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Abstract

This thesis centers around di�erent forms of common structure that can be shared across

tasks facedby reinforcement learning agents andhow these types of structure canbe lever-

aged to both learn new behavioral policies more e�ciently and compose existing policies.

Speci�cally, the �rst part of this thesis is concerned with how agreement among the op-

timal policies for some group of tasks constitutes a form of behavioral structure. This

structure can be used as the basis for a regularized policy optimization approach to speed

up policy learning on new tasks. One such approach proves to be an e�ective model

of a number of animal and human behavioral patterns observed in neuroscienti�c stud-

ies of dual process theories of cognition. The second part of this thesis focuses on how

consistent environmental transition dynamics across tasks can be exploited by agents to

learn state representationswhich facilitate e�cient policy evaluation and composition. In

particular, prior work on this topic is extended to include several forms of biologically-

inspired, non-Markovian, non-stationary reward functions, with applications to both

machine learning and natural behavior.
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The work presented in this thesis contributes towards the study of sequential decision-

making. Its primary focus is on multitask reinforcement learning from a machine learn-

ing perspective. However, there are insights for and applications to neuroscience as well.

In terms of machine learning, the study of the convergence properties of KL-

regularized policy optimization in a multitask context can provide insight into a wide

range of domains where sequential decision-making across tasks is important (e.g.,

robotics). Additionally, the analysis of KL-regularized policy optimization in a single

task context in which the KL cost is computed with respect to a policy that may be “far

away” from the action policy provides insight into the training setting for �ne-tuning

large languagemodels fromhuman feedback. Themultitask algorithms developed (Total

Variation Policy Optimization and Minimum Description Length Control) can be pro-

ductively applied in both discrete and continuous control problems. Similarly, the work

on state representations which enable policy evaluation and composition for a particular

class of non-Markovian, non-stationary rewards can also be impactful. In particular,

the �rst-occupancy representation shows promise as a bonus for intrinsic exploration,

as a representation for unsupervised pre-training in unsupervised reinforcement learn-

ing, and as the foundation of a planning algorithm to compute shortest paths. The �

representation can be used to help mitigate value overestimation in deep reinforcement

learning.

From a neuroscience perspective, Minimum Description Length Control captures

many behavioral patterns observed in humans and animals. While this framework is a

simpli�cation of control systems in the brain, these results could have implications for

our understanding of the theoretical underpinnings of “dual process” cognition. Simi-
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larly, the �rst occupancy and � representations have applications to the study of spatial

navigation, particularly escapebehavior and foraging, aswell as diminishingmarginal util-

ity, among other areas.



Acknowledgements

The last four years have been a transformative, enriching time inmy life. Moving to Lon-

don and coming toGatsby was one of the best decisions I’ve evermade, largely due to the

amazing people I’ve met.

I am immensely grateful tomy primary advisor, Maneesh Sahani. He has taught me

a tremendous amount about what it means to be a good scientist. I am also very thankful

for the freedom he’s granted me to pursue a wide variety of research directions. I am

also very grateful to my secondary advisory, Matt Botvinick, for his consistent support,

insight, and guidance. More broadly, I would also like to thank the community at Gatsby

for fostering such a welcoming, friendly environment for research and collaboration. I’d

especially like to thank Hugo, Aaditya, Peter, Alex, Samo, Lea, and Michael for all the

fun the last few years.

I have been very fortunate to meet and collaborate with many people outside of

Gatsby duringmy PhD. I’d particularly like to thank TomZahavy for his incredibly help-

ful guidance both during and after my internship. I’m also very thankful to DJ, Vivek,

Brendan, Seb, and Dave, along with the rest of the friends I met at DeepMind. I also had

a lot of fun and was fortunate to work with Aldo Pacchiano, Stephen McAleer, Diana

Borsa, Ahmed Touati, and Jack Parker-Holder, among a number of others. I am espe-

cially indebted to DJ, Aaditya, and Dan for their incredibly helpful advice and support

over the last year.

I am also very thankful to my non-ML London friends for all the good times and

welcome distractions, particularly Matt, Franco, Rebecca, Fraser, Vaish, and Jahaan.

I am also thankful to Larry Abbott, Ashok Litwin-Kumar, and Jonathan Pillow for

introducing me to research and for their support and mentorship.



Acknowledgements �

I am in�nitely grateful to my parents for their unending love and support.

Finally, I’d like to thank Amani for agreeing to marry me, demonstrating how to do

a PhD properly, and for putting up with my bullshit.



Contents

Introduction ��

� Overview ��

� Reinforcement Learning ��

�.� De�ning the Environment . . . . . . . . . . . . . . . . . . . . . . . ��

�.�.� Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ��

�.� Solving Single-Task RL . . . . . . . . . . . . . . . . . . . . . . . . . ��

�.�.� Value-Based Approaches . . . . . . . . . . . . . . . . . . . . ��

�.�.� Policy-Based Approaches . . . . . . . . . . . . . . . . . . . . ��

�.� Multitask Reinforcement Learning . . . . . . . . . . . . . . . . . . . ��

�.� RL and Neuroscience . . . . . . . . . . . . . . . . . . . . . . . . . . ��

�.�.� Reward Prediction . . . . . . . . . . . . . . . . . . . . . . . ��

�.�.� Habits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ��

I Shared Behaviors ��

� Towards an Understanding of Default Policies in Multitask Policy Opti-

mization ��

�.� Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ��

�.� Regularized Policy Optimization . . . . . . . . . . . . . . . . . . . . ��

�.� RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ��

�.� A Basic Theory for Default Policies . . . . . . . . . . . . . . . . . . . ��

�.�.� Log-barrier regularization . . . . . . . . . . . . . . . . . . . . ��



Contents �

�.�.� Regularization with an↵-optimal policy . . . . . . . . . . . . ��

�.� Extension toMultitask Learning . . . . . . . . . . . . . . . . . . . . ��

�.� Understanding the Literature . . . . . . . . . . . . . . . . . . . . . . ��

�.� Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ��

�.� Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ��

Chapter �Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ��

�.A: Single-task Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . ��

�.A.� State dependent � and ✏ . . . . . . . . . . . . . . . . . . . . ��

�.B: Multitask Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . ���

�.C: Experimental Details . . . . . . . . . . . . . . . . . . . . . . . . . ���

� Minimum Description Length Control ���

�.� Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ���

�.� Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ���

�.� TheMinimumDescription Length Principle . . . . . . . . . . . . . . ���

�.� MinimumDescription Length Control . . . . . . . . . . . . . . . . . ���

�.�.� Motivating the choice of sparsity-inducing priors . . . . . . . ���

�.�.� Performance Analysis . . . . . . . . . . . . . . . . . . . . . . ���

�.� Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ���

�.�.� �DNavigation . . . . . . . . . . . . . . . . . . . . . . . . . ���

�.�.� Continuous Control . . . . . . . . . . . . . . . . . . . . . . ���

�.� RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ���

�.� Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ���

Chapter �Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ���

�.A: Reinforcement Learning as Inference . . . . . . . . . . . . . . . . . ���

�.B: Multitask RL Frameworks . . . . . . . . . . . . . . . . . . . . . . . ���

�.C: Additional RelatedWork . . . . . . . . . . . . . . . . . . . . . . . ���

�.D: Motivating the choice of sparsity-inducing priors . . . . . . . . . . . ���

�.D.� Correspondence between p(z) and p(�) . . . . . . . . . . . . ���

�.D.� MSE risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . ���

�.E: Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ���



Contents ��

�.F: OCO Background . . . . . . . . . . . . . . . . . . . . . . . . . . . ���

�.G: Proofs of Performance Bounds and Additional Theoretical Results . . ���

�.G.� MDL-C with Persistent Replay . . . . . . . . . . . . . . . . . ���

�.G.� Comment on Improvement Across Tasks . . . . . . . . . . . ���

�.G.� Parallel Task Setting . . . . . . . . . . . . . . . . . . . . . . . ���

�.H: Additional Experimental Details . . . . . . . . . . . . . . . . . . . ���

�.H.� FourRooms . . . . . . . . . . . . . . . . . . . . . . . . . . . ���

�.H.� DeepMind Control Suite . . . . . . . . . . . . . . . . . . . . ���

�.I: Additional Experimental Results . . . . . . . . . . . . . . . . . . . . ���

�.I.� FourRooms . . . . . . . . . . . . . . . . . . . . . . . . . . . ���

�.I.� DeepMind Control Suite . . . . . . . . . . . . . . . . . . . . ���

� A Uni�ed Theory of Dual-Process Control ���

�.� Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ���

�.� Generalmethods: Selection of target phenomena and approach tomod-

eling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ���

�.� Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ���

�.�.� Simulation �: Executive control . . . . . . . . . . . . . . . . . ���

�.�.� Simulation �: Reward-based learning . . . . . . . . . . . . . . ���

�.�.� Simulation �: Judgment and decision making . . . . . . . . . ���

�.�.� Comparison with Previous Models . . . . . . . . . . . . . . . ���

�.� Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ���

Chapter �Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ���

�.A: Architecture and Learning Algorithm . . . . . . . . . . . . . . . . . ���

�.B: Simulation �: Executive control . . . . . . . . . . . . . . . . . . . . ���

�.C: Simulation �: Reward-based learning . . . . . . . . . . . . . . . . . ���

�.D: Simulation �: Judgment and decision-making . . . . . . . . . . . . . ���

II Policy Composition Through Shared Dynamics ���

� A First-Occupancy Representation for Reinforcement Learning ���



Contents ��

�.� Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ���

�.� Reinforcement Learning Preliminaries . . . . . . . . . . . . . . . . . ���

�.� The First-Occupancy Representation . . . . . . . . . . . . . . . . . . ���

�.� Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ���

�.�.� The FR as an Exploration Bonus . . . . . . . . . . . . . . . . ���

�.�.� Unsupervised RL with the FF . . . . . . . . . . . . . . . . . ���

�.�.� Planning with the FR . . . . . . . . . . . . . . . . . . . . . . ���

�.�.� Escape behavior . . . . . . . . . . . . . . . . . . . . . . . . . ���

�.� Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ���

Chapter �Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ���

�.A: FR recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ���

�.B: FRP Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . ���

�.C: Additional Experimental Details . . . . . . . . . . . . . . . . . . . ���

�.D: Additional Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . ���

�.E: Explicit Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . ���

�.F: FRP withMulitple Goals . . . . . . . . . . . . . . . . . . . . . . . ���

�.G: Connections to options . . . . . . . . . . . . . . . . . . . . . . . . ���

�.H: Further connections to related work . . . . . . . . . . . . . . . . . ���

�.I: FR vs. SR Visualization . . . . . . . . . . . . . . . . . . . . . . . . ���

� The �-Occupancy Representation ���

�.� DiminishingMarginal Utility . . . . . . . . . . . . . . . . . . . . . . ���

�.� The �Representation . . . . . . . . . . . . . . . . . . . . . . . . . . ���

�.�.� Continuous State Spaces . . . . . . . . . . . . . . . . . . . . ���

�.� Policy Evaluation, Learning, and Composition under DMU . . . . . . ���

�.�.� Policy Evaluation . . . . . . . . . . . . . . . . . . . . . . . . ���

�.�.� Policy Learning . . . . . . . . . . . . . . . . . . . . . . . . . ���

�.�.� Policy Composition . . . . . . . . . . . . . . . . . . . . . . ���

�.� Understanding Natural Behavior . . . . . . . . . . . . . . . . . . . . ���

�.� Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ���

Chapter �Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ���



Contents ��

�.A: Derivation of �RRecursion . . . . . . . . . . . . . . . . . . . . . . ���

�.B: Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . ���

�.B.� Proof of Theorem �.�.� . . . . . . . . . . . . . . . . . . . . . ���

�.B.� An Extension of Theorem �.�.� . . . . . . . . . . . . . . . . . ���

�.C: An nth Occupancy Representation . . . . . . . . . . . . . . . . . . ���

�.D: Additional RelatedWork . . . . . . . . . . . . . . . . . . . . . . . ���

�.E: Further Experimental Details . . . . . . . . . . . . . . . . . . . . . ���

�.E.� Policy Evaluation . . . . . . . . . . . . . . . . . . . . . . . . ���

�.E.� Policy Learning . . . . . . . . . . . . . . . . . . . . . . . . . ���

�.E.� Tabular GPI . . . . . . . . . . . . . . . . . . . . . . . . . . ���

�.E.� Pixel-Based GPI . . . . . . . . . . . . . . . . . . . . . . . . . ���

�.E.� Continuous Control . . . . . . . . . . . . . . . . . . . . . . ���

�.E.� Learning the �Owith FB . . . . . . . . . . . . . . . . . . . . ���

�.F: Additional Results . . . . . . . . . . . . . . . . . . . . . . . . . . . ���

�.G: Advantage of the Correct � . . . . . . . . . . . . . . . . . . . . . . ���

�.H: The �Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . ���

�.H.� Experimental Results with the FB Parameterization . . . . . . ���

�.H.�� �O and the Marginal Value Theorem . . . . . . . . . . . . . . ���

�.I: SAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ���

�.J: Replenishing Rewards . . . . . . . . . . . . . . . . . . . . . . . . . ���

�.K: � vs. � . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ���

�.L: Compute Resources . . . . . . . . . . . . . . . . . . . . . . . . . . ���

Conclusion ���

� General Conclusions ���

�.� Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ���

�.� Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ���

Bibliography ���



List of Figures

�.� As |A| grows, regularizing using ⇡0 with larger dTV(⇡?(·|s), ⇡0(·|s))

will converge to a lower error than log-barrier regularization. In other

words, there is a more forgiving margin of error for the default policy. . ��

�.� A tree environment. Each task in the family randomly distributes re-

wards among leavesmarkedwith a ‘?’. All other states result in zero reward. ��

�.� Fixed ⇡0 baselines. Results are averaged over �� seeds, with the shaded

region denoting one standard deviation. . . . . . . . . . . . . . . . . ��

�.� Learned⇡0 baselines. Results are averaged over �� seeds, with the shaded

region denoting one standard deviation. . . . . . . . . . . . . . . . . ��

�.� Learned default policies in states s1 and s7 after �ve tasks. In the simplex

for s7, the marker forTVPO is behind the markers for the other methods. ��

�.� Delayed training of ⇡0 improves performance. . . . . . . . . . . . . . ��

�.� (A) Illustration of a generative model of optimal policy parameters.
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Chapter �

Overview

A longstanding goal of arti�cial intelligence is to build generalist agents: those which

can learn and adapt to accomplish a variety of goals in their environments. This prob-

lem is especially challenging in part because it demands rational decisions from bounded

decision-makers. In other words, any agent must decide on its next action given only �-

nite computational resources. If that were not the case, it could simply build a perfect

simulator of the world and examine the outcome of every available course of action to in-

form its choice. Alongside this e�ort, understanding the �exibility of human and animal

intelligence is also a key object of study in neuroscience.

Although their end goals di�er, both disciplines are interested in understanding this

aspect of intelligence:

How can bounded agents learn and act e�ciently in a seemingly unbounded world?

The answer to this question, and the subject of this thesis, is that doing so requires

that the environment and the goals which the agent seeks to accomplish must contain

patterns—that is, they must have some form of underlying structure. For example, the

e�ects of our actions on the world around us are usually fairly consistent from day to

day. Such structure allows decision-makers to make predictions and e�ectively shrink

the problems they face so that they’re solvable. While structure in the world represents

opportunity for an agent to problem-solve, the agentmust still be able to actually use this

structure to in�uence its decision-making.

Accordingly, this thesis will discuss work which has centered around two di�erent

forms of structurewhichmay be shared across the tasks animals and agentsmust perform



��

and the ways in which it can be leveraged:

�. Part I: Shared behaviors (Chapters � to �): Often, di�erent tasks we perform re-

quire us to repeat the same actions or sequences of actions. For example, a jogger

might navigate to a di�erent landmark within the local park each day, but they

might repeat the same route everyday to get to the park itself. The work in this sec-

tion studies how such consistently useful behaviors can be leveraged to accelerate

learning on new tasks (e.g., run to new locations in the park). Results demonstrate

that a simple computational frameworkbuilt around this intuition can account for

many behavioral results from cognitive neuroscience in cognitive control, reward-

based learning, and judgment and decision-making. This section draws from the

following works: Moskovitz et al. (����a, ����a, ����b).

�. Part II: Shared dynamics (Chapters � and �): The local dynamics of the world

around us are usually relatively stable�. Walking west down Howland Street from

Tottenham Court Road will bring one to the Sainsbury Wellcome Centre, and is

unlikely to one day suddenly start teleporting PhD students to midtownManhat-

tan instead. Understanding of this consistency allows us to compose previously

learned behaviors more e�ciently, because our beliefs about the e�ects of those

behaviors on the world can generally be relied upon. The work described in this

section draws fromMoskovitz et al. (����c, ����).

Reinforcement learning (RL) provides a powerful, general framework for reasoning

about sequential decision-making, and forms the foundation for theworkdescribed. Rel-

evant background is provided in Chapter �. This thesis concludes with a discussion and

speculation regarding future work (Chapter �).

�This can be understood as the perceived dynamics of the world relevant to decision-making, and not,
strictly speaking, the laws of physics themselves.



Chapter �

Reinforcement Learning

In reinforcement learning (RL), an agent learns how to act within its environment over

multiple time steps in order to maximize its reward on a given task or tasks. To formalize

this problem setting, we require a mathematical speci�cation of both the environment

and the agent. Once these are established, we’ll cover several foundational algorithms for

solving RL problems which form the basis for many of the original contributions of this

thesis. Throughout this and subsequent sections, when the dimensionality of a variable

(i.e., whether it is a scalar, a vector, a matrix, or a tensor) is unspeci�ed, the default will

be to use scalar notation (e.g., x). For a much more comprehensive treatment of RL, see

Sutton and Barto (����a); Agarwal et al. (����).

�.� De�ning the Environment
To facilitate e�cient learning, there are several common assumptions made about the

structure of the world and the process which generates the observations received by the

agent. Chief among these is that the world can be divided into distinct states S = {s}

such that the current state st at any given time t, in conjunction with the agent’s ac-

tion at—chosen from within a set of available actions A—comprises a su�cient statis-

tic for the following state. This is the Markov assumption: that the transition dynam-

ics which determine the next state are independent of previous interactions with the

environment given the current state and action. In other words, there exists a transi-

tion kernel P : S ⇥ A ! P(S) such that P (st+1|st, at) = P (st+1|ht), where

ht , (s0, a0, . . . , st, at) is the history up to time t. The agent’s method for choosing
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an action is called its policy, denoted by ⇡. In a Markovian environment, the policy need

not depend on the full history, and can instead be conditioned only on the current state

⇡ : S ! P(A). We call this type of policy stationary. When the state and action spaces

are �nite, we can describe the expected transition probabilities under a policy ⇡ using a

|S| ⇥ |S|matrix P ⇡ such that P ⇡

s,s0 = p
⇡(s0|s) , P

a2A
P (s0|s, a)⇡(a|s). Note that

we have allowed the policy to depend directly on the environment state. This is valid if

wemake a second common assumption: that the underlying state of the world is fully ob-

servable. In this case, the agent directly observes the environment state, and the model of

the world is called a controlledMarkov process (CMP; Abel et al., ����), de�ned formally

as as a tuple E , (S,A, P ). If this assumption is not made, we consider the problem

to be partially observable. In this case, the state is not directly revealed to the agent and

instead there is some unknown distribution over possible observations for each state. We

can de�ne a partially observable CMP (POCMP) as a tuple E , (S,A, P,O, f) where

S ,A, andP are as de�ned for a CMP, withO the observation space and f : S ! P(O)

the observation function. The transitions and rewards are not Markov in the observa-

tions in this setting, making it substantially more challenging. Unless otherwise noted,

we will default to the fully observable setting.

�.�.� Tasks

Now that we’ve de�ned the environment, we can specify what we mean by the concept

of a “task.” Informally, we will call a task a pairing of an environment with a starting state

or states, a performance criterion (delineating behaviors whichmark success and failure),

and an e�ective time span over which the task must be completed.

An easily overlooked but important aspect of a task is its starting point: the initial

state or states in which the agent must begin to make decisions. We model this property

with an initial state distribution ⇢ 2 P(S), so that the agent begins a given task in a state

s0 ⇠ ⇢(·). In the case that there is a single initial state, for example, ⇢ is simply a Dirac

delta distribution. The signi�cance of this distribution is in large-part dependent on the

manner in which the agent’s experience is modeled. If the agent’s experience is treated as

one continuous stream of interaction with its environment—that is, s0 is sampled from

⇢ exactly once and then the agent is left to accumulate as much reward as it can forever—
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then the importance of ⇢ is directly tied to the connectedness of the environment. If

there is some policy for which the induced Markov chain of environment interactions

is ergodic, then all states can be visited in�nitely often and the initial state s0 is less sig-

ni�cant. If this is not the case, then s0 determines which subset of the environment the

agent is able to reach, which often has a signi�cant impact on its ability to accumulate

reward. However, a much more common modeling assumption is that the agent’s expe-

rience while mastering a task is broken up into discrete chunks termed episodes. At the

beginning of each episode, a new initial state is drawn from ⇢, and the agent is allowed a

certain number of time steps (which may be in�nite) to accomplish its task, after which

the episode ends and the agent resets to a new initial state drawn from ⇢.

The performance criterion in all RL problems is the reward function r. In the gen-

eral case, the reward is given as r : H ! R, a mapping from histories to scalar values—

higher values are better, and lower are worse. However, if theMarkov assumption holds,

we can de�ne r over some subset of {st, at, st+1} (i.e., we have either r(st), r(st, at), or

r(st, at, st+1)). For simplicity, this thesis will default to using r(st, at) unless otherwise

noted, and will frequently abbreviate the reward at time t to rt. The agent’s goal is to

maximize the amount of reward it collects over its lifespan (or the duration of the task).

The time span—or horizon–over which the task must be completed, which we de-

note by H , can be either �nite or in�nite. In the �nite horizon case, the objective that

the agent is trying to maximize is simply the expected total reward, which is termed the

value:

V
⇡ , E⇡,P,⇢

"
H�1X

t=0

r(st, at)

#
= Es0⇠⇢E⇡,P

"
H�1X

t=0

r(st, at) | s0

#
. (�.�)

Generalizing, themapping from states to the cumulative reward that the agent is expected

to achieve is called the value function V : S ! R:

V
⇡(s) , E⇡,P

"
H�1X

k=t

r(st+k, at+k) | st = s

#
. (�.�)
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We can also de�ne the action-value or “Q” function:

Q
⇡(s, a) , E⇡,P

"
H�1X

k=t

r(st+k, at+k) | st = s, at = a

#
, (�.�)

where V ⇡(s) = Ea⇠⇡(·|s)Q
⇡(s, a). In the remainder of the text, we will frequently

abbreviate E⇡,P,⇢ to E⇡ where the meaning is clear. The return of a trajectory ⌧ =

(s0, a0, s1, a1, . . . sH�1, aH�1)� is given by

R(⌧) ,
H�1X

t=0

r(st, at). (�.�)

The value can then be written as the expected return under a �xed policy, V ⇡ =

E⌧⇠P⇡(·)R(⌧), whereP⇡(⌧) is the probability of a trajectory, given in theMarkovian case

by

P⇡(⌧) = ⇢(s0)
H�1Y

t=0

⇡(at|st)P (st+1|st, at). (�.�)

Anotherway towrite the value is as the expected reward under the cumulative, discounted

state-action occupancy measure d⇡ 2 P(S ⇥A). That is, V ⇡ = Es,a⇠d⇡r(s, a), where

d
⇡(s) =

1

H

H�1X

t=0

P⇡(st = s), d
⇡(s, a) = ⇡(a|s)d⇡(s). (�.�)

For concision, fromhere onwardwewill refer to bothd⇡(s) andd⇡(s, a) interchangeably

as a policy’s occupancy measure, with the precise meaning implied by context. Overall, in

the �nite horizon case, a task is the combination of the initial state distribution, reward

function, and the horizon, and is called a �nite horizonMarkov decision process (MDP

Puterman, ����), described by the tupleM = (S,A, P, ⇢, r,H).

The in�nite horizon case, however, presents potential problems because summing

rewards over in�nitely long trajectories can frequently lead to in�nite values. In this case,

�The term “trajectory” is subtly di�erent from “history” — the history refers to the entirety of the
agent’s experience (e.g., across episodes), while a trajectory only consists of the current episode. In a
continual/non-episodic setting, these terms mean the same thing.
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a policy which earns the agent �/�� reward units every step will have the same value as

a policy which nets ��� reward units per step. One way to address this is to change the

de�nition of the value so that it measures a policy’s average reward per step:

V
⇡

avg
= lim

H!1

1

H
E⇡

H�1X

t=0

r(st, at). (�.�)

This is known as an average-reward MDP Sutton and Barto (����a). However, a more

common approach is tomake the agent “shortsighted.” Speci�cally, the agent is endowed

with a temporal discount factor � 2 [0, 1) such that it attempts to maximize its dis-

counted return, given by

R�(⌧) ,
1X

t=0

�
t
r(st, at). (�.�)

Then as long as the rewards are bounded (i.e., r(s, a) 2 [rmin, rmax] for alls, a 2 S⇥A),

the value is as well:

V
⇡

�
2

rmin

1� � ,
rmax

1� �

�
.

Note that this is equivalent to introducing an “e�ective” horizon on the problemH� =

1/(1� �) over which events are able to in�uence the agent’s decision-making. This can

be seen by noting that the value is bounded betweenH�rmin andH�rmax, as if the agent

were getting either rmin or rmax reward every step of a �nite trajectory of lengthH� . In

this case, the horizon is de�ned implicitly via the discount factor �, and we can de�ne an

in�nite horizon MDP as a tuple M = (S,A, P, ⇢, r, �). Here, the discounted occu-

pancy measure is de�ned as

d
⇡(s) = (1� �)

1X

t=0

�
tP⇡(st = s), (�.�)

where the factor 1� � ensures proper normalization. One subtlety worth noting is that

the myopia created by the discount factor � could perhaps be better described as an at-

tribute of the agent rather than the task (especially when modeling animal behavior).
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Nevertheless, it is still standard to include� as part of the task speci�cation rather than as a

parameter of the agent due to theway it implicitly de�nes the task horizon. An important

practical point is that while a task may formally be de�ned as in�nite-horizon, in exper-

iments, there is always an upper limit on the number of allowed time steps. Therefore,

even when a discount factor is used, there is always additionally an H (which may not

equalH�) used in practice as well. In the remainder of the text, We’ll drop the subscript

� (e.g., in V�) when the context is clear.

�.� Solving Single-Task RL
Given a task, the agent’s goal is to �nd a policy which is optimal: one which achieves

a value at least as high as any other. Such a policy is called an optimal policy ⇡?, and is

formally de�ned as a policy ⇡0 for which V ⇡
0 � V

⇡ 8⇡. The agent is thenmeant to solve

the optimization problem

max
⇡2⇧

V
⇡
, (�.��)

where ⇧ is the set of possible policies. When solving MDPs, ⇧ is usually taken to be

the set of stationary policies. To begin with, we’ll assume a �nite number of states and

actions—a setting often called tabular. Wewill then discuss in�nite and continuous state

and action spaces. There are a number of possible approaches to solving Eq. (�.��). His-

torically, one major division has been between model-free (MF) and model-based (MB)

control. InMF learning, the agent attempts to learn an optimal policy via trial-and-error,

learning good and bad actions directly from experience. In MB approaches, the agent

learns a model of the task—classically, the MDP dynamics P and reward function r—

and uses this model to improve its policy either by simulating experience in this imagined

world or via dynamic programming, which is discussed inmore detail below. While these

approaches are canonically seen as distinct, there is also a long history of methods which

combine them in various ways (Sutton, ����). From a biological perspective, this makes

sense, as it is clear that humans and animals make use of both world models and trial-

and-error experience to update their behavior. Indeed, a core technique underpinning

the methods introduced in Part � of this thesis blends the distinction between MF and
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MB learning. Regardless of whether the agent uses aMF orMB approach (or something

in-between), the precise method of improving a policy still requires speci�cation. We de-

scribe the primary two algorithm families below.

�.�.� Value-Based Approaches

Value-based methods for solving Eq. (�.��) do so indirectly, by exploiting an important

property of MDPs known as the Bellman optimality equations (Bellman, ����; Agarwal

et al., ����). We say that a matrixQ 2 R|S|⇥|A| satis�es the Bellman optimality equations

if

Q(s, a) = r(s, a) + �Es0⇠P (·|s,a)


max
a02A

Q(s0, a0)

�
8s, a 2 S ⇥A. (�.��)

For anyQ 2 R|S|⇥|A|,Q = Q
?, whereQ? denotes theQ-values of an optimal policy, if

and only ifQ satis�es the Bellman optimality equations. Furthermore, the deterministic

policy de�ned by ⇡(s) 2 argmax
a2A

Q
?(s, a) is an optimal policy.

The Bellman optimality equations imply that if we are able to identify the optimal

action-valuesQ?, then we immediately get an optimal policy simply by acting greedily in

each state with respect toQ?. Value-based methods rely on this fact and aim to �nd the

optimal policy indirectly, by �rst identifyingQ?. There are two foundational value-based

policy improvement approaches: value iteration and policy iteration (Bellman, ����).

Value IterationValue iteration (VI) is an algorithm for �nding the optimal policywhich

can be derived directly from Eq. (�.��). To see how, we can de�ne the Bellman optimality

operator T ? : R|S|⇥|A| ! R|S|⇥|A| as follows:

T ?
Q = R + �PvQ, (�.��)

where R 2 R|S|⇥|A| is the matrix of rewards, P denotes a |S| ⇥ |A| ⇥ |S| tensor such

thatPs,a,s0 = P (s0|s, a), and (vQ)s = maxa Q(s, a) 8s 2 S is the vector of values for

the greedy policy overQ. Given this de�nition, we can rewrite Eq. (�.��) as simply

T ?
Q = Q. (�.��)



�.�. Solving Single-Task RL ��

That is,Q = Q
? if and only if it’s a �xed point of the operator T ?. VI, then, consists of

“simply” applying T ? until this �xed point is reached:

Q T ?
Q. (�.��)

We’ve put “simply” in quotes because applying the Bellman optimality operator is simple

only under the condition that the agent has access to the transition matrix P and reward

function r, but this is generally not true in RL. The agent must either try to approxi-

mate P and r (as in MB approaches) or approximate this update by directly collecting

experience in the world (as in MF approaches). For now, we can simply verify that in

the idealized case (with access to P and r) VI produces Q?. Importantly, the Bellman

optimality operator is a contraction. That is, for any two matricesQ,Q
0 2 R|S|⇥|A|,

kT ?
Q� T ?

Q
0k1  �kQ�Q

0k1,

wherek·k1 denotes themax-norm. This property guarantees that successive applications

converge to a �xed point—and by the Banach Fixed Point theorem, this �xed point is

unique. In fact, it is the optimalQ function.

Policy Iteration Like value iteration, policy iteration (PI; Bellman, ����) improves the

agent’s policy by leveraging properties of MDPs, and de�nes its policy implicitly via the

action-value estimate. Rather than emerging directly from the Bellman optimality equa-

tions, PI follows from a simpler, somewhat surprising property of MDPs: greedy policy

improvement. The greedy policy improvement property says that for any policy ⇡, the

greedy policy with respect to itsQ-values ⇡0(s) 2 argmax
a
Q
⇡(s, a) is at least as good

as ⇡—that is, Q⇡
0
(s, a) � Q

⇡(s, a) for all s, a 2 S ⇥ A. This fact underpins the in-

tuition behind PI: given our current policy, if we can evaluate it—that is, compute its

Q-values—we can immediately de�ne a better policy by acting greedily with respect to

thoseQ-values, and then repeat the process until convergence. That is, each iteration k

of PI consists of two steps:

�. Policy evaluation: Given ⇡(k), computeQ(k).
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�. Policy improvement: ⇡(k+1)(s) 2 argmax
s
Q

(k)(s, a) 8s, a 2 S ⇥A.

The question, then, is how to perform policy evaluation. It turns out that we can exploit

the same recursive property of the optimal value function which underlies the Bellman

optimality equations. This analogous relationship is called the Bellman consistency equa-

tions. That is, V ⇡ andQ⇡ obey the following relationship:

V
⇡(s) = Ea⇠⇡(·|s)Q

⇡(s, a) (�.��)

Q
⇡(s, a) = r(s, a) + �Es0⇠P (·|s,a)V

⇡(s0) (�.��)

for all states and actions. This recursive form follows directly from the de�nition of the

action-value function and theMarkov property of the transition dynamics. Bellman con-

sistency allows us to de�ne the Bellman evaluation operator T ⇡, analogous to T ?:

T ⇡q , r + �P
⇡q, (�.��)

whereq isQ�attened into an |S||A|-element vector andwe overload notation so thatP ⇡

is the |S||A| ⇥ |S||A|matrix with P ⇡

sa,s0a0 = ⇡(a0|s0)P (s0|s, a). We can slightly abuse

notation and write T ⇡
Q instead of T ⇡qwith the understanding thatQ can be �attened

and then reshaped back into a matrix. Similar to the Bellman evaluation operator, T ⇡ is

a contraction and successive applications cause a matrixQ to converge toQ⇡.

Soft Policy IterationWhile all MDPs admit deterministic optimal policies, a common

issue when using approximate methods for large-scale problems is that the policy will

collapse to a (near-)deterministic function prematurely, before it has reached optimality.

This is often the case when policy optimization over�ts to a local maximum in the value

function. To prevent this, it’s common to add a regularization term which encourages

the policy to remain stochastic. The maximum entropy RL (Ziebart, ����) objective is

given by

J (⇡) = Es,a⇠d⇡ [r(s, a) + ↵H[⇡(·|s)]] , (�.��)
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where ↵ is a temperature parameter which determines the strength of the regularization,

with the standard RL objective recovered as ↵ ! 0. This objective results in Bellman

consistency equations which are analogous to those which hold for standardMDPs:

Q
⇡

H
(s, a) = r(s, a) + �Es0⇠P (·|s,a)V

⇡

H
(s0)

where V
⇡

H
(s) = Ea⇠⇡(·|s) [Q

⇡

H
(s, a)� ↵ log ⇡(a|s)] .

This relationship allows for the de�nition of a soft Bellman evaluation operator T ⇡

H
:

T ⇡

H
q , r + �P

⇡(q� ↵ log⇡), (�.��)

where ⇡ is the policy �attened into an |S||A|-vector and log(·) is applied element-wise.

Repeatedly applying T ⇡

H
induces convergence toQ⇡

H
(Haarnoja et al., ����).

To perform a policy improvement step with this objective in the tabular setting, we

can solve the following constrained optimization problem:

max
⇡

V
⇡

H
s.t.

X

a

⇡(a|s) = 1 8s 2 S.

To do this, we can use Lagrangian relaxation:

L(⇡,�) = VH +
X

s

�s

 
X

a

⇡(a|s)� 1

!

= ⇡T[q� ↵ log⇡] +
X

s

�s

 
X

a

⇡(a|s)� 1

!
,

where �1, . . . ,�|S| are Lagrange multipliers for each state. Taking the gradient with re-

spect to the policy and setting the result equal to zero:

r⇡L(⇡,�) = q� ↵� ↵ log⇡ + � = 0

) ⇡(a|s) = exp(Q⇡(s, a)/↵� 1 + �s/↵) = exp(Q⇡(s, a)/↵) exp(�s/↵� 1),

where we slightly abuse notation and use � to denote a |S||A|-length vector with each
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Lagrange multiplier �s repeated |A| times. The gradient with respect to the Lagrange

multiplier�s is
P

a
⇡(a|s)� 1, which re�ects that the policy must be a valid probability

distribution in each state. Using this, we get

X

a

exp(Q⇡(s, a)/↵) exp(�s/↵� 1) = 1

) exp(�s/↵� 1) =
1P

a
exp(Q⇡(s, a)/↵)

.

Plugging this in, the improved soft policy is given by

⇡
(k+1)(a|s) = exp(Q⇡

(k)
(s, a)/↵)P

0

a
exp(Q⇡(k)(s, a0)/↵)

=
1

Z(s)
exp(Q⇡

(k)
(s, a)/↵), (�.��)

whereZ(s) =
P

a0 exp(Q
⇡
(k)
(s, a0)/↵). Analogously to standard PI, soft PI converges

to an optimal policy with respect to the regularized objective (Haarnoja et al., ����).

Model-Free LearningAsnoted above, in standardRL settings, the agent is not given ac-

cess toP and r. Nonetheless, it can approximate Bellman updates via sampled experience

in the environment.

One family of such approaches falls under the heading of temporal di�erence (TD)

learning. There are a wide variety of TD algorithms, but we’ll brie�y describe the foun-

dational approaches here.Q-learning (Watkins and Dayan, ����), in its most basic form,

is a sample-based approximation of VI, where given an observed tuple of experience

(st, at, rt, st+1), the agent updates itsQ-values as follows:

Qt+1(st, at) = Qt(st, at) + ⌘t�
Q
t , (�.��)

where ⌘t is the learning rate at time t and

�
Q
t = rt + �max

a2A

Qt(st+1, a)�Qt(st, at) (�.��)

is theQ-learning TD error. Observe that rt + �maxa2A Qt(st+1, a) is a single-sample

approximation of T ?
Qt, and so theQ-learning error is zero whenQ = T ?

Q. If all state-

action pairs are visited in�nitely often and the learning rate obeys the Robbins-Monro
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conditions:

1X

t=0

⌘t =1,

1X

t=0

⌘
2

t
<1

thenQt is guaranteed to converge toQ? as t!1 (Watkins and Dayan, ����).

TDmethods can also be used for evaluation. In fact, unless otherwise speci�ed “TD

learning” typically refers to methods used for this purpose. The simplest approach is the

one-step sample-based analogue of the Bellman evaluation operator:

�
TD
t

= rt + �Qt(st+1, at+1)�Qt(st, at), (�.��)

which is used to update the value function just as in Eq. (�.��). Note that the only di�er-

ence between this approach andQ-learning is that theTDtarget inQ-learning is obtained

by the greedy policy over the currentQ-values (which is often di�erent from the policy

used to actually take actions—a setting known as o�-policy learning), while the evalua-

tion target is obtained by sampling from the policy used for acting (known as on-policy

learning). Unsurprisingly given their similarity, TD learning for evaluation converges un-

der the same conditions asQ-learning. An analogous TD update can be derived for soft

policy evaluation.

Single-step TDmethods like this are useful because that they allow the agent to up-

date its value estimates every time step. Additionally, because the learning target is formed

from a single step of experience, it generally has low variance, o�ering amore stable target

for learning. However, TD learning is also biased, as the target is formed from a boot-

strapped estimate of the value function, e.g., rt+ �Qt(st+1, at+1) ⇡ Q
⇡(st, at). To ob-

tain an unbiased target for learning, the agent can instead allow the agent to “roll out” full

episodes of experience and simply average the resulting returns. This is known asMonte-

Carlo (MC) value estimation, and there are a wide variety of methods which fall under

this heading. Unlike TD learning, however, MC methods typically su�er from high-

variance and require the agent to experience a full episode before learning, which also

makes them incompatible with non-episodic tasks. There are a number of approaches

which blendTD andMC learning in an e�ort to reap the bene�ts of bothmethods, such
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as n-step returns and TD(�) (Sutton and Barto, ����a).

Function ApproximationWhen the state space and/or action space are large or con-

tinuous, it becomes impractical to use a tabular representation for value functions. In

this case, wemust approximate the true value function by optimizingwithin a—typically

parametric—function class. In deep RL, this function class is a neural network architec-

ture (Goodfellow et al., ����). In this setting, all theoretical guarantees go out the win-

dow, but strong empirical performance is usually achievable. There aremany value-based

approaches in deep RL, but for brevity we’ll only describe the basic analogue of VI/Q-

learning here.

DeepQ-learning is implementedmost commonly in the form of the deepQ network

(DQN; Mnih et al., ����) algorithm, which �rst drew widespread attention to deep RL

for its success on Atari games. A naı̈ve implementation of deepQ-learning would simply

involve parameterizing theQ-function as a neural networkQ✓ : S ! R|A| with param-

eters ✓ and training it via online stochastic gradient descent (SGD) on the mean-squared

TD error. (With regard to notation, we’ll use bothQ✓(s, a) andQ(s, a; ✓) interchange-

ably.) However, this presents several di�culties.

First, because theQ-function is used in both the TD target and to evaluate the cur-

rent state, naı̈ve di�erentiation will backpropagate through both, which is typically high

variance in practice and breaks the IID� assumption upon which SGD relies. To address

this, Mnih et al. (����) introduced the idea of target networks: a copy of theQ-function is

kept with “frozen” parameters which are not di�erentiable, which we denote with as ✓�.

This target network is used to compute the TD target, with the frozen parameters either

reset to the current (updated) parameter values every few iterations or via an exponential

moving average. This both provides a more stable target for learning and prevents the

issues associated with backpropagating through a bootstrapped target.

The second challenge is also rooted in the non-stationarity of RL—as the Q-

function (and therefore the policy) is updated, the distribution of the observed data

changes, which again violates the IID assumption underlying SGD. Updating the Q-

function online only compounds this issue. To address this, Mnih et al. (����) exploited

�IID stands for “independent and identically distributed.”
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the o�-policy nature ofQ-learning, collecting hundreds of thousands of transition tuples

(st, at, rt, st+1) into a replay bu�er B (Lin, ����). Rather than update the Q-function

online, they instead sampleminibatches of sizeB uniformly fromB anduse these to train

the network. The intuition is that doing so provides a more stable data distribution for

learning, and averagingovermany samples provides amore accurate, lower-variance gradi-

ent update. It also allows the agent to reuse its previous experience, rather than throwing

it away after only using it for a single weight update.

These two innovations—target networks and use of a replay bu�er—are now ubiq-

uitous in deep RL, and there are many variations. Put together, the learning update for

DQN (ignoring the use of another deep learning optimizer like Adam (Kingma and Ba,

����)) is given by

✓t+1 = ✓t � ⌘tr✓

1

B

BX

b=1

1

2
(rb

t
+ �max

a

Q✓�(s
b

t+1
, a)�Q✓(s

b

t
, a

b

t
))2.

One subtle, but important implementation detail here is that such an approach is feasible

only when the action spaceA is �nite. While there are a number of methods which at-

tempt to adaptQ-learning style updates to problems which require continuous control

(Xiong et al., ����;Gu et al., ����; Seyde et al., ����), policy-basedmethods (Section �.�.�)

are typically preferred in that setting. Policy evaluation can be performed by minimizing

a loss analogous to DQN’s:

✓t+1 = ✓t � ⌘tr✓

1

B

BX

b=1

1

2
(rb

t
+ �Q✓�(s

b

t+1
, at+1)�Q✓(s

b

t
, a

b

t
))2,

where at+1 ⇠ ⇡t(·|sbt+1
). While approximate policy iteration methods can be imple-

mented this way, they aremost commonly applied to continuous control tasks (i.e., those

for which A is continuous), where they form the basis for several state-of-the-art algo-

rithms. In this setting, a direct parameterization of the policy is required. These ap-

proaches are discussed in more detail in the following section.
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�.�.� Policy-Based Approaches
In contrast to value-basedmethods, which encode a policy implicitly viaQ-values, policy-

based approaches take amore direct approach to solving Eq. (�.��). The immediate ques-

tion when optimizing over ⇡ is how ⇡ is encoded—in other words, its parameterization.

Policy Parameterizations In policy-based approaches, the agent seeks to �nd the best

parameters ✓ within some particular function class⇥, framing the RL problem as

max
✓2⇥

V
⇡✓ . (�.��)

When S andA are �nite, we can use a tabular parameterization, ✓ 2 R|S|⇥|A|. A tabular

representation can either be direct, with ⇡(a|s) = ✓s,a or softmax, with

⇡✓(a|s) =
exp(✓s,a)P

a02A exp(✓s,a0)
. (�.��)

Both of these parameterizations are called complete, as they are able to represent any sta-

tionary policy for �nite S and A. When the state space is prohibitively large, but the

action space is �nite, we can use a neural softmax policy, of the form

⇡✓(a|s) =
exp(f✓(s, a))P

a02A exp(f✓(s, a0))
, (�.��)

where f✓ is a neural network. This policy class may not be complete. If the action space is

continuous, it’s common to instantiate the policy as a particular distribution, with, e.g.,

a neural network outputting the parameters of that distribution class. For example, it is

common to have a Gaussian policy:

⇡✓(a|s) = N (a; f✓(s),⌃). (�.��)

Note that here we’ve written the neural network as only parameterizing the mean of the

distribution, with⌃ a constant, but it is also common to have the network produce both

the mean and the variance.

There are a diversity of algorithms for optimizing policies. Two that are of particular

importance, bothwithinRL and to this thesis speci�cally, aredirect policy searchmethods
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and approximate policy iteration algorithms.

�.�.�.� Direct Policy Search

Policy GradientsGiven a parameterization, we need to derive a learning rule for the pol-

icy. The most direct approach is to proceed by gradient ascent on V
⇡✓ (often written as

V
⇡ for brevity). Despite the fact that V ⇡ is non-concave in ⇡—and so therefore gradi-

ent ascent is in general not guaranteed to reach a global optimum—such policy gradient

methods are highly popular in practice and lie at the root of many state-of-the-art algo-

rithms (Silver et al., ����; Schulman et al., ����; Hafner et al., ����; Abdolmaleki et al.,

����; Haarnoja et al., ����). Throughout this section, we’ll assume rewards are bounded

between � and � and state and action spaces are �nite for convenience, though all deriva-

tions below are easily translated to di�erent reward bounds and continuousS andA. To

obtain estimators for the gradient of the value with respect to the policy, we can write

r✓V
⇡ = Es0⇠⇢(·)

"
X

a0

⇡✓(a0|s0)Q⇡(s0, a0)

#

= E⇢

"
X

a0

Q
⇡(s0, a0)r✓⇡✓(a0, s0) + ⇡✓(a0|s0)r✓Q

⇡(s0, a0)

#

= E⇢

"
X

a0

⇡✓(a0|s0)Q⇡(s0, a0)r✓ log ⇡✓(a0|s0)

+
X

a0

⇡✓(a0|s0)r✓

 
r0 + �

X

s1

P (s1|s0, a0)V ⇡(s1)

!#

= E⇢

"
X

a0

⇡✓(a0|s0)Q⇡(s0, a0)r✓ log ⇡✓(a0|s0)

+ �

X

a0,s1

⇡✓(a0|s0)P (s1|s0, a0)r✓V
⇡(s1)

#

= E⌧⇠P⇡✓ (·) [Q
⇡(s0, a0)r✓ log ⇡✓(a0|s0)] + �E⌧⇠P⇡✓ (·) [r✓V

⇡(s1)]

(i)

= EP⇡✓ [Q⇡(s0, a0)r✓ log ⇡✓(a0|s0)] + �EP⇡✓ [Q⇡(s1, a1)r✓ log ⇡✓(a1|s1)] + · · ·

= EP⇡✓

"
1X

t=0

�
t
Q(st, at)r✓ log ⇡✓(at|st)

#
(�.��)

=
1

1� �Es⇠d⇡(·)Ea⇠⇡✓(·|s)
[Q⇡(s, a)r✓ log ⇡✓(a|s)] , (�.��)
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Algorithm � Basic policy gradient algorithm
�: InputMDPM , policy class⇥
�: initialize ✓(0) 2 ⇥
�: for iteration k = 0, 1, 2, . . . do
�: sample a trajectory:

⌧ = (s0, a0, s1, . . . ) ⇠ P⇡✓(k) (·) = ⇢(s0)
1Y

t=0

P (st+1|st, at)⇡✓(k)(at|st)

�: update parameters:

✓
(k+1) = ✓

(k) + ⌘\rV ⇡✓

where

\rV ⇡✓ =
1X

t=0

�
tdQ⇡✓(st, at)r log ⇡✓(at|st),

with dQ⇡✓(st, at) =
1X

t0=t

�
t
0
�t
r(st0 , at0)

�: end for

where (i) is a result of applying the previous lines of the derivation recursively to

r✓V
⇡(s1). Eq. (�.��) gives us an estimator for the gradient that we can compute from

full trajectories (where the trajectory length is �nite in practice), and Eq. (�.��) provides

an estimator obtainable just from state-action pairs. Intuitively, we can view updating

the policy using either estimator as increasing the log-probability of actions with higher

values. A simple policy gradient approach using Eq. (�.��) is illustrated in Algorithm �,

where ·̂ is used to denote an empirical estimate. Note this approach implicitly assumes

the use of a policy class such as softmax policies which permits unconstrained gradient

updates. In contrast, using a direct tabular representation would require the use of pro-

jected gradient ascent to ensure that the policy remained a valid probability distribution

in each state.

In Algorithm �, the action-value is simply aMonte Carlo estimate obtained by com-

puting the return (this update is the REINFORCE estimator (Williams, ����)), but in

more sophisticated policy gradient algorithms, the value function of the current policy
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is also parameterized and learned, e.g., via TD methods. Such approaches are known as

actor-critic algorithms, so-named because the two central components used by the agent

are an actor (the policy) which takes actions in the environment and a critic (the value

function) which evaluates the quality of the actor’s behavior and guides its learning.

In practice, the policy gradient estimators in Eq. (�.��) and Eq. (�.��) are often high-

variance, whichmakes learning challenging. One commonway to address this issuewith-

out adding bias is to make use of the fact that subtracting any action-independent quan-

tity from theQ-value does not a�ect the expected value of the gradient. More precisely,

let b : S ! R be some state-dependent function, and let g denote the policy gradient es-

timator in Eq. (�.��) (though the following derivation is equally applicable to Eq. (�.��)).

Then we can see that

1

1� �Ed⇡E⇡
h
(Q⇡(s, a)� b(s))r✓ log ⇡✓(a|s)

i

=
1

1� �Ed⇡E⇡ [Q⇡(s, a)r✓ log ⇡✓(a|s)]� Ed⇡E⇡ [b(s)r✓ log ⇡✓(a|s)]

= g �
X

s

d
⇡(s)

X

a

⇡✓(a|s)b(s)r✓ log ⇡✓(a|s)

= g �
X

s

d
⇡(s)b(s)

X

a

⇡✓(a|s)
1

⇡✓(a|s)
r✓⇡✓(a|s)

= g �
X

s

d
⇡(s)b(s)r✓

X

a

⇡✓(a|s)
| {z }

=1

= g,

as desired. While b(s) can be any state-dependent, action-independent function, the

most common choice is the value function V
⇡(s). The quantity Q⇡(s, a) � V

⇡(s)

is ubiquitous in RL, and is called the advantage function, denoted A
⇡(s, a). Intu-

itively, A⇡(s, a) expresses how much more (or less) cumulative reward that action a is

expected to lead the policy to starting from s compared to the average behavior under

⇡. Conveniently, because of the Bellman consistency relationship (Eq. (�.��)), to esti-

mate advantages, the agent only needs to maintain a state-value function V ⇡(s), because

rt + �V
⇡(st+1) is an estimator for Q⇡(st, at). Replacing Q⇡(s, a) with A

⇡(s, a) to
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perform policy gradients forms the basis of the advantage actor-critic (A�C; Mnih et al.,

����) algorithm.

