangent line at the maximum value (i.e., the slope where the cumulative distribution equals 2795 

1) and the x-axis in the Lorenz curve plot. This intersection point defines the threshold for 2796 
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minimum cluster size (i.e., minimum number of 1° grid-cells) defining a movement corridor at 2797 

each temporal scale for each taxon (see fig. S13). All clusters with size above the defined 2798 

threshold at any temporal scale were considered, and all 1° grid-cells within those clusters were 2799 

aggregated and classed as corridors. Because speed is generally expected to be faster while 2800 

“migrating”, we confirmed speed within resulting corridors was always above average for each 2801 

species. 2802 

 2803 

Detection of residence areas 2804 

To determine residency-like behaviour indicative of areas where animals might be foraging, 2805 

feeding, mating or resting (commonly characterised by slower speeds and greater tortuosity), we 2806 

computed the z-scores (dimensionless) of the displacements starting within each grid-cell, 2807 

considering the average displacements and respective standard deviations per species for the 2808 

‘best Tw’ identified for each taxon. Each displacement observed in a track belonging to a species 2809 

within each grid-cell was assigned a z-score by subtracting the average global displacement of 2810 

that species from the calculated average displacement and dividing the result by the standard 2811 

deviation of the displacements of that species. We then used these values to calculate the average 2812 

z-score for each taxon in each grid-cell. If the average z-score calculated within each 1° grid-cell 2813 

was lower than -1 (i.e., one standard deviation below the average displacement for that taxon), 2814 

we considered it as reflecting a residency-like movement behaviour, and the corresponding grid-2815 

cells were classed as residence area. We used this approach to calculate z-scores across the same 2816 

aggregated temporal scales used for detection of migratory corridors (i.e., using sets of 1, 2, 3, 4, 2817 

5, 6 and also 12 months) and, for a given taxon, observing residency-like movement behaviour in 2818 

any of these scales led to the classification of the grid cell as a residence area for that taxon. To 2819 

confirm that a random approach to identify areas of residence is not useful, we randomised all 2820 

tracks in the dataset by changing the sequence of displacements to break their correlation but 2821 

keeping the same start and end point of the trajectories (and therefore the same probability 2822 

distribution function) (122). We then repeated the procedure to detect residence areas and see if 2823 

they would be similar. We then used the Jaccard index(123) to measure the similarity between 2824 

each randomised set of residence areas and the original per taxa. Detection of residence areas 2825 

was substantially different after track randomisation, confirming space-use by animals was not 2826 

random (fig. S14). 2827 

 2828 

Statistical Modelling 2829 

 2830 

Input Data 2831 

We modelled the probability of finding areas (grid-cells) used as residences or for migration 2832 

separately for each taxon (except sirenians due to lack of data) using generalised linear models 2833 

with a binomial error distribution and a logit link function. We develop these models considering 2834 

as presences the locations where we have detected the described residence or migratory 2835 

behaviours for each taxa and by randomly selecting equal number of locations where tracking 2836 

data were available for each taxa but no behaviour was detected (see Table 2). 2837 

 2838 
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We then used a total of 13 environmental variables as predictors obtained from various online 2839 

datasets (see Supplementary Acknowledgements). The predictors included monthly mean global 2840 

sea surface temperatures (sst), ocean surface currents (u and v; respectively, eastward and 2841 

northward ocean currents), sea surface height (ssh), salinity (sal), and mixed layer depth (mld) 2842 

collated from the E.U. Copernicus Marine Service Information (CMEMS) Marine Data Store 2843 

(MDS) Global Ocean Physics Reanalysis(124). Dissolved oxygen (O2) was obtained from the 2844 

CMEMS Global Ocean Biology Hindcast replaced in July 2022 by the Global Ocean 2845 

Biogeochemistry Hindcast (125). Ocean turbidity (turbidity) and chlorophyll-a concentration 2846 

(chla) were obtained from NASA Ocean Biology Processing Group Level-3 SeaWifs (1998-2847 

2003) (126) and Modis-Aqua (2003-2018) (127) Ocean Color Data. Atmospheric temperature at 2848 

2 m height (temp2m) and wind velocity at 10 m height (u10 and v10, respectively representing 2849 

eastward and northward direction) were obtained from the European Centre for Medium-Range 2850 

