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Abstract 

This thesis explores the development, evaluation and optimisation of a digital reading 

therapy for individuals with an acquired reading impairment. The app aims to improve 

single-word reading speed and accuracy. This research builds on prior research into the 

clinical efficacy of the iReadMore therapy mechanism, previously delivered via a laptop-

based prototype. 

In Chapter 1 of the thesis, I present a qualitative study of the development of the 

iReadMore App, addressing the need for improved accessibility and user engagement to 

enable independent, home-based therapy. A co-design process involving individuals 

with alexia, with or without aphasia, informed the creation of the app's release version. 

Design recommendations for digital therapies for persons with alexia were derived from 

the co-design process and analysed using a framework analysis. 

In Chapter 2, I report preliminary findings from the ongoing clinical effectiveness trial 

investigating the therapeutic effects on reading accuracy and reaction time in real-world 

app users. This chapter highlights early indications of therapy effects. Additionally, I 

explore the unique challenges associated with conducting research in real-world 

contexts. 

In Chapter 3, I present two studies investigating the potential of machine learning to 

predict treatment outcomes for users of the iReadMore app and another digital therapy 

for improving speech comprehension, the Listen-In app. In these studies, I focused on 

training models using data that can feasibly be collected within an app, the studies 
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provide insights into the viability of using routine, easily collected in-therapy data to 

support treatment outcome prediction. 

In the general discussion, I connect the qualitative findings, preliminary trial results, and 

treatment prediction insights, contextualising the findings, and exploring potential 

directions for future research. 
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Impact Statement 

Approximately, a third of all stroke survivors experience aphasia, a language disorder 

that can lead to impairments across all language modalities and frequently persists into 

the chronic phase of recovery (Feigin, Norrving and Mensah, 2017). With the added 

context of an estimated 1.2 million stroke survivors currently living in the UK (Stroke 

Association, 2018), and a projected 27% increase by 2047 (Wafa et al., 2020), the 

demand for effective and accessible aphasia therapies is expected to rise significantly.  

Evidence has demonstrated that treatments for aphasia can effectively improve 

language functioning even many years post-stroke, but meaningful recovery often 

requires substantial therapy doses, typically between 20–100 hours (Bhogal, Teasell and 

Speechley, 2003; Brady et al., 2022). Despite this, limited rehabilitation resources within 

the National Health Service (NHS) mean that individuals with aphasia typically receive 

just 12 hours of therapy on average (Clarke et al., 2018; Palmer, Witts and Chater, 2018). 

The Development of effective digital therapies offers a promising solution, enabling 

scalable, high-dose therapy delivery to meet the growing needs of this population. 

The first chapter of my thesis explores the co-design process of developing iReadMore, 

a digital reading therapy designed for individuals with acquired reading impairments. 

The goal was to improve accessibility and therapy engagement, enabling at-home, 

independent use to achieve the high therapy doses necessary for significant treatment 

effects. An iterative co-design process was conducted, and a framework analysis was 

employed to identify key design recommendations. These recommendations were 

published to guide similar co-design efforts and provide a detailed methodology of work 
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(Langford et al., 2022). The outcomes of this process, combined with funding achieved 

from Research England, facilitated the release of the iReadMore app. 

Chapter 2 presents preliminary findings from the iReadMore Rollout Trial, which suggest 

early indications of a treatment effect for improving reading accuracy in trained words. 

However, further data collection is required to validate these findings. This chapter also 

offers valuable insights into the differences between how individuals with alexia or 

aphasia engage with self-led digital therapies in real-world contexts compared to 

controlled research settings, highlighting practical challenges and opportunities for 

improvement in real-world implementation. 

Finally, Chapter 3 investigates the development of treatment prediction models for 

digital therapies, proposing the use of in-app data, particularly data collected during 

therapy sessions, as an alternative to traditional reliance on clinical assessments. The 

findings suggest that this in-therapy data could serve as a viable alternative or 

complement to clinical assessments, offering a means of generating predictions for 

digital therapy users when clinical assessments are not feasible. These results open 

new pathways for future research in aphasia rehabilitation and digital therapy 

development. 
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1 Introduction 

1.1 Background 

There are currently 1.2 million stroke survivors in the UK (Stroke Association, 2018). This 

number is expected to rise to well over 2 million by 2035. This increase can be attributed 

to stroke survival rates having doubled in the last decade, in part due to improvements 

in acute stroke medicine and greater public awareness of early stroke symptoms. Over 

the same period, prevalence of strokes in adults aged 35-54 has increased by 20% 

(Seminog et al., 2019). These factors will result in greater clinical demand for post-

stroke rehabilitation services. 

Alexia is an acquired reading impairment that often arises due to a stroke or other brain 

injury affecting specific brain regions. Individuals with alexia have impaired reading 

abilities compared to before the injury. Alexia can occur with or without aphasia, 

depending on whether other aspects of language are affected. Aphasia is a common 

neuropsychological impairment caused by a stroke affecting a third of all stroke 

survivors (Berthier, 2005). It is a generalised language disorder that can affect all areas 

of expressive (e.g. speaking or writing) and receptive (e.g. listening or reading) 

communication. Aphasic symptoms are highly variable and dependent on stroke lesion 

size and location. In a study of the negative impact on quality of life of 60 highly-

prevalent diagnoses, aphasia had the largest negative impact on quality of life, larger 

than a diagnosis of cancer or Alzheimer’s disease (Lam and Wodchis, 2010). The 

negative implications for stroke survivors’ quality of life arise from how aphasia disrupts 
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activities of daily living and life participation. Even in milder forms, it can be detrimental 

to quality of life (Hilari, 2011; Northcott and Hilari, 2011). 

Bhogal et al. (2003) found that on average 100 hours of post-stroke aphasia therapy 

targeting one language domain (speaking, listening, reading or writing) is required to 

achieve a clinically meaningful improvement. Currently, NHS patients receive around 12 

hours of therapy over 6-8 sessions (Clarke et al., 2018; Palmer, Witts and Chater, 2018). 

However, it was also found that actual therapy time could be as low as 20 minutes per 

session (Clarke et al., 2018). Insufficient therapy doses and outcomes are contributing 

to the statistic that 45% of stroke survivors surveyed by the Stroke Association reported 

that they felt ‘abandoned after leaving hospital’ (Stroke Association, 2016).  

Although, some patients do receive higher doses, it is unlikely that stroke survivors 

outside of a controlled research setting would receive the dose suggested by Bhogal et 

al. However, recent research studies show the majority of stroke survivors (including 

those who had their stroke many years ago) would benefit from receiving high-dose 

and/or intensive therapies (Cherney, 2012; Dignam et al., 2015; Doogan et al., 2018). 

Consequently, new therapies that can be delivered in large doses and frequently are 

required to meet the current unmet clinical need. One solution is to develop digital 

therapies that can be used independently with unlimited access. 

Digital therapies provide users with the flexibility to engage in self-paced therapy, 

offering unlimited access and enabling higher intensity practice. This accessibility can 

help achieve the substantial doses of practice often required for measurable 

improvements. However, digital therapies frequently have a narrow scope, confined by 
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the specific training content and therapeutic mechanisms they employ. For instance, 

many are rooted in mass-practice principles, which focus on repetition within a single 

language domain. While this approach can enhance trained items within that domain,  

there will be little to no improvement observed in untrained areas (Howard et al., 2006). 

As such, the potential for digital therapies to provide broader, more comprehensive 

benefits remains an area of active development and research. 

iReadMore is a digital therapy for alexia that was previously found to significantly 

improve reading speed and accuracy for individuals with central alexia (Woodhead et 

al., 2018) and reading speed for individuals with pure alexia (Woodhead et al., 2013). 

The digital therapy provided mass training exposure with significant therapeutic effects 

demonstrated in these trials. However, it was clear that the therapy needed to be 

developed further for real world use by individuals with alexia and potentially additional 

comorbidities, independently at home, while maintaining engagement and independent 

use. 

Reading is an area that has been less focused on in terms of aphasia rehabilitation, and 

the development of the iReadMore app aligns well with my research interests in digital 

therapies, co-design, and machine learning. This PhD project seeks to bridge the gap 

between evidence-based therapies and real-world application, focusing on how digital 

interventions can be personalised and applied outside of clinical trials.  
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In this thesis, I aim to investigate the following research questions: 

1 How can co-design and gamification principles be used to develop a reading 

rehabilitation app that ensures engagement, accessibility, and supports 

independent use by real-world users? 

2 What are the preliminary treatment effects of the iReadMore therapy app for real-

world users in a digital rollout trial? 

3 Can treatment outcome prediction algorithms be trained using solely data collected 

through the iReadMore app? 

By completing the co-design process and releasing the iReadMore app publicly will 

provide an important step in translating years of research, conducted prior to my joining 

the project into practice, fulfilling the ambition of providing an evidence-based therapy 

for individuals with alexia to use independently and without restriction. In addition, it is 

my hope that through a framework analysis of the co-design process, a contribution to 

our understanding of how to empower individuals with alexia to engage better with 

digital therapies and other software might be identified. Finally, the app’s release will 

also enable the data collection for research questions 2 and 3, subject to timing and 

data availability. 

The online rollout trial will generate valuable data on the therapy’s effectiveness for real-

world users, as well as detailed insights into the realistic usage of a digital therapy 

outside of the confinements of a typical research study. This data will be analysed to 

explore optimal therapy utilisation and strategies for maintaining engagement. 
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The final research chapter will explore the feasibility of developing treatment outcome 

prediction algorithms based solely on data that can realistically be collected through a 

digital application. This may offer a potential alternative or complement to existing 

practices that rely on brain scan data and behavioural tests conducted in clinical or 

research settings; an approach previously explored for the iReadMore therapy (Aguilar 

et al., 2018). 

In this introduction, I will explore the literature on reading therapies for alexia, with a 

particular focus on digital interventions, and the factors that influence treatment 

outcomes, ranging from therapy designs to user considerations. I will then outline the 

iReadMore therapy mechanism and review previous research as the foundation for my 

research. As a starting point, I will first define typical reading processes through 

cognitive models and examining the neurological basis for reading to provide a context 

for the therapy. 

Given the diverse methodologies and subject areas covered in each study, dedicated 

subject-specific introductions are also included at the start of each methods chapter to 

provide appropriate context. 
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1.2 Typical Reading 

1.2.1 Cognitive Models of Typical Reading 

In the last half century, numerous models of word identification in reading have been 

proposed, three of which have reached considerable prominence. They are; the 

Interactive Activation Model (McClelland and Rumelhart, 1981), the Dual Route 

Cascaded (DRC) Model (Coltheart et al., 1993, 2001; Coltheart and Rastle, 1994) and 

the Triangle Model (Seidenberg and McClelland, 1989; Plaut et al., 1996; Harm and 

Seidenberg, 1999, 2004). All of these models are representation of reading single words 

aloud. 

The Interactive Activation Model (Figure 1a) assumes that information processing during 

reading consists of distinct levels of processing beginning with the activation of nodes 

relating to sub-letter visual features (lines, dots, curves), these activate letter level 

nodes that correspond to those features and inhibits others that do not. This is turn 

activates word level nodes and lead to word identification (Figure 1b). Several letters are 

identified in parallel with inhibitory feedback from higher order levels (identification of 

whole words) able to inhibit nodes that do not fit the predictions. This model represents 

the visual processing of words effectively. However, it oversimplifies the cognitive 

processes involved in reading by excluding the influences of semantic and phonological 

processes.               
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Figure 1 - Interactive Activation Model of Reading. a) Arrows represent excitatory connections and dot-ended 

connections represent inhibitory connections in the model. b) Example of node interconnections in the Interactive 

Activation Model from feature to word level (adapted from McClelland & Rumelhart, 1981). 

 

The Dual Route Cascaded model (Figure 2) has two routes, a direct, unidirectional 

grapheme-phoneme route (for familiar, regular words) and an indirect, bidirectional 

route (containing excitatory and inhibitory connections for irregular, low-frequency, and 

exception words) that uses knowledge of pronunciation of letter sequences and 

semantics to inform word identification.  
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Figure 2 - Dual Route Cascade Model of Reading. Green arrows indicate excitatory connections, red dot-ended lines 

indicate inhibitory connections (obtained from http://www.cogsci.mq.edu.au/~ssaunder/DRC/). 

 

The Triangle Model (Figure 3) is a connectionist model of word reading, comprising of 

three interconnected domains; orthographic (O), phonological (P) and semantic (S) 

representations. Word identification can be achieved through direct O-P or indirect O-S-

P routes. Both routes are activated during word reading and the feedback/feedforward is 

strengthened through experience, where one route will become dominant and lead to 

quicker word identification. Both routes can read all types of words, but connectivity will 

be differently weighted for different types of words (and different individual reading 

http://www.cogsci.mq.edu.au/~ssaunder/DRC/
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styles). The Triangle Model uses the assumption that frequent or regular words are 

identified more accurately and quicker as the direct connections should be stronger. 

 

 

Figure 3 - The Triangle Model of Reading. The empty circles represent hidden units where weightings between the 

connections occur (obtained from Seidenberg, 2005). 

 

1.2.2 Neurological Underpinnings of Typical Reading  

Various neuroimaging studies of able readers have revealed that reading activates a 

predominantly left-lateralised network of occipitotemporal, temporal, and inferior 

frontal areas (Price, 2012; Carreiras et al., 2014; Perrone-Bertolotti et al., 2017; Zhou 

and Shu, 2017). Reading is thought to be achieved via two complementary pathways, 

the dorsal and ventral streams (Jobard, Crivello and Tzourio-Mazoyer, 2003; Cohen et 

al., 2008; Taylor, Rastle and Davis, 2013). The dorsal reading stream supports 

phonological decoding for grapheme-to-phoneme reading (Hickok and Poeppel, 2007; 

Saur et al., 2008; Taylor, Rastle and Davis, 2014), while the ventral reading stream 

comprises regions involved in visual word recognition (Binder et al., 2006; Glezer, Jiang 
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and Riesenhuber, 2009; Ben-Shachar et al., 2011) and access to the meaning of a word 

(Binney et al., 2010; Visser et al., 2012; Carlson et al., 2014). When sensory input arrives 

at the occipital cortex via thalamic relay, simple concrete feature analyses are 

undertaken (e.g. unimodal) (Mumford, 1992). Information is then passed on to the 

higher-order ventral occipitotemporal cortex and inferior frontal gyrus where more 

abstract (e.g. multimodal) features analyses take place. These processes occur in 

parallel and higher order analyses are feedback down the hierarchy to lower order 

regions resulting in suppression of word predictions that are incongruent with the 

feedback, ultimately leading to word identification (Friston, 2005). 

Cognitive models of reading have provided an understanding of the labour involved in 

word identification, but they do not contribute to our understanding of where these 

processes are taking place anatomically. Two prominent models of reading have 

emerged from neuroimaging literature; the Local Combination Detector model 

(Dehaene et al., 2005) and the Interactive Account model (Price and Devlin, 2011). The 

Local Combination Detector model of visual word recognition suggests that as neurons 

are tuned to progressively larger fragments of a word as their location moves anteriorly, 

word reading is achieved primarily through feedforward processing along the visual 

ventral stream. This implies a bottom-up approach reliant on visual (orthographic) 

processing and not the semantic or phonological forms of a word. Subsequent studies 

have suggested that feedback from the frontal cortex plays a role in facilitating visual 

processing in word reading (Cornelissen et al., 2009; Wheat et al., 2010). Building on 

this concept, the Interactive Account model suggests that efficient word recognition 

relies on sensory input being fed forward (bottom-up) and predictions learnt by 
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experience being fed backwards (top-down) within this network. This model therefore 

accounts for how orthographic, semantic and phonological representations interact 

within the reading network. If considered in the context of the triangle model, 

phonological and semantic representations may form the higher-level components 

predicting orthographic and visual representation (Kerry et al., 2019).  

 

1.3 Acquired Impaired Reading 

1.3.1 Post-Stroke Alexia  

Alexia is a generic term to describe an acquired reading impairment. Alexia causes slow, 

effortful or inaccurate reading in people who were previously able readers. Stroke is the 

most common cause, other causes include brain injuries and neurodegenerative 

disorders. The presentation of symptoms is highly variable based on the location and 

severity of the injury and neurological or behavioural individual differences. Even in 

milder forms, alexia can be a debilitating disorder that restricts life participation, social 

relationships, employment and living independently (Hilari, 2011; Northcott and Hilari, 

2011; Woodhead et al., 2013). 

There are a number of subtypes of alexia which fit into two subdivisions; peripheral and 

central alexia. Peripheral alexia result from disruptions in visual word processing in the 

occipital cortex prior to written information reaching language comprehension areas 

(Leff et al., 2006; Starrfelt et al., 2013), typically caused by a stroke affecting the 
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posterior cerebral artery in the left-hemisphere. Peripheral alexia has 4 subtypes; pure, 

neglect, attentional and hemianopic alexia. These are described in Table 1.  

By contrast, central alexia results from disruptions in the language and semantic 

pathways, affecting how words are understood and interpreted after they have been 

visually recognised. Central alexia is defined as a reading impairment in the context of a 

general language disorder (known as aphasia). In central alexia, damage to the middle 

cerebral artery region of the temporal lobe disrupts word reading by impairing 

grapheme-phoneme conversion or word comprehension. Central alexia affects two-

thirds of individuals with post-stroke aphasia (Leff and Starrfelt, 2014). Central alexia 

has 3 subtypes; surface, phonological and deep alexia, described in Table 1 on the next 

page. In addition, ‘mixed-type’ central alexia is described below for presentations 

commonly observed that do not fit distinct, classical subtypes. 
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Table 1- Peripheral and Central Alexia Subtypes (data adapted from Riley, Brookshire and Kendall, 2017). 

Alexia 
category 

Alexia  
Subtype 

Definition 
Point of 

breakdown  
(DRC model) 

Point of 
breakdown 

(Triangle 
Model) 

Peripheral 
Alexia 

Pure 

Impaired single word 
reading with word length 
effect, preserved single 
letter reading. 

Visual feature 
and  letter 
analyses 

N/A 

Neglect 

Neglect of visual field on 
the left or right, impairs 
reading of the initial or last 
letters of a word. 

Letter analysis 

N/A 

Attentional 

Poor visual attention, 
Difficulty reading due to 
visual crowding of letters 
and words. 

Letter analysis 

N/A 

Hemianopic 

Partial loss of vision on one 
side of the visual field. 
Leads to slowed reading 
and omissions. 

Visuo-motor 
control of 

reading eye 
movements 

N/A 

Central 
Alexia 

Phonological 
Difficulty reading unfamiliar 
words or nonwords. 

Non-lexical 
route  

(Grapheme-
Phoneme Rule 

System) 

O-S 
pathway 

Surface 
Difficulty with irregular 
words. 

Lexical route 
(orthographic 
input lexicon 

and 
phonological 

output lexicon) 

P-O 
pathway 

Deep 
Makes semantic errors and 
difficulty with function 
words. 

Non-lexical and 
lexical routes 

S-P and O-P 
pathways 
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1.3.1.1 Peripheral Alexia 

Pure Alexia 

Pure Alexia (PA), also known as alexia without agraphia, is a rare and severe form of 

reading impairment that typically arises from damage to the left ventral 

occipitotemporal cortex, often following an occlusion of the posterior cerebral artery. 

This impairment was first documented by Dejerine, who described a case of Monsieur 

C, a patient unable to read following a stroke (Dejerine, 1892). PA specifically impairs 

the ability to recognise whole words as distinct visual units during reading, despite the 

preservation of other cognitive functions such as spelling and writing. Patients with PA 

commonly exhibit a right homonymous hemianopia (RHH) in addition to significant 

difficulties with single-word reading, which cannot be solely explained by the visual field 

defect. Reading speed is notably slow on word-reading tasks, with some patients 

requiring up to ten seconds to read a six-letter word (Cohen et al., 2004). A hallmark 

feature of PA is the ‘word length effect’ (WLE), where reading time increases with the 

length of the word, leading to a disproportionately greater difficulty with longer words. 

Although patients with PA often retain accurate spelling and writing abilities, indicating 

intact word knowledge, they struggle to access this knowledge from the visual modality. 

Letter reading is typically preserved, allowing patients to adopt a compensatory 

"reverse-spelling" strategy, where they read each letter of a word sequentially and 

combine them to form the complete word. This strategy, while effective, is effortful and 

slow, further contributing to the overall impairment in reading fluency.  

A severe variant of pure alexia, in which even the ability to read single letters is 

impaired, is known as global alexia. This is the most profound form of peripheral alexia 
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and typically results from extensive damage affecting both the left occipital cortex and 

the interhemispheric white matter tracts. Dejerine’s original patient, Monsieur C, was 

diagnosed with alexia without agraphia (or pure alexia) but also exhibited an inability to 

recognise or read individual letters, which aligns with the modern understanding of 

global alexia. 

 

Neglect Alexia 

Neglect Alexia (NA) is a reading disorder typically resulting from damage to the parietal 

or occipitotemporal regions of the brain. It is characterised by an inability to read words 

accurately when they are flanked by distracting stimuli, particularly when these stimuli 

interfere with the individual’s visual attention. This condition is associated with a spatial 

neglect, where the individual fails to attend to one side of the visual field, often the left 

hemisphere in right-handed individuals. As a result, patients may omit or misread 

critical visual information, such as the initial or final letters of a word, which can disrupt 

word recognition and comprehension. In more severe cases, this attentional bias can 

lead to skipping entire words, which can contribute to the misinterpretation of the text’s 

meaning. 
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Attentional Alexia 

Attentional Alexia (AA) similarly results from parietal damage in regions responsible for 

visual attention. It is characterised by an inability to direct attention to individual letters 

of words within a visual field, causing interference and crowding among letters and 

words that often lead to omissions or other errors. 

 

Hemianopic Alexia 

Hemianopic alexia (HA) is a reading disorder typically resulting from damage to the 

primary visual pathways in the left occipital cortex, leading to a right homonymous 

hemianopia, where the individual experiences visual loss in the right visual field. HA is 

the most common form of peripheral alexia. People with this condition often exhibit 

reduced reading speed, especially when the impairment involves the right parafoveal or 

foveal regions, which are crucial for efficient word recognition and fixation. The primary 

difficulty in HA arises from the inability to make accurate saccades—rapid eye 

movements—along lines of text, which leads to issues such as omissions of words, 

challenges in maintaining the left-to-right reading saccades, and an increased sense of 

reading fatigue. Despite these challenges, individuals with HA are able to access both 

lexical and non-lexical routes for word recognition, and testing often finds preserved 

letter and word reading abilities. However, the ability to read text fluently is 

compromised by the impaired reading speed. This is largely due to the difficulty in 

planning and executing saccades across the text, as upcoming words fall within the 

blind hemifield which disrupts smooth reading progression (Leff et al., 2001). 
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1.3.1.2 Central Alexia 

Phonological Alexia 

Phonological Alexia is marked by a deficit in reading unfamiliar or non-words, while the 

reading of actual, known words remains relatively intact. Phonological alexia is 

associated with damage to the left inferior frontal gyrus, insula and Rolandic 

operculum. Patients with this subtype struggle with the translation of print to sound as 

utilisation of the phonological representations or the direct orthographic-to-

phonological pathway is impaired. Errors often include the lexicalisation of nonwords, 

where a nonword is read as a real word, such as reading “soof” to “soot”.  

 

Surface Alexia 

Surface Alexia (SA) is characterised by the inability to read irregularly spelled words 

(such as “yacht”) correctly, but can read regular or phonetically-spelled words with 

ease. Irregular spellings tend to lead to regularisation errors. For example, the word 

“pint” might be read as if it rhymed with “mint”. This subtype often co-occurs with 

semantic dementia, where there is a gradual deterioration of the anterior temporal 

poles, lead to a progressive breakdown in the ability to access semantic information, 

further impairing word recognition and comprehension. Patients with surface alexia rely 

heavily on grapheme-to-phoneme conversion rules and have difficulty recognising 

whole words. The impairment is typically linked to damage in brain areas responsible for 

“whole-word” reading route, such as the left posterior middle and inferior temporal 

gyrus. 
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Deep Alexia 

Deep Alexia (DA) is characterised by multiple impairments in word reading due to 

extensive damage in the left hemisphere language network. It can be considered as a 

severe form of phonological alexia which compromises experiencing semantic errors in 

addition to phonological errors. People with DA make errors where the target word is 

replaced with a semantically related word, such as “cat” and “dog”, or “yes” and “no”. 

They also exhibit visual and phonological errors and struggle with reading function 

words. People with DA may also have difficulty with abstract and function words. The 

Triangle Model of Reading suggests that DA results from a severe deficit in phonological 

representations affecting both the orthographic-to-phonological and orthographic-to-

semantic pathways. 

 

Mixed Alexia 

Not all cases of central alexia (CA) fit neatly into the traditional categories of surface, 

phonological, and deep alexia, and the suitability of the models that explain the 

impairments associated with these subtypes has been the subject of ongoing debate  

(Woollams et al., 2007). More recently, the term mixed central alexia has been used to 

describe cases where patients exhibit symptoms that span multiple subtypes and 

cannot be easily classified into any one category. A study of 64 chronic CA cases found 

that 78% of the patients presented with a mixed pattern of impairments, further 

challenging the utility of discrete subtypes (Leff and Starrfelt, 2014). In response to this 

complexity, a continuum-of-subtypes theory has been proposed, which suggests that 
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alexia symptoms exist along a spectrum rather than in isolated categories (Crisp and 

Lambon Ralph, 2006), visualised in Figure 4. This framework underscores the need for 

more flexible, individualised therapeutic approaches to address the varied and 

sometimes undefined nature of reading impairments. By utilising data from  real world 

users of the iReadMore therapy, a therapy designed to be potentially useful in all CA 

subtypes, this study aims to further refine our understanding of central alexia subtyping 

and its relevance to clinical applications. Additionally, the continuum-based theory will 

form the foundation for a novel alexia subtyping test aimed at assessing reading 

impairments within the phonological–semantic space. 

 

Figure 4 - The positioning of central alexia within a phonological–semantic space (adapted from Crisp and Lambon-

Ralph, 2006).  
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1.3.2 Alexia in Primary Progressive Aphasia 

Symptoms of aphasia also occur in neurodegenerative disorders. Most notably in a 

group of dementias known as primary progressive aphasias (PPAs). This a term for 

dementias distinguished by a progressive decline in language comprehension and 

production initially experienced in the absence of other neurological impairments 

(Mesulam, 1987). As the disorder progresses, other cognitive, behavioural or motor 

impairments may also begin to develop. Cases of PPA are rare with an estimated 

prevalence ranging from 3-11 cases per 100,000 (Coyle-Gilchrist et al., 2016; Magnin et 

al., 2016). Presentations of symptoms vary and there are presently three recognised 

subtypes of PPA (Gorno-Tempini et al., 2011); a semantic variant (svPPA), a nonfluent 

variant (nfvPPA) and a logopenic variant (lvPPA). 

svPPA involves the loss of the ability to interpret the semantic content of language and 

tends to be accompanied by severe anomia (Marshall et al., 2018). People with nfvPPA 

tend to present a more diverse range of symptoms. However, agrammatism and apraxia 

of speech (AOS) are common and lead to speech production impairments including 

telegraphic speech (lacking function words) and slurring respectively. The logopenic 

variant, lvPPA is characterised clinically by word finding difficulties, phonological errors 

and impaired sentence repetition and comprehension (Beber et al., 2014; Rohrer and 

Warren, 2016). Single word processing also declines with disease progression (Rohrer et 

al., 2013).  

People with nfvPPA tend to present a more diverse range of symptoms at initial clinical 

assessments when compared with the other PPA subtypes. However, agrammatism and 
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apraxia of speech (AOS) are common and lead to speech production impairments 

including telegraphic speech (lacking function words) and slurring respectively. Cases 

of pure agrammatism or AOS are also common (Rohrer and Warren, 2016). Speech 

comprehension is also affected, with particular difficulties arising from the processing 

of syntactically complex sentences; which is linked to agrammatism (Peelle et al., 

2008). In nfvPPA, atrophy occurs asymmetrically in the left inferior frontal lobe 

(particularly around Broca’s area), insular and anterior-superior temporal gyrus atrophy 

(Brambati et al., 2009; Wilson et al., 2010; Marshall et al., 2018). Many people with 

nfvPPA will go on to develop Parkinsonism and some develop motor neurone disease. 

The logopenic variant, lvPPA is characterised clinically by word finding difficulties, 

occasional phonological errors and impaired repetition and comprehension of 

sentences (Beber et al., 2014; Rohrer and Warren, 2016). Single word processing 

remains intact initially but declines with disease progression (Rohrer et al., 2013). 

Initially, people with lvPPA may experience ‘tip of the tongue’ phenomenon; in which 

they strongly feel they know the word they want to produce but are unable to recall it. 

This interrupts speech production, but verbal output tends to be free from 

agrammatism or AOS demarcating this variant from nfvPPA. Many other cognitive 

domains can also be affected including mood regulation, working and episodic 

memory, praxis and spatial awareness (Butts et al., 2015; Piguet et al., 2015). Initially 

degeneration in lvPPA is mainly limited to the left posterior temporo-parietal area, in 

particular the posterior-superior temporal and inferior parietal cortices (Gorno-Tempini 

et al., 2004; Marshall et al., 2018). However, as the disease progresses the variability of 

brain areas affected increases and thus, symptom patterns become more 



39 

heterogeneous. lvPPA has an association with the pathology of Alzheimer's disease (AD) 

and most cases (but not all) can be considered an atypical variant of AD. 