�.�.�.� Approximate Policy Iteration

While policy iteration can be approximated with neural networks in a value-based way

when the action space is �nite, deep RL approaches to PI are most commonly applied

to continuous control problems (Abdolmaleki et al., ����; Haarnoja et al., ����). There

are a number of algorithms within this family, but one worth highlighting here—both

for its strong performance in practice and use in later chapters—is soft actor-critic (SAC;

Haarnoja et al., ����). SAC is an o�-policy approach designed to approximate soft PI

(Ziebart, ����). Policy evaluation is performed by minimizing the soft policy evaluation

loss

L(�) = 1

B

BX

b=1

1

2

�
rb + �Ea0⇠⇡(·|s0b)

[Q��(s
0

b
, a

0)� ↵ log ⇡(a0|s0
b
)]�Q�(sb, ab)

�2
,

where {(sb, ab, rb, s0b)}Bb=1
is a minibatch of experience sampled from a replay bu�er B

and � are the parameters of theQ-function. Policy improvement is carried out by mini-

mizing the KL divergence between the policy and an approximation of the tabular soft-

max policy from the improvement step of soft policy iteration:

L(✓) = 1

B

BX

b=1

KL


⇡✓(·|sb);

1

Z�
exp(Q�(sb, ·)/↵)

�
.

Practical implementations of SAC also frequently adapt the entropy weight↵ online, in-

creasing it if the policy entropy falls below a chosen threshold and decreasing it otherwise

(similar to a Lagrange multiplier).

These approaches form the basis for the algorithms used throughout this thesis.

While there are more advanced techniques that the methods presented in later chapters

build from directly, these are covered where necessary so as to present them in the most

relevant context. We now present a brief overview of multitask RL and in particular pre-

vious approaches to leveraging commonalities across tasks.
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�.� Multitask Reinforcement Learning

So far, we have only described RL in the context of a single task—that is, there is only

one MDP with which the agent need concern itself. Is this setting enough to build and

understand generalist agents and tomodel natural behavior? One could imagine de�ning

a single reward function that covers all possible goals an agent might wish to accomplish.

Indeed, in RL, the reward hypothesis postulates that “all of what we mean by goals and

purposes can be well thought of as maximization of the expected value of the cumulative

sum of a received scalar signal (reward).” (Sutton, ����; Silver et al., ����; Bowling et al.,

����). However, an essential idea underpinning this thesis—andmultitask RL (MTRL)

more broadly—is that it’s more useful for an agent to decompose such a global reward

function into distinct rewards which measure success for distinct goals. On a daily basis,

we’re more often concerned with solving immediate problems like “What should I make

for dinner?” than making every action only by taking into account its long-term impact

on our lives. Making decisions this way would require excessive computation and ignore

the compositional structure of decision-making. The lives of humans and animals are

built in many ways around routines: we brush our teeth, follow a familiar route to the

grocery store, and go to work everyday. A failure to leverage this repetition to make deci-

sionswould be horribly ine�cient—in an information-theoretic sense, behavior is highly

compressible, and we’d like to able to take advantage of that. Additionally, solving short-

horizon tasks is signi�cantly easier than long-term tasks. This can be seen in the required

sample complexities of value and policy iteration, which reduce as the discount factor is

lowered (Sutton and Barto, ����b).

I de�ne MTRL as any RL setting in which the agent’s overall objective is decom-

posed into multiple tasks or goals. The two primary parts of this thesis are primarily

concerned with how, given some distribution over a set of tasks, agents can leverage sim-

ilarities across them to learn and/or compose policies. Before proceeding, however, we’ll

brie�y provide an overview of the two most common ways in which task distributions

are used to train MTRL agents, as well as discuss connections with related sub-�elds in

the literature.
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�.�.�.� The Parallel Task Setting

Consider a set of tasks (MDPs)M = {M} which may be in�nite in size. The agent’s

goal is tomaximize its average value across these tasksEVM , where the expectation is taken

with respect to a task distributionPM(M). When trained on a single streamof experience

(i.e., on onemachine), a new task is sampled at the beginning of every episode,making the

task presentation more aptly called “interleaved” than parallel. (However, the experience

data used to update the agent is often pooled across tasks.) If training is distributed across

multiplemachines, the agent can employmultiple actors to collect experience across tasks

in parallel. Commonly, each task is associated with a particular input feature g 2 G,

whereG is the space of possible goals, which indicates which task (goal) has been sampled.

The idea in this case is that similarities among tasks inM enable the agent to generalize to

previously unseenMDPs drawn from the same distribution. One type of parallelMTRL

is parallelmeta-RL. In this setting, the agent trains on each sampled task for only a few

episodes total with the goal of improving few-shot performance and is “meta-tested” on

a set of held-out tasks (Finn et al., ����; Yu et al., ����).

�.�.�.� The Sequential Task Setting

In the sequential task setting (Moskovitz et al., ����a; Pacchiano et al., ����), tasks are

sampled one at a timeMk ⇠ PM, with the sampling process either independent or con-

ditioned on previous tasks and performance (e.g.,PM(Mk|Mk�1)) and the agent trained

on eachuntil convergence, de�ned as reachingwithin a certain threshold ✏ > 0ofoptimal

performance, or until a maximum number of environment interactions is reached. Se-

quentialMTRL can be seen as a special case of continual RL (Abel et al., ����; Khetarpal

et al., ����), which demands no particular compositional structure of the overall reward

and instead emphasizes the need for never-ending adaptation. In sequential MTRL, the

agent’s goal is simply to achieve a “good enough” policy as soon as possible for each task

it faces, and its learning process may terminate if it �nds a su�ciently good policy or set

of policies. This setting is itself a generalization of transfer learning, in which the agent is

trained on a single source task and then evaluated/�ne-tuned on another target task. Fre-

quently, the tasks are such that it is relatively computationally cheap to generate a lot of

experience in the source task, with the hope that relatively little adaptation is required to
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perform well in the target environment (assuming that the source task is similar in some

sense to the target task). One particular type of transfer learning in RL is known as un-

supervised RL (Jaderberg et al., ����; Laskin et al., ����; Strouse et al., ����), in which an

agent attempts to learn useful behaviors and/or representations by pre-training in an en-

vironment without extrinsic rewards before being �ne-tuned using reward. The idea in

this case is that learning about the structure of the environment and how to traverse it

enables the agent to adapt more e�ciently once assigned a task.

�.�.�.� Types of Structure in MTRL

There are a number of di�erent assumptions made in MTRL to simplify learning and

make the task distribution more compressible. The primary structure underpinning all

of MTRL, as noted previously, is hierarchy. That is, that the overall objective can be

decomposed into multiple tasks. In the sequential setting, it’s also often assumed that

these tasks must be solved in a particular order (Singh, ����). In both the sequential and

parallel settings, another common assumption is that the behaviors needed to solve the

di�erent tasks inM are similar in some way, enabling the agent to learn policies that are

useful across tasks (Galashov et al., ����a; Teh et al., ����a; Tirumala et al., ����, ����a).

This form of structure only requires that the di�erent tasks share the same state and ac-

tion spaces, and is explored in greater depth in Part One of this thesis. Another common

assumption is that the environment (CMP) is conserved across tasks—that is, that the

state space, action space, and transition dynamics (and, frequently, the discount factor)

are constants, with variation limited to the reward function (Barreto et al., ����, ����;

Ma et al., ����; Vértes and Sahani, ����; Zahavy et al., ����). This setting is explored in

Part Two. Other structural assumptions include the smooth/slow or step-wise variation

of task elements over time (Khetarpal et al., ����), low-rank environment transition dy-

namics decodable from a set of shared features (Agarwal et al., ����a; Pacchiano et al.,

����; Cheng et al., ����; Agarwal et al., ����), and similarity in optimal value functions

across tasks (Schaul et al., ����; Borsa et al., ����).
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�.� RL and Neuroscience
RL has been connected to neuroscience and psychology since its inception. In fact, the

work of pioneers in the �eld like Richard Sutton and Andrew Barto (Sutton and Barto,

����a) was largely inspired by theories of animal learning and behaviorism advanced by

B.F. Skinner and his study of operant conditioning (Skinner, ����). There are too many

such connections to enumerate here, but we’ll brie�y address a few of the ideas most

relevant to this thesis, with more detail provided as needed in subsequent chapters.

�.�.� Reward Prediction

Perhaps the canonical example which embodies the relationship between the brain and

RL is the study of reward prediction. One of the earliest models of animal reward pre-

diction is the Rescorla-Wagner model (Wagner and Rescorla, ����; Dayan and Abbott,

����), which uses a single-step reward prediction error with a linear predictor

✓t+1 = ✓t + ⌘�tx where � = rt � ✓tx (�.��)

to model the average reward signal associated with a stimulus x (where ✓ is the model

parameter). This is simply a one-step TD evaluation update for a linearmodel of a single-

step (� = 0) task. One of the most striking �ndings supporting the connection between

RL theory and the brain is that of Schultz (����). Recording from the ventral tegmental

area (VTA) in the midbrain of monkeys trained to respond in di�erent ways to varying

stimuli in order to obtain rewards, Schultz (����) found that the �ring rate of dopamin-

ergic neurons (those which produce the neurotransmitter dopamine) aligned almost ex-

actly with the TD reward prediction error � = r + �V (s0) � V (s). That is, when

reward exceeded the expected amount, �ring would spike, and when it fell short, there

would be a drop in the �ring rate. The relationship of dopamine with reward prediction

has been one of the most enduring theories and well-studied areas of neuroscience, with

signi�cant medical relevance to diseases such as addiction, Parkinson’s, and schizophre-

nia (Dayan and Abbott, ����). However, as study has deepened, the picture has grown

more complicated rather than simpler. For example, dopamine is now widely thought

to encode di�erent kinds of information (not just reward prediction error) in di�erent
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parts of the brain (Montague et al., ����; Watabe-Uchida and Uchida, ����; Greenstreet

et al., ����), and there is evidence that populations of dopaminergic neurons encode the

distribution over return rather than just its expectation (Dabney et al., ����).

�.�.� Habits

In ����, while studying operant conditioning in cats, Edward Thorndike postulated the

Law of E�ect, which states that actions which have been rewarded in the past are likely to

be repeated, and the Law of Exercise, which holds that actions that have been performed

in the past are also likely to be repeated (Thorndike, ����). These simple ideas have been

tremendously in�uential in psychology and neuroscience, with the Law of E�ect heavily

associated with theories of goal-directed learning and the Law of Exercise underpinning

ideas surrounding habitual behavior. The basic idea is that an action is likely to be re-

peated once it has been rewarded due to the Law of E�ect, and its continued repetition

is then encouraged simply by virtue of its selection in the past due to the Law of Exercise.

(To be more precise, the Laws of E�ect and Exercise describe these behavioral patterns,

rather than “cause” them.) This second part is especially important in the study of habits,

because once an action or sequence of actions becomes ingrained, even if the stimulus

which originally triggered its selection loses its association with reward, the stimulus will

continue to elicit the learned response. This perseveration of behavior independent of

reward is a de�ning feature of habit acquisition (Graybiel, ����). The slow adaptation

of habitual behavior is one reason why, in RL-based theories, it has been traditionally

linked with model-free control, while goal-directed control is generally associated with

model-based learning (Daw et al., ����; Dolan and Dayan, ����).

However, these connections have recently been challenged by work which insteead

focuses on the reward-insensitive nature of habitual stimulus-response associations. For

example,Miller et al. (����b) posit that amore appropriate computationalmodel of habit

acquisition can be driven by action prediction errors, wherein the cached association be-

tween stimulus s and action a,H(s, a), is updated according to the rule:

Ht+1(st, a) = Ht(st, a) + ⌘( (at = a)�Ht(st, a)), (�.��)
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so thatH(s, a) encodes an exponentially moving average of the frequency with which a

is selected in response to s. In addition to agreementwith behavioral data foundbyMiller

et al. (����b), one recent study (Greenstreet et al., ����) found evidence for dopamine-

based coding of action prediction errors in the tail of the striatumwithin the basal ganglia

of mice.
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Shared Behaviors
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This section of the thesis focuses on the use of shared behavioral structure across

tasks to learn new policies more e�ciently. Put simply, the results here show that if some

pattern of behavior is useful to accomplish multiple goals, then identifying that pattern

can accelerate learning to accomplish new goals. For example, if you run to a new spot in

the park every day, memorizing the route to the park makes it easier to learn new routes

within the park. This sectionbeginswith a close examinationof howan agent can capture

this structure and encode it in a reference “default policy.” Such a policy can act as a form

of supervision via regularization, guiding the agent when learning new tasks. Chapter �

analyzes the situations inwhich this is helpful, as well as limitations. Subsequent chapters

develop this theory further, introducing a minimum description length-based approach

to ensure the default policy does not over�t to spurious behavioral structure and then

showing this method recapitulates a variety of behavioral results in neuroscience associ-

ated with dual process theories of cognition.



Chapter �

Towards an Understanding of Default

Policies in Multitask Policy

Optimization

�.� Introduction

Appropriate regularizationhas been a key factor in thewidespread success of policy-based

deep reinforcement learning (RL) (Levine, ����a; Furuta et al., ����). The key idea un-

derlying such regularized policy optimization (RPO)methods is to train an agent tomax-

imize reward while minimizing some cost which penalizes deviations from useful behav-

ior, typically encoded as a default policy. In addition to being easily scalable and com-

patible with function approximation, these methods have been shown to ameliorate the

high sample complexity of deep RLmethods, making them an attractive choice for high-

dimensional problems (Berner et al., ����; Espeholt et al., ����).

A natural question underlying this success is why these methods are so e�ective.

Fortunately, there is a strong foundation for the formal understanding of regularizers in

the single-task setting. These methods can be seen as approximating a form of natural

gradient ascent (Kakade, ����; Pacchiano et al., ����; Moskovitz et al., ����a), trust re-

gion or proximal point optimization (Schulman et al., ����, ����), or variational inference

(Levine, ����a; Marino et al., ����; Abdolmaleki et al., ����; Haarnoja et al., ����), and

thus are well-motivated by theory (Agarwal et al., ����b).
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However, as interest has grown in training general agents capable of providing real

world utility, there has been a shift in emphasis towardsmultitask learning. Accordingly,

there are a number of approaches to learning or constructing default policies for regu-

larized policy optimization in multitask settings (Galashov et al., ����a; Teh et al., ����a;

Goyal et al., ����, ����; Tirumala et al., ����b). Thebasic idea is to obtain a default policy

which is generally useful for some family of tasks, thus o�ering a form of supervision to

the learning process. However, there is little theoretical understanding of how the choice

of default policy a�ects optimization. Our goal in this chapter, adapted fromMoskovitz

et al. (����a), is to take a �rst step towards bridging this gap, asking:

Q�:What properties does a default policy need to have in order to improve optimization on

new tasks?

This is a nuanced question. The choice of penalty, structural commonalities among

the tasks encountered by the agent, and even the distribution space in which the regular-

ization is applied have dramatic e�ects on the resulting algorithm and the agent’s perfor-

mance characteristics.

In this work, we focus onmethods using theKullback-Leibler (KL) divergence with

respect to the default policy, as they are the most common in the literature. We �rst con-

sider this form of regularized policy optimization applied to a single task, with the goal of

understanding how the relationship between the default and optimal policies for a given

problem a�ect optimization. We then generalize these results to the multitask setting,

where we not only quantify the advantages of this family of approaches, but also identify

its limitations, both fundamental and algorithm-speci�c.

In the process of garnering new understanding of these algorithms, our results also

imply a new framework through which to understand families of tasks. Because di�er-

ent algorithms are sensitive to di�erent forms of structure, this leads to another guiding

question, closely tied to the �rst:

Q�: What properties does a group of tasks need to share for a given algorithm to provide a

measurable bene�t?

It’s clear that in order to be e�ective, any multitask learning algorithm must be ap-
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plied to a task distribution with some form of structure identi�able by that algorithm:

if tasks have nothing in common, no understanding gained from one task will be useful

for accelerating learning on another. Algorithms may be designed to accommodate—

or learn—a broader array of structures, but at increased computational costs. In high-

dimensional problems, function approximation mandates new compromises. In this

work, which we view as a �rst step towards understanding these trade-o�s, we make the

following contributions:

• We show the error bound and iteration complexity for optimization using an ↵-

optimal default policy, where sub-optimality is measured via the distance from the

optimal policy for a given task.

• From these results, we derive a principled RPO algorithm for multitask learning,

which we term total variation policy optimization (TVPO). We show that popu-

lar multitask KL-based algorithms can be seen as approximations to TVPO and

demonstrate the strong performance of TVPO on simple tasks.

• We o�er novel insights on the optimization characteristics—both limitations and

advantages—of commonmultitask RPO frameworks in the literature.

�.� Regularized Policy Optimization
Reinforcement learning In this chapter, we consider �nite, discounted MDPs M =

(S,A, P, r, �, ⇢). We also assume access to a restart distribution for training µ 2 �(S)

such that µ(s) > 0 8s 2 S , as is common in the literature (Kakade and Langford,

����; Agarwal et al., ����b). The agent takes actions using a stationary policy ⇡ : S !

�(A), which, in conjunction with the transition dynamics, induces a distribution over

trajectories ⌧ = (st, at)1t=0
. We overload notation and de�ne V ⇡(⇢) := Es0⇠⇢ [V

⇡(s0)]

as the expected value for initial state distribution ⇢. By d⇡
s0
, we denote the discounted

state visitation distribution of ⇡ with starting state distribution µ, so that

d
⇡

s0
(s) = Es0⇠µ

"
(1� �)

1X

t=0

�
tPr⇡(st = s|s0)

#
, (�.�)



�.�. Regularized Policy Optimization ��

where d⇡
µ
:= Es0⇠µ

⇥
d
⇡

s0
(s)
⇤
. The goal of the agent is to adapt its policy so as tomaximize

its value, i.e., optimizemax⇡ V ⇡(⇢). Weuse⇡? 2 argmax
⇡
V
⇡(⇢) todenote theoptimal

policy and V ? andQ? as shorthand for V ⇡
? andQ⇡

? , respectively.

Policy Parameterization and Objective In this chapter, we primarily consider the tab-

ular softmax policy class

⇡✓(a|s) =
exp(✓s,a)P

a02A exp(✓s,a0)
, (�.�)

where ✓ 2 R|S|⇥|A|. The general form of the regularized policy optimization (RPO)

objective function is given by

J�(✓) := V
⇡✓(µ)� �⌦(✓), (�.�)

where ⌦ is some convex regularization functional. Gradient ascent updates proceed ac-

cording to

✓
(t+1) = ✓

(t) + ⌘r✓J�(✓(t)). (�.�)

For simplicity of notation, from this point forward, for iterative algorithmswhich obtain

successive estimates of parameters ✓(t), we denote the associated policy and value func-

tions as ⇡(t) and V (t), respectively. The choice of ⌦ plays a signi�cant role in algorithm

design and practice, as we discuss below. It’s also important to note that the error bounds

and convergence rates we derive are based on the basic policy gradient framework in Al-

gorithm �, in which update Eq. (�.�) is applied across a batch after every B trajectories

{⌧b}Bb=1
are sampled from the environment. Therefore, the iteration complexities below

are proportional to the associated sample complexities.
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Algorithm � Regularized policy gradient algorithm
�: InputMDPM , policy class⇥, regularization strength �, default policy ⇡0

�: initialize ✓(0) 2 ⇥

�: for iteration k = 0, 1, 2, . . . , K do

�: sampleB trajectories (b = 1, . . . , B):

⌧b = (s0, a0, s1, . . . ) ⇠ Pr
⇡
✓(k)

µ (·) = µ(s0)
1Y

t=0

P (st+1|st, at)⇡✓(k)(at|st)

�: update parameters:

✓
(k+1) = ✓

(k) + ⌘ \r✓(k)J�(✓(k))

where

\r✓J�(✓) = \r✓V
⇡✓(µ)� �r✓⌦(⇡0, ⇡✓)

and \r✓V
⇡✓(µ) is as in Algorithm �.

�: end for

�: return ✓(K)

�.� Related Work

Single-task learningThe majority of the theoretical (Agarwal et al., ����b; Grill et al.,

����) and empirical (Schulman et al., ����, ����;Abdolmaleki et al., ����; Pacchiano et al.,

����) literature has focused on the use of RPO in a single-task setting, i.e., applied to a

single MDP M . The majority of these methods place a soft or hard constraint on the

Kullback-Leibler (KL) divergence between the updated policy at each time step and the
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current policy, maximizing an objective of the form

J�(⇡p, ⇡q) =
1X

t=0

E
st⇠d

⇡q
µ
Eat⇠⇡q(·|st)

⇥
G(st, at)

� �KL[⇡p(·|st); ⇡q(·|st)]
⇤
,

(�.�)

where G : S ⇥A! R is typically theQ- or advantage function and ⇡q, ⇡p 2 {⇡✓, ⇡0}

(Furuta et al., ����). At each update, then, the idea is to maximize reward while min-

imizing the regularization cost. From a theoretical perspective, such methods can of-

ten be framed as a form of approximate variational inference, with either learned (Ab-

dolmaleki et al., ����; Song et al., ����; Peng et al., ����; Nair et al., ����; Peters et al.,

����) or �xed (Todorov, ����; Toussaint and Storkey, ����; Rawlik et al., ����; Fox

et al., ����) ⇡0. When ⇡0 ⇡ ⇡✓, we can also understand such approaches as approx-

imating the natural policy gradient (Kakade, ����), which is known to accelerate con-

vergence (Agarwal et al., ����b). Similarly, regularizing the objective using the Wasser-

stein distance (Pacchiano et al., ����) rather than the KL divergence produces updates

which approximate those of the Wasserstein natural policy gradient (Moskovitz et al.,

����a). Other approaches can be understood as trust region or proximal point methods

(Schulman et al., ����, ����; Touati et al., ����), or even model-based approaches (Grill

et al., ����). It’s also important to note the special case of entropy regularization, where

⌦(✓) = �Es⇠UnifSH[⇡✓(·|s)] = Es⇠UnifSKL[⇡✓(·|s); UnifA] (where UnifX denotes

the uniform distribution over a space X ) which is perhaps the most common form of

RPO (Levine, ����a; Mnih et al., ����; Schulman et al., ����; Williams and Peng, ����;

Haarnoja et al., ����) andhas been shown to aid optimizationby encouraging exploration

and smoothing the objective function landscape (Ahmed et al., ����).

Multitask learning Less common in the literature are policy regularizers designed ex-

plicitly for multitask settings. In many multitask RL algorithms which apply RPO,

shared task structure is leveraged in other forms (e.g., importance weighting), and the

regularizer itself doesn’t re�ect shared information (Espeholt et al., ����; Riedmiller et al.,

����). However, in cases where the penalty is designed for multitask learning, the policy

is penalized for deviating from a more general task-agnostic default policy meant to en-
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code behavior which is generally useful for the family of tasks at hand. The use of such a

behavioral default is intuitive: by distilling the common structure of the tasks the agent

encounters into behaviors which have shown themselves to be useful, optimization on

new tasks can be improved with the help of prior knowledge. For example, some ap-

proaches Goyal et al. (����, ����) construct a default policy bymarginalizing over goals g

for a set of goal-conditioned policies ⇡0(a|s) =
P

g
P (g)⇡✓(a|s, g). Such partitioning

of the input into goal-dependent and goal-agnostic features can be used to create struc-

tured internal representations via an information bottleck (Tishby et al., ����), shown

empirically to improve generalization. In other multitask RPO algorithms, the default

policies are derived from a Bayesian framework which views ⇡0 as a prior (Wilson et al.,

����; O’Donoghue et al., ����). Still other methods learn ⇡0 online through distillation

(Hinton et al., ����) by minimizing KL[⇡0; ⇡] with respect to ⇡0 (Galashov et al., ����a;

Teh et al., ����a). When ⇡0 is preserved across tasks but ⇡✓ is re-initialized, ⇡0 learns the

average behavior across task-speci�c policies. However, to our knowledge, there has been

no investigation of the formal optimization properties of explicitlymultitask approaches,

and basic questions remain unanswered.

�.� A Basic Theory for Default Policies

At an intuitive level, the question we’d like to explore is: What properties does a default

policy need in order to improve optimization? By “improve” we refer either to a reduction

in the error at convergence with respect to the optimal value function or a reduction in

the number of updates required to reach a given error threshold. To begin, we consider

perhaps the simplest default: the uniform policy. The proofs for this section are provided

in Appendix �.A.

�.�.� Log-barrier regularization

For now, we’ll restrict ourselves to the direct softmax parameterization (Eq. (�.�)) with

access to exact gradients. Our default is a uniform policy over actions, i.e.: ⇡0(a|s) =
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UnifA, resulting in the objective

J�(✓) := V
⇡✓(µ)� �Es⇠UnifS [KL(UnifA, ⇡✓(·|s))]

⌘ V
⇡✓(µ) +

�

|S||A|
X

s,a

log ⇡✓(a|s),
(�.�)

wherewe have dropped terms that are constantwith respect to ✓. Importantly, it’s known

that even this default policy has bene�cial e�ects on optimization by erecting a log-barrier

against low values of ⇡✓(a|s). This barrier prevents gradients from quickly dropping

to zero due to exponential scaling, facilitating a polynomial convergence rate�. We now

brie�y restate convergence error and iteration complexity results for this case, �rst pre-

sented by Agarwal et al. (����b) (Theorem �.� and Corollary �.�, respectively):

Lemma �.�.� (Error bound for log-barrier regularization). Suppose ✓ is such that

kr✓J�(✓)k2  ✏opt, with ✏opt  �

2|S||A|
. Then we have for all starting state distributions

⇢,

V
⇡✓(⇢) � V

?(⇢)� 2�

1� �

�����
d
⇡
?

⇢

µ

�����
1

.

We brie�y comment on the term
����
d
⇡?
⇢

µ

����
1

(in which the division refers to

component-wise division), known as thedistributionmismatch coe�cient, which roughly

quanti�es the di�culty of the exploration problem faced by the optimization algorithm.

In particular,
����
d
⇡?
⇢

µ

����
1

is an upper bound on (1 � �)

����
d
⇡?
⇢

d
⇡✓
µ

����
1

, which directly mea-

sures the mismatch between the optimal occupancy measure under the target start state

distribution and the current policy’s occupancy measure under the training start state

distribution. We emphasize that while µ is the starting distribution used for training/op-

timization, the ultimate goal is to performwell on the target starting state distribution ⇢.

The iteration complexity is given below.

Lemma �.�.� (Iteration complexity for log-barrier regularization). Let �� := 8�

(1��)3
+

2�

|S|
. Starting from any initial ✓(0), consider the updates Eq. (�.�) with � = ✏(1��)

2

����
d⇡

?
⇢
µ

����
1

and

�It remains an open question whether entropy regularization, which is gentler in penalizing low prob-
abilities, produces a polynomial convergence rate.
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⌘ = 1/��. Then for all starting state distribution ⇢, we have

min
tT

{V ?(⇢)� V
(t)(⇢)}  ✏

whenever T � 320|S|2|A|2
(1� �)6✏2

�����
d
⇡
?

⇢

µ

�����

2

1

.

These results will act as useful reference points for the following investigation. At

a minimum, we’d like a default policy to provide guarantees that are at least as good as

those of log-barrier regularization.

�.�.� Regularization with an ↵-optimal policy

To understand what properties are required of the default policy, we place an upper-

bound on the suboptimality of ⇡0 via the TV distance. For each s 2 S , we have

dTV(⇡
?(·|s), ⇡0(·|s))  ↵(s) (�.�)

Our regularized objective is

J ↵

�
(✓) = V

⇡✓(µ)� �Es⇠UnifS [KL(⇡0(·|s), ⇡✓(·|s))]

⌘ V
⇡✓(µ) +

�

|S|
X

s,a

⇡0(a|s) log ⇡✓(a|s)
(�.�)

for starting state distribution µ 2 �(S). We then have

@J ↵

�
(✓)

@✓s,a
=

1

1� � d
⇡✓
µ
(s)⇡✓(a|s)A⇡✓(s, a)

+
�

|S|(⇡0(a|s)� ⇡✓(a|s)).
(�.�)

Intuitively, we can see that the gradient of the regularization terms serves to decrease the

likelihood of taking actions that have higher probability under the current policy than

the default policy.

Our �rst result presents the error bound for �rst-order stationary points of the ⇡0-

regularized objective.
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Lemma �.�.� (Error bound for ↵(s)-optimal ⇡0). Suppose ✓ is such that krJ ↵

�
(✓)k2 

✏opt. Then we have that for all starting distributions ⇢:

V
⇡✓(⇢) � V

⇤(⇢)�min

(
1

1� �⇥

Es⇠UnifS

2

4 ✏opt|S|
max

n
1� ↵(s)� ✏opt|S|

�
, 0
o + �↵(s)

3

5
�����
d
⇡
?

⇢

µ

�����
1

,

|A|� 1

(1� �)2

✓
Es⇠µ [↵(s)]

����
d
⇡✓
⇢

µ

����
1

+
✏opt|S|
�

◆)

The min{·} operation above re�ects the fact that the value of � e�ectively deter-

mines whether reward-maximization or the regularization dominates the optimization

of Eq. (�.�). Note that a similar e�ect also applies to log-barrier regularization, but the

“high” � setting is excluded in that instance because as � ! 1, ⇡✓(a|s) ! UnifA. In

this case, however, as ↵ ! 0, a high value of �might be preferable, as it would amount

to doing supervised learning with respect to a (nearly) optimal policy. When the reward-

maximization dominates, we can see that the error bound becomes vacuous as ↵(s) ap-

proaches ↵� := 1� ✏opt|S|/� from below. In other words, as ↵ approaches this point,

the error can grow arbitrarily high.

In the KL-minimizing case, we can see that as the policy error ↵! 0, the value gap

is given by ✏opt|S|(|A|�1)

�(1��)2
. Intuitively, then, as the default policy moves closer to ⇡?, we can

drive the value error to zero as �!1. Interestingly, we can also see that as the distribu-

tion mismatch
����
d
⇡?
⇢

µ

����
1

! 0, the in�uence of the policy distance ↵ diminishes and the

error can again be driven to zero by increasing �. We leave a more detailed discussion of

the impact of the distribution mismatch coe�cient to future work. Note that in most

practical cases, neither ↵ nor
����
d
⇡?
⇢

µ

����
1

will be low enough to achieve a lower error via KL

minimization alone. We will therefore focus on the reward-maximizing case (� < 1) for

the majority of our further analysis.

Before considering iteration complexity however, it’s also helpful to note that

Lemma �.�.� generalizes Lemma �.�.� given the same upper-bound on ✏opt as Agarwal

et al. (����b).
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Figure �.�: As |A| grows, regularizing using ⇡0 with larger dTV(⇡?(·|s),⇡0(·|s)) will converge
to a lower error than log-barrier regularization. In other words, there is a more forgiv-
ing margin of error for the default policy.

Corollary �.�.�. Suppose ✓ is such that krJ ↵

�
(✓)k1  ✏opt, with ✏opt  �

2|S||A|
and

� < 1. Then we have that for all states s 2 S ,

V
⇡✓(⇢) � V

?(⇢)� Es⇠UnifS [
↵

A
(s)]�

1� �

�����
d
⇡
?

⇢

µ

�����
1

where ↵
A
(s) = 2|A|(1�↵(s))

2|A|(1�↵(s))�1
.

We can see that in this case, the coe�cient ↵
A
(s) takes on key importance. In par-

ticular, we can see that the error-bound becomes vacuous as ↵(s) approaches ↵� =

1 � 1/(2|A|) from below. The error bound is improved with respect to log-barrier reg-

ularization when the coe�cient ↵
A
(s) < 2, which occurs for ↵(s) < 1� 1/|A|. Note

that this is the TV distance between the uniform policy and a deterministic optimal pol-

icy. These relationships are visualized in Fig. �.�. We can see that the range of values over

which ↵-optimal regularization will result in lower error than log-barrier regularization

grows as the size of the action space increases. This may have implications for the use of

a uniform default policy in continuous action spaces, which we leave to future work.

We can then combine this result with standard results for the convergence of gradi-

ent ascent to �rst order stationary points to obtain the iteration complexity for conver-

gence. First, however, we require an upper bound on the smoothness of J ↵

�
as de�ned

in Eq. (�.�).

Lemma �.�.� (Smoothness ofJ ↵

�
). For the softmax parameterization, we have that

||r✓J ↵

�
(✓)�r✓J ↵

�
(✓0)||2  ��||✓ � ✓0||2
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where �� = 8

(1��)3
+ 2�

|S|
.

We can now bound the iteration complexity.

Lemma �.�.� (Iteration complexity for J ↵

�
). Let ⇢ be a starting state distribution. Fol-

lowing Lemma �.�.�, let �� = 8�

(1��)3
+ 2�

|S|
. From any initial ✓(0) and following Eq. (�.�)

with ⌘ = 1/�� and

� =
✏(1� �)

Es⇠UnifS [
↵

A
(s)]

���d⇡
?

⇢

µ

���
1

< 1,

we have

min
tT

{V ?(⇢)� V
(t)(⇢)}  ✏

whenever T � 80Es⇠UnifS [
↵

A
(s)]2 |S|2|A|2

(1� �)6✏2

�����
d
⇡
?

⇢

µ

�����

2

1

.

It is also natural to consider the case in which ⇡0 is used as an initialization for ⇡✓.

Corollary �.�.�. Given the same assumptions as Lemma �.�.�, if the initial policy is chosen

to be ⇡0, i.e., ⇡✓(0) = ⇡0 where ⇡0(·|s) is ↵(s)-optimal with respect to ⇡?(·|s) 8s, then

min
tT

{V ?(⇢)� V
(t)(⇢)}  ✏

whenever T � 320|A|2|S|2
✏2(1� �)7

�����
d
⇡
?

⇢

µ

�����

2

1

����
1

µ

����
1

Es⇠µ [↵(s)] .

In the case of random initialization, note that when ↵(s) = ↵ = 1 � 1/|A|,

E↵
A
(s) = 2, recovering the iteration complexity for log-barrier regularization, as ex-

pected. We also see that as the error↵moves higher or lower than 1�1/|A|, the iteration

complexity grows or shrinks quadratically. Therefore, a default policy within this range

will not only linearly reduce the error at convergence, but will also quadratically increase

the rate at which that error is reached. When the initial policy is ⇡0, the iteration com-

plexity depends on the factor Es⇠UnifS [↵(s)]. Hence, for good initialization, ↵ is small,

resulting in fewer iterations. The natural question, then, is how to �nd such a default

policy, with high probability, for some family of tasks.
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�.� Extension to Multitask Learning
The results above provide guidance for the construction of default policies in the multi-

task setting. The key insight is that if the optimal policies for the tasks drawn from a given

task distribution have commonalities, the agent can use the optimal policies it learns from

previous tasks to construct a useful ⇡0. More precisely, consider a distribution PM over

a family of tasks M := {Mk}. (The simplest example of such a distribution is a cate-

gorical distribution over a discrete set of tasks, although continuous distributions over

MDPs are possible.) We assume only that the tasks have shared state and action spaces S

andA, and we denote their optimal deterministic policies by {⇡?
k
}. We assume that the

other task components (reward function, transition distribution, etc.) are independent.

Then byCorollary �.�.� and Lemma �.�.�, if the TV barycenter at a given state s, given by

⇡0(·|s) = argmin
⇡

EMk⇠PM [dTV(⇡
?

k
(·|s), ⇡(·|s))] (�.��)

is such that E[dTV(⇡?k(·|s), ⇡0(·|s))] < 1 � 1/|A|, then regularizing with ⇡0 will, in

expectation, result in faster convergence and lower error than using a uniform distribu-

tion. Crucially, when there is a lack of shared structure, which in this particular approach

is manifested as a lack of agreement among optimal policies, ⇡0(·|s) collapses toUnifA.

Therefore, in the worst case, regularizing with ⇡0(·|s) can do no worse than log-barrier

regularization, which already enjoys polynomial iteration complexity.

When the optimal policies {⇡?
k
} are deterministic, the following result gives a con-

venient expression for the TV-barycenter policy:

Lemma �.�.� (TV barycenter). Let PM be a distribution over tasks M = {Mk}, each

with a deterministic optimal policy ⇡?
k
: S ! A. De�ne the average optimal action as

⇠(s, a) := EMk⇠PM [ (⇡?
k
(s) = a)] . (�.��)

Then, the TV barycenter ⇡0(·|s) de�ned in Eq. (�.��) is given by a greedy policy over ⇠, i.e.,

⇡0(a|s) = �(a 2 argmax
a02A ⇠(s, a

0)), where �(·) is the Dirac delta distribution.

The proof, along with the rest of the proofs for this section, is provided in Ap-
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pendix �.B. Interestingly, this result also holds for the KL barycenter, which we show

in Appendix Lemma �.B.�. Because the average optimal action ⇠ is closely related to

a recently-proposed computational model of habit formation in cognitive psychology

(Miller et al., ����b), from now on we refer to it as the habit function for task family

M. When the agent has observedK tasks sampled from PM, ⇠ is approximated by the

sample average ⇠̂(s, a) = 1

K

P
K

k=1
(⇡?

k
(s) = a) provided that the optimal policies ⇡?

k

are available. In practice, however, the agent only has access to an approximation ⇡̃k of

⇡
?

k
obtained, for instance, through the use of a learning algorithm A, such as Appendix

Algorithm �. Hence, ⇠̂(s, a) is instead given by ⇠̂(s, a) = 1

K

P
K

k=1
(⇡̃k(s) = a)which

induces an approximate barycenter ⇡̂0 by taking the greedy policy over ⇠̂. The following

result provides the iteration complexity for the multitask setting when using ⇡̂0 as the

default policy.

Lemma �.�.� (Multitask iteration complexity). LetMk ⇠ PM and denote by ⇡?
k
: S !

A its optimal policy. Denote by Tk the number of iterations to reach ✏-error forMk in the

sense that:

min
tTk

{V ⇡
?
k(⇢)� V

(t)(⇢)}  ✏.

Set �, ��, and ⌘ as in Lemma �.�.�. From any initial ✓(0), and following Eq. (�.�),

EMk⇠PM [Tk] satis�es:

EMk⇠PM [Tk] �
80|A|2|S|2
✏2(1� �)6 EMk⇠PM

s⇠UnifS

2

4↵k
A
(s)

�����
d
⇡
⇤
k
⇢

µ

�����

2

1

3

5 ,

where ↵k(s) := dTV(⇡?k(·|s), ⇡̂0(·|s)). If ⇡̂0 is also used for initialization, then

EMk⇠PM [Tk] satis�es:

EMk⇠PM [Tk] �
320|A|2|S|2
✏2(1� �)7

����
1

µ

����
3

1

EMk⇠PM
s⇠µ

[↵k(s)] ,

Lemma �.�.� characterizes the average iteration complexity over tasks when using

⇡̂0 as a default policy. In particular, when the learning algorithm is also initialized with
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⇡̂0, we obtain that the average number of iterations to reach ✏ accuracy is proportional

to the expected TV distance of ⇡̂0 to the optimal policies ⇡?
k
for tasks {Mk} ⇠ PM.

We expect this distance to approach E [dTV(⇡0(·|s), ⇡?k(·|s))] as the number of tasks

increases and ⇡̃k become more accurate. Note that even in this case, the regulariza-

tion is still required to assure polynomial convergence. To provide a precise quanti�-

cation, we let ⇡̃k(·|s) be, on average, ⇣(s)-optimal in state s across tasks {Mk}, i.e.

EMk⇠M [dTV(⇡̃k(·|s), ⇡?k(·|s))]  ⇣(s) for some ⇣(s) 2 [0, 1]. The following lemma

quanti�es how close ⇡̂0 grows to the TV barycenter of {⇡?
k
}K
k=1

asK !1:

Lemma �.�.� (Barycenter concentration). Let � be 0 < � < 1. Then with probability

higher than 1� �, for all s 2 S , it holds that:

|EMk⇠PM [dTV(⇡
?

k
(·|s), ⇡̂0(·|s))� dTV(⇡

?

k
(·|s), ⇡0(·|s))]|

 2⇣(s) +

s
2 log(2

�
)

K
+ 2C

r
|A|
K

,

for some constantC that depends only on |A|.

In other words, in order to produce a default policy which improves over log-barrier

regularization asK ! 1, the margin of error for the trained policies is half that which

is required for the default policy.

In practice, due to the epistemic uncertainty about the task family early in training

(in other words, when only a few tasks have been sampled), regularizing using ⇡̂0 risks

misleading ⇡✓ by placing all of the default policy’s mass on a sub-optimal action. We can

therefore de�ne ⇡̂0 using a softmax ⇡̂0(a|s) / exp(⇠̂(s, a)/�(k)) with some tempera-

ture parameter �(k) which tends to zero as the number of observed tasks k approaches

in�nity. Therefore, ⇡0 converges to the optimal default policy in the limit. This suggests

the simple approach tomultitaskRPOpresented inAlgorithm �, whichwe call total vari-

ation policy optimization (TVPO).

Note that if PM is non-stationary, the moving average in Line � can be changed to

an exponentially weighted moving average to place more emphasis on recent tasks.
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Algorithm � TV Policy Optimization (TVPO)
�: Input Task set M, policy class ⇥, �xed-⇡0 RPO algorithm A(M,⇥, ⇡0,�), as in
Appendix Algorithm �

�: initialize ⇡0(·|s) = ⇠
(0)(s, ·) = UnifA 8s 2 S

�: for iteration k = 1, 2, ... do
�: Sample a taskM (k) ⇠ PM

�: Solve the task: ✓̃(k) = A(Mk,⇥, ⇡
(k�1)

0
,�)

�: Set ⇡̃k  ⇡
✓̃(k)

.
�: Update habit moving average 8(s, a) 2 S ⇥A:

⇠
(k)(s, a) k � 1

k
⇠
(k�1)(s, a) +

1

k

✓
a 2 argmax

a0
⇡̃k(a

0|s)
◆

�: Update default policy 8(s, a) 2 S ⇥A:

⇡
(k)

0
(a|s) / exp(⇠(k)(s, a)/�(k))

�: end for

�.� Understanding the Literature

As stated previously, many approaches to multitask RPO in the literature learn a default

policy⇡0(a|s;�)parameterizedby� via gradient descent on theKLdivergence (Galashov

et al., ����a; Teh et al., ����a), e.g., via

� = argmin
�0

Es⇠UnifS [KL(⇡✓(·|s), ⇡0(·|s;�))] . (�.��)

The idea is that by updating � across multiple tasks, ⇡0 will acquire the average behav-

iors of the goal-directed policies ⇡✓. This objective can be seen as an approximation of

Eq. (�.��) in which we can view the use of the KL as a relaxation of the TV distance:

⇡0(·|s) = argmin
⇡

EMk⇠PM [dTV(⇡
?

k
(·|s), ⇡(·|s))]

 argmin
⇡

EMk⇠PM

⇥
dTV(⇡

?

k
(·|s), ⇡(·|s))2

⇤

 argmin
⇡

EMk⇠PM [KL(⇡?
k
(·|s), ⇡(·|s))] ,
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where the �rst inequality is due to Jensen’s inequality and the second is due to Pollard

(����) and where ⇡✓(·|s) ⇡ ⇡
?(·|s). The use of the KL is natural due to its easy com-

putation and di�erentiability, however the last approximation is crucial. By distilling ⇡0

from ⇡✓ via Eq. (�.��) from the outset of each task, there is an implicit assumption that

⇡✓ ⇡ ⇡
? even early in training. This is a source of suboptimality, as we discuss in Sec-

tion �.�.

�.� Experiments

We now study the implications of these ideas in a simple empirical setting: a family of

tasks whose state space follows the tree structure shown in Fig. �.�. In these tasks, the

agent starts at the root s1 and at each timestep chooses whether to proceed down its left

subtree or right subtree (|A| = 2). The episode ends when the agent reaches a leaf node.

In this setup, there is zero reward in all states other than the leaf nodes marked with a ‘?’,

for which one or more are randomly assigned a reward of � for each draw from the task

distribution. To encourage sparsity, the number of rewards is drawn from a geometric

distribution with success parameter p = 0.5.

One training run consisted of �ve rounds of randomly sampling a task and solving

it. Despite the simplicity of this environment, we found that it could prove surprisingly

di�cult for many algorithms to solve consistently. As can be seen in Fig. �.�, the key

structural consistency in this task is that every optimal policy makes the same choices in

states {s1, s3, s5, s6}, with necessary exploration limited to the lower subtree rooted at

s7.

For comparison, we selected RPO approaches with both �xed default poli-

cies (�����������, �������, and ����) and learned default policies: D������

(�KL(⇡✓, ⇡0)+H[⇡✓]; (Teh et al., ����a)), �������KL (�KL(⇡0, ⇡✓)), and �������

KL (�KL(⇡✓, ⇡0)). To make the problem more challenging for the learned default

policies, the reward distribution was made sparser by setting p = 0.7. Each approach

was applied over �� random seeds, with results plotted in Fig. �.� (�xed ⇡0) and Fig. �.�

(learned ⇡0). Hyperparameters were kept constant across methods (further experimen-

tal details can be found in Appendix �.C). We see that TVPO most consistently solves
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s1

s2

s4

0 0

0

s3

0 s5

s6 0

s7 0

s8 s9

? ? ? ?

Figure �.�: A tree environment. Each task in the family randomly distributes rewards among
leaves marked with a ‘?’. All other states result in zero reward.

Figure �.�: Fixed⇡0 baselines. Results are averagedover �� seeds,with the shaded regiondenoting
one standard deviation.

Figure �.�: Learned ⇡0 baselines. Results are averaged over �� seeds, with the shaded region de-
noting one standard deviation.

the tasks. This is not surprising, as EMk⇠PM [↵k(s)] = 0 for all states en route to the

rewarded leaves until s7. Thus, ⇡̂0(·|s) ! ⇡
?

k
(s) quickly for these states as the number

of tasks grows. This dramatically reduces the size of the exploration problem for TVPO,

con�ning it to the subtree rooted at s7.

To gain a better understanding of the results and the learned default policies, we
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Figure �.�: Learned default policies in states s1 and s7 after �ve tasks. In the simplex for s7, the
marker forTVPO is behind the markers for the other methods.

plotted the average default policies for each method on the �-simplex for states s1 and s7

in Fig. �.�. For all tasks in the family, the optimal policy goes right in s1, while, on average,

reward could be located in either subtree rooted at s7. This is re�ected in the default poli-

cies, which prefer right in s1 and are close to uniform in s7. There is a notable di�erence,

however, in that the KL-, gradient-based methods are much less deterministic in s1. The

critical di�erence is that the KL-based methods are trained online via distillation from

suboptimal ⇡✓ 6⇡ ⇡
?. Early in training, ⇡✓ is inconsistent across tasks and runs, resulting

in a more uniform target for ⇡0. This delays its convergence across tasks to the shared

TV/KL barycenter. To test this e�ect empirically, we repeated the same experiment with

�������KL but started training ⇡0 progressively later within each task.
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Figure �.�: Delayed training of ⇡0 improves performance.

Fig. �.� depicts the average �nal reward across tasks for di�erent time steps at which the

default policy began training. Note, however, that ⇡0 is still used to regularize ⇡✓, it just

isn’t updated based on ⇡✓ until ⇡✓ is a reasonable approximation of ⇡?. We can see that,

as predicted, delaying training within each task improves performance. There is a slight

drop in performance if ⇡0 does not have a su�cient number of updates at the end of

training.

�.� Discussion
In this work, we introduce novel, more general bounds on the error and iteration com-

plexity ofKL-regularized policy optimization. We then show how these bounds apply to

themultitask setting, showing the�rst formal results for a popular class of algorithms and

deriving a novel multitask RPO algorithmwith formal guarantees. We then demonstrate

the implications of our �ndings in a simple experimental setting. Taken together, we be-

lieve our results provide preliminary answers to our guiding questions for KL-regularized

RPO:

A�: In order to provide bene�t, a default policy must in expectation be at least as close to the

optimal policy as the uniform policy.

A�: ForKL-regularizedRPO to provide ameasurable bene�t, a group of tasksmust induce
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optimal policies which agree over some portion of the state space.

There are several important rami�cations for future work. First, these results imply

an algorithm-dependent de�nition of task families, such that a group of tasks can be con-

sidered a family for a given algorithm if that algorithmcan leverage their shared properties

to improve optimization. For RPO algorithms, then, the choice of divergence measure,

default policy, and distribution space implicitly determines task groupings. As an exam-

ple, the particular class of algorithm we investigate here is sensitive to state-dependent

similarities in the space of optimal policies for a group of tasks. There are a multitude of

other forms of shared structure which alternative approaches can leverge, however, such

as consistent transition dynamics (Barreto et al., ����; Moskovitz et al., ����c) or even

structure in an abstract behavioral space (Pacchiano et al., ����; Moskovitz et al., ����a;

Agarwal et al., ����). From Fig. �.�, it is important to observe that the performance gains

relative to log-barrier regularization are, ultimately, relatively small. It may be necessary

to develop algorithms with stronger assumptions about the task family and/or sensitiv-

ity to a di�erent form of structure in order to drive further improvement. Conducting

an e�ective taxonomy of algorithms and associated task families will be crucial for the

development of practical real-world agents.

We also believe this work provides a formal framework for settings where forward

transfer is possible during lifelong learning scenarios with multiple interrelated tasks

(Lopez-Paz and Ranzato, ����). While we tested these ideas in a toy setting, the underly-

ing theory has implications for state-of-the-art deep RLmethods. When state and action

spaces grow large, however, ⇡0 is necessarily represented by a restricted policy class. Both

TVPO and the learned ⇡0 baseline methods can be scaled to this domain, with TVPO’s

⇡0 being trained online to predict the next action taken by ⇡✓. One useful lesson which

equally applies to KL-based methods, however, is that it’s preferable from an optimiza-

tion standpoint to distill ⇡0 from ⇡✓ only late in training when ⇡✓ ⇡ ⇡
?. Given the

promise of this general class of methods, we hope that the insight garnered by these re-

sults will help propel the �eld towards more robust and general algorithms.
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Appendix

Appendix �.A: Single-task Analysis

We now consider the error bound for ⇡0 such that dTV(⇡⇤(·|s), ⇡0(·|s))  ↵(s) 8s 2

S .

Lemma �.�.� (Error bound for ↵(s)-optimal ⇡0). Suppose ✓ is such that krJ ↵

�
(✓)k2 

✏opt. Then we have that for all starting distributions ⇢:

V
⇡✓(⇢) � V

⇤(⇢)�min

(
1

1� �⇥

Es⇠UnifS

2

4 ✏opt|S|
max

n
1� ↵(s)� ✏opt|S|

�
, 0
o + �↵(s)

3

5
�����
d
⇡
?

