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Abstract 

The railway sector struggles with infrastructure 

inefficiencies due to traditional maintenance methods, 

resulting in high costs and unplanned disruptions. This 

paper provides a conceptual framework that integrates 

Digital Twins (DT) and Cyber-Physical Systems (CPS) to 

enhance predictive maintenance (PdM). By establishing a 

technical architecture for real-time monitoring and fault 

detection, the framework will facilitate seamless data 

exchange for automated decision-making. The findings 

contribute to advancing intelligent railway maintenance, 

fostering sustainability, and enhancing resilience in 

railway operations. This research provides actionable 

insights for industry stakeholders, supporting the 

transition towards data-driven, adaptive maintenance 

strategies in modern rail networks. 

Background and Motivation 

The railway industry is a crucial for global transportation, 

facilitating the mobility of goods and passengers 

supporting 2.3 million jobs and contributes €143 billion 

annually (European Commission, 2015). In 2023, 

railways transported over 429 billion passenger-

kilometres, underscoring their critical role in passenger 

mobility (Eurostat, 2024). Efficient maintenance is 

essential for sustaining the operational performance of rail 

systems, as maintenance costs exceed £1 billion annually 

in the United Kingdom (UK), representing 18% of 

Network Rail’s expenditure (UK Research and 

Innovation (UKRI), 2019). These costs are further 

exacerbated by disruptions caused by planned and 

unplanned maintenance.  

Traditional maintenance practices, such as scheduled and 

corrective approaches, are inadequate. They result in 

inefficiencies, unexpected downtime, elevated costs, and 

safety risks. In the UK alone, unplanned maintenance 

costs exceed £169 million annually, with unscheduled 

failures and delays forming a significant portion of these 

expenses (Network Rail, 2024b). Predictive maintenance 

(PdM) presents a transformative alternative, leveraging 

technologies like the internet of things (IoT), big data 

analytics, and artificial intelligence (AI). PdM predicts 

failures before they occur, enabling condition-based 

repairs. This approach has yielded a 15% improvement in 

reliability, a 20% reduction in maintenance costs, and a 

30% decrease in train breakdowns (International Union of 

Railways, 2024).  

The complexity of rail systems stems from their 

interconnected assets and subsystems, each requiring 

unique maintenance strategies (Francesco, Gabriele and 

Stefano, 2016; Shang et al., 2023). These assets must 

operate cohesively across vast networks. Disruptions in 

this complex system, ripple through networks, causing 

delays and inefficiencies (Lyu et al., 2023; Network Rail, 

2024a). As urban populations grow, reliable and 

sustainable rail systems are vital. However, aging 

infrastructure and regionally variable rail assets 

complicate maintenance efforts (United Nations 

Economic Commission for Europe (UNECE), 2018). 

Innovative PdM techniques are therefore essential to 

addressing these challenges, ensuring rail systems meet 

environmental goals while providing cost-effective, 

reliable, and safe transport solutions. 

The integration of digital twin (DT) and cyber-physical 

systems (CPS) emerges as a groundbreaking solution to 

address challenges in PdM (Gbadamosi et al., 2021; De 

Donato et al., 2023; Yan et al., 2023). A DT is a digital 

replica of a physical asset, continuously updated with 

real-time data from embedded sensors (Grieves and 

Vickers, 2017). Extensive research within the railways 

has explored DTs, focusing on creating interconnected 

ecosystems that enable near real-time data access to 

support both functional and operational aspects of rail 

infrastructure (Kaewunruen and Lian, 2019; Kampczyk 

and Dybeł, 2021; Aksenov et al., 2022; Ariyachandra and 

Brilakis, 2023; Kaewunruen et al., 2023; Reis and Melão, 

2023; Krmac and Djordjevic, 2024). Conversely, CPS 

links physical infrastructure with computational models, 

facilitating seamless data exchange and real-time asset 

monitoring.  

The integration of DT and CPS in railways presents 

substantial cost-saving opportunities by enhancing 

maintenance efficiency and operational reliability. The 

European Commission estimates that rail operators could 

save up to €3 billion annually by implementing PdM 

through integrated DT-CPS technologies (Groenendaal, 

Akkermans and Kempen, 2023). Furthermore, PdM with 

integrated DT and CPS technologies can improve safety 

by detecting faults before they escalate into hazardous 

situations. Additionally, integrated DT and CPS 

ecosystems can contribute to the sustainability of railways 

by reducing waste, minimising energy consumption, and 

extending infrastructure lifespan. For instance, the High-

Speed Rail 2 (HS2) employs DT-powered CPS to monitor 



 

 

infrastructure, aiming to reduce carbon emissions by 3.2 

million tons over the first 60 years of operations (Bentley 

Systems, 2020).  