The biological validity of the clinical subtypes has gained support from recent MRI and 

genetics studies supporting  the concept that these subtypes have distinct pathologies 

(Marshall et al., 2018). However, as with classification of post-stroke alexia, people 

diagnosed with PPA in practice rarely fall neatly into one subtype. The result is some 

cases being termed as ‘atypical’ (or mixed) PPA, which accounts for between 17% 

(Harris et al., 2013) and 41% (Sajjadi et al., 2012). Atypical cases may present with a 

single impairment such as pure alexia. 

 

1.3.3 Neurological Underpinnings of Alexia  

Cognitive models of typical reading have been primarily developed from insights gained 

from reading impairments, particularly alexia, which occur when the reading system 

fails. However, these models often neglect how the brain compensates for damage and 

adapts in response to impairment. Following a stroke, neuroplasticity enables the 

potential for recovery, but this process often involves the reorganisation of reading 

functions, rerouting them through alternative neural pathways. 

From a neurological perspective, there are three primary hypotheses regarding language 

reorganisation after a stroke that impairs reading abilities. The first hypothesis suggests 

that the brain compensates by activating the right hemisphere homologues of the 

damaged left hemisphere regions, which are typically responsible for reading. This shift 

represents a transition from a predominantly left-lateralised reading network to a more 
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bilateralised network. The second hypothesis posits that perilesional regions adjacent 

to the damage within the left hemisphere may become increasingly involved in 

supporting reading functions. Lastly, a combination of both mechanisms may be 

employed, with the brain engaging both right hemisphere regions and perilesional areas 

to recover reading abilities. 

The extent of recovery in reading abilities is influenced by several factors. Crucially, the 

location and severity of brain damage play a significant role in the likelihood of regaining 

functional reading. Recovery is more probable when the damage is limited and when 

key areas, such as the Visual Word Form Area (VWFA) or the arcuate fasciculus remain 

intact. In cases where these regions are not completely destroyed, individuals are more 

likely to recover their pre-stroke reading abilities.  

Age is another significant factor in the recovery process. Younger patients tend to 

exhibit better functional recovery of reading abilities, owing to greater brain plasticity 

and more robust compensatory mechanisms. The role of education level in recovery, 

however, remains ambiguous. Some studies suggest that higher education levels may 

contribute to improved recovery, whilst other research questions the strength of this 

correlation. The precise influence of education on reading rehabilitation continues to be 

a topic of debate in stroke rehabilitation literature. 

Understanding the mechanisms of brain reorganisation and the factors influencing 

recovery is essential for refining rehabilitation strategies for individuals with alexia. 

These insights highlight the brain's remarkable capacity for adaptation and 

compensation, offering hope for more effective interventions in the restoration of 
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reading abilities following neurological damage. Reading therapy studies have observed 

changes in language lateralisation, with improvements in reading abilities linked to a 

shift from disorganised, bilateral reading networks to more structured, left-lateralised 

networks (Saur et al., 2006, 2008; Kurland et al., 2008; Kerry et al., 2019). 

 

1.4 Reading Therapies 

1.4.1 Rehabilitation Approaches and Current Practice 

Presently, there is no agreed, best-practice treatment for central (Leff and Starrfelt, 

2014) or pure alexia (Starrfelt et al., 2013). Only relatively recently has the clinical 

effectiveness of Speech and Language Therapy (SLT) for treating aphasia been 

supported by small, but significant effect sizes in Cochrane reviews (Brady et al., 2012, 

2016). Whether treatment was delivered one-to-one, in a group or via a computer did 

not influence the effectiveness. However, therapies with a higher dose or intensity had 

improved outcomes. Although, the higher intensity studies also had higher dropout 

rates.  

There are 5 broad types of reading therapies; strategy-based, cognitive, oral reading, 

impairment-based and compensatory strategies. These are outlined below, digital 

therapies are detailed thereafter. 
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1.4.1.1 Strategy-based therapies 

For single word reading, strategies include letter-by-letter reading and tactile-

kinaesthetic reading (letter tracing), these are for people with pure alexia (Coltheart, 

1998). When applied, these strategies cause slow and effortful reading with only small 

gains in comprehension and therefore, should only be used for people with poor letter 

recognition. However, tactile-kinaesthetic reading has been demonstrated to generalise 

to improved reading speed and accuracy without letter tracing in one study (Lott et al., 

2010). 

Other strategies can be used for text comprehension including Attentive Reading and 

Constrained Summarisation (ARCS; Rogalski and Edmonds, 2008) and Proposition 

Identification and Constrained Summarisation (PICS). In a systematic review of reading 

comprehension therapies, 4 out of 6 patients in 4 strategy-based case studies/series 

had significant improvements (Purdy et al., 2019). 

 

1.4.1.2 Cognitive Treatments 

Non-linguistic cognitive impairments, such as impaired attention or working memory, 

may also contribute to reduced reading ability. Some treatments focus on these 

cognitive impairments to indirectly improve reading in people with cognitive 

impairments and mild aphasia/alexia. Notable examples include Sequenced Exercises 

for Working Memory (Mayer and Murray, 2002) and Attention Process Training-2. With 

appropriate patient selection, they can be effective in improving reading 

comprehension (Lee et al., 2018; Purdy et al., 2019). 



43 

1.4.1.3 Oral Reading Therapies 

Two oral reading therapies have evidence bases, Oral Reading for Language in Aphasia 

(ORLA) and Modified Multiple Oral Rereading (MMOR). ORLA uses repetitive, shared 

reading aloud with a clinician of increasing difficulties to improve reading 

comprehension. MMOR is similar to ORLA, but focused on independent reading by the 

patient with feedback from the clinician (Mayer and Murray, 2002; Kim and Russo, 

2010). Thus far, ORLA and MMOR have shown non-significant improvements in reading 

comprehension (Purdy et al., 2019). 

 

1.4.1.4 Compensatory Aids 

Compensatory interventions aim to improve reading only when the intervention is in 

use. In this sense, they are aids and not therapies. An example of an aid being a pair of 

glasses; they improve reading ability only when they are worn. Compensatory aids for 

alexia include text-to-speech software, contextual picture support or using an e-reader 

to support reading, such as by enlarging the font or reducing length of text on display. A 

study found e-readers can significantly improve technology-assisted reading 

comprehension (Caute et al., 2018). Compensatory strategies can be effective with 

quick results, but limited in real-world applications. 
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1.4.1.5 Impairment-based therapies 

Impairment-based therapies aim to improve reading speed and accuracy by directly 

targeting the impaired processes. As a result, therapy progress can be slow and require 

considerable effort from the patient. However, long-term outcomes for these therapies 

can be significant (Woodhead et al., 2018). Copy and Recall Treatment (CART) is a 

therapy for writing found to improve reading additionally (Beeson, 1999). In particular, 

combinations of oral reading and CART have found positive results in 3 participants 

(Orjada and Beeson, 2005; Beeson et al., 2010).  

iReadMore is also an impairment-based therapy and detailed in section 1.4.3. 

 

1.4.2 Review of Digital Therapies and Evidence Base 

1.4.2.1 Stroke 

Presently, numerous digital therapies are available. Therapies that train reading and 

have been evaluated in at least one peer-reviewed publication are detailed below. Cost 

to the user for these programmes range from £20 per month to a one-off payment of 

£275 not including hardware costs.  

4-in-1 Language Therapy is an app for impairment-based training in 4 domains; naming, 

auditory comprehension, reading and writing. Only one study on this therapy has been 

published (Stark and Warburton, 2018). This study found CAT expressive scores 

improved significantly in a group of 10 participants with expressive aphasia and intact 
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comprehension. There is no evidence supporting improvements in reading 

comprehension. 

Constant Therapy is a cognitive therapy for people with aphasia and/or cognitive 

impairments. It has tasks targeting various language and cognitive impairments. In a 

non-randomised, non-blinded comparative study of Constant Therapy and weekly SLT 

sessions versus SLT sessions alone (control group), participants in the intervention 

group significantly improved on the WAB-R AQ (a composite measure of language 

ability) compared to the control (Des Roches et al., 2015). This study has a number of 

limitations including no follow-up, inclusion of participants without aphasia and 

significant differences between study groups. There is no evidence on the efficacy of 

Constant Therapy for improving reading comprehension specifically. 

A computerised version of ORLA has been developed for self-led home use. A study of 

25 stroke survivors with chronic, non-fluent aphasia compared low dose, computerised 

ORLA with SLT-led ORLA (Cherney, 2010). They found equivalent small, but significant 

gains on the WAB-R AQ for both interventions compared to no therapy. Neither version 

of ORLA improved WAB reading scores.  

React-2 is an online resource of SLT exercises including reading comprehension. One 

case study on an individual with alexia found within-task improvements for paragraph 

reading and qualitatively-reported reading improvements (Palmer, 2015). 

StepByStep is a therapy for training expressive, rather than receptive, language. 

However, a case series reported that one participant ‘reported benefit to reading skills, 

evidence that could not be corroborated’ (Mortley et al., 2004).  
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To summarise, there is minimal evidence to support the clinical efficacy of currently 

available, digital reading therapies. In general, there is evidence to support the 

implementation of digital therapies and a number of associated benefits. Digital 

interventions can substantially increase therapeutic dose (Katz, 2010), feelings of self-

worth and independence (Petheram, 2004). However, further research is needed to 

support the efficacy of these technologies.  

 

1.4.2.2 Primary Progressive Aphasia 

Interruptions to reading abilities occur in all variants of PPA. People with svPPA tend to 

have difficulty with irregular words, which reflects surface alexia (Woollams et al., 2007; 

Wilson et al., 2009). People with nfvPPA or lvPPA, more often have difficulties with 

reading non-words or unfamiliar words implying phonological alexia (Brambati et al., 

2009; Matías-Guiu et al., 2017). Across the three variants of PPA, it has been 

demonstrated that single word reading speed and accuracy of people are significantly 

impaired compared to healthy controls or people with Alzheimer’s disease (Brambati et 

al., 2009; Matías-Guiu et al., 2017). 

There is a paucity of evidence supporting treatments for reading impairments in PPA. 

There is currently no evidence of effectiveness for any curative or pharmacological 

interventions for people with PPA (Volkmer et al., 2019). SLT therapies used clinically 

with people with PPA tend to have been developed for post-stroke reading impairments. 

The efficacy of translating therapies from post-stroke aphasia to PPA has also not been 
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well studied. No studies on self-managed digital therapies or digital reading therapies 

were found. 

The lack of evidence on reading interventions reflects the wider picture of the current 

clinical situation for people with PPA. A recent, survey-based study illuminated the 

current lack of therapeutic interventions available to people with PPA in the UK 

(Volkmer et al., 2018). 90.5% of respondents reported that there was no SLT care 

pathway for people with PPA within their Trust. Only (11.4%) reported that reading 

and/or writing therapies were ‘often’ or ‘always’ available. 

 

1.4.2.3 Factors influencing therapy success 

The success of reading therapies for individuals living with alexia can be influenced by 

several key factors that interact to shape the outcomes of treatment. These factors 

include therapy dose, intensity, timing, motivation and engagement, and 

personalisation of the therapeutic mechanism. Each plays a significant role in 

determining the effectiveness of rehabilitation and the degree of recovery a patient can 

achieve. 

 

Dose 

The dose of therapy refers to the overall amount of an intervention that a patient 

receives. Research has shown that a higher therapy dose generally leads to better 

outcomes in cognitive and linguistic rehabilitation (Brady et al., 2016). Bhogal et al 
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found that high dose aphasia therapies (defined as a dose of around 100 hours) lead to 

significant improvements. However, the RELEASE Consortium found that 20-50 hours 

led to optimal improvements from SLT (Brady et al., 2022). Both meta-analyses found 

that the optimal dose of therapy was higher than what people with aphasia typically 

receive in the UK from NHS care, where they receive approximately 12 hours of SLT-led 

therapy (Clarke et al., 2018; Palmer, Witts and Chater, 2018). An estimated 68% of 

people with chronic aphasia will have alexia (Brookshire et al., 2014). However, reading 

therapy is not always a part of their treatment protocol, and data on the proportion of 

therapy time dedicated to reading interventions, particularly within the NHS, remains 

limited. 

 

Intensity 

Therapy intensity considers the dose received within a specific time period, such as 

hours per week. A network meta-analysis looking for optimal therapy intensity found 2 

hours per week led to optimal therapeutic effects that did not increase further with 

increased intensity of practice (Brady et al., 2022). When considering therapy intensity, 

it is important to achieve a realistic balance, as excessive therapy without adequate rest 

may lead to fatigue or burnout, which could lead to therapy disengagement or 

demotivation. Higher intensity studies have also been found to have higher dropout 

rates (Brady et al., 2016). 
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Frequency 

Consistent practice is recommended for optimal outcomes from reading therapies, a 

higher frequency of sessions with sufficient exposure to reading tasks increases the 

brain's opportunity for neuroplasticity, allowing for more extensive reorganisation of 

neural pathways involved in reading. Therefore, optimal dosing should ensure 

consistent and frequent exposure to therapeutic exercises, while considering individual 

tolerance. Practicing on 5 days per week has been found to lead to optimal therapeutic 

outcomes, with no additional gain from increasing the weekly frequency  (Brady et al., 

2022). 

 

Challenge 

The difficulty of the therapy, or challenge, often measured by the difficulty level of tasks 

and the effort required from the therapy user, is another critical factor in alexia 

rehabilitation. Higher-challenge interventions, such as those that push cognitive limits 

or challenge reading processes in progressively complex ways, can facilitate 

neuroplasticity and improve functional outcomes. Intensity must be calibrated to each 

individual’s ability to engage and process information without overwhelming them and 

offering the appropriate level of therapy (such as letter-based versus text-based). Too 

little difficulty may not provide enough challenge to stimulate recovery, while too high a 

level may lead to frustration or demotivation. The challenge of the therapy should be 

tailored to the patient’s current capabilities, gradually increasing as they show 



50 

improvement. Depending on the type of alexia, different therapy content may be 

needed, such as focussing on abstract, irregular or function words. 

 

Timing 

The timing of therapy plays a crucial role in rehabilitation success, particularly in the 

context of stroke recovery. Neuroplasticity is most pronounced in the weeks and 

months following a stroke, making early and timely intervention crucial for optimal 

recovery outcomes if feasible in this timeframe. However, significant improvements can 

also be achieved in the chronic phase of recovery. Studies have shown that years after a 

stroke, targeted interventions can continue to promote functional recovery (Fridriksson 

and Hillis, 2021).  

 

Motivation and Engagement 

Motivation and engagement are essential to the success of alexia therapy, as they 

directly affect the patient's willingness to participate and persist with the treatment. 

Patients who are more motivated are likely to put forth greater effort, attend more 

sessions, and maintain a positive attitude toward rehabilitation (Watila and Balarabe, 

2015; Harrison, Palmer and Cooper, 2020). Engaging therapeutic activities that are 

meaningful and relevant to the individual’s everyday life can help sustain motivation. 

Additionally, setting small, achievable goals can enhance a patient’s sense of progress 

and accomplishment, further boosting motivation. Incorporating patient preferences, 
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such as tasks related to their personal interests or daily activities, can also increase 

engagement and improve therapy outcomes. 

 

Personalisation 

Personalisation of the therapeutic approach is crucial in addressing the unique needs 

and challenges of each individual with alexia. Factors such as the type of alexia (e.g. 

surface or phonological alexia), the extent and location of brain damage, the individual’s 

cognitive strengths and weaknesses, and their learning style should all inform the 

design of the therapy. Co-morbidities may also need to be considered and the therapy 

choice adapted to find therapies that are accessible and appropriate. A personalised 

treatment plan and therapy contents allows for focus on the specific areas that need 

improvement, whether it’s letter or word recognition, reading comprehension or speed, 

or a focus on particular areas of language, such as irregular, abstract or function words. 

Personalised interventions are more likely to be effective because they target 

weaknesses and accommodate therapy users’ pace of learning. Additionally, ongoing 

assessment and adjustment of the therapy plan are important to ensure that the 

approach remains relevant and effective as recovery progresses. 
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1.4.3 iReadMore Therapy App 

1.4.3.1 Therapy Design 

iReadMore is a self-led therapy app for improving single word reading accuracy and 

reaction time (RT) in individuals with acquired reading impairments. iReadMore has 

been demonstrated to improve reading speed and accuracy in pure and central alexias 

(Woodhead et al., 2013, 2018). iReadMore therapy is not expected to improve reading 

for the remaining alexia subtypes. 

The therapy contains two phases, Exposure and Challenge. In the Exposure phase, ten 

words are displayed, read aloud and visualised by an image indicating the semantic 

representation (Figure 5). These pairings are always congruent.  

 

Figure 5 - Therapy Exposure Phase (initial iReadMore prototype before co-design enhancements). 

In the Challenge phase, a word from the Exposure phase is read aloud and either the 

same or a different word is displayed on the screen simultaneously. The user must 

decide whether they read and heard the same word (congruent trial) or two different 
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words (incongruent trial) and respond by pressing one of two buttons accordingly 

(Figure 6). If the words are different, the written word will be a distractor word that is 

phonologically similar, such as ‘cat’ and ‘car’. Immediate feedback is provided to the 

user on whether the trial was answered correctly or incorrectly to facilitate error-

reducing learning. Each Challenge phase lasts 30 trials. The therapy has an adaptive 

algorithm to adjust the difficulty of the training to suit individual user’s reading abilities. 

Difficulty parameters include adjusting exposure time, word complexity and similarity 

between the written distractor words and spoken words.  

 

Figure 6 - Therapy Challenge Phase (initial iReadMore prototype before co-design enhancements). 

iReadMore includes 590 of the most frequently written words from the SUBTLEX lexical  

database (Brysbaert and New, 2009). High frequency words were chosen to maximise 

the relevance (ecological utility) of the training to everyday life. The therapy mechanism 

relies on mass practice of cross-modal, paired associate learning (Holcomb and 

Anderson, 1993) based on the Triangle Model approach to reading. Untrained words will 
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not be affected, and thus word reading improvements are not expected to generalise 

beyond trained items. 

The therapy utilises gamification and is designed to be accessible in order to drive 

motivation and engagement for the user group. iReadMore is downloadable via the 

Google Play store on Android tablet devices. iReadMore is a CE-marked class 1 medical 

device that was developed by the Neurotherapeutics Group, University College London.  

 

1.4.3.2 Clinical Research 

iReadMore was first evaluated in a study of 9 participants with chronic pure alexia 

(Woodhead et al., 2013). Participants were asked to use iReadMore independently for at 

least 20 minutes a day over 6 weeks. Immediately following the therapy, reading speeds 

for trained words had improved significantly. Reading accuracy did not improve; but this 

was expected as individuals with pure alexia tend to display slow, but accurate reading 

abilities. The average reading speed increased by 149ms, a training effect size of 11.5%. 

Importantly for people living with pure alexia, the largest improvements in reading 

speed were seen for longer words, implying that the treatment was reducing the word 

length effect. However, improvements were specific to reading single words and did not 

generalise to letter or text reading. Improvements in reading speed were also not 

maintained at 2-4 week follow up. This may be due to the low dose of therapy in the 

study (10-14 hours). 

Following on from this study, an randomised controlled trial (RCT) was conducted to 

evaluate the clinical efficacy of iReadMore with 21 people with chronic central alexia 
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(Woodhead et al., 2018). This trial had a crossover design with participants receiving 

therapy over two 4-week blocks with separate word lists being trained. On average, 

participants used iReadMore for 70 hours (range: 60-78 hours). At therapy cessation, an 

average improvement in reading accuracy of 9% for trained words was demonstrated 

(Cohen’s d = 1.38 – large effect size). Reading speed also improved by an average of 

100ms for trained words (d = 0.98 – large effect size). As expected, improvements did 

not generalise to untrained words. 

Figure 7 – iReadMore Therapy effects on: a) word reading accuracy and b) reaction time. There are four word lists: 

Trained in Block 1 (blue), Block 2 (red), Untrained (black) and Core words (green). (from Woodhead et al., 2018) 

 

At 3-month follow-up (T6 in Figure 7), significant improvements in reading accuracy 

were maintained, although some gains were slightly diminished. Improvements in RT 

were not significant at follow-up, but remained below baseline. Considering core words 

only (a list of highly common function words such as ‘and’, ‘the’ and ‘it’), the significant 

gains in both accuracy and RT were maintained at follow-up. Core words were trained in 

Blocks 1 and 2 suggesting a larger dose or longer therapy duration may be required to 

maintain gains in reading speed. The core words tended to be abstract and have low 

imageability making them harder to learn. However, in post hoc paired t-tests, it was noted 

that word imageability did not influence the efficacy of the therapy. 
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2  Overview of Thesis 

The three results chapters of this thesis explore distinct but related aspects of the 

iReadMore app and its application in aphasia therapy. The first chapter focuses on the 

co-designing the iReadMore app with persons with alexia or aphasia, aimed at 

enhancing user engagement and accessibility. This process included a series of 5 co-

design focus groups with 25 people with aphasia and carers/family members, followed 

by remote beta testing sessions with an additional 25 participants, conducted during 

the COVID-19 pandemic. The findings were evaluated using a qualitative framework 

analysis approach to investigate design recommendations for digital alexia therapies. 

The second chapter explores preliminary findings from a rollout trial conducted 

following the release of the iReadMore app. Real-world therapy users completed 

reading tests every 5 hours of therapy. This preliminary study evaluated data from 14 

participants who completed more than 20 hours of therapy between 1st March 2021 

and 1st April 2023. A mixed linear regression model was employed to analyse the 

outcomes, accounting for the small sample size and timepoint attrition beyond the 20-

hour mark. The analysis focused on changes in reading accuracy and reaction time. 

The final results chapter investigates the potential for treatment outcome prediction 

models to be trained using therapy data. This study, conducted in two parts, draws on 

data from the iReadMore RCT and a more extensive dataset of therapy data from the 

RCT of Listen-In, a digital therapy targeting speech comprehension. The intention is that 

once sufficient data is collected in the rollout trial, that this work could be developed 

further using real-world data. 
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3  Main Aims and Research Questions 

This thesis includes work conducted in co-designing the iReadMore app and preparing 

it for public release as well as the preliminary analyses of the data collected from real-

world users post-release. The results in this thesis are presented in three chapters. The 

aims and hypotheses are outlined below. 

 

3.1 Research Chapter 1 – Development of the iReadMore App 

3.1.1 Aim  

To develop a reading rehabilitation application utilising co-design and principles of 

gamification to ensure engagement and accessibility of the therapy app and support 

independent use by real-world users. 

 

3.1.2 Rationale 

The iReadMore therapy mechanism was developed to improve single-word reading 

accuracy and reading speed for individuals with chronic central or pure alexia. In initial 

studies, a laptop was used to deliver the therapy within research settings, with 

participants conducting therapy under the observation of researchers. Anecdotally, it 

was noted that participants encountered difficulties using the technology and 

maintaining motivation throughout the study duration. This highlighted the need for 

further development to enhance the accessibility and engagement of the therapy, 
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enabling individuals with aphasia and alexia to feasibly engage with the iReadMore 

therapy at home and without the support of a therapist. 

To address these challenges, a co-design approach was adopted to ensure that the 

prototypes developed would be suitable and user-friendly for the end users. 

Additionally, gamification, an established strategy in digital applications and therapies, 

was incorporated to enhance the appeal of the therapy and improve motivation. By 

integrating game-like elements, the design aimed to foster consistent use and 

sustained attention, key factors associated with improved therapeutic outcomes. 

The development of a usable and engaging app was a central component of my thesis, 

as it would provide the data collection for the analysis presented in Chapter 2. 

 

3.1.3 Objectives 

1 Carry out a series of co-design focus groups with individuals with alexia to develop 

and refine iReadMore prototypes. 

2 Utilise the qualitative data from the co-design sessions to inform a framework 

analysis exploring themes associated with usability and engagement for digital 

alexia therapies. 

3 Implement design recommendations into the iReadMore app release version. 
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3.2 Research Chapter 2 – Preliminary Findings of the iReadMore 

Rollout Trial 

3.2.1 Aim 

Investigate preliminary treatment effects of the iReadMore therapy app for real world 

users in a digital rollout trial. 

 

3.2.2 Rationale 

This study outlines the ongoing roll-out trial of the therapy’s clinical effectiveness with 

real-world app users and include analyses of the data available up to April 2023. 

Insights into how the digital therapy is used in everyday settings, beyond the controlled 

environment of a typical research study will also be explored. This data will be analysed 

to explore potential contributions to dialogues on optimal therapy utilisation and the 

impacts of strategies implemented for sustaining user engagement. 

 

3.2.3 Objectives 

1 Explore group level, within-patient treatment effects in terms of reading speed and 

accuracy for therapy users. 

2 Explore therapy utilisation in terms of dose, frequency and intensity patterns. 

3 Explore quantitative PROMs and qualitative data using appropriate methodology 

depending on data quality and quantity. 
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3.3 Research Chapter 3 – Prediction of Therapy Outcomes Using 

Therapy Data 

3.3.1 Aim 

To explore approaches to therapy outcome prediction utilising only data that could be 

collected through the iReadMore app. 

 

3.3.2 Rationale 

Treatment outcome prediction algorithms have been explored for aphasia treatments. 

Typically, these have relied on researcher-collected training data, including brain scans 

and behavioural testing. In this chapter, I aim to investigate whether therapy data 

collected through a digital platform, specifically the iReadMore app, can serve as a 

viable alternative for predicting treatment outcomes. Digital therapy platforms offer the 

advantage of collecting data continuously and seamlessly, which presents a unique 

opportunity to monitor patient progress in real-time without the need for external tests 

or measurements. 

As a starting point, data from the iReadMore clinical trial was used to test this 

approach. However, due to limited data availability, the approach was replicated using 

data from the randomised trial of the Listen-In speech comprehension therapy app, 

which provided a more extensive dataset, including detailed in-app therapy challenge 

data. By expanding the scope to a more comprehensive dataset, this study aims to 

determine whether similar treatment outcome predictions can be made using data 
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collected directly from digital therapy apps. If sufficient data is gathered from the real-

world users of the iReadMore app upon its public release, the methodology will be 

replicated to further explore the feasibility of creating an accurate and scalable 

treatment prediction algorithm.  

 

3.3.3 Objectives 

1 Explore the potential for using therapy data from the iReadMore clinical trial to 

predict treatment outcomes. 

2 Use data from the Listen-In speech comprehension app clinical trial to further refine 

and test therapy data-based treatment outcome prediction. 

3 If sufficient real-world data is collected from the iReadMore app following its public 

release, investigate the creation of a treatment prediction algorithm based on this 

real-world user-generated dataset. 
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4  Methods 

4.1  Study 1: Development of iReadMore 

4.1.1 Background on Co-design Approach and Theoretical Underpinning 

4.1.1.1 Co-design 

Therapies that utilise mass practise, by nature, involve highly repetitive tasks that can 

lead to frustration and boredom (Kurland, Wilkins and Stokes, 2014). Therefore, it can 

be difficult for patients to sustain motivation and engagement over many weeks or 

months. For a self-managed therapy, such as iReadMore, sustaining user motivation will 

be vital. Further, for a digital therapy, there are a number of barriers to accessing the 

therapy for people with aphasia relating to their communication impairment, co-

morbidities and level of experience with digital technologies (Menger, Morris and Salis, 

2016; Munsell et al., 2020). One approach that can be utilised to improve the 

acceptability and accessibility of a therapy is to design it with the target user 

demographic; known as co-design. Co-design has been applied to a number of digital 

post-stroke aphasia therapies (Marshall et al., 2013, 2016; Wilson et al., 2015; 

Messamer, Ramsberger and Atkins, 2016). EVA Park is an example of a co-design SLT-

led therapy for people with stroke-related speech impairments delivered in an online 

virtual environment. It was found that users responded positively to the novelty of the 

codesigned therapy, evaluated both in terms of a 0% therapy dropout rate (Marshall et 

al., 2016) and high acceptability deduced from qualitative interviews (Amaya et al., 

2018). A number of techniques can enable people with aphasia to participate fully in 

co-design research by supporting total communication. Techniques can include 
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drawing, writing, gesturing, visual aids, emotion scales and inviting carers and partners 

to attend (Neate et al., 2019). It can also be beneficial to know the communication 

profiles of participants ahead of time in order to effectively support their 

communication (Wilson and Kim, 2019). Video recording the sessions is also 

recommended to pick up on nonverbal communication. 

 

4.1.1.2 Alpha and Beta Testing 

In the development of digital therapies, testing phases such as alpha and beta testing 

play a critical role in ensuring the functionality, usability, and effectiveness of the 

application (Sarzynski et al., 2017). These testing stages are particularly significant for 

co-designed applications intended for individuals with alexia or aphasia, where the 

target user group may face specific accessibility and engagement challenges (Roper et 

al., 2018). 

Alpha testing is the initial evaluation phase carried out within a controlled environment. 

This phase is typically conducted by the development team, such as software 

developers and researchers familiar with the intended use and goals of the therapy. The 

focus during alpha testing is to identify and rectify technical issues, validate core 

functionalities, and assess basic usability. For a therapy like the iReadMore app, alpha 

testing involves confirming that the app's gamified elements, interface design, and 

therapeutic mechanisms operate as intended. Crucially, this phase ensures that the 

application aligns with the abilities of its intended users, accounting for challenges 

faced by individuals with language impairments and comorbidities, and to ensure the 
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prototypes align with design contributions from participants who are involved in the co-

design activities. 