Weather Forecasts (ECMWF) (128, 129). We then used ocean surface currents to calculate eddy 2851 

kinetic energy (EKE) as: 𝐸𝐾𝐸 = 0.5 ∗ ((𝑢 − 𝑢̅)2 + (𝑣 − 𝑣̅)2), where 𝑢 and 𝑣 are eastward- and 2852 

northward ocean currents respectively and the bar indicates the time-average. All environmental 2853 

data were linearly interpolated to 1° (horizontal) resolution.  2854 

 2855 

 2856 

Model Set 2857 

We used the following set of seven models to explain the occurrence of residences and migratory 2858 

behaviour, each including a different set of the environmental variables we collated (as described 2859 

in table S8) and specifically avoiding inclusion of correlated variables in the same model: 2860 

 2861 

Model 1: Behaviour ~ sst + u + v + mld + chla + eke + bathymetry + Month 2862 

Model 2: Behaviour ~ ssh + u10 + v10 + turbidity + salinity + eke + bathymetry + Month 2863 

Model 3: Behaviour ~ O2 + vel + vel10 + mld + chla + bathymetry 2864 

Model 4: Behaviour ~ temp2m + u + v + mld + chla + eke + bathymetry 2865 

Model 5: Behaviour ~ mld + chla + sst 2866 

Model 6: Behaviour ~ u + v + eke + bathymetry 2867 

Model 7 (Null model): Behaviour ~ 1  2868 

 2869 

The response variable “Behaviour” corresponded to grid-cells where residence or migratory 2870 

behaviour has been detected plus an equal number of grid-cells where presences were available 2871 

in our tracking dataset but no behaviour was detected. The total number of grid-cells with 2872 

presence and each of the residence or migratory behaviours detected per taxa are shown in Table 2873 

2. We compared the predictive ability of models containing different sets of these environmental 2874 

variables using the Akaike’s information criterion(130). According to the weight of the Akaike’s 2875 

Information Criteria (wAIC), model 2 was ranked highest for the different behaviours across all 2876 

taxa, with the only exception being residency for penguins and turtles (for which the highest 2877 

ranked models were model 1 and 3, respectively) (table S9). On average, the highest ranked 2878 

model for corridors explained 17.8 % of the deviance (ranging from 5.2 % for turtles to 40.1 % 2879 

for penguins), while for residences it explained 12 % of the deviance (ranging from 3.1 % for 2880 

seals to 24.8 % for polar bears) (Table 2). 2881 

 2882 
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Predictions 2883 

We used the highest ranked model to predict which grid-cells are likely to be used as residence 2884 

or for migration within the entire area where we had occurrence data for each taxon (see 2885 

resulting maps in fig. S17). We did this after applying cross validation using a set of 10 (or 5 2886 

depending on available data for each taxon) iterations to assess the predictive ability of the 2887 

highest ranked models for each taxon. We assessed the predictive ability using the Cohen’s 2888 

Kappa statistics (K), which measures the agreement between predicted and real (i.e., obtained) 2889 

values(131). We then used Landis & Koch (132) criteria to class results into ‘no agreement’ (K ≤ 2890 

0), ‘slight agreement’ (0 < K ≤ 0.2), and at least ‘fair agreement’ (K > 0.2). Our K values for 2891 

corridors averaged at 0.35 (ranging from 0.17 for turtles to 0.56 for penguins) and for residences 2892 

averaged at 0.32 (ranging from 0.22 for birds and seals to 0.44 for cetaceans) (Table 2). To 2893 

compute the final important marine megafauna areas across all taxa and months to be considered 2894 

for the 30% protection (as shown in the right panel of Fig. 3), we used our predictions results 2895 

only from models for which K was above 0.2 before applying the optimization algorithm. 2896 

 2897 

Optimisation algorithm 2898 

To select important marine megafauna areas for protection, we first assigned a score to each 2899 

grid-cell based on the detection of key movement behaviours reflecting migratory corridors or 2900 

residency areas across taxa. To do this, we first defined Tc and Tr, respectively, as the number of 2901 

taxa using the grid-cell as migratory corridor or residence, and then attributed a higher 2902 

importance to grid-cells used as residence (i.e., where animals are likely to spend more time) 2903 

when calculating the product between Tc and Tr to obtain each score per grid-cell, following: 2904 