Nevertheless, while other industries successfully 

implemented the fusion of DT and CPS (Lee et al., 2020; 

Park et al., 2020), their application within rail remains in 

its infancy. One of the key challenges is the need for a 

robust technical architecture that can facilitate seamless 

data interoperability among disparate systems (Tao et al., 

2019; Qian et al., 2022). This architecture must enable the 

integration of legacy systems, which often rely on 

outdated technologies and processes, thereby impeding 

the efficient flow of information. Moreover, it must 

ensure scalability and manage the high costs associated 

with sensor installation and software development. The 

integration of CPS with DT requires the fusion of diverse 

data streams from sensors, control systems, and AI 

algorithms (Monostori et al., 2016; Zhong et al., 2017), 

which must be processed in real-time to derive actionable 

insights. Without a well-defined technical architecture, 

addressing these integration challenges becomes difficult. 

Additionally, ensuring data accuracy, system reliability, 

and the security and privacy of operational data are 

critical concerns that a robust technical architecture can 

help mitigate. Therefore, developing a comprehensive 

technical architecture is essential for overcoming these 

barriers and realising the full potential of DT and CPS 

technologies in enhancing PdM and operational 

efficiency in the railway sector. 

Originality and Knowledge Contribution 

Addressing the above challenge, this paper aims to 

advance the state of research by proposing a novel 

conceptual framework for the technical architecture of DT 

integrated CPS, specifically tailored for PdM in railways. 

The research objectives are as follows: 

1. To establish precise definitions and interrelations of 

DT, CPS, and PdM procedures in the context of rail 

infrastructure. 

2. To design a conceptual framework illustrating the 

technical integration of DT and CPS for PdM in 

railway infrastructure. 

3. To identify and evaluate data streams between DTs 

and CPS to enhance PdM capabilities in rail 

infrastructure. 

This  research goes beyond a general discussion of DT and 

CPS concepts by proposing a conceptual technical 

architecture, advancing theoretical understanding, and 

fostering interdisciplinary dialogue on DT and CPS 

integration. The proposed framework will equip industry 

stakeholders with actionable insights into deploying an 

integrated DT-CPS for improved asset management, 

reduced downtime, and enhanced operational efficiency. 

Its scalability and adaptability will accelerate the adoption 

of advanced technologies within rail infrastructure, 

supporting innovation and operational resilience. From a 

societal perspective, this research aims to improve the 

reliability and efficiency of railways, reducing delays and 

enhancing passenger satisfaction. This conference paper 

focuses on developing the conceptual framework as the 

initial step, which will serve as the foundation for the 

subsequent detailed design of the prototype of the DT-

CPS technical architecture. 

Origin, Development and Definitions for 

CPS and DT 

Origin, Development and Definition for CPS 

CPS represent a paradigm shift in engineering and 

technology, integrating physical processes with 

computation and networking to create intelligent systems 

capable of autonomous operation and real-time decision-

making (Akanmu, Anumba and Ogunseiju, 2021). The 

origins of CPS can be traced back to the early 2000s, when 

researchers recognised the potential of embedding 

computational elements into physical systems to enhance 

their performance and functionality (Yan and Sakairi, 

2019). As industries embraced digital technologies, CPS 

evolved rapidly, with applications emerging in various 

sectors, including manufacturing, transportation, and 

healthcare. In the construction industry, CPS has gained 

traction in recent years, driven by the need for enhanced 

efficiency, safety, and sustainability (Alaloul, 2022). The 

integration of IoT and building information modelling 

(BIM), and advanced analytics has facilitated the 

development of CPS tailored to construction processes, 

enabling real-time monitoring, predictive analytics, and 

data-driven decision-making (Tang et al., 2019). In this 

context, CPS can be defined as systems that seamlessly 

combine physical elements, computational algorithms, 

and communication networks to optimise operational 

performance and enhance safety in the built environment. 