Beta testing, by contrast, extends the testing process to a broader, real-world user base, 

allowing the application to be assessed in diverse and naturalistic settings. This phase 

is essential for understanding how users with alexia or aphasia interact with the therapy 

in their daily lives and naturalistic settings, such as in their own homes and using their 

own devices. Beta testing generates valuable insights into user perspectives and 

unforeseen challenges that arise in practical usage. For example, beta testing of 

iReadMore might explore patterns in therapy adherence, user feedback on accessibility 

features, and identify unclear or unused features. 

Both alpha and beta testing are integral to the iterative development process, ensuring 

that the final therapy is robust, user-centred, and capable of meeting the needs of its 

intended audience. These stages also provide data that inform broader research 

questions related to therapy engagement and real-world effectiveness, forming a 

foundation for the subsequent evaluation and refinement of the digital therapy. 

 

4.1.1.3 Gamification 

Gamification is an overarching term used to denote applying a diverse array of game 

design elements in non-game tasks to increase motivation and engagement. Motivation 

is a key contributing factor in the success of stroke rehabilitation . Increased levels of 

motivation can improve therapeutic outcomes for people with aphasia (Hallams and 

Baker, 2009; Cahana-Amitay et al., 2011). A number of studies with positive clinical 
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findings for gamified aphasia therapies (Katz and Wertz, 1997; Des Roches et al., 2015; 

Marshall et al., 2016; Conroy et al., 2018). Conroy et al. (2018) reported anecdotally that 

users found their gamified therapy ‘especially engaging and motivating’ and the authors 

believed gamification contributed to the significant clinical gains by engaging users’ 

executive and attentional functions, in addition to the speech production system, 

resulting in improved learning and retention. More generally, a number of studies have 

found commonly-applied game design elements do not tend to appeal to older 

populations, and can be regarded as either valueless or pressurising (Gerling, Schild 

and Masuch, 2010; Altmeyer, Lessel and Krüger, 2018). However, the same game design 

elements will have different effects in different applications. Therefore, it is 

recommended to conduct context-specific research on gamification (Deterding, 2013). 

Despite the positive clinical findings mentioned previously, there is a lack of studies on 

the views of people with aphasia on gamification. 

 

4.1.1.4 Self-Determination Theory (SDT)  

SDT proposes a framework for the study of motivation reliant on the fulfilment of three 

innate psychological needs; autonomy (feeling free to choose), competence (feeling 

capable of doing something), and relatedness (feeling connected and supported by 

others) (Deci and Ryan, 1985; Ryan and Deci, 2000). In terms of aphasia therapy, 

patients are more likely to engage with a therapy when they feel they have a choice in 

doing so (autonomy), they feel the therapy will help them achieve their therapy goals 

(competence) and they feel supported in this activity by family members, support 

groups and/or clinicians (relatedness) (Coppens and Patterson, 2018). However, 
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considering people with aphasia have a communication impairment it can be difficult to 

establish a sense of autonomy, competence and relatedness.  

SDT proposes that motivation towards a particular behaviour can be explained along a 

continuum of three types of motivation that regulate behaviour in order to fulfil the 

innate psychological needs, these are; intrinsic motivation, extrinsic motivation and 

amotivation (Deci and Ryan, 1985; Ryan and Deci, 2000). Multiple motivational drivers 

can coexist and influence behaviour. Intrinsic motivations are self-derived, extrinsic 

motivations are derived from external sources and amotivation is a lack of motivation 

towards an action. In the context of rehabilitation, an intrinsic motivation would be 

undertaking a therapy with the intention of making a valuable therapeutic gain, an 

extrinsic motivation would be undertaking a therapy to seek external reward (e.g. praise 

from a family member or clinician) or to avoid punishment (e.g. being discharged from a 

therapy programme) and amotivation would be feeling incapable of undertaking a 

therapy or viewing the therapy as unbeneficial (Vansteenkiste, Niemiec and Soenens, 

2010). This theory is often applied to gamification research and has significant parallels 

with theories of motivation proposed in aphasia rehabilitation literature such as the 

person-centred, life participation (Chapey et al., 2012) and social approaches 

(Simmons-Mackie, 2012) to aphasia intervention. 

 

4.1.2 Ethics 

Ethical approval for this study was granted by the UCL Research Ethics Committee 

(Project ID: 15423/001). All participants provided written informed consent prior to 

sessions commencing.  
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4.1.3 Study Design 

Five in-person co-design sessions were held between June 2019 and January 2020 at 

the Institute of Cognitive Neuroscience, University College London in an accessible 

location. The sessions were facilitated by a multidisciplinary team of speech and 

language therapists (VF, EU), a clinical psychologist (CD) and a medical design engineer 

(TL). All facilitators had completed professional training in qualitative health research at 

University College London and/or had prior experience in facilitating focus groups with 

people with aphasia. An app developer also observed the sessions. Sessions were 

limited to 4-6 participants to allow for group discussions without restricting each 

participants’ time to contribute. The number of sessions conducted was based on the 

iterative framework analysis process which was conducted after each session to reflect 

on whether subsequent sessions would be beneficial to further investigate the areas of 

interest. Sessions lasted between one and two hours including breaks and time for 

refreshments; further details are provided in Box 1. 

Group discussions were held in a communal meeting room. When participants were 

testing the app prototypes, they could decide to do this in the meeting room using 

headphones or in a private side room which provided less distractions. Semi-structured 

questions were used to guide the discussions and were provided to all facilitators prior 

to the session. A framework analysis was conducted after each session to reflect on the 

discussions and develop the session guide and materials for the next session. 
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Session Structure 

The content of the sessions varied, but all contained the following core structure:   

1. Welcome and introductions (5-10 minutes) – participants were welcomed 

and introduced to one another. Facilitators introduced themselves and basic 

participation tips for the sessions were provided. 

2. iReadMore instructions (5 minutes) – instructions for using the therapy were 

delivered by a member of the research team using a presentation and live 

demonstration, followed by answering questions from the group. In later 

sessions, this was replaced by an instruction video co-designed by 

participants which was tested for inclusion in the app. 

3. Independent use of the app (10-15 minutes) – following this, the latest 

prototype version of iReadMore therapy was tested on an Android tablet 

device, followed by an open discussion of first impressions of the therapy. 

4. Group discussion/ideation (20-40 minutes) – afterwards, discussions would 

lead into a problem and idea generation session using a pre-planned, semi-

structured session guide. 

5. Refreshments and open discussion (20-40 minutes) – Finally, participants 

were offered refreshments and were able to talk freely. This gave participants 

the time to make any further points they would like and ask further questions 

in a less structured manner. 

Box 1 - Co-design focus group session structure 
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4.1.3 Procedure & Co-Design 

After participants were welcomed and provided informed consent, the aims of the co-

design process were presented along with participation tips for the group discussion. 

Following this, participants tested the latest app prototypes by independently using the 

therapy with provided instructions. Facilitators would observe one or two participants’ 

interactions with the app. Facilitators assisted participants if required and made notes 

on any difficulties they were encountering.  

Discussions began by asking participants about their experience of testing the therapy 

prototype. This would then lead into a semi-guided discussion based on pre-selected 

topics targeting key aspects of the therapy design, settings, functionality, interface, 

accessibility issues and motivational/gamification concepts. Issues or difficulties raised 

during the interaction with the app acted as starting points for the co-design process 

and participants then collaborated with each other and the facilitators to generate 

potential design solutions to address these issues. Where participants had a difference 

of opinion on the value of a design concept, an effort was made by the facilitators to see 

whether it could be refined in a way that led to a consensus. In addition, the mechanism 

of action of the therapy was not altered in the co-design process as this was previously 

demonstrated to be clinically efficacious. If a co-design concept could potentially 

preclude therapy effectiveness or participation for other users (e.g.; for those with visual 

or hearing impairments), it was highlighted and withdrawn from the process. The 

participants’ co-designed ideas were then developed further in collaboration with the 

research team and app developer using mock-ups and prototyping software, and taken 

to the following co-design session for the next group to try out.  
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In order to facilitate total communication and analysis of nonverbal output, the 

sessions were video recorded by two video cameras and a variety of resources were 

available to participants including paper, pens, visual analog mood scales and printed 

visuals of the app. Questions to participants were also presented with visual aids to 

support comprehension. All notes and drawings made in the sessions were scanned 

and used alongside the video recordings and transcripts in the data analysis. To support 

the inclusion of participants with moderate to severe communication impairments, 

participants could bring a partner/carer or be paired with a speech and language 

therapist to help facilitate participation. After the session, participants were contacted 

via phone or email to enquire if they had any further comments they wished to 

contribute. 

Following the completion of the co-design group sessions, one-to-one beta testing 

sessions were held to further refine the outcome of the co-design process and prepare 

the app for public release. This phase was conducted remotely due to the coronavirus 

pandemic. A further twenty-five participants were recruited through our mailing list and 

social media for the remote testing phase. Participants were either provided with a 

tablet containing the iReadMore app or they downloaded iReadMore onto their personal 

device using the TestFlight App on iOS. Participants in this phase tested the app for a 

period ranging from 5 to 14 weeks and provided feedback on subsequent versions at 

monthly catch-ups and in-between when issues arose. 
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4.1.5 Data Collection and Analysis 

Video recordings, notes and drawings from participants and facilitators were analysed 

using framework analysis; which utilises a process of iterative refinement of themes in a 

data-driven approach(Richie and Spencer, 1994). Transcripts were developed from the 

session videos for annotation purposes. Both the videos and transcripts were analysed 

to ensure non-verbal data (such as gestures and expressions) were not lost in the 

transcription process. Framework analysis was selected for its suitability in analysing 

qualitative data at a group-level in research that has a specific goal-based intention, 

such as co-design. There are five interconnected stages to framework analysis and 

these were conducted in this study as described in Box 2. The analysis was conducted 

in Microsoft Excel by two researchers (TL, VF). Where disagreements occurred over 

codes, the two researchers would discuss their conflicting interpretations and aim to 

reach a consensus, potentially generating new codes as a result. Data saturation was 

discussed by the two researchers coding the data who jointly decided when saturation 

had been achieved based on no further themes and codes being generated after the 

focus groups. 
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Framework Analysis 

 

1. Familiarisation – the data was studied in order to gain an insight into key 

concepts and recurrent themes. After each session, new data was analysed. 

This allowed for initial codes and themes to be generated. After all sessions 

were complete, the dataset was analysed again in full. 

 

2. Identifying a Thematic Framework – emerging themes and subthemes were 

established and developed through discussions between the researchers. 

Data summaries were produced to represent the data in a succinct format. 

 

3. Indexing – the generated codes and themes were applied to the data 

summaries. Although not part of the framework analysis, related quotes were 

also identified and sorted. 

 

4. Charting – data summaries were reorganised under the generated themes in 

the framework and rewritten in a more abstract manner to reflect the theme. 

 

5. Mapping and Interpretation – after charting, theme summaries were 

generated to represent the findings at a high-level in the context of the 

research question. Descriptions and interpretations of the themes are 

presented below. Explanations and insights into the themes are considered in 

the Discussion section. 

Box 2 - Framework analysis methodology 
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4.1.6 Participants 

Participants were recruited using stratified purposive sampling with convenience 

sampling through the research group and institutional mailing lists and other individuals 

known to participants in this study. Participants included people with chronic alexia and 

their partners/carers. We aimed to get a diverse group of participants by stratifying for 

age, gender, experience with digital devices, and commonly co-occurring stroke 

morbidities; such as physical, visual, auditory and cognitive impairments.  

Table 2 reports the participant demographics. Twenty-five participants took part in 1 of 5 

co-design sessions (4-6 participants per group). Participants varied in age from 29 to 78 

(M = 57, STD = 12.0) and 52% were female. Nineteen had central alexia (alexia and 

aphasia), three had pure alexia and hemianopia, and three were partners or carers to 

someone with acquired alexia. Prior experience with technology varied, 10 participants 

had gained substantial experience using one of our digital therapies in a previous 

clinical trial, while another six participants had never previously owned a smartphone or 

tablet. 

Table 2 – Demographics of 25 participants in the co-design. 

Participants (females) 25 (13) 
Mean age (range) 57 (29 - 78) 
Diagnosis: 

- Central Alexia (Alexia and aphasia) 
- Pure Alexia 
- No Alexia (Partner/Carer) 

 
19 
3 
3 

Prior technology experience: 
- Has a smartphone or tablet 
- Has never owned a smartphone or tablet 
- Previous participant in digital therapy app 

research 

 
19 
6 
10 
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4.2 Study 2:  Preliminary Findings of the iReadMore Rollout Trial 

4.2.1 Ethics 

Ethical approval for the iReadMore Roll-Out Study was obtained UCL Research Ethics 

Committee (ID: 7609/001). The trial protocol was pre-registered on 

www.clinicaltrials.gov (NCT04849091). The participant information sheet was provided 

in written and auditory forms. All participants gave informed written consent in 

accordance with the Declaration of Helsinki.  

 

4.2.2 Study Design 

An online roll-out trial is being conducted to evaluate the clinical effectiveness of 

iReadMore in real-world users for improving single-word reading accuracy and speed. 

This work was delayed by the COVID-19 pandemic and will continue after the 

completion of this PhD. Preliminary findings are presented here in this thesis. 

Participants self-enrolled in to the study via the app, participation was not mandatory 

and users could utilise the app fully without enrolment. The self-registration and testing 

processes were co-designed and beta-tested to enable independent, remote testing. A 

within-participant evaluation of the co-designed iReadMore therapy app was 

conducted. The primary outcomes are reading accuracy and reaction time for matched 

trained and untrained words. Interval testing was conducted after the completion of 

every 5 hours of therapy. The quantitative secondary outcomes are self-reported 

measures of impairment and activities of daily living.  
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Qualitative feedback was also analysed using a thematic analysis to investigate 

participants’ perspectives on their own reading abilities, experiences of using the app 

and any other general comments they wanted to add. Qualitative feedback is provided 

by typing which may limit participation from participants with aphasia or alexia, 

however developing an audio recording feature or alternative functionality was not 

feasible within the timeframe and funding for this project due to the technical 

complexity. 

Only participants who conducted more than 20 hours of therapy were included in the 

quantitative data analysis. Users who have reported a childhood reading disorder (e.g. 

dyslexia), are in the acute phase (first 6 months after diagnosis) or are under 18 were 

excluded from the analyses. Further analyses were conducted on the influence of 

therapy frequency and intensity on the therapeutic outcomes. 

 

4.2.3 Sample Size 

The sample size calculation aimed to estimate the number of real-world users required 

to complete a comparable therapy dose to the iReadMore trial (35 hours) to 

demonstrate effectiveness. Calculations were based on a significance level of 5% 

(alpha) and a power of 90% (beta), using data from previous studies with iReadMore 

prototypes in stroke patients with chronic pure alexia (Woodhead et al., 2013) and 

chronic aphasia (Woodhead et al., 2018). 

For participants with pure alexia, improvements in word reading speed of 149.0ms (SD = 

214.5, Cohen’s d = 1.38) were observed in the previous study. For those with chronic 
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aphasia, improvements included an 8.7% increase in word reading accuracy (SD = 6.3) 

and a 100ms reduction in reading time (SD = 97.8, Cohen’s d = 0.98). 

Using an online sample size calculator (obtained from 

https://www.dssresearch.com/resources/calculators/sample-size-calculator-

average/), a required sample size of 18 was determined for word reading reaction time 

(test value = 149ms, SD = 214.5). For word reading accuracy, the required sample size 

was 204 (test value = 8.7%, SD = 6.3). 

 

4.2.4 Participants 

Participants are entirely self-selecting. Real-world users of the iReadMore app could 

opt-in to allow their in-app data to be collected pseudonymously for this study. The app 

is downloadable onto Apple and Android phones and tablet via the Apple App Store and 

Google Play Store with a one-week free trial. Continued use costs £5 per month. 

Previous participants in any study from the UCL Neurotherapeutics Group including 

participants of the National Hospital for Neurology and Neurosurgery Intensive 

Comprehensive Aphasia Programme are able to use the app freely for a period of 3 

months. In order to use the app, participants require access to a tablet or phone device 

and an internet connection. Members of our mailing list and other groups’ mailing lists 

were notified about the app and study as well as through social media. Further 

recruitment activities included online and in-print advertisements and presenting at 

stroke support groups and patient and public awareness events. The app was featured 

in articles in UK national newspapers as well as specialist subject-specific publications.  

https://www.dssresearch.com/resources/calculators/sample-size-calculator-average/
https://www.dssresearch.com/resources/calculators/sample-size-calculator-average/
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4.2.5 Inclusion and Exclusion Criteria 

The inclusion criteria in this study are:  

- Participants must be over 18 years old 

- Diagnosed with stroke, dementia, PPA, brain injury or brain tumour 

- Diagnosed or self-diagnosed with an acquired impairment of reading ability 

(alexia) 

- Willing and able to give informed consent for participation in the study 

The exclusion criteria are:  

- History of developmental reading or speech and language disability (such as 

dyslexia) 

- Participants who are in the acute phase of their stroke (<6 months after 

diagnosis) 

 

4.2.6 Intervention: iReadMore Word Reading Therapy 

iReadMore is a self-led therapy for improving single word reading accuracy and reaction 

time in individuals with acquired reading impairments. It is intended to be used at home 

independently by persons with aphasia or alexia. iReadMore has been demonstrated to 

improve reading speed and accuracy in pure and central alexias (Woodhead et al., 

2013, 2018). Thirty minutes of daily practice is recommended to users; this is based on 

the findings of the iReadMore RCT, however, the optimal therapy doses are not currently 

known and will be explored in the present work. iReadMore is available on Android and 
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Apple mobile phone and tablet devices. It is publicly available to download on Apple 

App and Google Play Stores. iReadMore is registered as a CE-marked Class I medical 

device. 

The therapy contains two phases, Exposure and Challenge. Instructions for both phases 

are provided before the first therapy session and are accessible at any point via the Help 

section of the app and on YouTube. 

 

4.2.6.1 Therapy Part 1: Exposure Phase 

In the Exposure phase, ten words are successively displayed, read aloud and visualised 

by an image providing a semantic representation (Figure 5). These pairings are always 

congruent. The user must click on a card to reveal the word to ensure active 

participation and attention to the task. Previously, the words appeared without 

prompting making the participant’s involvement passive. The exposure phase primes 

participants to the correct pairings of written and spoken words that will be tested in the 

subsequent Challenge Phase. This is hypothesised to reinforce the correct associations 

between the orthographic, phonological and semantic representations of words, 

resulting in improved word reading abilities. 

In both phases of the therapy, after words are displayed, a visual backwards mask 

appears to suppress afterimages of the word remaining in the participants’ visual field. 

This allows for the precise control of the exposure time that the user has to read the 

word.  
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4.2.6.2 Therapy Part 2: Challenge Phase  

In the Challenge Phase, the 10 words from the Exposure Phase are tested. 

Simultaneously, a written word and a spoken word are presented and unlike the 

Exposure Phase, these trials are not always congruent (Figure 6). Instead, the word 

written may be a distractor word that is phonologically similar to the spoken word; an 

example being [throw] and /through/.  The user must decide whether the words they 

read and heard are the same (a congruent trial) or different (an incongruent trial) by 

clicking one of two buttons. Once the user has responded, audio and visual feedback 

are provided to inform the user of correct and incorrect responses. This feedback is 

provided to support error-reducing learning. 

When a user correctly responds to a challenge item they gain a point, an additional 

point is granted for fast responses and for five correct responses consecutively. Points 

are needed to successfully complete a Challenge Phase; the number of points required 

depends on the user’s therapy level. Challenge Phases end if the therapy points are 

achieved or if 30 trials have been completed without the score being obtained and this 

is considered an unsuccessful Challenge Phase.  

There are two algorithms determining the difficulty of the therapy content, an item-

specific difficulty algorithm and a non-item-specific difficulty algorithm. 

The item-specific difficulty algorithm determines how difficult the distractor words are 

for a given target word. This is determined by user performance on that specific target 

word in the previous Challenge Phases. In this way, words that the user is getting 

consistently correct progress to harder difficulty levels faster than a word that the same 
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user is performing less well on. There are three levels of difficulty (easy, medium and 

hard). Each target word has multiple distractor words (between 4 and 9) with varying 

degrees of similarity to the target word. More orthographically similar words and words 

where the initial and final phonemes of the distractor match the target word (such as 

‘than’ and ‘thin’) are deemed higher difficulty. If a user performs consistently well on 

hard distractors, the word will be removed from the therapy (which we call ‘word 

mastery’). If a user is performing badly at a medium or hard difficulty distractor, the level 

can drop down and will remain in the therapy word list for longer. If the word seen and 

heard are both the target word (congruent trial), correct responses do not affect the 

difficulty algorithm or word mastery, but incorrect responses can decrease the difficult 

level. The minimum possible number of exposures of a word before word mastery is 

achieved is 4 times in the therapy (not including congruent trials). 

A separate, non-item-specific difficulty algorithm increases and decreases based on 

Challenge Phase performance to determine how many points are needed to complete a 

Challenge Phase, how long the user has to read a word (exposure duration), and what is 

defined as a fast or slow response. The number of points required to complete a level 

starts at 20 and goes up to a maximum of 59. If a user is performing badly, they will go 

down a level in order to maintain that the therapy is challenging without becoming so 

difficult that it is frustrating and risks them disengaging from the therapy. The exposure 

time and response time decrease with increased therapy levels to promote faster 

reading, ranging from 2000ms to 100ms for exposure time and 4000ms to 2000ms for 

the threshold for a fast response. 
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4.2.6.3 Therapeutic Mechanisms 

The therapeutic mechanisms of the intervention are twofold. Firstly, through repeated 

exposure to congruent pairings of written and spoken words, and pictures (representing 

the semantic meaning of a word) through paired-associate (or Hebbian) learning 

(Holcomb and Anderson, 1993) related to the Triangle Model approach to reading (Plaut 

et al., 1996). Secondly, feedback on correct and incorrect trials in the Challenge Phase 

reinforces learning of correct responses in line with reinforcement learning and error-

reducing learning (Middleton and Schwartz, 2012). 

The therapy also utilises a mass practice of an impairment-based therapy approach 

with unlimited access to enable high therapy doses. Gamification and co-design are 

employed to ensure accessibility of the therapy and drive motivation and engagement 

for the self-led user group; an approach rooted in the self-determination theory. 

 

4.2.6.4 Training and Testing Stimuli 

iReadMore includes 590 of the most frequently written words (SUBTLEXWF > 50) from 

the SUBTLEX lexical database (Brysbaert and New, 2009). High frequency words were 

chosen to maximise the ecological utility (or relevance) of the training to everyday 

language use. This was chosen as word reading improvements from the therapy are not 

expected to generalise beyond trained items. All words are between 3 and 6 letters to 

ensure they can be read in one fixation. All word classes (nouns, adjectives, verbs, 

function words etc.) are represented in the word list, including words that have low 

imageability or concreteness. Words with hyphenation or punctuation have been 
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excluded and only one morphological variant of the same word (such as only including 

‘run’ and not ‘ran’ and ‘running’ additionally). 

From the full word list, three matched lists of 180 words were generated, these are 

referred to as Lists A, B and C. For each word on list A, there is a corresponding word on 

lists B and C matched for letter and syllable length as well as imageability and 

frequency. In the iReadMore RCT, all 590 words were tested at two baseline timepoints 

and a customised set of matched words from A, B and C were generated based on their 

individual profile. However, this was not deemed feasible in the release version, 

therefore it was decided that words would be pre-matched across the lists and users 

would begin training on all List A words in a randomised order, so each user starts with a 

different word list. List B words are added into the therapy when word mastery is 

achieved for a List A word, this would be the corresponding matched word (e.g. item 

B01 always replaces item A01). Therefore, the lists remained matched for 

psycholinguistic variables. An additional list of 50 ‘Core’ words includes the highest 

frequency function words are included as a separate list which remains in the therapy 

throughout due to high ecological utility. These are not tested in the Word Reading Test 

due to low imageability and abstractness (e.g. ‘The’), which was deemed inappropriate 

for inclusion in a word-to-picture matching task. 

All words have multiple images relating to the semantic meaning of the word that are 

used in the exposure phase of the therapy and separate images that are used for the 

test (expect for core words, which are not tested). Different images are used to prevent 

the occurrence of users learning to recognise the correct images and not the correct 

lexical item.  
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4.2.7 App Registration 

When the user downloads and opens the app for the first time, they must complete a 

comprehensive battery of language and cognitive assessments, and complete 

demographic data prior to initiating the therapy. This process takes around an hour to 

complete and breaks can be taken at any point in-between tests on the hold screens, 

with reminders to consider taking a break and returning to the testing when the user 

feels they are ready. The registration process was extensively co-designed and beta-

tested prior to release as this was an area of particular challenge in making the process 

intuitive for the user and in order to provide reliable data collection. Only one baseline 

time-point was used as it was deemed that real-world app users would not tolerate 

having to complete multiple, spaced baseline assessments, when their intentions of 

downloading the app would be to using the app for therapeutic purposes and not 

research participation. 

The tests completed at baseline are described in detail in the following sections. The 

data collected at baseline is used in Chapter 4 as well as the current chapter of my 

thesis. 

 

4.2.8 Baseline Behavioural Assessment 

4.2.8.1 Demographics 

The following demographic data is collected through the in-app registration process:  

- Age (year and month only) 
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- Gender (categorical) 

- Cause of reading impairment (categorical); users with PPA are further asked to 

provide their PPA subtype (if known) 

- The date that their reading impairment began or was diagnosed (year and month 

only) 

- Presence of childhood reading impairment (yes or no) 

 

4.2.8.2 Word Reading Test (WRT) 

The WRT is used to assess reading of written single words at each time point. The WRT 

implemented in the app is based on a testing protocol devised by Dr Zoe Woodhead for 

the iReadMore RCT (Woodhead et al., 2018). This outcome measure has been adapted 

for self-completed, digital delivery by people with aphasia.  

The WRT is a word-to-picture matching task where a word is displayed and users are 

instructed to click on the screen as soon as they have finished reading in order to 

collect reaction time data. After the screen is clicked, a backwards mask is displayed to 

control for the duration of stimulus exposure to the written word. Following this, four 

pictures are displayed, one corresponding to the target word that was just presented 

and three unrelated distractor images. Distractors for a target word are pre-set and not 

randomised to ensure that they are not phonological or semantic distractors. The 

location of the target words and distractor on the screen is randomised. The participant 

taps the screen to select an image and is not timed for this task. Participants are given 

up to four seconds to read the word before the trial moves on to the picture matching 
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task. This time limit was implemented to prevent participant fatigue and to limit the 

amount of time required to complete the registration phase. Accuracy for the trial is 

determined by correct or incorrect picture matching. The order of multiple choice 

responses on the screen is randomised.  

The baseline test contains 132 trials. 100 trials are used to establish word reading ability 

as described in this thesis section. An additional 32 words are used in a WRT subtest to 

investigate alexia subtypes in a real-world population; this is detailed further in Section 

4.2.8.3 below. 

At baseline, 50 pairs of matched words (100 trials in total) are selected from List A (that 

will be trained in the therapy) and List C (words that will not appear in the therapy); such 

that word A01 is matched to word C01. The word list for the test is selected randomly for 

each user from the full word lists. The word pairs are matched for psycholinguistic 

variables. The original test at baseline included all 590 words in the study. This was 

abridged to 100 words due to the substantial length of time that is required to complete 

the testing which was concluded would not be tolerated by participants who are 

downloading an app to conduct therapy independently at home outside of a controlled, 

research environment.  

Picture matching precludes the inclusion of low imageability words (such as function 

words), therefore, 50 function words (referred to as Core Words) were removed from the 

testing, but remain in the therapy. In the iReadMore RCT, reading accuracy and speed 

improvements for core words were in-line with the other general lists of trained words 

(Word Lists A and B). In addition, there was no evidence for the influence of word 



86 

imageability or regularity on the therapy effects, suggests that the therapy can be 

effective for all word types (Woodhead et al., 2018).  

To ensure that the participant has a good understanding of the task prior to the test 

commencing, instructions are delivered in written and audio format, followed by a 

reactive practice test of up to 10 trials or until 4 trials have been answered correctly 

without prompts in a row. The practice test incorporates errorless learning as users 

must click on the correct image to progress and provides feedback after each trial to 

ensure understanding of the task. 

 

4.2.8.3 WRT subtest - Alexia Subtyping Test 

The additional 32 trials in the WRT were designed to investigate alexia subtyping and are 

only completed at baseline. These trials are randomly distributed through the baseline 

reading test. Unlike the 100 trials of Lists A and B items, two of the three distractors in 

these trials are semantic and phonological distractors, with the third being unrelated. 

The 32 target words (List D) and 96 distractor words are distinct and do not appear in the 

other WRT word lists or the therapy content. The target words were selected for their 

high error-production rates in individuals with alexia, excluding low-imageability words 

for compatibility with the picture-matching task. 

List D was validated using healthy age-matched controls via Gorilla Experiment Builder 

and Amazon Mechanical Turk. This ensured the clarity of images, appropriate matching 

to corresponding words, and the absence of outliers in error rates or reaction times for 

healthy, control individuals. Validation began with a practice round where participants 
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had to correctly respond to at least 6 out of 8 trials which included only unrelated 

distractors before proceeding. Unsuccessful participants repeated the practice session 

after reviewing instructions. 