⇢

µ

�����
1

,

|A|� 1

(1� �)2

✓
Es⇠µ [↵(s)]

����
d
⇡✓
⇢

µ

����
1

+
✏opt|S|
�

◆)

Proof. Let’s assume that⇡⇤ is a deterministic policy. By Puterman (����) such an optimal

policy always exists for anMDP.We’ll use the notationa⇤(s) to denote the optimal action

at state s. This, combined with the assumption that dTV(⇡⇤(·|s), ⇡0(·|s))  ↵(s) for

all s 2 S , tells us that ⇡0(a⇤(s)|s) � ⇡
⇤(a⇤(s)|s) � ↵(s) = 1 � ↵(s). Similarly,

for a 6= a
⇤(s), ⇡0(a|s)  ↵(s). Using this, we can start by showing that whenever

A
⇡✓(s, a⇤(s)) � 0we can lower bound ⇡✓(a⇤(s)|s) for all s.

The gradient norm assumption krJ ↵

�
(✓)k1  ✏opt implies that for all s, a:

✏opt �
@J ↵

�
(✓)

@✓s,a
=

1

1� � d
⇡✓
µ
(s)⇡✓(a|s)A⇡✓(s, a) +

�

|S|(⇡0 � ⇡✓(a|s))
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In particular for all s,

✏opt �
@J ↵

�
(✓)

@✓s,a⇤(s)

(i)

� 1

1� � d
⇡✓
µ
(s)⇡✓(a

⇤(s)|s)A⇡✓(s, a⇤(s))

+
�

|S|(⇡
⇤(a⇤(s)|s)� ↵(s)� ⇡✓(a⇤(s)|s))

=
1

1� � d
⇡✓
µ
(s)⇡✓(a

⇤(s)|s)A⇡✓(s, a⇤(s)) +
�

|S|(1� ↵(s)� ⇡✓(a
⇤(s)|s))

(�.��)

And therefore ifA⇡✓(s, a⇤(s)) � 0,

✏opt �
�

|S|(1� ↵(s)� ⇡✓(a
⇤(s)|s))

Thus,

⇡✓(a
⇤(s)|s) � 1� ↵(s)� ✏opt|S|

�
. (�.��)

We then have

A
⇡✓(s, a⇤(s))  1� �

d
⇡✓
µ (s)

 
1

⇡✓(a⇤(s)|s)
@J ↵

�
(✓)

@✓s,a

� �

|S|
1

⇡✓(a⇤(s)|s)
(1� ↵(s)� ⇡✓(a⇤(s)|s))

!

=
1� �
d
⇡✓
µ (s)

✓
1

⇡✓(a⇤(s)|s)
@J ↵

�
(✓)

@✓s,a
+

�

|S|

✓
1� 1� ↵(s)

⇡✓(a⇤(s)|s)

◆◆

(i)

 1

µ(s)

 
1

max
n
1� ↵(s)� ✏opt|S|

�
, 0
o · ✏opt

+
�

|S| (1� (1� ↵(s)))
!

 1

µ(s)

0

@ 1

max
n
(1� ↵(s))� ✏opt|S|

�
, 0
o · ✏opt +

�

|S|↵(s)

1

A

where (i) follows because d⇡✓
µ
(s) � (1� �)µ(s), @J

↵
� (✓)

@✓s,a
 ✏opt andmax(1� ↵(s) �

✏opt|S|

�
, 0)  ⇡✓(a⇤(s)|s)  1 . Then applying the performance di�erence lemma
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(Kakade and Langford, ����) gives

V
⇤(⇢)� V

⇡✓(⇢) =
1

1� �
X

s,a

d
⇡
⇤

⇢
(s)⇡⇤(a|s)A⇡✓(s, a)

=
1

1� �
X

s

d
⇡
⇤

⇢
(s)A⇡✓(s, a⇤(s))

 1

1� �
X

s

d
⇡
⇤

⇢
(s)A⇡✓(s, a⇤(s)) (A⇡✓(s, a⇤(s)) � 0)

 1

1� �
X

s

d
⇡
⇤
⇢
(s)

µ(s)

 
1n

1� ↵(s)� ✏opt|S|

�
, 0
o · ✏opt +

�

|S|↵(s)
!

· (A⇡✓(s, a⇤(s)) � 0)

 1

1� �Es⇠UnifS

2

4 ✏opt|S|n
1� ↵(s)� ✏opt|S|

�
, 0
o + �↵(s)

3

5
�����
d
⇡
?

⇢

µ

�����
1

.

Now let’s relate the values of ⇡⇤ and ⇡✓. We will again apply the performance di�erence

lemma, this time in the other direction:

V
⇡✓(⇢)� V

⇤(⇢) =
1

1� �
X

s,a

d
⇡✓
⇢
(s)⇡✓(a|s)A⇡

⇤
(s, a)

(i)
=

1

1� �
X

s

0

@
X

a 6=a⇤(s)

d
⇡✓
⇢
(s)⇡✓(a|s)A⇡

⇤
(s, a)

1

A

(ii)

� �1
1� �

X

s

d
⇡✓
⇢
(s)

✓
↵(s) +

✏opt|S|
�

◆
|A|� 1

1� �

(iii)

= � |A|� 1

1� �

 
X

s

d
⇡✓
⇢
(s)

1� � ↵(s) +
✏opt|S|
�

X

s

d
⇡✓
⇢
(s)

1� �

!

= � |A|� 1

1� �

 
X

s

d
⇡✓
⇢
(s)

1� � ↵(s)
!
� (|A|� 1)✏opt|S|

�(1� �)2

= � |A|� 1

(1� �)2

 
X

s

d
⇡✓
⇢
(s)↵(s)

!
� (|A|� 1)✏opt|S|

�(1� �)2

= � |A|� 1

(1� �)2

 
X

s

d
⇡✓
⇢
(s)

µ(s)
µ(s)↵(s)

!
� (|A|� 1)✏opt|S|

�(1� �)2

� � |A|� 1

(1� �)2

����
d
⇡✓
⇢

µ

����
1

 
X

s

µ(s)↵(s)

!
� (|A|� 1)✏opt|S|

�(1� �)2
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where (i) is due to the fact thatA⇡
⇤
(s, a⇤(s)) = 0, (ii) is due to the fact thatA⇡

⇤
(s, a) for

a 6= a
⇤ is lower-bounded by�1/(1��) and Eq. (�.��), and (iii) is because

P
s
d
⇡✓
⇢
(s) =

1. Therefore,

V
⇡✓(⇢) +

|A|� 1

(1� �)2

 
Es⇠µ [↵(s)]

�����
d
⇡
?

⇢

µ

�����
1

+
✏opt|S|
�

!
� V

⇤(⇢).

This completes the proof.

We nowpresent a comparatively looser boundwhich applies the same upper bound

on the norm of the gradient used by Agarwal et al. (����b).

Corollary �.�.�. Suppose ✓ is such that krJ ↵

�
(✓)k1  ✏opt, with ✏opt  �

2|S||A|
and

� < 1. Then we have that for all states s 2 S ,

V
⇡✓(⇢) � V

?(⇢)� Es⇠UnifS [
↵

A
(s)]�

1� �

�����
d
⇡
?

⇢

µ

�����
1

where ↵
A
(s) = 2|A|(1�↵(s))

2|A|(1�↵(s))�1
.

Proof. The proof proceeds as in Lemma �.�.�, except that we use the upper bound on

✏opt in Eq. (�.��) to get

⇡✓(a
⇤(s)|s) � 1�↵(s)� ✏opt|S|

�
� 1�↵(s)� 1

2|A| =
2|A|(1� ↵(s))� 1

2|A| (�.��)
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In this case we can upper boundA⇡✓(s, a⇤(s)). From Eq. (�.��) inequality (i), we have

A
⇡✓(s, a⇤(s))  1� �

d
⇡✓
µ (s)

 
1

⇡✓(a⇤(s)|s)
@J ↵

�
(✓)

@✓s,a

� �

|S|
1

⇡✓(a⇤(s)|s)
(1� ↵(s)� ⇡✓(a⇤(s)|s))

!

=
1� �
d
⇡✓
µ (s)

✓
1

⇡✓(a⇤(s)|s)
@J ↵

�
(✓)

@✓s,a
+

�

|S|

✓
1� 1� ↵(s)

⇡✓(a⇤(s)|s)

◆◆

(i)

 1

µ(s)

 
1

(1� ↵(s))� ✏opt|S|

�

· ✏opt +
�

|S| (1� (1� ↵(s)))
!

 1

µ(s)

 
1

(1� ↵(s))� ✏opt|S|

�

· ✏opt +
�

|S|↵(s)
!

(ii)

 1

µ(s)

✓
2|A|

(2|A|(1� ↵(s))� 1)

�

2|S||A| +
�

|S|↵(s)
◆

=
�

|S|µ(s)

0

@ 1

2|A|(1� ↵(s))� 1
+ ↵(s)|{z}

1

1

A

 �

|S|µ(s)

0

BBB@
2|A|(1� ↵(s))

2|A|(1� ↵(s))� 1| {z }
:=↵A(s)

1

CCCA

Where (i) follows because d⇡✓
µ
(s) � (1� �)µ(s), @J

↵
� (✓)

@✓s,a
 ✏opt andmax(1� ↵(s)�

✏opt|S|

�
, 0)  ⇡✓(a⇤(s)|s)  1 . (ii) is obtained by plugging in the upper bound on ✏opt.

We nowmake use of the performance di�erence lemma:

V
⇤(⇢)� V

⇡✓(⇢) =
1

1� �
X

s,a

d
⇡
⇤

⇢
(s)⇡⇤(a|s)A⇡✓(s, a) (�.��)

=
1

1� �
X

s

d
⇡
⇤

⇢
(s)A⇡✓(s, a⇤(s)) (�.��)

 1

1� �
X

s

d
⇡
⇤

⇢
(s)A⇡✓(s, a⇤(s)) (A⇡✓(s, a⇤(s)) � 0) (�.��)

 �

(1� �)|S|
X

s


↵

A
(s)

d
⇡
⇤
⇢
(s)

µ(s)
(A⇡✓(s, a⇤(s)) � 0) (�.��)

 �

(1� �)Es⇠UnifS [
↵

A
(s)]

�����
d
⇡
?

⇢

µ

�����
1

(�.��)
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This completes the proof.

We can bound the smoothness of the objective as follows.

Lemma �.�.� (Smoothness ofJ ↵

�
). For the softmax parameterization, we have that

||r✓J ↵

�
(✓)�r✓J ↵

�
(✓0)||2  ��||✓ � ✓0||2

where �� = 8

(1��)3
+ 2�

|S|
.

Proof. We can �rst bound the smoothness of V ⇡✓(µ) using Lemma D.� from Agarwal

et al. (����b). We get

||r✓V
⇡✓(µ)�r✓V

⇡✓0 (µ)||2  �||✓ � ✓0||2

for

� =
8

(1� �)3 .

We now need to bound the smoothness of the regularizer �

|S|
⌦(✓)where

⌦(✓) =
X

s,a

⇡0(a|s) log ⇡✓(a|s).

Using that @

@✓s0,a0
log ⇡✓(a|s) = (s = s

0)[ (a = a
0) � ⇡✓(a0|s)] for the softmax

parameterization, we get

r✓s⌦(✓) = ⇡0(·|s)� ⇡✓(·|s),

r2

✓s
⌦(✓) = �diag(⇡✓(·|s)) + ⇡✓(·)⇡✓(·|s)T.

The remainder of the proof follows directly from that of Lemma D.� in Agarwal et al.

(����b), as the second-order gradients are identical. We then have that⌦(✓) is �-smooth

and therefore �

|S|
⌦(✓) is 2�

|S|
-smooth, completing the proof.
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Note that the second value of �will nearly always be greater than 1 for most values

of ✏, ✏opt, |S|, |A|, as that’s the casewhenEµ [↵(s)] >
(1��)

2
✏

|A|�1
�✏opt|S|, which is usually

negative, thus trivially satisfying the inequality for ↵(s) 2 [0, 1] 8s 2 S .

Lemma �.�.� (Iteration complexity for J ↵

�
). Let ⇢ be a starting state distribution. Fol-

lowing Lemma �.�.�, let �� = 8�

(1��)3
+ 2�

|S|
. From any initial ✓(0) and following Eq. (�.�)

with ⌘ = 1/�� and

� =
✏(1� �)

Es⇠UnifS [
↵

A
(s)]

���d⇡
?

⇢

µ

���
1

< 1,

we have

min
tT

{V ?(⇢)� V
(t)(⇢)}  ✏

whenever T � 80Es⇠UnifS [
↵

A
(s)]2 |S|2|A|2

(1� �)6✏2

�����
d
⇡
?

⇢

µ

�����

2

1

.

Proof. The proof rests on bounding the iteration complexity ofmaking the gradient suf-

�ciently small. Because the optimization process is deterministic and unconstrained, we

can use the standard result that after T updates with stepsize 1/��, we have

min
tT

||r✓J ?

�
(✓(t))||2

2
 2��(J ?

�
(✓⇤)� J ?

�
(✓(0)))

T
=

2��
(1� �)T , (�.��)

where �� upper-bounds the smoothness of J ?

�
(✓). Using the above and Corollary �.�.�,

we want

✏opt 

s
2��

(1� �)T 
�

2|S||A| .

Solving the above inequality for T gives T � 8|S|
2
|A|

2
��

�2(1��)
. From Lemma �.�.�, we can set

�� =
8

(1��)3
+ 2�

|S|
. Plugging this in gives

T � 8|S|2|A|2��
(1� �)�2 =

✓
64|S|2|A|2
(1� �)4�2 +

16|S||A|2
(1� �)�

◆
.
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Corollary �.�.� gives us the possible values for � for value error margin ✏. Then if

� =
✏(1� �)

Eµ [↵A(s)]
���d⇡

?
⇢

µ

���
1

< 1,

we can write
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.

Corollary �.�.�. Given the same assumptions as Lemma �.�.�, if the initial policy is chosen

to be ⇡0, i.e., ⇡✓(0) = ⇡0 where ⇡0(·|s) is ↵(s)-optimal with respect to ⇡?(·|s) 8s, then

min
tT

{V ?(⇢)� V
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✏2(1� �)7

�����
d
⇡
?

⇢

µ

�����

2

1

����
1

µ

����
1

Es⇠µ [↵(s)] .

Proof. The proof rests on bounding the iteration complexity ofmaking the gradient suf-

�ciently small. Because the optimization process is deterministic and unconstrained, we

can use the standard result that after T updates with stepsize 1/��, we have

min
tT

||r✓J ?

�
(✓(t))||2

2
 2��(J ?

�
(✓⇤)� J ?

�
(✓(0)))

T
=

2��
T
�, (�.��)

where �� upper-bounds the smoothness of J ?

�
(✓) and we. de�ne � := J ?

�
(✓⇤) �

J ?

�
(✓(0))) for conciseness. Using the above and Corollary �.�.�, we want

✏opt 
r

2���

T
 �

2|S||A| .

Solving the above inequality for T gives T � �8|S|
2
|A|

2
��

�2
. From Lemma �.�.�, we can
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set �� = 8

(1��)3
+ 2�

|S|
. Plugging this in gives

T � �8|S|2|A|2��
�2

= �

✓
64|S|2|A|2
(1� �)3�2 +

16|S||A|2
�

◆
.

Corollary �.�.� ensures thatmintT V
?(⇢)�V

(t)(⇢)  ✏ provided that � is of the form:

� =
✏(1� �)

Eµ [↵A(s)]
���d⇡

?
⇢

µ

���
1

< 1,

we can therefore write:
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This implies the following condition on T :
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It remains to control the error� due to initialization with policy ⇡0. Denote by ⇡?
�
the

optimal policy maximizingJ ?

�
. We have the following:

� :=V
⇡
?
�(⇢)� V
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d
⇡0
⇢
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1
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where the �rst line is by de�nition of �, the second line uses that the KL term is non-

positive. The third line uses that V ⇡
?
�(⇢) � V

?(⇢)  0 and the last line follows from
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Lemma �.A.�. Hence, it su�ce to choose T satisfying:
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As a �nal step, we simply observe that Eµ [↵A(s)]  2 and d⇡0
⇢
 1.

Lemma �.A.�. Following Lemma �.�.�, let �� = 8�

(1��)3
+ 2�

|S|
. From any initial ✓(0) and

following Eq. (�.�) with ⌘ = 1/�� and

� =
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for all starting state distributions ⇢, we have,
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Proof. The proof proceeds identically as above, except we set

� =
✏opt|S|(|A|� 1)

(1� �)2✏� (|A|� 1)Eµ [↵(s)]
> 1,

we have
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completing the proof.
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Note that this value of � will nearly always be greater than 1 for most values of

✏, ✏opt, |S|, |A|, as that’s the case when Eµ [↵(s)] >
(1��)

2
✏

|A|�1
� ✏opt|S|, which is usually

negative, thus trivially satisfying the inequality for ↵(s) 2 [0, 1] 8s 2 S .

Lemma �.A.�. Assume that⇡ is such that⇡(a?(s)|s) � 1��(s) for some state dependent

error s 7! �(s) and that ⇢(s) > 0 for all states s. Then the following inequality holds:
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d
⇡

⇢

⇢

����
1

E⇢ [�(s)] (�.��)

Proof.

V
⇡(⇢)� V

⇤(⇢) =
1

1� �
X

s,a

d
⇡

⇢
(s)⇡(a|s)A⇡

⇤
(s, a)

=
1

1� �
X

s

X

a 6=a?(s)

�
d
⇡

⇢
(s)⇡(a|s)A⇡

⇤
(s, a)

�

� � 1

(1� �)2
X

s

d
⇡

⇢
(s)

X

a 6=a?(s)

⇡(a|s)

� � 1

(1� �)2
X

s

�
d
⇡

⇢
(s)�(s)

�

� � 1

(1� �)2

����
d
⇡

⇢

µ

����
1

Es⇠µ [�(s)]

where the �rst line follows by application of the performance di�erent lemma (Agarwal

et al., ����b, Lemma �.�), the second line is due to the fact that A⇡
⇤
(s, a⇤(s)) = 0,

the third line from A
⇡
⇤
(s, a) � �1/(1 � �) for a 6= a

⇤. The fourth line uses that
P

a 6=a?(s)
⇡(a|s) = 1 � ⇡(a?(s)|s)  �(s) for a 6= a

?(s) since by assumption

⇡(a?(s)|s) � 1 � �(s). Finally, the last line uses that d⇡
⇢
is a probability distribution

over states s satisfying
P

s2S
d
⇡

⇢
(s) = 1.

�.A.� State dependent � and ✏

We can further generalize these results by allowing the error ✏ and regularization weight

� to be state-dependent. The gradient with state dependent regularized � equals
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J ⇡0(✓) = V
⇡✓(µ) +

X

s,a

�(s)

|S| ⇡0(a|s) log ⇡✓(a|s)

Lemma �.A.�. Suppose ✓ is such that (rJ ↵

�
(✓))

s,a
 ✏opt(s, a). Then we have that for

all states s 2 S ,

V
⇤(⇢)� V

⇡✓(⇢)

 min

(
1

1� �Es⇠UnifS

2

4 ✏opt(s, a⇤(s))|S|
max

⇣
(1� ↵(s))� ✏opt(s,a

⇤(s))|S|
�(s)

, 0
⌘ + �(s)↵(s)

3

5
�����
d
⇡
?

⇢

µ

�����
1

,

|A|
(1� �)2Es⇠µ [↵(s)]

����
d
⇡✓
⇢

µ

����
1

+
|S|

(1� �)2

����

P
a
✏opt(s, a)

�(s)

����
1

)

Proof. Let’s assume that⇡⇤ is a deterministic policy. By Puterman (����) such an optimal

policy always exists for anMDP.We’ll use the notationa⇤(s) to denote the optimal action

at state s. This, combined with the assumption that dTV(⇡⇤(·|s), ⇡0(·|s))  ↵(s) for

all s 2 S , tells us that ⇡0(a⇤(s)|s) � ⇡
⇤(a⇤(s)|s) � ↵(s) = 1 � ↵(s). Similarly,

for a 6= a
⇤(s), ⇡0(a|s)  ↵(s). Using this, we can start by showing that whenever

A
⇡✓(s, a⇤(s)) � 0we can lower bound ⇡✓(a⇤(s)|s) for all s.

The gradient norm assumption (rJ ↵

�
(✓))

s,a
 ✏opt(s, a) implies that for all s, a:

✏opt(s, a) �
@J ↵

�
(✓)

@✓s,a
=

1

1� � d
⇡✓
µ
(s)⇡✓(a|s)A⇡✓(s, a) +

�(s)

|S| (⇡0 � ⇡✓(a|s))
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In particular for all s,

✏opt(s, a
⇤(s)) � @J ↵

�
(✓)

@✓s,a⇤(s)

(i)

� 1

1� � d
⇡✓
µ
(s)⇡✓(a

⇤(s)|s)A⇡✓(s, a⇤(s))

+
�(s)

|S| (⇡
⇤(a⇤(s)|s)� ↵(s)� ⇡✓(a⇤(s)|s))

=
1

1� � d
⇡✓
µ
(s)⇡✓(a

⇤(s)|s)A⇡✓(s, a⇤(s))

+
�(s)

|S| (1� ↵(s)� ⇡✓(a
⇤(s)|s))

(�.��)

And therefore ifA⇡✓(s, a⇤(s)) � 0,

✏opt(s, a) �
�(s)

|S| (1� ↵(s)� ⇡✓(a
⇤(s)|s))

Thus,

⇡✓(a
⇤(s)|s) � max

✓
1� ↵(s)� ✏opt(s, a⇤(s))|S|

�(s)
, 0

◆

� 1� ↵(s)� ✏opt(s, a⇤(s))|S|
�(s)

.

(�.��)
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In this case we can upper boundA⇡✓(s, a⇤(s)). From Eq. (�.��) inequality (i), we have

A
⇡✓(s, a⇤(s))  1� �

d
⇡✓
µ (s)

 
1

⇡✓(a⇤(s)|s)
@J ↵
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(✓)

@✓s,a⇤(s)

� �(s)

|S|
1

⇡✓(a⇤(s)|s)
(1� ↵(s)� ⇡✓(a⇤(s)|s))

!

=
1� �
d
⇡✓
µ (s)

 
1

⇡✓(a⇤(s)|s)
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1� 1� ↵(s)
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(i)

 1

µ(s)
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⇤(s))|S|
�

, 0
⌘ · ✏opt(s, a⇤(s))

+
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|S| (1� (1� ↵(s)))
!

 1

µ(s)

 
1
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⇤(s))|S|
�
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⌘ · ✏opt(s, a⇤(s))

+
�(s)

|S| ↵(s)
!

Where (i) follows because d
⇡✓
µ
(s) � (1 � �)µ(s), @J

↵
� (✓)

@✓s,a
 ✏opt and

max
⇣
1� ↵(s)� ✏opt(s,a

⇤
(s))|S|

�
, 0
⌘
 ⇡✓(a⇤(s)|s)  1 .

We nowmake use of the performance di�erence lemma:
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⇤(⇢)� V
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Now let’s relate the values of ⇡⇤ and ⇡✓. We will again apply the performance di�er-
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ence lemma, this time in the other direction:
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where (�) is due to the fact thatA⇡
⇤
(s, a⇤(s)) = 0, and (�) is due to the fact thatA⇡

⇤
(s, a)

for a 6= a
⇤ is lower-bounded by �1/(1 � �) and Eq. (�.��). and (3) holds because of

Holder and
P

s
d
⇡✓
⇢
(s) = 1. Therefore,

V
⇡✓(⇢) +
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+
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P
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� V
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A simple corollary of Lemma �.A.� is,
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Corollary �.A.�. If ✏opt(s, a)  (1�↵(s))�(s)

|S|
then
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Proof. If ✏(s, a)  (1�↵(s))�(s)

|S|
thenmax

⇣
(1� ↵(s))� ✏opt(s,a)|S|

�(s)
, 0
⌘
� 1�↵(s)

2
. The

result follows.

Corollary �.A.� recovers the results of Agarwal et al. (����b) by noting the TV dis-

tance between the optimal policy and the uniform one equals 1 � 1

|A|
and therefore

1� ↵(s) = 1

|A|
.

We now concern ourselves with the problem of �nding a true ✏ > 0 optimal policy.

This will require us to set the values of �(s) appropriately. We restrict ourselves to the

following version of the results of Corollary �.A.�. If ✏(s, a)  (1�↵(s))�(s)

|S|
then
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⇤(⇢)� 1

1� �Es⇠UnifS
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By setting
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2↵(s)
���d⇡

?
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µ

���
1

and ✏opt(s, a) = min
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@(1� ↵(s))✏(1� �)
4|S|

���d⇡
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⇢
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1

,
(1� ↵(s))�(s)

|S|

1

A

we get

V
⇡✓(⇢) � V

⇤(⇢)� ✏.

Observe that the level of regularization depends on the state’s error. If the error is

very low, the regularizer �(s) should be set to a larger value.
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Appendix �.B: Multitask Analysis
Assume we are givenK i.i.d. tasksMk sampled fromPM, denote by ⇡?

k
(·|s) their corre-

sponding optimal policies and let ⇡̃k(·|s) be ↵(s) policies, i.e. dTV (⇡̃k(·|s), ⇡?k(·|s)) 

↵(s) for some ↵(s)  1. To simplify notation, we may also refer to P directly as the

distribution over these optimal policies. Let ⇡̂0 be the total variation barycenter of the

policies ⇡̃k, i.e.: ⇡̂0 = argmin⇡
1

K

P
K

k=1
dTV (⇡, ⇡̃i), while

⇡0 = argmin
⇡

EMk⇠PM [dTV (⇡, ⇡
?

i
)].

Lemma �.�.� (TV barycenter). Let PM be a distribution over tasks M = {Mk}, each

with a deterministic optimal policy ⇡?
k
: S ! A. De�ne the average optimal action as

⇠(s, a) := EMk⇠PM [ (⇡?
k
(s) = a)] . (�.��)

Then, the TV barycenter ⇡0(·|s) de�ned in Eq. (�.��) is given by a greedy policy over ⇠, i.e.,

⇡0(a|s) = �(a 2 argmax
a02A ⇠(s, a

0)), where �(·) is the Dirac delta distribution.

Proof. Let’s �rst express the barycenter loss in a more convenient form:

E⇡0⇠P [dTV (⇡(.|s), ⇡0(.|s))] =E⇡0⇠P

2

41
2

X

a 6=a⇡0 (s)

⇡(a) +
1

2
(1� ⇡(a⇡0(s), s))

3

5

(�.��)

=E⇡0⇠P [(1� ⇡(a⇡0(s), s))] (�.��)

=1�
X

a

P(⇡0(a|s) = 1)⇡(a|s) (�.��)

=1�
X

a

⇡soft(a|s)⇡(a|s). (�.��)

Therefore, the barycenter loss is minimized when ⇡(a|s) puts all its mass on the maxi-

mum value of ⇡soft(a|s) over actions a 2 A.

The KL barycenter can be described as follows.
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Lemma �.B.� (KL barycenter). Let PM be a distribution over tasks such that for every

Mk 2M, there exists a unique optimal action a?
k
(s) for each state s such that ⇡?

k
(s) = a

?.

Then the KL barycenter for state s is:

argmin
⇡

EMk⇠PMKL(⇡?
k
(·|s), ⇡(·|s)) = �(a = EMk⇠PM⇡

?

k
(s)) (�.��)

where �(·) is the Dirac delta distribution. This holds for both directions of the KL.

Proof. We have

EMk⇠PMKL(⇡?
k
(·|s), ⇡(·|s))

= EMk⇠PM

X

a

⇡
?

k
(a|s) log ⇡

?

k
(a|s)

⇡(a|s)

= EMk⇠PM

2

66664
� log ⇡(a?

k
(s)|s) +

X

a 6=a
?
k(s)

0 · log 0

⇡(a|s)
| {z }

=0

3

77775

= EMk⇠PM [� log ⇡(a?
k
(s)|s)]

Therefore, the barycenter loss is minimizedwhen ⇡(a|s) puts all its mass on the expected

a
?

k
(s). Note that we consider the underbrace term zero because limx!0 x log x = 0. It

is easy to verify that this result holds for the reverse KL.

Lemma �.�.� (Multitask iteration complexity). LetMk ⇠ PM and denote by ⇡?
k
: S !

A its optimal policy. Denote by Tk the number of iterations to reach ✏-error forMk in the

sense that:

min
tTk

{V ⇡
?
k(⇢)� V

(t)(⇢)}  ✏.

Set �, ��, and ⌘ as in Lemma �.�.�. From any initial ✓(0), and following Eq. (�.�),

EMk⇠PM [Tk] satis�es:

EMk⇠PM [Tk] �
80|A|2|S|2
✏2(1� �)6 EMk⇠PM

s⇠UnifS

2

4↵k
A
(s)

�����
d
⇡
⇤
k
⇢

µ

�����

2

1

3

5 ,
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where ↵k(s) := dTV(⇡?k(·|s), ⇡̂0(·|s)). If ⇡̂0 is also used for initialization, then

EMk⇠PM [Tk] satis�es:

EMk⇠PM [Tk] �
320|A|2|S|2
✏2(1� �)7

����
1

µ

����
3

1

EMk⇠PM
s⇠µ

[↵k(s)] ,

Proof. Let Mi be a random task sampled according to M and denote by ⇡?
i
its cor-

responding optimal policy. Set ↵(s) = dTV (⇡̂0, ⇡?i ) and choose � = ✏(1��)

2k
d⇡

?
⇢
µ k

. By

Lemma �.�.�, we have that:

min
t<T

{V ⇤(⇢)� V
(t)(⇢)}  ✏

whenever T � 160|A|2|S|2
✏2(1� �)7

�����
d
⇡
?

⇢

µ

�����

2

1

�����
d
⇡̂0
⇢

µ0

�����
1

Es⇠µ0 [↵(s)] .
(�.��)

By choosing µ0 to be uniform and recalling that d⇡̂0
⇢
 1, it su�ce to have:

T � 160|A|2|S|3
✏2(1� �)7

�����
d
⇡
?

⇢

µ

�����

2

1

Es⇠µ0 [dTV (⇡̂0, ⇡
?

i
)] . (�.��)

Taking the expectation over the tasks and treating T as a random variable depending on

the task, we get that:

E [T ] � 160|A|2|S|3
✏2(1� �)7

�����
d
⇡
?

⇢

µ

�����

2

1

Es⇠µ0⇡
0 ⇠ P [dTV (⇡̂0, ⇡

0)] . (�.��)

The following lemma quanti�es how ⇡̂0 is close to be the TV barycenter of

{⇡?
k
}1kK whenK grows to in�nity. We let ⇡̃k(·|s)be, on average, ⇣(s)-optimal in state

s across tasksMk, i.e. EMk⇠M [dTV(⇡̃k(·|s), ⇡?k(·|s))]  ⇣(s) for some ⇣(s) 2 [0, 1].

For concision, we shorten ⇡(·|s) as ⇡.

Lemma �.�.� (Barycenter concentration). Let � be 0 < � < 1. Then with probability
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higher than 1� �, for all s 2 S , it holds that:

|EMk⇠PM [dTV(⇡
?

k
(·|s), ⇡̂0(·|s))� dTV(⇡

?

k
(·|s), ⇡0(·|s))]|

 2⇣(s) +

s
2 log(2

�
)

K
+ 2C

r
|A|
K

,

for some constantC that depends only on |A|.

Proof. To simplify the proof, we �x a state s and omit the dependence in s. We further

introduce the following notations:

f(⇡) = EMi⇠PM [dTV (⇡, ⇡
?

i
)] (�.��)

f̃(⇡) =
1

K

KX

i=1

dTV (⇡, ⇡̃i) (�.��)

f̂(⇡) =
1

K

KX

i=1

dTV (⇡, ⇡
?

i
) (�.��)

Let ⇡0 = argmin⇡ f(⇡) and ⇡̂0 = argmin⇡ f̃(⇡). It is easy to see that:

f(⇡̂0) f̃(⇡̂0) + |f̂(⇡̂0)� f(⇡̂0)|+ |f̃(⇡̂0)� f̂(⇡̂0)|

f̂(⇡0) + |f̂(⇡̂0)� f(⇡̂0)|+ |f̂(⇡̂0)� f̂(⇡̂0)|

f(⇡0) + |f̂(⇡̂0)� f(⇡̂0)|+ |f̃(⇡̂0)� f̂(⇡̂0)|

+|f̂(⇡0)� f(⇡0)|+ |f̃(⇡0)� f̂(⇡0)|

f(⇡0) + 2 sup
⇡

|f̂(⇡)� f(⇡)|+ 2 sup
⇡

|f̂(⇡)� f̃(⇡)|.

where the �rst line follows by a triangular inequality, the second line uses that

f̂(⇡̂0)  f̂(⇡0) since ⇡̂0 minimizes f̂ . The third line uses a triangular inequality

again while the last line follows by de�nition of the supremum. Moreover, recall that

f(⇡0)  f(⇡̂0) as ⇡0 minimizes f and that |f̂(⇡)� f̃(⇡)|  ⇣ since, by assumption, we

have that dTV (⇡?i , ⇡̃i)  ⇣ . Therefore, it follows that:

|f(⇡̂0)� f(⇡0)|  2⇣ + 2 sup
⇡

|f̂(⇡)� f(⇡)|. (�.��)
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By applicationof the boundeddi�erence inequality (McDiarmid’s inequality) (Sen, ����,

Theorem ��.�), we know that for any t > 0:

P

| sup

⇡

|f̂(⇡)� f(⇡)|� E

sup
⇡

|f̂(⇡)� f(⇡)|
�
| > t

�
 2e�2t

2
K (�.��)

This implies that for any 0 < ⌘ < 1, we have with probability higher than 1� ⌘ that:

sup
⇡

|f̂(⇡)� f(⇡)| 

s
log(2

�
)

2K
+ E


sup
⇡

|f̂(⇡)� f(⇡)|
�

(�.��)

Combining Eq. (�.��) with Eq. (�.��) and using Lemma �.B.� to control

E
h
sup

⇡
|f̂(⇡)� f(⇡)|

i
, we have that for any 0 < � < 1, with probability higher than

1� �, it holds that:

|f(⇡̂0)� f(⇡0)|  2⇣ +

s
2 log(2

�
)

K
+ 2C

r
|A|
K

, (�.��)

for some constantC that depends only on |A|.

Lemma �.B.�.

E

sup
⇡

|f̂(⇡)� f(⇡)|
�
 C

r
|A|
N

, (�.��)

whereC is a constant that depends only on |A|.

Proof. To control the quantity E
h
sup

⇡
|f̂(⇡)� f(⇡)|

i
, we will use a classical result

from empirical process theory (Van der Vaart, ����, Corollary ��.��). We begin by in-

troducing some useful notions to state the result. Denote by F the set of functions

⇡
0 7! dTV (⇡, ⇡0) that are indexed by a �xed ⇡. Given a random task Mi ⇠ M, we

call ⇡?
i
its optimal policy and denote by P the probability distribution of ⇡?

i
when the

task Mi is drawn from M. Note that we can express f(⇡) as an expectation w.r.t. P :

f(⇡) = E⇡0⇠P [dTV (⇡, ⇡0)]. Moreover, f̂(⇡) is an empirical average over i.i.d. samples

⇡
?

i
drawn from P .
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The bracketing number N[](✏,F , L2(P )) is the smallest number of functions fj

and gj such that for any ⇡, there exists j such that fj(⇡0)  dTV (⇡, ⇡0)  gj(⇡0) and

kfj � gjkL2(P )  ✏. The following result is a direct application of (Van der Vaart, ����,

Corollary ��.��) andprovides a control onE
h
sup

⇡
|f̂(⇡)� f(⇡)|

i
in terms of the brack-

eting numberN[]:

p
NE


sup
⇡

|f̂(⇡)� f(⇡)|
�

Z

R

0

q
logN[](✏,F , L2(P )). (�.��)

whereR2 = E⇡0⇠P [sup
⇡
dTV (⇡, ⇡0)2]  1. It remains to control the bracketing num-

berN[]. To achieve this, note that the functions inF are all 1-Lipschitz, meaning that:

|dTV (⇡, ⇡)� dTV (⇡
0
, ⇡)|  dTV (⇡, ⇡

0)  1. (�.��)

Moreover, the familyF admits the constant function F (⇡0) = 1 as an envelope, which

means, in other words, that the following upper-bound holds:

sup
⇡

dTV (⇡, ⇡
0)  1. (�.��)

Therefore, we can apply (Van der Vaart, ����, Example ��.�) to the family F , which di-

rectly implies the following upper-bound onN[]:

N[](✏,F , L2(P ))  K

✓
1

✏

◆|A|

(�.��)

whereK is a constant that depends only on |A|. Combining 3.48 and �.�� and recalling

thatR  1, it follows that:

E

sup
⇡

|f̂(⇡)� f(⇡)|
�
 C

r
|A|
N

. (�.��)

whereC is a constant that depends only on |A|.
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Appendix �.C: Experimental Details
The policy model for all algorithms was given by the tabular softmax with single param-

eter vector ✓ 2 R|S||A| such that

⇡✓(a|s) =
exp(✓s,a)P

a02A exp(✓s,a0)
.

All agents were trained for ��,��� time steps per task using standard stochastic gradient

ascent with learning rate ⌘ = 0.02. For methods with learned regularizers, the learn-

ing for the regularizer was halved, with ⌘reg = 0.01. Each episode terminated when the

agent reached a leaf node. For those using regularization, the regularization weight was

� = 0.2. ForD������, this weight was applied equally to both the KL term and the en-

tropy term. Each task was randomly sampled with r(s) = 0 for all nodes other than the

leaf nodes of the subtree rooted at s7 (Fig. �.�). For those nodes, r(s) ⇠ Geom(p) with

p = 0.5 for experiments with �xed default policies and p = 0.7 for those with learned

default policies. The sparsity of the reward distribution made learning challenging, and

so limiting the size of the e�ective search space (via an e�ective default policy) was cru-

cial to consistent success. A single run consisted of � draws from the task distribution,

with each method trained for �� runs with di�erent random seeds. For TVPO, the soft-

max temperature decayed as �(k) = exp(�k/10), with k being the number of tasks.

The plotted default policies in Fig. �.�were the average default policy probabilities in the

selected states across these runs.



Chapter �

Minimum Description Length

Control

The previous chapter provided a theoretical analysis as well as small-scale experimental

results studying regularized policy optimization for MTRL. It demonstrated that sim-

ilarity among the optimal policies for a group of tasks constitutes a form of behavioral

structure which can be distilled into a default policy and leveraged into faster learning

of new policies. This chapter, adapted from Moskovitz et al. (����a), draws inspiration

from the dual process theory of biological cognition to extend these results, providing a

principled approach tomitigating over�tting of the default policy to previously observed

tasks, thereby ensuring that the control policy can �exibly adapt to new demands.

�.� Introduction
In order to learn e�ciently in a complexworldwithmultiple rapidly changing objectives,

both animals and machines must leverage past experience. This is a challenging task, as

processing and storing all relevant information is computationally infeasible. How can

an intelligent agent address this problem? We hypothesize that one route may lie in the

dual process theory of cognition, a longstanding framework in cognitive psychology intro-

duced byWilliam James (James et al., ����) which lies at the heart ofmany dichotomies in

both cognitive science and machine learning. Examples include goal-directed versus ha-

bitual behavior (Graybiel, ����), model-based versus model-free reinforcement learning

(Daw et al., ����; Sutton and Barto, ����a), and “System �” versus “System �” thinking
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(Kahneman, ����). In each of these paradigms, a complex, “control” process trades o�

with a simple, “default” process to guide actions. Why has this been such a successful and

enduring conceptual motif? Our hypothesis is that default processes often serve to distill

common structure from the tasks consistently faced by animals and agents, facilitating

generalization and rapid learning on new objectives. For example, drivers can automat-

ically traverse commonly traveled roads en route to new destinations, and chefs quickly

learn new dishes on the back of well-honed fundamental techniques. Importantly, even

intricate tasks can become automatic, if repeated often enough (e.g., the combination of

�nemotor commands required to swing a tennis racket): the default processmust be suf-

�ciently expressive to learn common behaviors, regardless of their complexity. In reality,

most processes likely lie on a continuum between simplicity and complexity.

In reinforcement learning (RL; Sutton and Barto, ����a), improving sample e�-

ciency on new tasks is crucial to the developement of general agents which can learn ef-

fectively in the real world (Botvinick et al., ����; Kirk et al., ����). Intriguingly, one family

of approaches which have shown promise in this regard are regularized policy optimiza-

tion algorithms, in which a goal-speci�c control policy is paired with a simple yet general

default policy to facilitate learning across multiple tasks (Teh et al., ����a; Galashov et al.,

����a; Goyal et al., ����, ����; Moskovitz et al., ����a). One di�culty in algorithm de-

sign, however, is howmuch or how little to constrain the default policy, and in what way.

An overly simple default policy will fail to identify and exploit commonalities among

tasks, while a complex model may over�t to a single task and fail to generalize. Most ap-

proaches manually specify an asymmetry between the control and default policies, such

as hiding input information (Galashov et al., ����a) or constraining the model class (Lai

and Gershman, ����). Ideally, we’d like an adaptive approach that learns the appropriate

degree of complexity via experience.

The minimum description length principle (MDL; Rissanen, ����), which in gen-

eral holds that one should prefer the simplest model that accurately �ts the data, o�ers a

guiding framework for algorithm design that does just that, enabling the default policy

to optimally trade o� between adapting to information from new tasks and maintaining

simplicity. Inspired by dual process theory and the MDL principle, we proposeMDL-
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control (MDL-C, pronounced “middle-cee”), a principledRPO framework formultitask

RL. In Section �.�, we formally introduce multitask RL and describe RPO approaches

within this setting. In Section �.�, we describe MDL and the variational coding frame-

work, from which we extract MDL-C and derive its formal performance characteristics.

In Section �.�, we demonstrate its empirical e�ectiveness in both discrete and continuous

control settings. Finally, we discuss related ideas from the the literature (Section �.�) and

conclude (Section �.�).

�.� Setting

While the previous chapter focused solely on sequential MTRL, here we consider both

the sequential parallel settings. The objective in each case is to maximize average reward

across tasks, equivalent to minimizing cumulative regret over the agent’s ‘lifetime.’ More

speci�cally, we assume a (possibly in�nite) set of tasks (MDPs)M = {M} presented to

the agent by sampling from some task distribution PM 2 P(M). In the sequential task

setting (Moskovitz et al., ����a; Pacchiano et al., ����), tasks (MDPs) are sampled one at

a time from PM, with the agent training on each until convergence. In the parallel task

training (Yu et al., ����), a newMDP is sampled fromPM at the start of every episode and

is associated with a particular input feature g 2 G that indicates to the agent which task

has been sampled. We continue the previous chapter’s focus on RPO-based approaches,

here denoting the default policy by ⇡w, wherew are the policy parameters.

�.� The Minimum Description Length Principle

General principle Storing all environment interactions across multiple tasks is com-

putationally infeasible, so multitask RPO algorithms o�er a compressed representation

in the form of a default policy. However, the type of information that is compressed

(and that which is lost) is often hard-coded a priori. Preferably, we’d like an approach

which can distill structural regularities among tasks without needing to know what they

are beforehand. The minimum description length (MDL) framework o�ers a princi-

pled approach to this problem. So-called “ideal” MDL seeks to �nd the shortest so-
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lution written in a general-purpose programming language� which accurately repro-

duces the data—an idea rooted in the concept of Kolmogorov complexity (Li and Vit-

nyi, ����). Given the known impossibility of computing Kolmogorov complexity for

all but the simplest cases, a more practical MDL approach instead prescribes selecting

the hypothesis H? from some hypothesis class H which minimizes the two-part code

H
? = argmin

H2H
L(D|H) + L(H), whereL(D|H) is the number of bits required to

encode the data given the hypothesis and L(H) is the number of bits needed to encode

the hypothesis itself. There are a variety of so-called universal coding schemes which can

be used to model these quantities.

Variational codeOne popular encoding scheme is the variational code (Blier and Ol-

livier, ����; Hinton and Van Camp, ����; Honkela and Valpola, ����):

L
var
⌫
(D) = E✓⇠⌫ [� log p✓(D)]| {z }

Lvar(D|H)

+KL[⌫(·); p(·)]| {z }
Lvar(H)

(�.�)

where the hypothesis class is of a set of parametric models H = {p✓(D) : ✓ 2 ⇥}.

The model parameters are random variables with prior distribution p(✓) and ⌫(✓) is any

distribution over ⇥. Minimizing Lvar
⌫
(D) with respect to ⌫ is equivalent to performing

variational inference, maximizing a lower-bound to the data log-likelihood log p(D) =

log
R
p(✓)p✓(D)d✓ � �Lvar

⌫
(D). Roughly speaking, MDL encourages the choice of

“simple” models when limited data are available (Grunwald, ����). In the variational

coding scheme, simplicity is enforced via the choice of prior.

Sparsity-inducing priors and variational dropout Sparsity-inducing priors can be

used to improve the compression rate within the variational coding scheme, as they en-

courage themodel to prune out parameters that donot contribute to reducingLvar(D|✓).

Many sparsity-inducing priors belong to the family of scale mixtures of normal distribu-

tions (?): z ⇠ p(z), ✓ ⇠ p(✓|z) = N (w; 0, z2) where p(z) de�nes a distribution over

the variance z2. Common choices of p(z) include the Je�reys prior p(z) / |z|�1 (Jef-

freys, ����), the inverse-Gamma distribution, and the half-Cauchy distribution (Polson

and Scott, ����; Gelman, ����). Such priors have deep connections to MDL theory.
�The invariance theorem (Kolmogorov, ����) ensures that, given a su�ciently long sequence, Kol-

mogorov complexity is invariant to the choice of general-purpose language.
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For example, the Je�reys prior in conjunction with an exponential family likelihood is

asymptotically identical to the normalized maximum likelihood estimator, perhaps the

most fundamental ‘MDL’ estimator (Grünwald and Roos, ����). Variational dropout

(VDO) is an e�ective algorithm for minimizing Eq. (�.�) for these sparsity-inducing pri-

ors (Louizos et al., ����; Kingma et al., ����; Molchanov et al., ����). Brie�y, this involves

choosing an approximate posterior distribution with the form

p(w, z|D) ⇡ ⌫(w, z) = N (z;µz,↵�
2

z
)N (w; zµ, z2�2

Id) (�.�)

and optimizing Eq. (�.�) via stochastic gradient descent on the variational parameters

given by {↵, µz, �
2

z
, µ, �

2}. As its name suggests—and importantly for its ease of ap-

plication to large models—VDO can be implemented as a form of dropout (Srivastava

et al., ����) by reparameterizing the noise on the weights as activation noise (Kingma

et al., ����). Application of VDO to Bayesian neural networks has achieved impressive

compression rates, sparsifying deep neural networks while maintaining prediction per-

formance on supervised learning problems (Molchanov et al., ����; Louizos et al., ����).

Equippedwith a powerful approach forMDL-grounded posterior inference, we can now

integrate these ideas with multitaskRPO.

�.� Minimum Description Length Control
As part of its underlying philosophy, theMDL principle holds that �) learning is the pro-

cess of discovering regularity in data, and �) any regularity in the data can be used to com-

press it (Grunwald, ����). Applying this perspective to RL is non-obvious—from the

agent’s perspective, what ‘data’ is it trying to compress? Our hypothesis, which forms

the basis for the framework we propose in this chapter, is that an agent faced with a

set of tasks in the world should seek to elucidate structural regularity from the environ-

ment interactions generated by the optimal policies for the tasks. This makes intuitive

sense: the agent ought to compress information which indicates how to correctly per-

form the tasks with which it is faced. That is, we propose that the data in multitask

RL are the state-action interactions generated by the optimal policies for a set of tasks:

D = {DM}
M2M

= {(s, a) : 8s 2 S, a ⇠ ⇡
?

M
(·|s)}

M2M
This interpretation is in
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line with work suggesting that a useful operational de�nition of ‘task’ can be derived di-

rectly from the set of optimal (or near-optimal) policies it induces (Abel et al., ����). It

also suggests a natural mapping to the multitask RPO framework. In this view, the con-

trol policy is responsible for learning and the default policy for compression: by converg-

ing to the optimal policy for a given task, the control policy “discovers” regularitywhich is

thendistilled into a low-complexity representationby the default policy. In our approach,

the default policy is encouraged to learn a compressed representation not by arti�cially

constraining the network architecture or via hand-designed information asymmetry, but

rather through a prior distribution p(w) over its parameters which biases a variational

posterior ⌫(w) towards simplicity. The default policy is therefore trained to minimize

the variational code:

argmin
⌫2N

Es,a⇠D
w⇠⌫
� log ⇡w(a|s) + KL[⌫(·); p(·)]

= argmin
⌫2N

EM⇠PME
s⇠d

⇡?
M

w⇠⌫�

KL[⇡?
M
(·|s); ⇡w(·|s)] + KL[⌫(·); p(·)],

(�.�)

whereN is the distribution family for the posterior. This suggests the approach presented

inAlgorithm �, inwhich for each taskMk, the control policy⇡✓ is trained to approximate

the optimal policy ⇡?
k
via RPO, and the result is compressed into a new default policy dis-

tribution⌫k+1. Wenow furthermotivate sparsity-inducingpriors for the default policy in

multitask settings, derive formal performance guarantees forMDL�C, and demonstrate

its empirical e�ectiveness.

�.�.� Motivating the choice of sparsity-inducing priors

In Section �.�, compression (via pruning extraneous parameters) is the primary motiva-

tion for using sparsity-inducing priors that belong to the family of scaled-mixtures of

normal distributions. Intuitively, placing a distribution over the default parameters re-

�ects the agent’s epistemic uncertainty about the task distribution—when few tasks have

been sampled, a sparse prior prevents the default policy from over�tting to spurious cor-

relations in the limited data that the agent has collected. Here, we make this motivation

moreprecise, describing an example generativemodel of optimal policy parameterswhich
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Algorithm �MDL-C for Sequential Multitask Learning with Persistent Replay
�: Require: task distribution PM, policy class⇥, non-increasing coe�cients {⌘k}Kk=1

�: Initialize: default policy distribution ⌫1 2 N ✓ P(⇥), default policy datasetD0  
;

�: for tasks k = 1, 2, . . . , K do
�: Sample a taskMk = (S,A,Pk, rk, �k, ⇢k) ⇠ PM(·)
�: Optimize control policy:

✓k  argmax
✓2⇥

V
⇡

Mk
� ↵Es⇠d⇡⇢k

Ew⇠⌫k
KL[⇡w(·|s); ⇡✓(·|s)] (�.�)

�: Add data to default policy replay (J = |S| for �nite/small state spaces):

Dk  Dk�1 [ {(sj, ⇡̂✓k(sj))}Jj=1
. (�.�)

�: Update default policy distribution:

⌫k+1  argmin
⌫2N

1

⌘k�1

KL[⌫(·); p(·)] +
kX

i=1

JX

j=1

Ew⇠⌫KL[⇡̂
?