𝑆𝑐𝑜𝑟𝑒 = 2𝑇𝑐 𝑥 3𝑇𝑟 2905 

Using this formula, grid-cells receive scores of 2 or 3 if they are, respectively, used as: migratory 2906 

corridor or residence by multiple species of only one taxon, and increasingly higher scores if 2907 

they are used both as corridors and residencies across multiple taxa (e.g., we obtained a 2908 

maximum score of 1944, for grid-cells used by 5 taxa as residence and 3 taxa as corridors) (fig. 2909 

S15). We then ordered the grid-cells by descending scores to increasingly select, according to 2910 

this ranking, grid-cells currently not (or only partially) protected, until we reached the 30% target 2911 

(30% of 71.1 % area covered by our tracking dataset). The resulting selected grid-cells results in 2912 

the polygons shown in Figure 3 (and the results from a sensitivity analyses changing the scores 2913 

provided to migratory corridors and residences is provided in fig. S16). We repeated this 2914 

procedure for the detected movement behaviours based on the probability of each grid-cell to be 2915 

used as residence or for migration by each taxon obtained after our modelling procedure 2916 

(detailed below). We selected important marine megafauna areas in decreasing order from the 2917 

highest probabilities (closest to 1) until the threshold of 30% was reached, and similarly created 2918 

the resulting polygons shown in Figure 3 (right panels). 2919 

  2920 
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 3326 

Fig. S1. Total number of tracked individuals per latitude and longitude 3327 

Spatial extent of the marine megafauna tracking datasets including the 12,794 individuals in the 3328 

global dataset at 1⁰ resolution, with top and left inset plots representing longitudinal and 3329 

latitudinal coverage of the curated tracks with dotted histograms showing the number of 3330 

individuals tagged (at tagging locations) and shaded areas indicating the number of individuals 3331 

with tracked positions in the same geographical locations. These plots show that a higher number 3332 

of tracked individuals is not necessarily related to tagging locations. 3333 
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Fig. S2. Biodiversity captured versus expected based on the 111 species considered in our 3337 

dataset. 3338 

Map shows that our dataset captures some of the known hotspots, including in the NE Pacific, 3339 

NW Atlantic, and regions of the SW Atlantic, but it misses others (e.g., Indo-Pacific and Central 3340 

West Pacific regions, Gulf of Guinea, and waters around Australia and Madagascar). A) Global 3341 

map depicting the first locations tracked per individual, providing a visual representation of the 3342 

tagging locations. B) Effective number of species (Seff) observed in each grid-cell (c) where we 3343 

had tracking data based on the Shannon entropy (H)(31). H was calculated from the probability 3344 

of observing each species among all the individuals visiting each grid-cell (ps(c)), which in turn 3345 

is the result of the fraction of tracked individuals fs(c) of each species (s) grid-cell with at least 3346 

one location within each 1° grid-cell divided by the total number of tagged individuals of the 3347 

same species. The resulting fraction is independent from the tagging effort excluding potential 3348 

biases arising from the different number of tagged individuals of each species. 3349 

 Seff (c) = 2 H(c) where 𝐻(𝑐) = ∑ 𝑝𝑠(𝑐) 𝑙𝑜𝑔2 𝑝𝑠(𝑐)𝑠  and 𝑝𝑠(𝑐) =
𝑓𝑠(𝑐)

∑ 𝑓𝑠(𝑐)𝑠
   3350 

C) Expected richness hotspots for the species considered based on species geographical range 3351 

shapefiles obtained from the iucnredlist.org/ (accessed 24 Jan 2022) for all species, except for 3352 

flatback turtles, which were obtained from the Recovery Plan for Marine Turtles in Australia 3353 

(2017)(133). For comparison with global biodiversity maps see literature for birds(134), 3354 

mammals(51), sharks(14), and also general marine biodiversity (i.e., also including plants, corals 3355 

and non-migratory animals)(135). 3356 

  3357 
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 3358 

 3359 

Fig. S3. Marine Protected Areas (MPAs) and Exclusive Economic Zones (EEZs) in the 3360 

marine environment 3361 

We obtained geographical information defining existing marine protected areas (MPAs, 3362 

including marine parks; shown in blue) from protectedplanet.net (accessed 10 June 2021) (33) 3363 

and exclusive economic zones (EEZs; shown in grey) from marineregions.org/ (accessed 28 June 3364 