The experiment was completed three times with revised word and image lists until the 

error rate and reaction times were satisfactory. In each experiment, twenty control 

participants completed the 32 trials, with randomisation in terms of both the task order 

and the order of response options on the screen. In between experiments the results 

were reviewed and the list was amended according to reduce error rates and reaction 

times. Tasks generating multiple errors or average reaction times exceeding 2000ms 

were revised, either in terms of the images used or the distractor words being amended. 

Qualitative feedback provided by participants at the end of each experiment further 

informed these refinements. Two qualitative responses were collected, one participant 

noted their slow internet connection may have been delaying their responses times and 

another was aware of a mis-selection that they made. These examples were therefore 

excluded from the analysis. 

Errors were categorised as semantic, phonological, or unrelated. Across all iterations, 

semantic errors were the more common, but were deemed acceptably uncommon. The 

overall error rate decreased from 3.8% to 2.0% over the three experiments, with no 

repeated incorrect responses for the same tasks across participants in the final 

iteration. Reaction times remained stable across tasks and the repeated experiments 

with no outliers collected aside from one individual reporting slow loading times. 
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4.2.8.4 Children’s Sustained Attention to Response Task (cSART) 

The cSART is a non-verbal version of the Sustained Attention to Response Task (Manly et 

al., 2000) that is more suitable for people with alexia or aphasia. It is a domain general 

test of sustained attention was used to assess each participant’s ability to concentrate. 

It was also used as a non-language control measure at interval testing time points. It 

was not expected to change with therapy usage, and was therefore used as a control 

measure to investigate specificity of treatment effects and to explore for test-retest 

effects from users repeating the same tests multiple times. 

This Go/No-Go task contained pictures displaying one of two different people (see 

Figure 8), one of which was displayed in each trial. Participants were instructed to tap 

anywhere on the screen whenever the Go trial image was displayed and to withhold 

tapping for the alternative No-Go trial image. 200 Go trials and 25 No-Go trials were 

presented over approximately 4 minutes in a pseudorandomised order. As No-Go trials 

were infrequent and unpredictable, to be accurate, the patient was required to maintain 

attentive across the duration of the test in order to successfully inhibit a response on 

the No-Go trials. 

Due to the complexity of delivering this task remotely, two practice rounds were 

implemented in the registration process. The first had 10 Go trials, and the second had 

8 Go trials and 2 No-Go trials. A correct response rates of 60% was needed to progress 

to the test. Otherwise, the practice test and instructions were repeated.  
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Figure 8 - cSART Go and No-Go trials 

 

4.2.8.5 Spelling Test 

The presence of a writing disorder can distinguish pure and central alexia (Leff and 

Starrfelt, 2014). To test participant’s spelling ability, the stimuli and trials from the 

writing subsection of the CAT (Swinburn, Howard and Porter, 2004) have been adapted 

for use within the app. This test is scored according to the instructions in the CAT. 
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4.2.8.6 Written Picture Description 

This connected writing test assesses the users’ appropriate use of grammar and syntax 

as well as individual word spelling. Participants are presented with a line drawing of a 

detailed scene with several elements and asked to provide a written description of it. 

The stimuli and scoring system is taken from the CAT (Swinburn, Howard and Porter, 

2004). 

 

4.2.8.7 Visual Fields Test 

Pure alexia is often accompanied by a loss of vision to the right side of space (known as 

right homonymous hemianopia) which impairs reading ability. This phenomenon is not 

associated with central alexia. Therefore, Visual Fields Test (VFT) test can be useful for 

differentiating between pure and central alexia types. The VFT is a validated, digital 

visual field test has been developed for participants with hemianopia that does not 

need to be completed unaided by a clinician (Koiava et al., 2012). 

Participants are asked to hold the tablet or phone at approximately arm’s length in a 

comfortable position, either being held or placed on a table. Participants are instructed 

to focus on a red cross in the centre of the screen at all times during stimulus 

presentation (see Figure 9). A pattern of 1-4 dots will appear momentarily at 

predetermined locations on the screen during stimulus presentation. Participants are 

presented with 21 stimuli. Each is followed by 4 images, one of which will reflect the 

stimuli presented. The other three are close distractor variations based on the stimuli. 
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Users are then instructed to pick from the 4 options and select the option that matches 

the pattern that they saw. Participants can view the dot pattern again once if needed. 

The red cross is outlined in yellow to improve visibility. The background is a light grey 

and the dots are presented in darker greys; the contrast increases as dots appear 

further from the cross in the centre of the screen according to a colour matrix. 

 

Figure 9 - Visual Fields Test. A) Presentation of the stimuli. B) Users are asked to select the option that matched the to 

the stimuli. 

 

 

4.2.8.8 Patient-reported Outcome Measures (PROMs) 

In order to assess the users’ perceptions on their own reading abilities and performing 

selected activities of daily living, participants are asked to rate how easy they find:  

- Reading words  

- Reading sentences 

- Reading text  

- Writing  

- Speaking  
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- Using your phone or tablet 

- Remembering where you left something (such as your glasses)  

- Moving around at home 

- Travelling  

- Shopping 

Responses are reported using a 7-point Likert scale from ‘Easy’ to ‘Hard’ with visual 

support (Figure 10). A second question asks users to select which items they have been 

able to read recently from a list of functionally-relevant written item categories 

including: 

- Packaging or instructions 

- Street signs  

- Letters, postcards, or emails 

- Newspaper or magazine articles 

- Books 
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Figure 10 - PROMs Likert scale 

 

4.2.9 Interval assessments 

4.2.9.1 Word Reading Test 

The WRT (as described previously) is the primary outcome measure for the study. The 

outcomes from the test are change in word reading accuracy and reaction time 

comparing trained and untrained items. Reaction times are calculated using correct 

trials only, and excluding trials where the RT was more than 2 standard deviations from 

the subject’s mean. After every 5 hours of therapy are completed, the WRT is repeated. 

The interval tests contain 50 trained words from Lists A and B matched with 50 

untrained words from List C. Words on Lists A and B are ranked to ensure the most 

trained words from the last 5 hours of therapy are used in the test. In the rare 
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circumstance that less than 50 words are trained in the therapy, the test is shortened to 

ensure only trained words are tested. 

 

4.2.9.2 cSART  

The cSART is delivered at every interval time point as a control measure to the treatment 

effect as this outcome is not expected to improve. The outcome measures were the 

number of false negative (when the user withholds on a Go trial) and false positive 

responses (when the user presses on a No-Go trial), and the mean RTs on correct Go 

trials only.  

 

4.2.9.3 Quantitative PROMs  

The Quantitative PROMs are completed after every 5 hours of therapy The Quantitative 

PROMs are analysed within-participant for change over the therapy time-points as a 

secondary outcome measure using mixed linear regression.  

 

4.2.9.4 Qualitative PROMs 

The qualitative PROMs are completed every 10 hours to provide further detail, however, 

these are optional in case the participant is unable to answer. The qualitative outcomes 

are analysed using a qualitative thematic analysis to provide further insights into user 
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experiences of the app and perceptions of the therapy and potential translation to 

participants’ functional reading abilities. 

Three questions are asked in these sections with participants responding using free-text 

boxes: 

- Has your reading ability changed since starting iReadMore therapy? 

- What are your thoughts on the therapy?  

- Any other comments? 

 

4.2.9.5 Mixed Linear Regression Models 

Mixed Linear Regression was employed to analyse the data obtained from the ongoing 

rollout trial and evaluate the significance and therapy effects of the iReadMore digital 

reading therapy intervention in individuals with acquired reading impairments. The 

primary outcomes assessed are changes in reading accuracy and reaction time on the 

Word Reading Test across multiple timepoints. Two groups of items, trained and 

untrained, were evaluated in a within-participant analysis. Trained items consist of 

words directly practiced within the iReadMore therapy, while untrained items are 

matched words that do not appear in the therapy. 

Mixed Linear Regression Modelling was applied because of its suitability to aspects of 

the dataset, including a small sample size, influence of random effects, and repeated 

measurements in a within-participant design. Mixed Linear Regression effectively 

accounts for repeated measures, capturing the inherent dependencies in longitudinal 

data. Additionally, it accommodates unbalanced datasets, allowing the inclusion of 
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participants with missing data at specific timepoints as seen in self-led digital therapy 

usage.  

Analyses were conducted in Python, using Restricted Maximum Likelihood Estimation 

(REML) to estimate parameters. REML was chosen over Maximum Likelihood because 

of the ability to provide unbiased estimates of variance, particularly relevant to smaller 

sample sizes or models with random effects, such as real-world datasets. 
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4.3 Study 3: Prediction of Therapy Outcomes Using Therapy Data 

This chapter presents two studies on therapy outcome prediction using data collected 

from the RCTs of iReadMore and Listen-In (a digital therapy for spoken word 

comprehension therapy). The intention of both studies was to explore the feasibility and 

suitability of using only variables collected in the apps currently or which could be 

collected remotely (i.e. excluding variables requiring MRI scanning or in-person 

behavioural testing). The first study uses data from the iReadMore trial and contains 

limited therapy data. The second study is an expansion of the first using data from the 

Listen-In trial containing substantially more data on participant’s therapy progress. 

 

4.3.1 Background on Treatment Outcome Prediction 

4.3.1.1 Introduction 

The prediction of language outcomes for people with post-stroke aphasia has explored 

using clinical data, such as neuroimaging scans and behavioural assessments (Lambon 

Ralph et al., 2010; Plowman, Hentz and Ellis, 2012; Wang et al., 2013; Seghier et al., 

2016; Aguilar et al., 2018; Hope, Leff and Price, 2018; Nouwens et al., 2018; Kristinsson 

et al., 2021; Billot et al., 2022). A predictive algorithm of this type would have great 

clinical utility in supporting decision-making on treatment options for aphasic patients 

with greater certainty. Aguilar et al. (2018) investigated prediction of therapy outcomes 

for users of iReadMore. Predictions of therapy responses for out-of-sample individuals 

were generated from a combination of demographic, behavioural and lesion location 

data. The predictions were significantly correlated with the actual therapy responses 
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(Figure 11). However, the model was overfitting, likely due to a small sample size of 23 

participants. The authors reported that they were unable to constrain multivariable 

models or effectively evaluate the predictive power of the model due to the sample size. 

This study was only intended as a preliminary investigation, however it was the first 

study on prediction of therapy outcomes for a reading rehabilitation therapy.  

 

Figure 11 - Predicted treatment responses versus the observed treatment responses to therapy. A perfect prediction 

would along the diagonal dotted line (y=x). (Obtained from Aguilar et al., 2018) 

 

 

4.3.1.2 Machine Learning 

Machine learning (ML), a branch of artificial intelligence, develops algorithms that learn 

patterns and make decisions from data without explicit programming. Unlike traditional 

rule-based systems, ML adapts dynamically, offering transformative potential in fields 

like healthcare by supporting personalised treatment planning, enhancing diagnostic 

accuracy, and optimising clinical outcomes. 
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ML encompasses several core paradigms, each suited to specific data types and 

problem-solving approaches. Supervised learning, widely used in tasks such as disease 

diagnosis and treatment outcome prediction, involves training algorithms on labelled 

data with known input-output pairs. In contrast, unsupervised learning analyses 

unlabelled data to uncover hidden patterns, such as clustering patients with similar 

profiles or detecting anomalies. Reinforcement learning focuses on optimising 

decision-making through interaction with an environment and feedback in the form of 

rewards or penalties. Hybrid approaches, like semi-supervised and self-supervised 

learning, combine labelled and unlabelled data to improve efficiency, especially when 

annotated datasets are limited. Deep learning, inspired by neural networks, excels at 

capturing hierarchical data representations and has been transformative in areas like 

image recognition, natural language processing, and genomics. 

The success of ML algorithms hinges on several considerations. Data quality and 

representativeness are critical, as biases or inaccuracies can lead to flawed 

predictions. Interpretability and ethical implications are particularly significant in 

healthcare, where decisions impact patient outcomes. The "black box" nature of many 

algorithms complicates accountability, while privacy and data security risks can arise 

from handling sensitive information. Overfitting, which limits generalisability, and the 

growing computational demands of ML models also present challenges, including 

environmental sustainability concerns. Addressing these issues requires robust testing, 

ethical oversight, and rigorous regulatory frameworks to ensure responsible 

deployment. 
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4.3.1.3 Treatment Outcome Prediction 

In the context of treatment outcome prediction, machine learning holds significant 

promise. By analysing large datasets comprising patient demographics, clinical history, 

genetic profiles, and treatment records, ML models can identify predictive features 

associated with therapeutic outcomes. This can enable the development of 

personalised treatment strategies, optimising interventions, minimising adverse effects 

and supporting shared decision-making. As such, this chapter explores the application 

of machine learning to predict treatment outcomes, delving into its methodologies, 

challenges, and potential to transform patient care. 

In treatment outcome prediction, various machine learning models can be employed, 

each with its strengths and limitations. These models include linear models, decision 

trees, random forest regression (RFR), elastic net, lasso, and support vector regression 

(SVR), all of which are commonly used for regression and classification tasks in 

healthcare applications. 

 

4.3.1.4 ML Regression Models 

Linear 

Linear regression is one of the simplest machine learning models, assuming a linear 

relationship between input features and the target variable (Barbur, Montgomery and 

Peck, 1994). It is widely used for its interpretability and efficiency, especially when the 

relationship between predictors and outcomes is approximately linear. However, it may 
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not perform well in complex datasets where relationships between variables are non-

linear. 

 

Lasso 

Lasso (or Least Absolute Shrinkage and Selection Operator) is a regression technique 

that applies L1 regularisation to promote sparsity in the model, effectively performing 

feature selection by shrinking the coefficients of less important features to zero 

(Tishbirani, 1996). Lasso is beneficial when there is a need to identify and retain only the 

most relevant features, improving model interpretability and reducing the risk of 

overfitting. 

 

Elastic Net  

Elastic Net is a regularised regression model that combines both ridge regression (L2 

regularisation) and lasso (L1 regularisation) (Zou and Hastie, 2005). It is particularly 

useful when there are many correlated features in the dataset. Elastic Net helps prevent 

overfitting by imposing a penalty on the size of the coefficients, ensuring a balance 

between model complexity and predictive power. 

 

Decision Trees 

Decision trees are non-linear models that split the data based on feature values to 

make predictions (Breiman et al., 2017). These trees create a series of decisions, 
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leading to a prediction at each leaf node. While decision trees can capture complex 

relationships in data, they are prone to overfitting, especially when deep trees are 

created without sufficient pruning. 

 

Random Forest Regression (RFR) 

An ensemble method based on decision trees, RFR builds multiple trees and combines 

their predictions to reduce overfitting and improve accuracy (Breiman, 2001). RFR is 

robust to noise and captures complex, non-linear relationships, making it a powerful 

choice in many real-world problems. However, it can become computationally 

expensive with large datasets. 

 

Support Vector Regression (SVR) 

SVR is a type of regression model based on support vector machines (Drucker et al., 

1997). It is effective in capturing complex, non-linear relationships by using kernel 

functions to map input features into higher-dimensional spaces. SVR is particularly 

useful when the data has outliers or the relationship between predictors and outcomes 

is non-linear, but it requires careful tuning of parameters such as the kernel and 

regularisation parameters. 

Each of these models offers unique advantages depending on the nature of the data 

and the specific goals of treatment outcome prediction. While linear models are simple 

and interpretable, non-linear models like decision trees and random forests can handle 

more complex relationships. Elastic Net and Lasso provide regularisation to prevent 
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overfitting, while SVR is powerful in cases where non-linear relationships exist in the 

data. 

 

4.3.1.5 Model Evaluation 

The performance of predictive models is typically assessed using several quantitative 

metrics. Root Mean Square Error (RMSE) is a commonly used measure of the average 

magnitude of prediction errors, reflecting how closely the model’s predictions align with 

observed outcomes. RMSE values are often accompanied by their standard deviation 

(SD), which provides insight into the variability of prediction errors across different 

samples. A lower RMSE and narrower SD suggest that the model’s predictions are both 

more accurate and consistent. 

The Coefficient of Determination (R²) is another key metric, representing the proportion 

of variance in the observed data that the model explains. Higher R² values, closer to 1, 

indicate better model fit and stronger predictive capability. In addition, 95% confidence 

intervals (CIs) are used to quantify the precision of model performance estimates. 

Narrower CIs reflect higher confidence in the reliability and stability of the model's 

predictions. 

By examining these metrics together, researchers and clinicians can gain an 

understanding of a model's accuracy, variability and reliability. This multifaceted 

evaluation approach ensures that models are not only statistically robust but also 

clinically meaningful and applicable in real-world healthcare settings. 
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While metrics like these are essential for evaluating predictive models, they have 

limitations. RMSE does not differentiate between systematic bias and random error, 

potentially masking meaningful patterns in the data. R² can be misleading when applied 

to non-linear models or datasets with outliers, as it may overestimate model 

performance. Additionally, confidence intervals rely on assumptions about data 

distribution and can become less reliable in small or highly variable datasets. These 

limitations highlight the need to interpret performance metrics within the context of the 

specific modelling approach and clinical application. 

 

4.3.1.6 Prediction of Aphasia Treatment Outcomes 

Aphasia treatments exhibit significant variability in how different individuals respond, 

leading to significant differences in outcomes. Some therapy users may show 

substantial improvement, known as high responders, while others may experience only 

marginal gains or no improvement at all, referred to as low responders. The underlying 

mechanisms driving this variability are complex and require further investigation 

(Kristinsson et al., 2021). Factors such as the integrity of preserved brain regions, age 

and educational background have been identified as potential predictors of treatment 

outcomes, albeit to varying extents. This heterogeneity in treatment outcomes affects 

the overall effectiveness of aphasia rehabilitation and the ability to identify how 

potential users will respond could enhance the efficacy of treatment protocols and 

patient experiences. Additionally, accurate treatment outcome prediction could 

facilitate evidence-based clinical decision-making (Sutton et al., 2020) and help set 

realistic patient expectations (Kristinsson et al., 2023). 
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Several studies have explored treatment response prediction in aphasia rehabilitation 

(Lambon Ralph et al., 2010; Plowman, Hentz and Ellis, 2012; Wang et al., 2013; Seghier 

et al., 2016; Aguilar et al., 2018; Hope, Leff and Price, 2018; Nouwens et al., 2018; 

Kristinsson et al., 2021; Billot et al., 2022). These studies typically use data from pre-

therapy behavioural assessments and neuroimaging, including factors like initial 

aphasia severity, structural integrity, lesion size, demographics, and performance on 

pre-therapy language-based and cognitive tasks. However, research has also 

highlighted the potential need for additional data sources to achieve accurate and 

reliable predictions suitable for clinical use (Price, Seghier and Leff, 2010; Harvey, 

2015). 

The development of digital therapies offers new avenues for data collection at scale, 

providing unique opportunities to improve predictive modelling for aphasia treatment 

outcomes. Digital therapies, such as app-based interventions, can capture a wealth of 

in-therapy data, including user engagement metrics, response accuracy, progression 

through therapy levels, and session timing. These data sources, when combined with 

pre-therapy assessments, offer the potential to create richer, multimodal datasets for 

analysis. Such an approach could address the limitations of relying solely on static, pre-

therapy variables, enabling more dynamic and individualised prediction models.  

By leveraging these novel data sources, this research seeks to advance our 

understanding of the factors influencing therapy responsiveness and improve the 

overall effectiveness of aphasia rehabilitation. 
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In this chapter, I explore the potential of predicting treatment outcomes only using 

variables which can be collected via digital therapy apps (for exampling, excluding brain 

scan-derived variables), to investigate the feasibility of implementing a prediction 

algorithm into the app.  

 

4.3.2 iReadMore 

4.3.2.1 Study Design 

The application of training a prediction algorithm using in-therapy data is a novel 

approach that has not been previously explored in aphasia therapy. This study utilises 

data from the iReadMore trial (Woodhead et al., 2018) to replicate the findings of Aguilar 

et al. (2018). However, this replication was constrained to variables that could feasibly 

be collected via the iReadMore app, thereby excluding neuroimaging data. Additionally, 

this study incorporates a broader set of in-therapy variables to enhance the predictive 

model. 

 

4.3.2.2 Ethics 

All participants gave written informed consent. The ethics approval for the iReadMore 

RCT (NCT02062619) was obtained from the London Queen Square Research Ethics 

Committee. Approval was granted for anonymised data from the trial to be utilised 

further in future research studies. 
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4.3.3.3 Participants 

The data analysed in this study was obtained from participants who completed the 

Phase II RCT of iReadMore (Woodhead et al., 2018). The study included 21 participants 

(13 female) with chronic aphasia, including alexia. A summary of baseline statistics is 

presented in Table 3. 

Table 3 - Baseline summary of iReadMore trial participants. 

  Mean     SD 
Age (years) 53 11 
Time since Stroke (months) 59 39 
CAT Naming (%) 61 28 
WRT Word Reading (%) 57 30 
Lesion Volume (cm3) 163 99 

 

4.3.2.4 Measure of Treatment Effect 

Two measures of treatment effect were used in this study. These were reading accuracy 

and reading speed obtained from the WRT as delivered in the iReadMore randomised 

controlled trial. This test consists of Lists A, B and C from the WRT, but not List D which 

was developed for the rollout trial. In the RCT, the WRT test, which has now been 

incorporated into the app, was delivered on a laptop in a research setting. 

 

4.3.2.5 Data Completeness 

Across 28 variables and 588 data entries, there were 32 missing data entries (see Table 

4). The most affected were variables from the Comprehensive Aphasia Test (CAT), with 

Picture Description and CAT Average Score missing 23.8% of entries. The overall 

missing data across all variables was 5.5%.  
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Table 4 - Data completeness for iReadMore randomised trial data. 

Category Variable Missing 
Data 

Entries 

Data 
Completeness 

(%) 
Demographics Sex 

Type of stroke 
Time post stroke (months) 
Age 
Calculated age of stroke 
Lesion volume 

0 
0 
0 
0 
0 
0 

100 
100 
100 
100 
100 
100 

Word Reading Test Accuracy 
Reaction Time Average 
Reaction Time SD 

0 
0 
0 

100 
100 
100 

Comprehensive 
Aphasia Test (CAT) 

Word Repetition 
Naming 
Picture Description 
Word Reading 
Average Score 

4 
4 
5 
4 
5 

81.0 
81.0 
76.2 
81.0 
76.2 

Written Semantic 
Matching (Pyramids & 
Palm Trees) 

Accuracy 
Reaction Time Average 
Reaction Time SD 

1 
1 
1 

95.2 
95.2 
95.2 

Neale Analysis of 
Reading Ability 

Accuracy  
Comprehension  
Words per minute 

1 
1 
1 

95 
95 
95 

children’s Sustained 
Attention to 
Response Task 
(cSART) 

Hits 
Omission Errors 
Go Trial RT 
False Positives 
Correct Rejection 

0 
0 
0 
0 
0 

100 
100 
100 
100 
100 

Sentence Reading Accuracy 
Words per minute 

2 
2 

90.5 
90.5 

iReadMore Initial 
Word Duration 

Initial Word Duration 0 100 

Total 32 94.5 
 

 

4.3.2.6 Data Imputation 

Various imputation methods were tested to address missing data, including replacing 

missing values with the lowest value, mean, or median values. Removing participants 

with missing data was deemed unsuitable as it would lead to a loss of valuable 
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information in a limited dataset. Consequently, imputation techniques were applied to 

preserve as much of the data as possible.  

Initially, missing values were imputed with the median of the respective variable. 

However, exploratory analysis revealed that missing data primarily resulted from 

participants’ inability to complete tests, rather than from random factors such as 

missed appointments. Therefore, imputing with the median could lead to biased results 

and adding lower scores may provide a more realistic method of imputation. 

Consequently, several imputation methods were tested to improve the quality of the 

dataset. A first approach was to replace missing values with zeros, but this led to larger 

error scores and SDs, as this method assigned zero to missing reaction times or SDs—

values that were implausibly perfect. 

A more nuanced approach was then trialled as detailed in Table 5. 

Table 5 - Data imputation strategy. 

Variable Imputation 
WRT Accuracy (%), 
Words per minute, 
CAT and Neale test scores 

Missing values replaced by zeros 

Standard deviation variables Medians 
Reaction time variables Highest recorded value 

 

This strategy resulted in higher error scores and SDs compared to using the median 

values, suggesting that the most appropriate imputation method for this dataset is to 

use the median value for all missing data points. This approach balances data 

preservation with minimising potential bias in the dataset (Little and Rubin, 2014). 
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4.3.2.7 Model development and Evaluation 

Data preparation, model training, hyperparameter optimisation and metric scoring were 

performed using Python and Scikit-Learn (Pedregosa et al., 2011). The data was 

partitioned into three different sets: training, validation and test sets. Model 

development was conducted using the training and validation sets which generate the 

models and optimisation of hyperparameters respectively. The test set was used to 

evaluate the final optimised performance of the models. Multiple models were 

generated using linear regression, logistic regression, Random Forest Regression (RFR) 

and Support Vector machine Regression (SVR). For RFR and SVR models, a grid search 

optimised hyperparameters to generate a model of best fit. Finally, the test set was used 

to evaluate the performance of the models with their respective optimally-performing 

hyper-parameters. In order to generate more conclusive evidence of model 

performance for out-of-sample data, leave one-out cross-validation (LOOCV) was used. 

LOOCV creates a test set of one data point, while the remaining data (N-1) is used for 

training. This process is repeated N times (or folds), therefore a test set is created for 

each data point in the data set. The average error rate is then calculated to evaluate the 

model. 

 

4.3.3 Listen-In 

4.3.3.1 Introduction to Listen-In Therapy 

Listen-In is a digital speech comprehension therapy for aphasia. It focuses on improving 

auditory comprehension and speech processing skills for single words and short 

phrases, supporting users to regain the ability to understand spoken language and 
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communicate more effectively. The drivers for developing the Listen-In app are aligned 

with those for developing the iReadMore app; to provide unrestricted, independent 

therapy for people with aphasia in an accessible and gamified manner. Listen-In therapy 

involves massed practice of spoken word-to-picture matching tasks with target words 

delivered as single words and in phrases or whole sentences, and incorporating both 

phonological and semantic foils (see Figure 12). Users receive real-time feedback and 

encouragement based on their performance. Approximately 870 trained words 

appearing in over 3000 unique challenges. The app uses an adaptive training algorithm 

to individualise the therapy content and difficulty to suit users’ impairment profile and 

severity.  

 

Figure 12 - Listen-In app therapy challenge. 
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The efficacy of Listen-In was tested through a cross-over randomised controlled trial 

involving 35 participants with chronic aphasia. The trial compared 12 weeks of Listen-In 

therapy (averaging 85 hours of therapy) with 12 weeks of standard care. The randomised 

controlled trial (RCT) of the therapy found large and significant improvements in speech 

comprehension when compared to standard of care for trained words (11%, Cohen’s d 

= 1.12) (Fleming et al., 2021). Therapy gains were maintained at 12 and 24 week follow-

ups. These gains were item-specific, suggesting that the therapy facilitated the 

strengthening of particular neural networks associated with the trained words. 

Furthermore, baseline structural integrity, analysed using voxel based morphometry 

(VBM), was found to contribute to treatment outcomes. Greater volumes of white 

matter in distributed regions of the right hemisphere were predictive of better response 

to the therapy. This work found evidence for therapy-driven structural neuroplasticity. 

Longitudinal VBM identified improvements in speech comprehension associated with 

tissue changes in  the bilateral temporal lobes, particularly in regions associated with 

speech processing. This demonstrates that targeted, digital therapies can induce 

measurable changes in brain structures in addition to behaviour in chronic phases of 

aphasia. By providing an evidence-based, self-administered therapy option, Listen-In 

addressed a critical need for accessible and high-dose speech comprehension 

treatment. It empowers patients to take control of their own rehabilitation journey and 

provide a feasible means for therapy delivery without overburdening limited healthcare 

resources. 

Listen-In differs from iReadMore in permitting the user the ability to customise the 

therapy content  based on their preferences. Users are prompted to select modules of 
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words that are subject-related, such as food, adapting the therapy material to the user’s 

interests. Listen-In also incorporates different aspects of gamification to iReadMore 

such as mini-game breaks in between therapy sessions where users collect puzzle 

pieces as an additional non-therapy aspect with collectables aimed at driving long-term 

therapy engagement. 

 

4.3.3.2 Study Design 

Building on the approach used in the iReadMore Therapy Prediction Study that I 

previously conducted, the Listen-In dataset offers a richer source of therapy usage data. 

This dataset enables a more in-depth investigation into the use of in-therapy data for 

predicting therapy outcomes. Furthermore, the data structure more closely aligns with 

what is available in the rollout versions of the iReadMore and Listen-In therapy apps, 

enhancing the applicability of the findings to real-world implementation. 

 

4.3.3.3 Ethics 

Ethical approval was obtained from the National Research Ethics Service, Hampstead 

Committee (15/LO/0569), and the trial protocol was pre-registered on ClinicalTrials.gov 

(NCT02540889). All participants provided written informed consent before study 

participation in accordance with the Declaration of Helsinki. Approval was granted for 

anonymised data from the trial to be utilised further in future research studies. 
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4.3.3.4 Participants 

Data analysed in this study was obtained from participants who completed a Phase II 

randomised controlled trial (RCT) of Listen-In, a spoken word comprehension digital 

therapy (Fleming et al., 2021). Of the 35 participants who completed the trial, 32 had 

the data required for participation in the present study; 2 were excluded due to missing 

therapy data caused by hardware malfunctions and 1 due to a corrupted therapy data 

file. All participants had a left-hemisphere stroke affecting the left perisylvian middle 

cerebral artery territory that resulted in a diagnosis of aphasia. In Table 6, data are 

presented for the 32 individuals (8 female) with post-stroke chronic aphasia 

participating in this study with a mean age of 59 years (SD = 12 years) and a mean time 

since stroke of 74 months (SD = 61.4 months). 