For PdM in rail infrastructure, a specific definition of CPS 

would emphasize its role in continuously monitoring the 

health of rail assets through embedded sensors and data 

analytics, allowing for PdM interventions to minimise 

disruptions and enhance the reliability of rail services. 

Origin, Development and Definition for DT 

The concept of DTs originated from the convergence of 

physical and digital worlds, gaining significant traction in 

the early 2000s as a result of advancements in the IoT and 

CPS. Initially conceptualised by Dr Michael Grieves in 

2002, the DT was envisioned as a digital representation of 

a physical object or system, allowing for real-time 

monitoring and simulation (Grieves and Vickers, 2017). 

Over the years, the evolution of CPS has further propelled 

the development of DT, particularly within various 

industries, including manufacturing, aerospace, and, 

notably, construction. In the construction sector, the 

integration of DTs has been instrumental in optimising 

project management, enhancing design processes, and 

improving operational efficiencies (Moshood et al., 

2024). The proliferation of sensors, advanced analytics, 

and big data has facilitated the real-time data acquisition 

necessary for effective DT implementations. 

Consequently, the construction industry has witnessed a 

paradigm shift towards digitalisation, enabling 

stakeholders to harness PdM strategies for infrastructure. 

In the context of rail infrastructure, DT can be specifically 

defined as virtual replicas of railway system that leverage 



 

 

real-time data and advanced analytics to PdM needs, 

thereby enhancing safety, operational efficiency, and 

lifecycle management. This tailored definition 

underscores the potential of DT in transforming PdM 

practices within the rail industry, ultimately contributing 

to more resilient and efficient infrastructure. 

PdM Procedures for Rail Infrastructure 

The selection of  PdM procedures outlined in the proposed 

technical architecture for rail infrastructure (Table 1) is 

grounded in empirical evidence, industry best practices, 

and a systematic multi-criteria decision-making (MCDM) 

approach. This rigorous selection process enables us to 

optimise the reliability and safety of over a thousand 

components and hundreds of systems by prioritising 

techniques based on their effectiveness in detecting 

potential failures, mitigating risks, and their applicability 

across various rail infrastructure components. 

Table 1: PdM procedures outlined in the proposed technical 

architecture for rail infrastructure 

Components  PdM procedures 

Track and Rail 

Rails Ultrasonic Testing: Detect internal cracks, 

fatigue, and material flaws. 

Eddy Current Testing: Identify surface 

defects, such as head checks and 

corrugation. 

Sleepers Load Monitoring: Use strain gauges to 

assess load distribution and detect cracking 

or deformation 

Ballast Ground Penetrating Radar (GPR): Assess 

ballast conditions, including contamination 

and voids. 

Fastenings Visual and Acoustic Analysis: Monitor 

fastener integrity to prevent loosening 

under dynamic loads. 

Signalling Systems 

Interlockings Logic Circuit Testing: Continuously 

evaluate interlocking functionality using 

automated tools. 

Track Circuits Current Flow Analysis: Detect electrical 

discontinuities or signalling dropouts. 

Axle Counters Pulse Signal Monitoring: Ensure accurate 

train position reporting by analysing 

counter signals. 

Control Panels Temperature and Voltage Monitoring: 

Identify overheating or power fluctuations 

in signalling relays. 

Rolling Stock 

Wheels and 

Axles 

Acoustic Emission Testing: Detect cracks 

or flat spots through wheel noise patterns. 

Laser Scanning: Measure wear and 

irregularities on wheel surfaces. 

Brakes Dynamic Brake Testing: Monitor braking 

force and heat dissipation during 

operations. 

Doors Motor Health Monitoring: Use vibration 

sensors to detect faults in door 

mechanisms. 

HVAC 

Systems 

Thermal Load Analysis: Evaluate 

efficiency and identify blockages in air 

circulation. 

Overhead Line Equipment (OLE) 

Catenary 

Wires 

Wear and Tension Monitoring: Use tension 

meters and visual inspections to predict 

wire degradation. 

Masts and 

Gantries 

Structural Fatigue Analysis: Use 

accelerometers to measure vibrations and 

stress points. 

Insulators Thermal Imaging: Detect hotspots caused 

by contamination or cracking. 

Bridges and Tunnels 

Bridge Decks Load Testing with Strain Gauges: Evaluate 

stress levels under dynamic and static 

loads. 

Tunnels Moisture and Leak Detection: Use 

humidity sensors and thermal imaging for 

water ingress monitoring. 