2021) (34). 3365 

 3366 

3367 

https://www.protectedplanet.net/en
https://www.marineregions.org/
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 3368 

Fig. S4. Number of species affected by each anthropogenic threat considered 3369 

Summaries of the number of species known to be impacted by each threat considered in our 3370 

analyses based on the listed threats and sub-threats on the IUCN Threats Classification Scheme 3371 

v3.3(50) as detailed in table S4. Figure shows commercial fishing and climate change 3372 

(represented as SST anomaly) has having impacts on the highest number of species analysed in 3373 

this study, and with fixed gear and longlines fishing gears listed for most species. All sea turtles, 3374 

sirenians and polar bears are affected by most of the threats. A large number of birds, cetaceans 3375 

and fishes are impacted by fishing and SST anomaly, with higher number of birds and fish 3376 

species being impacted by plastic, and higher number of cetacean species being the most 3377 

impacted by shipping and noise. Species considered in each taxon group include flying birds 3378 

(listed as birds), cetaceans (mostly whales but also dolphins), fishes (mostly sharks), penguins, 3379 

polar bears (Ursus maritimus), seals, sirenians (i.e., dugongs and manatees), and turtles.3380 
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Fig. S5. Assessment of behaviours detected when using only one position per day for each individual 3381 

Results for the final tracking dataset when considering only one position per day per individual across all taxa. All maps show similar 3382 

spatial patterns to those obtained for the complete dataset (as shown in Fig. 1 and Fig. S2). A) Top: Total number of individuals for 3383 

which we have tracking data in each grid-cell; Bottom: effective number of species obtained per grid-cell. B) Top: Identified 3384 

migratory and residence areas when using only one position per day per individual across all taxa (greyed grid-cells indicate that no 3385 

key movement behaviour was identified); Bottom: Results obtained when using the Jaccard Index to compare the results obtained here 3386 

with those obtained from the original dataset. Species considered in each taxon group include flying birds (listed as birds), cetaceans 3387 

(mostly whales but also dolphins), fishes (mostly sharks), penguins, polar bears (Ursus maritimus), seals, sirenians (i.e., dugongs and 3388 

manatees), and turtles.  3389 
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Fig. S6. Assessment of behaviours detected when removing the tagging location bias 3391 

Results for the final tracking dataset after removing the tagging location bias. All maps show similar spatial patterns to those obtained 3392 

for the complete dataset (as shown in Fig. 1 and fig. S2). A) Top: total number of individuals for which we have tracking data in each 3393 

grid-cell; Bottom: effective number of species obtained per grid-cell. B) Top: Identified migratory and residence areas when removing 3394 

all locations around the tagging location for all individuals across all taxa (greyed grid-cells indicate that no key movement behaviour 3395 

was identified); Bottom: Results obtained when using the Jaccard Index to compare the results obtained here with those obtained from 3396 

the original dataset. Species considered in each taxon group include flying birds (listed as birds), cetaceans (mostly whales but also 3397 

dolphins), fishes (mostly sharks), penguins, polar bears (Ursus maritimus), seals, sirenians (i.e., dugongs and manatees), and turtles.  3398 
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Fig. S7. Assessment of behaviours detected when changing resolution to 0.5° 3400 

Results for the final tracking dataset when considering a spatial resolution of 0.5° All maps show similar spatial patterns to those 3401 

obtained for the complete dataset (as shown in Fig. 1 and fig. S2). A) Top: total number of individuals for which we have tracking 3402 

data in each grid-cell; Bottom: effective number of species obtained per grid-cell. B) Top: Identified migratory and residence areas 3403 

when halving the spatial resolution (greyed grid-cells indicate that no key movement behaviour was identified); Bottom: Results 3404 

obtained when using the Jaccard Index to compare the results obtained here with those obtained from the original dataset. Species 3405 

considered in each taxon group include flying birds (listed as birds), cetaceans (mostly whales but also dolphins), fishes (mostly 3406 

sharks), penguins, polar bears (Ursus maritimus), seals, sirenians (i.e., dugongs and manatees), and turtles.  3407 
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Fig. S8. Assessment of ecological meaningful behaviour when changing resolution to 2° 3409 