The participants were recruited from the Predicting Language Outcome and Recovery 

After Stroke (PLORAS) database (Seghier et al., 2016), an outpatient aphasia clinic at 

the National Hospital for Neurology and Neurosurgery, University College London 

Hospitals, and previous UCL Neurotherapeutics Group study participants.  

The inclusion criteria were: (i) more than six months post-stroke; (ii) English as a 

dominant language; (iii) scores below 26/30 for comprehension of Spoken Words and 

28/32 for Spoken Sentences on the Comprehensive Aphasia Test (CAT) (Swinburn, 

Howard and Porter, 2004). The exclusion criteria were: (i) a premorbid significant 

neurological (e.g., degenerative brain disease) or psychiatric (e.g., major depression) 

disorder (self-report at screen); (ii) unable to give informed consent.  
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Table 6 - Baseline summary of Listen-In trial participants. 

  Mean     SD 
Age (years) 59.4 12.4 
Time since Stroke (months) 73.9 61.4 
CAT Spoken Words (%) 59.2 21.0 
CAT Spoken Sentences (%) 30.5 13.2 
Lesion Volume (cm3) 209.1 61.0 

 

 

4.3.3.5 Measure of Treatment Effect 

The measure of the treatment effect is percentage change on the Auditory 

Comprehension Test (ACT). This is a bespoke outcome measure that was developed for 

testing the corpus of lexical items that are trained in the Listen-In therapy. The ACT 

measures comprehension of trained and untrained spoken word/phrase/ sentence-to-

picture matching items with one target picture, and five foils (phonological, semantic, 

and unrelated). There are 110 trained and 110 untrained psycho-linguistically matched 

items. Treatment effect is deduced using pre-therapy to post-therapy scores for trained 

items only. Only trained items are used for the treatment effects outcome as the 

therapy effect generalise to untrained words as is expected for impairment-based 

aphasia therapies. The full treatment and testing protocol have previously detailed in 

full in Fleming et al. (2021) and the associated supplementary information. 
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4.3.3.6 Baseline Assessment 

Prior to treatment, participants provided demographic information and completed an 

extensive battery of 10 language and cognition-based assessments, yielding a total of 

19 pre-treatment behavioural and demographic variables (Table 7). 

Table 7 - Pre-treatment behavioural and demographic assessment battery. 

Assessment Variables 
Demographics Sex 

Age 
Handedness 
Time since stroke 
Type of stroke 
Use of a hearing aid 

Audiometry Hearing level 
Free field Audiometry (dB) 

Auditory Comprehension Test (ACT)  ACT (all word) (%) 
ACT (trained words) (%) 

Comprehensive Aphasia Test (CAT) 
(Swinburn, Howard and Porter, 2004) 

Naming (%) 
Repetition (%) 
Spoken Words, % 
Spoken Sentences, % 

British Picture Vocabulary Scale (BPVS) 
(Dunn et al., 1997) 

BPVS (%) 

Cattell Culture Fair Intelligence Test 
(Cattell and Cattell, 1960) 

Cattell Culture Fair intelligence (%) 

Environmental sound discrimination test 
(ENVASA) (Adapted from Leech et al., 
2009) 

ENVASA (%) 

Phoneme Discrimination Test (PDT) 
(Adapted from Robson et al., 2012) 

PDT (%) 

Semantic Association Test (SAT) (Visch-
Brink, E. G., Stronks, D., & Denes, 2005) 

SAT (%) 

 

 

4.3.3.7 Therapy Progression 

Listen-In therapy is broken down into therapy blocks (equating to each level in the 

therapy app), each consisting of 15 therapy challenges. At the end of each therapy 



117 

block, the therapy data is uploaded to the server. For the purposes of this study, the 

initial therapy blocks were segregated to investigate the impact of adding additional 

therapy data on the predictive performance of the models. Please see Table 8 for a 

summary of the therapy blocks. 

Table 8 - Therapy progress by blocks completed. 

Blocks Completed Challenges 
Completed 

Average days to 
complete (IQR) 

Estimated Therapy 
Hours 

10 150 1 (1-2) 1 

50 750 5 (2-6) 5.5 

100 1500 9 (5-14) 10 

500 7500 29 (20-36) 31.5 

Total: 1865  27975 79 (77-83) 85 

 

Participants completed therapy doses ranging from 14 to 158 hours and 7605 to 68991 

therapy challenges, with averages of 66.5 hours and 27082 therapy challenges.  

Table 9 summarised participant’s therapy performance. The majority of study 

participants had no missing therapy data (n=28), one participant had 24% missing 

challenge data for the therapy at 1500 therapy blocks, however at 500 and 1000 blocks, 

this therapy user had only 10% missing data. It is not known why this user had such high 

rates of missing data in the therapy. The remainder had less than 1% missing challenge 

data (n=3). 
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Table 9 - Therapy progress summary. 

  Mean SD 

Therapy Dose (hours) 66.5 28.3 

Challenge Accuracy (%) 86.0 7.0 

Challenges Completed 27082 11912 

Total number of errors 3191 1936 

Mean Challenge Difficulty 1.11 0.13 

Missing Therapy Data (%) 0.85 4.31 
 

 

4.3.3.8 Therapy Performance 

In addition to the demographic and behavioural variables, 27 variables were derived 

from 3 overarching features of the therapy data; dose, challenge outcomes and lexical 

information (Table 10). Due to the adaptive nature of the therapy, participants progress 

through the therapy at different paces and with more challenges focusing on lexical 

items that they are underperforming on. Therefore, it is hypothesised that this variability 

in therapy performance between participants may have predictive value. Six training 

datasets were developed from the In-therapy data based on 6 time point cut-offs (all 

starting at baseline). The six datasets included a no-therapy condition, as well as 

datasets containing 10, 50, 100, 250, 500, and 1000 therapy blocks. This was to 

investigate how minimising the quantities of in-therapy data available to generate 

predictions influenced the predictive value. In practice, this means users will be 

required to complete a certain number of blocks in order to generate a prediction, 

therefore it is advantageous to minimise the amount of therapy time required to 

produce a prediction while still maintaining an acceptable predictive value. 
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Table 10 - Variables derived from in-therapy performance data. 

Therapy features Variables derived from therapy features 
Dose Therapy Challenges  

Therapy Blocks  
Therapy Duration (Days) 

Challenges Performance: 
Therapy Accuracy Mean (%) 
Therapy Accuracy SD 
Therapy Reaction Time Mean (seconds) 
Therapy Reaction Time SD 
 
Difficulty: 
Mean challenge difficulty (%) 
Easy Challenges (%) 
Medium Challenges (%) 
Hard Challenges (%) 
 
Repeats: 
Challenge Stimuli Repeats (Mean) 
Challenge Stimuli Repeats (SD) 
 
Errors: 
Total Number of Errors 
Relative Number of Errors (%) 
Phonological Errors (%) 
Semantic Errors (%) 
Unrelated Errors (%) 
Incorrectly Recorded Errors (%) 

Target Lexical items Adjectives (%) 
Nouns (%) 
Prepositions (%) 
Pronouns (%) 
Tense (%) 
Verbs (%) 
Target Word Frequency 
Target Word Concreteness 
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4.3.3.9 Data Completeness 

The Listen-In randomised trial dataset demonstrated exceptionally high data 

completeness across 19 baseline variables (see Table 11) and 27 in-therapy variables 

(see Table 12). Among all variables, only one, therapy challenges, contained missing 

data, attributed to technical issues such as app crashes, lost internet connection or 

incomplete therapy blocks. This variable achieved a data completeness rate of 99.15%, 

while all other variables had no missing data, ensuring a robust dataset for analysis and 

minimising the need for imputation or data reconstruction. 
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Table 11 - Data completeness for demographics and baseline in the Listen-In randomised trial. 

Assessment Variables derived from 
assessment 

Missing Data 
Entries 

Data 
Completeness 

(%) 
Demographics Sex 

Age 
Handedness 
Time since stroke 
Type of stroke 
Use of a hearing aid 

0 
0 
0 
0 
0 
0 

100 
100 
100 
100 
100 
100 

Audiometry Hearing level 
Free field Audiometry 
(dB) 

0 
0 
 

100 
100 

Auditory 
Comprehension Test 
(ACT)  

ACT (all word) (%) 
ACT (trained words) (%) 

0 
0 
 

100 
100 

Comprehensive Aphasia 
Test (CAT) (Swinburn, 
Howard and Porter, 
2004) 

Naming (%) 
Repetition (%) 
Spoken Words (%) 
Spoken Sentences (%) 
 

0 
0 
0 
0 
 

100 
100 
100 
100 

British Picture 
Vocabulary Scale (BPVS) 
(Dunn et al., 1997) 

BPVS (%) 0 100 

Cattell Culture Fair 
Intelligence Test (Cattell 
and Cattell, 1960) 

Cattell Culture Fair 
intelligence (%) 

0 100 

Environmental sound 
discrimination test 
(ENVASA) (Adapted from 
Leech et al., 2009) 

ENVASA (%) 0 100 

Phoneme Discrimination 
Test (PDT) (Adapted from 
Robson et al., 2012) 

PDT (%) 0 100 

Semantic Association 
Test (SAT) (Visch-Brink, 
E. G., Stronks, D., & 
Denes, 2005) 

SAT (%) 0 100 
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Table 12 - Data completeness for therapy data in Listen-In randomised trial. 

Therapy 
features 

Variables derived from 
therapy features 

Missing Data 
Entries 

Data 
Completeness 

(%) 
Dose Therapy Challenges  

Therapy Blocks  
Therapy Duration (Days) 

4120 
0 
0 

99.15 
100 
100 

Challenges Performance: 
Therapy Accuracy Mean (%) 
Therapy Accuracy SD 
Therapy Reaction Time Mean 
(seconds) 
Therapy Reaction Time SD 
 
Difficulty: 
Mean challenge difficulty (%) 
Easy Challenges (%) 
Medium Challenges (%) 
Hard Challenges (%) 
 
Repeats: 
Challenge Stimuli Repeats 
(Mean) 
Challenge Stimuli Repeats (SD) 
 
Errors: 
Total Number of Errors 
Relative Number of Errors (%) 
Phonological Errors (%) 
Semantic Errors (%) 
Unrelated Errors (%) 
Incorrectly Recorded Errors (%) 

 
0 
0 
0 
 
0 
 
 
0 
0 
0 
0 
 
 
0 
 
0 
 
 
0 
0 
0 
0 
0 
0 

 
100 
100 
100 
 
100 
 
 
100 
100 
100 
100 
 
 
100 
 
100 
 
 
100 
100 
100 
100 
100 
100 

Target Lexical 
items 

Adjectives (%) 
Nouns (%) 
Prepositions (%) 
Pronouns (%) 
Tense (%) 
Verbs (%) 
Target Word Frequency 
Target Word Concreteness 

0 
0 
0 
0 
0 
0 
0 
0 

100 
100 
100 
100 
100 
100 
100 
100 

 

 



123 

4.3.3.10 Data Imputation 

Missing data entries were imputed using median values to reduce their impact on the 

predictive algorithm. This approach was selected to minimise potential biases while 

maintaining the overall distribution of the dataset, ensuring consistency and reliability 

in the model's performance, as based on the findings of the iReadMore data imputation 

exercise in section 4.3.2.6. 

 

4.3.3.11 Model Development and Evaluation 

Multiple prediction models were trained to predict percentage change in the ACT 

spoken word comprehension outcome measure for trained words from baseline to 

therapy completion. The 5 models developed were; Linear Regression, Lasso 

Regression, Elastic Net Regression, Support Vector Regression (SVR) and Random 

Forest Regression (RFR). These models were selected due to their suitability to smaller, 

noisy dataset and computational efficiency. The former three models are linear 

regression models and the latter two are non-linear. The Scikit-Learn library within 

Python programming language was utilised for the development and evaluation of the 

machine learning models (Pedregosa et al., 2011). Missing values were handled using 

multiple imputation by chained equations with Light Gradient Boosting Machine 

Random Forests(Ke et al., 2017). Models were trained using 46 pre-therapy features 

(variables) and 29 in-therapy variables (covering aspects of therapy dose, task 

parameters and participant responses; see Table 9 and 10. 

Data from the trial was segregated into 6 datasets containing variable amounts of initial 

therapy training data. Models were trained using 90% of the participants’ data (n=28) in 
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a test-train split. Model validation was conducted using LOOCV to maximise the data 

available for training. Prediction training performance was evaluated using error 

minimisation metrics (RMSE, RMSE SD, R2), with RMSE being the primary metric, RMSE 

SD was used to control for model biases and the coefficient of determination (R2) was 

used to assess the model's ability to explain variance in the dependent variable, with a 

target range of 0.6–0.8 considered indicative of a well-performing model (Iorga et al., 

2021). However, exceeding this threshold was not necessarily indicative of superior 

model performance in this context. 

Due to the large number of features and the limited sample size, dimensionality 

reduction and feature selection techniques were applied. For this, Linear Regression, 

Lasso Regression and Elastic Net Regression were tuned manually with feature 

selection derived from the data exploration. SVR and RF models were tuned and trained 

using hyperparameter optimisation. Additionally, in an effort to address a dataset 

imbalanced in terms therapy outcome (only 4 out of 35 participants did not improve or 

had worse speech comprehension post-therapy), under-sampling and upregulation 

were trialled to balance the dataset relative to the minority subgroup of those who did 

not improve. 

The final model evaluation was performed using the cross-validation function in Python 

SciKitLearn and evaluated in terms of RMSE, R2 and F1 score. 
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5  Results 

5.1 Study 1: Development of the iReadMore Therapy App 

5.1.1 Overview 

In order to co-design the iReadMore app, I collaborated with individuals with aphasia 

and software developers in an iterative process of design and development. This 

involved conducting alpha testing, focus groups, and remote beta testing to gather user 

feedback and design insights. Using qualitative research methods, I analysed user 

perspectives and identified key themes in their design recommendations. These 

insights shaped the prototypes, and subsequently, the final release version of the 

iReadMore app. This data also informed the development of a comprehensive 

framework of design principles for digital reading therapies tailored to the needs of 

individuals with alexia. 

A series of five co-design focus groups were conducted with 22 individuals with alexia 

and aphasia and 3 carers/family members. The framework analysis on the focus group 

was conducted to develop themes from the qualitative data. The analysis generated 

seven distinct themes of key considerations for the design of a digital intervention for 

aphasia rehabilitation. The themes generated were; Agency, Intuitive Design, 

Motivation, Personal Trajectory, Recognisable and Relatable Content, Social and 

Sharing, and Widening Participation. Figure 13 displays a thematic map of the themes 

and key subthemes. Design recommendations were generated iteratively throughout 
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the focus groups and framework analysis process, these were incorporated into 

successive prototypes and the final version of the application.  

 

Figure 13 - Thematic map displaying the themes and subthemes generated in the framework analysis of the 

iReadMore co-design process. 
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5.1.2 Results 

5.1.2.1 Theme 1 – Agency  

A prominent theme generated from the co-design process was to utilise functionalities 

that promote establishing a stronger sense of agency for therapy users. Many 

participants mentioned the lack of control they have felt in other aspects of their life as 

a result of their communication impairment and emphasised that restoring feelings of 

agency, even in small ways, would be of significant value to the users. This theme 

highlights the idea that the benefits of therapy can potentially extend beyond its primary 

purpose, offering broader rehabilitative impacts that enhance not only reading abilities 

but also overall quality of life. 

 

[on self-managed therapy] “I think iReadMore is good because it gives X something for 

himself, something he can complete and be in control of, and I think that gives a big 

boost to his confidence” – Partner of stroke survivor with aphasia, female, 70 

 

In practical terms, ways to increase agency that were suggested included giving users 

more control over therapy parameters and settings. Participants were interested in the 

workings of the therapy progression algorithm and suggested an additional mechanism 

that allows users to adjust the therapy difficulty themselves would be valued so they 

can progress more easily to a difficulty level that suited them. Participants also 
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preferred to decide their own therapy duration each day rather than have sessions of a 

fixed length.  

Further, it was raised that making the therapy easy to use without assistance would be 

empowering. The ability to engage with the therapy independently, without the 

assistance of caregivers or professionals, was frequently cited as a critical factor. This 

autonomy not only promotes agency but also reduces the burden on family members or 

caretakers, making the therapy more sustainable for long-term use. While participants 

wanted control, they also acknowledged the need for optional guidance or support 

when required. For example, users suggested the inclusion of accessible tutorials, help 

sections, and optional coaching features that could assist without undermining their 

autonomy. 

Notifications and pop-up reminders were viewed as superfluous and an annoyance as 

the user should know when to use the therapy and that doing a therapy is a significant 

activity in their daily lives, motivated intrinsically by a desire to improve on their reading 

impairments. In specific circumstances, infrequent reminders would be more tolerable 

as long as they were providing useful information.  

 

5.1.2.2 Theme 2 – Intuitive Design 

Simplicity of the app design and ease of use were important considerations to 

participants. This theme focuses particularly on the uptake of a new digital technology 

and the need for intuitive design to reduce access barriers and user disengagement. 

Regardless of whether participants were experienced technology users or not, there 
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was a unanimous preference for an easy to pick up application. Participants reported 

that difficulty in starting with a new therapy can lead to feelings of frustration and 

helplessness. For a therapy app that is intended to be use independently, and 

particularly for users who may have previously relied on assistance for other 

technologies or therapies, ensuring confidence in the user is a prerequisite to therapy 

engagement. 

In terms of iReadMore, the initial lack of clarity around where to tap on the screen during 

the Exposure Phase of the therapy led some participants to doubt their ability to use the 

therapy unassisted while others felt frustrated. Highlighting the importance of reducing 

cognitive load for users with alexia or aphasia by streamlining design elements, such as 

consistent button placement and clear navigation paths, to reduce barriers to the 

uptake of a new digital technology. To resolve this, it was decided that a stronger visual 

contrast between clickable and non-clickable content was needed along with 

additional audio instructions and the use of animations to highlight fields that need to 

be clicked if no interaction is detected. 

 

"I think if you didn't get it immediately, because for me if I can't get something because of … 

things. I tend to give up and try something I can do. Because it'll make me feel better 

[laughs]” – Stroke survivor with pure alexia, male, 46 

[On being unsure how to use an app] "wouldn't have … confidence … to ask for help" – 

Stroke survivor with aphasia, male, 65 
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To further simplify the app experience, a more linear flow was implemented with 

buttons always located in the same locations. The visual appeal of the app design was 

of little or no importance to the majority of participants. Participants consistently 

prioritised ease of use and clear navigation over the visual sophistication of the app. 

Participants expressed concerns about the potential learning curve for highly stylised 

interfaces, which could deter engagement. Alternative designs for the main menu that 

involved more immersive and visually-stimulating experiences were viewed as visually 

cluttered or difficult to interpret with concerns about learning to use a more 

complicated app independently. Instead, a simplified, more functional navigation to the 

therapy, help section and feedback graphs was largely preferred (Figure 14). High-

contrast colour schemes were used to they reduced effort in search for buttons for 

users with visual impairments.  
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Figure 14 - iReadMore Main Menu displaying therapy dose information, time to next test and buttons to start therapy, 

access help and display statistics on therapy progress and test scores. 

 

A further consideration is striking the right balance between providing sufficient 

guidance and simplicity for first-time users to navigate the app confidently and ensuring 

that repeated users are able to easily navigate to features such as their therapy progress 

and therapy performance with ease. In the iReadMore app, this was applied by ensure 

the therapy start button has the highest contrast with a large button centralised on the 

screen, with other features included on the main page with lower contrast. 

 

5.1.2.3 Theme 3 – Motivation  

Motivation underpinned many of the discussions in the co-design process. Participants 

thought that users of digital aphasia therapies do not need a lot of “bells and whistles” 

as they are highly (intrinsically) motivated by the desire to improve on their impairments 
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and did not respond enthusiastically to many traditional features of gamification aimed 

at improving extrinsic motivation. By balancing intrinsic and extrinsic motivations this 

could ensure that the therapy remains meaningful without relying on excessive 

gamification elements that do not resonate with the target demographic. 

“Colours make a big difference. For using everyday, I need something a bit fun. If it's a bit 

simple [gestures down with hands], but colours make it [gestures upward motion with 

hands]” – Stroke survivor with aphasia, female, 29 

Facilitator: "Would it be demotivating to get negative feedback?" 

"No, no. For me personally, if I’m getting it wrong but going forward, then I'm going forward 

… good for my understanding." – Stroke survivor with aphasia, female, 56 

Some did not understand the gamification concepts (such as points, high scores, 

avatars and badges) or their intended purposes, while others felt they were not of value 

for this demographic.  

Participants thought that features to support motivation were needed later in the 

therapy to maintain usage over weeks to months. They proposed that the main driver of 

motivation long-term was the ability to track and interpret their own therapy progress 

using the in-app reading test which are completed after every five hours of therapy. 

Participants valued clear, meaningful feedback on their progress as a way to reinforce 

their sense of accomplishment. Many styles of presentation for this information were 

discussed and prototyped. The final designs are highly visual, with minimal lexical 
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information and multiple representations of their scores to increase accessibility 

(Figure 15). 

 

Figure 15 - iReadMore Feedback graphs and personalised messages for a) reading test accuracy and b) training time 

– on the graph, the stickers denote each day where 30 minutes of therapy were completed. 

 

Adding in visual novelty was seen as another way to maintain interest and denote 

progression through the therapy. Therefore, a number of designs were suggested and 

finally, a travel-based concept with 10 destinations that users fly to around a 3-

dimensional world was implemented (Figure 16). As such, when users complete 20 

minutes of therapy, they visit a new destination; users are advised to use the therapy for 

30 minutes a day so will visit a new location at least once a day at this rate. The 

destination backgrounds in the therapy are static to prevent distraction from the therapy 

task, instead acting as a border without text elements or animations. This balanced 

novelty and visual intrigue without impairing user’s abilities to complete the therapy. 
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Figure 16 - Therapy design travel concept. 

 

The concept of receiving negative feedback was a key subtheme in the discussions of 

the workshops with varied responses from participants. When asked about how they 

responded to the negative feedback, many believed it was acceptable and appropriate. 

Some thought it was key to motivating them to improve and part of the process. 

However, one participant reported that they would like the option to hide their test 

results depending on their mood. They felt that being confronted by their impairment 

too often would be demotivating or upsetting, making them less likely to engage with 

the therapy. All agreed that being able to choose was a beneficial addition to the therapy 

and as such, test results are viewed by clicking on the Statistics button on the main 

menu (Figure 14). 
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5.1.2.4 Theme 4 – Personal Trajectory  

A clear and consistent perspective from participants was that stroke survivors with 

alexia are on individual journeys of rehabilitation and that gamification concepts of 

competition, leaderboards and other comparisons between users were viewed 

negatively and seen as detrimental to user motivation and likely to cause stress 

unnecessarily. Collaboration was also seen as pressurising due to negative feelings 

arising from letting others down. Instead, participants wanted to focus on their personal 

progress in the therapy through regular feedback and praise for consistent use of the 

therapy.  

 

“Everyone has a different rate of improvement … So therefore, you don't want to 

benchmark yourself against others… I think the challenge is with you and progressing 

where you are and what you can do." – Stroke survivor with aphasia, male, 75 

 

A subtheme of whether being able to predict an individual’s future therapeutic 

outcomes was of value had mixed response from the groups. There were concerns over 

inaccuracies as well as denial of service if it appeared it would not benefit them.  

Participants reported they would prefer to try it and decide whether it is not working for 

themselves or decide collaboratively with their clinician. However, it was also suggested 

that predictions could be a useful motivational tool to inspire users to continue 

progressing with the therapy if they were reported after the interval reading tests to 
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motivate users to continue with the therapy. This concept will be explored further in 

future work looking into the feasibility of in-app therapy prediction. 

 

5.1.2.5 Theme 5 – Recognisable and Relatable Content  

This theme relates to participants’ preferences on how information is presented in the 

app. It was thought that a large proportion of digital therapies were designed with a 

young demographic in mind. There was a desire for content that feels mature and 

engaging reinforcing the app's focus on adult rehabilitation. However, a surprising 

outcome to the researchers was the pervasiveness and appeal of emoticons (emojis). 

Participants reported using emojis in place of words when they were having word-

finding difficulties. 

 

"Because it feels quite young, it doesn't make you feel good about doing the exercise. It 

makes you feel like your level of understanding is lower" – Stroke survivor with pure alexia, 

male, 46 

"Yes, it suggests you’re doing this at school and not as an adult. It needs to be something 

that we're accustomed to seeing and understanding” - Stroke survivor with pure alexia, 

male, 78 

 

Some participants did not understand or engage with the gamification concepts of 

points or scores, seeing them as unnecessary and not desirable. Further, some 
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individuals had difficulty in number reading and found numerical scores distracting 

when incorporated into the therapy, so these were removed. Therefore, the numeric 

point system was replaced with styles of feedback delivery using visual and audio 

content delivered through an animated cartoon character (Figure 17) to provide 

immediate performance feedback on a therapy challenge.  

 

 

Figure 17 - iReadMore character design and Challenge Phase feedback reactions. 

 

Participants thought the language used in instructions in the app and guidance for using 

the therapy should be simple and unambiguous. A couple of participants referred to 

frustration from not receiving clear guidance on how to use a therapy effectively. The 

group felt that quantified, realistic goals would inspire regular use and confidence that 

they are using the app correctly. Ambiguous guidance such as ‘use the therapy as much 

as you can’ was seen as unhelpful. One participant described previous experiences of 

using therapies for long, continuous periods in the first instances led to fatigue and 

would not be feasible longer term. Whereas, clearer guidance such as ‘Use the app for 
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30 minutes a day’ were seen as a motivating, achievable and provide evidence-based 

advice; therefore, this was implemented in the app.  

Exploration of implementing a virtual coach in the app received mixed feedback. Some 

participants thought this would distract from the therapy or overcomplicate what users 

would like to receive from the therapy. However, the implementation of personalised, 

positive feedback without embodiment of a virtual coach was unanimously supported. 

Examples of feedback included how often they were using the app, their performance, 

and overall progression in the therapy in terms of reading accuracy and speed test 

scores. Participants felt once or twice a week was an appropriate frequency for these 

types of messages and that it needed to feel sporadic and related to their personal 

performance.  

 

5.1.2.6 Theme 6 – Social and Sharing  

Participants wanted to be able to share their therapy progress with personal contacts 

and clinicians. Many participants were eager to incorporate a screenshot which they 

could share with their family and friends to share their therapy progression and use as a 

tool for fostering a sense of community and enable positive feedback outside of the app 

environment. One participant mentioned that it could help to act as an icebreaker and 

enable open discussion about their condition, something which they currently find 

difficult to do. Only a few participants wanted to be able to share this feedback on 

social media. Many wanted to share this information with close, personal contacts, 

either in person, via email, text message or a messaging app (such as WhatsApp). 
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“When I finish and go ‘yay!’, I want to show my family. [Picks up phone and opens 

WhatsApp] I love send photos!”– Stroke survivor with aphasia, female, 60 

“Would be great to show to my therapist. That way she’ll know that I’m actually doing 

the home practice! [laughs]” – Stroke survivor with pure alexia, female, 50 

 

The other aspect of this theme was being able to share information with their clinicians, 

in particular, speech and language therapists (SLTs) or with facilitators and group 

members at their aphasia support groups. This was suggested as a feature which would 

be an additional benefit of using the app as it could demonstrate their therapy 

compliance and progression which could be used to report competence and 

willingness. Further, two participants mentioned this could aid discussions with their 

clinical team over clinical decision-making, where the SLT could advise on whether the 

therapy is working for them, allowing them to make more informed decisions about 

continuing therapy or making adjustments to their treatment plans. A feature for 

clinicians to directly access users’ progress or provide feedback through the app could 

create a more integrated, continuous care model. 

 

5.1.2.7 Theme 7 – Widening Participation  

The final theme relates to accessibility barriers for digital therapies. Issues relating to 

usability of the app in the context of aphasia as well as prevalent co-morbidities such as 



140 

physical (hemiplegia, hemiparesis), visual (hemianopia, colour blindness, visual 

neglect), auditory (high frequency hearing loss) and working memory impairments were 

raised. Based on these, the groups developed design refinements that would make the 

app more accessible. Examples include how the app does not require using more than 

one finger to operate and does not need to be held while in use, buttons and important 

visual content are always located centrally on the screen, the words in the therapy are 

read out twice in both female and male voices, and if no response is detected, spoken 

instructions are repeated and in some cases, highlighted on screen through animations. 

 

“Can’t do! When you first start, you need to focus on the word… and don’t want distractions. 

Not for me with distractions, not for me.” – Stroke survivor with aphasia, female, 38 

 

An early prototype used animations throughout the therapy trials to make it more 

visually stimulating, however, this prevented a number of participants from knowing 

where to focus on the screen and was regarded as a distraction. As a result, animations 

were limited to reporting feedback after the user has answered a trial as a balance 

between making the therapy visually stimulating while minimising distractions. 