Expansion 

Joints 

Ultrasound and Visual Inspections: Detect 

wear, corrosion, and joint misalignments. 

Stations and Platforms 

Escalators Chain and Step Monitoring: Use IoT-

enabled sensors to measure chain tension 

and detect abnormal vibrations. 

Elevators Motor Efficiency Testing: Analyse motor 

currents and lubrication status to identify 

potential faults. 

Platform 

Surfaces 

Slip Resistance Testing: Monitor wear and 

reduce slip hazards with surface coating 

analysis. 

Drainage Systems 

Culverts Blockage Detection with Sonar Sensors: 

Identify sediment accumulation and flow 

obstructions. 

Pumping 

Stations 

Pump Efficiency Monitoring: Analyse 

vibration and flow rate data to detect 

clogging or motor faults. 

Open Drains Camera Inspections: Use robotic cameras 

for real-time assessment of debris and 

erosion. 

The MCDM approach involved several key steps. First, 

the authors conducted an extensive literature review to 

identify existing PdM procedures utilised in rail 

infrastructure. Following the literature review, the authors 

completed data-driven assessments of existing 

maintenance practices within the railway sector. This 

involved analysing failure rate data, maintenance logs, 

and incident reports to quantify the performance of 

different PdM methods. This quantitative analysis 

enabled the authors to identify patterns in equipment 

failures and correlate them with specific PdM procedures. 

To synthesize these insights, the authors finally employed 

a scoring model that evaluated each PdM method against 

predetermined criteria, including effectiveness in failure 



 

 

detection, cost implications, ease of integration with 

existing systems, and historical performance data. Each 

criterion was weighted based on its significance to railway 

operations, allowing the MCDM approach to prioritise 

procedures that demonstrated the highest potential for 

improving safety and operational reliability.  

Technical Architecture of CPS-DT for PdM 

in Rail Infrastructure 

The proposed framework, designed to address the unique 

challenges of PdM procedures, is structured around three 

interconnected domains (Figure 1):  

1. The Physical Domain with the Physical Twin 

2. The Communication Layer serving as the cyber-

physical bridge 

3. The Cyber Domain housing the Digital Twin. 

 
Figure 1: Three domains in the technical architecture of CPS-

DT for PdM in rail infrastructure 

Physical Domain: The Physical Twin 

The physical domain/twin serves as the foundational layer 

of the CPS-DT framework, encompassing two primary 

categories of physical elements that underpin rail 

operations. The first category includes the fundamental 

rail assets such as tracks, sleepers, rolling stock, signalling 

systems, and auxiliary structures like bridges, tunnels, and 

OLE systems. These elements constitute the core physical 

infrastructure that facilitates railway operations and 

ensures system functionality. The second category 

comprises advanced sensing and actuation technologies 

integrated into the rail assets. These include a diverse 

range of sensors such as load cells, ultrasonic sensors, 

strain gauges, deformation sensors, and GPR systems. 

Together, these components serve as critical nodes for 

capturing dynamic, high-fidelity data from the physical 

environment, forming the essential input layer for the 

proposed CPS-DT technical architecture. 

The physical domain/twin ensures real-time interaction 

between the physical rail environment and the cyber 

systems by continuously supplying raw, high-resolution 

data streams. This data forms the backbone of the DT 

domain, enabling real-time monitoring, predictive 

analytics, and decision-making processes. For example, 

ultrasonic sensors detect internal rail cracks that may 

otherwise go unnoticed during routine inspections; strain 

gauges measure load distribution across sleepers to 

identify uneven stress; and GPR systems evaluate ballast 

conditions to detect contamination or structural 

weakening. Actuators complement these sensors by 

facilitating responsive actions within the rail system. For 

instance, actuators automatically adjust the tension in 

OLE wires to prevent sagging, which can disrupt train 

operations, or activate heating elements embedded within 

tracks to mitigate freezing hazards during extreme 

weather conditions. These dynamic responses enhance the 

resilience and reliability of rail infrastructure by 

preventing operational failures. Figure 2 presents the 

Physical Domain illustrating some of the physical assets 

and sensor placements in the proposed framework.  