Results for the final tracking dataset when considering a spatial resolution of 2°. All maps show similar spatial patterns to those 3410 

obtained for the complete dataset (as shown in Fig. 1 and fig. S2). A) Top: total number of individuals for which we have tracking 3411 

data in each grid-cell; Bottom: effective number of species obtained per grid-cell. B) Top: Identified migratory and residence areas 3412 

when doubling the spatial resolution (greyed grid-cells indicate that no key movement behaviour was identified); Bottom: Results 3413 

obtained when using the Jaccard Index to compare the results obtained here with those obtained from the original dataset. Species 3414 

considered in each taxon group include flying birds (listed as birds), cetaceans (mostly whales but also dolphins), fishes (mostly 3415 

sharks), penguins, polar bears (Ursus maritimus), seals, sirenians (i.e., dugongs and manatees), and turtles. 3416 
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Fig. S9. Detected important migratory corridors and residence areas found by taxa 3417 

Spatial representation of migratory corridors and residence areas by taxa detected based on our 3418 

analyses of coherence and z-scores (Methods). Results include the migratory corridors shown 3419 

with faded colours for each taxon, which were obtained after detection of the time window that 3420 
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resulted in the maximum number of 1° grid-cells showing coherent direction of movement 3421 

within each month for each taxon (fig. S12), and after detection of hotspots of coherence clusters 3422 

using on a Lorenz curve approach (fig. S13). Residence areas, indicated by grid-cells shown in 3423 

stronger colours, were obtained based on z-scores of one standard deviation below the average 3424 

displacement for each taxon. Where both migratory corridors and residence areas were found, 3425 

grid cells include a black outline. Grey indicates grid-cells where no specific behaviour was 3426 

identified. White areas depict regions without tracking data. Species considered in each taxon 3427 

group include flying birds (listed as birds), cetaceans (mostly whales but also dolphins), fishes 3428 

(mostly sharks), penguins, polar bears (Ursus maritimus), seals, sirenians (i.e., dugongs and 3429 

manatees), and turtles.  3430 
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 3431 

Fig. S10. Statistics of the space and time used for different behaviours per taxa 3432 

Fractions of space use (left panel) and time spent (right panel) in different behaviours calculated 3433 

for each individual to show the distribution of the results obtained per taxon. Shown are the 3434 

median values (percentile 50, dots) connecting the percentiles 25 and 75 obtained across 3435 

individuals within each taxa. These values represent the most likely values on any sample of 3436 

tracked individuals (with other values obtained outside the interval between percentiles 25 and 3437 

75). Species considered in each taxon group include flying birds (listed as birds), cetaceans 3438 

(mostly whales but also dolphins), fishes (mostly sharks), penguins, polar bears (Ursus 3439 

maritimus), seals, sirenians (i.e., dugongs and manatees), and turtles. 3440 

3441 
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 3442 

Fig. S11. Global footprint of anthropogenic threats and intensity within important areas 3443 

for marine megafauna (IMMegAs) 3444 

 3445 

The global footprint of anthropogenic threats is displayed as global averages per threat. Threat 3446 

intensity outside the important marine megafauna areas identified in this study (left: based on the 3447 

movement data, and right: based on model predictions) is indicated by the grey colour bar, and 3448 

by the coloured bars per threat within important areas. Threats depicted include, from top to 3449 

bottom: fishing intensity, shipping density, plastic density, and warming (according to anomalies 3450 

to sea surface temperature; SST). 3451 

  3452 
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 3453 

 3454 

Fig. S12. Average monthly coherence results at multiple time windows for all taxa 3455 

Our analyses for detection of key movement behaviours indicated by migratory or residency-like 3456 

behaviours showed that the maximum number of 1° grid-cells with coherent movement was 3457 

obtained for time windows (Tw) < 10 days for all taxa considered: 2 days for fish, 3 days for 3458 

birds, 4 days for cetaceans, 6 days for penguins, polar bears, seals, and turtles, and 7 days for 3459 

sirenians. Circles indicate the time at which coherence was highest for each taxon. Species 3460 

considered in each taxon group include flying birds (listed as birds), cetaceans (mostly whales 3461 

but also dolphins), fishes (mostly sharks), penguins, polar bears (Ursus maritimus), seals, 3462 

sirenians (i.e., dugongs and manatees), and turtles.  3463 
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 3464 

Fig. S13. Detection of cluster hotspots of coherence with the Lorenz curve 3465 

Plots show the results obtained per taxon, when considering multiple temporal scales of 1, 2, 3, 3466 