Another significant barrier to access arose from minimal prior experience with 

technology. Issues related to the technical difficulties of setting up and using a tablet 

device and downloading the therapy. In response, aphasia-friendly instructions and 

frequently asked questions that were generated in the co-design process have been 
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integrated into the app. Participants wished to be able to contact the team directly for 

technical support or guidance. Therefore, an anonymous ‘contact us’ button was added 

into the Help section of the app. This allows the research team to assist users whilst 

maintaining anonymity in-line with our ethical approval and data security regulations. 

Finally, concerns were raised over deploying the app solely on Android tablets as 

initially intended due to financial constraints. Some participants were unsure of what 

kind of device was required to use the therapy. The majority of the group did not have a 

tablet at home and the minority that did were split between apple devices and Android 

devices. As a result, the app was developed for Apple and Android phone and tablet 

devices. 
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5.1.3 Discussion 

5.1.3.1 Themes 

Seven themes emerged iteratively from the framework analysis of the iReadMore co-

design process. These themes evolved as the development cycle progressed, with 

insights from each session informing the design and refinement of individual elements. 

The framework of themes evolved over successive sessions, as subsequent 

participants provided their perspectives building upon discussions from previous 

sessions. Insights drawn from each focus group informed the design of future sessions, 

shaping questions and activities to further explore user priorities. This approach 

facilitated the integration of numerous design changes, ensuring that the application 

reflected the lived experiences and preferences of individuals with aphasia. 

For iReadMore, this was exemplified by several unexpected findings, such as 

participants’ diverse interpretations of gamified features and their desire for designs 

that prioritised simplicity and accessibility over traditional gaming elements. These 

insights illustrate how co-design can lead to innovations that are more aligned with the 

preferences and capabilities of the intended user group. This iterative, user-centred 

approach underscores the importance of involving patients early in the design of digital 

applications. By doing so, key decisions are informed by the lived experiences and 

needs of end-users, rather than being based solely on the perspectives of researchers 

or software developers. This is particularly critical in the context of digital therapies like 

iReadMore, where the target population may have limited confidence in using digital 

technologies. 
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5.1.3.2 Agency 

Promoting a sense of agency in therapy was particularly significant for participants, as 

many reported feeling a lack of control in other areas of their lives. Participants shared 

that being unable to use digital therapies designed for their demographic often led to 

feelings of inadequacy, reduced self-confidence, and disengagement from those 

therapies. This aligns with recent findings on how aphasia impacts self-identity and 

highlights the importance of designing therapies that support autonomy and 

competence (Taubner, Hallén and Wengelin, 2020). 

Conversely, digital therapies that could be used independently were described as 

having positive effects on personal empowerment and routine-building. Regaining 

agency through therapy may help individuals rebuild their sense of self-identity, which is 

frequently challenged by the effects of their impairments. This finding is consistent with 

broader evidence suggesting that fostering autonomy and independence significantly 

contributes to psychological well-being (Cardol, De Jong and Ward, 2002; Biel et al., 

2022). 

The ability to independently engage with a digital therapy promotes regular, self-

directed use, empowering participants to integrate therapy into their daily routines. 

Establishing such routines not only reinforces a sense of control over their rehabilitation 

process but also helps develop sustainable habits that support long-term recovery. 

These findings underscore the potential of agency-centred therapy design to enhance 

both clinical outcomes and overall quality of life for individuals with alexia or aphasia. 
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5.1.3.3 Intuitive Design 

The visual appeal of the app content was not a primary concern for most participants, 

contrasting with findings from previous co-designed digital therapies such as EVA Park 

(Marshall et al., 2018) and GeST (Marshall et al., 2013), both of which utilise immersive 

virtual worlds. Instead, participants in this study expressed a preference for simpler 

navigation and an intuitive app flow, favouring functionality over highly gamified or 

visually elaborate designs. This difference may stem from the contrasting contexts of 

therapy delivery: EVA Park and GeST are SLT-led therapies for communication 

production, while the iReadMore app is designed as a self-managed therapy for reading. 

The context-specific nature of co-design research inherently produces findings tailored 

to the unique needs and preferences of the target user group. 

In this study, participants appeared to prioritise ease of use, particularly during the 

initial stages of therapy, over immersive elements. However, visual (non-lexical) 

communication remained integral, as participants valued the use of graphical or 

symbolic elements to effectively convey feedback and progress within the app. 

It is worth considering whether visual appeal may become more important with 

extended use of the therapy. While simplicity is crucial for onboarding and early 

engagement, features that enhance the visual experience and increase functionality 

could be gradually introduced as users become more confident and familiar with the 

app. Striking a balance between simplicity during the initial period and added 

complexity over time could address users' evolving needs without overwhelming them 
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at the outset. This staged approach might enhance both user satisfaction and long-term 

engagement with the therapy. 

 

5.1.3.4 Motivation 

Maintaining motivation was reported to be driven by intrinsic motivations and self-

monitoring reading improvements through graphs or personalised messages. When 

participants were presented with variations of gamified therapy prototypes aimed at 

promoting extrinsic motivation, it was often felt these alone would have little impact on 

their decision to use the therapy. The subtheme on receiving negative feedback were in 

contrast with the concept of errorless learning, which is often applied in rehabilitation 

technologies, and more in line with error-reducing learning (Middleton and Schwartz, 

2012). However, it may be important to consider that people with aphasia who actively 

take part in research may display higher intrinsic motivation than those who do not. 

Many of these participants had taken part in previous studies involving highly gamified 

digital therapies and this may have shaped their perspective. Therefore, findings may 

not relate to the experience of people with aphasia and lower intrinsic motivation. In 

order to try and gain a wider perspective in future work, all users of the therapy will be 

able to anonymously provide qualitative feedback through the app. 

 

5.1.3.5 Personal Trajectory 

The theme of personal trajectory underscores the importance of tailoring digital 

therapies to the individual journeys of stroke survivors with alexia. Participants 

consistently emphasised the need for a therapy to focus on their personal progress 
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rather than external comparisons. Traditional gamification elements such as 

leaderboards, competition, and collaborative performance were seen as 

counterproductive, potentially inducing unnecessary stress or feelings of inadequacy. 

This aligns with existing literature on the negative impact of external comparisons in 

contexts where individual differences in abilities and recovery trajectories are 

pronounced. 

Instead, participants preferred regular, personalised feedback that highlighted their own 

progress and praised consistent engagement with the therapy. This approach reinforces 

intrinsic motivation by celebrating individual achievements and mitigating the pressures 

associated with direct comparisons or collaborative dynamics. Feedback strategies 

tailored to personal milestones could thus play a vital role in sustaining long-term 

therapy engagement. 

Interestingly, the concept of predicting therapeutic outcomes emerged as a mixed 

subtheme. While some participants recognised the motivational potential of outcome 

predictions, others raised valid concerns regarding their accuracy and the potential for 

discouragement if predictions appeared unfavourable. This hesitancy highlights the 

need for careful implementation of predictive tools, ensuring they empower rather than 

discourage users. One possible approach is to integrate predictions as motivational 

checkpoints following interval reading tests. This allows users to see their progress 

contextualised within achievable goals for continuing the therapy, fostering a sense of 

agency and self-determination in their rehabilitation process. Alternatively, the 

prediction can be used to support users to decide when to alter their treatment plan.  
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5.1.3.6 Recognisable and Relatable Content 

The importance of recognisable and relatable content in digital therapies is 

underscored by the perspectives of the participants, who expressed a desire for content 

tailored to adult rehabilitation rather than designs that might feel juvenile or simplistic. 

This finding challenges the conventional focus on highly gamified, youth-oriented digital 

platforms and highlights the need for a thoughtful approach to design that aligns with 

the lived experiences and preferences of adult users. 

While some participants expressed reservations about elements such as emojis or 

animated characters, their practical utility emerged as a nuanced theme. Emojis, for 

instance, were valued by participants for their role in facilitating communication, 

particularly among individuals experiencing word-finding difficulties. This suggests that 

while such elements may initially seem incongruent with an adult therapy setting, their 

functional relevance can outweigh aesthetic concerns when thoughtfully integrated into 

the app’s design (Foulkes, 2019). 

Clear and concise language emerged as a critical requirement for app instructions and 

guidance. Participants expressed frustration with ambiguous or overly general 

directives, which can undermine confidence and lead to improper use of the therapy. In 

response, the implementation of specific recommendations, such as setting achievable 

daily usage goals, addresses this challenge by fostering a sense of structure to app 

usage. This aligns with broader findings in language rehabilitation research, which 

emphasise the importance of actionable, goal-oriented messaging to motivate 

sustained engagement (Hersh et al., 2012; Biel et al., 2022). 
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The discussions on integrating recognisable and relatable content have similarities with 

design concepts being explored in other aphasia therapies, such as Web ORLA, which 

utilises an embodied virtual therapist in the programme(Cherney et al., 2021). Within 

the timeframe and financial limits available for this research, exploring implementing a 

virtual coach in iReadMore was deemed unfeasible and personalised feedback on 

therapy usage and progress was seen as an appropriate alternative to this (Figure 15). 

There were also concerns it may lead to accessibility issues that could preclude some 

users from being able to engage with the therapy due to the technical and linguistic 

requirements of communicating with a virtual coach. Research exploring the feasibility 

of applying virtual coaches in rehabilitation for older adults including people with 

aphasia is ongoing (Kyriazakos et al., 2020); however, this study also excludes those 

with global aphasia.  

 

5.1.3.7 Social and Sharing 

The emphasis on integrating social opportunities into the therapy is an understudied 

and somewhat underutilised concept in digital therapies at present, and participants 

generally felt this was a key area for improvement. This relates to previous research 

which has found that people with aphasia tend to have a reduced social network and 

less frequent social interactions (Vickers, 2010; Northcott and Hilari, 2011), while also 

experiencing an overall reduction in quality of life compared to stroke survivors without 

aphasia (Hilari, 2011). It was noted by the researchers that the participants who felt they 

would not want to see their own progress (as highlighted in the Motivation theme), also 

did not want to share their progress with a clinician or friends and family. Their focus 
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was on making the app independently and privately usable, whereas in contrast, other 

participants wanted features which would enable real world connections by sharing this 

information to prompt conversations about their condition with friends and family. 

Therefore, a balance is required to appeal to these conflicting perspectives. However, 

there are also a number of obstacles to integrating aspects of the Social and Sharing 

theme into a digital therapy, including concerns of data security, regulatory affairs, 

content moderation and the complexity of the design required which will need to be 

considered. 

 

5.1.3.8 Widening Participation 

The theme of widening participation has parallels to the findings of a recent clinical 

review of technology use in aphasia (Cann and Bulman, 2018). This survey revealed that 

people with aphasia are more likely to have access to a tablet device than a mobile 

phone or computer. However, the population assessed were currently receiving speech 

and language therapy and it was more likely that the tablet was owned by the clinical 

service than the person with aphasia. Therefore, in order to reach people who are not 

currently receiving speech and language therapy, it was important to release the 

application on tablet and mobile devices across operating systems and in future, 

develop a desktop version of the app.  

 

5.1.3.9 Co-design and Framework Analysis  

Conducting a framework analysis alongside the co-design process enabled the 

simultaneous refinement of the app design and the development of qualitative themes 
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in a synergistic and efficient manner. This dual approach leveraged the iterative nature 

of framework analysis to provide a structured yet flexible pathway for uncovering 

insights. The methodology was particularly effective in distilling the diversity of 

participant perspectives into actionable design recommendations, a critical aspect of 

co-design projects. 

Framework analysis offered a systematic process for managing and analysing 

qualitative data, ensuring that insights from focus groups were rigorously categorised, 

compared, and interpreted throughout the co-design process. The iterative process 

enabled revisiting and refining the coding framework as new themes or ideas emerged 

in successive focus groups. This adaptability was instrumental in shaping semi-

structured questions and activities for subsequent sessions, fostering deeper 

exploration of evolving concepts and design recommendations. 

Moreover, the structured approach enabled the meaningful organisation of diverse 

participant input while maintaining the flexibility to engage with unexpected themes or 

ideas that arose organically during discussions. This balance between structure and 

adaptability ensured that the process was both methodical and responsive, enhancing 

the quality and relevance of insights generated during the co-design process. 

A significant strength of this approach was its inclusivity, particularly when 

collaborating with individuals with aphasia or alexia. The data collected during co-

design sessions spanned multiple formats, including transcripts, video recordings, 

drawings, and written notes. Framework analysis proved capable of accommodating 

these diverse data sources, allowing the integration of non-verbal and visual data into 
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the analysis. This inclusivity would have been more challenging to achieve with 

traditional thematic analysis, which often relies primarily on textual transcripts and is 

less well-suited to multimodal data. The inclusion of visual and interactive elements, 

enabled by the co-design process, enriched the qualitative data and ensured that 

participants with varied communication preferences and abilities were fully 

represented. 

 

5.1.3.10 Self-Determination Theory 

The themes generated in this study align with the Self-Determination Theory (SDT; Deci 

and Ryan, 1985; Ryan and Deci, 2000), which highlights autonomy, competence, and 

relatedness as key psychological needs for motivation and wellbeing. These principles 

are particularly relevant in neurorehabilitation, where sustained engagement is 

essential. 

In terms of autonomy, the themes of agency, intuitive design and personal trajectory 

emphasise self-directed therapy and individual progress, allowing users to feel in 

control of their rehabilitation. Customisable feedback, optional sharing, and clear, user-

friendly instructions enhance autonomy, empowering users to take ownership of their 

recovery. 

The themes of recognisable and relatable content, motivation and widening 

participation address competence by providing clear, constructive feedback and 

realistic goals, such as "30 minutes a day," which foster achievement without causing 



152 

frustration. Simplifying gamified elements supports understanding and promotes a 

sense of capability. 

The social and sharing theme aligns with relatedness, emphasising meaningful 

connections with family and friends, and improve dialogues with care providers. Sharing 

progress privately rather than publicly highlights the importance of personalised, 

supportive social interactions, reinforcing the motivational role of connection in 

recovery. 

These findings align with person-centred and life participation approaches in aphasia 

rehabilitation (Chapey et al., 2012; Simmons-Mackie, 2012), highlighting how 

addressing autonomy, competence, and relatedness can enhance motivation, identity 

reconstruction, and engagement with therapy. Future work should build on these 

frameworks to further refine user-centred features. 

 

5.1.3.11 Implementation of Design Recommendations  

The inclusive co-design methodology highlighted the need for features and design 

elements that researchers had not previously considered. Many of these innovations 

emerged directly from the designs, discussions, and activities of the participants, 

offering novel and informative contributions to the therapy app. The iterative phases of 

co-design not only allowed researchers to capture participant feedback on specific 

aspects of the app but also provided a mechanism to verify that subsequent redesigns 

aligned with participants' expectations. This iterative process ensured that the app 

evolved in a way that was both user-centred and responsive to feedback. 
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Co-design also demonstrated its potential to move beyond traditional, clinician-led 

therapy tasks, fostering the development of innovative therapies that leverage 

technology to achieve outcomes unattainable through conventional methods. By 

engaging participants directly in the design process, the app incorporated features 

tailored to real user needs and preferences, rather than relying solely on 

preconceptions or clinical perspectives. 

However, it is important to note that not all of the design ideas generated through this 

process were able to be incorporated into the final version of the app. Constraints such 

as time, funding, and resources limited the extent to which certain features could be 

implemented or explored. Nonetheless, the co-design methodology laid the foundation 

for a more inclusive, user-driven development process, providing valuable insights for 

future iterations of the therapy app. 

 

5.1.3.12 Limitations 

While several recommended co-design session aids and suggestions were successfully 

incorporated into the design of the focus groups to enhance inclusion in the co-design 

process, some recommendations were not feasible due to resource constraints and 

logistical challenges. For instance, applying gesture analysis, a method particularly 

valuable in aphasia research, was not integrated into the data collection. This approach 

offers critical insights into nonverbal communication, which is essential for individuals 

with severe aphasia. As highlighted by Wilson and Kim (2019), capturing nonverbal cues 

alongside verbal communication ensures more comprehensive participation of 

individuals with aphasia in qualitative research. 
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Additionally, other aids that could have enriched the process, such as providing 

participants with tablets for extended periods to trial app prototypes and employing 

eye-tracking technology for enhanced usability insights, were not implemented. 

The unplanned shift to online beta testing following the focus groups due to the COVID-

19 pandemic also posed significant challenges. However, the online format provided a 

realistic simulation for beta testing. It enabled the onboarding of new participants with 

minimal support, mimicking real-world conditions and yielding valuable insights into 

usability and participant experiences under less controlled circumstances. 

 

5.1.3.13 Reflections and Future Work 

This study reinforces the current literature on the ability to successfully conduct a co-

design study with people with aphasia. A core component of the co-design process was 

establishing total communication techniques that enable participants to engage 

meaningfully. These techniques include incorporating drawing, writing, visual aids, and 

emotion scales in the co-design sessions (Neate et al., 2019). It can be beneficial to 

know the communication profiles of participants ahead of time in order to support 

specific communication needs and explore how participants can be best supported to 

contribute (Wilson and Kim, 2019). In addition, involving carers and partners in the co-

design sessions can further enable effective communication, particularly for individuals 

with more severe impairments (Prior et al., 2020). Finally, the technique of asking 

participants to consider the perspectives of other individuals with aphasia that they 

knew personally was particularly useful in addressing issues that would form the basis 

of the Widening Participation theme. Participants were asked to think of other 
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individuals they knew with alexia or aphasia and were asked what would help make the 

therapy accessible and appealing to them. Additionally, participants were asked to 

reflect on other apps that they use for therapy purposes or general use. 

The implications of the COVID-19 pandemic led us to conduct beta testing remotely 

with people with aphasia using the therapy at home with their own devices where 

possible. Testing the therapy in the same setting as it is intended to be used was highly 

valuable and enabled the inclusion of participants outside of our usual catchment area 

as an added benefit. Stratifying users by technology usage and prior participation in a 

digital therapy clinical trial was important for ensuring the development of an app that 

was accessible to first-time users while also remaining engaging after use for the 

substantial period of time required to achieve therapeutic gains. However, we found 

similar trends for both those with and without prior technology experience in wanting to 

prioritise the ease of use of the application over design novelty or complexity. This was 

in order for users to feel confident in using the app independently, as the frustration of 

not knowing what to do with a digital therapy was highlighted as a key reason for therapy 

disengagement. 

A further area of interest for future work involves conducting similar co-design activities 

to investigate the specific needs and requirements of individuals with alexia resulting 

from primary progressive aphasia (PPA), a form of language-led dementia (Marshall et 

al., 2018). While preliminary insights were gathered anecdotally from three individuals 

with PPA who trialled the co-designed version of iReadMore, it became evident that 

additional development work is necessary to tailor the therapy to this population. Their 
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unique challenges and evolving needs underscore the importance of targeted 

adaptations to ensure the app is both accessible and effective for individuals with PPA. 
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5.2 Study 2 - Preliminary Findings of the iReadMore Rollout Trial 

5.2.1 Results 

5.2.1.1 Participant demographics and usage  

App Users 

Between the public release of the iReadMore app on 1st March 2021 and 1st April 2023, 

the app was downloaded more than a thousand times from the Apple App Store and 

Google Play Store across 80 countries (see Figure 18). During this period, 529 users 

agreed to have their therapy data collected for research purposes and completed the 

baseline assessment. Of these, 173 users completed at least one therapy session, and 

only 34 users progressed to the first interval timepoint (5 hours of therapy). 14 users 

proceed to complete the 20 hours of therapy required to reach interval test 4 and be 

included in the data analysis.  

A summary of user progression through therapy timepoints is provided in Table 13 and 

Figure 19.  

Three users exceeded 100 hours of therapy, among them, one user completed 178 

hours, while another reached 363 hours of therapy. Notably, these are the only users 

included in the data analysis that surpassed the minimum therapy dose of 60 hours that 

was achieved by all participants in the iReadMore randomised controlled trial.  
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Figure 18 - Map of countries where the iReadMore app has been downloaded, highlighted in iReadMore pink (figure 

generated in www.mapchart.net). 

 

Table 13 - Interval tests completed by number of users 

Interval Test Hours of Therapy 
Completed 

Number of users 

1 5 31 
2 10 21 
3 15 15 
4 20 14 
5 25 11 
6 30 6 
7 35 5 
8 40 4 
12 60 3 
20 100 2 

 

 

http://www.mapchart.net/
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Figure 19 - Hours of therapy completed by number of users (up to 100 hour). 

 

User Demographics 

Demographics for the 14 users who completed more than 20 hours of therapy, reaching 

at least the fourth interval test, are presented in Table 14. Stroke was the most 

commonly reported cause of reading impairment (86%), followed by brain injury (14%). 

The majority of users identified as male (57%), with 36% identifying as female, and one 

user selecting another gender category. The average age of participants was 61.8 years, 

with a range of 28 to 78 years. On average, the reading impairment had been present for 

4.8 years, with all participants in the chronic phase (ranging from 2 to 9 years). 

Participants demonstrated an average baseline reading accuracy of 79% on the WRT 

with scores ranging from 30% to 97%. Regarding therapy dose, participants achieved an 

average of 66.8 hours of therapy, with a range spanning 20.1 to 386 hours. VFT scores 

are detailed in Supplementary Table 1 of the Appendices. 
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Table 14 – User demographics for preliminary data analysis. 
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Data Handling 

Duplicate Data Entries in Word Reading Tests 

If a user stopped completing a test, closed the app, or experienced a prolonged 

interruption (e.g., due to internet connectivity issues or a system crash), the test would 

automatically restart from the beginning the next time the app was opened. When 

restarted, the test items were presented in a randomised order. Additionally, each test 

item included a randomised presentation of responses on the screen to minimise the 

impact of repeated items on test results. 

In these instances, some test items were completed twice on separate occasions 

during the same interval test. This affected two users in the data collection: 

- User 6: 44 duplicated entries across Interval Tests 3 and 4. 
- User 32: 25 duplicated entries in Interval Test 6. 

Duplicate data was removed from the analysis to maintain data integrity, but the 

affected users were not excluded. 

 

Word Reading Tests Outliers 

One user in the data collection (User 28) had irregular scores on the final interval test 

that they completed (Interval Test 7). This was excluded from the analysis because their 

reading accuracy scores were extreme outliers, measuring 4 and 6 standard deviations 

above the mean for trained and untrained conditions respectively. No other instances of 

outlier test performance were identified. 
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Missing Word Reading Tests 

Missing interval tests were identified for two users (Users 14 and 24) who had 

completed more than 5 hours of therapy. Neither had achieved the minimal therapy 

usage to be included in the analysis and had been excluded for this reason. However, 

the cause of the missing data warranted investigation, which revealed that the dates 

coincided with a server outage caused by malware affecting our server provider. This 

outage occurred between 05/07/2021 and 19/07/2021. Importantly, this was the only 

prolonged server outage during the study, and no other users included in the analysis 

were affected. 

 

Devices 

Of all users who downloaded and accessed the therapy, users were more likely to be 

using a phone than a tablet (62% compared to 38% respectively). Users were also more 

likely to be using the therapy on an Apple device over an Android device or device using 

another operating system (57% to 43%). Three devices could not be identified.  

 

5.2.1.2 Primary Outcomes 

Word Reading Test - Accuracy 

The change in word reading accuracy for all 14 participants is shown in Figure 20, 

illustrating improvements compared to baseline for both trained and untrained words. 

At every timepoint, the improvement in reading accuracy was consistently greater for 
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trained words than for untrained words, with differences between ranging from 2% 

(Intervals 3, 5, and 12) to a maximum of 14% (Interval 10).  

By the 20-hour therapy mark, the average improvement across all 14 users was a 7% 

increase in accuracy for trained words, compared to a 3% increase for untrained words. 

All participants completed Interval Test 4 (20 hours of therapy); however, participant 

attrition was observed beyond this timepoint. Tables 15 details the number of tests 

completed by users across all timepoints. 

The peak change in reading performance occurred at interval Tests 8-10 (40–50 hours of 

therapy), with a 20% average improvement in trained word accuracy. However, this peak 

reflects the performance of only 3-4 participants, compared to a 6–11% improvement in 

untrained word accuracy observed during the same time period. These results 

demonstrate that while therapy outcomes for accuracy of reading trained words were 

consistently higher, there was notable variability in improvements across participants 

and timepoints. 

Changes in average Word Reading Test accuracy for each user and timepoint is reported 

in Supplementary Table 2 of the Appendices. 
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Table 15 - Timepoint attrition - percentage of users at each timepoint.

 Timepoint Number of Users Percentage of users at 
timepoint 

Baseline 14 100 

Interval 1 14 100 

Interval 2 14 100 

Interval 3 14 100 

Interval 4 14 100 

Interval 5 11 79 

Interval 6 6 43 

Interval 7 5 36 

Interval 8 4 29 

Interval 9 3 21 

Interval 10 3 21 

Interval 11 3 21 

Interval 12 3 21 

Interval 13 2 14 

Interval 14 2 14 

Interval 15 2 14 
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Figure 20 - Change in Reading Accuracy for Trained and Untrained Items. 

 

The therapy effects were analysed using a mixed linear regression model which is well-

suited for datasets with significant timepoint attrition. This method utilised all available 

accuracy data from the 14 participants to evaluate changes in word reading accuracy 

from Baseline to Interval Test 15. 

 

Main Hypothesis: Testing for a Time*Item Interaction 

Only at Interval Test 8 (40 hours of therapy), was a significant interaction between items 

(trained or untrained words) and timepoint found (p-value = 0.031), indicating significant 

improvements for trained items compared to untrained items at this specific timepoint 

with a large effect size (Cohen’s d = -2.15). For Interval Test 10, the p-value for the 

interaction effect was insignificant but just outside the threshold for statistical 
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significance (p = 0.055, Cohen’s d = -1.92). While not statistically significant across 

most timepoints, trained items generally demonstrated slightly greater improvements in 

accuracy. The tables of results from the mixed linear regression model are included in 

Table 16 on interaction effects. 

Table 16 - Interaction Effects Between Group and Timepoint on Reading Accuracy (Significant p-values are indicated 

with *). 

Timepoint Unstandardised 
Coefficient 

Standard 
Error 

p-value 95% CI Cohen’s d 

Interval 1 -0.014 0.043 0.742 (-0.099, 0.071) -0.33 

Interval 2 -0.033 0.043 0.449 (-0.118, 0.052) -0.77 

Interval 3 -0.033 0.043 0.449 (-0.118, 0.052) -0.77 

Interval 4 -0.039 0.043 0.374 (-0.124, 0.046) -0.91 

Interval 5 -0.022 0.046 0.637 (-0.112, 0.069) -0.48 

Interval 6 -0.093 0.056 0.096 (-0.203, 0.016) -1.66 

Interval 7 -0.104 0.06 0.082 (-0.221, 0.013) -1.73 

Interval 8 -0.14 0.065 0.031* (-0.268, -0.012) -2.15 

Interval 9 -0.087 0.073 0.235 (-0.23, 0.056) -1.19 

Interval 10 -0.14 0.073 0.055 (-0.283, 0.003) -1.92 

Interval 11 -0.073 0.073 0.315 (-0.216, 0.07) -1.00 

Interval 12 -0.02 0.073 0.784 (-0.163, 0.123) -0.27 

Interval 13 -0.1 0.087 0.249 (-0.27, 0.07) -1.15 

Interval 14 -0.06 0.087 0.489 (-0.23, 0.11) -0.69 

Interval 15 -0.05 0.087 0.564 (-0.22, 0.12) -0.57 
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Post-hoc Analysis: Testing for a Simple, Main Effect of Time and Item 

The analysis of the main effect of item revealed no significant differences between 

trained and untrained items in terms of word reading accuracy (p-value = 1). These 

findings suggest that while significant improvements in accuracy occurred at specific 

intervals, only at Interval Test 8 did trained items demonstrate a statistically significant 

improvement over untrained items in word reading accuracy. 

Considering improvements across all items, statistically significant improvements in 

accuracy were observed at Intervals 4, 6, 8, 9, 10, 11, and 13, with p-values ranging from 

0.002 at Interval 8, to 0.031 at Interval 13. Conversely, Intervals 1–3, 5, 7, 12, 14, and 15 

did not yield statistically significant findings (p-values ranged from 0.07 at Interval 7 to 

0.428 at Interval 1). Among the statistically significant intervals, large effect sizes were 

consistently observed, with Cohen’s d values ranging from 2.17 to 2.72.  

The tables of results from the mixed linear regression model on timepoint effects is 

included in Table 17. 
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Table 17 - Effects of Timepoint on Reading Accuracy (Significant p-values are indicated with *). 

 

 

 

Timepoint Unstandardised 
Coefficient 

Standard 
Error 

p-value 95% 
Confidence 
Interval 

Cohen’s d 

Interval 1 -0.024 0.031 0.428 (-0.084, 0.036) -0.774 

Interval 2 0.021 0.031 0.485 (-0.039, 0.082) 0.677 

Interval 3 0.02 0.031 0.514 (-0.040, 0.080) 0.645 

Interval 4 0.069 0.031 0.025* (0.008, 0.129) 2.226 

Interval 5 0.054 0.033 0.103 (-0.011, 0.118) 1.636 

Interval 6 0.108 0.04 0.007* (0.030, 0.187) 2.7 

Interval 7 0.078 0.043 0.07 (-0.006, 0.162) 1.814 

Interval 8 0.144 0.053 0.002* (0.052, 0.236) 2.72 

Interval 9 0.142 0.053 0.007* (0.038, 0.245) 2.679 

Interval 10 0.142 0.053 0.007* (0.038, 0.245) 2.679 

Interval 11 0.115 0.053 0.029* (0.012, 0.218) 2.17 

Interval 12 0.068 0.053 0.195 (-0.035, 0.172) 1.283 

Interval 13 0.135 0.063 0.031* (0.013, 0.258) 2.143 

Interval 14 0.085 0.063 0.173 (-0.037, 0.208) 1.349 

Interval 15 0.095 0.063 0.128 (-0.027, 0.218) 1.508 
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Word Reading Test – Reaction Time 

In terms of reaction time for reading trained and untrained items in the word reading 

test, for the 14 participants, similar trends of improvements were seen for both trained 

and untrained items, see Figure 21. Change in average Word Reading Test reaction 

times for each user and timepoint are reported in Supplementary Table 3 of the 

Appendices. 