✓i
(·|sj); ⇡w(·|sj)]

(�.�)

�: end for

provides a principled interpretation for prior choice p(z) in multitask RL.

Generative model of optimal policy parametersConsider a set of tasks M =

{Mik}I,Ki
i=1,k=1

that are clustered into I groups, such that the MDPs in each group are

more similar to one another than tomembers of other groups. As an example, the overall

familyM could be all sports, while clustersMi ✓M could consist of, say, ball sports or

endurance competitions. Tomake this precise, we assume that the optimal policies of ev-

eryMDPbelong to a parametric family⇧ = {⇡w(·|s) : w 2 Rd
, 8s 2 S} (e.g., softmax

policies with parameters w), and that the optimal policies for each group are randomly

distributed within parameter space. In particular, we assume that the parameters of the

optimal policies ofM have the following generative model:

wi|�, �2 ⇠ N
�
wm; 0, (1� �)��1

�
2
Id

�
, wik|wi, �

2 ⇠ N
�
wik;wi, �

2
Id

�
.
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ŵ1

kw1 � w11k � kw1 � ŵ1k
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Figure �.�: (A) Illustration of a generative model of optimal policy parameters. ŵ1 = (1 �
�)w11 shrinks towards the origin, growing closer to w1 than w11. (B) Sparsity-
inducing priors over �.

where Id is the d�dimensional identity matrix. If we marginalize out wi, we get the

marginal distribution p(wik|�, �2) = N (wik; 0, �2
�
�1
Id). We can then visualize the

parameter distribution of the optimal policies forM as a d-dimensional Gaussianwithin

which lie clusters of optimal policies for related tasks which are themselves normally dis-

tributed (see Fig. �.�A for d = 2).

Interpretation of � The parameter � 2 (0, 1] can be interpreted as encoding the

squared distance between optimal policy parameters within a group divided by the

squared distance between optimal policies inM. Intuitively, � determines howmuch in-

formation one gains about the optimal parameters of a task in a group, given knowledge

about the optimal parameters of another task in the same group. To see this, we compute

our posterior belief about the value wi given observation of wik: p(wi|wik, �, �
2) =

N (wi; (1� �)wik, (1� �)�2
Id). When � = 1 (inner circle in Fig. �.�A has the same

radius as the outer circle), our posterior mean estimate of wi is simply 0, suggesting we

have learned nothing new about the mean of the optimal parameters in group i, by ob-

serving wik. In the other extreme when � ! 0, the posterior mean approaches the

maximum-likelihood estimator wik, suggesting that observation of wik provides maxi-

mal information about the optimal parameters in group i. Any � in between the two

extremes results in an estimator that “shrinks” wik towards 0. The value of � thus has

important implications for multitask learning. Suppose an RL agent learns the optimal

parameters w11 (task �, group �), and proceeds to learn task 2 in group 1. The value of �

determines whether w11 can be used to inform the agent’s learning of w21. In this way,
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� determines the e�ective degree of epistemic uncertainty the agent has about the task

distribution.

Choice of p(�) and connection to p(z)Given its importance, it’s natural to ask what

value � should take. Instead of treating � as a parameter, we can choose a prior p(�) and

perform Bayesian inference. Ideally, p(�) should (i) encode our prior belief about the

extent to which the optimal parameters cluster into groups and (ii) result in a posterior

mean estimator ŵ(p(�))(x) = 1 � E [�|x] x that is close to w for x|w ⇠ N (x;w, �2).

This condition encourages the expected default policy (under the posterior ⌫; Eq. (�.�))

to be close to optimal policies in the sameMDP group (centered atw). One prior choice

that satis�es both conditions is p(�) / �
�1. It places high probability for small � and

low probability for high �, thus encoding the prior belief that the optimal task parame-

ters are clustered (see Fig. �.�B; blue). It is instructive to compare p(�) / �
�1 with two

extreme choices of p(�). When p(�) = �(��1), p(z) = �(�) and themarginal p(w) is

the often-used Gaussian prior over the parameters w with �xed variance �2. This corre-

sponds to the prior belief that knowingwi1 provides no information aboutwi2. On the

other hand, p(�) = �(�) recovers a uniform prior over the parametersw and re�ects the

prior belief that theMDP groups are in�nitely far apart. In relation to (ii), one can show

the ŵ(p(�)) strictly dominates the maximum-likelihood estimator ŵ(ML)(x) = x (Efron

and Morris, ����; Appendix �.D), for p(�) / �
�1. This means MSE(w, ŵ(p(�))) 

MSE(w, ŵ(ML)) for allw, where MSE(w, ŵ) = Ex⇠N (x;w,�2)kw � ŵ(x)k2.

Connection to p(z) and application of VDODe�ning z2 = �
2
�
�1 and applying the

change-of-variable formula to p(�) / �
�1 gives p(z) / |z|�1 and thus the Normal-

Je�reys prior in Section �.�. VDO (see Section �.�) can then be applied to obtain an

approximate posterior ⌫(w, z) which minimizes the variational code Eq. (�.�). Similar

correspondences may also be derived for the inverse-Gamma distribution and the half-

Cauchy distribution (Fig. �.�B; Appendix �.D).

�.�.� Performance Analysis

At a fundamental level, we’d like assurance (i) thatMDL�C’s default policy will be able

to e�ectively distill the optimal policies for previously observed tasks, and (ii) that reg-

ularization using this default policy gives strong performance guarantees for the control
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policy on future tasks.

Default policy performanceOne way we can verify (i) is to obtain an upper bound on

the average KL between default policies sampled from the default policy distribution and

an optimal policy for a task sampled from the task distribution. This enables us to per-

form analysis using online convex optimization (OCO). In OCO, the learner observes a

series of convex loss functions `k : N ! R, k = 1, . . . , K , where N ✓ Rd is a convex

set. After each round, the learner produces an output xk 2 N for which it will then

incur a loss `k(xk) (Orabona, ����). At round k, the learner is usually assumed to have

knowledge of `1, . . . , `k�1, but noother assumptions aremade about the sequence of loss

functions. The learner’s goal is to minimize its average regret. For further background,

see Appendix �.F. Crucially, theMDL�C learning procedure for the default policy distri-

bution is equivalent to follow the regularized leader (FTRL), an OCO algorithm which

enjoys sublinear regret. In each round of FTRL, the learner selects the solution x 2 N

according to the following general objective: xk+1 = argmin
x2N

 k(x) +
P

k�1

i=1
`i(x),

where  : N ! R is a convex regularization function. Using standard results, this con-

nection allows us to boundMDL�C’s regret in learning the default policy distribution.

All proofs are provided in Appendix �.G.

Proposition �.�.� (Persistent Replay FTRL Regret). Let tasks Mk be independently

drawn from PM at every round, and let them each be associated with a deterministic opti-

mal policy ⇡?
k
: S ! A. We make the following mild assumptions: i) ⇡w(a?|s) � ✏ > 0

8s 2 S , wherea? = ⇡
?

k
(s) and ✏ is a constant. ii)min⌫ KL[⌫(·); p(·)] = 0 asymptotically

asVar[⌫]!1. Then with ⌘k�1 = log(1/✏)
p
k, Algorithm � guarantees

1

K

KX

k=1

`k(⌫k)�
1

K

KX

k=1

`k(⌫̄K)  (KL[⌫̄K ; p] + 1)
log(1/✏)p

K
, (�.�)

where ⌫̄K = argmin
⌫2N

P
K

k=1
`k(⌫).

In otherwords, the average regret decreases at rateO(1/
p
K)with respect to the number

of observed tasks.

Control policy performance Intuitively, this result shows that the average regret is

upper-bounded by factors which depend on the divergence of the barycenter distribu-



�.�. Experiments ���

tion from the prior and the “worst-case” prediction of the default policy. Importantly,

the KL between the default policy distribution and the barycenter distribution goes to

zero asK ! 1. We can also now be assured of point (ii) above, in that this result can

be used to obtain a sample-complexity bound for the control policy. Speci�cally, we can

use Proposition �.G.� to place an upper-bound on the total variation distance between

default policies sampled from ⌫ and the KL between the maximum likelihood solution

and a sparsity-inducing prior p. This is useful, as it allows to translate low regret for the

default policy into a sample complexity result for the control policy usingMoskovitz et al.

(����a), Lemma �.�.

Proposition �.�.� (Control Policy Sample Complexity). Under the setting described in

Proposition �.G.�, denote by Tk the number of iterations to reach ✏-error forMk in the sense

thatmintTk
{V ⇡

?
k � V

(t)}  ✏. whenever t > Tk. Further, denote the upper-bound in

Eq. (�.��) byG(K). In a�niteMDP, fromany initial ✓(0), and following gradient ascent,

EMk⇠PM [Tk] satis�es:

EMk⇠PMi
[Tk] �

80|A|2|S|2
✏2(1� �)6 EMk⇠PMi

s⇠UnifS

2

4↵k
A
(s)

�����
d
⇡
⇤
k
⇢

µ

�����

2

1

3

5 ,

where ↵k(s) := dTV(⇡?k(·|s), ⇡̂0(·|s)) 
p

G(K), ↵k
A
(s) = 2|A|(1�↵(s))

2|A|(1�↵(s))�1
, and µ is a

measure over S such that µ(s) > 0 8s 2 S .

Intuitively, this means that when the average number of samples is su�ciently large, the

control policy is guaranteed to have reached " error. Therefore, as the agent is trained

onmore tasks, the default policy distribution regret, upper-bounded byG(K),decreases

asymptotically to zero, and as the default policy regret decreases, the control policy will

learn more rapidly, as poly(G(K)).

�.� Experiments
We testedMDL�C applied to discrete and continuous control in both the sequential and

parallel task settings. To quantify performance, in addition tomeasuring per-task reward,

we also report the cumulative regret for eachmethod in each experimental setting in Sec-

tion �.I.�.
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Figure �.�: MDL-C rapidly adapts to new goal locations (top row) and rule changes (bottom
row). All curves represent averages taken over �� random seeds, with the shading
indicating standard error.

�.�.� �D Navigation

We �rst test MDL�C in the classic FourRooms environment (Fig. �.�a, (Sutton et al.,

����)). The baselines in this case are entropy-regularized policy optimization (PO), reg-

ularized policy optimization with no constraint on the default policy (RPO), an agent

with VDO applied to the control policy and no default policy (VDO�PO), and M���

���IA (Galashov et al., ����a) in which the goal feature is manually witheld from the

default policy. Observe thatRPO is an approximate version of TVPO, introduced in the

previous chapter. Details for all methods can be found in Appendix �.H.

Generalization Across Goals In the �rst setting, we testMDL�C’s ability to facilitate

rapid learning on previously unseen goals. In the �rst phase of training, a single goal loca-

tion is randomly sampled at the start of each episode, andmay be placed anywhere in two

of the four rooms in the environment (Fig. �.�a, top left). In the second phase, the goal

location is again randomly sampled at the start of each episode, but in this case, only in

the rooms which were held out in the �rst phase. Additionally, the agent is limited to ��

rather than ��� steps per episode. Importantly, VDO induces theMDL�C default policy

to ignore input features which are, on average, less predictive of the control policy’s be-

havior. In this case, the default policy learns to ignore the goal feature and the reward ob-

tained on the previous timestep. This is because, when averaging across goal locations, the

agent’s current position (sh) and its previous direction (ah�1) are more informative of its

next action—typically, heading towards the nearest door. In contrast, the un-regularized
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default policy of the RPO agent does not drop these features (Appendix �.I for a visu-

alization and Appendix �.H for more details). By learning to ignore the goals present

in phase � and encoding useful behavior regardless of goal location, MDL�C’s develops

more e�ective regularization in phase �, enabling it to adapt more quickly than other

methods (Fig. �.�c, top), particularlyRPO, which over�ts to phase �’s goals.M�����IA

also adapts quickly, as its default policy is hard-coded to ignore the goal feature.

Robustness to Rule Changes In this setting, there are only two possible goal locations,

one at the top left of the environment, and the other at the bottom right. In training

phase �, the agent receives a goal feature as input which indicates the state index of the

rewarded location for that episode. In phase �, the goal feature switches from marking

the reward location to marking the unrewarded location. That is, if the reward is in the

top left, the goal feature will point to the bottom right. Here, the danger for the agent

isn’t over�tting to a particular goal or goals, but rather “over�tting” to the reward-based

rules associated with a given feature. As we saw in Fig. �.�c (top), an un-regularized de-

fault policy, will copy the control policy and over�t to a particular setting. Fortunately,

theMDL�C default policy learns to ignore features which are, on average, less useful for

predicting the control policy’s behavior—the goal and previous reward features. This

renders the agent more robust to contingency switches like the one described, as we can

see in Fig. �.�c (bottom). These examples illustrate that MDL-C enables agents to e�ec-

tively learn the consistent structure of a group of tasks, regardless of its semantics, and

“compress out” information which is less informative on average.

�.�.� Continuous Control

A more challenging application area is that of high-dimensional continuous control. In

this setting, we presented agents with multitask learning problems using environments

from the DeepMind Control Suite (DMC; (Tassa et al., ����)). We used soft actor critic

(SAC; (Haarnoja et al., ����)) as the base agent. We testedMDL�C in both the sequential

and parallel settings on two domains from DMC: Walker and Cartpole (Fig. �.�a).

Additional details can be found in Appendix �.H.

Sequential Tasks In the sequential setting, tasks are sampled one at a time uniformly

without replacement from the available tasks within each domain, with the default pol-
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Figure �.�: MDL-C improves both sequential and parallel learning in continuous control tasks.
All curves represent averages taken over � random seeds, with the shading indicating
standard error. In (b), insets show the improvement of MDL-C as k increases, and
in (d), solid curves represent averages over each feature within a category.

icy distribution conserved across tasks. For walker, these tasks are stand, walk, and run.

In stand, the agent is rewarded for increasing the height of its center of mass, and in the

latter two tasks, an additional reward is given for forward velocity. For cartpole, there

are four tasks: balance, balance-sparse, swingup, and swingup-sparse. In the

balance tasks, the agent must keep a rotating pole upright, and in the swingup tasks,

it must additionally learn to swing the pole upwards from an initial downward orienta-

tion. Performance results for the hardest task within each domain (run in walker and

swingup-sparse in cartpole) for each method are plotted in Fig. �.�b, where k indi-

cates the task round at which the task was sampled. We can see that as k increases (as

more tasks have been seen previously), MDL�C’s performance improves. Importantly,

the RPO agent’s default policy, which is un-regularized, over�ts to the previous task,

essentially copying the optimal policy’s behavior. This can severely hinder the agent’s

performance when the subsequent task requires di�erent behavior. For example, on

swingup-sparse, if the previous task is swingup, the RPO agent performs well, as

the goal is identical. However, if the previous task is balance or balance-sparse,

the agent never learns to swing the pole upwards, signi�cantly reducing its average per-

formance. Another important point to note is that because the agent is not given an ex-

plicit goal feature in this setting,methods likeM�����IAwhich rely onprior knowledge
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Figure �.�: To test the e�ect of information asymmetry on its on performance, we trained a vari-
ant of M�����IA in which we withheld the input features thatMDL-C learned to
gate out (Fig. �.�) in addition to the task ID feature. We call this modi�ed method
M�����IA�. Average performance is plotted above over �� seeds, with the shading
representingoneunit of standard error. Wecan see thatwhileM�����IA�narrowly
outperformsM�����IA, the performance gains ofMDL-C can’t solely be ascribed
to e�ective information asymmetry.

about the agent’s inputs cannot be applied.

Parallel TasksWe also tested parallel-task versions of SAC, M�����IA, and MDL�C

based on the model of Yu et al. (����). In this framework, a task within each domain is

randomly sampled at the start of each episodeand the agent learns a single control policy

for all tasks. Performance is plotted in Fig. �.�c, where we can again see thatMDL�C ac-

celerates convergence relative to the baseline methods. This marks a di�erence compared

to the easier FourRooms environment, in which MDL�C and M�����IA performed

roughly the same. As before, one clue to the di�erence can be found in the input fea-

tures that theMDL�C default policy chooses to ignore (Fig. �.�d). For walker, inputs are

��-dimensional, with �� features related to the joint orientations, � feature indicating the

height of the agent’s center of mass, and � features indicating velocity components. For

cartpole, there are � input dimensions, with � pertaining to position and � to velocity. In

the walker domain, where the performance di�erence is greatest, theMDL�C agent not

only ignores the added task ID feature, but also the several features related to velocity. In

contrast, in the cartpole domain,MDL�C only ignores the task ID feature, just asM���

���IA does, and the performance gap is smaller. This illustrates thatMDL�C learns to

compress out spurious information even in settings for which it is di�cult to identify a

priori. In order to test the e�ect of the learned asymmetry on performance more directly,
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we implemented a variant of M�����IA in which all of the features which MDL�C

learned to ignore were manually hidden from the default policy (Fig. �.�). Interestingly,

while this method improved over standard M�����IA, it didn’t completely close the

gap with MDL�C, indicating there are downstream e�ects within the network beyond

input processing which are important for the default policy’s e�ectiveness. We hope to

explore these e�ects in more detail in future work.

�.� Related Work
MDL-C can be viewed as an extension of recent approaches to learning default policies

(“behavioral priors”) from the optimal policies of related tasks (Teh et al., ����a;Tirumala

et al., ����a). For a default policy to be useful for transfer learning, it is crucial to balance

the ability of the default policy to “copy” the control policies with its expressiveness. If

the default policy is too expressive, it is likely to over�t on past tasks and fail to general-

ize to unseen tasks. Whereas prior work primarily hand-crafts structural constraints into

the default policies to avoid over�tting (e.g., by hiding certain state information from

the default policy; Galashov et al., ����a), MDL-C learns such a balance from data with

sparsity-inducing priors via variational inference. MDL-C may also be derived from the

RL-as-inference framework (Levine, ����a; Appendix �.A). MDL-C thus has close con-

nections with algorithms such as MPO (Abdolmaleki et al., ����) and VIREL (Fellows

et al., ����), discussed in Appendix �.A. As a general framework, MDL-C is also con-

nected to the long and well-established literature on choosing appropriate Bayesian pri-

ors (Je�reys, ����; Bernardo, ����; Casella, ����), and more recent work that focuses on

learning such priors for large-scale machine learning models (Nalisnick and Smyth, ����;

Nalisnick et al., ����; Atanov et al., ����). For a further discussion of related work, par-

ticularly concerning the application of MDL to the RL setting, see Appendix �.C.

�.� Conclusion
Inspired by dual process theories and the MDL principle, we propose a regularized pol-

icy optimization framework for multitask RLwhich aims to learn a simple default policy

encoding a low-complexity distillation of the optimal behavior for some family of tasks.

By encouraging the default policy to maintain a low e�ective description length,MDL�
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C ensures that it does not over�t to spurious correlations among the (approximately)

optimal policies learned by the agent. We described MDL�C’s formal properties and

demonstrated its empirical e�ectiveness in discrete and continuous control tasks. There

are of course limitations of MDL�C, which we believe represent opportunities for fu-

ture work (see Appendix �.E). Promising research directions include integratingMDL�

C with multitask RL approaches which balance a larger set of policies (Barreto et al.,

����; Moskovitz et al., ����c; Thakoor et al., ����) as well considering nonstationary en-

vironments (Parker-Holder et al., ����). We hopeMDL�C inspires further advances in

multitask RL.
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Appendix

Appendix �.A: Reinforcement Learning as Inference

The control as inference framework (Levine, ����a) associates every time step h with a

binary “optimality” random variableOh 2 {0, 1} that indicates whether ah is optimal at

state sh (Oh = 1 for optimal, andOh = 0 for not). The optimality variable has the con-

ditional distribution P (Oh = 1|sh, ah) = exp(r(sh, ah)), which scales exponentially

with the reward received taking action ah in state sh.

DenoteOH as the event thatOs = 1 for s = 0, . . . , H�1. Then the log-likelihood

that a policy ⇡w(a|s) is optimal over a horizonH is given by:

P(OH) =

Z
P(OH |⌧)P⇡w(⌧ |w)p(w)d⌧dw.

By performing variational inference, we can lower-bound the log-likelihood with the

ELBO:

logP(OH) � E⌫⇡(⌧)
H�1X

h=0

�
r(sh, ah)� E⌫✓(w)KL[⇡✓(ah|sh), ⇡w(ah|sh)]

�

�KL[⌫�(w), p(w)],

(�.�)

where ⌫✓,�(⌧, w) = ⌫✓(⌧)⌫�(w) is the variational posterior,

⌫✓(⌧) = ⇢(s0)
H�1Y

h=0

P(sh+1|sh, ah)⇡✓(ah, sh)

and {✓,�} are the variational parameters. We can maximize this objective iteratively by

performing coordinate ascent on {✓,�}:

✓  ✓ + ⌘r✓

 
E⌫✓(⌧)

H�1X

h=0

�
r(sh, ah)� E⌫✓(w)KL[⇡✓(ah|sh), ⇡w(ah|sh)]

�
!
, (�.�)

� �� ⌘r�

 
E⌫✓(⌧)

H�1X

h=0

E⌫✓(w)KL[⇡✓(ah|sh), ⇡w(ah|sh)] + KL[⌫�(w), p(w)]

!

(�.��)
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where ⌘ is a learning rate parameter. Note that Eq. (�.��) is equivalent to Eq. (�.�) and

Eq. (�.��), and Eq. (�.�) is equivalent to Eq. (�.��) with the KL reversed.

Connection to Maximum a Posteriori Policy Optimization (MPO)MDL�C is

closely related toMPO(Abdolmaleki et al., ����), with three key di�erences. First,MDL�

C performs variational inference on the parameters of the default policy with an approx-

imate posterior ⌫�(w), whereas MPO performs MAP inference. Second, MPO places a

normal prior onw, which in e�ect penalizes the L� norm ofw. In contrast,MDL�C uses

sparsity-inducing priors such as the normal-Je�reys prior. Third, MDL�C uses a para-

metric ⇡✓, whereas MPO uses a non-parametric one�. While there is also a parametric

variant of MPO, this variant does not maintain ✓ and � separately. Instead, this variant

directly sets ✓ to � in Eq. (�.�). This illustrates the key conceptual di�erence between

MDL�C andMPO.MDL�Cmakes a clear distinction between the control policy ⇡✓ and

the default policy ⇡w, with the two policies serving two distinct purposes: the control

policy for performing on the current task, the default policy for distilling optimal poli-

cies across tasks and generalizing to new ones. MPO, on the other hand, treats ⇡✓ and ⇡w

as fundamentally the same object.

LikeMPO,VIREL (Fellows et al., ����) canbederived from the control as inference

framework. In fact, Fellows et al. showed that a parametric variant ofMPOcanbederived

from VIREL (Fellows et al., ����). The key novelty that sets VIREL apart from both

MPO and MDL�C is an adaptive temperature parameter that dynamically updates the

in�uence of the KL term in Eq. (�.�).

Appendix �.B: Multitask RL Frameworks
We believe the objective which best captures naturalistic settings is the average reward

obtained over the agent’s “lifetime”: limT!1
1

T
E
P

T

t=1
r(st, at). Typical objectives in-

clude �nding either a single policy or a set of policies which maximize worst- or average-

case value:max⇡minM2M V
⇡

M
(Zahavy et al., ����) ormax⇡ EPMV

⇡

M
(Moskovitz et al.,

����a). When the emphasis is on decreasing the required sample complexity of learn-

ing new tasks, a useful metric is cumulative regret: the agent’s total shortfall across

�In practice, MPO parametrizes ⇡✓ implicitly with a parameterized action-value function and the de-
fault policy.
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training compared to an optimal agent. In practice, it’s often simplest to consider the

task distribution PM to be a categorical distribution de�ned over a discrete set of tasks

M := {Mk}Kk=1
, though continuous densities over MDPs are also possible. Two mul-

titask settings which we consider here are parallel task RL and sequential task RL. In

typical parallel task training (Yu et al., ����), a newMDP is sampled fromPM at the start

of every episode and is associated with a particular input feature g 2 G that indicates

to the agent which task has been sampled. The agent’s performance is evaluated on all

tasksM 2M together. In the sequential task setting (Moskovitz et al., ����a; Pacchiano

et al., ����), tasks (MDPs) are sampled one at a time fromPM, with the agent training on

each until convergence. In contrast to continual learning (Kessler et al., ����), the agent’s

goal is simply to learn a new policy for each taskmore quickly asmore are sampled, rather

than learning a single policy which maintains its performance across tasks. Another im-

portant setting ismeta-RL, which we do not consider here. In the meta-RL setting, the

agent trains on each sampled task for only a few episodes each with the goal of improving

few-shot performance and is meta-tested on a set of held-out tasks (Yu et al., ����; Finn

et al., ����).

Another strain of work in multitask RL assumes some form of shared structure in

the transition dynamics (Pacchiano et al., ����; Agarwal et al., ����; Cheng et al., ����).

Speci�cally, the core assumption made by these works is that the transition dynamics

are linearly decodable from a set of features which is shared across tasks or in which the

transition matrix admits a low-rank decomposition. This is very di�erent from our own

structural assumption—that is, in its simplest form, that the optimal policies of the tasks

withwhich our agents are faced take similar actions in at least some part of the state space.

Beyond this, the MDPs inM need only share the same state and action space, with no

direct assumptions about transitions or rewards. This is important, because the assumed

structures in the transition distribution made by Pacchiano et al. (����); Agarwal et al.

(����); Cheng et al. (����) act as the starting points for algorithm development. MDL-

C/RPO/TVPO however, can leverage similarity among optimal policies when it exists,

but are not dependent on it as a prerequisite. (E.g., TVPO(andRPO/MDL-C) is guaran-

teed to perform no worse than log-barrier regularization, which has a polynomial sample
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complexity guarantee.) Ideally, we’d like a generalist method which can identify on its

own and exploit di�erent types of structure in the environment.

Appendix �.C: Additional Related Work
Previous work has also applied theMDLprinciple in anRL context, though primarily in

the context of unsupervised skill learning (Zhang et al., ����; Thrun and Schwartz, ����).

For example, Thrun and Schwartz (����) are concerned with a set of “skills” which are

policies de�ned only over a subset of the state space that are reused across tasks. They

consider tabular methods, measuring a pseudo-description length as

DL =
X

s2S

X

M2M

P
⇤

M
(s) +

X

n2N

|Sn|, (�.��)

whereP ⇤

M
(s) is the probability that no skill selects an action in state s for taskM and the

agentmust compute the optimalQ-values in state s forM ,N is the number of skills, and

|Sn| is the number states for which skill n is de�ned. They then trade o� this description

length term with performance across a series of tabular environments.

One other related method isD������ (Teh et al., ����a), which uses the following

objective in the parallel task setting:

J Distral(✓,�) = V
⇡✓ � Es⇠d

⇡✓ [↵KL[⇡✓(·|s), ⇡�(·|s)] + �H[⇡✓(·|s)]] . (�.��)

That is, like the un-regularized RPO method, D������ can be seen as performing

maximum-likelihood estimation to learn the (unconstrained) default policy,while adding

an entropy bonus to the control policy.

Another important method in the sequential setting is TVPO (Moskovitz et al.,

����a), in which (in the tabular case) the default policy is de�ned as a softmax over the

average action frequencies of the optimal policies for the tasks that the agent has seen so

far. That is, if the average optimal action in a state s is given by

⇠̂k(s, a) =
1

k

kX

i=1

(⇡?
i
(s) = a),
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then the TVPO default policy is

⇡w(a|s) = softmax
⇣
⇠̂k(s, a)/�(k)

⌘
,

where �(k) is a temperature which decays as k ! 1. In high-dimensional state and

action spaces, this tabular solution can be approximated by training a default policy to

predict the converged control policy’s actions in each task. Importantly, this is equivalent

to using KL distillation in that the default policies will converge to the same barycenter

policy (Moskovitz et al., ����a), as long as the distillation is only performed once the

control policy has converged in each task. Using KL distillation in this way is exactly the

RPO baseline that we use in this paper. Crucially, the use of the softmax with decaying

temperature was introduced by Moskovitz et al. (����a) as a useful ‘hack’ to prevent the

default policy fromover�tting to early tasks, as the optimal default policy is the barycenter

policy (approximated as the number of draws from the task distribution grows). Thus,

MDL-C can itself be seen as a scalable advancement of TVPOwhich models the agent’s

epistemic uncertainty about the task distributionbyplacing a sparse prior over the default

policy parameters (and uses a distillation loss rather than action prediction). In other

words, MDL-C represents a principled approach to reducing the risk of default policy

over�tting in the low-data regime.

Finally, Brunskill and Li (����) consider a similar training and task structure to our

own, but use a model-based approach to learn the underlying MDPs.

Appendix �.D: Motivating the choice of sparsity-

inducing priors

As a reminder, the generative model of optimal parameters in Section �.�.� is given by:

wi|�, �2 ⇠ N (0,
1� �
�

�
2
Id), (�.��)

wik|wi, �
2
, � ⇠ N (w, �2

Id) (�.��)
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with marginal and posterior densities

p(wik|�2
, �) = N (0, �2

�
�1
Id), (�.��)

p(wi|wik, �
2
, �) = N

�
(1� �)wik, (1� �)�2

Id

�
. (�.��)

In the rest of this section, we set �2 = 1 for simplicity and drop the indices on w

andw to remove clutter.

�.D.� Correspondence between p(z) and p(�)

In Section �.�.�, we draw a connection between p(�) / �
�1 and the normal-Je�reys

prior, which is commonly used for compressing deep neural networks (Louizos et al.,

����). In Table �.�, we expand on this connection and list p(�) for two other commonly-

used priors for scale mixture of normal distributions: Je�reys, Inverse-gamma, and

Inverse-beta. Note that the half-Cauchy distribution p(z) / (1 + z
2)�1 is a special

case of the inverse-beta distribution for s = t = 1/2. Half-cauchy prior is another com-

monly used prior for compressing Bayesian neural networks (Louizos et al., ����).

�.D.� MSE risk

In this section, we prove that the Bayes estimators for the Je�reys, inverse-gamma, and

the inverse-beta (by extension the half-Cauchy) distributions dominate the maximum-

likelihood estimator with respect to the mean-squared error.

De�ne the mean-squared error of an estimator ŵ(x) ofw as

MSE(w, ŵ) = Exkŵ(x)� wk2, (�.��)

where the expectation is taken overN (x;w,↵2). Immediately, we have R(w, ŵ(ML)) =

Prior name p(z2) p(�)

Je�reys p(z2) / z
�2

p(�) / �
�1

Inverse-gamma p(z2) / z
�2(s+1)

e
�t/(2z

2
)

p(�) / �
s�1

e
�t�/2

Inverse-beta p(z2) / (z2)t�1(1 + z
2)�(s+t)

p(�) / �
�(s+2t+1)(1 + �)�(s+t)

Table �.�: Correspondence between p(z2) and p(�).
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d, where ŵ(ML)(x) = x is the maximum-likelihood estimator. An estimator ŵ(a)(x) is

said to dominate another estimator ŵ(b)(x) ifMSE(w, ŵa)  MSE(w, ŵb) for allw and

the inequality is strict for a set of positive Lesbesgue measure. It is well-known that the

maximum-likelihood estimator is minimax (George et al., ����), and thus any estimator

that dominates the maximum-likelihood estimator is also minimax.

To compute the mean-squared error risk for an estimator ŵ(x), observe that

kŵ(x)� wk2 = kx� ŵ(x)k2 � kx� wk2 + 2(ŵ(x)� w)>(x� w). (�.��)

Taking expectations on both sides gives

MSE(w, ŵ) = Exkx� ŵ(x)k2 � d+ 2
dX

i=1

Cov(ŵi(x), xi) (�.��)

= Exkx� ŵ(x)k2 � d+ 2Exr · ŵ(x) (�.��)

where r = (@/@x1, . . . , @/@xd) and we apply Stein’s lemma cov(ŵi(x), xi) =

Ex@ŵi/@xi in the last line. If the estimator takes the form ŵ(x) = x+�(x), the expres-

sion simpli�es as:

MSE(w, ŵ) = d+ Exk�(x)k2 + 2Exr · �(x). (�.��)

Therefore, an estimator ŵ(x) = x+ �(x) dominates ŵ(ML)(x) if

MSE(w, ŵ)�MSE(w, ŵ(ML)) = Ex

⇥
k�(x)k2 + 2r · �(x)

⇤
 0 (�.��)

for allw and the inequality is strict on a set of positive Lesbesgue measure.

�.D.�.� James-Stein estimator

The famous Jame-Stein estimator is de�ned as

ŵ
(JS)(x) = x+ �

(JS)(x), �
(JS)(x) = �(d� 2)x/kxk2, (�.��)
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with

r · �(JS)(x) =
dX

i=1


�d� 2

kxk2 + 2
d� 2

(kxk2)2x
2

i

�
= �(d� 2)2

kxk2 , (�.��)

k�(JS)(x)k2 = (d� 2)2

kxk2 . (�.��)

Substitutingr · �(JS)(x) and k�(JS)(x)k2 into Eq. (�.��), we have

MSE(w, ŵ(JS))�MSE(w, ŵ(ML)) = Ex

(d� 2)2

kxk2 . (�.��)

Thus, the James-Stein estimator dominates the maximum-likelihood estimator for d >

2.

�.D.�.� Bayes estimators
The Bayes estimator for a prior choice p(�) is given by (Brown, ����):

ŵ
(p(�))(x) = x+ �

(p(�))(x), �
(p(�))(x) = r logm(x), (�.��)

where

m(x) =

Z
N (x; 0, ��1

Id)p(�)d� (�.��)

=

Z
(2⇡)�

1
2�

d/2 exp
�
��x2

/2
�
p(�)d�. (�.��)

Substituting �(p(�))(x) into Eq. (�.��), we �nd that the condition for the Bayes estimator

to be minimax is given by (George et al., ����):

MSE(w, ŵ(B))�MSE(w, ŵ(ML)) = Ex


�kr logm(x)k2 + 2

r2
m(x)

m(x)

�
(�.��)

= Ex

"
4
r2
p

m(x)p
m(x)

#
 0, (�.��)

wherer2 =
P

i
@
2
/@x

2

i
is the Laplace operator. This condition holds when

p
m(x)

is superharmonic (i.e.,
p

m(x)  0, 8x 2 Rd), suggesting a recipe for constructing

Bayes estimators that dominate the maximum likelihood estimator, summarized in the



�.�. Conclusion ���

following proposition.

Proposition �.D.� (Extension of Theorem � in Fourdrinier et al., ����). Let p(�) be a

positive function such that f(�) = �p
0(�)/p(�) can be decomposed as f1(�) + f2(�)

where f1 is non-decreasing, f1  A, 0 < f2  B, andA/2 + B  (d � 6)/4. Assume

also that lim�!0 �
d/2+2

p(�) = 0. Then, r2
p

m(x)  0 and the Bayes estimator is

minimax. IfA/2 + B < (d� 6)/4, then the Bayes estimator dominates ŵ(ML)(x).

Proof. This proof largely follows the proof of Theorem � in (Fourdrinier et al., ����).

Note that Eq. (�.��) holds if

r2
p
m(x) =

1

2
p

m(x)

✓
r2

m(x)� 1

2

krm(x)k2
m(x)

◆
 0 8x 2 Rd

, (�.��)

or equivalently

r2
m(x)

krm(x)k �
1

2

krm(x)k
m(x)

 0 8x 2 Rd
. (�.��)

Computing the derivatives, we get the condition

R
1

0
(�kxk2 � d) �d/2+1

e
��kxk

2
/2
p(�)d�

kxk
R

1

0
�d/2+1e��kxk

2/2p(�)d�
� 1

2

kxk
R

1

0
�
d/2+1

e
��kxk

2
/2
p(�)d�

R
1

0
�d/2e��kxk

2/2p(�)d�
 0.

(�.��)

Divide both sides by kxk and rearrange to get

R
1

0
�
d/2+2

e
��kxk

2
/2
p(�)d�

R
1

0
�d/2+1e��kxk

2/2p(�)d�
� 1

2

R
1

0
�
d/2+1

e
��kxk

2
/2
p(�)d�R

�d/2e��kxk
2/2p(�)d�

 d

kxk2 . (�.��)

Next, we integrate by parts the numerator of the �rst term on the left-hand side to get:

Z
1

0

�
d/2+2

e
��kxk

2
/2
p(�)d� = � 2

kxk2
h
�
d/2+2

e
��kxk

2
/2
p(�)

i1
0

(�.��)

+
d+ 4

kxk2

Z
1

0

�
d/2+1

e
��kxk

2
/2
p(�)d�

+
2

kxk2

Z
1

0

�
d/2+2

e
��kxk

2
/2
p
0(�)d�,
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where the middle term is the same as the denominator of the �rst term in Eq. (�.��). In-

tegrating by parts the second term gives the same expression as that of the �rst term, but

with d� 2 in place of d everywhere. Substituting these expressions back into Eq. (�.��),

collecting like terms, and dividing both sides by 2/kxk2, gives:

R
1

0
�
d/2+2

e
��kxk

2
/2
p
0(�)d�

R
1

0
�d/2+1e��kxk

2/2p(�)d�
� 1

2

R
1

0
�
d/2+1

e
��kxk

2
/2
p
0(�)d�

R
1

0
�d/2e��kxk

2/2p(�)d�
+ 0 + 1 (�.��)

 d

2
� d+ 4

2
+

1

2

d+ 2

2
=

d� 6

4
,

where

1 = �
lim�!1 �

d/2+2
e
��kxk

2
/2
p(�)

R
1

0
�d/2+1e��kxk

2/2p(�)d�
+

1

2

lim�!1 �
d/2+1

e
��kxk

2
/2
p(�)

R
1

0
�d/2e��kxk

2/2p(�)d�
, (�.��)

0 =
lim�!0 �

d/2+2
e
��kxk

2
/2
p(�)

R
1

0
�d/2+1e��kxk

2/2p(�)d�
� 1

2

lim�!0 �
d/2+1

e
��kxk

2
/2
p(�)

R
1

0
�d/2e��kxk

2/2p(�)d�
. (�.��)

Here, both 0 and 1 are nonpositive: (i) 0 is nonpositive because the �rst term van-

ishes due to the boundary conditions and the second term is nonpositive, and (ii) 1 is

nonpositive because the limits of the numerators of the two terms are equal while the

denominator of the second term is larger than that of the �rst. We can thus drop 0 and

1 to get the su�cient condition:

Ed (f)�
1

2
Ed�2 (f) 

d� 6

4
, (�.��)

where Ed denotes expectation with respect to the density

gd(�) =
�
d/2+1

e
��kxk

2
/2
p(�)

R
1

0
�d/2+1e��kxk

2/2p(�)d�
(�.��)

and where f(�) = �p
0(�)/p(�).

Because gd(�) is a family of monotone increasing likelihood ratio in d and f1 is

nonincreasing and bounded by A, we have Ed(f1) � Ed�2(f1)/2  A/2. We have
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Ed(f2)� Ed�2(f2)/2  B because 0 < f2  B. Taken together, we have

Ed(f)� Ed�2(f)/2  A/2 + B  (k � 6)/4. (�.��)

When the inequality is strict (i.e.,A/2+B < (k� 6)/4), thenr2
p
m(x) < 0 and the

Bayes estimator dominates the maximum-likelihood estimator.

Checking whether a given p(�) satisfy the conditions in Proposition �.D.�may be

tedious. The following corollary is useful for construction p(�) that satis�es the condi-

tions in Proposition �.D.�.

Corollary �.D.� (Extension of Corollary � in Fourdrinier et al., ����). Let  be a con-

tinuous function that can be decomposed as  1 +  2, with  1  C ,  1 non-decreasing,

0 <  2  D, andC/2 +D  0. Let

p(�) = exp

✓
1

2

Z
�

�0

2 (u) + d� 6

u
du

◆
8�0 � 0, (�.��)

such that lim�!0 �
d/2+2

p(�) = 0 and �0 2 (0, 1) is a constant. Then, p(�) results

in a minimax Bayes estimator, which dominates the maximum likelihood estimator when

C/2 +D < 0.

Proof. Theproof is the same as that ofCorollary � in Fourdrinier et al. (����), withPropo-

sition �.D.� in place of Theorem � in Fourdrinier et al. (����).

Using Corollary �.D.�, we now check that the three priors listed in Table �.� and ref-

erenced in Section �.�.� lead to Bayes estimators that dominate the maximum-likelihood

estimator.

Je�reys prior Let  1(u) = a for a  0 and  2(u) = 0. We have

p(�) = exp

✓
1

2

Z
�

�0

2a+ d� 6

u
du

◆
/ �

a+(d�6)/2
. (�.��)

To satisfy lim�!0 �
d/2+2

p(�) = 0, we require 1� d < a  0. We recover the improper

normal-Je�reys prior p(�) / �
�1, for a = 2�d/2. The corresponding Bayes estimator

dominates the maximum likelihood estimator when d > 4.
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Inverse-gamma prior Let  1(u) = a and  2(u) = b(1 � u)/2 for a  0 and b � 0.

We have

p(�) = exp

✓Z
�

�0

a+ b(1� u)/2 + (d� 6)/2

u
du

◆
/ �

a+(b+d�6)/2
e
�b�/2

. (�.��)

SettingC = a andD = b/2, we get the followings conditions: a+ b  0 and 1� d 

a + b/2. Note that when these conditions are met with s = a + (b + d � 4)/2 and

t = b, we recover the inverse-gamma prior in Table �.�.

Inverse-beta (half-Cauchy) prior Let  1(u) = a and  2(u) = b/(u + 1) for a  0

and b � 0. We have

p(�) = exp

✓Z
�

�0

a+ b/(1 + u) + (d� 6)/2

u
du

◆
/ �

a+b+(d�6)/2(1 + �)�b
.

(�.��)

Setting C = a and D = b, we get the condition a/2 + b  0. To satisfy

lim�!0 �
d/2+2

p(�) = 0, we require 1� d < a+ b  0. Note that this corresponds to

the inverse-beta prior in Table �.�with t = a+ (d� 8)/2 and s = b� t.

To recover the half-Cauchy prior, we set b = 1 and a = (5� d)/2. All conditions

in Corollary �.D.� are satis�ed when d > 9.

Appendix �.E: Limitations
Oneweakness of the current theoretical analysis regarding the choice of sparsity-inducing

priors is the assumption of Gaussian (and in particular, isotropic Gaussian) structure in

the parameter space of optimal policies for clusters of tasks. In reality, there is likely a

nontrivial degree of covariance among task parameterizations. Extending our analysis to

more realistic forms of task structure is an important direction for future work. In a sim-

ilar vein, the assumption that tasks are drawn iid from a �xed distribution is also unreal-

istic in naturalistic settings. It would be interesting to introduce some form of sequential

structure (e.g., tasks are drawn from a Markov process). Another direction for future

work is expanding beyond the “one control policy, one default policy” setup–having, for

example, one default policy per task cluster and the ability to reuse and select (for exam-
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ple, using successor feature-like representations (Barreto et al., ����; Barth-Maron et al.,

����;Moskovitz et al., ����c)) among an actively-maintained set of control policies across

tasks and task clusters would be useful.

Appendix �.F: OCO Background

In online convex optimization (OCO), the learner observes a series of convex loss functions

`k : N! R, k = 1, . . . , K , whereN ✓ Rd is a convex set. After each round, the learner

produces an output xk 2 N for which it will then incur a loss `k(xk) (Orabona, ����).

At round k, the learner is usually assumed to have knowledge of `1, . . . , `k�1, but no

other assumptions aremade about the sequence of loss functions. The learner’s goal is to

minimize its average regret:

R̄K :=
1

K

KX

k=1

`k(xk)�min
x2N

1

K

KX

k=1

`k(x). (�.��)

One OCO algorithm which enjoys sublinear regret is follow the regularized leader

(FTRL). In each round of FTRL, the learner selects the solution x 2 N according to

the following objective:

xk+1 = argmin
x2N

 k(x) +
k�1X

i=1

`i(x), (�.��)

where  k : N! R is a convex regularization function.

Appendix �.G: Proofs of Performance Bounds and Ad-

ditional Theoretical Results

The following result is useful.

Lemma �.G.�. The function `(⌫) = Ew⇠⌫f(w) is L-Lipschitz as long as f : W ! R

lies within [0, L] 8w 2W , whereW ✓ Rd is a Hilbert space and L <1.
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Proof. We have

|`(⌫1)� `(⌫2)| = |Ew⇠⌫1f(w)� Ew⇠⌫2f(w)|

=

����
Z

W

(⌫1(w)� ⌫2(w))f(w) dw
����

= |hf, ⌫1 � ⌫2iW |

 kfkWk⌫1 � ⌫2kW

 Lk⌫1 � ⌫2kW ,

where the �rst inequality is due to Cauchy-Schwarz and the second is by assumption on

f .

Proposition �.G.� (Default Policy Distribution Regret). Let tasksMk be independently

drawn from PM at every round, and let them each be associated with a deterministic opti-

mal policy ⇡?
k
: S ! A. We make the following mild assumptions: i) ⇡w(a?|s) � ✏ > 0

8s 2 S , where a? = ⇡
?

k
(s) and ✏ is a constant. ii) min⌫ KL[⌫(·), p(·)] ! 0 as

Var[⌫] ! 1 for an appropriate choice of sparsity-inducing prior p. Then Algorithm �

guarantees

EPM [`K(⌫K)� `K(⌫̄K)]  (EPMKL[⌫̄K , p] + 1)
log(1/✏)p

K
. (�.��)

where ⌫̄K = argmin
⌫2N

P
K

k=1
`k(⌫).

Proof. The �rst part of the proof sets up an application ofOrabona (����), Corollary �.�.

To establish grounds for its application, we�rst note the standard result that the reg-

ularization functional  (⌫) = KL[⌫(w), p(w)] for probability measures ⌫, p 2 P(W)

is 1-strongly convex in ⌫ (Melbourne, ����).

Finally, assumption (i) implies that the KL between the default policy and the op-

timal policy is upper-bounded: KL[⇡?
k
, ⇡w]  log 1/✏. Then by Lemma �.G.�, `k(⌫) is

L-Lipschitz wrt the TV distance, where L = log 1/✏.

Note also that under a Gaussian parameterization for ⌫, the distribution space N is

the Gaussian parameter space N = {(µ,⌃) : µ 2 Rd
, ⌃ 2 Rd⇥d

,⌃ ⌫ 0}, which is
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convex (Boyd and Vandenberghe, ����).

Then Orabona (����), Corollary �.� gives

1

K

KX

k=1

`k(⌫k)�
1

K

KX

k=1

`k(⌫̄K) 
✓
1

↵
KL[⌫̄K , p] + ↵

◆
Lp
K

, (�.��)

where ⌫̄K = argmin
⌫

P
K

k=1
`k(⌫). The constant ↵ 2 R+ is a hyperparameter, so we

are free to set it to 1 (Orabona, ����). Finally, we observe that EPMi

1

K

P
K

k=1
`(⌫k) =

EPMi
`K(⌫K) and take the expectation with respect to PMi of both sides of Eq. (�.��) to

get the desired result:

EPMi
[`K(⌫K)� `K(⌫̄K)] 

⇣
EPMi

KL[⌫̄K , p] + 1
⌘

Lp
K

. (�.��)

Proposition �.�.� (Control Policy Sample Complexity). Under the setting described in

Proposition �.G.�, denote by Tk the number of iterations to reach ✏-error forMk in the sense

thatmintTk
{V ⇡

?
k � V

(t)}  ✏. whenever t > Tk. Further, denote the upper-bound in

Eq. (�.��) byG(K). In a�niteMDP, fromany initial ✓(0), and following gradient ascent,

EMk⇠PM [Tk] satis�es:

EMk⇠PMi
[Tk] �

80|A|2|S|2
✏2(1� �)6 EMk⇠PMi

s⇠UnifS

2

4↵k
A
(s)

�����
d
⇡
⇤
k
⇢

µ

�����

2

1

3

5 ,

where ↵k(s) := dTV(⇡?k(·|s), ⇡̂0(·|s)) 
p

G(K), ↵k
A
(s) = 2|A|(1�↵(s))

2|A|(1�↵(s))�1
, and µ is a

measure over S such that µ(s) > 0 8s 2 S .

Note: In the above, there is a small error—it should be

↵k(s) := Ew⇠⌫dTV(⇡
?

k
(·|s), ⇡w(·|s)) 

r
1

2
G(K).

d
⇡

⇢
refers to the discounted state-occupancy distribution under ⇡ with initial state distri-
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bution ⇢:

d
⇡

⇢
(s) = Es0⇠⇢(1� �)

X

h�0

�
hP⇡(sh = s|s0). (�.��)

Division between probability mass functions is assumed to be element-wise.

Proof. Without loss of generality, we prove the bound for a �xed state s 2 S , not-

ing that the bound applies independently of our choice of s. We use the shorthand

KL[⇡(·|s), ⇡w(·|s)] ! KL[⇡, ⇡w] for brevity. We start by multiplying both sides of the

bound from Proposition �.G.� by 1/2 and rearranging:

1

2

✓
EPMi

`K(⌫̄K) +
Lp
K

⇣
EPMi

KL[⌫̄K , p] + 1
⌘◆

� EPMi

1

2
`K(⌫K)

= EPMi
E⌫K

1

2
KL[⇡?

K
, ⇡w]

(i)

= EPMi

2

4Var⌫K

"r
1

2
KL[⇡?

K
, ⇡w]

#
+ E⌫K

"r
1

2
KL[⇡?

K
, ⇡w]

#23

5

(ii)

� EPMi

2

4E⌫K

"r
1

2
KL[⇡?

K
, ⇡w]

#23

5

(�.��)

where (i) follows from the de�nition of the variance, and (ii) follows from its non-

negativity. We can rearrange to get

L

2
p
K

⇣
EPMi

KL[⌫̄K , p] + 1
⌘
� EPMi

E⌫K

"r
1

2
KL[⇡?

K
, ⇡w]

#2

(ii)

� EPMi
E⌫K [dTV(⇡

?

K
, ⇡w)]

2

(�.��)

where (ii) follows from Pinsker’s inequality. Letting ↵K(s) =
q

1

2
G(K) and applying

Moskovitz et al. (����a), Lemma �.� gives the desired result.