4, 5, 6, and 12 months to identify hotspots of clusters of grid-cells with coherent movement (i.e., 3467 

grid-cells for which the cosine of the angle between their average directions is > 0.8) that 3468 

resulted in the global migratory corridors shown in Figure 3 (also shown per taxon in Fig. S9). 3469 

The threshold for minimum cluster size defining a migratory corridor at each temporal scale for 3470 

each taxon was identified with a Lorenz curve (parameter free approach; 121). For example, for 3471 

birds, the hotspots for minimum cluster size were detected at the top 0.5% of the cumulative 3472 

distribution (i.e., for xth = 0.995), indicating the minimum cluster size to identify a migratory 3473 

corridor was 52 connected grid-cells. Migratory corridors were therefore, defined at minimum 3474 

cluster sizes (Sth) of 52 grid-cells for birds, 23 for cetaceans, 17 for fishes, 8 for penguins, 5 for 3475 

polar bears, 40 for seals, and 29 grid-cells for turtles. No hotspots of clusters of grid-cells with 3476 

coherent movement were detected for sirenians, likely due to lack of data. Species considered in 3477 

each taxon group include flying birds (listed as birds), cetaceans (mostly whales but also 3478 

dolphins), fishes (mostly sharks), penguins, polar bears (Ursus maritimus), seals, sirenians (i.e., 3479 

dugongs and manatees), and turtles.  3480 
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 3481 

Fig. S14. Comparison of detected residency areas across taxa after randomising tracks 3482 

Maps show the grid-cells identified as residency areas for each taxon after (a) and before (b) one 3483 

example of randomised tracks (see Materials and Methods) to demonstrate animals are 3484 

selectively using space. Patterns shown on the bottom map follow those identified in the original 3485 

dataset and displayed in Fig. 2. (c) shows the Jaccard index (i.e., area of overlap divided by area 3486 

of union) obtained for each taxon. The low values for the index across taxa confirm the 3487 

independence of the results before and after randomising the dataset. Colours refer to birds (light 3488 

green), cetaceans (dark yellow), fishes (red), penguins (dark green), polar bears (orange), seals 3489 

(blue), sirenians (purple), and turtles (pink). Species considered in each taxon group include 3490 

flying birds (listed as birds), cetaceans (mostly whales but also dolphins), fishes (mostly sharks), 3491 

penguins, polar bears (Ursus maritimus), seals, sirenians (i.e., dugongs and manatees), and 3492 

turtles.  3493 
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 3494 

Fig. S15. Depiction of scores computed as part of the optimisation algorithm to select 3495 

priority areas for global protection of marine megafauna 3496 

Areas used by multiple taxa (noting that each taxa group includes multiple marine megafauna 3497 

species, table S1) are indicated with warmer colours (i.e., in purple, orange and red according to 3498 

an increase in taxa and behaviours observed). 3499 
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 3500 

 3501 

Fig S16. Sensitivity analyses on the priority areas selected by our optimisation algorithm 3502 

Results obtained when the scores for migratory corridors (SC) and for residences (SR) used to run the optimization algorithm were 3503 

changed: (Top left) SR=3 and SC=2 as used throughout the manuscript, (Top rigth) SR=2 and SC=2, (Bottom left) SR=2 with no score 3504 

for corridors, and (Bottom right) SC=2 with no score for residence areas (and showing the most different results as expected).3505 
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 3519 

Fig S17. Comparison of detected and predicted areas used for important marine 3520 

megafauna behaviours 3521 

Shown are the maps we detected by our direct analyses of the tracking data (left) and those based 3522 

on predicted probabilities of behaviours occurring (right) for residency (top) and migratory 3523 

behaviours (bottom) for each taxon. Asterisks are included in the predicted maps for seal 3524 

residences and turtle corridors because the models leading to these predictions results in a K<0.2 3525 

and predictions were therefore, not considered when merging important marine megafauna areas 3526 

across all taxa based on modelled probabilities. Species considered in each taxon group include 3527 

flying birds (listed as birds), cetaceans (mostly whales but also dolphins), fishes (mostly sharks), 3528 

penguins, polar bears (Ursus maritimus), seals, sirenians (i.e., dugongs and manatees), and 3529 

turtles. 3530 