Communication Layer: The Cyber-Physical Bridge 

The communication layer serves as the cyber-physical 

bridge, facilitating seamless, high-fidelity data exchange 

between the physical and cyber domains. This 

bidirectional layer is essential for real-time PdM in rail 

infrastructure, ensuring the transmission of sensor data 

from the physical twin to the digital twin while enabling 

precise control and adaptive interventions. Given the 

complexity and safety-critical nature of rail operations, 

this layer is underpinned by an advanced integration of 

edge computing, 5G-enabled IoT networks, and AI-

driven data processing frameworks to support ultra-

reliable low-latency communication (URLLC). 

The communication layer operates through a multi-tiered 

network architecture comprising sensor nodes, edge 

gateways, cloud platforms, and control systems. High-

resolution data from ultrasonic sensors, eddy current 

probes, strain gauges, and thermal imaging cameras will 

be captured in real time and transmitted via IoT networks. 

For instance, ultrasonic testing of rails detects internal 

cracks, while eddy current sensors identify surface 

defects, such as head checks and corrugation. These high-

frequency signals require rapid processing at the edge to 

enable immediate fault detection and mitigate risks of 

catastrophic failures. 

The incorporation of 5G-enabled IoT enhances the 

responsiveness of this layer, particularly in time-sensitive 

applications like axle counter pulse signal monitoring. 

The ultra-low latency of 5G ensures that axle counter 

signals are processed instantaneously, preventing 

discrepancies in train positioning. Furthermore, GPR 

systems, deployed for ballast condition assessment, 
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Figure 2:Physical domain illustrating some of the physical 

assets and sensor placements in the proposed framework 



 

 

transmit terabyte-scale data to edge computing nodes for 

preprocessing, thereby reducing the bandwidth load on 

central cloud servers and accelerating anomaly detection. 

Edge computing nodes, integrated within railway 

substations and trackside units, perform real-time 

analytics on raw data before forwarding aggregated 

insights to centralised cloud platforms. These edge 

systems are equipped with AI-driven models trained on 

historical maintenance records, enabling predictive 

diagnostics of critical railway components. For example, 

acoustic emission analysis of rolling stock wheels can 

detect subsurface cracks before they propagate into 

structural failures. AI models process frequency-domain 

signals at the edge, correlating them with historical 

degradation patterns to predict the remaining useful life of 

wheels and axles. Similarly, dynamic brake testing relies 

on distributed temperature and force sensors, which 

stream real-time thermal dissipation data to edge nodes. 

By employing machine learning-based anomaly 

detection, brake malfunctions can be anticipated, 

reducing the likelihood of brake fade or failure during 

operations. In OLE, real-time tension meters and thermal 

imaging cameras continuously assess the wear of catenary 

wires, with AI models identifying patterns indicative of 

fatigue-induced failures. 

Given the critical nature of railway operations, 

cybersecurity mechanisms are embedded within the 

communication layer to safeguard against cyber threats 

and data corruption. Blockchain-based distributed ledgers 

ensure the integrity of PdM data streams by providing 

tamper-proof logging of sensor transmissions. Moreover, 

AI-driven intrusion detection systems (IDS) continuously 

monitor network traffic patterns, identifying anomalies 

that could indicate cyberattacks on interlocking systems 

or signalling circuits. Redundant communication 

channels further enhance the resilience of the system. For 

example, in the event of a failure in the primary 5G 

network, sensor data from track circuits (which monitor 

electrical discontinuities) and control panel voltage 

monitors can be rerouted through fibre-optic networks or 

satellite-based connectivity to maintain uninterrupted 

operations. These fault-tolerant designs are crucial for 

ensuring operational continuity, particularly in remote or 

underground railway sections where network disruptions 

are more prevalent. 

The bidirectional nature of this layer facilitates automated 

responses based on real-time diagnostics. For instance, 

upon detecting excessive vibration in bridge expansion 

joints using accelerometers, control systems can initiate 

automated inspections or alert maintenance crews before 

structural integrity is compromised. In drainage systems, 

sonar sensors embedded within culverts detect sediment 

accumulation, triggering automated flushing mechanisms 

or scheduling robotic camera inspections to assess 

blockages. Similarly, in stations and platforms, IoT-

enabled escalator chain and step monitoring systems 

provide real-time feedback to maintenance teams. When 

abnormal vibrations are detected, predictive algorithms 

determine whether immediate intervention is necessary, 

thereby minimising unplanned outages and optimising 

maintenance schedules. 