This upper-bound is sign�cant, as it shows that, all else being equal, a high com-

plexity barycenter default policy distribution ⌫̄K (where complexity is measured by

KL[⌫̄K , p]) leads to a slower convergence rate in the control policy.
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Algorithm � IdealizedMDL-C for Multitask Learning
�: require: task distribution PM, policy class⇧, coe�cients {⌘k}
�: initialize: default policy distribution ⌫1 2 N

�: for tasks k = 1, 2, . . . , K do
�: Sample a taskMk ⇠ PM(·)
�: Optimize control policy:

⇡̂
?

k
= argmax

⇡2⇧

V
⇡

Mk
� �Es⇠d⇡Ew⇠⌫k

KL[⇡w(a|s), ⇡(a|s)] (�.��)

�: Update default policy distribution:

⌫k+1 = argmin
⌫2N

KL[⌫, p] + Ew⇠⌫KL[⇡̂
?

k
, ⇡w] (�.��)

�: end for

�.G.� MDL-C with Persistent Replay

Rather than rely on iid task draws to yield a bound on the expected regret under the

task distribution, a more general formulation of MDL-C for sequential task learning is

described inAlgorithm �. In this setting, the dataset of optimal agent-environment inter-

actions is explicitly constructed by way of a replay bu�er which persists across tasks and

is used to train the default policy distribution. This is much more directly in line with

standard FTRL, and we can obtain the standard FTRL bound.

Proposition �.G.� (Persistent Replay FTRL Regret; (Orabona, ����), Corollary �.�).

Let tasksMk be independently drawn from PM at every round, and let them each be as-

sociated with a deterministic optimal policy ⇡?
k
: S ! A. We make the following mild

assumptions: i) ⇡w(a?|s) � ✏ > 0 8s 2 S , where a? = ⇡
?

k
(s) and ✏ is a constant.

ii)min⌫ KL[⌫(·), p(·)] = 0 asymptotically as Var[⌫] ! 1. Then with ⌘k�1 = L
p
k,

Algorithm � guarantees

1

K

KX

k=1

`k(⌫k)�
1

K

KX

k=1

`k(⌫̄K)  (KL[⌫̄K , p] + 1)
Lp
K

, (�.��)

where ⌫̄K = argmin
⌫2N

P
K

k=1
`k(⌫).

Proof. This follows directly from the argumentsmade in the proof of Proposition �.G.�.
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As before, this result can be used to obtain a performance bound for the control

policy.

Proposition �.G.� (Control Policy Sample Complexity forMDL-Cwith Persistent Re-

play). Under the setting described inProposition �.�.�, denote byTk the number of iterations

to reach ✏-error forMk in the sense thatmintTk
{V ⇡

?
k�V (t)}  ✏. In a�niteMDP, from

any initial ✓(0), and following gradient ascent, EMk⇠PM [Tk] satis�es:

EMk⇠PMi
[Tk] �

80|A|2|S|2
✏2(1� �)6 EMk⇠PMi

s⇠UnifS

2

4↵k
A
(s)

�����
d
⇡
⇤
k
⇢

µ

�����

2

1

3

5 ,

where ↵k(s) := Ew⇠⌫dTV(⇡?k(·|s), ⇡w(·|s)) 
q

1

2
G(K),

G(K) := `K(⌫̄K) +
K�1X

k=1

(`k(⌫̄K)� `k(⌫k)) + (KL[⌫̄, p] + 1)L
p
K,


↵k
A
(s) = 2|A|(1�↵(s))

2|A|(1�↵(s))�1
, and µ is a probability measure over S such that µ(s) > 0 8s 2

S .

Proof. Without loss of generality, we select a single state s 2 S , observing that the same

analysis applies 8s 2 S . For simplicity, we denote ⇡(·|s) by ⇡. We start by multiplying

each side of Eq. (�.��) byK and rearranging:

KX

k=1

`k(⌫k)�
KX

k=1

`k(⌫̄K)  (KL[⌫̄, p] + 1)L
p
K

) `K(⌫K) 
KX

k=1

`k(⌫̄K)�
K�1X

k=1

`k(⌫k) + (KL[⌫̄, p] + 1)L
p
K

= `K(⌫̄K) +
K�1X

k=1

(`k(⌫̄K)� `k(⌫k)) + (KL[⌫̄, p] + 1)L
p
K

| {z }
:=G(K)

(�.��)
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We can multiply both sides by 1/2 and expand `K(⌫K):

1

2
G(K) � Ew⇠⌫K

1

2
KL[⇡?

K
, ⇡w]

(i)

= Var⌫K

"r
1

2
KL[⇡?

K
, ⇡w]

#
+ E⌫K

"r
1

2
KL[⇡?

K
, ⇡w]

#2

(ii)

�
 
E⌫K

"r
1

2
KL[⇡?

K
, ⇡w]

#!2

(iii)

� (E⌫KdTV(⇡
?

K
, ⇡w))

2

(�.��)

where (i) follows from the de�nition of the variance, (ii) follows from its non-negativity,

and (iii) follows from Pinsker’s inequality. We then have

E⌫KdTV(⇡
?

K
, ⇡w) 

r
1

2
G(K). (�.��)

Letting ↵K(s) =
q

1

2
G(K) and applyingMoskovitz et al. (����a), Lemma �.� gives the

desired result.

�.G.� Comment on Improvement Across Tasks

To gain intuition for these bounds, there are several important values of↵(s) that we can

consider. First, as ↵(s) ! 1 � 1/|A|, which is the TV distance between a uniform de-

fault policy and a deterministic optimal policy, ↵
A
(s) ! 2. This is an important value

because it’s the coe�cient obtained for log-barrier regularization—that is, when the de-

fault policy is uniform and encodes no information about the task distribution. Next, as

↵(s)! 0 (that is, as the TV distance between the default policy and the optimal policy

decreases), ↵
A
(s)! 2|A|/(2|A|� 1) < 2 for |A| > 1. So, we get faster as the distance

between the default policy and the optimal policy decreases, as we would hope. Another

crucial point to note is that as |A| ! 1 in this case, ↵
A
(s) ! 1. Finally, and impor-

tantly for MDL-C, as ↵(s)! 1� 1/2|A| from below, ↵
A
(s)!1. In other words, a

su�ciently bad default policy can preclude convergence entirely if it puts toomuchmass

on a suboptimal action. For an illustration of this phenomenon, see Moskovitz et al.

(����a) Figure �.�.
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Algorithm � O�-Policy MDL-C for Parallel Multitask Learning
�: require: task distribution PM, policy class⇧
�: initialize: default policy distribution ⌫1 2 N, control replayD0  ;, default replay

D�

0
 ;

�: initialize control policy parameters ✓ and default policy distribution parameters �.
�: while not done do
�: for episodes k = 1, 2, . . . , K do
�: Sample a taskMk ⇠ PM(·)with goal ID feature gk
�: Collect trajectory ⌧ = (s̃0, a0, r0, . . . , s̃H�1, aH�1, rH�1) ⇠ P⇡✓(·), store

experience

Dk  Dk�1 [ {(s̃h, ah, rh, s̃h+1)}H�1

h=0
(�.��)

where s̃h := (sh, gk).
�: if R(⌧) � R

? (i.e., ⇡✓ ⇡ ⇡
?

k
) then

�: Add to default policy replay:

D�

k
 D�

k�1
[ {(s̃h, ⇡✓(·|s̃h)}H�1

h=0
(�.��)

Note that, e.g., when ⇡✓(a|s̃) = N (a;µ(s̃, gk),⌃(s̃, gk)) is a Gaussian pol-
icy, µ(s̃h, gk),⌃(s̃h, gk) are added to the replay with s̃h.

��: end if
��: end for
��: UpdateQ-function(s) as in Haarnoja et al. (����).
��: Update control policy:

✓  argmin
✓0

EUnifDk

⇥
V
⇡✓0 � ↵Ew⇠⌫�

KL[⇡✓0(·|s̃h), ⇡w(·|s̃h)]
⇤

(�.��)

��: Update default policy distribution:

� argmin
�0

KL[⌫�0(·), p(·)] + EUnif
D�
k

Ew⇠⌫KL[⇡✓(·|s̃h), ⇡w(·|s̃h)] (�.��)

��: end while

Indeed, this is why our Proposition �.� is so useful–by e�ectively placing an upper bound

on ↵(s) which shrinks as the number of tasks K increases, MDL-C’s default policy is

guaranteed to a) avoid putting too much mass on a suboptimal action and thereby pre-

clude or delay convergence for the control policy, and b) improve the rate as the default

policy regret drops.

�.G.� Parallel Task Setting
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An overview of MDL-C as applied in the parallel task setting is presented in Algo-

rithm �. One important feature to note is the return threshold R
?. As a proxy for the

control policy converging to ⇡?
k
, data are only added to the default policy replay bu�er

when a trajectory return is above this threshold performance (onDM control suite tasks,

R
? corresponded to a test reward of at least ���). We leave more in-depth theoretical

analysis of this setting to future work, but note that as the task experience is interleaved,

⇡̄w = E⌫⇡w will converge to the prior-weighted KL barycenter. If, in expectation, this

distribution is a TV distance of less than 1� 1/|A| from ⇡
?

k
, then the control policy will

converge faster than for log-barrier regularization (Moskovitz et al., ����a).

Appendix �.H: Additional Experimental Details
Below, we describe experimental details for the two environment domains in the paper.

�.H.� FourRooms

As input, the agent receives a ��-dimensional vector containing the index of the current

state, a �attened 3 ⇥ 3 local view of its surrounding environment, its previous action

taken encoded as a �-dimensional one-hot vector, the reward on the previous timestep,

and a feature indicating the goal state index. The base learning algorithm in all cases is

advantage actor critic (A�C; (Mnih et al., ����)).

EnvironmentThe F���R���� experiments are set in an 11 ⇥ 11 gridworld. The ac-

tions available to the agent are the four cardinal directions, up, down, left, and right,

and transitions are deterministic. In both F���R���� experiments, the agent can be-

gin an episode anywhere in the environment (sampled uniformly at random), and a single

location with reward r = 50 is sampled at the beginning of each episode from a set of

possible goal states which varies depending on the experiment and the current phase. A

reward of r = �1 is given if the agent contacts the walls. All other states give a reward

of zero. Episodes end when either a time (number of timesteps) limit is reached or the

agent reaches the goal state. Observations were ��-dimensional vectors consisting of the

current state index (�d), �attened 3 ⇥ 3 local window surrounding the agent (includes

walls, but not goals), a one-hot encoding of the action on the previous timestep (�d), the

reward on the previous timestep (�d), and the state index of the current goal (�d). In the
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“goal generalization” experiment, goals may be sampled anywhere in either the top left or

bottom right rooms in the �rst phase and either the top right or bottom left rooms in the

second phase. Each phase comprises ��,��� episodes, and in each phase, the agent may

start each episode anywhere in the environment. In the �rst phase, the agent was allowed

��� steps per episode, and in the second phase �� steps. In the “contingency change” ex-

periment, the possible reward states in each phasewere the top left state and bottom right

state. In the second phase of training, however, the semantics of the goal feature change

from indicating the location of the reward to the location where it is absent. Each phase

consisted of �,��� episodes with maximum length ��� timesteps. Results are averaged

over �� random seeds.

AgentsAll agents were trained on-policy with advantage actor-critic (Mnih et al., ����).

The architecturewas a single-layer LSTM(Hochreiter and Schmidhuber, ����a)with ���

hidden units. To produce the feature sensitivity plots in Fig. �.�c, a gating function was

added to the input layer of the network:

xh = �(b)� oh, (�.��)

where oh is the current observation, �(·) was the sigmoid funcion, b 2 R is a constant

(set to b = 150 in all experiments), xh 2 Rd is the �lter layer output, and  2 Rd

is a parameter trained using backpropagation. In this way, as d ! 1, �(bd) ! 1,

allowing input feature oh, d through the gate. As d ! �1, the gate is shut. The

plots in Fig. �.�c track �(bd) over the course of training. The baseline agent objective

functions are as follows:

J PO(✓) = V
⇡✓ + ↵Es⇠d

⇡✓H[⇡✓(·|s)]

J RPO(✓,�) = V
⇡✓ � ↵Es⇠d

⇡✓KL[⇡✓(·|s), ⇡�(·|s)]

J VDO�PO(✓) = Ew⇠⌫✓
V
⇡w � �KL[⌫✓(·), p(·)]

JManualIA(✓,�) = V
⇡✓ � ↵Es⇠d

⇡✓KL[⇡✓(·|s), ⇡�(·|sd)]; sd = s \ g.

(�.��)

In all cases ↵ = 0.1, � = 1.0, and learning rates for all agents were set to 0.0007. Agents

were optimized with Adam (Kingma and Ba, ����). Agent control policies were reset
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after phase �.

�.H.� DeepMind Control Suite

Environments/Task SettingsWe use the walker and cartpole environments from

the DeepMind Control Suite (Tassa et al., ����). We consider two multitask settings: se-

quential tasks and parallel tasks. All results are averaged over �� random seeds, and agents

are trained for ���k timesteps. In the sequential task setting, tasks are sampled one at a

time without replacement and solved by the agent. The control policy is reset after each

task, but the default policy is preserved. For methods which have a default policy which

can be preserved, performance on task k is averaged over runs with all possible previous

tasks in all possible orders. For example, whenwalker-run is the third task, performance

is averaged over previous tasks being stand then walk and walk then stand. In the par-

allel task setting, a di�erent task is sampled randomly at the start of each episode, and a

one-hot task ID vector is appended to the state observation. Learning was done directly

from states, not from pixels.

AgentsThe base agent in all cases was SACwith automatic temperature tuning, follow-

ing Haarnoja et al. (����). Standard SAC seeks to optimize the maximum-entropy RL

objective:

J max�ent(⇡) = V
⇡ + ↵Es⇠d⇡H[⇡(·|s)] = V

⇡ + ↵Es⇠d⇡KL[⇡(·|s),UnifA] (�.��)

E�ectively, then, SAC uses a uniform default policy. The RPO algorithms with learned

default policies replaceKL[⇡(·|s),UnifA]withKL[⇡(·|s), ⇡w(·|s)] (orKL[⇡w(·|s), ⇡(·|s)]).

As MDL-C, RPO, and TVPO require that the control policy approximate the optimal

policy before being used to generated the a learning signal for the default policy, in the

sequential setting, the default policy is updated only after halfway through training. Be-

cause variational dropout can cause the network to over-sparsify (and not learn the learn

adequately) if turned on too early in training, we follow the strategy of Molchanov et al.

(����), linearly ramping up a coe�cient � on the variational dropout KL from � to �

starting from ��% through training to ��% through training. Note thatM�����IA is

not applicable to the sequential task setting, as there is no explicit goal feature. In the
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sequential task setting, we took inspiration fromHaarnoja et al. (����) and Abdolmaleki

et al. (����) and reframed the soft KL penalty for methods with learned default policies

as a constraint, i.e.,

max
⇡

V
⇡ � ↵EKL[⇡w, ⇡] �! max

⇡

V
⇡
s.t. EKL[⇡w, ⇡]  ",

where " > 0 was a target KL divergence. Under this formulation, ↵ is treated as a dual

variable via Lagrangian relaxation and optimized with the following objective:

max
↵�0

J(↵) := E↵KL[⇡w, ⇡]� ↵".

In the parallel task setting, we convert the base SAC agent into the “multitask” variant

used by Yu et al. (����), in which the agent learns a vector of temperature parameters

[↵1, . . . ,↵K ], one for each task. In this setting, we found it more e�ective to set ↵ to a

constant value. Test performance was computed by averaging performance across allK

tasks presented to the agent. The baseline agent objectives are as in Eq. (�.��), and the

Distral objective is given by

J Distral(✓,�) = V
⇡✓ � ↵Es⇠d

⇡✓KL[⇡✓(·|s), ⇡�(·|s)] + �Es⇠d
⇡✓H[⇡✓(·|s)].

TVPO is trained in the same way as RPO, with the di�erence being that the default pol-

icy objective is to predict the control policy action, rather than a distillation objective.

Hyperparameters shared by all agents can be viewed in Table �.�.

As a note on performance, Distral performs very strongly in the parallel task setting,

withoverall performance slightlyworse thanMDL-ConWalker andvirtually the sameon

Cartpole. However, the gap is signi�cantly greater in the sequential setting, particularly

onWalker. We hypothesize that this is due to the fact that by regularizing the control pol-

icy to be close to the default policy, but also encouraging the control policy to have high

entropy (rather than regularizing the default policy asMDL-C does), Distral can in e�ect

provide a con�icting objective to the control policy when strong structure is present. In

particular, on Walker, the optimal policies for each task have signi�cant overlap, and so
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by encouraging high entropy in the control policy even on the third task, Distral negates

the e�ect of an informative default policy. As evidence, both RPO and TVPO, which

only regularize the control policy to be close to the default policy, perform signi�cantly

more strongly onWalker in the sequential setting.

Hyperparameter Value

Collection Steps ����
RandomAction Steps �����
Network Hidden Layers ���:���
Learning Rate 3⇥ 10�4

Optimizer Adam
Replay Bu�er Size 1⇥ 106

Action Limit [�1, 1]
Exponential Moving Avg. Parameters 5⇥ 10�3

(Critic Update:Environment Step) Ratio �
(Policy Update:Environment Step) Ratio �
Expected KL/Entropy Target �.�/�dim(A)⇤

Policy Log-Variance Limits [�20, 2]

Table �.�: DM control suite hyperparameters, used for all experiments. ⇤In the parallel setting,
↵was simply set to �.� for methods with learned default policies.

Appendix �.I: Additional Experimental Results

�.I.� FourRooms

Method Goal Change Contingency Change

PO �.��e�± �.��e� �.��e�± �.��e�
RPO �.��e�± �.��e� �.��e�± �.��e�
VDO-PO �.��e�± �.��e� �.��e�± �.��e�
ManualIA �.��e�± �.��e� �.��e�± �.��e�
MDL-C �.��e�± �.��e� �.��e�± �.��e�

Table �.�: FourRooms: Average cumulative regret across � random seeds in phase � of the goal
change and contingency change experiments for each method. ± values are standard
error.

�.I.� DeepMind Control Suite
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Method Cartpole Walker

SAC �.��e�± �.��e �.��e�± �.��e�
RPO-SAC (k = 3) �.��e�± �.��e� �.��e�± �.��e�
VDO-SAC �.��e�± �.��e� �.��e�± �.��e�
MDL-C (k = 1) �.��e�± �.��e� �.��e�± �.��e�
MDL-C (k = 2) �.��e�± �.��e� �.��e�± �.��e�
MDL-C (k = 3) �.��e�± �.��e� �.��e�± �.��e�

Table �.�: DM Control Suite, Sequential: Average cumulative regret across � random seeds in
the sequential setting. ± values are standard error.

Method Cartpole Walker

SAC �.��e�± �.��e� �.��e�± �.��e�
ManualIA �.��e�± �.��e� �.��e�± �.��e�
MDL-C �.��e�± �.��e� �.��e�± �.��e�

Table �.�: DM Control Suite, Parallel: Average cumulative regret across � random seeds in the
parallel task setting. ± values are standard error.

Figure �.�: Heatmaps ofKL[⇡✓(·|s),⇡w(·|s)] 8s 2 S for RPO andKL[⇡✓(·|s),⇡w̄(·|s)] 8s 2
S , where w̄ = E⌫w for MDL-C, averaged over all possible goal states. The RPO
default policy nearly perfectly matches the control policy, while the MDL-C default
policy divergesmost strongly from the control policy at the doorways. This is because
the direction chosen by the policy in the doorways is highly goal-dependent. Because
the MDL-C default policy learns to ignore the goal feature, it’s roughly uniform in
the doorways, whereas the control policy is highly deterministic, having access to the
goal feature.
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Figure �.�: Without a sparse prior, RPO does not learn to ignore spurious input features.

Figure �.�: MDL-C’s learned ↵s in the DMC sequential setting. Because ↵ tends to decay, the
control policy is able to specialize to the current task later in training. Results aver-
aged over eight random seeds; error shading denotes standard error.

Figure �.�: Test reward on each individual task in the walker domain over the course of parallel
task training. Average performance is plotted above over �� seeds, with the shading
representing one unit of standard error. We can see the biggest performance di�er-
ence on walker, run, the most challenging task.
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Figure �.�: Test reward on each individual task in the cartpole domain over the course of par-
allel task training. Average performance is plotted above over �� seeds, with the shad-
ing representing one unit of standard error. Interestingly, unlike in the sequential
learning setting, joint training seems to impede performance on swingup sparse,
with no method succeeding.



Chapter �

A Uni�ed Theory of Dual-Process

Control

The previous chapter introduced MDL-C, a regularized policy optimization approach

for learning (near-)optimal policies more quickly. The underlying idea is to capture con-

sistent behavioral structure required to solve previously observed tasks in a default policy

which provides partial supervision to the control policy as it learns new tasks. In order to

prevent the default policy from over�tting to spurious structure mistakenly inferred due

to limited data, MDL-C also limits the e�ective capacity of the default policy by regu-

larizing its complexity using variational dropout. This chapter, adapted fromMoskovitz

et al. (����b), explores MDL-C further as a model of behavioral phenomena associated

with dual process cognition in the brain.

�.� Introduction
As introduced in the previous chapter, the idea that cognition is split into a complex

process, manifested in behavior via goal-directed, deliberative action, and a simple pro-

cess, manifested through ingrained habits, is known as dual process theory. Dual process

theories of cognition have had a long and in�uential history across multiple sub-�elds

of the cognitive sciences, such as cognitive control (Diamond, ����; Botvinick and Co-

hen, ����), reward-based decision-making (Dolan andDayan, ����; Perez andDickinson,

����), and judgement and decision-making (Evans, ����; Kahneman, ����). These sub-

�elds not only attempt to answer di�erent questions (and thus test hypotheses through
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di�erent tasks), they also use di�erent modeling approaches and use di�erent language

to describe their experiments. This has made it challenging to derive a uni�ed theoretical

framework for these results despite their shared heritage in dual process ideas.

While the reduction of action selection to dual processes is undoubtedly a simpli�-

cation, across these three domains, dual-process models have accumulated considerable

empirical support, and eachdomainhas developed explicit computationalmodels of how

dual processes might operate and interact (Lieder and Gri�ths, ����; Botvinick and Co-

hen, ����; Rougier et al., ����; Daw et al., ����; Shenhav et al., ����; Keramati et al., ����;

Boureau et al., ����; Perez andDickinson, ����;Miller et al., ����). These computational

models, however, are typically domain-speci�c, reproducing behavioral phenomena that

are within the scope of their domain. It remains unknown whether dual-process phe-

nomena in di�erent domains result from di�erent sets of computational mechanisms, or

whether they can be understood as di�erent manifestations of a single, shared set. That

common mechanisms might be at play is suggested by a wealth of neuroscienti�c data.

Speci�cally, studies have linked controlled behavior, model-based action selection, and

System-� decision making with common circuits centering on the prefrontal cortex (Di-

amond, ����; Dolan and Dayan, ����; Mevel et al., ����; De Neys and Goel, ����; Miller

and Cohen, ����; Jeon and Friederici, ����), while automatic behavior, habitual action

selection, and heuristic decision making appear to engage shared circuits lying more pos-

terior and running through the dorsolateral striatum (Lieberman, ����; O’Reilly et al.,

����; Jeon andFriederici, ����; Smith andGraybiel, ����). While further study into these

neuroanatomical relationships is required, these results do beg the question of whether a

single computational model could account for these patterns of decision-making.

In this work, we seek a normative explanation for these phenomena. That is, we seek

a theory that can reproduce behavioral �ndings associated with dual process cognition,

but which is derived instead from an optimization principle, allowing dual process cog-

nition to be understood as the solution to a fundamental behavioral or computational

problem. To identify such a principle, we begin by considering a fundamental problem

confronting both biological and machine intelligence: generalization. We discuss a fun-

damental computational theory of generalization, link it to behavior, and demonstrate
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that a recently-proposed behavioral model from machine learning based on this princi-

ple can successfully reproduce canonical dual-process phenomena from executive con-

trol, reward-based learning, and JDM.

We propose that MDL-C may o�er a useful normative model for dual-process be-

havioral phenomena. As in dual-process theory, MDL-C contains two distinct decision-

making mechanisms. One of these (RNN⇡0) distills as much target behavior as possible

in an algorithmically simple form, reminiscent of the habit system or System � in dual-

process theory. Meanwhile, the other (RNN⇡) enjoys greater computational capacity and

intervenes when the simpler mechanism fails to select the correct action, reminiscent of

executive control or System � in dual-process theory. MDL-C furnishes a normative ex-

planation for this bipartite organization by establishing a connection with the problem

of behavioral generalization. To test whetherMDL-C can serve as such a model, we con-

ducted a series of simulation studies spanning the three behavioral domains where dual-

process theory has been principally applied: executive control in Simulation �, reward-

based decision making in Simulation �, and JDM in Simulation �.

�.� General methods: Selection of target phenomena

and approach to modeling
A detailed description of simulation methods is presented in Appendix �.A. Brie�y, for

each target dual-process domain, we focused on a set of empirical phenomena that the

relevant specialty literature treats as fundamental or canonical. We do not, of course,

address all behavioral and neural phenomena that might be considered relevant to con-

strain theory in each domain, and we dedicate a later section to the question of whether

any empirical �ndings that we do not directly model might present challenges for our

theory. Nevertheless, the core phenomena in each �eld are fairly well recognized, and we

expect our selections will be uncontroversial. Indeed, each target phenomenon has been

the focus of previous computational work, and we dedicate a later section to compar-

isons between our modeling approach and previous proposals. While such comparisons

are of course important, one point that we continue to stress throughout is that no previ-

ous model has addressed the entire set of target phenomena, bridging between the three
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domains we address.

For each target phenomenon, we pursue the same approach to simulation: We be-

ginwith a genericMDL-C agentmodel, con�gured and initialized in the sameway across

simulations (with the exception of input and output unit labels tailored to the task con-

text). Themodel is then trained on an appropriate target task and its behavior or internal

computations queried for comparisonwith target phenomena. Importantly, themodel is

in no case directly optimized to capture target phenomena, only to solve the task at hand.

In the rare case where target e�ects depend sensitively on experimenter-chosen hyperpa-

rameters of MDL-C, this dependency is described alongside other results.

While our simulations focus on target phenomena that have been documented

across many experimental studies, in presenting each simulation we focus on observa-

tions from one speci�c (though representative) empirical study, to provide a concrete

point of reference. It should be noted that the target phenomena we address, in almost

all cases, take the form of qualitative rather than quantitative patterns. Our statistical

tests, described in Appendix �.A, thus take the form of qualitative hypothesis tests rather

than quantitative �ts to data, paralleling the reference experimental research.

�.� Results

�.�.� Simulation �: Executive control

As introduced above, longstanding theories of executive function center on a contrast be-

tween two kinds of action. Habitual or automatic responses are default, reactive actions,

shaped by frequency or practice. Controlled responses, in contrast, take fuller account of

the task context, overriding automatic responses when they are inappropriate (Diamond,

����; Botvinick andCohen, ����;Miller andCohen, ����). Someof the strongest support

for this distinction comes from studies of prefrontal cortex. Prefrontal neural activity has

been shown to play a special role in encoding goals, task instructions, and other aspects

of task context (Miller and Cohen, ����; Diamond, ����). The importance of these rep-

resentations for context-appropriate behavior is evident in the e�ects of prefrontal dam-

age, where behavior tends to default to frequently performed actions, neglecting verbal

instructions or context-appropriate goals.
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Figure �.�: A. Ciaramelli (����) reported that damage to another (orbitofrontal) region of PFC
impaired navigation to novel goals, both in the laboratory and an ecological study.
In unsuccessful trials patients frequently navigated to familiar goal locations. Perfor-
mance improved when patients were given frequent reminders of the goal or were
asked to verbally rehearse the goal, but not when the goal reminder was replaced by an
uninformative stimulus (Warning). B. In a modi�ed navigation task only two goals
were cued, one (blue G) occurring more frequently during training than the other
(red G). When the infrequent goal is cued at test, the intact MDL-C agent navigates
successfully to it from any start state (see blue example trajectories). WhenRNN⇡ is
ablated, the agent ignores the instruction cue and navigates to the more frequent goal
(pink trajectories). See Methods for simulation details. C. By inserting a gating layer
over input features within RNN⇡0 (see Methods), we can directly read out which
information is processed by that pathway. The plot shows attention weights for the
three input features in the navigation task referenced in Figure �. Over the course of
the initial training block,RNN⇡0 learns to ignore the current goal cue.

One domain in which these e�ects can be observed in a particularly straightforward

form is spatial navigation. Prefrontal damage impairs the ability to navigate to instructed

goal locations, with behaviour defaulting to more familiar paths and destinations (Cia-

ramelli, ����) (Fig. �.�).

Strikingly similar e�ects arise whenMDL-C is applied to spatial navigation. In our

�rst simulation, aMDL-C agent was trained on a navigation task involving two cued goal

locations, with one goal presentedmore frequently than the other (seeAppendix �.B).Af-

ter training,RNN⇡ was able to successfully navigate to either goal when cued. However,

when RNN⇡ was removed from the agent and it was forced to act using RNN⇡0—in a

rough approximation of the PFC damage su�ered by the patients studied by Ciaramelli

(����)—agents only ever navigated to the goal location that had been more frequently

cued during training (Fig. �.�B). To gain a mechanistic understanding of why this occurs,

we inserted a gating layer over inputs inRNN⇡0 to monitor which information is trans-
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Figure �.�: A. Policies for RNN⇡ (top) and RNN⇡0 (bottom) for the stimuli shown, in word-
reading (WR) and color-naming (CN ) contexts. Response probabilities are shown
for the response red, complementary to (unshown) probabilities for the alternative
blue response. B. When the MDL-C agent is trained on the Stroop task (see Meth-
ods), RNN⇡0 learns to ignore both the task cue and the stimulus color, attending
only to word identity. C. Left: KL divergence between ⇡ and ⇡0 for the four trial
types shown in panel A. Right: Corresponding reaction times (see Methods). D.
When trained on the Stroop task and then given a choice between blocks of color-
naming trials that involve either high or low proportions of incongruent stimuli (see
Methods), the MDL-C agent displays a preference for less frequent incongruence,
paralleling the demand-avoidance e�ect seen in human decision making.

mitted to the policy. We found that, despite the fact that bothRNN⇡ andRNN⇡0 receive

the same inputs, VDO inducedRNN⇡0 to ignore the goal cue during training, as due to

the di�erence in goal presentation frequencies, it was less predictive ofRNN⇡’s behavior

than other features.

To evaluate the generality of these e�ects, we appliedMDL-C to another classic ex-

ecutive control problem, the Stroop task (Stroop, ����) (see Appendix �.B and Fig. �.�).

Here, words that name colors are presented in hues that are either incongruent (e.g. RED

presented in blue) or congruent (RED in red). An instruction cue indicates whether the

current task is to read the word, the highly practiced, automatic response, or to name

the color, requiring cognitive control. Consistent with the navigation results, while the

control policy correctly learned to respond to both word-reading and color-naming tri-

als (the former being presented more frequently in training), the default policy learned
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a simpler stimulus-response mapping based only on the written word (Fig. �.�A). These

habit-like responses are overridden (by policy ⇡) only when the task context requires it.

When examining feature sensitivity, RNN⇡0 , as in navigation, ignores the task context

and is biased toward the behaviors executed most frequently during learning, consistent

with the classical de�nition of automatic processing (Fig. �.�B).

Perhaps the de�ning behavioral phenomenon associated with the Stroop task is de-

layed reaction times on incongruent color-naming trials (as people aremore used to read-

ing words than naming colors) (Botvinick and Cohen, ����; Herd et al., ����), another

�nding replicated by MDL-C. MDL-C provides a simple way to reason about this pat-

tern: because the control policy is regularized towards thedefault policy—whichdisagrees

with the control policy on these inputs—its output distribution is less concentrated over

the correct output, requiring more recurrent cycles to reach the response threshold. The

KL divergence between the control and default policies was therefore highest for color-

naming con�ict trials, as it was in these trials alone forwhich simplymatching thewritten

word resulted in the incorrect response (Fig. �.�C). In this way,MDL-C provides a direct

relationship between reaction time and the cost of control.

Another core phenomenon in the cognitive control literature is demand avoidance,

the tendency for decision makers to avoid tasks that require intensive cognitive control

(Kool and Botvinick, ����). For example, when human participants are asked to select

between two versions of the Stroop task, one involving more frequent incongruent trials

than the other, they show a clear tendency to avoid the former task and the demands on

cognitive control it involves (Schouppe et al., ����). WhenMDL-C is trained in the same

task context (see Appendix �.B), the same choice bias arises (Fig. �.�E). The explanation

for this result is tied to the KL cost in the MDL-C objective function which penalizes

con�ict between policies ⇡ and ⇡0 (compare Zenon et al. (����); Piray and Daw (����)).

By avoiding control-demanding tasks, the agent can minimize this term, helping it to

minimize the description length of its overall behavioral policy.

The relation of the above simulation results to those from previous models, and a

consideration of a wider range of empirical phenomena in the domain of executive con-

trol, are discussed below under Comparison with previous models.
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�.�.� Simulation �: Reward-based learning

According to prevailing theories, reward-based learning centers on two distinct neural

systems. One, operating within parts of prefrontal cortex and associated basal ganglia

circuits, implements a ‘goal-directed’ or ‘model-based’ algorithm, which takes task struc-

ture into account. The other system, more posterior or lateral, operates in a ‘habitual’

manner, based on simpler stimulus-response associations (Dolan and Dayan, ����; Daw

et al., ����; Beierholm et al., ����; Gläscher et al., ����; Averbeck and O’Doherty, ����;

Drummond and Niv, ����; Miller et al., ����; Dickinson, ����). Although the anatom-

ical substrates proposed for these systems can resemble those associated with controlled

and automatic processing, di�erent behaviors have been used to study them. In research

with humans, the most prominent of these is the so-called ‘two-step task’ (Daw et al.,

����), illustrated in Fig. �.�A.

The two-step task was designed to probe the operation ofmodel-based and habitual

systems, under the hypothesis that these operate in parallel and that the habitual system

implements model-free reinforcement learning (Averbeck and O’Doherty, ����; Drum-

mond and Niv, ����) (see Comparison with previous models and Supplementary Discus-

sion). In this task, subjects must choose between two options that will probabilistically

transition them to one of two second stage states which themselves stochastically either

produce reward or nothing (Fig. �.�A). According to the logic of the task, if the agent is

able to learn a model of this transition structure, its policy update on the �rst step will

be sensitive both to second-step reward as well as to whether the second-step state was

the ”common” or ”uncommon” one given �rst-step action. This ability is re�ected in

behavioral patterns classically thought-of as diagnostic for model-based and model-free

behavior on this task (Fig. �.�B), which shows the results of logistic regression from pre-

vious trial results to predict whether subjects repeated their most recent stage � choice.

Synthetic behavioral data from a model-free (TD(�)) agent is associated with positive re-

gression weights for trials which resulted in reward after both common and uncommon

transitions, indicating a lack of understanding of the task structure. In contrast, synthetic

behavioral data from a model-based agent is associated with positive regression weights

for common, rewarded trials and uncommon, unrewarded trials. We trained MDL-C
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Figure �.�: A. Structure of the two-step task as introduced by ?. Choice occurs at Stage �. The
value of p varies over time, and so must be inferred by the participant. Following
subsequent research, the version employed in our experiments additionally included
explicitly cued reversals in the structure of transitions from Stage � to Stage �. See
Methods for full details. B. Classical behavioral signatures of model-free (left) and
model-based (center) performance in the two-step task. Adapted from Miller et al.
(����a), the plots show logistic regression weights quantifying the in�uence of two
factors on the probability of repeating on the index trial the same �rst-stage action
selected on the previous trial: (�) whether reward was received or omitted on the pre-
vious trial, and (�) whether the previous trial featured a transition from stage � to �
that was high-probability (common) or low (uncommon). The right panel shows a hy-
brid pattern, similar to that reported in the classic study by (?). C. Left: Two-step
behavior of MDL-C, re�ecting policy ⇡. Right: In�uence of the past on policy ⇡0.
D. Same as Panel D but with di�erent weighting of terms in the MDL-C objective
(see Methods and compare panel C, right).

on a modi�ed version of the task, in which the �rst stage transition probabilities also oc-

casionally switch (Akam et al., ����) (see Appendix �.C for details), which increases the

di�erence in computational complexity needed to exhibit the canonical model-based vs

model-free behavioral patterns. We �nd that, under certain carefully-chosen parameteri-

zations, the classic patterns arising side by side, with policy ⇡ displaying the model-based

pro�le, and ⇡0 the model-free pattern (Fig. �.�C). Because ⇡ dictates the overt behavior

of the agent, the latter displays amodel-based pattern, as also seen in human performance

in some studies (Feher da Silva and Hare, ����). WhenRNN⇡ is ablated, behavior then

shifts away from themodel-based pattern, in line with the observation that disruption of

prefrontal function decreases model-based control in the two-step task (Smittenaar et al.,

����; Otto et al., ����).
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This di�erentiation of function arises, as in the previous simulations, from the

MDL-C optimization objective. As has been noted in the literature on model-based ver-

sus model-free learning, the latter is less algorithmically complex (Daw et al., ����). The

simplicity bias in MDL-C, imposed on ⇡0, therefore tilts that policy toward the actions

that would be chosen by a model-free agent. Policy ⇡, meanwhile, can reap a bit more

reward by implementing a policy that takes task structure more fully into account.

Work with the two-step task has consistently found that both humans and animals

show a variety of ”mixed” patterns (Akam et al., ����; Miller et al., ����; Daw et al., ����)

distinct from either of the classic patterns. It has also cast doubt on the idea that these pat-

terns, quanti�ed from behavior, map �:� onto other measures of goal-directed or habitual

control (Feher da Silva and Hare, ����; Collins and Cockburn, ����; Gillan et al., ����).

When we train MDL-C over a broader range of hyperparameters (see Appendix �.C),

we observe similar mixed patterns across large portions of the parameter space (Fig. �.�D

and Supplementary Discussion), and that either primarily ”model-based”, ”model-free”

or ”perseverative” behavior can appear in either ⇡ or ⇡0. Thus, while a clean separation

between model-based and model-free learning can arise within MDL-C, such a division

is not hardwired into the framework. Depending on the precise setting, minimizing the

description length of behavior can also lead to graded intermediate patterns, providing

leverage on some otherwise problematic experimental observations (Collins and Cock-

burn, ����).

While the two-step task has been an important driver of dual-process theory in the

domain of reward-based learning, important insights have also come from studies of in-

strumental learning. One key feature of animal behavior within this domain is persever-

ation: the tendency to repeat previous actions independent of their association with re-

ward. Miller et al. (����) administered a two-armbandit task to rats, where the probability

of one of twoports delivering a juice reward drifted randomly across trials. Performing lo-

gistic regression on di�erent features of the last �� trials showed that past choices contin-

gent on reward and the repetition of previous actions had a strong in�uence on behavior

on the current trial. We simulated this experiment, and found that agents trained for sim-

ple rewardmaximizationwere in�uenced by previous rewards contingent on choices, but
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Figure �.�: A. Logistic regression weights showing the in�uence on the current action of reward
contingent on choice (reward seeking), previous choices (perseveration), and reward
independent of choice (main e�ect of outcome) ofMDL-C and a standard RL agent
on the drifting two-armed bandit task from Miller et al. (����). MDL-C displays a
stronger tendency towards perseveration, reminiscent of rats trainedon the same task.
B. Left: Simulation of contingency degradation fromMiller et al. (����). The longer
the training phase (x axis), the longer lever-pressing persists after reward is discontin-
ued (red). Right: Corresponding behavior fromMDL-C, also showing the e�ect of
ablating ⇡0.

did not display perseverative tendencies, whileMDL-C agents exhibited both (Fig. �.�A,

details in Appendix �.C).

Another important experimental manipulation within this literature is known as

contingency degradation. Here, rewards are at �rst delivered only in response to a par-

ticular action, but then later are delivered in a non-contingent manner, independent of

whether the actionwas selected. Unsurprisingly, this change typically triggers a shift away

from the action in question. Critically, however, this adjustment is reduced or slowed if

the initial training with reward was extensive (Daw et al., ����; Miller et al., ����; Dick-

inson, ����) (Fig. �.�B). Prevailing explanations for this e�ect share a dual-process per-

spective, according to which insensitivity to contingency degradation re�ects a transfer

of control from one learning process that is relatively �exible to another which adjusts

less quickly (Daw et al., ����; Miller et al., ����). Consistent with this account, lesions

to dorsolateral striatum — a structure proposed to be involved in that latter system —

partially protects against training-induced in�exibility (Yin et al., ����).

MDL-C captures the empirically observed e�ects of contingency degradation, but

also o�ers a novel computational perspective. As shown inFig. �.�B, the speedwithwhich

the MDL-C agent reduces its response rate after contingency degradation depends on

how long the agent was previously trained with reward (see Appendix �.C for simulation
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details). As in the experimental data, behavior becomes less �exible as the duration of

training increases. This shift is a result of the MDL-C optimization objective. Policy ⇡

is initially able to adjust rapidly, responding to reward by emitting the rewarded action

frequently. If contingency degradation occurs immediately, ⇡ is able to adapt �exibly.

However, if reward continues for a longer period, the rewarded policy gradually comes

to be mirrored in ⇡0, driven by the third term in Equation �. Once ⇡0 becomes strongly

biased toward the rewarded action, it is di�cult for policy ⇡ to diverge from this pattern,

again due to the third term in Equation � (an e�ect that is attenuated if⇡0 is ablated, anal-

ogous to lesioning dorsolateral striatum; see Fig. �.�B). This computational mechanism

is related to others that have been proposed in models devised speci�cally to account for

contingency degradation e�ects, based on uncertainty or habit strength (Daw et al., ����;

Miller et al., ����) (see Supplementary Discussion). However, MDL-C ties the relevant

learning dynamics to a higher-level computational objective, namely, minimizing the de-

scription length of behavior (compare Pezzulo et al. (����); Lai and Gershman (����)).

�.�.� Simulation �: Judgment and decision making

As noted earlier, dual-process models in JDM research distinguish between System-� and

System-� strategies, the former implementing imprecise heuristic procedures, and the

latter sounder but more computationally expensive analysis (Evans, ����; Kahneman,

����). As in the other dual-process domains we have considered, there appears to be a

neuroanatomical dissociation in this case as well, with System-� responses depending on

prefrontal computations (Mevel et al., ����; De Neys and Goel, ����).

Recent research on heuristics has increasingly focused on the hypothesis that they

represent resource-rational approximations to rational choice (Lieder and Gri�ths,

����). In one especially relevant study, Binz et al. (����) proposed that heuristic de-

cision making arises from a process that “controls for how many bits are required to

implement the emerging decision-making algorithm” (p. �). This obviously comes close

to the motivations behind MDL-C. Indeed, Binz et al. (����) implement their theory

in the form of a recurrent neural network, employing the same regularization that we

apply to ourRNN⇡0 . They then proceed to show how the resulting model can account

for heuristic use across several decision-making contexts. One heuristic they focus on,
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Figure �.�: A. Heuristic one-reason decision making (left) and richer compensatory decision
making (right) in a multi-attribute choice task, from Binz et al. (����). Gini coef-
�cients, on the y axis, capture the degree to which decisions depend on one feature
(higher values, with asymptotic maximum of one) versus all features evenly (zero),
with references for one-reason decision making (single cue) and a fully compensatory
strategy (equal weighting) indicated. Data points for each trial correspond to obser-
vations from separate simulation runs. Human participants in the study displayed
both patterns of behavior, depending on the task conditions. B. Behavior ofMDL-C
in the task from Binz et al. (����), under conditions where human participants dis-
played one-reason decision making. C. Behavior of ⇡0 (left) and ⇡ (right) when the
KL penalty for divergence between the two policies is reduced (see Methods). D. In
the simulation from panel C, the divergence between policies is increased when the
agent emits a non-heuristic decision.

called one-reason decision making, involves focusing on a single choice attribute to the

exclusion of others (Newell and Shanks, ����). As shown in Fig. �.�A, reproduced from

Binz et al. (����), a description-length regularized network, trained under conditions

where one-reason decision making is adaptive (see Binz et al. (����) and Appendix �.D),

shows use of this heuristic in its behavior, as also seen in human participants performing
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the same task. In contrast, an unregularized version of the same network implements a

more accurate but also more expensive ‘compensatory’ strategy, weighing choice features

more evenly.

As illustrated in Fig. �.�B, whenMDL-C is trained on the same task as the one used

by Binz et al. (����) (see Appendix �.D), it displays precisely the same heuristic behavior

those authors observed in their human experimental participants.

Diggingdeeper,MDL-Cprovides an explanation for someadditional empirical phe-

nomena that are not addressed by Binz et al. (����) or, to the best of our knowledge, any

other previous computational model. In an experimental study of one-reason decision

making, Newell and Shanks (����) observed that application of the heuristic varied de-

pending on the available payo�s. Speci�cally, heuristic use declined with the relative cost

of applying a compensatory strategy, taking more feature values into account. MDL-C

shows the same e�ect. When the weighting of the deviation termDKL(⇡||⇡0) is reduced

relative to the value-maximization term in the MDL-C objective (see Appendix �.D),

the policy ⇡ and thus the agent’s behavior take on a non-heuristic compensatory form

(Fig. �.�D). Critically, in this case MDL-C instantiates the non-heuristic policy side-by-

sidewith theheuristic policy,which continues to appear at the level of⇡0. This alignswith

work suggesting that System-� decision making can occur covertly even in cases where

overt responding re�ects a System-� strategy. In particular, Mevel et al. (����) observed

activation in prefrontal areas associated with con�ict detection in circumstances where

a tempting heuristic response was successfully overridden by fuller reasoning (see also

De Neys and Goel (����)). A parallel e�ect is seen in our MDL-C agent in the degree of

con�ict (KL divergence) between policies ⇡ and ⇡0 (Fig. �.�D).

�.�.� Comparison with Previous Models

To our knowledge, no previous computational model has simultaneously captured the

core dual-process phenomena we’ve considered, thereby bridging the domains of exec-

utive function, reward-based decision making and JDM. However, a range of previous

models have addressed the relevant phenomena in a fashion limited to one of those do-

mains. Having stressed the unifying, cross-disciplinary character of the present work, it

is also be�tting to consider the relationships betweenMDL-C and these domain-speci�c
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Figure �.�: A. Top: Behavioral data from the modi�ed Stroop task studied by MacLeod and
Dunbar (����). Early in training, shape-naming responses were both slower than
color-naming responses and more a�ected by stimulus congruence, consistent with
shape-naming being the relatively ’controlled’ response and color-naming relatively
’automatic.’ With extensive training, the pattern �ipped, with shape-naming becom-
ing faster than color-naming and less a�ected by stimulus congruence. Bottom: Un-
der training conditions mimicking the experimental study, MDL-C displayed a sim-
ilar pattern of behavior, with a signi�cant main e�ect of task and a signi�cant in-
teraction between task and trial-type (p ¡ �.��) at both � trials and ��,��� trials. B.
Zero-shot Stroop performance in MDL-C and an unregularized baseline model (see
Methods). Top: Color-naming accuracy on incongruent Stroop stimuli, after train-
ing only with neutral stimuli (see main text and Methods). Bottom: KL divergence
between action probability distributions under two conditions, (�) presentation of
incongruent Stroop stimuli, and (�) presentation of Stroop stimuli with the word
identity input masked out. MDL-C shows signi�cantly lower divergence, indicating
that the control policy attends less to the task-irrelevant factor— i.e.,MDL-C ismore
robust to distractors — despite never having been trained on incongruent stimuli.

models. Particularly important is the question of whether such domain-speci�c models

capture any empirical phenomena that MDL-Cmight have di�culty addressing.

In the area of executive control, ourmodel bears strong connections with the classic

connectionistmodel proposedbyMiller andCohen (����). In particular, both character-

ize the distinction between controlled and automatic processing as arising from learning.

To illustrate this point, Cohen and colleagues (����) modeled results from a behavioral

study byMacLeod andDunbar (����) (Fig. �.�A).Here, participantswere presentedwith
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colored shapes, and asked either to name their color or to announce a color name that

had been arbitrarily assigned to the relevant shape (e.g., a particular irregular pentagon

might be given the name blue, independent of its display color). Interference between

the two tasks was quanti�ed by comparing response time on incongruent trials, where

color- and shape-name con�icted, against congruent trials, where they matched. Early

in training, interference was larger for the shape-naming task than the color-naming task,

suggesting that color-namingwas relatively ‘automatic’ and shape-naming relatively ‘con-

trolled.’ However, after extensive training on the shape-naming task the pattern �ipped,

consistent with the idea that within-task learning had rendered shape-naming relatively

‘automatic.’ This e�ect was well captured by the neural network model of ?, and it also

arises in our MDL-Cmodel (see Fig. �.�AAppendix �.B).

As this example illustrates, gradual learning processes, operating over the course

of extensive practice on relevant tasks, are important to the theoretical account we are

proposing with MDL-C. On the face of it, this may seem to stand in tension with how

learning occurs in most human behavioral experiments, where participants dive in on

novel tasks given little more than some verbal instructions and few practice trials. For

example, in the classic Stroop task, it seems reasonable to assume that participants have

rarely if ever been asked to name the color of a word that itself names a color, but they do

this ‘zero-shot,’ and immediately display Stroop interference. To show that our MDL-C

implementation accommodates this kind of zero-shot learning, we trained our agent on

color-naming and on word-reading, only ever presenting ‘neutral’ stimuli, omitting the

word feature during color-naming and omitting the color feature during word-reading

(see Appendix �.B). At test, incongruent feature sets were presented. The model re-

sponded correctly on the vastmajority of trials given the task-cue input—performing sig-

ni�cantly better than an ablated network lackingMDL regularization—but also showed

Stroop interference (see Fig. �.�b). In recent work, Riveland and Pouget (����) have

shown how neural networks can follow verbal instructions zero-shot in a wider range of

tasks. It would be exciting to expand ourMDL-C implementation to incorporate greater

behavioral breadth and �exibility in the same way.