 

 

Figure 21 - Change in Reaction Time for Trained and Untrained items. 

 

Main Hypothesis: Testing for a Time*Item Interaction 

No statistically significant interaction effects were observed between timepoints and 

items, indicating that improvements in reaction time did not differ significantly between 

responses on trained and untrained words. While trained words demonstrated slightly 
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greater improvements at earlier intervals (Interval Tests 1–4), these differences were not 

statistically significant.  

The standard errors for interaction effects ranged from 0.494 to 0.989, which, relative to 

the unstandardised coefficients, may suggest some imprecision in the effect estimates. 

The table of results from the mixed linear regression model are included in Table 18 on 

interaction effects. 
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Table 18 - Interaction Effects Between Group and Timepoint on Reaction Time (Significant p-values are indicated with 

*). 

 

Timepoint Unstandardised 
Coefficient 

Standard 
Error 

p-value 95% CI Cohen’s d 

Interval 1 0.497 0.494 0.315 (-0.472, 1.466) 1.006 

Interval 2 0.544 0.494 0.271 (-0.425, 1.514) 1.101 

Interval 3 0.635 0.494 0.199 (-0.334, 1.604) 1.285 

Interval 4 0.607 0.494 0.22 (-0.362, 1.576) 1.229 

Interval 5 0.539 0.527 0.307 (-0.495, 1.572) 1.023 

Interval 6 -0.029 0.638 0.964 (-1.28, 1.222) -0.045 

Interval 7 -0.331 0.682 0.627 (-1.667, 1.005) -0.485 

Interval 8 0.291 0.742 0.694 (-1.162, 1.745) 0.392 

Interval 9 0.019 0.832 0.982 (-1.612, 1.65) 0.023 

Interval 10 0.017 0.832 0.984 (-1.614, 1.648) 0.020 

Interval 11 -0.06 0.832 0.942 (-1.692, 1.571) -0.072 

Interval 12 -0.066 0.832 0.936 (-1.698, 1.565) -0.079 

Interval 13 -0.128 0.989 0.897 (-2.067, 1.81) -0.129 

Interval 14 -0.36 0.989 0.716 (-2.299, 1.578) -0.364 

Interval 15 -0.004 0.989 0.997 (-1.942, 1.934) -0.004 
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Post-hoc Analysis: Testing for a Simple Main Effect of Time and Item 

The analysis of the main effect of item revealed no significant differences between 

trained and untrained items in terms of reaction time (p-value = 1). These results 

suggest that reaction time performance was comparable between both sets of items. 

Across all items, the mixed linear model analysis revealed significant reductions in 

reaction time compared to baseline across most timepoints, with the exception of 

Interval Test 14 (70 hours of therapy). 

 In terms of the standardised error, standard errors for reaction time ranged from 0.35 to 

0.713 across the timepoints, with larger values observed at later intervals. The larger 

error values at later intervals reflecting increased variability due to smaller sample sizes 

and participant attrition. These variations in standard errors are consistent with wider 

confidence intervals observed at later intervals. 

Overall, these findings indicate that reaction times improved for both trained and 

untrained words in the Word Reading Test, with no significant item effects. The findings 

are explored in detail and context in the discussion.  

The table of results from the mixed linear regression model on timepoint effects is 

included in Table 19. 
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Table 19 - Effects of Timepoint on Reaction Time (Significant p-values are indicated with *). 

 

 

 

Timepoint Unstandardised 
Coefficient 

Standard 
Error 

p-value 95% 
Confidence 
Interval 

Cohen’s d 

Interval 1 -0.968 0.35 0.006* (-1.653, -0.282) -2.77 

Interval 2 -0.903 0.35 0.01* (-1.588, -0.217) -2.58 

Interval 3 -1.441 0.35 0.0001* (-2.126, -0.756) -4.12 

Interval 4 -1.307 0.35 0.0001* (-1.992, -0.621) -3.73 

Interval 5 -0.983 0.375 0.009* (-1.718, -0.249) -2.62 

Interval 6 -1.447 0.458 0.002* (-2.344, -0.549) -3.16 

Interval 7 -1.728 0.49 0.0001* (-2.689, -0.768) -3.53 

Interval 8 -1.64 0.534 0.002* (-2.686, -0.593) -3.07 

Interval 9 -1.851 0.6 0.002* (-3.028, -0.675) -3.09 

Interval 10 -1.783 0.6 0.003* (-2.959, -0.606) -2.97 

Interval 11 -2.084 0.6 0.001* (-3.261, -0.908) -3.47 

Interval 12 -2.311 0.6 0.0001* (-3.488, -1.135) -3.85 

Interval 13 -1.848 0.713 0.01* (-3.245, -0.450) -2.59 

Interval 14 -1.042 0.713 0.144 (-2.439, 0.356) -1.46 

Interval 15 -1.863 0.713 0.009* (-3.261, -0.466) -2.61 
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5.2.1.3 Secondary Outcomes  

Children’s Sustained Attention to Response Task (cSART) 

Performance on the cSART varied inconsistently across timepoints, showing no clear 

trends. A mixed linear regression analysis, conducted with data from the 14 

participants, revealed no significant changes in either cSART accuracy or reaction time 

across interval timepoints. 

 

Frequency and Intensity of Therapy Practice 

At 20 hours of therapy, no significant correlations were observed between frequency 

and intensity of therapy practice and the outcomes of change in accuracy or reaction 

time. This was analysed for the 14 users who completed more than 20 hours of therapy. 

The results are illustrated in Figure 22. 

Figure 22 - Frequency and Intensity by Reading Accuracy and Reaction Time. 
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Quantitative Reading Self-Assessment (Patient Reported Outcome Measure) 

PROMs were collected at 10-hour intervals throughout the therapy, with data reported 

across 7 timepoints for the 14 users.  

The average user-reported PROMs, which assessed perceived abilities to read words, 

sentences, and text using a 7-point Likert scale, showed slight decreases compared to 

baseline self-assessments (see Table 20). The majority of changes were less than one 

point on the Likert scales, with the exception of Interval Tests 2 and 12 for reading words 

and reading sentences.  

In mixed linear regression models, self-assessed word reading ability declines over 

time, and this decline is statistically significant (p = 0.035). However, the effect size is 

very small (Cohen’s d = -0.045). There is no statistically significant change in self-

assessed sentence or text reading ability over time (p-value = 0.338 and p-value = 0.242 

respectively). 
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Table 20 - Change in PROMs by timepoint. 

Timepoint Reading Words Reading 
Sentences 

Reading Text 

Baseline 0 0 0 

Interval 2 -1.15 -1.15 -0.38 

Interval 4 -0.23 -0.23 0.15 

Interval 6 -0.38 -0.38 -0.23 

Interval 8 -0.69 -0.69 -0.38 

Interval 10 -0.82 -0.82 -0.36 

Interval 12 -1 -1 -0.4 

Interval 14 0 0 0 

 

Qualitative Analysis of User Feedback 

This section presents a qualitative analysis of user feedback from individuals who 

engaged with the iReadMore app for reading rehabilitation. A total of 55 written 

responses were received from the 31 users who reached the second interval timepoint 

when feedback is sought submitted written feedback through the app, with responses 

varying in length from single words to 50-word comments. The majority of responses 

were brief, and often consisting of only a single word. 

To analyse the feedback, a thematic analysis was conducted, enabling the 

identification of recurring patterns and themes from these early adopters. 
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The purpose of this analysis was to better understand user experiences, identify 

common challenges, and highlight areas for potential improvement offering valuable 

insights into its usability, engagement, and perceived impact on reading abilities. 

 

Therapy Difficulty and Progression 

Users frequently commented on the varying levels of difficulty associated with the app’s 

tasks and their perceived pace of progression. Users commented on the challenging 

nature of the therapy, calling it “not easy” and “still difficult”. Shorter words were 

perceived as manageable by one user, while longer words challenges: 

“Longer words more difficult. I often do not have time to read the last letter.” 

Despite the level of difficulty, users expressed a desire to continue progressing and were 

hopeful about improving: 

“I still hope to improve.” 

“I am hoping that with more therapy this will improve.” 

“I have to be patient with it to hopefully see large improvements in my reading.” 

 

Additionally, many users expressed that they would like the therapy difficulty to progress 

at a faster pace: 

“I would like to progress quicker to harder words.” 
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“I feel ready to move to harder longer words but I know I have to improve and strengthen 

all words.” 

Further, two users requested changes to therapy content training sentences: 

“It would be very good if it somehow used sentences rather than just words, because I 

think I am just getting better at reading those words.” 

“Use sentences rather than just words” 

 

Therapy Approval 

The most commonly received feedback was the word “good” by 8 users. A number of 

short positive instances of feedback were received regarding user engagement and 

enjoyment: 

“I like the challenge.” 

“It is still very good.” 

“Its good thank you.” 

“Great that it exist(s)” 

One user mentioned a desire for the therapy to be more motivating: 

“I’d like more variety or maybe be giv(e)n more feedback. Even if it’s just slightly would 

be more motivating” 
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Impact and Perceived Effectiveness 

User feedback on the app’s impact highlighted mixed perceptions. While some users 

reported perceived improvements in their reading skills, others were uncertain about 

the extent of the app’s contribution related to their therapy goals: 

“It has slowly improved.” 

“It has slightly improved, but the words are not changing that much.” 

“Good. But unsure if it improves speed which is my biggest concern.” 

“I think I am just getting better at reading those words” 

“Possibly a little, still early days but thi(n)k its getting slightly easier” 

 

One user used the feedback portal to highlight they were undertaking multiple therapies 

simultaneously, making it difficult to attribute improvements specifically to the app: 

“I am also doing multiple oral reading therapy at the same time. My reading speed has 

increased on my baseline reading therapy score. I am not sure what proportion each 

therapy is contributing to my improvement.” 
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Accessibility Issues 

One user noted access issues regarding the app’s availability on different platforms, 

such as laptops and desktops: 

“I wish it had been available on a PC as I do not have a tablet or smartphone and have to 

borrow an iPad every time.” 

 

Three users mentioned difficulties with using the required screen orientations needed 

for the therapy and testing on their devices: 

“find it difficult with the elongated screen” 

“I enjoy it, I do not enjoy not being able to use the vertica(l) screen” 
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5.2.2 Discussion 

5.2.2.1 Word Reading Accuracy 

Preliminary findings from the iReadMore Rollout Trial, based on a small sample of real-

world users who completed more than 20 hours of therapy, provide limited indications 

of a treatment effect for word reading accuracy on the Word Reading Test. However, 

these findings are not without uncertainty. 

A significant improvement in reading accuracy for trained words compared to untrained 

words was observed at Interval Test 8 (after 40 hours of therapy), with a large effect size 

(Cohen’s d = 2.15). No other timepoints demonstrated significant differences in word 

reading accuracy for trained words compared to untrained, although further intervals 

showed large effect sizes that did not reach statistical significance. This preliminary 

finding after 40 hours of therapy aligns well with results from the iReadMore RCT 

(Woodhead et al., 2018), which also reported a large effect size (Cohen’s d = 1.38) after 

60-70 hours of therapy split into two blocks of 30-35 hours of training on separate word 

lists. Potential causes for the lack of significance, including a small sample size and 

high attrition rate, are discussed in the Limitations section below.  

In terms of the mixed linear regression that was conducted, the residual variance of the 

model (Scale = 0.0066) was relatively low, suggesting that the model captures much of 

the variability in accuracy across timepoints indicating appropriate model fit and 

explanation of the observed changes in accuracy. 

Figure 20 in section 5.2.1.2 highlights consistent, greater average improvements in 

accuracy for trained words compared to untrained words. However, this graphical 
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representation does not account for substantial variation between individuals, with a 

minority of users performing at or below baseline accuracy on interval tests. 

The potential for achieving significant effects with a larger sample size and higher 

therapy doses remains. These preliminary findings underscore the need for further 

investigation with a larger cohort to better understand and clarify the digital therapy’s 

effectiveness. 

  

5.2.2.2 Reaction Time 

In terms of reaction time on the Word Reading Test, the preliminary findings suggest that 

reaction times improved for both trained and untrained words in the Word Reading Test, 

with no significant difference between the two set of items. Furthermore, no specific 

effect of the therapy on reaction time for trained words was identified. 

In terms of the mixed linear regression that was conducted the standard error was high 

relative to the unstandardised coefficients and increased as timepoints continued. The 

increase in standard errors at later intervals reflects greater variability in the data, 

potentially driven by smaller sample sizes resulting from user attrition. 

These findings did not align with those of the previous trial, in which a large effect size 

after 60-70 hours of therapy (Cohen’s d = 0.98). Though, the previous trial did find 

similar trends in improvement in reaction times for both trained and untrained words, as 

seen in Figure 7 of section 1.4.3.2 (Woodhead et al., 2018). Therefore, further 

investigation of the dataset once more users have completed significant amounts of 
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therapy is warranted. Based on the limit evidence provided by the preliminary findings 

further conclusions cannot be derived at this point. Further discussions on the reaction 

time findings are included in the limitation section below. 

 

5.2.2.3 PROMs 

The preliminary quantitative findings from self-reported PROMs indicated no change or 

a very small decline in perceived reading abilities for reading words, sentences and text. 

These outcomes may highlight the challenges users face in accurately self-assessing 

their reading abilities (Webster, Morris and Howard, 2023). The previous iReadMore RCT 

found only a non-significant improvement in self assessed word reading abilities. 

Another perspective is that the training and feedback provided during therapy may help 

individuals with alexia develop a deeper understanding of their reading impairments as 

the therapy progresses. 

Interestingly, the qualitative feedback revealed that many users believed the therapy 

was effective, a perception that did not align with the quantitative PROM results they 

had provided. This discrepancy raises questions about the validity of using a Likert scale 

to capture nuanced user experiences and perceptions of progress, particularly for 

complex skills like reading.   

The qualitative analysis of user feedback from early adopters of the iReadMore app 

provides valuable insights into their experiences, challenges and perceived benefits. 

While most users expressed positive sentiments about the therapy, describing it as 

"good" and appreciating its availability, several key themes emerged that highlight areas 
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for improvement. Although many users were motivated to continue with the therapy, 

some noted that sentence-based training could be more practical for their reading 

impairments. 

Suggestions for improvements to the iReadMore app included the ability to progress 

more quickly to harder therapy difficulties. Several users expressed that the initial 

stages of therapy felt too easy or progressed too slowly, potentially hindering 

engagement and potentially lacking therapeutic effects. This point arose in the 

iReadMore Co-design process. However, further development to address this feedback 

was not feasible within the limited resources available to the project. One potential 

solution could involve using performance on the initial reading tests to adjust the 

starting therapy difficulties or responding to user performance after the first few 

challenges to offer users a "difficulty boost" option if desired. This approach could tailor 

the therapy to individual needs, enhancing user satisfaction and motivation. 

Accessibility and access issues were also noted by a small number of users, including 

difficulties with required screen orientations as well as one expressing a desire for using 

the app on a computer, rather than a phone or tablet. One user noted that they were 

borrowing a tablet in order to use the therapy.  

Addressing these refinements could improve the therapy’s usability, ensuring it better 

meets the needs of its diverse user base. However, it is important to acknowledge that 

the method of collecting feedback through written responses may have excluded some 

users, potentially limiting the diversity and inclusivity of the feedback received. 
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5.2.2.4 Challenges in User Uptake 

The uptake of the iReadMore app has faced several challenges, highlighting the need for 

continued efforts to engage more users and address barriers. While user numbers are 

growing, the current dataset is limited, and more users are needed to strengthen the 

analysis and validate the findings.  

Despite the app being CE-marked and listed in reputable directories such as the NHS 

App Library, ORCHA, and the Aphasia Software Finder, achieving broader adoption 

continues to remain a challenge.  

Various efforts have been made to increase user engagement and uptake, including 

demos at conferences and patient awareness events, maintaining an up-to-date 

webpages on the UCL website, and creating YouTube videos including adverts, demos, 

and aphasia-friendly instructional content. Additional initiatives have included targeted 

online and print advertisements in the Royal College of Speech and Language 

Therapists Bulletin, features in subject-specific publications, and coverage in a national 

newspaper both in print and online (Bawden, 2021). While some of these activities 

generated temporary spikes in interest, the conversion of this interest into sustained 

user registrations and long-term therapy engagement has remained slow, with 

increases proving short-lived and insufficient to achieve widespread uptake. 

One notable barrier to adoption may be the subscription model, deemed essential to 

cover ongoing costs of maintaining the app across two app stores. Securing funding 

from research funding providers to support these operational costs and mitigate costs 

to the users has proven challenging. This appears to impact the conversion of 
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downloads into active users beyond the free trial period of one week. Additionally, 

access to suitable devices, such as tablets or smartphones, has been raised as a 

challenge. Some users reported borrowing devices to participate in therapy, suggesting 

that a lack of personal access to compatible technology is a significant obstacle 

(Cuperus et al., 2023; Kearns and Kelly, 2023). Introducing a version of the app 

accessible on a computer could help mitigate this issue and expand accessibility. 

Despite the previous efforts, a paradox is apparent between the positive qualitative 

feedback received from users and the high therapy non-adherence observed from real 

world users of the iReadMore therapy app. While users reported positive experiences, 

the high attrition rates suggest that long-term engagement may not align with the initial 

satisfaction reported. 

Several biases may explain this paradox. Social desirability bias may lead users to give 

overly positive feedback to please researchers and limit negative feedback, even if the 

engagement of the researchers was limit (Paulhus, 1984). Contextual motivation may 

also play a role, as users feel motivated as participants in the structured environment of 

research, but struggle to maintain intrinsic motivation when the therapy engagement is 

self-directed. Sampling bias is another factor, as qualitative feedback may come from 

users with positive experiences, leaving those who dropped out underrepresented. 

Lastly, sustained engagement versus initial interest shows that initial enthusiasm may 

fade over time as users encounter barriers, such as frustration with their perceived 

progress, the app design or the repetitive nature of the therapy mechanism. 
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5.2.2.5 Limitations 

A number of limitations were identified which should be considered when interpreting 

the findings.  

The preliminary analyses were conducted on a small sample (14 users) with substantial 

attrition beyond Interval Test 4 (20 hours of therapy), limiting available data for analysis 

at later timepoints. Since the collation of this preliminary dataset, over 300 additional 

users have completed the baseline assessment. It is hoped that, over time, more users 

will complete sufficient therapy for inclusion in the study. 

Although mixed linear models effectively manage participant attrition, this results in 

elevated standard errors and reduced statistical power as sample sizes diminish at later 

timepoints. This is evident in the higher standard errors and reduced significances 

observed at later interval tests.  

Unexpected improvements in untrained items were observed, which do not align with 

prior research on iReadMore (Woodhead et al., 2013, 2018). Unlike the 2018 RCT, which 

utilised multiple baseline assessments to account for test-retest effects. In contrast, 

the current study only includes a single baseline assessment, as it was anticipated that 

app users, whose primary motivation is to access the therapy to improve their reading 

speed and accuracy, rather than contribute to research and would not tolerate multiple 

baseline assessments. The preliminary data shows that nine out of fourteen 

participants improved their reaction time for untrained words between Baseline and 

Interval Test 1 indicating a plausible test-retest effect (Scharfen, Peters and Holling, 

2018). However, only four showed improvements in accuracy for untrained words, 
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indicating that other factors may better explain the lack of significant differences in 

word reading accuracy. 

Of the 14 users included, 8 had baseline word reading accuracies above 90%, and 3 of 

these were above 95%, leading to potential ceiling effects that may have limited the 

observable improvements in reading accuracy. In future analyses, as the dataset 

expands, it may be beneficial to segregate users based on the type of alexia (pure vs. 

central), as people with pure alexia are likely closer to ceiling and may mask therapy 

effects on reading accuracy in mixed analyses. 

Another limitation was the presence of unusually long reaction times in the dataset, 

which may not accurately reflect reading speed as intended. Several factors likely 

contributed to these extended reaction times, including the absence of controlled 

testing environments, where distractions or differing user priorities, such as focusing on 

accuracy over speed and may have influenced performance. Furthermore, technical 

issues, such as reaction times being recorded from the moment a page was opened or 

delays caused by slow internet connections, were observed during testing and are likely 

to have artificially inflated the recorded reaction times. 

Additional design differences between the previous studies and the present may have 

influenced the findings. The differences in external support provided by the research 

team in the structured RCT environment, compared to the self-managed nature of the 

real-world deployment, likely had a significant impact on therapy attrition and 

therapeutic outcomes. In the RCT, consistent, personalised support was available from 

the research team, through in-person appointments and phone calls to ensure 
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participants accessed the therapy daily helped maintain engagement through extrinsic 

motivations. In contrast, the real-world deployment, which relied on users to self-

manage their therapy, likely contributed to inconsistent engagement and variability in 

the data. Additionally, some users may have encountered challenges related to 

motivation, technical difficulties, or limited access to support, all of which could have 

negatively impacted their therapy progression. 

In the RCT, there were two intervals spaced 30–35 hours of therapy apart, whereas the 

current analysis included 15 intervals spaced 5 hours apart. This increased frequency of 

testing may have amplified test-retest effects, potentially contributing to the observed 

improvements in untrained items. Indeed, significant improvements in reading accuracy 

were observed for both trained and untrained words at seven intervals beyond Interval 

Test 3. The decision to conduct assessments every 5 hours aimed to address 

unpredictable attrition and provide personalised feedback to enhance user motivation 

and engagement. However, this frequent testing may have  influenced test 

performance. 

Another key difference lies in the assessment environment. In the previous trials, tests 

were conducted in-person under controlled research settings, whereas the present 

study relied on remote, self-managed assessments. This change in methodology may 

have introduced variability and uncontrollable extrinsic factors, contributing to 

inconsistencies in the findings. Examples of extrinsic factors observed in the 

preliminary analysis included a 60% increase in reading accuracy from Interval Test 5 to 

Interval Test 6 (which was excluded from the analysis). Secondly, another participant 
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reported in the qualitative feedback that they were undertaking multiple oral re-reading 

therapy (Moyer, 1979) at the same time as using iReadMore therapy. 

Overall, these limitations emphasise the challenges of conducting remote, self-

managed assessments and highlight the importance of considering external factors 

when interpreting findings. 

 

5.2.2.6 Future Work 

Several areas for future development and research have been identified for iReadMore 

therapy. One consideration involves potential design changes to the app, such as 

introducing a "difficulty boost" feature to better tailor therapy difficulty to individual 

users. This adjustment could improve user engagement and ensure the therapy remains 

appropriately challenging. Additionally, developing a computer-based version of the app 

could significantly increase access, addressing barriers for users who lack access to 

tablets or smartphones. 

Ongoing efforts to promote the app will remain a priority to expand its user base and 

facilitate further data collection. These activities will build on existing promotional 

strategies to sustain interest and engagement among potential users and healthcare 

professionals. 

Follow this, the main focus will be the completion of the iReadMore rollout trial, which 

will provide valuable evidence of the app's effectiveness in real-world users. Further 

evaluation of iReadMore as a component contributing to an Intensive Comprehensive 
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Aphasia Program (ICAP) is also planned, examining its contribution within a broader 

therapeutic framework. 

5.3 Study 3 - Prediction of Therapy Outcomes Using Therapy Data 

5.3.1 iReadMore Results 

5.3.1.1 Predicting Reading Accuracy 

Training Models 

Models were trained to predict reading accuracy post-therapy. Training performance of 

the models are included below in Table 21. 

Table 21 - Training model error summary for predicting word reading accuracy. 

Model RMSE SD 

Linear Regression 14.4 3.22 

Decision Tree Regression 12.8 3.91 

Random Forest Regression 
(Untuned) 

13.7 2.60 

Random Forest Regression 
(Tuned) 

5.59 2.2 

Support Vector Regression 
(Untuned) 

10.0 1.80 

Support Vector Regression 
(Tuned) 

7.18 3.41 
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The models tested varied in accuracy and consistency across cross-validations for 

predicting reading accuracy post-therapy, with the Linear Regression model exhibiting 

the highest mean error and the Decision Tree Regression displaying the most fluctuating 

performance across the leave-one-out cross validations. 

Prior to hyperparameter tuning, both Random Forest Regression and Support Vector 

Regression models demonstrated improved stability. Following hyperparameter tuning, 

the tuned Random Forest Regression model displayed a significant improvement, with a 

mean RMSE of 5.59 and standard deviation of 2.2, showing both more accurate 

predictions and low error variability comparative to other models. 

 

Final Model Performance 

Table 22 - Final model performance for predicting word reading accuracy. 

Final Models RMSE 95% Confidence 
Interval 

R2 

Random Forest 
Regression 

2.93 (0, 6.49) 0.74 
 

 

The final model performance results are reported in Table 22. The tuned Random Forest 

Regression model produced a final RMSE of 2.93, meaning that model predictions of 

reading accuracy therapy gains are, on average, within ±3% of the actual improvement 

observed. Further, a 95% confidence interval ranging from 0 to 6.49, indicating high 

accuracy, however with some variation in error across different samples. The model 
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demonstrated strong predictive performance, explaining 74% of the variance in the data 

(R² = 0.74), indicating a good fit to the data. 

Figure 23 provides a visualisation of the predicted values compared to the true 

observed values. Perfect predictions would align with the solid diagonal line, while an 

acceptable margin of error is illustrated by two dashed diagonal lines representing a 

10% deviation from the true values. Of the 21 predictions, 8 fall outside this acceptable 

range. 

 

Figure 23 - Predicted treatment response against observed treatment response. A perfect prediction will fall on the 

diagonal solid line (y=x). The dotted lines denote 10% away from the line y=x. 
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Sensitivity and Specificity 

To calculate the sensitivity and specificity of the model for reading accuracy, a binary 

classification of Therapy Responders and Non-Responders was applied to the 

continuous predictions. Therapy Responders are defined as participants achieving 

≥ 20% improvement, and Non Responders below this this threshold. The prediction and 

observed classifications are presented in Table 23, which presents the confusion 

matrix. 

Table 23 - Confusion Matrix for Predicted and Observed Therapy Responses 

 Observed Therapy 
Responder 

Observed Therapy 
Non-Responder 

Predicted Therapy 
Responder 

True Positives = 9 False Positives = 1 

Predicted Therapy 
Non-Responder 

False Negatives = 1 True Negatives = 10 

 

From this, the accuracy of the model in classifying therapy responders and non-

responders was found to be 90.5%, with the sensitivity (True Positive Rate) being 90% 

and the specificity (True Negative Rate) being 90.9%. 
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5.3.1.2 Predicting Reading Reaction Time 

Training Models 

Table 24 - Training model error summary for predicting reaction time. 

Model RMSE SD 

Linear Regression 188.8 56.25 

Decision Tree Regression 368.4 204.0 

Random Forest Regression 
(Untuned) 

248.3 155.0 

Random Forest Regression 
(Tuned) 

239.0 87.17 

Support Vector Regression 
(Untuned) 

290.9 189.5 

Support Vector Regression 
(Tuned) 

167.2 42.54 

 

Similarly, models varied for predicting reading reaction time post-intervention (see 

Table 24). The Decision Tree Regression model had the highest error and variability. The 

Tuned Support Vector Regression model performed the best with an RMSE of 167.2 and 

a low SD of 42.54, suggesting significantly improved prediction accuracy and 

consistency. This was closely followed by the linear regression model, with an RMSE of 

188.8 and SD of 56.25. 
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Final Model Performance 

Table 25 - Final model performance for predicting reaction time. 

Final Models RMSE 95% Confidence 
Interval 

R2 

Linear Regression 236.6 (0, 851) 0.20 

Support Vector 
Regression 

250.6 (156.7, 317.9) 0.0089 
 

 

The final results for the two models show substantial differences in their performance 

and uncertainty for prediction of reading reaction time (Table 25). The Linear Regression 

model produced an RMSE of 236.6 with a very wide confidence interval ranging from 0 

to 851. The wide spread of the confidence interval reflects the model’s inconsistency or 

sensitivity to different subsets of data. 

On the other hand, the Support Vector Regression model displayed an RMSE of 250.6, 

with a narrower confidence interval. Although the RMSE is slightly higher than that of 

Linear Regression, the confidence interval is more defined, indicating that the SVR 

model produces more consistent predictions with less variance. 

While the SVR model seems to offer greater consistency, both models show high error 

rates suggesting that neither provides strong predictive accuracy. The low R² values 

reinforce this, indicating that a significant portion of variance remains unexplained. 

Among the two models, Linear Regression demonstrated a better overall fit (R² = 0.20), 

while SVR performed poorly (R² = 0.0089), meaning SVR is nearly ineffective at capturing 

meaningful relationships in the data. Notably, when SVR was restricted to a linear 

kernel, it replicated the results of the Linear Regression model, as expected. 
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Feature Importance 

Feature importance was investigated for the top-performing model for predicting 

reading accuracy. This analysis aimed to identify the variables most influential in driving 

predictions. The CAT Word Reading score emerged as the most critical variable. Other 

factors that were influential to a lesser extent were the cSART Correct Rejections, CAT 

Picture Description Score, time post-stroke and Word Reading Test Accuracy. A visual 

representation of these feature contributions is provided in Figure 24. 