Cyber Domain: The Digital Twin 

The cyber domain is the computational core of the CPS-

DT framework, housing the DT, which is continuously 

synchronised with real-time data. This domain bridges the 

physical infrastructure with advanced digital analytics, 

leveraging high-fidelity models and predictive 

capabilities to enhance PdM procedures. Through 

continuous data exchange with the Communication 

Layer, the DT ingests and processes sensor-derived 

information, enabling data-driven decision-making that 

influences interventions in the Physical Domain. The 

cyber domain operates across two critical functions: data 

processing and analytics; and decision and control. These 

functions rely on the Communication Layer to receive and 

transmit data from the Physical Domain. 

Data Processing and Analytics 

Raw sensor data (Table 2) undergoes transformation into 

actionable insights using technologies such as big data 

analytics, AI and ML. Advanced computational models 

identify failure patterns, predict asset degradation, and 

optimise railway operations. For instance: 

• AI-driven analytics process vibration data from rolling 

stock to detect early signs of motor faults, enabling 

condition-based maintenance. 

• ML models predict structural degradation in bridges 

and tunnels under dynamic loads, informing long-term 

maintenance planning. 

• Graph-based AI integrates multi-source data to model 

complex interdependencies, such as rail-track 

interactions under varying train loads. 

Computational tasks are distributed between edge 

computing (for real-time, latency-sensitive operations) 

and cloud platforms (for high-volume analytics). For 

instance: 

• Edge AI detects immediate track defects using onboard 

sensor fusion techniques, triggering alerts for rapid 

intervention. 

• Cloud-based processing aggregates and analyses data 

over time to develop system-wide predictive models for 

infrastructure resilience. 
Table 2: Key static and dynamic DT data in the proposed 

technical architecture 

Key static DT data Key dynamic DT data 

Track and Rail 

● Track layout, material 

specifications 

● Historical wear data 

● Track maintenance 

history 

 

● Stress, strain, and 

deformation data 

● Vibration and temperature 

● Train load and speed 

● Real-time track geometry  

Signalling and Control 

● Signal types, layout, and 

lifespan 

● Circuit diagrams and 

hardware configurations 

● Signal operation and response 

times 

● Fault occurrences and system 

downtime 



 

 

● Historical maintenance 

logs 

 

● Voltage and power 

fluctuations 

● Environmental impacts on 

signalling equipment 

Rolling Stock 

● Fleet inventory 

● Maintenance records 

(e.g., wheel wear, axle 

condition) 

● Axle load and fatigue 

limits 

● Design and performance 

specifications 

● Wheel-rail interface forces 

● Speed, acceleration, and 

braking performance 

● GPS for train location 

● Brake performance and 

temperature fluctuations 

● Vibration and tilt sensors 

Overhead Line Equipment (OLE) 

● Material specifications 

● Support structure layouts 

and specifications 

● Environmental impact 

thresholds 

 

● Real-time wire tension and 

sag 

● Voltage, current, and load 

variations 

● Pantograph-wire interaction 

data 

● Weather-related impacts  

Bridges and Tunnels 

● Structural design models 

(e.g., CAD) 

● Material specifications 

● Inspection and repair 

history 

● Load capacity and 

fatigue limits 

● Construction and 

modification history 

● Real-time strain and stress 

measurements 

● Vibrations caused by train 

movement, crack growth, 

deformation 

● Water infiltration and 

corrosion levels 

● Weather conditions (e.g., 

humidity) 

Drainage Systems 

● Layout and design 

models 

● Soil and water flow 

characteristics 

● Inspection records 

● Footfall counters 

● Real-time water level and 

infiltration monitoring 

● Real-time blockages and silt 

accumulation 

● Water flow rates during 

rainfall 

Stations and Platforms 

● Layout (spatial 

relationship) of station 

assets 

● Safety and emergency 

protocols 

● Accessibility 

compliances 

● Passenger flow  

● Asset inventory and 

inspection records 

● Passenger flow and crowd 

density (CCTV and security 

systems) 

● Vibrations and structural 

stress measures  

● Real-time condition of 

escalators, elevators, and 

systems 

● Weather conditions (i.e 

temperature) 

Decision and Control: The Feedback Loop 

The decision and control function converts analytical 

insights into operational actions, forming a self-adaptive 

CPS-DT system. This feedback mechanism allows 

automated responses, optimised maintenance scheduling, 

and real-time control decisions, such as: 

• Predictive alerts: If GPR data detects ballast 

contamination, an automated maintenance work order 

is generated for cleaning or replacement. 