Elaborations of the Miller and Cohen (����) model have o�ered a mechanistic ex-
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planation for the special role played by prefrontal cortex in representing aspects of con-

text, attributing to prefrontal circuits a special set of gating-based memory mechanisms

(O’Reilly et al., ����). MDL-C o�ers a complementary account, instead addressing why

itmakes sense in normative terms for the brain to support both control and habit systems

(see Musslick and Cohen (����) for a related but domain-speci�c analysis). It is impor-

tant to emphasize, however, that we are not attempting to claim that MDL-C’s RNN⇡

and RNN⇡0 map directly onto speci�c brain regions, but rather only that the split ar-

chitecture of ourMDL-C agents re�ects evidence supporting neuroanatomical divisions

between areas of controlled and automatic processing. As it turns out, however,MDL-C

does in fact give rise to a solution that gates di�erent information into di�erent parts of

the information-processing architecture, broadly consistent with gating-based models of

cognitive control (O’Reilly et al., ����). From the point of viewof our theory, such gating

mechanisms might be viewed as solutions to the MDL-C problem discovered by evolu-

tion rather than online learning. It is worth noting that some of the most recent work to

apply the notion of gating to PFC function has postulated a multilevel hierarchy, deeper

than the onewe consider in our simulations. There is no practical impediment to extend-

ing the MDL-C architecture to include multiple hierarchical levels; a natural approach

would be to regularize each pair of adjacent layers with respect to one another, varying

the weight of the complexity cost monotonically across layers. We have not, however,

implemented this idea and it therefore stands as an appealing opportunity for next-step

research. Another elaboration of theMiller and Cohen (����) model adds a ‘cost of con-

trol,’ a negative utility attached to the overriding of default response-selection processes

(Shenhav et al., ����; Zenon et al., ����; Lieder et al., ����; Piray andDaw, ����). As noted

in our simulation of demand avoidance, the deviation term in the MDL-C objective ef-

fectively imposes a cost of control, showing how this cost �ts into a broader optimization

process. While philosophically aligned, MDL-C di�ers from these models in important

ways, most signi�cantly in that its default policy is learned. That is, while the control

policy may be learned using a similar objective (e.g., Piray and Daw (����) also use KL-

regularized policy optimizationwith respect to a default policy),MDL-Cdirectlymodels

the acquisition of automatic/habit-like behavior as the minimization of an MDL-based
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objective, whereasmost previous sequential decision-making approachesmodeling a cost

of control do so with respect to a �xed default policy.

The classicMiller andCohen (����) model has been elaborated in subsequent work

to address another canonical phenomenon in the executive function literature, which

we have not previously touched upon: task-switching costs (see, e.g., Herd et al. (����),

Reynolds et al. (����), Gilbert and Shallice (����)). Importantly, in order to capture

switch-cost e�ects, including such phenomena as residual and asymmetric switch costs,

the relevant computational models have had to build in temporally and mechanistically

�ne-grained accounts of working memory function, modeling attractor dynamics and

hysteresis e�ects that fall well below the level of abstraction our MDL-C implementa-

tion occupies. It would be informative to implement MDL-C with an increased level of

temporal granularity (as for example in Herd et al. (����)) and to evaluate task-switching

e�ects in this setting.

We turn now from executive function to reward-based decision making. As shown

in Simulation �, when MDL-C operates within an appropriate task context, it can yield

side-by-side decision mechanisms with pro�les matching model-based and model-free

control. This links MDL-C with a wide range of recent models of reward-based deci-

sion making, which center on this side-by-side con�guration (Dolan and Dayan, ����;

Daw et al., ����; Gläscher et al., ����; Beierholm et al., ����). As discussed under Results,

the empirical data motivating those dual-system models is complex. In particular, neu-

ral activity aligning with model-free computations is not always ‘pure’ of model-based

characteristics (see, e.g., Daw et al. (����)). Such computational purity is not enforced in

MDL-C, either, and under some parameterizationsMDL-Cdisplays the same intermedi-

ate patterns that have been observed in some experimental studies. (Indeed, such mixed

patterns were seen across most of the parameter space we explored; see Figs. �.� to �.�).

The interpretation of ostensibly model-based behavior in the two-step task is also nu-

anced (Akam et al., ����; Miller et al., ����a). However, we have demonstrated elsewhere

(Wang et al., ����) that genuinely model-based computations can arise within recurrent

neural networks under conditions comparable to those employed in the present work.

Beyond model-based and model-free RL, the dynamics of habit acquisition in
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MDL-C also link it with recent models that replace model-free RL with a reward-

independent, practice-based learning mechanism (Ashby et al., ����; Miller et al., ����;

Bogacz, ����). The learning mechanism of MDL-C’s default policy is closely related to

these, with two important di�erences. The �rst is that the practice-based learning mech-

anisms adopt as the target of learning the discrete actions actually taken by the agent,

while MDL-C’s default policy adopts as its target the full probabilistic control policy

fromwhich those actions are sampled. The second is that the addition ofVDOe�ectively

regulates the complexity of the habits that can be learned and the rate at which habit for-

mation occurs. The results presented in Fig. �.�A support this connection. Of particular

interest, a recent study provided evidence that dopamine dynamics in a posterior sector

of the striatum encode not a reward-prediction error, but instead an action-prediction er-

ror, which drives situation-action associations (Greenstreet et al., ����). This aligns quite

closely with how learning operates in RNN⇡0 in our MDL-C implementation, where

weight updates are driven by a mismatch between the actions predicted by ⇡0 and those

dictated by ⇡.

Practice-based accounts of habits have been proposed (Miller et al., ����) to explain

not only classic assays of habits, but also trial-by-trial perseveration, an e�ect in which

subjects tend to repeat in the future choices that have been made in the past, regardless

of the associated stimuli and outcomes (Cho et al., ����; Akaishi et al., ����; Balcarras

et al., ����; Miller et al., ����). To test whether MDL-C would show such e�ects, we ran

it on a drifting two-armed bandit task, in which rats show robust perseveration (Miller

et al., ����). We �nd that MDL-C shows similar perseveration, while an ablation model

lacking the default policy does not (Fig. �.�A).

Despite all of these connections,MDL-C di�ers frommost previousmodels in that

it does not involve a direct competition between control systems (Daw et al., ����; Lee

et al., ����). InMDL-C, the policy ⇡ always has the last word on action selection, which

may be to either endorse or override default policy ⇡0 (as discussed above). Interestingly,

this relationship between systems resembles one proposal for the interplay between Sys-

tem � and System � in the JDM literature, according to which “System � quickly proposes

intuitive answers to judgment problems as they arise, and System �monitors the quality
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of these proposals, which it may endorse, correct or override” (Kahneman and Frederick,

����).

Within the JDM literature, among computational models of heuristic judgment,

our account aligns closely with the one recently proposed by Binz et al. (����), adding

to it in the ways noted earlier. Like Binz et al. (����), we have only applied MDL-C to

a small set of heuristics from among the many considered in the JDM literature. An im-

portant challenge, both forMDL-C and for the Binz et al. (����) account, will be to test

applicability to a wider range of the relevant behavioral phenomena. Needless to say, a

still wider range of decision e�ects addressed by the JDM literature, from risk attitudes

to self-control con�icts, remain untouched by the present introductory work, and the

compatibility of the our theory with such e�ects will necessarily await further research.

Some readers will have remarked that the our account of dual-process control shares

important characteristicswith a range of research on ‘resource-rational’ cognition (Lieder

andGri�ths, ����), where limitations on computational capacity are understood to con-

strain strategies for adaptive information processing. In the context of goal pursuit, this

perspective has given rise to the notion of a value-complexity tradeo�, where rewardmax-

imization balances against the cost of encoding or computing behavioral policies (Amir

et al., ����; Lai andGershman, ����; Binz et al., ����; Tavoni et al., ����). While our com-

putational account resonates strongly with this set of ideas, two qualifying points call for

consideration. First, a great deal depends on the exact nature of the computational bot-

tleneck hypothesized. At the center of our account is a measure related to algorithmic

complexity (Grünwald, ����; Hinton and Van Camp, ����; Binz et al., ����), a measure

that di�ers from themutual information constraint that has provided the usual focus for

value-complexity tradeo� theories (Lai and Gershman, ����; Lerch and Sims, ����) (see

Appendix �.A). Second and still more important, the MDL-C framework does not an-

chor on the assumption of �xed and insuperable resource restrictions. The relevant lim-

itations on complexity are regarded not as inherent to neural computation, but rather as

advantageous for representation learning and generalization (Chater and Vitányi, ����).

Indeed, while reward-complexity tradeo�models typically involve a single bottlenecked

processing pathway (Binz et al., ����; Lai and Gershman, ����), MDL-C includes a sec-
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ondpathway that allows the agent towork aroundconstraints on computational capacity.

This allows for the formation of expressive, task-speci�c representations alongside more

compressed representations that capture shared structure across tasks (Musslick and Co-

hen, ����).

�.� Discussion

Dual-process structure appears ubiquitously acrossmultiple domains of human decision

making. Though this is almost certainly a simpli�cation and action selection lies along a

spectrum from controlled to automatic, this tradeo� has been a useful axis for studying

behavior. While this has long been recognized by psychological and neuroscienti�cmod-

els, only recently has the normative question been raised: Candual-process control be un-

derstood as solving some fundamental computational problem? MDL-C, an approach

for e�cient multitask RL from the machine learning literature, can be derived directly

from the demands of generalization and sequential decision-making, without reference

to neuroscienti�c data. Despite this independent theoretical lineage, MDL-C turns out

to provide a compelling explanation for dual-process structure.

The account we have presented is also distinctive for its unifying character. Al-

though sophisticated dual-process models have been proposed within each of the behav-

ioral domains we have considered in the present work — executive control (e.g., Lieder

et al. (����)), reward-based decisionmaking (e.g., Daw et al. (����)), and JDM (e.g., Binz

et al. (����))— to our knowledgeMDL-C is the �rst computational proposal to account

for empirical phenomena across all three of these �elds. However, our treatment of the

neuroscienti�c issues has, of necessity, been quite broad; important next steps for devel-

oping the theory would, for example, be to provide a more detailed account ofMDL-C’s

relationship with speci�c neuroanatomical structures, particularly regional distinctions

and hierarchical organization within prefrontal cortex (Badre and Nee, ����). While we

view MDL-C as a promising step in the direction of providing uni�ed account of dual

process phenomena across �elds, deep questions remain and further work needs to be

done.

Beyond psychology and neuroscience, MDL-C, with its origin in machine learn-
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ing (Moskovitz et al., ����a), bears a number of important links with existing work in

that �eld. In particular, it belongs to a broad class of RL systems that employ regular-

ized policy optimization, where the agent policy is regularized toward some reference or

default (see (Tirumala et al., ����a)). Most relevant are approacheswhere the default pol-

icy is itself learned from experience (Galashov et al., ����b; Teh et al., ����b; Goyal et al.,

����; Moskovitz et al., ����a). In previous work involving such learning, it has been

deemed necessary to stipulate an ‘information asymmetry,’ imposing some hand-crafted

di�erencebetween theobservations available to the control anddefault policies (Galashov

et al., ����b; Teh et al., ����b; Piray and Daw, ����; Goyal et al., ����). MDL-C allows

this information asymmetry itself to be learned, as our simulations have demonstrated.

Given this point and others, we are hopeful that further insights gained into MDL-C’s

relationship with biological cognition could spur modi�cations that provide bene�ts in

a machine learning context as well.
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Appendix

Appendix �.A: Architecture and Learning Algorithm
All experiments employed a common architecture and learning algorithm with minor

implementational variations across simulations. Our implementation of MDL-C con-

sists of two recurrent neural networks (RNNs) which we call the control policy network

RNN⇡ and the default policy network RNN⇡0 . These RNNs have identical sizes and

architectures. They are also provided with identical inputs for each time step of expe-

rience, consisting of a one-hot encoding of the previous action, a scalar indicating the

previous reward, and a vector of task-speci�c information (the “observation”) which will

be described separately for each task.

The control policy network RNN⇡ produces as output a vector of policy logits ⇡

which determine the probability of taking each available action, as well as a scalar value

estimate of its expected future reward from the current state. It is trained using the ad-

vantage actor-critic (A�C; (Mnih et al., ����)) algorithm,which encourages it to produces

actions which maximize expected long-term reward E⇡[R]. The control policy network

is also regularized using a term which encourages its action probabilities to match those

produced by the default policy network. This is equivalent to encouraging the condi-

tional description length L(⇡|⇡0) to be low.

The default policy network also produces as output a vector of policy logits ⇡0. In

the intact system, these are overwritten by the control policy network (see Supplementary

Discussion), and so serve primarily to regularize the control policy. The default policy

network is trained by policy distillation (Rusu et al., ����; Hinton et al., ����) to match

the output of the control policy network ⇡. It is regularized using variational dropout

(VDO; (Kingma et al., ����)), which encourages its absolute description lengthL(⇡0) to

be low.

The overall MDL-C objective for ⇡ and ⇡0 can be written

LMDL�C = E⇡[R]� [↵DKL(⇡(a|xt; ✓)||⇡0(a|xt;w)) + �D̄KL(q(w;�)||p(w))],

corresponding to the reward maximization, complexity, and goodness-of-�t terms intro-
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duced in Equation (�). Note that this expression introduces an additional weighting pa-

rameter relative to Equation (�), the rationale for which is presented in our Supplemen-

tary Discussion. Also, as will become clear in what follows, the overall objective above

can be decomposed and sub-parts used to train di�erent sectors of our agent, since only

certain terms a�ect di�erent pathways. Below, we describe each term in the objective in

detail.

Control Policy NetworkUnless otherwise noted, the control policy RNN⇡ was

trained via a modi�cation of Advantage Actor-Critic (A�C), which is described in detail

in Wang et al. (����); Mnih et al. (����). Brie�y, A�C is an on-policy actor-critic algo-

rithm which weights gradients by a Monte-Carlo estimate of the advantage at each time

step. In order to prevent premature convergence to suboptimal local maxima,Mnih et al.

(����) add an entropy bonus to the objective to prevent the policy from becoming overly

deterministic early in training. In MDL-C, entropy regularization is replaced with a

Kullback-Leibler (KL) divergence penalty with respect to the default policy distribution

⇡0:

rL⇡ = rLA2C + ↵rLKL, where

LA2C = ��t(xt; ✓v) log ⇡(at|xt; ✓) +
↵v

2
�t(xt; ✓v)

2
,

LKL = DKL(⇡(a|xt; ✓)||⇡0(a|xt;w)),

�t(xt; ✓v) = Rt � v(xt; ✓v),

Rt =
k�1X

i=1

�
i
rt+i + �

k
v(st+k; ✓v),

where xt = [st, at�1, rt�1]> is the observation vector at time t consisting of the state

st, previous action at�1, and previous reward rt�1, ✓ are the control policy parameters,

↵v is a hyperparameter controlling the weight on the value-learning loss, ✓v are the value

function parameters,DKL(q||p) =
P

a
q(a) log q(a)

p(a)
is the KL divergence between dis-

tributions q and p, w are the sampled parameters of the default policy network (details

below), and � is a scalar discount factor. This KL-regularized RL framework has a rich

theoretical and experimental history in both machine learning and neuroscience (Piray
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and Daw, ����; Todorov, ����), and can be derived (depending on the direction of the

KL cost) through an interpretation of RL as Bayesian inference (Levine, ����b). More-

over, it has been shown that this approach guarantees accelerated convergence compared

to non-regularized methods under the condition that the tasks faced by the agent induce

optimal policies which behave similarly (Moskovitz et al., ����a). Intuitively, the control

policy network is trained to maximize reward while simultaneously being encouraged to

remain close to the behavior encoded by the default policy ⇡0. Early in training, obtain-

ing reward may be challenging, and so the control policy network is primarily taught via

learning signals generated by the default policy network. If the default policy network

encodes behavior that is useful for the task, then learning from it may enable the control

policy network to obtain reward earlier, accelerating training. Inmultitask settings where

⇡0 is conserved across tasks, it is therefore important that ⇡0 encodes behavior which is

generally useful for the tasks faced by the agent. For further detail on KL-regularized

multitask policy optimization, we refer readers to Moskovitz et al. (����a, ����a).

Default Policy NetworkThe default policy was trained o�-policy via distillation (Hin-

ton et al., ����) from the control policy network (in other words, the default policy aims

tomatch the control policy distribution) o�set by a regularization penalty on the e�ective

bit length encoding of the network parameters:

rL⇡0 = rLdistill +rLVDO

=
MX

k=1

r�DKL(⇡(a|xk; ✓)||⇡0(a|xk;w = f(�; ✏)) + �r�D̄KL(q(w;�)||p(w));

f(�(i); ✏) = �
(i)

0
(1 +

q
�
(i)

↵ ✏
(i)); ✏

(i) ⇠ N (0, 1),

whereM is the minibatch size of data sampled from an experience replay bu�er (Mnih

et al., ����), w are default policy parameters sampled using the reparameterization trick

(Kingma et al., ����) to allow for automatic di�erentiation, � is a scalar hyperparame-

ter weighting the regularization, and � = {�0,�↵} are learned parameters de�ning the

distribution over default policy parameters: q(w;�) =
Q

i
N
⇣
w

(i);�(i)

0
,�

(i)

↵ (�(i)

0
)2
⌘
,

where the superscript (i) denotes the ith parameter, and p(w) is the log-uniform prior
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p(|w(i)|) / 1/|w(i)|. The noise ✏—and therefore, e�ectively, the default policy weights

w—are re-sampled after every episode of training. It’s this particular form of noise which

limits the e�ective capacity ofRNN⇡0 . We use the average KL,

D̄KL(q(w;�)||p(w)) =
1

N

NX

i=1

DKL(q(w
(i);�(i))||p(w(i))).

The regularization loss is computed and minimized using variational dropout (VDO;

(Molchanov et al., ����; Kingma et al., ����)), which uses a local reparameterizaztion trick

to implement this KL regularization as a particular form ofmultiplicative noise placed on

thenetworkweights. Regularizingwith respect to this choice of prior has the e�ect of lim-

iting the e�ective bit-length of the parameters ofRNN⇡0 , reducing its e�ective complex-

ity (Kingma et al., ����). Note that the distillation lossDKL(⇡(a|xk; ✓)||⇡0(a|xk;w =

f(�; ✏)) is a direct measure of goodness-of-�t L(⇡, ⇡0) (Equation �)—the degree to

which ⇡0 is able to match the behavior of ⇡. To see this, note that minimizing this KL

is equivalent to performing maximum likelihood estimation for ⇡0 with ⇡ de�ning the

’true’ underlying data distribution. Also observe that RNN⇡ is trained on-policy and

RNN⇡0 is trained o�-policy from a bu�er of experience collected by the control policy.

We can view this as the control policy actively learning via trial and error in the world,

while intuitively, within a multitask context, the default policy is trained to capture the

behavior of the control policy on each task. The default policy thereby learns an ‘aver-

age’ of the behaviors required to perform well on each task. However, when only a few

tasks have been observed, the default policy can ‘over�t’ to the behaviors learned on those

initial tasks. This can be problematic, as if future tasks di�er, the default policy could

misguide the learning process for the control policy (see above). The VDO complexity

regularization forces the default policy network to simplify, preventing over�tting and

facilitating generalization.
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Architecture DetailsThe LSTM dynamics were governed by the following standard

equations:

it = �(Wxixt +Whiht�1 + bi)

ft = �(Wxfxt +Whfht�1 + bi)

ot = �(Wxoxt +Whoht�1 + bo)

ct = ft � ct�1 + it � tanh (Wxcxt +Whcht�1 + bc)

ht = ot � tanh(ct),

where it, ft, ot, ct, ht are the input gate, forget gate, output gate, cell state, and hidden

state at time t, respectively, �(x) = 1/(1 + exp(�x)) is the sigmoid function, and �

denotes element-wise multiplication. In order to assess the degree to which the default

policy learned to ignore certain input features, an element-wise gating layer `(x)was ap-

plied to the input:

`(xt) = �(⌧!)� xt,

where ⌧ was a hyperparameter �xed across simulations and ! was a learned vector of pa-

rameters with dimension equal to that of the input. As!d !1, the dth input feature is

passed on to the layers above, while if !d ! �1, the dth input feature is gated out. Im-

portantly, gradients from the VDO loss (see above) did not �ow into !, only those from

the distillation loss, so ! learned to gate features in or out that were already either being

used or ignored by the network, rather than simply being ablated directly as the VDO

penalty increased. We found that adding this gating layer did not a�ect the performance

of the agent.

Training Details In all simulations, the agent was updated using a learning rate of ⌘ =

0.0007, a value function loss weight of ↵v = 0.05, a policy KL weight of ↵ = 0.1, a

discount factor of � = 0.9, a gating layer coe�cient of ⌧ = 150, and a VDOKL weight

of� = 1.0 unless otherwise noted. All gradient updates were performed using theAdam

optimizer (Kingma andBa, ����). Further simulation-speci�c details canbe foundbelow,
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and a summary of hyperparameter values for each task is provided in Table �.�. All results

were obtained by averaging over � random seeds, with shading on line plots denoting one

unit of standard error.

Task (⌘, ↵v, ↵, � �,M , ⌧ , # hidden, ⇡0 bu�er size)

Navigation (�e-�, �.��, �.�, �.�, �.�, ��, ���, ��, �e�)
Stroop (�e-�, �.��, �.�, �.�, �.�, �, ���, ��, �e�)
Demand Stroop (�e-�, �.��, �.�, �.�, �.�, �, ���, ��, �e�)
Two-Step (�e-�, �.��, �.�, �.�/���.�⇤, �.�, N/A, ���, ��, N/A)
O&D (�e-�, �.��, �.�, �.�, N/A, �, ���, �, �e�)
Continuous Control (�e-�, �.��, �.�, �.�, �.��, ���, ���, ���, �e�)
Heuristics (�e-�, N/A, �.�, �.�, N/A, ��, ���, ���, �e�)

Table �.�: Hyperparameters for each task. ⇤The Two-Step task settings are described in greater
detail below.

Appendix �.B: Simulation �: Executive control
Stroop Task In the Stroop task, the agent must perform either “word-reading” (WR) or

“color-naming” (CN) tasks across two di�erent colors and two di�erent words, totalling

eight di�erent possible stimuli: (red[WR], blue[WR], blue[WR], red[WR], red[CN],

blue[CN], blue[CN], red[CN]), each presented to the agent as a three-dimensional vec-

tor xt = [color,

word, task] with the following encodings: blue! �1, red! +1, CN! �1, WR!

+1. The presentation frequencies were ��% for all WR stimuli and �% for all CN stim-

uli. There were two possible actions, corresponding to �1 and +1. The agent received

+1 reward when its action matched the appropriate value of the stimulus feature (e.g.,

if the task feature is �1 and the color feature is +1, the desired action is +1) and zero

otherwise. In order to simulate reaction times (RTs), the input stimulus for a given trial

was re-presented up to a maximum of � times to the agent until the entropy of the con-

trol policyH[⇡] = �
P

a
⇡(a|xt; ✓) log ⇡(a|xt; ✓) dropped below a threshold b = 0.5,

similar to the approach to modeling RTs used by Cohen et al. (����); Song et al. (����).

The RT for each trial was the number of presentations of the stimulus until a response

was produced. After a response was generated, the trial ended. The agent was trained for

��,��� trials and each LSTM had �� hidden units.
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Demand Avoidance Stroop Task In this task, the agent was presented with word-

reading (WR) and color-naming (CN) trials, encoded as in the Stroop task described

above, with each WR stimulus having a ��% chance of presentation on any given trial.

CN trials were presented ��%of the time, but in this task CN trials consisted of two time

steps. On the �rst time step, the agent was presented with the stimulus [0, 0,�1] to indi-

cate a CN trial. Its action at this stage served to select between two categories, referred to

as high-demand and low-demand. If the agent selected the high-demand category, then

in the second time step of the trial, a con�ict stimulus was presented with a ��% chance

and a congruent stimulus with a ��% chance. If the agent selected the low-demand cate-

gory, these probabilities were reversed. The agent shared the same settings as in the main

Stroop task, and was also trained for ��,��� trials.

Interference Stroop Task In this case, the agent was �rst pre-trained on color-naming-

only trials for ��,��� trials. It was then trained for ��,��� trials on word-reading. Dur-

ing this training phase, the agent’s reaction time was evaluated on both CN and WR

trials (in evaluation trials, the agent’s weights were not updated). The agent architec-

ture and environment set-up were the same as in the “standard” Stroop task above. One

important characteristic of the Stroop task is that there are interaction e�ects between

task and congruity—that is, at the outset of training, color interferes with shape more

than shape interferes with color. This means that shape-naming con�ict trials result in

disproportionately higher RTs compared to shape-naming congruent trials compared to

the di�erence between color-naming con�ict trials and color-naming congruent trials.

This relationship is then reversed at the end of training, with a greater relative increase

for color-naming trials. We veri�ed that this property held forMDL-C by running a one-

way ANOVA test on the di�erences in RT between each trial type (e.g., color-naming

con�ict RT - color-naming congruent RT vs. shape-naming con�ict RT - shape-naming

congruent RT), with the interaction e�ect at � trials yielding F = 11.3 and p = 0.005

and the interaction e�ect at ��,��� trials yielding F = 13.7 and p = 0.002.

Zero-Shot Stroop TaskThe agent was trained �,��� trials in which the unneeded fea-

ture was zeroed out from the stimulus (i.e., the agent gets �d inputs [color, word, task

id], where -� = blue, +� = red in the �rst two dims, -� = color-naming, +� = word-naming
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for task id, and � =NULL in any location). So, the agent would see [-�, �, -�] for a ”blue”

color-naming task. The stimulus distributionwas uniform. During training, bothMDL-

C and ‘Regular RL” (just a control policyRNN⇡ with otherwise identical hyperparam-

eters) get to ���% accuracy. The agent is then evaluated on ��� trials with �xed weights

in which the unneeded feature is included in the stimuli. The evaluation performance is

the percent correct over ��� evaluation trials with �xed weights. To test the hypothesis

that the improved performance of MDL-C is rooted in robustness to changes in inputs,

we also measured the average KL between the policy distributions for each approach on

masked inputs (like the ones on which they were trained) and on inputs with the miss-

ing feature included. Regular RL had a greater di�erence, indicating that responses were

more e�ected by the out-of-distribution inputs.

Appendix �.C: Simulation �: Reward-based learning

Two-Step TaskWe use a variant of the two-step task based on the one used by Wang

et al. (����) in which transition contingencies–in addition to reward contingencies–may

switch. The task was changed in this way following the �nding by Akam et al. (����) that

when transition contingencies are �xed, a habit-like strategy in which second stage states

which have recently yielded reward are directly mapped to actions in the choice stage can

developwhich closelymatches the pattern of behavior expected of agents using planning.

Additionally, the agent is provided with an input feature which indicates which transi-

tion contingency setting is currently active (an ingredient added to the task from Akam

et al. (����) in order to restore the property that model-based and -free strategies yield

the classical patterns shown in Fig. �.�C) . To use this feature to inform its actions, the

agent must compute a higher-complexity policy than if this feature is ignored, analogous

to the di�erence between classifying inputs according to XOR versus OR logic. To bemore

precise, with two second stage states A and B and two actions aL and aR, we can have

either

Setting � =

8
><

>:

p(A|aL) = 0.8, p(B|aL) = 0.2

p(A|aR) = 0.2, p(B|aR) = 0.8
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Setting � =

8
><

>:

p(A|aL) = 0.2, p(B|aL) = 0.8

p(A|aR) = 0.8, p(B|aR) = 0.2

In other words, in one setting aL is likely to lead to A and aR is likely to lead to B,

and in the other, the reverse is true. The agent is shown a binary feature which indi-

cates which transition setting the environment is in (however, it has to learn what this

feature means through experience). More precisely, the state observation at each time

step st is a �-dimensional vector, with the �rst four dimensions comprising a one-hot en-

coding of the current position of the agent within the task (either fixation stage,

choice stage, A, or B), with the �nal dimension a binary encoding of the current tran-

sition setting. The agent has three possible actions: aL, aR, and afixate, which the agent

is required to produce in order to progress from the �xation stage to the choice stage.

There are also two possible settings for the reward contingencies, with eitherA orB hav-

ing a ��% chance of leading to reward, with the other state in either contingency having

a ��% chance. The agent is trained for ��,��� episodes, where each episode consists of

��� trials. At the end of each episode, the agent networks’ hidden states are reset and

an update is performed via backprop. On any given trial, there is a �.�% chance that the

reward contingency switches and a �% chance that the transition contingency changes.

During training, we found it helpful to start with a �% chance of reward contingency

switches and linearly increase the probability to �.�% over the �rst �,��� episodes, as this

helped the agent reliably learn the meaning of the transition setting feature. All other

task settings and analysis details for stay probabilities and logistic regression are the same

as in Wang et al. (����). Importantly, in this task the default policy was trained online

(but still o�-policy) via full trajectories collected by the control policy, rather than via a

bu�er of (s, a, r, s0) tuples. This is because the full episode history is required to e�ec-

tively meta-learn, as demonstrated by Wang et al. (����, ����). The hyperparameter set-

tings used to generate the plots in Fig. �.�(D-F) were identi�ed after an initial grid search

with eight random seeds per (↵, �, RewardScale) tuple with ↵ 2 {0.05, 0.1, 0.2},

� 2 {0.1, 1.0, 3.0, 5.0, 10.0, 100.0}, RewardScale 2 {0.5, 0.75, 1.0} and further

con�rmed by an additional eight random seeds, for a total of ��. The ‘classic’ MB-MF
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patterns were obtainedwith (0.1, 100.0, 1.0) and themixed patterns were observedwith

(0.2, 3.0, 0.75). To further support the mixed MB-MF-ness of the response pattern in

Fig. �.�F, we performedWilcoxon signed-rank tests between the average of the rewarded,

common and unrewarded, uncommon responses and the average of the rewarded, un-

common and unrewarded, common responses as a measure of model based-ness, and be-

tween rewarded, common and rewarded, uncommon responses and unrewarded, com-

mon and unrewarded, uncommon responses as a measure of model free-ness. The re-

sponse patterns for both the control and default policies were statistically signi�cant

(p = 0.012) for both model-based and model-free behavior. The agent’s LSTMs had

�� hidden units each.

Perseveration In this experiment, the agent was trained on the drifting two-armed ban-

dit task fromMiller et al. (����). In this task, trials consist of a single time-step in which

the agent has two possible actions, with the probability of reward for each arm evolving

with aGaussian randomwalk. Speci�cally, if the probability of being rewarded by choos-

ing a given action on trial t isPt, then the probability of being rewarded for choosing that

arm on the next trial is sampled from the distribution Pt+1 ⇠ N (Pt, 0.152). The agent

either receives a reward of � or �, and is trained for �,��� trials. In this case, each RNN

had � hidden units. After training, logistic regression is performed to predict the agent’s

behavior on a given trial, with the regressors being the choicemade at each time-step (±1,

the whether a reward was given at each time-step (±1), and their product. A high regres-

sion weight for previous choices indicates a tendency to perseverate, a high weight for

the outcome/reward indicates that the agent is in�uenced by whether it was rewarded at

each step independent of its previous choices, and a high regressionweight for their prod-

uct indicates that the agent is in�uenced by choices that led to rewards (reward-seeking

behavior).

Omission and Contingency DegradationWe use the same task set-up as Miller et al.

(����). As inMiller et al. (����), in order tomodel the e�ect of overtraining on the agent’s

sensitivity to omission of reward, the agent was �rst trained on a two-armed bandit task

in which action � (“lever press”) led to a reward of � with ��% probability and action �

(“leisure”) resulted in a reward of �.� ���% of the time. It was then trained for ��� trials
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on a modi�cation of the task in which reward was never delivered for lever pressing and

in which leisure resulted in a reward of �.� half the time and a reward of �.� half the time.

The agent’s lever-pressing probability P (lever press) was then measured at the end of

the second training phase. This probability was plotted against the number of trialsT for

which the agent was trained on the �rst phase, where T 2 [100, 200, 300, . . . , 2000].

The contingency degradation variant of this task was exactly the same, except that the

leisure action always resulted in a reward of �.� in the second phase.

Appendix �.D: Simulation �: Judgment and decision-

making
HeuristicsWe use the same experimental setting as Binz et al. (����). Brie�y, the agent

is meta-trained on a series of randomly generated paired comparison tasks with con-

tinuous input features x in which it must predict which of two presented feature vec-

tors xt = (xA

t
, x

B

t
) is associated with a higher value of an unobserved scalar criterion

yt = (yA
t
, y

B

t
). More precisely, for each task i, there is an underlying linear relationship

between features and the unobserved criterion:

yt,A = w
>

i
xt,A + ✏t,A;

yt,B = w
>

i
xt,B + ✏t,B,

where ✏t,A, ✏t,B ⇠ N (0, �2), with �2 a �xed variance and wi 2 R4. An ideal observer

model then expresses the probability that yA > yB as

p(yA > yB|x, wi) = p(C = 1|x, wi) = �

✓
w

>

i
xp

2�

◆
, (�.�)

where �(·) is the cumulative distribution function of a standard Gaussian distribution

and C 2 {0, 1} is a binary random variable which evaluates to � when yA > yB and

� otherwise. Task feature weights wi are randomly generated from a standard normal

distribution, and the agent is meta-trained to estimate a posterior distribution over w

with minibatches of �� tasks and each task being presented to the agent for �� trials. The

reward for a given trial can be modeled as the log likelihood: p(Ct|xt,�t, For a more
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detailed description of the training process, see Binz et al. (����). The control network

RNN⇡ produces the parameters (mean µt and variance t) of an approximate Gaussian

posterior overwi, which is then integrated into a predictive distribution for classi�cation:

p(Ct+1|xt+1,�t,⇥) =

Z
p(Ct+1|xt+1, w)q(w;�t) dw

where and �t = {µt, t} are the parameters of the approximate Gaussian posterior q

over parametersw. The conditional distribution is as above

p(Ct+1 = 1|xt+1, w) = �

✓
w

>
xtp
2�

◆
.

The default networkRNN⇡0 also produces parameters�0

t
of aGaussian q0 and is trained

tominimizeDKL(q(w,�t)||q0(w,�0

t
)) in addition to theVDOcomplexityKLweighted

by � (see “Default Policy” details above).

To test the emergence of heuristics, we use the task variant from Binz et al. (����)

in which there is a known ranking of input features, which classically induces a form of

one-reason decision-making termed “take the best” (TTB), wherein subjects make deci-

sions based on the top-ranked feature which di�ers between two inputs. To measure the

emergence of such a heuristic in arti�cial agents, Binz et al. (����) use theGini coe�cient

G (Atkinson, ����) measured over the feature weightsw, de�ned below:

G(w) =

P
d

i=1

P
d

j=1
|wi � wj|

2d
P

d

i=1
wi

.

The Gini coe�cient can be thought of as a measure of inequality among feature weight-

ings, so that it tends to 1when one feature grows in importance compared to the others,

and tends to 0 as all feature weightswi converge to the same value. As ameans of probing

the e�ect of reducing the relative cost of employing a compensatory strategy (Fig. �.�D),

we reduced the weighting on the KL between the default and control policies, setting

↵ = 0.01. This e�ectively lowers the penalty for deviation in behavior from the capacity-

limited policy.
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Figure �.�: Two-step results from full hyperparameter sweep described in Methods, with ↵ =
0.05. Format as in Fig. �.� in the main text.
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Figure �.�: Two-step results from full hyperparameter sweep described in Methods, with ↵ =
0.1. The boxed plot appears in Fig. �.� in the main text. Format as in Fig. �.� in the
main text.
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Figure �.�: Two-step results from full hyperparameter sweep described in Methods, with ↵ =
0.2. The boxed plot appears in Fig. �.�E in the main text. Format as in Fig. �.� in the
main text.
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This section focuses on a di�erent variety of assumed structure: consistent transi-

tion dynamics across tasks. That is, given an agent’s action, theworld changes in the same

way (in expectation) regardless of the particular reward the agent is pursuing. Previous

work has shown that under this assumption, an agent can learn a representationwhich al-

lows it to evaluate and compose previously learned policies in standardMDPs. The next

two chapters extend these results to settings where reward availability obeys particular

forms of nature-inspired non-stationarity and non-Markovianity.



Chapter �

A First-Occupancy Representation for

Reinforcement Learning

�.� Introduction

In order to maximize reward, both animals and machines must quickly make decisions

in uncertain environments with rapidly changing reward structure. Often, the strategies

these agents employ are categorized as eithermodel-free (MF) ormodel-based (MB) (Sut-

ton andBarto, ����a). In the former, the optimal action in each state is identi�ed through

trial and error, with propagation of learnt value from state to state. By contrast, the latter

depends on the acquisition of a map-like representation of the environment’s transition

structure, from which an optimal course of action may be derived.

This dichotomy has motivated a search for intermediate models which cache in-

formation about environmental structure, and so enable e�cient but �exible planning.

One such approach, based on the successor representation (SR) (Dayan, ����), has been the

subject of recent interest in the context of both biological (Stachenfeld et al., ����; Mo-

mennejad et al., ����; Vértes and Sahani, ����; Behrens et al., ����; Gershman, ����) and

machine (Kulkarni et al., ����; Barreto et al., ����; Machado et al., ����; Ma et al., ����;

Madarasz and Behrens, ����; Barreto et al., ����) learning. The SR associates with each

state and policy of action a measure of the expected rate of future occupancy of all states

if that policywere to be followed inde�nitely. This cached representation can be acquired

through experience in much the same way asMFmethods and provides some of the �ex-
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ibility of MB behaviour at reduced computational cost. Importantly, the SR makes it

possible to rapidly evaluate the expected return of each available policy in an otherwise

unchanging environment, provided that the transition distribution remains consistent.

However, these requirements limit the applicability of the SR. In the real world, re-

wards are frequently non-Markovian. Theymay be depleted by consumption, frequently

only being available on the �rst entry to a state. Internal goals for control—say, to pick

up a particular object—need to be achieved as rapidly as possible, but only once at a time.

Furthermore, while a collection of SRs for di�erent policies makes it possible to

select the best amongst them, or to improve upon them all by considering the best imme-

diate policy-dependent state values (Barreto et al., ����), this capacity still falls far short

of the power of planning within complete models of the environment.

Here, we propose a di�erent form of representation in which the information

cached is appropriate for achieving ephemeral rewards and for planning complex com-

binations of policies. Both features arise from considering the expected time at which

other states will be �rst accessed by following the available policies. We refer to this as

a �rst-occupancy representation (FR). The shift from expected rate of future occupancy

(SR) to delay to �rst occupancymakes it possible to handle settings where the underlying

environment remains stationary, but reward availability is not Markovian. This chapter,

adapted fromMoskovitz et al. (����c), formally introduces the FR and to highlight the

breadth of settings in which it o�ers a compelling alternative to the SR, including, but

not limited to: exploration, unsupervised RL, planning, and modeling animal behavior.

�.� Reinforcement Learning Preliminaries
Policy evaluation and improvementWe begin by modeling a task T as a �nite MDP,

T = (S,A, P, r, �, ⇢), where S is a �nite state space, A is a �nite action space, P :

S ⇥ A ! �(S) is the transition distribution (where�(S) is the probability simplex

overS), r : S ! R is the reward function, � 2 [0, 1) is a discount factor, and ⇢ 2 �(S)

is the distribution over initial states.

The goal of the agent is to maximize its expected return, or discounted cumulative

reward
P

t
�
t
r(st). To simplify notation, we will frequently write r(st) , rt and r 2
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R|S| as the vector of rewards for each state. The agent acts according to a stationary policy

⇡ : S ! �(A). For �nite MDPs, we can describe the expected transition probabilities

under⇡ using a |S|⇥ |S|matrixP ⇡ such thatP ⇡

s,s0 = p
⇡(s0|s) ,P

a
P (s0|s, a)⇡(a|s).

Given ⇡ and a reward function r, the expected return is

Q
⇡

r
(s, a) = E⇡

"
1X

k=0

�
k
rt+k

���st = s, at = a

#
= E s0⇠p⇡(·|s)

a0⇠⇡(·|s0)
[rt + �Q

⇡

r
(s0, a0)] . (�.�)

Q
⇡

r
are called the state-action values or simply theQ-values of ⇡. The expectation E⇡ [·]

is taken with respect to the randomness of both the policy and the transition dynamics.

For simplicity of notation, from here onwards we will write expectations of the form

E⇡ [·|st = s, at = a] as E⇡ [·|st, at].

This recursive form is called the Bellman equation, and it makes the process of

estimating Q
⇡

r
—termed policy evaluation—tractable via dynamic programming (DP;

Bellman, ����). In particular, successive applications of the Bellman operator T ⇡
Q ,

r + �P
⇡
Q are guaranteed to converge to the true value functionQ⇡ for any initial real-

valued |S|⇥ |A|matrixQ.

The successor representationThe successor representation (SR; (Dayan, ����)) is moti-

vated by the idea that a state representation for policy evaluation should be dependent on

the similarity of di�erent paths under the current policy. The SR is a policy’s expected

cumulative discounted state occupancy, and for discrete state spaces can be stored in an

|S|⇥ |S|matrixM⇡, where

M
⇡(s, s0) , E⇡

"
1X

k=0

�
k (st+k = s

0)
���st

#
= E⇡

h
(st = s

0) + �M
⇡(st+1, s

0)
���st
i
,

(�.�)

where (·) is the indicator function. The SR can also be conditioned on actions, i.e.,

M
⇡(s, a, s0) , E⇡

hP
k
�
k (st+k = s

0)
���st, at

i
, and expressed in a vectorized format,

we can writeM⇡(s) , M
⇡(s, ·) orM⇡(s, a) , M

⇡(s, a, ·). The recursion in Eq. (�.�)
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admits a TD error:

�
M

t
, 1(st) + �M

⇡(st+1, ⇡(st+1))�M
⇡(st, at), (�.�)

where 1(st) is a one-hot state representation of length |S|. One useful property of the

SR is that, once converged, it facilitates rapid policy evaluation for any reward function

in a given environment:

rTM⇡(s, a) = rTE⇡

"
X

k

�
k (st+k)

���st, at

#
= E⇡

"
X

k

�
k
rt+k

���st, at

#
= Q

⇡

r
(s, a).

(�.�)

Fast transfer for multiple tasks In the real world, we often have to perform multiple

tasks within a single environment. A simpli�ed framework for this scenario is to consider

a set of MDPsM that share every property (i.e., S,A, P, �, ⇢) except reward functions,

where each task within this family is determined by a reward function r belonging to

a setR. Extending the notions of policy evaluation and improvement to this multitask

setting, we can de�ne generalized policy evaluation (GPE) as the computation of the value

function of a policy⇡ on a set of tasksR. Similarly, generalized policy improvement (GPI)

for a set of “base” policies⇧ is the de�nition of a policy ⇡0 such that

Q
⇡
0

r
(s, a) � sup

⇡2⇧

Q
⇡

r
(s, a) 8(s, a) 2 S ⇥A (�.�)

for some r 2 R. As hinted above, the SR o�ers a way to take advantage of this shared

structure by decoupling the agent’s evaluation of its expected transition dynamics under

a given policy from a single reward function. Rather than needing to directly estimate

Q
⇡ 8⇡ 2 ⇧,M⇡ only needs to be computed once, and given a new reward vector r, the

agent can quickly peformGPE via Eq. (�.�). As shown by Barreto et al. (����), GPE and

GPI can be combined to de�ne a new policy ⇡0 via

⇡
0(s) 2 argmax

a2A

max
⇡2⇧

rTM⇡(s, a). (�.�)
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For brevity, we will refer to this combined procedure of GPE and GPI simply as “GPI”,

unless otherwise noted. The resulting policy ⇡0 is guaranteed to perform at least as well

as any individual ⇡ 2 ⇧ (Barreto et al., ����) and is part of a larger class of policies

termed set-improving policieswhich perform at least as well as any single policy in a given

set (Zahavy et al., ����).

�.� The First-Occupancy Representation
While the SR encodes states via total occupancy, this may not always be ideal. If a task

lacks a time limit but terminates once the agent reaches a pre-de�ned goal, or if reward

in a given state is consumed or made otherwise unavailable once encountered, a more

useful representation would instead measure the duration until a policy is expected to

reach states the �rst time. Such natural problems emphasize the importance of the �rst

occupancy and motivate the �rst-occupancy representation (FR).

De�nition �.�.�. For an MDP with �nite S , the �rst-occupancy representation (FR) for

a policy ⇡ F
⇡ 2 [0, 1]|S|⇥|S| is given by

F
⇡(s, s0) , E⇡

"
1X

k=0

�
k (st+k = s

0
, s

0
/2 {st:t+k})

���st

#
, (�.�)

where {st:t+k} = {st, st+1, . . . , st+k�1}, with the convention that {st:t+0} = ?.

That is, as the indicator equals 1 i� st+k = s
0 and time t+k is the �rst occasion onwhich

the agent has occupieds0 since time t,F ⇡(s, s0) gives the expecteddiscount at the time the

policy �rst reaches s0 starting from s. The idea of learning policy-dependent distances to

target states has a long history inRL (Kaelbling, ����; Pong et al., ����; Hartikainen et al.,

����). However, previous methods don’t learn these distances as state representations

and measure distance in the space of time steps, rather than discount factors. A more

thoroughdiscussion canbe found inAppendix �.H.We canwrite a recursive relationship

for the FR (derivation in Appendix �.A):

F
⇡(s, s0) = Est+1⇠p⇡(·|s)

h
(st = s

0) + �(1� (st = s
0))F ⇡(st+1, s

0)
���st
i

(�.�)
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This recursion implies the following Bellman operator, analogous to the one used for

policy evaluation:

De�nition �.�.� (FR Operator). Let F 2 R|S|⇥|S| be an arbitrary real-valued matrix.

Then let G⇡ denote the Bellman operator for the FR, such that

G⇡F = I|S| + �(11T � I|S|)P
⇡
F, (�.�)

where 1 is the length-|S| vector of all ones. In particular, for a stationary policy ⇡, G⇡F ⇡ =

F
⇡ .

The following result establishesG⇡ as a contraction, with the proof provided in Ap-

pendix �.D.

Proposition �.�.� (Contraction). Let G⇡ be the operator as de�ned in De�nition �.�.� for

some stationary policy ⇡. Then for any two matrices F, F 0 2 R|S|⇥|S|,

|G⇡F (s, s0)� G⇡F 0(s, s0)|  �|F (s, s0)� F
0(s, s0)|, (�.��)

with the di�erence equal to zero for s = s
0.

This implies the following convergence property of G⇡.

Proposition �.�.� (Convergence). Under the conditions assumed above, set F (0) = I|S|.

For k = 0, 1, . . . , suppose F (k+1) = G⇡F (k). Then

|F (k)(s, s0)� F
⇡(s, s0)| < �

k (�.��)

for s 6= s
0 with the di�erence for s = s

0 equal to zero 8k.

Therefore, repeated applications of the FR Bellman operator Gk
F ! F

⇡ as k !

1. When the transition matrix P ⇡ is unknown, the FR can instead be updated through

the following TD error:

�
F

t
= (st = s

0) + �(1� (st = s
0))F ⇡(st+1, s

0)� F
⇡(st, s

0). (�.��)
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Figure �.�: The FR is higher for shorter paths. (a-c) A �D gridworld and �xed policies. (d) The FR
from s0 to sg is higher for ⇡2, but the SR is lower. (e) SR-GPI with the SR picks ⇡1, while
FR-GPI selects ⇡2.

In all following experiments, the FR is learned via TD updates, rather than via dynamic

programming. To gain intuition for the FR, we can imagine a �Denvironment with start

state s0, a rewarded state sg, and deterministic transitions (Fig. �.�a). One policy, ⇡1,

reaches sg slowly, but after �rst encountering it, re-enters sg in�nitely often (Fig. �.�b).

A second policy, ⇡2, reaches sg quickly but never occupies it again (Fig. �.�c). In this

setting, because ⇡1 re-enters sg multiple times, despite arriving there more slowly than

⇡2, M⇡1(s0, sg) > M
⇡2(s0, sg), but because the FR only counts the �rst occupancy

of a given state, F ⇡1(s0, sg) < F
⇡2(s0, sg). The FR thus re�ects a policy’s path length

between states.

Policy evaluation and improvement with the FRAs with the SR, we can quickly

perform policy evaluationwith the FR. Crucially, however, the FR induces the following

value function:

rTF ⇡(s, a) = E⇡

"
X

k

�
k
r
F

t+k

���st, at

#
, Q

⇡

rF
(s, a), (�.��)

where rF : S ! R is a reward function such that rF (st+k) = r(st+k) if st+k /2

{st:t+k} and�otherwise. In otherwords,multiplying any reward vector by the FR results

in the value function for a corresponding task with non-Markovian reward structure in

which the agent obtains rewards from states only once. Policy improvement can then be

performed with respect to Q
⇡

rF
as normal. This structure is a very common feature of

real-world tasks, such as foraging for food or reaching to a target. Accordingly, there is a

rich history of studying tasks with this kind of structure, termed non-Markovian reward

decision processes (NMRDPs; Littman et al., ����; Gaon and Brafman, ����; Ringstrom

and Schrater, ����; Peshkin et al., ����). Helpfully, all NMRDPs can be converted into
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an equivalentMDPwith an appropriate transformation of the state space (Bacchus et al.,

����).

Most approaches in this family attempt to be generalists, learning an appropriate

state transformation and encoding it using some form of logical calculus or �nite state

automaton (Bacchus et al., ����; Littman et al., ����; Gaon and Brafman, ����). While

it would technically be possible to learn or construct the transformation required to ac-

count for the non-Markovian nature of rF , it would be exponentially expensive in |S|,

as every path would need to account for the �rst occupancy of each state along the path.

That is, |S| bits would need to be added to each successive state in the trajectory. Cru-

cially, the FR has the added advantage of being task-agnostic, in that for any reward func-

tion r in a given environment, the FR can immediately perform policy evaluation for the

corresponding rF .

In�nite state spacesA natural question when extending the FR to real-world scenarios

is how it canbe generalized to settingswhere |S| is either impractically large or in�nite�. In

these cases, the SR is reframed as successor features  ⇡ (SFs; Kulkarni et al., ����; Barreto

et al., ����), where the dth SF is de�ned as  ⇡
d
(s) , E⇡

⇥P
1

k=0
�
k
�d(st+k)

��st = s
⇤
,

where d = 1, . . . , D and � : S ! RD is a base feature function. The base features

�(·) are typically de�ned so that a linear combination predicts immediate reward (i.e.,

wT
�(s) = r(s) for some w 2 RD), and there are a number of approaches to learning

them (Kulkarni et al., ����; Ma et al., ����). A natural extension to continuousS for the

FRwould be to de�ne a �rst-occupancy feature (FF) representation'⇡, where the dth FF

is given by

'
⇡

d
(s) , E⇡

"
1X

k=0

�
k (�d(st+k) � ✓d, {�d(st0)}t0=t:t+k < ✓d)

���st = s

#

= (�d(st) � ✓d) + �(1� (�d(st) � ✓d))Est+1⇠p⇡ ['
⇡

d
(st+1)]

(�.��)

where ✓d is a threshold value for the dth feature. The indicator equals � only if st+k is the

�rst state whose feature embedding exceeds the threshold. Note that this representation

recovers the FRwhen the feature function is a one-hot state encoding and the thresholds
�Recent work (Blier et al., ����; Touati and Ollivier, ����a) has shown ways of extending the SR to

continuous S with the need for base features. We leave this as an interesting avenue for future work.
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{✓d}Dd=1
are all �. One challenge with this particular parameterization is that it’s chal-

lenging to set the thresholds asD grows. We consider alternative formulations of the FF

representation in the next chapter.