 

Figure 24 - Feature importance heatmap for predicting word reading accuracy. The colour scale represents the 

relative importance of different variables, with yellow indicating the most influential factors and dark blue indicating 

the least important. 
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5.3.2 iReadMore Discussion 

5.3.2.1 Reading Accuracy 

The winning model for predicting reading accuracy utilised a random forest regression, 

which was heavily reliant on the CAT word reading score variable as a predictor. This 

indicates that the model found the baseline reading score to be a strong determinant of 

future reading outcomes. Interestingly, this highlights the point that neuroimaging data 

in the context of predicting treatment outcomes for aphasic patients may not always be 

necessary and there is a need for finding alternative variables to drive prediction 

algorithms (Price, Seghier and Leff, 2010; Harvey, 2015). The data from iReadMore 

demonstrated that non-imaging features, like baseline reading accuracy, can provide a 

useful framework for predicting treatment outcomes, supporting the growing body of 

work suggesting that simple, accessible data can be powerful for prediction (Iorga et al., 

2021). 

By converting the outcomes prediction into a classification of therapy responders and 

non-responders, the practical utility of the model was explored. Classification accuracy 

of approximately 90.5 % and sensitivity of 90 % indicate reliable identification of true 

therapy responders. Specificity of approximately 90.9 % demonstrates robust exclusion 

of non‑responders, despite the limited sample sizes. 

In comparison to a previous regression model developed using the iReadMore 

randomised trial data (Aguilar et al., 2018), which incorporated neuroimaging data, the 

current model demonstrated superior predictive accuracy. The earlier model yielded a 

relatively lower R² value of 0.48 (95% CI: 0.08–0.75, p=0.02), indicating substantial error, 
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whereas the current model achieved a higher R² of 0.7 (95% CI: 0.48–1.00, p=0.0001) 

indicates that 70% of the variance in reading gains is explained by the model. This 

suggests that the inclusion of neuroimaging data may not always improve model 

performance  (Chang et al., 2021). 

However, while this model showed promise, it did not reach the precision necessary for 

clinical application, particularly in the context of aphasia treatment. Further, the utility 

of therapy data itself warrants exploration. In this study, there was considerable 

variability in baseline reading accuracy, with scores ranging from as low as 3% to as high 

as 97%, reflecting a wide variety of starting points among participants. This variability, 

along with significant missing data (5.5% across all variables, and as high as 23.8% for 

some variables), adds complexity to the prediction task. While the missing data was 

largely due to manual data collection methods and the challenges of measuring certain 

variables in severely impaired participants, this issue could be mitigated in future 

studies with automated data collection systems (Bishop, 2019). This would reduce the 

risk of missing data and improve the model’s accuracy over time. 

Imputing missing data also remains a challenge, particularly when the cause of 

missingness is unknown, as this can lead to biased estimates. For instance, when 

missing data was due to low or average scores, it was difficult to impute accurately, 

potentially skewing the results. Despite these limitations, the model’s reliance on 

baseline reading accuracy and the exploration of therapy data demonstrates the value 

of these features for predicting treatment outcomes, while also highlighting the need for 

more robust data handling strategies in future work. 
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5.3.2.2 Reading Speed 

The prediction of reading reaction time in the iReadMore trial was less successful 

compared to the prediction of reading accuracy. Linear Regression achieved an R² of 

0.20, indicating a weak but non-random relationship between features and reading 

speed, while Support Vector Regression (SVR) performed notably worse, with an R² of 

just 0.0089, suggesting almost no predictive value. 

 

The Support Vector Regression (SVR) model, although widely used in machine learning 

for its robustness in high-dimensional data, did not show significant improvement in 

this case. The model's performance was constrained by factors such as the variability in 

individual reading speeds and the challenge of capturing complex, nonlinear 

relationships with limited data. The low R² values suggest that the current feature set 

does not adequately explain variance in reaction time, highlighting the need for 

additional predictive factors. 

It is possible that the model's ability to predict reading speed is hindered by insufficient 

features or data related to underlying cognitive and language processes. For example, 

the inclusion of more nuanced in-therapy data or more targeted behavioural metrics, 

such as attentional focus or response time to specific task types, might improve 

predictions. Additionally, like other models in this space (Chen et al., 2020), SVR can 

struggle when the data does not exhibit clear, linear patterns or when the number of 

samples is too small to effectively capture variability across individuals. 
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Further refinement of the model, including exploration of additional features (e.g., fine-

grained therapy progress, patient-specific factors), could help enhance prediction 

accuracy for reading speed. Additionally, combining SVR with other machine learning 

approaches, such as ensemble methods or deep learning, might improve its ability to 

handle the complex relationships that affect reading performance. 

5.3.2.3 Limitations 

The sample size of 21 participants used to train the prediction model is very small. This 

is limiting the statistical power and affects the model's ability to learn and generalise 

effectively. Additionally, the dataset is drawn from a single-centre cohort with a 

relatively homogeneous demographic, which may not accurately reflect the broader 

real-world clinical population who will ultimately use the therapy. To enhance the 

model’s robustness and validity, a larger and more diverse sample is needed for 

retraining, ensuring it is better suited to generalise across different patient populations 

and clinical settings. 

Finally, therapy dosage and participant engagement metrics were collected under 

controlled study conditions; real-world implementation in diverse clinical settings may 

introduce variability not captured here. Therefore, these findings should be interpreted 

cautiously, and further development and validation is required before clinical 

implementation. 
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5.3.2.4 Next Steps 

Given the limited dataset currently available for the iReadMore app, and the interest in 

exploring in-therapy data as a potential additional variable for the prediction of 

treatment outcomes, the next phase of this study utilised data from the randomised 

trial of the Listen-In speech comprehension app. This trial provided a more robust 

dataset including in-therapy data to further investigate the relationship between in-

therapy data and treatment efficacy. 

In the future, once sufficient real-world data becomes available for iReadMore, it would 

be valuable to extend this work by leveraging this data to train models for predicting 

reading accuracy and speed. The integration of such data could provide deeper insights 

into predicting outcomes and refining treatment strategies for users outside of 

controlled research settings. 
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5.3.3 Listen-In Results 

5.3.3.1 Model Performance 

Four models were trained on varying amounts of in-therapy data from no data (baseline 

variables only) up to all therapy data completed for each user. The model performances 

are includes in Figure 25. 

With no in-therapy data, a tuned random forest model was the best performing. With 

the addition of in-therapy data relating to the first 10 therapy blocks completed, an 

elastic net regression model achieved the lowest RMSE at this level of data provided 

(RMSE = 7.1). This continued with the Elastic Net models outcompeting with the 

addition of further in-therapy data. The lowest RMSE was achieved at 50 blocks for the 

Elastic Net model (RMSE = 6.1); which was lower than with all data added (RMSE = 6.5) 

  

Figure 25 - RMSE model comparison for training models. 
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For Elastic Net models only, the RMSE, RMSE SD and R^2 values by varying therapy 

blocks are presented in Table 26 below. Across measures, the Elastic Net models 

trained with 10 and 50 blocks of data outperformed the other models, not including all 

therapy data. These blocks translate to completing approximately 1 and 5 hours of 

therapy respectively in order to generate a prediction. 

Table 26 - Elastic Net model error by number of therapy blocks used in training data. 

Number of therapy 
blocks used in 

training dataset 

RMSE SD R2 

0  9.1 2.9 0.61 

10 7.3 2.6 0.86 

50 6.1 2.7 0.85 

100 8.5 2.9 0.8 

250 8 3.4 0.84 

500 7.4 2.8 0.83 

1000 8.2 2.8 0.93 

All (1865) 6.5 3.1 0.9 
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5.3.3.2 Final model performance 

The scores for the winning model are included in Table 27. 

Table 27 - Winning model summary. 

Model RMSE SD R2 

Elastic Net Regression using in-therapy data from 50 
Therapy Blocks (approximately 5 hours of therapy) 

6.1 2.7 0.85 

 

5.3.3.3 Feature Importance 

A correlation matrix presents a comparison of all 46 features in Figure 26. High 

correlation was expected between the linguistic variables and variables derived from 

the same behavioural assessments.  

 

Figure 26 - Correlation matrix of all features used in model development. 
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Due to the high correlations, an association dendrogram was constructed using 

hierarchal clustering (Figure 27) to visualise the relatedness of the features utilised in 

the final model. The groupings by colour denote three distinct groups of related 

variables (green, blue and red groupings). This found that the predictor (ACT trained 

accuracy) is different to the dependent variables as it is the only blue variable. The 

variables names have been highlighted to demonstrate those which were driving the 

prediction in the final model. The 7 variables were: sex, percentage of challenges 

presented that had an ‘easy’ difficulty, performance on trained words in the ACT 

baseline test, the number of unrelated errors generated by the user, their mean therapy 

accuracy and SD, and the total number of errors generated. 

 

Figure 27 - Association dendogram for all features in the dataset. Three groups of features were identified (highlighted 

in green, blue and red). Features highlighted in a blue box were used in the final model. 
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5.3.4 Listen-In Discussion 

5.3.4.1 Appropriateness of Winning Model 

The inclusion of in-therapy data substantially enhanced the predictive accuracy of the 

winning model. Among all models and input combinations, the highest performance 

was achieved using elastic net regression and data from the first 50 therapy blocks 

(approximately 5 hours of therapy), yielding an r² of 0.85 and RMSE of 6.1; meaning that 

85% of the variance in speech comprehension gains are explained by the model and 

predicted improvements in speech comprehension deviate by around ±6% from the 

actual observed values. Notably, predictions based on just the first hour of therapy data 

(r² = 0.86, RMSE = 7.3) were only marginally less accurate and remained significantly 

more effective than predictions based solely on baseline data without therapy input (r² = 

0.61, RMSE = 9.1). These findings underscore the value of early in-therapy data for 

enhancing prediction accuracy, even with limited initial therapy exposure. 

The elastic net regression model's suitability for this dataset is supported in the 

literature. Elastic net regression is particularly effective for applications with small 

sample sizes, a common limitation in aphasia therapy research, as it balances the 

strengths of Lasso and Ridge regression. This hybrid approach minimises overfitting 

while effectively removing non-contributory variables, ensuring robust, interpretable 

models even in the presence of high dimensionality or multicollinearity (Zou and Hastie, 

2005). Moreover, the application of elastic net regression in previous studies on aphasia 

recovery and language therapy outcomes further validates its utility in this domain 

(Chang et al., 2021; Iorga et al., 2021). These studies demonstrate elastic net 

regression’s capacity to identify and model complex relationships within heterogeneous 
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datasets, a critical feature for accurately predicting therapy outcomes. By integrating 

diverse predictors and maintaining high predictive accuracy, elastic net regression 

emerges as a valuable tool for exploring treatment effects and facilitating personalised 

therapy approaches in digital interventions. 

 

5.3.4.2 Model Drivers 

The optimal predictive model incorporated a mix of baseline and in-therapy features, 

highlighting the nuanced interplay between pre-therapy performance and real-time 

engagement metrics. Key features included accuracy on trained words in the ACT 

baseline test, which may have served as a foundational measure of participants' initial 

proficiency with therapy-specific items. Within the therapy, the percentage of easy 

therapy challenges may capture performance on simpler tasks and rate of progression 

to more difficult challenges, reflecting learning potential and engagement during 

therapy. The inclusion of the total number of errors generated in the therapy and the 

percentage that were unrelated errors may offered insights into error patterns 

associated with the users’ impairment or lack of attention on the task. While mean 

therapy accuracy (%) and standard deviation quantified not only the overall success 

rate but also the consistency and variability in therapy performance. Finally, Sex was 

incorporated potentially to capture a demographic variable to account for potential 

differences in therapy outcomes. Sex has been identified as a predictor for other 

aphasia therapies outcomes (Kristinsson et al., 2022), however it could also be due to 

overfitting in a small and imbalanced dataset. 
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5.3.4.3 Prediction of Outcomes for Therapy Non-responders 

Despite the promising evaluation scores of the winning model, a limited dataset 

contributed to its underperformance, particularly in predicting outcomes for 

participants whose comprehension decreased post-therapy (n=4). This is illustrated in 

Figure 28 showing the predictions for the 4 participants in the test dataset, where one 

participant's prediction falls outside the acceptable margin of error. Efforts to address 

this, including trialling down-sampling, did not yield improvements. The model's 

performance would benefit from a larger pool of data. Other regression algorithms have 

employed the development of a responders and non-responders model (similar to Billot 

et al., 2022) as a consideration for future work in this area.   
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Figure 28 - Prediction of treatment response in the test dataset (n=4). Predictions are generally accurate, except for 

one participant who did not improve in observed treatment response, the prediction expected around a 20% 

increase. 

5.3.4.4 Challenges with Alternative Models 

Interestingly, the addition of in-therapy data did not enhance the performance of 

Random Forest Regression (RFR) and Support Vector Regression (SVR) models. This 

outcome can be attributed to several factors. RFR, while effective for handling high-

dimensional data by averaging predictions from multiple decision trees, may struggle to 

capitalise on incremental information provided within otherwise noisy and redundant 

in-therapy data. If the new data adds only marginal value or introduces noise, RFR's 

ability to extract meaningful patterns diminishes. Similarly, SVR relies heavily on 

parameter tuning and data structure to perform effectively. Furthermore, the smaller 

sample size and added complexity of the dataset could further exacerbate these issues, 

particularly for models sensitive to dimensionality. 
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5.3.4.5 Implementation 

Integrating a predictive algorithm into the Listen-In digital therapy warrants further 

evaluation, particularly because the model relies on baseline assessments, some of 

which, like the ACT baseline, were not delivered within the app as in its publicly 

available version. However, the ability to generate predictions after just 1 to 5 hours of 

therapy makes this approach practical for prospective users, with predictions 

potentially available within a day to a week, depending on therapy usage patterns, as 

observed in the randomised controlled trial. Despite this, data from the iReadMore 

rollout trial highlight the significant variability between research settings and real-world 

usage, especially in terms of therapy dose and intensity. This discrepancy poses 

challenges for broader implementation and emphasises the need for further exploration 

when real-world data becomes more abundant. 

With the rising global incidence of stroke and the increasing number of stroke survivors 

each year (Seminog et al., 2019), the demand for neurorehabilitation services is 

growing, and addressing this clinical unmet need is apparent. Innovative methods to 

deliver effective, evidence-based, high-dose therapies to the right candidates (or high 

responders) are necessary. The combination of digital health tools and treatment 

outcome prediction models, particularly within a feedback loop, presents a significant 

opportunity to scale treatment planning and address the needs of a larger patient 

population, ensuring timely and personalised care (Sutton et al., 2020; Zhong, 2024). 
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5.3.4.6 Limitations  

The number of appropriate regression models was limited by the small sample size, 

which may have affected model performance. Some models, like random forest 

regression and support vector regression, may not have been suitable for a small 

dataset. Elastic Net Regression is well-suited for smaller sample sizes due to its ability 

to prevent overfitting. However, it cannot model non-linear relationships, potentially 

missing valuable insights. Additionally, the model was trained on data from a 

randomised controlled trial, which involved high therapy doses (70-100 hours) delivered 

in a research context, and may not be reflective of real-world usage in a self-led digital 

therapy. Further, regarding data quality, although the amount of missing data was 

minimal, missing therapy data could have impacted the accuracy of predictions. 

The Listen-In model was trained on data from only 17 participants, and the independent 

test sample was even more limited (n = 4), both of which severely restrict statistical 

power and undermine the reliability of performance estimates. With so few individuals 

contributing to model fitting, even minor fluctuations in individual outcomes can 

disproportionately influence the fitted parameters and inflate apparent performance.  

The representativeness of the sample is also a consideration. The trial’s inclusion and 

exclusion criteria, such as participant severity, comorbidities, and the male/female 

ratio, may limit the generalisability of the model to a real-world population. The training 

cohort was drawn from a controlled trial with homogeneous demographics and 

consistent protocol adherence, failing to capture variability typical of real-world clinical 

populations. The absence of an external validation cohort precludes any assessment of 
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overfitting, meaning that the strong reported R² values (0.85–0.86) may not translate to 

independent samples. 

5.3.4.7 Future Work 

This study represents a preliminary exploration of using in-therapy data to enhance 

predictive models for aphasia treatment response. However, further research and data 

collection are necessary before implementation is possible.  

As digital health technologies have advanced, routine collection of in-therapy data is 

now highly feasible. The Listen-In app, now available on the Google Play Store for 

Android devices, presents an opportunity for large-scale real-world data collection, 

which will be essential for refining the predictive model. To improve the generalisability 

of the model, future work should involve retraining the model using a much larger 

dataset from app users using the therapy in a self-led manner outside of a research 

context. Understanding how smaller therapy doses may impact predictions will be key 

to improving the model's ability to predict outcomes for a broad range of users outside 

of a research context. 

Another next step to explore is integrating in-therapy data alongside neuroimaging data 

to train models; this was beyond the scope of the current study, which prioritised 

ecological validity and the feasibility of real-world implementation in a digital therapy.  

Finally, to transition these predictive technologies to clinical practice, additional 

challenges, not previously mentioned herein will need to be addressed. These include 

ensuring that the model is equitable and fair, overcoming implementation barriers, and 

meeting regulatory standards for medical applications. 
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6  Discussion 

6.1 Summary of Findings 

This thesis consists of the co-design of the iReadMore app, preliminary findings of the 

iReadMore rollout trial investigating clinical effectiveness, and explorations in treatment 

outcome prediction for digital aphasia therapies. 

 

The three overarching aims of this thesis were: 

1. Chapter 1 – To co-design the iReadMore app to enhance accessibility and 
therapy engagement. 

2. Chapter 2 – To assess the effectiveness of iReadMore in improving reading 
accuracy and reaction time. 

3. Chapter 3 – To explore the potential for predicting treatment outcomes using 
only variables collected via digital therapy. 

 

In Chapter 1, I co-designed the iReadMore app with 50 participants, including 42 

individuals with aphasia or alexia and 8 family members or carers. The co-design 

process occurred in two phases: focus groups and beta testing. This process led to a 

publication on design recommendations for digital alexia therapies, utilising a 

qualitative framework analysis methodology. Key themes identified from the framework 

analysis included motivation, accessibility, social sharing, widening participation, 

relatable content, personal trajectory, agency, and intuitive design. Further 

development of the co-designed version, supported by additional funding from 
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Research England, resulted in its release on both the Apple App Store and Google Play 

Store. Additionally, the iReadMore app received CE marking as a medical device. 

Future developments, which were not possible due to resource constraints, include 

creating a laptop version, offering more personalised therapy difficulty starting points, 

providing more tailored feedback, and exploring how digital therapies can better 

promote agency and social participation. 

In Chapter 2, I evaluated preliminary findings from a small cohort of 14 real-world 

users. The limited results revealed a significant effect of the therapy at one time point 

(Interval Test 8) for reading accuracy on trained words compared to untrained words 

(large effect size, Cohen’s d = 2.15). However, no significant effects were found for 

trained words with regards to reaction time. The trial is ongoing, and further data will 

determine whether additional significant findings emerge, consistent with previous 

research on the iReadMore therapy mechanism. 

Interestingly, the real-world usage data suggested that therapy engagement, including 

dose, frequency, and intensity, may differ from research trial settings. This may provide 

a valuable dataset for investigating self-led therapy usage, where higher doses and 

intensity could be crucial for enhancing therapeutic effects. During the co-design 

phase, it was believed that extrinsic motivators, such as push notifications, were 

unnecessary, as users would be intrinsically motivated to use the therapy. However, 

further exploration of push notifications, as one example, could help boost engagement 

and therapy dosage. 
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In Chapter 3, I investigated whether data commonly collected in digital aphasia 

therapies could be used to predict treatment outcomes. An initial study using data from 

the iReadMore RCT provided limited therapy data for model training. However, a richer 

dataset from the Listen-In RCT offered more robust data for training models based on 

therapy progression. This suggests that treatment outcome prediction for reading and 

speech comprehension accuracies may be feasible and scalable in digital therapies. 

Both iReadMore and Listen-In are currently available (though Listen-In is only on the 

Google Play Store). As user data increases, revisiting this concept could lead to the 

development of implementable prediction algorithms. 

Such predictive algorithms could empower users to determine whether a therapy is 

suitable for them and enhance motivation by providing feedback that reinforces their 

chances of improvement. However, the framework analysis of the iReadMore co-design 

process revealed mixed findings regarding participant perspectives on outcome 

prediction in digital aphasia therapies. Concerns were raised about the accuracy of 

predictions and the potential denial of therapy access due to negative outcomes. 

Conversely, positive predictions were seen as motivational tools that encouraged 

continued therapy engagement. These findings underscore the importance of 

addressing user concerns with careful implementation of predictive algorithms to 

ensure the transparent communication of predictive results, without discouraging user 

motivation. 
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6.2 Future Direction 

Looking ahead, the primary focus of the iReadMore project will be the completion of the 

clinical effectiveness rollout trial. This will involve recruiting additional users to 

complete sufficient therapy sessions for inclusion in the trial. Strategies to enhance 

user engagement and improve therapy adherence will be essential for continued data 

collection. One potential approach to support this is the development of a laptop-

based version of the therapy. 

As more data becomes available, the additional baseline assessment datapoints can 

be leveraged to gain deeper insights into reading rehabilitation in individuals with 

aphasia and alexia. 

Additionally, once substantial data becomes available for iReadMore or Listen-In, 

further exploration into treatment outcome prediction will be pursued. One promising 

avenue to support both the completion of the trial and the prediction efforts is the 

development of a dashboard for real-time monitoring of user therapy progress. This 

could provide valuable insights into user engagement and therapy effectiveness, 

helping to drive both participation and outcomes. 
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8  Appendices 

Appendix 1 - Visual Fields Test scores 
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Appendix 2 - Change in Word Reading Accuracy on the Word Reading 

Test for all users and timepoints 
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l 3 

Trained 0 -
0.0
2 

-
0.0
6 

0.2
2 

0.0
2 

0.4
6 

0.1
2 

0.1
6 

-
0.2
6 

-
0.0
8 

-
0.0
6 

0 -
0.1 

-
0.1
2 

Untrain
ed 

-
0.0
2 

-
0.0
4 

0.0
2 

0.1 0.0
4 

0.2 0.2
6 

-
0.0
6 

-
0.5
6 

-
0.0
4 

0.0
6 

0.0
4 

-
0.0
6 

-
0.1
2 

Interva
l 4 
  

Trained 0.0
6 

0.0
4 

-
0.0
212 

0.1
8 

0 0.4
4 

0.2
8 

0.2 -
0.1
2 

0.0
2 

-
0.0
4 

0.0
6 

-
0.0
4 

-
0.1 

Untrain
ed 

-
0.0
6 

0 0.0
2 

0 0.0
6 

0.2
8 

0.2
6 

0.1 -
0.3
6 

0.0
8 

0.0
6 

0.0
8 

-
0.0
8 

-
0.0
2 

Interva
l 5 

Trained 0.0
6 

  0.1
8 

-
0.0
2 

0.3
8 

0.1
4 

0.1
4 

-
0.1 

0 -
0.0
2 

 -
0.0
8 

-
0.0
8 

Untrain
ed 

-
0.0
2 

  0.0
8 

0.0
4 

0.2
2 

0.1
2 

0.0
4 

-
0.2
2 

0.0
8 

0.0
8 

 0 -
0.0
6 

Interva
l 6 
  

Trained 0.0
4 

  0.2
2 

 0.2
8 

 0.2
4 

-
0.0
8 

    -
0.0
8 

Untrain
ed 

-
0.0
2 

  0.1  0.1
2 

 0.0
8 

-
0.1
4 

    -
0.0
8 

Interva
l 7 

Trained 0.0
6 

  0.1
4 

 0.3
8 

 0.1
4 

     -
0.1
2 

Untrain
ed 

0.0
2 

  0.0
6 

 0.1
2 

 -
0.0
2 

     -
0.1 

Interva
l 8 

Trained    0.2
2 

 0.4
6 

 0.2
2 

     -
0.1 
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  Untrain
ed 

   0.1
2 

 0.2  -
0.0
4 

     -
0.0
4 

Interva
l 9 

Trained    0.1
8 

 0.4
6 

       -
0.0
4 

Untrain
ed 

   0.1
4 

 0.2
6 

       -
0.0
6 

Interva
l 10 
  

Trained    0.2
4 

 0.4        -
0.0
4 

Untrain
ed 

   0.1
2 

 0.2        -
0.1
4 

Interva
l 11 

Trained    0.1
2 

 0.4
8 

       -
0.0
8 

Untrain
ed 

   0.1  0.2
4 

       -
0.0
4 

Interva
l 12 
  

Trained    0.1
4 

 0.2
8 

       -
0.0
4 

Untrain
ed 

   0.1
4 

 0.2        -
0.0
2 

Interva
l 13 

Trained    0.2
2 

         0.0
2 

Untrain
ed 

   0.1
2 

         -
0.0
8 

Interva
l 14 
  

Trained    0.1
8 

         -
0.0
4 

Untrain
ed 

   0.0
6 

         -
0.0
4 

Interva
l 15 

Trained    0.2
4 

         -
0.0
8 

Untrain
ed 

   0.1          -
0.0
4 
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Appendix 3 - Change in Reaction Time on the Word Reading Test for all 

users and timepoints 

Participant 2 3 6 7 9 13 16 17 21 28 30 31 32 34 

Baseline 
  

Trained 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Untrained 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Interval 
1 

Trained -
1.2 

-
0.6 -1.0 

-
1.1 

-
1.2 

-
1.2 

-
0.8 0.9 

-
3.4 

-
1.0 

-
0.1 

-
0.7 

-
2.2 0.2 

Untrained -
1.1 

-
0.2 

-
0.4 

-
2.1 

-
1.2 

-
1.0 0.6 0.4 

-
2.7 1.1 

-
0.1 

-
0.4 0.1 0.4 

Interval 
2 
  

Trained -
0.9 

-
0.8 -1.0 

-
0.8 

-
0.6 1.2 

-
0.7 

-
1.3 

-
1.7 

-
2.4 

-
0.5 

-
1.3 

-
2.8 0.8 

Untrained -
0.6 

-
0.7 

-
0.4 

-
1.5 

-
1.2 0.6 0.3 

-
1.4 

-
1.8 1.2 0.0 

-
0.8 0.0 1.2 

Interval 
3 

Trained -
1.2 

-
1.2 -1.1 

-
1.5 

-
1.4 0.0 

-
1.4 

-
1.5 

-
5.1 

-
1.3 

-
0.8 

-
1.8 

-
2.2 0.4 

Untrained -
1.6 

-
1.4 

-
0.5 

-
2.1 

-
1.6 0.6 0.0 

-
1.0 

-
4.8 2.3 

-
0.3 

-
1.5 

-
0.2 0.9 

Interval 
4 
  

Trained -
1.6 

-
1.3 -1.1 

-
0.6 

-
1.8 

-
1.6 

-
0.9 

-
1.7 

-
1.1 

-
2.6 

-
1.0 

-
1.9 

-
1.4 0.1 

Untrained -
1.6 

-
1.2 

-
0.4 

-
1.2 

-
1.9 

-
0.7 0.8 

-
1.4 

-
0.3 

-
0.7 

-
0.4 

-
1.7 0.5 0.4 

Interval 
5 

Trained -
1.8   

-
0.6 

-
1.7 

-
1.1 3.0 

-
1.7 

-
2.7 

-
1.7 

-
0.8  

-
1.4 

-
0.1 

Untrained -
1.4   

-
1.2 

-
1.6 0.0 4.3 

-
2.6 

-
2.9 1.6 

-
0.6  

-
0.1 

-
0.1 

Interval 
6 
  

Trained -
2.2   

-
1.0  

-
2.8  

-
1.6 

-
1.9     

-
0.1 

Untrained -
1.5   

-
1.1  

-
2.8  

-
2.4 

-
1.6     

-
0.2 

Interval 
7 

Trained -
1.9   

-
0.4  

-
3.8  

-
1.5      

-
0.6 

Untrained -
1.8   

-
1.6  

-
3.9  

-
2.5      

-
0.2 

Interval 
8 
  

Trained 
   

-
1.1  

-
2.6  

-
2.2      

-
0.1 

Untrained 
   

-
1.6  

-
0.8  

-
2.3      

-
0.1 

Interval 
9 

Trained 
   

-
1.3  

-
3.2        

-
0.1 

Untrained 
   

-
1.8  

-
2.5        

-
0.3 

Interval 
10 
  

Trained 
   

-
0.7  

-
2.9        

-
0.8 

Untrained 
   

-
1.0  

-
3.1        

-
0.3 

Interval 
11 

Trained 
   

-
1.1  

-
3.7        

-
0.6 

Untrained 
   

-
1.9  

-
3.0        

-
0.6 
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Interval 
12 
  

Trained 
   

-
1.9  

-
3.4        

-
0.8 

Untrained 
   

-
2.2  

-
3.2        

-
0.9 

Interval 
13 

Trained 
   

-
1.7          

-
0.7 

Untrained 
   

-
2.2          

-
0.5 

Interval 
14 
  

Trained 
   0.2          

-
1.0 

Untrained 
   

-
0.8          

-
0.8 

Interval 
15 

Trained 
   

-
1.5          

-
1.0 

Untrained 
   

-
2.1          

-
0.4 

 

 