• Dynamic load adjustment: If stress anomalies are 

detected in rails, automated control systems adjust axle 

loads dynamically to prevent further deterioration. 

• Autonomous diagnostics: AI-driven decision engines 

cross-validate sensor data anomalies, minimising false 

alarms and enhancing fault detection accuracy. 

By tightly integrating data analytics, communication 

networks, and physical assets, the cyber domain ensures 

railway infrastructure operates with maximum efficiency 

and minimal disruption. Figure 3 depict the proposed 

CPS-DT framework in a track maintenance scenario. 

Future Development Strategy 

The proposed technical architecture establishes a 

conceptual framework for integrating DT technology with 

CPS to enhance predictive maintenance in railway 

infrastructure. The next phase involves transitioning from 

conceptual framework to a functional prototype to 

evaluate system performance under real-world 

conditions. This process encompasses several key steps. 

1. DT model development will involve constructing 

high-fidelity virtual replica of the railway system. 

This step will include incorporating multi-source 

sensor data to simulate real-time asset conditions. 

2. The edge and cloud computing infrastructure 

deployment will establish a hybrid computational 

architecture. Latency-sensitive tasks, such as 

vibration analysis for track defects, will be processed 

on edge devices, while cloud-based analytics will 

handle long-term trend analysis and decision support. 

Federated learning techniques will be leveraged to 

improve model training without extensive data 

transfer, ensuring data privacy and reducing 

bandwidth constraints. 

3. The integration of IoT and 5G-enabled connectivity 

will involve deploying a robust sensor network with 

IoT-enabled condition-monitoring devices mounted 

on railway assets. 5G URLLC will facilitate real-time 

data transmission, enabling near-instantaneous 

feedback loops for dynamic maintenance scheduling. 

Middleware will be implemented for seamless data 

aggregation and standardisation across 

heterogeneous systems. 

4. Testing and validation will be conducted through 

controlled pilot implementations on designated 

railway corridors to evaluate PdM accuracy, system 

responsiveness, and interoperability with legacy 

railway management systems. Key performance 

indicators (KPIs) will be established, including fault 

detection lead time, false positive rate in anomaly 

detection, and maintenance cost reductions.  

5. The researchers will partner with industry to co-

develop implementation guidelines. Workshops will 

be conducted with regulatory bodies to align DT-CPS 

deployment with existing railway safety and 

cybersecurity standards. 



 

 

Limitations and Further Research  

While the proposed DT-CPS framework presents 

significant advancements, several technical challenges 

require further research. Data integration and 

interoperability pose challenges due to legacy railway 

systems operating on fragmented data structures and 

proprietary software. Future research should focus on 

developing standardised semantic data models, such as 

Industry Foundation Classes (IFC) for rail, RailML, and 

openBIM standards, to enable seamless integration. 

Additionally, the reliance on IoT and cloud infrastructure 

exposes the system to potential cyber threats, 

necessitating the incorporation of advanced security 

protocols. Furthermore, real-time analytics demand high 

computational power, particularly for deep learning-

based fault prediction models. Investigating lightweight 

machine learning models (e.g., TinyML) and 

neuromorphic computing approaches is essential for 

optimising performance on resource-constrained edge 

devices. Finally, while pilot-scale testing is a step 

forward, long-term validation in operational railway 

networks is required to assess real-world feasibility. 

Future studies should explore multi-year deployments 

across diverse railway systems, to refine model 

generalisability and adaptive learning capabilities. 

Conclusion 

This research introduces a novel DT-CPS integration 

conceptual framework that advances PdM strategies in 

rail infrastructure. Key contributions include enhanced 

PdM through AI-driven fault diagnostics and real-time 

sensor fusion, a scalable and interoperable architecture 

that supports both legacy railway systems and next-

generation digital rail initiatives, and real-time decision 

support using an adaptive decision-making framework 

leveraging reinforcement learning models. Furthermore, 

the framework promotes sustainability and asset 

longevity by implementing condition-based maintenance 

strategies that optimise material usage. By addressing the 

mentioned limitations through continued interdisciplinary 

research and industry collaborations, the proposed DT-

CPS framework can serve as a transformative solution for 

PdM in rail infrastructure, fostering safer, more efficient, 

and cost-effective railway operations. 
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