�.� Experiments
We now demonstrate the broad applicability of the FR, and highlight ways its properties

di�er from those of the SR.We focus on� areas: exploration, unsupervisedRL, planning,

and animal behavior.

�.�.� The FR as an Exploration Bonus

method R����S��� S��A���

S���� � FR 1, 547, 243± 34, 050 1, 191, 490± 42, 942

S���� � SR 1, 197, 075± 36, 999 1, 025, 750± 49, 095

S���� 25, 075± 1, 224 376, 655± 8, 449

Table �.�: Exploration results.± values de-
note � SE across ��� trials.

Intuitively, representations which encode state

visitation should be useful measures of explo-

ration. Machado et al. (����) proposed the SR

as a way to encourage exploration in tasks with

sparse or deceptive rewards. Speci�cally, the SR

is used as a bonus in on-policy learningwith Sarsa

(Rummery and Niranjan, ����):

�t = rt +
�

kM⇡(st)k1
+ �Q

⇡(st+1, at+1)�Q
⇡(st, at), at+1 ⇠ ⇡(·|st+1), (�.��)

where � 2 R controls the size of the exploration bonus. Machado et al. (����) show

that during learning, kM⇡(s)k1 can act as a proxy for the state-visit count n(s), with

kM⇡(s)k�1

1
awarding a progressively lower bonus for every consecutive visit of s. In the

limit as t!1, however, kM⇡(s)k�1

1
! 1� � 8s as ⇡ stabilizes, regardless of whether

⇡ has e�ectively explored. To encourage exploration, we’d like for a bonus to maintain

its e�ectiveness over time. In contrast to kM⇡(s)k1, 1  kF ⇡(s)k1  |S| , 1��
|S|+1

1��
,

where |S| > 1 for |S| � 1. Note that kF ⇡(s)k1 = |S| only if ⇡ reaches all states in as

many steps. Because kF ⇡k1 only grows when new states or shorter paths are discovered,

we can instead augment the reward as follows:

rt  rt + �kF ⇡(st)k1. (�.��)
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(a) (b) (c) (d) (e)

Figure �.�: The FF facilitates accurate policy evaluation and selection. Shading denotes �
SE over �� seeds.

We testedour approachon theR����S��� andS��A���problems (Strehl andLittman,

����), two hard-exploration tasks from the PAC-MDP literature. In both tasks, visual-

ized in Appendix Fig. �.�, the transition dynamics push the agent towards small rewards

in easy to reach states, with greater reward available in harder to reach states. In both

cases, we ran Sarsa, Sarsa with an SR bonus (S���� � SR) and Sarsa with an FR bonus

(S���� � FR) for �,��� time steps with an ✏-greedy policy. The results are listed in Ta-

ble �.�, where we can see that the FR results in an added bene�t over the SR. It’s also

important to note that the maximum bonus |S| has another useful property, in that it

scales exponentially in |S|. This is desirable, because as the number of states grows, explo-

ration frequently becomes more di�cult. To measure this factor empirically, we tested

the same approaches with the same settings on a modi�ed R����S���, R����S����

N, with N = {6, 12, 24} states, �nding that S���� � FR was more robust to the in-

creased exploration di�culty (see Appendix Table �.� and Appendix �.C for results and

more details). We also tested whether these results extend to the function approximation

setting, comparing a DQN-style model (Mnih et al., ����) using the SF and FF as explo-

ration bonuses on the challenging D���S�� task (Osband et al., ����), �nding that the

advantage of the FF is conserved. See Appendix �.C for details. Developing further un-

derstanding of the relationship between the FR and exploration represents an interesting

topic for future work.

�.�.� Unsupervised RL with the FF

We demonstrate the usefulness of the FF in the unsupervised pre-training RL (URL) set-

ting, a paradigm which has gained popularity recently as a possible solution to the high

sample complexity of deep RL algorithms (Liu and Abbeel, ����; Gregor et al., ����; Ey-
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Figure �.�: The FR enables e�cient planning. (a-d) A �D gridworld with start (s0) and
goal(sg) states, along with three �xed policies. (e) GPI follows ⇡1. (f) Planning with
the FR enables the construction of a shorter path.

senbach et al., ����; Sharma et al., ����). InURL, the agent �rst explores an environment

without extrinsic rewardwith the objective of learning auseful representationwhich then

enables rapid �ne-tuning to a test task.

Continuous MountainCarWe �rst demonstrate that if the test task is non-Markovian,

the SR can producemisleading value estimates. To do so, we use amodi�ed version of the

continuousMountainCar task (Brockman et al., ����) (Fig. �.�(a)). The agent pre-trains

for ��,��� time steps in a rewardless environment, during which it learns FFs or SFs for a

set of policies⇧which swing back and forthwith a �xed acceleration or “power.” (details

in Appendix �.C). During �ne-tuning, the agent must identify the policy ⇡ 2 ⇧ which

reaches a randomly sampled goal location the fastest. We use radial basis functions as the

base features �d(·)with �xed FF thresholds ✓d = 0.7.

Fig. �.�(b,d) plots the FF and SF values versus policy power from the start state for

two di�erent goal locations. The low-power policies require more time to gain momen-

tum up the hill, but the policies which maximize the SF values slow down around the

goal locations, dramatically increasing their total “occupancy” of that area. In contrast,

high-powered policies reach the goal locations for the �rst time much sooner, and so the

policies with the highest FF values have higher powers. In the test phase, the agent �ts the

reward vectorw 2 RD byminimizing
P

t
||rt�wT

�(st)||2, as is standard in the SF liter-

ature (Barreto et al., ����, ����; Zahavy et al., ����). The agent then follows the set-max

policy (SMP; (Zahavy et al., ����)), which selects the policy in ⇧ which has the high-

est expected value across starting states: ⇡SMP 2 argmax
⇡2⇧

Es0⇠µ [V ⇡(s0)], where

V
⇡(s0) = wT

'
⇡(s0) (with'⇡ replaced by ⇡ for SF-based value estimates). Fig. �.�(c,e)

shows both the estimated (Vest) and true (Vtrue) values of the SMPs selected using both
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Figure �.�: APF accelerates convergence in robotic reaching. Shading denotes � SE over ��
seeds.

the SF and FF, along with the value of the optimal policy V ⇤. We can see that the accu-

mulation of the SFs results in a signi�cant overestimation in value, as well as a suboptimal

policy. The FF estimates are nearly matched to the true values of the selected policies for

each goal location and achieve nearly optimal performance.

Robotic reachingTo test whether these results translate to high-dimensional problems,

we applied the FF to the �-DoF J��� robotic arm environment fromLaskin et al. (����).

In this domain, the armmust quickly reach to di�erent locations and perform simple ob-

jectmanipulations (Fig. �.�(a)). Wemodify theActive Pre-training with Successor features

(APS; Liu and Abbeel, ����) URL algorithm, which leverages a nonparametric entropy

maximization objective in conjunction with SFs during pre-training () in order to learn

useful and adaptable behaviors. Ourmodi�cation is to replace the SFswith FFs, resulting

in Active Pre-training with First-occupancy features (APF), using the same intuition mo-

tivating the MountainCar experiments: cumulative features are misleading when down-

stream tasks bene�t fromquickly reaching a desired goal, in this case, the object. Here, the

agent is �rst trained for ��� time steps using the aforementioned intrinsic reward objec-

tive before being applied to a speci�ed reaching task. As additional baselines, we compare

against two variants of dynamic distance learning - unsupervised (DDLUS andDDLUS�

G; (Hartikainen et al., ����)). Details can be found in Appendix �.C. We found that the

FF accelerated convergence (Fig. �.�(b)).
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�.�.� Planning with the FR

While SRs e�ectively encode task-agnostic, pre-compiled environmentmodels, they can-

not be directly used for multi-task model-based planning. GPI is only able to select ac-

tions based on a one-step lookahead, whichmay result in suboptimal behavior. One sim-

ple situation that highlights such a scenario is depicted inFig.�.�. As before, there are start

and goal states in a simple room (Fig. �.�(a)), but here there are three policies comprising

⇧ = {⇡1, ⇡2, ⇡3} (Fig. �.�(b-d)). GPI selects ⇡1 because it is the only policy that reaches

the goal sg within one step of the start s0: ⇡1 = max⇡2⇧ rTM⇡(s0, sg) (Fig. �.�(e)).

(Note that using GPI with the FR instead would also lead to this choice.) To gain fur-

ther intuition for the FR versus the SR, we plot the representations for the policies in

Appendix Fig. �.��. However, the optimal strategy using the policies in ⇧ is instead to

move right using ⇡2 and up using ⇡3. How can the FR be used to �nd such a sequence?

Intuitively, starting in a state s, this strategy is grounded in following one policy un-

til a certain state s0, which we refer to as a subgoal, and then switching to a di�erent policy

in the base set. Because the FR e�ectively encodes the shortest path between each pair

of states (s, s0) for a given policy, the agent can elect to follow the policy ⇡ 2 ⇧ with

the greatest value of F ⇡(s, s0), then switch to another policy and repeat the process un-

til reaching a desired state. The resulting approach is related to the hierarchical options

framework (Sutton et al., ����; Sutton and Barto, ����a), where the planning process ef-

fectively converts the base policies into options with—as we show—optimal termination

conditions. For a more detailed discussion, see Appendix �.G.

More formally, we can construct a DP algorithm to solve for the optimal sequence

of planning policies ⇡F and subgoals sF . Denoting by �k(s) the total discount of the

full trajectory from s to sg at step k of the procedure, we jointly optimize over policies ⇡

and subgoals s0 for each state s:

�k+1(s) = max
⇡2⇧,s02S

F
⇡(s, s0)�k(s

0),

with ⇡
F

k+1
(s), sF

k+1
(s) = argmax

⇡2⇧,s02S
F
⇡(s, s0)�k(s

0).

Intuitively, the product F ⇡(s, s0)�k(s0) can be interpreted as the expected discount of
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the plan consisting of �rst following ⇡ from s to s0, then the current best (shortest-path)

plan from s
0 to sg. Note that it is this property of the FR which allows such planning:

multiplying total occupancies, aswouldbe donewith the SR, is notwell-de�ned. The full

procedure, which we refer to as FR-planning (FRP), is given by Alg. � in Appendix �.B.

Appendix Fig. �.�� depicts the resulting policies ⇡F and subgoals sF obtained from run-

ning FRP on the example in Fig. �.�. The following result shows that under certain as-

sumptions, FRP �nds the shortest path to a given goal (proof in Appendix �.D).

Proposition �.�.� (Planning optimality). Consider a deterministic, �nite MDP with a

single goal state sg , and a base policy set ⇧ composed of policies ⇡ : S ! A. We make

the following coverage assumption: there exists a sequence of policies that reaches sg from a

given start state s0. Then Alg. � converges so that �(s0) = �
L
?
⇡ , where L?

⇡
is the shortest

path length from s0 to sg using ⇡ 2 ⇧.

Performance and computational costWe can see that each iteration of the planning

algorithm adds at most one new subgoal to the planned trajectory from each state to the

goal, with convergence when no policy switches can be made that reduce the number of

steps required. If there areK iterations, the overall computational complexity of FRP is

O(K|⇧||S|2). The worst-case complexity occurs when the policy must switch at every

state en route to the target—K is upper-bounded by the the number of states along the

shortest path to the goal. In contrast, running value iteration (VI; (Sutton and Barto,

����a)) forN iterations isO(N |A||S|2). Given the true transition matrixP and reward

vector r, VI will also converge to the shortest path to a speci�ed goal state, but FRP con-

verges more quickly than VI whenever K|⇧| < N |A|. To achieve an error ✏ between

the estimated value function and the value function of the optimal policy, VI requires

N � 1

(1��)
log 2

(1��)2✏
(Puterman, ����), which for � = 0.95, ✏ = 0.1, e.g., gives

N � 180 iterations�. To test convergence rates in practice, we applied FRP, VI, and GPI

using the FR to the classic F���R���� environment (Sutton et al., ����) on a modi-

�ed task in which agents start in the bottom left corner and move to a randomly located

goal state. Once the goal is reached, a new goal is randomly sampled in a di�erent loca-
�Other DP methods like policy iteration (PI), which is strongly polynomial, converge more quickly

than VI, but in the example above, PI still needsN � log(1/((1 � �)✏))/(1 � �) = 106 (Ye, ����), for
instance.
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Figure �.�: FRP interpolates between GPI and model-based DP. Shading represents � SE.

tion until the episode is terminated after �� time steps. For GPI and FRP, we use four

base policies which each only take one action: {up, down, left, right}, with their FRs

learned by TD learning. We ran each algorithm for ��� episodes, with the results plot-

ted in Fig. �.�(a). Note that here GPI is equivalent to FRP withK = 0 iterations. To

see this, observe that when there is a single goal sg such that only r(sg) > 0, the policy

selected by GPI is

⇡
GPI(s) 2 argmax

⇡2⇧

rTF ⇡(s) = argmax
⇡2⇧

r(sg)F
⇡(s, sg) = argmax

⇡2⇧

F
⇡(s, sg).

(�.��)

When there are n goal states with equal reward, �nding the ordering of the goals that

results in the shortest expected path is in generalO(n!) (see Appendix �.F). Due to the

nature of the base policies used above, the number of subgoals on any path is equal to the

number of turns the agentmust take from its curent state to the goal, which for this envi-

ronment is three. We can then see that FRP reaches the optimal performance obtained by

the converged VI afterK = 3 iterations (Fig. �.�(a)). In contrast, for the same number

of iterations, VI performs far worse. This planning process must be repeated each time

a new goal is sampled, so that the computational bene�ts of FRP versus traditional DP

methods compound for each new reward vector. Example FRP trajectories between goals

forK = 0 andK = 3 iterations are plotted in Fig. �.�(b). Finally, to test FRP’s robust-

ness to stochasticity, we added transition noise ✏ to the F���R���� task. That is, the

agent moves to a random adjacent state with probability ✏ regardless of action. We com-

pared FRP to converged VI for increasing ✏, with the results plotted in Fig. �.�(c), where

we can see that FRPmatches the performance of VI across noise levels. It’s important to
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Figure �.�: FRP induces realistic escape behavior.

note that this ability to adaptively interpolate between MF and MB behavior, based on

the value ofK , is a unique capability of the FR compared to the SR�. The same FRs can

be combined using DP to plan for one task or for GPI on the next.

�.�.� Escape behavior

In prey species such as mice, escaping from threats using e�cient paths to shelter is crit-

ical for survival (Lima and Dill, ����). Recent work studying the strategies employed by

mice when �eeing threatening stimuli in an arena containing a barrier has indicated that,

rather than use an explicit cognitive map, mice instead appear to memorize a sequence of

subgoals to plan e�cient routes to shelter (Shamash et al., ����a). When �rst threatened,

most animals ran along a direct path and into the barrier. Over subsequent identical tri-

als spanning �� minutes of exploration, threat-stimulus presentation, and escape, mice

learned to navigate directly to the edge of the wall before switching direction towards

the shelter (Fig. �.�). Follow-up control experiments suggest that mice acquire persis-

�We’d like to stress that this claim of uniqueness is only with respect to the SR. Previous work also
explores the use of MFmethods to support MB learning (e.g., Pong et al. (����))
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tent spatial memories of subgoal locations for e�cient escapes. We model this task and

demonstrate that FRP induces behavior consistent with these results.

Wemodel the initial escape trial by an agent with a partially learned FR, leading to a

suboptimal escape plan leading directly to the barrier. Upon hitting the barrier, sensory

inputprompts rapid re-planning tonavigate around theobstacle. TheFR is thenupdated

and the escape plan is recomputed, simulating subsequent periods of exploration during

which the mouse presumably memorizes subgoals. We �nd a similar pattern of behavior

to that of mice (Fig. �.�(b)). See Appendix �.C for experimental details.

We do not claim that this is the exact process by which mice are able to e�ciently

learn escape behavior. Rather, we demonstrate that the FR facilitates behavior that is

consistent with our understanding of animal learning in tasks which demand e�cient

planning. Given the recent evidence in support of SR-like representations in the brain

(Stachenfeld et al., ����;Momennejad et al., ����), we are optimistic about the possibility

of neural encodings of FR-like representations aswell. We also re-emphasize that this type

of rapid shortest-path planning is not possible with the SR.

�.� Conclusion

In this work, we have introduced the FR, an alternative to the SR which encodes the

expected path length between states for a given policy. We explored its basic formal prop-

erties, its use as an exploration bonus, and its usefulness for unsupervised representation

learning in environmentswith an ethologically important type of non-Markovian reward

structure. We then demonstrated that, unlike the SR, the FR supports a form of e�cient

planning which induces similar behaviors to those observed in mice escaping from per-

ceived threats. Aswith any new approach, there are limitations. However, we believe that

these limitations represent opportunities for futurework. From a theoretical perspective,

it will be important to more precisely understand FRP in stochastic environments. For

the FF, we have limited understanding of the e�ect of feature choice on performance,

especially in high dimensions. FRP is naturally restricted to discrete state spaces, and it

could be interesting to explore approximations or its use in partially-observable MDPs

with real-valued observations and discrete latents (e.g., Vértes and Sahani, ����; Du et al.,
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����). Further exploration of FRP’s connections to hierarchical methods like options

would be valuable. Finally, it would be informative to test hypotheses of FR-like rep-

resentations in the brain. We hope this research direction will inspire advancements on

representations that can support e�cient behavior in realistic settings.
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Appendix

Appendix �.A: FR recursion
For clarity, we provide the derivation of the recursive form of the FR below:

F
⇡(s, s0) = E⇡

"
1X

k=0

�
k (st+k = s

0
, s

0
/2 {st:t+k})

���st

#

= E⇡

"
(st = s

0
, s

0
/2 ?) +

1X

k=1

�
k (st+k = s

0
, s

0
/2 {st:t+k})

���st

#

= E⇡

"
(st = s

0) +
1X

k=1

�
k (st+k = s

0
, st 6= s

0
, s

0
/2 {st+1:t+k})

���st

#

= Est+1⇠p⇡(·|s)

h
(st = s

0) + � (st 6= s
0)F ⇡(st+1, s

0)
���st
i

= Est+1⇠p⇡(·|s)

h
(st = s

0) + �(1� (st = s
0))F ⇡(st+1, s

0)
���st
i

(�.��)

Appendix �.B: FRP Algorithm
We present the full algorithm for FR planning (FRP) below.

Algorithm � FR Planning (FRP)
�: input: goal state sg, base policies⇧ = {⇡1, . . . , ⇡n} and FRs {F ⇡1 , . . . , F

⇡n}.
�: // initialize discounts-to-goal �
�: �0(s) �18s 2 S
�: for s 2 S do
�: �1(s) max⇡2⇧ F

⇡(s, sg)
�: ⇡

F

1
(s), sF

1
(s) argmax

⇡2⇧
F
⇡(s, sg), sg

�: end for
�: // iteratively re�ne �
�: k  1
��: while 9s 2 S such that �k(s) > �k�1(s) do
��: for s 2 S do
��: �k+1(s) max⇡2⇧,s02S F

⇡(s, s0)�k(s0)
��: ⇡

F

k+1
(s), sF

k+1
(s) argmax

⇡2⇧,s02S F
⇡(s, s0)�k(s0)

��: end for
��: k  k + 1
��: end while
��: return ⇡F , sF
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Figure �.�: FF and SF learning curves for continuous MountainCar. Results averaged over
�� runs. Shading represents one standard deviation.

Appendix �.C: Additional Experimental Details
All experiments except for the robotic reaching experiment were performed on a single

�-core CPU. The robotic reaching experiment was performed using fourNvidia Quadro

RTX ����GPUs.

Figure �.�: Tabular environments for exploration. The tuples marking each transition de-
note (action id(s); probability; reward). In RiverSwim, the agent starts in either state
� or state � with equal probability, while for SixArms the agent always starts in state
�.

Tabular explorationWe reuse all hyperparameter settings from Machado et al. (����)

in both the R����S��� and S��A��� environments, with the only di�erence being a

lower value for �, the exploration bonus coe�cient, for the FR, as the bonuses given by

the FR are generally larger. The hyperparameters are {↵, ⌘, �SR/FR, �, ✏, ⌘}, which are

the Sarsa learning rate, the SR/FR learning rate, the SR/FR discount factor, the explo-
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ration bonus coe�cient, and the probability of taking a random action in the ✏-greedy

policy. ForR��������, these values were {0.25, 0.01, 0.95, 100/50, 0.1}, respectively,

and for S��A��� they were {0.1, 0.01, 0.99, 100/50, 0.01}. For the R����S����N

task, we choseN = {6, 12, 24} as defaultR����S���hasN = 6 states, andwe chose to

successively double the problem size. AsN increased, the number of unrewarded central

states was multiplied (with the same transition structure), while the endpoints remained

the same. It’s also worth noting that � could be manually adjusted upwards to com-

pensate for the SR bonus’ invariance to problem size, though this would require a longer

hyperparameter search generally, whichwe believe is less preferable to a bonus which nat-

urally scales.

R����S����N S���� � FR S���� � SR S����

N = 6 1, 547, 243± 34, 050 1, 197, 075± 36, 999 25, 075± 1, 224

N = 12 1, 497, 937± 29, 291 714, 797± 34, 574 14, 590± 3, 145

N = 24 962, 376± 33, 325 519, 511± 20, 580 11, 950± 2, 643

Table �.�: R����S����N results. ± values denote � SE across ��� trials.

Figure �.�: Network architecture for DQN � FF and DQN � SF

Exploration with function approximation In order to test the usefulness of the

FR/FF in a function approximation setting, we use a similar approach toMachado et al.

(����). That is, we train a modi�edDQN agent (Mnih et al., ����) using an architecture

inspired byMachado et al. (����) andOh et al. (����) (see Fig. �.�), such that the base fea-

ture representation�(s) is an intermediate layer of the network. Like the standardDQN,
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the architecture outputs an |A|-length vector of predictedQ-values for the current state,

trained o�-policy usingminibatches of transition tuples {(si
t
, a

i

t
, r

i

t
, s

i

t+1
)}B

i=1
(whereB

is the minibatch size) to minimize the squared Bellman error

LQ =
BX

i=1

kri
t
+ �max

a

Q�(s
i

t+1
, a)�Q(si

t
, a

i

t
)k2

2
(�.��)

via gradient descent (the subscript � on the target Q-values indicates that gradients do

not �ow through it). Unlike the standardDQN, the network has two additional output

heads. The �rst is a reconstruction head which, given the base feature representation of

a state st and an embedding of the subsequent action at produces a prediction of the

following state ŝt+1. It’s trained to minimize the reconstruction loss

Ls =
BX

i=1

kst+1 � ŝt+1k22. (�.��)

The �nal output head of the network is an FF/SF prediction, trained using the squared

FF error in the former case:

L' =
BX

i=1

k�̃(st) + �(1� �̃(st))'�(st+1)� '(st)k22, (�.��)

and the squared SF error in the latter

L =
BX

i=1

k�(st) + � �(st+1)�  (st)k22. (�.��)

For the FF, the features �t are passed through a sigmoid function to compress them in

the range [0, 1] and then thresholded at 0.75. The total loss is then given as a weighted

combination

L = wQLQ + wsLs + wXLX , (�.��)

whereX 2 {', } and wQ, ws, wX 2 R are �xed weights. As in Machado et al.

(����), gradients fromLQ andLs, but notLX , are permitted to�ow through to�. Thus,
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Figure �.��: Exploration with function approximation. (Top left) Visualization of the
DeepSea environment, credit toOsband et al. (����). (Top right)DQN � FF sign�-
cantly outperforms standardDQN andDQN � SF. (Bottom) Di�erent runs across
problem sizes.

the base features are trained to be both reward-predictive and to carry information about

the environment transition dynamics. The norm of the FF/SF vector is then used to

compute an intrinsic exploration bonus to the task reward in the same manner as in the

tabular setting.

To test this model, we chose the D���S�� task from the Behavior Suite (bsuite;

(Osband et al., ����)) set of benchmark tasks. D���S�� is a challenging exploration task

set up in anN ⇥N grid (Fig. �.��, top left). At the beginning of each episode, the agent

starts at the top left of the grid. Each time step, the agent descends one level, and can

choose tomove either right or left. The episode ends afterN steps,when the agent reaches

the bottom level. There is a small negative reward of�0.01 if the agent moves right, but

if the agent moves right N times in a row, there is a large reward +1 located at the bot-

tom right of environment—this is the only policy which nets the agent a positive reward.
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In the bsuite framework, the agent is separately trained on increasing problem sizes

N = 5, 6, 7, . . . , 50 for ��,��� episodes each, with the �nal score the proportion ofN

for which the agent reached an average regret of less than 0.9 faster than 2N episodes.

We tested the standard DQN, DQN � SF (Machado et al., ����), and DQN � FF

agents on this task, with training hyperparameters described in Table �.�. For all mod-

els, the network consisted entirely of fully-connected layers, with �(st) being a �-layer

MLP with �� units per layer, Q(st, ·) being a linear function of �(st) with |A| = 2

units, ŝt+1 consisting of a ��-unit layer followed by anN2-unit output layer (the action

embedding is ��-dimensional as well), and the SFs/FFs also a ��-dimensional linear layer

over �(st). The agent is trained using ✏-greedy action selection. OurDQN implementa-

tionwas coded in JAX andbased o� that ofOsband et al. (����). To select the values of�,

ws, andwX (wQ was always kept at �) we performed a sweep over � 2 {0.01, 0.05, 0.1}

and wX , wQ 2 {0.001, 0.1, 1, 10, 100, 1000}, choosing the best-performing values for

each method.

H������������� DQN � FF DQN � SF DQN

optimizer Adam (Kingma and Ba, ����) Adam Adam

learning rate �.��� �.��� �.���

� �.�� �.�� �

wQ, ws, wX (1, 100, 1000) (1, 0.001, 1000) �

B �� �� ��

replay bu�er size ��,��� ��,��� ��,���

target update period � � �

� �.�� �.�� �.��

✏ �.�� �.�� �.��

Table �.�: Hyperparameter settings for theD���S�� experiment

Results are presented in Fig. �.��. We can see that DQN�FF signi�cantly outper-

forms the other methods (top right), with the intuition from the tabular experiments—

particularly R����S����N—carrying over into the function approximation setting.

That is, as N increases, the norm of the SF approaches its asymptotic value regardless

of the degree of exploration. In contrast, for the FF, the maximum bonus scales with

the problem size. This enables the bonus to remain e�ective in environments with larger
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state spaces. We hope to investigate this approach and its theoretical properties further in

future work.

MountainCar experiment In our version of the task, the feature representations are

learned in a rewardless environment, and at test time the rewardmay be located at any lo-

cation along the righthandhill. We evaluate the performance of a set of policies⇧ = {⇡i}

with a constant magnitude of acceleration and which accelerate in the opposite direction

from their current displacement when at rest and in the direction of their current veloc-

ity otherwise (see Python code below for details). That is, each ⇡i will swing back and

forth along the track with a �xed power coe�cient ai. For each possible reward location

along the righthand hill, then, the best policy from among this set is the one whose de-

gree of acceleration is such that it arrives at the reward location in the fewest time steps.

There is a natural tradeo�–too little acceleration and the cart will not reach the required

height. Toomuch, and time will be wasted traveling too far up the lefthand hill and then

reversing momentum back to the right.

Wehypothesized that the FFwould be anatural representation for this task, as it would

not count the repeated state visits each policy experiences as it swings back and forth to gain

momentum.

We de�ned a set of policies with acceleration magnitudes |ai| = 0.1i for i =

1, . . . , 9, and learned both their SFs and FFs via TD learning on an ”empty” environ-

ment without rewards over the course of ��� episodes, each consisting of ��� time steps,

with the SFs using just the simple RBF feature functions without thresholds. Python

code for the policy class is shown below.

� class FixedPolicy:

�

� def __init__(self , a):

� # set fixed acceleration/power

� self.a = a

�

� def get_action(self , pos , vel):

�

� if vel == 0:

�� # if stopped , accelerate to the opposite end of the
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environment

�� action = -sign(pos) * self.a

�� else:

�� # otherwise , continue in the current direction of motion

�� action = sign(vel) * self.a

��

�� return action

We repeated this process for �� runs, with the plots in Fig. �.� showing the means and

standard deviations of the TD learning curves across runs. For the FFs, the thresholds

were constant across features at ✓d = ✓ = 0.7. Because of the nature of the environment,

all of the policies spent a signi�cant portion of time coasting back and forth between the

hills, causing their SFs to accumulate in magnitude each time states were revisited.

Given the learned representations, we then tested themby using them as features for

policy evaluation in di�erent tasks, with each task containing a di�erent rewarded/ab-

sorbing state. Note that a crucial factor is that the representations were learned in the

environment without absorbing states. This is natural, as in the real world reward may

arise in the environment anywhere, andwe’d like a representation that can be e�ective for

any potential goal location.

Figure �.��: The FF is robust to feature dimensionality. FF and SF representation strengths
for di�erence feature dimensionalities between the start and goal locations for an
example goal in continuousMountainCar. The vertical dashed linemarks the power
of the optimal policy. We can see that for all but the coarsest feature representation,
the FF is highest for the policy closest to the optimal.

Robotic reaching experimentWe used the custom J��� domain as well as the APS

base code from Laskin et al. (����), located at this link: https://anonymous.4open.

https://anonymous.4open.science/r/urlb/README.md
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science/r/urlb/README.md. Both the critic and actor networks were parameterized

by �-layer MLPs with ReLU nonlinearities and �,��� hidden units. Observations were

��-dimensional with ��-dimensional features �(·). For all other implementation details,

including learning rates, optimizers, etc. see the above link. All hyperparameters and

network settings are kept constant from those provided in the linked .yaml �les. All

experiments were repeated for �� random seeds.

We nowdescribe each training phase. Pre-training: Agents were trained for �Mtime

steps on the rewardless J��� domain by maximizing the intrinstic reward

r
intrinsic(s, a, s0) = r

exploit(s, a, s0) + r
explore(s, a, s0)

= wT
�(s) + log

0

@1 +
1

k

X

h(j)2Nk(�(s
0))

k�(s0)� �(s0)(j)knh
nh

1

A,

(�.��)

where w 2 RD,D = 10 is a random reward vector sampled from a standard Gaussian

distribution and the righthand term is a particle-based estimate of the state-based feature

entropy, withNk(·) denoting the k nearest-neighbors (see Liu and Abbeel (����) for de-

tails). In standard APS, this reward is used to train the successor features by constructing

the bootstrapped target

y
APS = r

intrinsic(s, a, s0) + �wT
 (st+1, a

0
, w), (�.��)

where a0 = argmax
a
wT

 (s0, a, w). For the FF, we make the following modi�cation:

y
APF = y

APF�exploit + y
explore (�.��)

= wT
�̃(s)| {z }

:=rF (s)

+�wT(1� �̃(s))V (st+1) + r
explore(s, a, s0) + �V (st+1) (�.��)

= r
F (s) + r

explore + �
⇥
wT1� r

F + 1
⇤
V (st+1), (�.��)

with V (st+1) = maxa0 wT
'(st+1, a

0
, w), �̃(·) the thresholded base features, such that

�̃d(st) = (�(st) � ✓d, {�d(st0)}t0=0:t < ✓d), 1 is the D-length vector of ones, and

https://anonymous.4open.science/r/urlb/README.md
https://anonymous.4open.science/r/urlb/README.md
https://anonymous.4open.science/r/urlb/README.md
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�(st) 2 [0, 1]. Interestingly, if the features are kept in the range [0, 1], �(·) can be

thought of encoding a form of “soft” �rst feature occupancy, rather than the hard thresh-

old given by the indicator function.

The agent is then trained with the o�-policy deep deterministic policy gradient

(DDPG; (Lillicrap et al., ����)) algorithm, where given a stored replay bu�er of transi-

tionsD = {(st, at, rt, st+1)}, the (SF/FF) criticQ! (withQ formed from either the SF

or FF and ! being the parameters) is trained to minimize the squared Bellman loss

LQ(!,D) = E(st,at,rt,st+1)⇠D

⇥
(yr �Q!(st, at))

2
⇤
, (�.��)

where in the pre-training phase yr 2 {yAPS
, y

APF} (the target parameters are an ex-

ponential moving average of the weights—gradients do not �ow through them). The

deterministic actor ⇡✓ is trained using the derministic policy gradient loss:

L⇡(✓,D) = Est⇠D [Q�(st, ⇡✓(st))] . (�.��)

Fine-tuning: After pre-training, the agent is �ne-tuned on the target task, R�����

T��L���, where the learning proceeds exactly as in the pre-training phase, but instead

of intrinsic reward, the agent is given the task reward—that is, yr = r
task

t
+ �V (st+1).

We performed this task-speci�c training for an additional �M steps.

As additional baselines, we implemented twoversions of the dynamic distance learn-

ing method of Hartikainen et al. (����), the originalDDLUS and an additional variant

DDLUS�G. In standard DDLUS, the goals g 2 S for the pre-training phase are gener-

ated according to

g
? 2 argmax

g2D

d
⇡(s0, g),

where D is a stored set of trajectories. In Hartikainen et al. (����), this is useful as a

mechanism for encouraging the agent to learn skills which move the agent as far as pos-

sible from the start state. However, since the object for manipulation in the �ne-tuning

phase of the J��� task is not typically especially far from the initial point, we also tested
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DDLUS�G, which samples goals in the same manner asAPS andAPF, via

g ⇠ N (0, I),

to ensure amore fair comparison. All other hyperparametersmatch those ofHartikainen

et al. (����), with the exception that the base agent is DDPG, implemented using the

same framework as APS and APF, rather than SAC (Haarnoja et al., ����). For a more

detailed discussion of DDL and its relationship to the FR/FF, see Appendix �.H.

In future work, it would be interesting to explore the interaction of the FF with

other o�-policy algorithms (Haarnoja et al., ����; Fujimoto et al., ����; Moskovitz et al.,

����a) and whether on-policy learning (e.g., with (Schulman et al., ����; Kakade, ����;

Williams, ����; Hartikainen et al., ����; Moskovitz et al., ����a)) has di�erent e�ects.

FourRoom experimentsThe FourRoom environment we usedwas de�ned on an 11⇥

11 gridworld in which the agent started in the bottom left corner andmoved to a known

goal state. The action space wasA = {up, right, down, left} with four base policies

each corresponding to one of the basic actions. TD Learning curves for the base policies

are depicted in Fig. �.��. Once reaching the goal, a new goal was uniformly randomly

sampled from the non-walled states. At each time step, the agent received as state input

only the index of the next square it would occupy. Each achieved goal netted a reward

of +50, hitting a wall incurred a penalty of �1 and kept the agent in the same place,

and every other action resulted in 0 reward. There were �� time steps per episode—the

agent had to reach as many goals as possible within that limit. The discount factor � was

0.95, and the FR learning rate was 0.05. In order to learn accurate FRs for each policy,

each policy was run for multiple start states in the environment for �� episodes prior to

training. FRP (for di�erent values ofK), GPI, and VI were each run for ��� episodes.

VI was given the true transition matrix and reward vector in each case. In the stochastic

case, for each level of transition noise ✏ = 0.0, 0.1, 0.2, . . . , 1.0, both VI and FRP were

run to convergence (⇡ 180 iterations for VI, 3 iterations for FRP) and then tested for

��� episodes.
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Figure �.��: F���R���� learning curves. F���R���� base policies learning curves (aver-
age L� norm of TD errors over �� runs; shaded area is one standard deviation); top
row is for FRs, bottom is for SRs.

Figure �.��: Implicit planning output. (Left) The planning policies ⇡F (s) that the agent will
elect to follow in each state en route to the goal (see Fig. �.�(a)). Arrows denote
the action taken by the chosen policy in each state. (Middle) The (row, column)
subgoals for each state sF (s). (Right) The state space S , for reference.

ggg

pre-update

ggg

exploration

(a)

ggg

SR post-update

ggg

post-update

(d)(c)(b)

Figure �.��: Exploration and escape (a) A sample trajectory from the “exploration phase” start-
ing from the shelter. (b)Because the agent starts from the shelter during exploration,
the �rst time it is tested starting from the top of the grid, its FR for the down pol-
icy for that state is still at initialization. (c) After updating its FR during testing and
further exploration, the FR for the down policy from the start state is accurate, stop-
ping at the barrier. (d) We can see that if we were to use the SR instead, the value in
the state above the wall would accumulate when it gets stuck.

Escape experimentsThe escape experiments were modeled as a 25⇥ 25 gridworld with

eight available actions,

A = {up, right, down, left, up-right, down-right, down-left, up-left}

(�.��)
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and a barrier one-half the width of the grid optionally present in the center of the room.

The discount factor � was 0.99, and the FR learning rate was 0.05. In test settings, the

agent started in the top central state of the grid, with a single goal state directly opposite.

At each time step, the agent receives only a number corresponding to the index of its cur-

rent state as input. The base policy set ⇧ consisted of eight policies, one for each action

in A. Escape trials had a maximum of �� steps, with termination if the agent reached

the goal state. In (Shamash et al., ����a), mice were allowed to explore the room starting

from the shelter location. Accordingly, during “exploration phases,” the agent started in

the goal state and randomly selected a base policy at each time step, after which it updated

the corresponding FR. Each exploration phase consisted of � episodes—a sample trajec-

tory is shown in Fig. �.��(a). After the �rst exploration phase, the agent started from the

canonical start state and ran FRP to reach the goal state. Because most of its experience

was in the lower half of the grid, the FRs for the upper halfwere incomplete (Fig. �.��(b)),

andwe hypothesized that in this case, themouse should either i) default to a policy which

would take it to the shelter in the area of the room which it knew well (the down policy)

or ii) default to a policy which would simply take it away from the threat (again the down

policy). During the �rst escape trial, the agent selects the down policy repeatedly, con-

tinuing to update its FRs during the testing phase. Upon reaching the wall and getting

stuck, the FR for the down policy is eventually updated enough that re-planning with

FRP produces a path around the barrier. After updating its FR during the �rst escape

trial and during another exploration period, the FRs for the upper half of the grid are

more accurate (Fig. �.��(c)) and running FRP again from the start state produces a faster

path around the barrier on the second escape trial. TD learning curves for the experiment

(repeated with the SR for completeness) are plotted in Fig. �.��.

For completeness, we repeated this experiment with the SR. In this case, the plan-

ning algorithm is ill-de�ned for K > 0, so we default to GPI (K = 0). As expected,

without the barrier, the down policy is selected and the goal is reached (Fig. �.��,left).

However, when there is a barrier, while the SR updates when the agent hits it (Fig. �.��),

since there is no single policy that can reach the shelter, GPI fails to �nd a path around

the barrier (Fig. �.��,middle,right).
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Figure �.��: Escape learning curves. Learning curves (norms of TD errors) for the �rst explo-
ration phase, the �rst escape trial, and the second exploration phase for the ”down”
policy. The vertical dotted lines in the escape trial mark the time step at which the
agent encounters the barrier. This causes a temporary jump in the TD errors, as rep-
resentation learning did not re�ect the wall at this point. The top row consists of FR
results and the bottom row is from SRs, averaged over �� runs. The shading repre-
sents one standard deviation.

Figure �.��: An SR cannot e�ectively escape under the same conditions as an FR agent.

Appendix �.D: Additional Proofs

Beloware theproofs forProposition�.�.� andProposition�.�.�, which are restatedbelow.

Proposition �.� (Contraction). Let G⇡ be the operator as de�ned in De�nition �.�.�

for some stationary policy ⇡. Then for any two matrices F, F 0 2 R|S|⇥|S|,

|G⇡F (s, s0)� G⇡F 0(s, s0)|  �|F (s, s0)� F
0(s, s0)|, (�.��)

with the di�erence equal to zero for s = s
0.
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Proof. For s 6= s
0 we have

|(G⇡ � G⇡F 0)s,s0 | = �|(P ⇡
F � P

⇡
F

0)s,s0 | = �|P ⇡(F � F
0)s,s0 |  �|(F � F

0)s,s0 |,

where we use the notationXs,s0 to meanX(s, s0), and the inequality is due to the fact

that every element ofP ⇡(F �F
0) is a convex average ofF �F

0. For s = s
0, we trivially

have |(G⇡F � G⇡F 0)s,s| = |1� 1| = 0.

Proposition �.D.� (Convergence). Under the conditions assumed above, set F (0) = I|S|.

For k = 0, 1, . . . , suppose F (k+1) = G⇡F (k). Then

|F (k)(s, s0)� F
⇡(s, s0)| < �

k (�.��)

for s 6= s
0 with the di�erence for s = s

0 equal to zero 8k.

Proof. We have, for s 6= s
0 and using the notationXs,s0 = X(s, s0) for a matrixX ,

|(F (k) � F
⇡)s,s0 | = |(Gk

F
(0) � Gk

F
⇡)s,s0 |

 �
k|(F (0) � F

⇡)s,s0 | (Proposition �.�.�)

= �
k
F
⇡(s, s0) < �

k (F ⇡(s, s0) 2 [0, 1)).

(�.��)

For s = s
0, |(F (k) � F

⇡)s,s| = |1� 1| = 0 8k.

Below is the proof of Proposition �.�.�, which is restated below.

Proposition �.� (Planning optimality). Consider a deterministic, �niteMDPwith

a single goal state sg , and a policy set ⇧ composed of policies ⇡ : S ! A. We make the

following coverage assumption, there exists some sequence of policies that reaches sg from a

given start state s0. Under these conditions, Algorithm � converges such that �(s0) = �
L
?
⇡ ,

where L?
⇡
is the shortest path length from s0 to sg using ⇡ 2 ⇧.

Proof. Since the MDP is deterministic, we use a deterministic transition function ⇢ :

S ⇥A! S . We proceed by induction on L?
⇡
.

Base case: L?
⇡
= 1

IfL?
⇡
= 1, s0 must be one step from sg. The coverage assumption guarantees that 9⇡ 2
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⇧ such that ⇢(s0, ⇡(s0)) = sg. Note also that when both theMDP and policies in⇧ are

deterministic, F ⇡(s, s0) = �
L⇡ , where L⇡ is the number of steps from s to s0 under ⇡,

and we use the abuse of notation L⇡ =1 if ⇡ does not reach s0 from s.

Then following Algorithm �,

�1(s0) = max
⇡2⇧

F
⇡(s0, sg) = � (guaranteed by coverage of⇧)

�1(sg) = max
⇡2⇧

F
⇡(sg, sg) = 1 (by de�nition of F ⇡).

Moreover,

�2(s0) = max
⇡2⇧,s02S

F
⇡(s0, s

0)�1(s
0)

= max
⇡2⇧

{F ⇡(s0, s0)�1(s0), F
⇡(s0, sg)�1(sg)}

= max{1 · �, � · 1}

= �.

Then �2(s) = �1(s) 8s and Algorithm � terminates. Thus, �(s0) = � = �
L
?
⇡ and the

base case holds.

Induction step: Assume Proposition �.�.� holds for L?
⇡
= L

Given the induction assumption, we now need to show that Proposition �.�.� holds for

L
?

⇡
= L + 1. By the induction and coverage assumptions, there must exist at least one

state within one step of sg that the agent can reach inL steps, such that the discount for

this state or states is �L. Moreover, the coverage assumption guarantees that 9⇡ 2 ⇧

such that for at least one such state sL, ⇢(sL, ⇡(sL)) = sg.

Then this problem reduces to the base case—that is, Algorithm �will select the pol-

icy ⇡ 2 ⇧ that transitions directly from sL to sg—and the proof is complete.

Appendix �.E: Explicit Planning

Below we describe a procedure for constructing an explicit plan using ⇡F and sF .
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Algorithm � ConstructPlan
�: input: goal state sg, planning policy ⇡F , subgoals sF
�: ⇤ [] {init. plan}
�: s s0 {begin at start state}
�: while s 6= sg do
�: ⇤.append((⇡F (s), sF (s))) {add policy-subgoal pair for current state to plan}
�: s s

F (s)
�: end while
�: return⇤

Appendix �.F: FRP with Mulitple Goals
Here we consider the application of FRP to environments with multiple goals

{g1, . . . , gn}. To �nd the shortest path between them given the base policy set ⇧, we

�rst run FRP for each possible goal state in {gi}, yielding an expected discount matrix

�⇧ 2 [0, 1]|S|⇥n, such that �⇧(s, gi) is the expected discount of the shortest path from

state s to goal gi. We denote by g� = [s0, �(g1), �(g2), . . . , �(gn)] a speci�c ordering

of the goals in {gi} starting in s0. The expected discount of a sequence of goals is then

⌅(g�) =
nY

i=1

�⇧(g�(i� 1), g�(i)), (�.��)

with the optimal goal ordering g�⇤ given by

g�⇤ = argmax
g�2G

⌅(g�), (�.��)

whereG is the set of all possible permutations of {gi}, of sizen!. This is related to a form

of the travelling salesman problem, and we refer the reader to Zahavy et al. (����) for a

formal investigation of the use of local policies to construct shortest paths. Fortunately,

in most settings we don’t expect the number of goals n to be particularly large.

Appendix �.G: Connections to options
The options framework (Sutton et al., ����) is a method for temporal abstraction in RL,

wherein an option ! is de�ned as a tuple (⇡!, ⌧!), where ⇡! is a policy and ⌧! 2 �(S)

is a state-dependent termination distribution (or function, if deterministic). Executing
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an option at time t entails sampling an action at ⇠ ⇡!(·|st) and ceasing execution of ⇡!
at time t + 1 with probability ⌧!(st+1). The use of options enlarges an MDP’s action

space, whereby a higher-level policy selects among basic, low-level actions and options.

Options are connected to FRP (Algorithm �) in that by outputting a set of poli-

cies and associated subgoals {(⇡F
, s

F )}, FRP e�ectively converts each base policy to an

option with a deterministic termination function, i.e., the agent will follow ⇡F until ter-

minating at sF . One of the key di�culties in the options literature is how to learn the

best options to add to the available action set. For the class of problems considered in this

paper, FRP then provides a framework for generating optimal (in the sense of �nding the

fastest path to a goal) options from a set of standard policies, subject to the ful�llment of

the coverage assumption. Importantly, the associated FRs (which can be learned via sim-

ple TD updating) can be reused across tasks, so that FRP can re-derive optimal options

for a new goal.

FRP can also be seen as related to the work of Silver and Ciosek (����), which

demonstrates that value iteration performed on top of a set of task-speci�c options con-

vergesmore quickly than value iterationperformedon the default state space of theMDP.

One critical di�erence to note is that the FR/FRP is transferable to anyMDPwith shared

transition dynamics. While value iteration on a set of options for a givenMDP ismore ef-

�cient than value iteration performed directly on the underlyingMDP, this processmust

be repeated every time the reward function changes. However, the FR enables an implicit

representation of the transition dynamics to be cached and reused.

Appendix �.H: Further connections to related work

We now describe the connection between the FR/FF and several related approaches in

the literature. Table �.� summarizes a high-level view of these connections.

The Dynamic Distance FunctionThe dynamic distance function (DDF; (Hartikainen

et al., ����)) is de�ned as

d
⇡(s, s0) = E⇡

"
j�1X

k=0

�
k
c(st+k, st+k+1)

���st = s, sj = s
0

#
, (�.��)
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FR/FF SR/SF DDL TDM DG

On- v. O�-policy Both Both On-policy O�-policy O�-policy
Eval. v. Control Eval. Eval. Eval. Control Control
Finite v. Inf. Horizon Both Both Finite Finite Finite
State representation? Yes Yes No No No

Table �.�: Overviewof basic points of comparisonbetween the FR/FF, SR/SF (Dayan, ����; Bar-
reto et al., ����), DDL (Hartikainen et al., ����), TDMs (Pong et al., ����), and DG
(Kaelbling, ����).

where c : S ⇥ S ! R is a local cost function. In practice, c(st+k, st+k+1) = � = 1,

giving

d
⇡(s, s0) = E⇡

"
j�1X

k=0

1
���st = s, sj = s

0

#
. (�.��)

n practice, d⇡(s, s0) is parameterized via a neural network with parameters  trained on-

policy from full trajectories ⌧ using the loss

L( ) = 1

2
E⌧⇠D,i⇠[0,T ],j⇠[i,T ](d

⇡

 
(si, sj)� (j � i))2, (�.��)

where D is a bu�er of stored trajectories. On a downstream navigation task, the agent

policy is trained to minimize

L⇡(�) = E⇡

"
1X

t=0

�
t
d
⇡

 
(st, g),

#
, (�.��)

where g 2 S is a goal state and � are the policy parameters.

There are several important di�erences between theDDFand theFR,both in theory

and practical application.

This form of the DDF, as discussed by Hartikainen et al. (����), is also naturally

restricted to on-policy learning from full trajectories, and cannot be updated o�-policy

and/or via one-step temporal di�erence learning. A natural additional consequence is

that it is only applicable to �nite-horizon MDPs. This con�nement to �nite horizons is

signi�cant because it leads to the conditioning problem described by Hartikainen et al.
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(����). This problem occurs because the DDF is conditioned on the policy successfully

reaching the goal state—when this doesn’t happen, it can lead to signi�cant value estima-

tion errors.

A second di�erence is that the policy is trained, via Eq. (�.��), to minimize the cu-

mulative discounted distance to the goal rather than via greedy distance minimization.

Another di�erence is that Eqs. (�.��) and (�.��) don’t explicitly require time step j

to be the�rst time the agent enters s0, although thismay have been the authors’ intention.

In fact, this de�nition is more closely related to the SR than the FR (with equality in the

in�nite horizon setting), but the implementation of the DDF in practice is more closely

related to the FR. It’s also important to note that when � = 1, the number of steps k

appears linearly within the expectation rather than exponentially (this is important, as in

general �E[k] 6= E[�k].

Another signi�cant di�erence, then, is that the DDF as presented cannot be in a

meaningful sense be considered a state representation, but rather a function mapping

pairs of states to expected distances. That is, d⇡(s, ·) has no meaningful semantics when

implemented as a mapping d⇡ : S ⇥ S ! R and trained using Eq. (�.��). In practice,

it is used to support policy optimization, rather than evaluation. In contrast, the FF rep-

resentation, like the SF representation, maps a single state to a �xed length vector-valued

encoding,'⇡ : S ! Rd. This di�erence has signi�cant implications for the applications

of the DDF. In particular, it is unclear how the DDF could be used as an exploration

bonus in the manner of the FF/SF, and the scalar value would make it challenging to

implement the type of parallel updates useful for e�cient planning.

Dynamic Goal LearningAnother related approach is that of dynamic goal (DG) learn-

ing (Kaelbling, ����), a method for optimal control related to Q-learning. The optimal

DG functionG? : S ⇥A⇥ S ! R is de�ned recursively for a goal state g 2 S as

G
?(s, a, g) = 1 + Es0⇠P (·|s,a)


min
a02A

G
?(s0, a0, g)

�
, (�.��)

whereG?(g, a, g) := 0. There are several important di�erences between this approach

and the FR. First, as mentioned above, DG learning is a method for optimal control,

rather than policy evaluation. That is, D?(s, a, g) converges to the expected number
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of steps for the optimal policy for reaching g starting from s. It cannot be reused for

policy evaluation for a policy ⇡ 6= ⇡
?, and also implicitly assumes that g is reachable in

�nite time. DG learning is thus susceptible to the same conditioning problem discussion

above for the DDF, and is only studied by Kaelbling (����) in a gridworld environment.

A second di�erence is that the DG function scales linearly with k, the number of steps

for the optimal policy to reach g, while the FR scales exponentially at a rate of �. This

is important, as we can note (with a slight abuse of notation) in general that �E⇡ [k] 6=

E⇡
⇥
�
k
⇤
—it is nontrivial to recover the FR for the optimal policy from the DG function

(and vice-versa).

Temporal Di�erence Models Temporal di�erence models (TDMs; (Pong et al., ����))

are another related approach. TDMs are an optimal control method motivated by the

observation that goal-conditionedQ-functions can be used to construct an implicit dy-

namics model when the discount factor � = 0. For � > 0, the authors introduce a

horizon variable ⌧ to interpolate betweenmodel-based andmodel-free learning. Like the

FR, this formulation allows agent to consider multiple goals in parallel. As in DG learn-

ing, and unlike the FR, TDMs represent a method for optimal control, not evaluation.

The emphasis is on e�ciently improving a policy, rather than learning a state representa-

tion which can be leveraged for multiple uses (e.g., policy evaluation or as an exploration

bonus). Another di�erence from the FR is that, like the DDF and DG learning, TDMs

rely on a �nite-horizon setting.

Appendix �.I: FR vs. SR Visualization
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Figure �.��: SR vs. FR visualization The SRs and FRs from the start state for the policies in
Fig. Fig. �.�. For the SRs (Fig. �.��, top row), we can see that states that are revisited
(or in which the policy simply stays) are more highly weighted, while for the FRs
(Fig. �.��, bottom row), the magnitude of F (s0, s0) is higher for states s0 that are
closer along the path taken by the policy.
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The �-Occupancy Representation

Figure �.�: Diminishing rewards.

The previous chapter introduced a state

representation which can be used to e�-

ciently evaluate policies and plan in situa-

tions for which transitions are consistent

across tasks and reward is depleted after

its initial presentation. This setting, along

with the standard MDP task description

in which rewards can be accessed an in�-

nite number of times, represents two ex-

tremes of reward persistence. However, the degree to which stimuli are rewarding often

diminishes at varying rates with repeated exposures.

The second ice cream cone rarely tastes as good as the �rst, and once all the most

accessible brambles have been picked, the same investment of e�ort yields less fruit. In

everyday life, the availability and our enjoyment of stimuli is sensitive to our past inter-

actions with them. Thus, to evaluate di�erent courses of action and act accordingly,

we might expect our brains to form representations sensitive to the non-stationarity of

rewards. Evidence in �elds from behavioral economics (Kahneman and Tversky, ����;

Rabin, ����) to neuroscience (Pine et al., ����) supports this hypothesis. Surprisingly,

however, most of reinforcement learning (RL) takes place under the assumptions of the

Markov Decision Process (MDP; Puterman, ����), where rewards and optimal decision-

making remain stationary.
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In this chapter, adapted fromMoskovitz et al. (����), we seek to bridge this gap by

studying the phenomenon of diminishing marginal utility (Gossen and Blitz, ����) in

the context of RL. Diminishing marginal utility (DMU) is the subjective phenomenon

by which repeated exposure to a rewarding stimulus reduces the perceived utility one

experiences. While DMU is thought to have its roots in the maintenance of homeostatic

equilibrium (too much ice cream can result in a stomach ache), it also manifests itself

in domains in which the collected rewards are abstract, such as economics ($�� vs. $� is

perceived as a bigger di�erence in value than $�,��� vs. $�,���), where it is closely related

to risk aversion (Arrow, ����; Pratt, ����). While DMU is well-studied in other �elds,

relatively few RL studies have explored diminishing reward functions (Wispinski et al.,

����; Shuvaev et al., ����), and, to our knowledge, none contain a formal analysis of

DMUwithin RL. Here, we seek to characterize both its importance and the challenge it

poses for current RL approaches (Section �.�).

Surprisingly, we �nd that evaluating policies under diminishing rewards requires

agents to learn a novel state representation which we term the � representation (�R,

Section �.�). The �R generalizes several state representations from the RL literature:

the successor representation (SR; Dayan, ����), the �rst-occupancy representation (FR;

Moskovitz et al., ����c), and the forward-backward representation (FBR; Touati andOl-

livier, ����b), adapting them for non-stationary environments. Interestingly, despite the

non-stationarity of the underlying reward functions, we show that the �R still admits a

Bellman recursion, allowing for e�cient computation via dynamic programming (or ap-

proximate dynamic programming) and prove its convergence. We demonstrate the scala-

bility of the �R to large and continuous state spaces (Section �.�.�), show that it supports

policy evaluation, improvement, and composition (Section �.�), and show that the be-

havior it induces is consistent with optimal foraging theory (Section �.�).
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�.� Diminishing Marginal Utility
Problem StatementMotivated by DMU’s importance in decision-making, our goal is

to understand RL in the context of the following class of non-Markov reward functions:

r�(s, t) = �(s)n(s,t)r̄(s), �(s) 2 [0, 1], (�.�)

wheren(s, t) 2 N is the agent’s visit count at sup to time t and r̄(s) describes the reward

at the �rst visit to s. �(s) therefore encodes the extent to which reward diminishes after

each visit to s. Note that for �(s) = � = 1we recover the usual stationary reward given

by r̄, and so this family of rewards strictly generalizes the stationary Markovian rewards

typically used in RL.

DMU is ChallengingAn immediate question when considering reward functions of

this form is whether or not we can still de�ne a Bellman equation over the resulting value

function. If this is the case, standard RL approaches still apply. However, the following

result shows otherwise.

Lemma �.�.� (Impossibility; Informal). Given a reward function of the form Eq. (�.�),

it is impossible to de�ne a Bellman equation solely using the resulting value function and

immediate reward.

We provide a more precise statement, along with proofs for all theoretical results, in

Appendix �.B. This result means that we can’t write the value function corresponding

to rewards of the form Eq. (�.�) recursively only in terms of rewards and value in an anal-

ogous manner to Eq. (�.��). Nonetheless, we found that it is in fact possible to derive a

recursive relationship in this setting, but only by positing a novel state representation that

generalizes the SR and the FR,whichwe term the� representation (�R). In the following

sections, we de�ne the �R, establish its formal properties, and demonstrate its necessity

for RL problems with diminishing rewards.

�.� The � Representation
ARepresentation forDMUWenow the derive the�Rbydecomposing the value func-

tion for rewards of the form Eq. (�.�) and show that it admits a Bellman recursion. To
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simplify notation, we use a single � for all states, but the results below readily apply to

non-uniform �. We have

V
⇡(s) = E

"
1X

k=0

�
k
r�(st+k, k)

��st = s

#
= r̄T E

"
1X

k=0

�
k
�
nt(st+k,k)1(st+k)

��st = s

#

| {z }
,�⇡

�(s)

,

(�.�)

where we call �⇡
�
(s) the � representation (�R), and nt(s, k) , P

k�1

j=0
(st+j = s), is

the number of times state s is visited from time t up to—but not including—time t+ k.

Formally:

De�nition �.�.� (�R). For anMDPwith �niteS and� 2 [0, 1]|S|, the � representation

is given by�⇡
�
such that

�⇡
�
(s, s0) , E

"
1X

k=0

�(s0)nt(s
0
,k)
�
k (st+k = s

0)
��st = s

#
(�.�)

where nt(s, k) ,
P

k�1

j=0
(st+j = s) is the number of times state s is visited from time t

until time t+ k � 1.

We can immediately see that for � = 0, the �R recovers the FR (we take 00 = 1),

and for � = 1, it recovers the SR. For � 2 (0, 1), the �R interpolates between the two,

with higher values of � re�ecting greater persistence of reward in a given state or state-

action pair and lower values of � re�ecting more ephemeral rewards.

The �R admits a recursive relationship:

�⇡
�
(s, s0) = E

"
1X

k=0

�
nt(s

0
,k)
�
k (st+k = s

0)
���st = s

#

(i)

= E
"

(st = s
0) + �

nt(s
0
,1)
�

1X

k=1

�
nt+1(s

0
,k)
�
k�1 (st+k = s

0)
���st = s

#

= (st = s
0)(1 + ��Est+1⇠p⇡�

⇡

�
(st+1, s

0))

+ �(1� (st = s
0))Est+1⇠p⇡�

⇡

�
(st+1, s

0),

(�.�)



�.�. The �Representation ���

where (i) follows fromnt(s0, k) = nt(s0, 1)+nt+1(s0, k�1). Amoredetailedderivation

is provided in Appendix �.A. Thus, we can de�ne a tractable Bellman operator:

De�nition �.�.� (�ROperator). Let � 2 R|S|⇥|S| be an arbitrary real-valued matrix,

and let G⇡
�
denote the �R Bellman operator for ⇡, such that

G⇡
�
� , I �

�
11T + ��P

⇡�
�
+ �(11T � I)� P

⇡�, (�.�)

where � denotes elementwise multiplication and I is the |S| ⇥ |S| identity matrix. In

particular, for a stationary policy ⇡, G⇡
�
�⇡
�
= �⇡

�
.

The following result establishes that successive applications of G⇡
�
converge to the

�R.

Proposition �.�.� (Convergence). Under the conditions assumed above, set�(0) = (1�

�)I . For k = 1, 2, . . . , suppose that�(k+1) = G⇡
�
�(k). Then

|(�(k) � �⇡
�
)s,s0 | 

�
k+1

1� �� .

While such analysis is fairly standard inMDP theory, it is noteworthy that the anal-

ysis extends to this case despite Lemma �.�.�. That is, for a ethologically relevant class of

non-Markovian reward functions, it is possible to de�ne a Markovian Bellman operator

and prove that repeated applications of it converge to the desired representation. Fur-

thermore, unlike in the stationary reward case, where decomposing the value function

in terms of the reward and the SR is “optional” to perform prediction or control, in this

setting the structure of the problem requires that this representation be learned. To get

an intuition for the �R consider the simple gridworld presented in Fig. �.�, where we

visualize the �R for varying values of �. For � = 0, the representation recovers the FR,

encoding the expected discount at�rst occupancy of each state, while as� increases, e�ec-

tive occupancy is accumulated accordingly at states which are revisited. We o�er a more

detailed visualization in Fig. �.��.
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Figure �.�: The �R interpolates between the FR and the SR. We visualize the �Rs of the
bottom left state for the depicted policy for � 2 {0.0, 0.5, 1.0}.

�.�.� Continuous State Spaces
When the state space is large or continuous, it becomes impossible to use a tabular rep-

resentation, and we must turn to function approximation. There are several ways to ap-

proach this, each with their own advantages and drawbacks.

Feature-Based Representations For the SR and the FR, compatibility with function

approximation is most commonly achieved by simply replacing the indicator functions

in their de�nitions with a base feature function � : S 7! RD to create successor features

(SFs; Barreto et al., ����, ����) and �rst-occupancy features (FFs;Moskovitz et al., ����c),

respectively. The intuition in this case is that � for the SR and the FR is just a one-hot

encoding of the state (or state-action pair), and so for cases when |S| is too large, we can

replace it with a compressed representation. That is, we have the following de�nition

De�nition �.�.� (SFs). Let � : S 7! RD be a base feature function. Then, the

successor feature (SF) representation '1 : S ⇥ A 7! RD is de�ned as '⇡
1
(s, a) ,

E⇡
hP

1

k=0
�
k
�(st+k)

���st, at
i
for all s, a 2 S ⇥A.

One key fact to note, however, is that due to this compression, all notion of state

“occupancy” is lost and these representations instead measure feature accumulation. For

any feasible � then, it is most natural to de�ne these representations using their recursive

forms:

De�nition �.�.� (�F). For � 2 [0, 1] and bounded base features � : S 7! [0, 1]D, the

�-feature (�F) representation of state s is given by '⇡
�
such that

'
⇡

�
(s) , �(s)� (1 + ��Es0⇠p⇡(·|s)'

⇡

�
(s0)) + �(1� �(s))� Es0⇠p⇡(·|s)'

⇡

�
(s0).

(�.�)
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In order to maintain their usefulness for policy evaluation, the main requirement

of the base features is that the reward should lie in their span. That is, a given feature

function � is most useful for an associated set of reward functionsR, given by

R = {r | 9w 2 RD s.t. r(s, a) = wT�(s, a) 8s, a 2 S ⇥A}. (�.�)

However, Barreto et al. (����) demonstrate that good performance can still be achieved

for an arbitrary reward function as long as it’s su�ciently close to some r 2 R.

Set-Theoretic FormulationsAs noted above, computing expectations of accumulated

abstract features is unsatisfying because it requires thatwe lose the occupancy-based inter-

pretation of these representations. It also restricts the agent to reward functions which

lie within R. An alternative approach to extending the SR to continuous MDPs that

avoids this issue is the successor measure (SM; Blier and Ollivier, ����), which treats the

distribution of future states as a measure over S :

M
⇡(s, a,X) ,

1X

k=0

�
kP(st+k 2 X | st = s, at = a, ⇡) 8X ⇢ S measurable,

(�.�)

which canbe expressed in the discrete case asM⇡ = I+�P ⇡
M

⇡. In the continuous case,

matrices are replaced by their correspondingmeasures. Note that SFs can be recovered by

integrating: '⇡
1
(s, a) =

R
s0 M

⇡(s, a, ds0)�(s0).We can de�ne an analogous object for

the �R as follows

�⇡
�
(s,X) ,

1X

k=0

�
nt(X,k)

�
kP(st+k 2 X | st = s, ⇡) (�.�)

where nt(X, k) , P
k�1

j=0
�st+j(X). However, this is not a measure because it fails to

satisfy additivity for � < 1, i.e., for measurable disjoint setsA,B ✓ S ,�⇡
�
(s, A[B) <

�⇡
�
(s, A) + �⇡

�
(s, B) (Lemma �.B.�). For this reason, we call Eq. (�.�) the � operator

(�O).We thenminimize the following squared Bellman error loss for�⇡
�
(dropping sub-



�.�. Policy Evaluation, Learning, and Composition under DMU ���

/superscripts for concision):

L(�) = Est,st+1⇠⇢,s
0⇠µ

h
('(st, s

0)� �'̄(st+1, s
0))2
i
� 2Est⇠⇢['(st, st)]

+ 2�(1� �)Est,st+1⇠⇢[µ(st)'(st, st)'̄(st+1, st)],
(�.��)

where ⇢ and µ are densities over S and �⇡
�
(s) , '

⇡

�
(s)diag(µ) in the discrete case,

with '⇡
�
parameterized by a neural network. ·̄ indicates a stop-gradient operation,

i.e., a target network. A detailed derivation and discussion are given in Appendix �.H.

While ⇢ can be any training distribution of transitions we can sample from, we require

an analytic expression forµ. Eq. (�.��) recovers the SM loss of Touati andOllivier (����b)

when � = 1.

�.� Policy Evaluation, Learning, and Composition un-

der DMU
In the following sections, we experimentally validate the formal properties of the �R and

explore its usefulness for solving RL problems with DMU. The majority of our experi-

ments center onnavigation tasks, aswe believe this is themost natural setting for studying

behavior under diminishing rewards. However, in Appendix �.I we also explore poten-

tial for the �R’s use other areas, such as continuous control, even when rewards do not

diminish. There is also the inherent question of whether the agent has access to �. In

a naturalistic context, � can be seen as an internal variable that the agent likely knows,

especially if the agent has experienced the related stimulus before. Therefore, in subse-

quent experiments, treating � as a “given” can be taken to imply the agent has prior ex-

perience with the relevant stimulus. Further details for all experiments can be found in

Appendix �.E.

�.�.� Policy Evaluation

In Section �.�, we showed that in order to perform policy evaluation under DMU, an

agent is required to learn the �R. In our �rst experimental setting, we verify this analysis

empirically for the policy depicted in Fig. �.� with a rewarded location in the state indi-

cated by a g in Fig. �.� with �true = 0.5. We then compare the performance for agents
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Figure �.�: The �R is required for accurate policy evaluation. Policy evaluation of the policy
depicted in Fig. �.� using dynamic programming, tabular TD learning, and �F TD
learning produces the most accurate value estimates when using the �R with � =
�true. Results are averagedover three randomseeds. Shading indicates standard error.

Figure �.�: The �R is required for strong performance.We apply a tabularQ-learning-style
algorithm and deep actor-critic algorithm to policy optimization in the TwoRooms
domain. The blue locations indicate reward, and the black triangle shows the agent’s
position. Results are averaged over three random seeds. Shading indicates standard
error.

using di�erent values of � across dynamic programming (DP), tabular TD learning, and

�F TD learning with Laplacian features. For the latter two, we use a linear function ap-

proximator with a one-hot encoding of the state as the base feature function. We then

compute theQ-values using the �R with � 2 {0.5, 1.0} (with � = 1 corresponding to

the SR) and compare the resulting value estimates to the trueQ-values. Consistent with

our theoretical analysis, Fig. �.� shows that the �Rwith � = �true is required to produce

accurate value estimates.

�.�.� Policy Learning

To demonstrate that �R is useful in supporting policy improvement under diminish-

ing rewards, we implemented modi�ed forms ofQ-learning (Watkins and Dayan, ����)

(which we termQ�-learning) and advantage actor-critic (A�C;Mnih et al., ����) and ap-

plied them to the TwoRooms domain from the NeuroNav benchmark task set (Juliani
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et al., ����) (see Fig. �.�). For a transition (st, at, st+1), we de�ne the following operator:

T ?

�
� , 1(st)� (1 + ���(st+1, at+1)) + �(1� 1(st))� �(st+1, at+1), (�.��)

where at+1 = argmax
a
Q�(st, a) = argmax

a
rT�(st, a). This is an improvement

operator forQ�. The results in Fig. �.� show thatQ�-learning outperforms standardQ-

learning (� = 1) for diminishing rewards, and that the “correct” � produces the best

performance. To implement A�C with a �R critic, we modi�ed the standard TD target

in a similar manner as follows:

T�V (st) = r(st) + �(V (st+1) + (�� 1)wT(�(st)� '�(st+1))), (�.��)

where�were one-hot state encodings, and the policy, value function, and�Fwere output

heads of a sharedLSTMnetwork (Hochreiter and Schmidhuber, ����b). Note this target

is equivalent to De�nition �.�.�multiplied by the reward (derivation in Appendix �.E).

Fig. �.� shows again that correct value targets lead to improved performance. Videos of

agent behavior can be found at lambdarepresentation.github.io.

�.�.� Policy Composition

As we’ve seen, DMUproblems of this form have an interesting property wherein solving

one task requires the computation of a representation which on its own is task agnostic.

In the same way that the SR and FR facilitate generalization across reward functions,

the �R facilitates generalization across reward functions with di�erent r̄s.The following

result shows that there is a bene�t to having the “correct” � for a given resource.

Theorem �.�.� (GPI). Let {Mj}nj=1
✓ M and M 2 M be a set of tasks in an envi-

ronmentM and letQ⇡
⇤
j denote the action-value function of an optimal policy ofMj when

executed in M . Assume that the agent uses diminishing rate �̂ that may di�er from the

true environment diminishing rate �. Given estimates Q̃⇡j such that kQ⇡
⇤
j � Q̃

⇡jk1  ✏

for all j, de�ne

⇡(s) 2 argmax
a

max
j

Q̃
⇡j(s, a).

lambdarepresentation.github.io
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Tabular GPI Example Trajectories

Figure �.�: Tabular GPI. (Left)Average returns obtained by agents performingGPE+GPIusing
�Rs with � 2 {0.0, 0.5, 1.0} over �� episodes. Error bars indicate standard error.
(Right) Sample trajectories. Agents with � set too high overstay in rewarding states,
and those with � too low leave too early.

Then,

Q
⇡(s, a) � max

j

Q
⇡
⇤
j (s, a)� 1

1� �

✓
2✏+ |�� �̂|krk1 +

�(1� �)r(s, a)
1� ��

◆
.

Note that for � = 1, we recover the original GPI bound due to Barreto et al. (����)

with an additional term quantifying error accrued if incorrectly assuming � < 1.

Tabular NavigationWe can see this result re�ected empirically in Fig. �.�, where we

consider the following experimental set-up in the classic FourRooms domain (Sutton

et al., ����). The agent is assumed to be given or have previously acquired four poli-

cies {⇡0, ⇡1, ⇡2, ⇡3} individually optimized to reach rewards located in each of the four

rooms of the environment. There are three reward locations {g0, g1, g2} scattered across

the rooms, each with its own initial reward and all with � = 0.5. At the beginning of

each episode, an initial state s0 is sampled uniformly from the set of available states. An

episode terminates either when the maximum reward remaining in any of the goal states

is less than 0.1 or when the maximum number of stepsH = 40 is reached (when � = 1,

the latter is the only applicable condition). For each of the four policies, we learn �Rs

with � 2 {0.0, 0.5, 1.0} using dynamic programming and record the returns obtained

while performing GPE+GPI with each of these representations over �� episodes. Bell-

man error curves for the �Rs are shown in Fig. �.��, and demonstrate that convergence

is faster for lower �. In the left panel of Fig. �.�, we can indeed see that using the correct

� (�.�) nets the highest returns. Example trajectories for each agent � are shown in the

remaining panels.
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Figure �.�: Pixel-Based GPI. Performance is strongest for agents using the correct � = 0.5.
PCA on the learned features in each underlying environment state shows that the
�Fs capture the value-conditioned structure of the environment.

Pixel-Based NavigationWe veri�ed that the previous result is re�ected in larger scales

by repeating the experiment in a partially-observed version of FourRooms in which the

agent receives 128⇥128RGB egocentric observations of the environment (Fig. �.�, left)

withH = 50. In this case, the agent learns �Fs for each policy for � 2 {0.0, 0.5, 1.0},

where each �F is parameterized by a feedforward convolutional network with the last

seven previous frames stacked to account for the partial observability. The base features

were Laplacian eigenfunctions normalized to [0, 1], which which were shown by Touati

et al. (����) to perform the best of all base features for SFs across a range of environments

including navigation.

�.� Understanding Natural Behavior

Naturalistic environments often exhibit diminishing reward and give insight into ani-

mal behavior. The problem of foraging in an environment with multiple diminishing

food patches (i.e., reward states) is of interest in behavioral science (Hayden et al., ����;

Yoon et al., ����; Gabay and Apps, ����). The cornerstone of foraging theory is the

marginal value theorem (MVT;Charnov, ����; Gabay andApps, ����), which states that

the optimal time to leave a patch is when the patch’s reward rate matches the average

reward rate of the environment. However, the MVT does not describe which patch to

move to once an agent leaves its current patch. We show that the �O recovers MVT-like

behavior in discrete environments and improves upon the MVT by not only predict-

ing when agents should leave rewarding patches, but also where they should go. More-

over, we provide a scheme for learning � alongside the �O using feedback from the en-

vironment. To learn the �O, we take inspiration from the FBR (Touati and Ollivier,
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����b) and use the following parametrization: �⇡z
�
(s, a, s0) = F (s, a, z)>B(s0)µ(s0)

and ⇡z(s) = argmax
a
F (s, a, z)>z, where µ is a density with full support on S , e.g.,

uniform. We then optimize using the the loss in Eq. (�.��) under this parameterization

(details in Appendix �.E). Given a reward function r : S ! R at evaluation time, the

agent acts according to argmax
a
F (s, a, zR)>zR, where zR = Es⇠µ[r(s)B(s)]. Be-

cause the environment is non-stationary, zR has to be re-computed at every time step.

To emulate a more realistic foraging task, the agent learns � by minimizing the loss in

Eq. (�.��) in parallel with the loss

L(�) = Est,st+1⇠⇢

⇥
(st = st+1) (r(st+1)� �r(st))2

⇤
,

which provably recovers the correct value of � provided that ⇢ is su�ciently exploratory.

In Section �.H.�we provide experiments showing that using an incorrect value of� leads

to poor performance on tabular tasks. In Fig. �.�we show that the agent learns the correct

value of �, increasing its performance. We illustrate the behavior of the �O in an asym-

metric environment that has one large reward state on one side and many small reward

states (with higher total reward) on the other. Di�erent values of � lead to very di�er-

ent optimal foraging strategies, which the �O recovers and exhibits MVT-like behavior

(see Section �.H.�� for a more detailed analysis). Our hope is that the �Rmay provide a

framework for new theoretical studies of foraging behavior and possibly mechanisms for

posing newhypotheses. For example, an overly large�may lead to overstaying in depleted

patches, a frequently observed phenomenon (Nonacs, ����).

�.� Conclusion
LimitationsDespite its advantages, there are several drawbacks to the representation

which are a direct result of the challenge of the DMU setting. First, the �R is only use-

ful for transfer across diminishing reward functions when the value of � at each state is

consistent across tasks. In natural settings, this is fairly reasonable, as � can be thought of

as encoding the type of the resource available at each state (i.e., each resource has its own

associated decay rate). Second, as noted in Section �.�.�, the�Rdoes not admit ameasure-

theoretic formulation, which makes it challenging to de�ne a principled, occupancy-
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Figure �.�: �O trained via FB. a)� values of two agents in FourRooms, onewhich learns� and
onewhich does not. b)Performance of the two agents from (a). Learning� improves
performance. c)Reward structure and starting state of the asymmetric environment.
d)Trajectory of an agentwith� = 1. The optimal strategy is to reach the high reward
state and exploit it ad in�nitum. e)Trajectory of an agentwith� = 0.1. The optimal
strategy is to exploit each reward state for a few time steps before moving to the next
reward state.

based version compatible with continuous state spaces. Third, the �R is a prospective

representation, and so while it is used to correctly evaluate a policy’s future return under

DMU, it is not inherently memory-based and so performs this evaluation as if the agent

hasn’t visited locations with diminishing reward before. Additional mechanisms (i.e., re-

currence or frame-stacking) are necessary to account for previous visits. Finally, the �R is

dependent on an episodic task setting for rewards to reset, as otherwise the agent would

eventually consume all reward in the environment. An even more natural reward struc-

ture would include a mechanism for reward replenishment in addition to depletion. We

describe several such candidates inAppendix �.J, but leave amore thorough investigation

of this issue to future work.

In this work, we aimed to lay the groundwork for understanding policy evalua-

tion, learning, and composition under diminishing rewards. To solve such problems, we

introduced—and showed the necessity of—the � representation, which generalizes the

SR and FR.We demonstrated its usefulness for rapid policy evaluation and by extension,

composition, as well as control. We believe the �R represents a useful step in the devel-

opment of state representations for naturalistic environments.
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Appendix

Appendix �.A: Derivation of �R Recursion
We provide a step-by-step derivation of the �R recursion in Eq. (�.�):

�⇡
�
(s, s0) = E

"
1X

k=0

�
nt(s

0
,k)
�
k (st+k = s

0)
���st = s

#

= E
"

(st = s
0) +

1X

k=1

�
nt(s

0
,k)
�
k (st+k = s

0)
���st = s

#

(i)

= E
"

(st = s
0) + �

nt(s
0
,1)
�

1X

k=1

�
nt+1(s

0
,k)
�
k�1 (st+k = s

0)
���st = s

#

(ii)

= E
"

(st = s
0) + (st = s

0)��
1X

k=1

�
nt+1(s

0
,k)
�
k�1 (st+k = s

0)

+ �(1� (st = s
0))

1X

k=1

�
nt+1(s

0
,k)
�
k�1 (st+k = s

0)
���st = s

#

= (st = s
0) + (st = s

0)��Est+1⇠p⇡�
⇡

�
(st+1, s

0)

+ �(1� (st = s
0))Est+1⇠p⇡�

⇡

�
(st+1, s

0)

= (st = s
0)(1 + ��Est+1⇠p⇡�

⇡

�
(st+1, s

0))

+ �(1� (st = s
0))Est+1⇠p⇡�

⇡

�
(st+1, s

0),

(�.��)

where (i) is because nt(s0, k) = nt(s0, 1) + nt+1(s0, k) and (ii) is because

�
nt(s

0
,1) = �

(st=s
0
) = (st = s

0)�+ (1� (st = s
0)).

Appendix �.B: Theoretical Analysis
Here, we provide proofs for the theoretical results in the main text.

Lemma �.�.� (Impossibility; Informal). Given a reward function of the form Eq. (�.�),

it is impossible to de�ne a Bellman equation solely using the resulting value function and

immediate reward.

Before providing the formal statement and proof for Lemma �.�.�, we introduce a
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de�nition for a Bellman operator.

De�nition �.B.� (Bellman Operator). A Bellman operator is a contractive operator

R|S| ! R|S| that depends solely on r̄, one-step expectations under p⇡ , and learning hy-

perparameters (in our case � and �).

We can now give a formal statement of Lemma �.�.�:

Lemma �.B.� (Impossibility; Formal). Assume that |S| > 1. Then, there does not exist a

Bellman operator T with �xed point V ⇡ .

Proof. Assume for a contradiction that T is a Bellman operator. By the Banach �xed-

point theorem, V ⇡ must be the unique �xed point of T . Hence, TV ⇡ must take on the

following form (see the proof of Lemma �.� in Appendix B): for s 2 S ,

(TV ⇡)(s) = r̄(s) + �Es0⇠p⇡(·|s)V
⇡(s0) + �(�� 1)r̄(s)Es0⇠p⇡(·|s)�

⇡

�
(s0, s).

For the assumption to hold, there must exist a function f such that, for any s 2 S ,

Es0⇠p⇡(·|s)�
⇡

�
(s0, s) = Ep⇡(·|s)f(r̄,V

⇡
, �,�, s).

Now, by de�nition,

V
⇡(s) =

X

s02S

�⇡
�
(s, s0)r̄(s0).

r̄ is a vector inR|S|, so as long as S > 1, r̄? is non-trivial. Fix any r̄,V⇡
, s. Pick a vector

w 2 r̄? \ {0} and de�ne

�̃⇡
�
(s, s0) := �⇡

�
(s, s0) + w(s0)

for any s, s0 2 S . Note that

X

s02S

�̃⇡
�
(s, s0)r̄(s0) =

X

s02S

�⇡
�
(s, s0)r̄(s0) +

X

s02S

w(s0)r̄(s0) = V
⇡(s),
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asw ? r̄. However,

Es0⇠p⇡(·|s)�̃
⇡

�
(s0, s) =

X

s02S

p
⇡(s0|s)�⇡

�
(s0, s) +

X

s02S

p
⇡(s0|s)w(s).

The �nal term evaluates to w(s). Because w 6= 0, there must exist some s such that

w(s) 6= 0. For this s, we have a single input (r̄,V⇡
, �,�, s) to f that corresponds to two

distinct outputs: Es0⇠p⇡(·|s)�⇡�(s
0
, s) and Es0⇠p⇡(·|s)�̃⇡�(s

0
, s).

Hence, f is a one-to-manymapping: for �xed input, there is more than one output.

Therefore, f is not a function, yielding a contradiction.

The following establishes G⇡
�
as a contraction.

Lemma �.B.� (Contraction). LetG⇡
�
be the operator as de�ned inDe�nition �.�.� for some

stationary policy ⇡. Then for any two matrices�,�0 2 R|S|⇥|S|,

|G⇡
�
�(s, s0)� G⇡

�
�0(s, s0)|  �|�(s, s0)� �0(s, s0)|.

Proof. We have

|(G⇡
�
�� G⇡

�
�0)s,s0 | = |(I � (11T + ��P

⇡�) + �(11T � I)� P
⇡�

� I � (11T + ��P
⇡�0)� �(11T � I)� P

⇡�0)s,s0 |

= |(I � ��P ⇡(�� �0) + �(11T � I)� P
⇡(�� �0))s,s0 |

= |((I � �11T + 11T � I)� �P ⇡(�� �0))s,s0 |
(i)

 |(�P ⇡(�� �0))s,s0 |

= �|(P ⇡(�� �0))s,s0 |

 �|(�� �0)s,s0 |,

where (i) comes from using �  1 and simplifying.

Note thatwe can actually get a tighter contraction factor of�� fors = s
0. Given this

contractive property, we can prove its convergence with the use of the following lemma.
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Lemma �.B.� (Max �R). The maximum possible value of�⇡
�
(s, s0) is

(s = s
0) + (1� (s = s

0))�

1� �� .

Proof. For s = s
0,

�⇡
�
(s, s) = 1 + ��Est+1⇠p⇡(·|st)�

⇡

�
(st+1, s).

This is just the standard SR recursion with discount factor ��, so the maximum is

1X

k=0

(��)k =
1

1� �� . (�.��)

For s 6= s
0, (st = s

0) = 0, so

�⇡
�
(s, s0) = �Est+1⇠p⇡(·|st)�

⇡

�
(st+1, s

0).

Observe that�⇡
�
(s, s) � �⇡

�
(s, s0) for s0 6= s, so themaximum is attained for st+1 = s

0.

We can then use the result for s = s
0 to get

�⇡
�
(s, s0) = �

✓
1

1� ��

◆
. (�.��)

Combining Eq. (�.��) and Eq. (�.��) yields the desired result.

Proposition �.�.� (Convergence). Under the conditions assumed above, set�(0) = (1�

�)I . For k = 1, 2, . . . , suppose that�(k+1) = G⇡
�
�(k). Then

|(�(k) � �⇡
�
)s,s0 | 

�
k+1

1� �� .
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Proof. Using the notationXs,s0 = X(s, s0) for a matrixX :

|(�(k) � �⇡
�
)s,s0 | = |(Gk

�
�(0) � Gk

�
�⇡
�
)s,s0 |

= |(Gk

�
�(0) � �⇡

�
)s,s0 |

(i)

 �
k|(�(0) � �⇡

�
)s,s0 |

(ii)

= �
k�⇡

�
(s, s0)

(iii)

 �
k+1

1� ��

(�.��)

where (i) is due to Lemma �.B.�, (ii) is because �(0)(s, s0) = 0 for s 6= s
0, and (iii) is

due to Lemma �.B.�.

Lemma �.B.� (Subadditivity). For any s 2 S , policy ⇡, � 2 [0, 1), and disjoint measur-

able setsA,B ✓ S ,

�⇡
�
(s, A [ B) < �⇡

�
(s, A) + �⇡

�
(s, B).

Proof. Note that for disjoint setsA,B, we have nt(A [ B, k) = nt(A, k) + nt(B, k).

Hence, conditioned on some policy ⇡ and st = s,

�
nt(A[B,k)P(st+k 2 A [B)

= �
nt(A,k)

�
nt(B,k)P(st+k 2 A) + �

nt(A,k)
�
nt(B,k)P(st+k 2 B)

 �
nt(A,k)P(st+k 2 A) + �

nt(B,k)P(st+k 2 B),

where the �rst line follows from P(st+k 2 A [ B) = P(st+k 2 A) + P(st+k 2

B). Equality holds over all A,B, t, k if and only if � = 1. Summing over k yields the

result.

�.B.� Proof of Theorem �.�.�

We�rst prove two results, which rely throughout on the fact that��(s, a, s0)  1

1���
for

all s, a, s0, which follows from Lemma �.B.�. For simplicity, we also assume throughout

that all rewards are non-negative, but this assumption can easily be dropped by taking ab-
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solute values of rewards. The proofs presented here borrow ideas from those of (Barreto

et al., ����).

Lemma �.B.�. Let {Mj}nj=1
✓M andM 2M be a set of tasks in an environmentM

with diminishing rate � and letQ⇡
⇤
j denote the action-value function of an optimal policy

ofMj when executed inM . Given estimates Q̃⇡j such that kQ⇡
⇤
j � Q̃

⇡jk1  ✏ for all j,

de�ne

⇡(s) 2 argmax
a

max
j

Q̃
⇡j(s, a).

Then,

Q
⇡(s, a) � max

j

Q
⇡
⇤
j (s, a)� 1

1� �

✓
2✏+

�(1� �)r(s, a)
1� ��

◆
,

where r denotes the reward function ofM .

Proof. De�ne Q̃max(s, a) := maxj Q̃⇡j(s, a) and Qmax(s, a) := maxj Q
⇡
⇤
j (s, a). Let

T
⌫ denote the Bellman operator of a policy ⌫ in taskM . For all (s, a) 2 S ⇥A and all
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j,

T
⇡

i
Q̃max(s, a)� r(s, a)

= �

X

s0

p(s0|s, a)
⇣
(�� 1)ri(s, a)�

⇡(s0, ⇡(s0), s) + Q̃max(s
0
, ⇡(s0))

⌘

= �

X

s0

p(s0|s, a)
⇣
(�� 1)ri(s, a)�

⇡(s0, ⇡(s0), s) + max
b

Q̃max(s
0
, b)
⌘

� �

X

s0

p(s0|s, a)
⇣
(�� 1)ri(s, a)�

⇡(s0, ⇡(s0), s) + max
b

Qmax(s
0
, b)
⌘
� �✏

� �

X

s0

p(s0|s, a)
�
(�� 1)ri(s, a)�

⇡(s0, ⇡(s0), s) +Qmax(s
0
, ⇡

⇤

j
(s0))

�
� �✏

� �

X

s0

p(s0|s, a)
⇣
(�� 1)ri(s, a)�

⇡(s0, ⇡(s0), s) +Q
⇡
⇤
j

i
(s0, ⇡⇤

j
(s0))

⌘
� �✏

= �

X

s0

p(s0|s, a)
⇣
(�� 1)ri(s, a)�

⇡
⇤
j (s0, ⇡⇤

j
(s0), s) +Q

⇡
⇤
j

i
(s0, ⇡⇤

j
(s0))

⌘
� �✏

+ �(�� 1)r(s, a)
X

s0

p(s0|s, a)
�
�⇡(s0, ⇡(s0), s)� �⇡⇤

j (s0, ⇡⇤

j
(s0), s)

�

� T
⇡
⇤
j

i
Q
⇡
⇤
j

i
(s, a)� �✏� �(1� �)r(s, a)

1� �� � r(s, a)

= Q
⇡
⇤
j

i
(s, a)� �✏� �(1� �)r(s, a)

1� �� � r(s, a).

This holds for any j, so

T
⇡
Q̃max(s, a) � max

j

Q
⇡
⇤
j

i
(s, a)� �✏� �(1� �)r(s, a)

1� ��

= Qmax(s, a)� �✏�
�(1� �)r(s, a)

1� ��

� Q̃max(s, a)� ✏� �✏�
�(1� �)r(s, a)

1� �� .

Next, note that for any c 2 R,

T
⇡(Q̃max(s, a) + c) = T

⇡
Q̃max(s, a) + �

X

s0

p(s0|s, a)c

= T
⇡
Q̃max(s, a) + �c.
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Putting everything together, and using the fact that T ⌫ is monotonic and contractive,

Q
⇡

i
(s, a) = lim

k!1

(T ⇡)kQ̃max(s, a)

� lim
k!1

"
Q̃max(s, a)�

✓
✏(1 + �)� �(1� �)r(s, a)

1� ��

◆ kX

j=0

�
j

#

� Q̃max(s, a)�
1

1� �

✓
✏(1 + �)� �(1� �)r(s, a)

1� ��

◆

� Qmax(s, a)� ✏�
1

1� �

✓
✏(1 + �)� �(1� �)r(s, a)

1� ��

◆

� Q
⇡
⇤
j (s, a)� 1

1� �

✓
2✏+

�(1� �)r(s, a)
1� ��

◆
.

This holds for every j, hence the result.

Lemma �.B.�. Let ⌫ be any policy, �, �̂ 2 [0, 1], and Q� denote a value function with

respecting to diminishing rate �. Then,

kQ⌫

�
�Q

⌫

�̂
k1 

|�� �̂|krk1
1� � .
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Proof. The proof follows from the de�nition ofQ: for every (s, a) 2 S ⇥A,

|Q⌫

�
(s, a)�Q

⌫

�̂
(s, a)| =

�����E⇡

"
1X

k=0

�
k

⇣
�
nt(st+k,k) � �̂nt(st+k,k)

⌘

· r(st+k)
���st = s, at = a

#�����

 E⇡

"
1X

k=0

�
k

����nt(st+k,k) � �̂nt(st+k,k)

���

· r(st+k)
���st = s, at = a

#

= E⇡

"
1X

k=0

�
k
r(st+k)

����� �̂
���

·
nt(st+k,k)�1X

j=0

�
nt(st+k,k)�1�j

�̂
j

���st = s, at = a

#

 |�� �̂|E⇡

"
1X

k=0

�
k
r(st+k)

���st = s, at = a

#

 |�� �̂|krk1
1� � .

Theorem �.�.� (GPI). Let {Mj}nj=1
✓ M and M 2 M be a set of tasks in an envi-

ronmentM and letQ⇡
⇤
j denote the action-value function of an optimal policy ofMj when

executed in M . Assume that the agent uses diminishing rate �̂ that may di�er from the

true environment diminishing rate �. Given estimates Q̃⇡j such that kQ⇡
⇤
j � Q̃

⇡jk1  ✏

for all j, de�ne

⇡(s) 2 argmax
a

max
j

Q̃
⇡j(s, a).

Then,

Q
⇡(s, a) � max

j

Q
⇡
⇤
j (s, a)� 1

1� �

✓
2✏+ |�� �̂|krk1 +

�(1� �)r(s, a)
1� ��

◆
.

Proof. LetQ� denote a value function with respect to diminishing constant �. We wish
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to bound

max
j

Q
⇡
⇤
j

�̂
(s, a)�Q

⇡

�
(s, a),

i.e., the value of the GPI policy with respect to the true � compared to the maximum

value of the constituent policies ⇡⇤

j
used for GPI, which were used assuming �̂. By the

triangle inequality,

max
j

Q
⇡
⇤
j

�̂
(s, a)�Q

⇡

�
(s, a)  max

j

Q
⇡
⇤
j

�
(s, a)�Q

⇡

�
(s, a)

+ |max
j

Q
⇡
⇤
j

�
(s, a)�max

j

Q
⇡
⇤
j

�̂
(s, a)|

 max
j

Q
⇡
⇤
j

�
(s, a)�Q

⇡

�
(s, a)

| {z }
(1)

+max
j

|Q⇡
⇤
j

�
(s, a)�Q

⇡
⇤
j

�̂
(s, a)|

| {z }
(2)

.

We bound (�) by Lemma �.B.� and (�) by Lemma �.B.� to get the result.

�.B.� An Extension of Theorem �.�.�

Inspired by (Barreto et al., ����), we prove an extension of Theorem �.�.�:

Theorem �.B.�. Let M 2 M be a task in an environment M with true diminishing

constant �. Suppose we perform GPI assuming a diminishing constant �̂:

Let {Mj}nj=1
andMi be tasks inM and letQ⇡

⇤
j

i
denote the action-value func-

tion of an optimal policy ofMj when executed inMi. Given estimates Q̃⇡j

i
such

that kQ⇡
⇤
j

i
�Q̃⇡j

i
k1  ✏ for all j, de�ne⇡(s) 2 argmax

a
maxj Q̃

⇡j

i
(s, a).

LetQ⇡

�̂
andQ⇡

⇤
�

denote the action-value functions of ⇡ and theM -optimal policy ⇡⇤ when

executed inM , respectively. Then,

kQ⇡
⇤

�
�Q

⇡

�̂
k1 

2

1� �

 
1

2
|�� �̂|krk1 + ✏

+ kr � rik1 +min
j

kri � rjk1

!
+

1� �
1� ��C,
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whereC is a positive constant not depending on �:

1� �
�

C = 2kr � rik1 + 2min
j

kri � rjk1 +min (krk1, krik1)

+ min (krik1, kr1k1, . . . , krnk1)

Note that when � = 1, we recover Proposition � of (Barreto et al., ����) with an

additional term quantifying error incurred by �̂ 6= �. The proof relies on two other

technical lemmas, presented below.

Lemma �.B.�.

kQ⇡
⇤ �Q

⇡
⇤
i

i
k1 

kr � rik1
1� � + �(1� �)min (krk1, krik1) + kr � rik1

(1� �)(1� ��) .

Proof. De�ne�i := kQ⇡
⇤ �Q

⇡
⇤
i

i
k1. For any (s, a) 2 S ⇥A,

|Q⇡
⇤
(s, a)�Q

⇡
⇤
i

i
(s, a)|

=
���r(s, a) + �

X

s0

p(s0|s, a)
�
(�� 1)r(s, a)�⇡

⇤
(s0, ⇡⇤(s0), s) +Q

⇡
⇤
(s0, ⇡⇤(s0)

�

� ri(s, a)� �
X

s0

p(s0|s, a)
⇣
(�� 1)ri(s, a)�

⇡
⇤
i (s0, ⇡⇤

i
(s0), s) +Q

⇡
⇤
i

i
(s0, ⇡⇤

i
(s0)
⌘ ���

 |r(s, a)� ri(s, a)|+ �

X

s0

p(s0|s, a)|Q⇡
⇤
(s, a)�Q

⇡
⇤
i

i
(s, a)|

+ �(�� 1)
X

s0

p(s0|s, a)
��r(s, a)�⇡⇤

(s0, ⇡⇤(s0), s)� ri(s, a)�
⇡
⇤
i (s0, ⇡⇤

i
(s0), s)

��

 kr � rik1 + ��i + �(1� �)kr�⇡⇤ � ri�
⇡
⇤
i k1.

The third term decomposes as

kr�⇡⇤ � ri�
⇡
⇤
i k1  kr�⇡

⇤ � r�⇡
⇤
i k1 + kr�⇡⇤

i � ri�
⇡
⇤
i k1

 krk1 + kr � rik1
1� �� .
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We could equivalently use the following decomposition:

kr�⇡⇤ � ri�
⇡
⇤
i k1  kr�⇡

⇤ � ri�
⇡
⇤k1 + kri�⇡

⇤ � ri�
⇡
⇤
i k1

 krik1 + kr � rik1
1� �� ,

and so

kr�⇡⇤ � ri�
⇡
⇤
i k1 

min (krk1, krik1) + kr � rik1
1� �� .

The inequalities above hold for all s, a and so

�i  kr � rik1 + ��i + �(1� �)min (krk1, krik1) + kr � rik1
1� ��

=) �i 
kr � rik1
1� � + �(1� �)min (krk1, krik1) + kr � rik1

(1� �)(1� ��) .

Hence the result.

Lemma �.B.�. For any policy ⇡,

kQ⇡

i
�Q

⇡k1 
kr � rik1
1� � + �(1� �) kr � rik1

(1� �)(1� ��) .

Proof. Write�i := kQ⇡

i
�Q

⇡k1. Proceeding as in the previous lemma, for all (s, a) 2
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S ⇥A, we have

|Q⇡

i
(s, a)�Q

⇡(s, a)|

=
���ri(s, a) + �

X

s0

p(s0|s, a) ((�� 1)ri(s, a)�
⇡(s0, a0, s) +Q

⇡

i
(s0, a0))

� r(s, a)� �
X

s0

p(s0|s, a) ((�� 1)r(s, a)�⇡(s0, a0, s) +Q
⇡(s0, a0))

���

 �

X

s0

p(s0|s, a)(1� �)|r(s, a)� ri(s, a)|�⇡(s0, a0, s)

+ �

X

s0

p(s0|s, a)|Q⇡

i
(s0, a0)�Q

⇡(s0, a0)|+ |r(s, a)� ri(s, a)|

 kr � rik1 + �(1� �)kr � rik1
1

1� �� + ��0

i

=) �0

i
 kr � rik1 +

�(1� �)kr � rik1
1� �� + ��0

i

=) �0

i
 kr � rik1

1� � +
�(1� �)kr � rik1
(1� �)(1� ��) .

where a0 ⇠ ⇡(s0).

Finally, we prove Theorem �.B.�:

Proof of Theorem �.B.�. By the triangle inequality,

kQ⇡
⇤

�
�Q

⇡

�̂
k1  kQ⇡

⇤

�
�Q

⇡

�
k1 + kQ⇡

�
�Q

⇡

�̂
k1.

By Lemma �.B.�, the second term is bounded above by

|�� �̂|krk1
1� � .

The �rst term decomposes as follows (dropping the � subscript on all action-value func-

tions for clarity):

kQ⇡
⇤ �Q

⇡k1  kQ⇡
⇤ �Q

⇡
⇤
i

i
k1| {z }

(1)

+ kQ⇡
⇤
i

i
�Q

⇡

i
k1| {z }

(2)

+ kQ⇡

i
�Q

⇡k1| {z }
(3)

.

Applying Lemma �.B.� to (�) (but with respect toMi rather thanM ), we have that for



�.�. Conclusion ���

any j,

Q
⇡
⇤
i

i
(s, a)�Q

⇡

i
(s, a)  Q

⇡
⇤
i

i
(s, a)�Q

⇡
⇤
j

i
(s, a) +

1

1� �

✓
2✏+

�(1� �)ri(s, a)
1� ��

◆

=) kQ⇡
⇤
i

i
�Q

⇡

i
k1  kQ

⇡
⇤
i

i
�Q

⇡
⇤
j

j
k1| {z }

(2.1)

+ kQ⇡
⇤
j

j
�Q

⇡
⇤
j

i
k1| {z }

(2.2)

+
1

1� �

✓
2✏+

�(1� �)krik1
1� ��

◆
.

Webound (�.�) using Lemma �.B.� and (�.�) using Lemma �.B.� (but with respect toMj

rather thanM ):

kQ⇡
⇤
i

i
�Q

⇡
⇤
j

j
k1 + kQ⇡

⇤
j

j
�Q

⇡
⇤
j

i
k1 

2kri � rjk1
1� �

+ �(1� �)min (krik1, krjk1) + 2kri � rjk1
(1� �)(1� ��) .

We then apply Lemma �.B.� to (�) and Lemma �.B.� to (�) to get the result.

Appendix �.C: An nth Occupancy Representation
To generalize the �rst occupancy representation to account for reward functions of this

type, it’s natural to consider an N th occupancy representation—that is, one which accu-

mulates value only for the �rstN occupancies of one state s0 starting from another state

s:

De�nition �.C.� (NR). For an MDP with �nite S , the N th-occupancy representation

(NR) for a policy ⇡ is given by F ⇡ 2 [0, N ]|S|⇥|S| such that

�⇡
(N)

(s, s0)

, E⇡

"
1X

k=0

�
t+k (st+k = s

0
,#({j | st+j = s

0
, j 2 [0, k � 1]}) < N)

���st

#
.

Intuitively, such a representation sums the �rst N (discounted) occupancies of s0 from
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time t to t + k starting from st = s. We can also note that �⇡
(1)

is simply the FR and

�(0)(s, s0) = 0 8s, s0. As with the FR and the SR, we can derive a recursive relationship

for the NR:

�⇡
(N)

(s, s0) = (st = s
0)(1 + �E�⇡

(N�1)
(st+1, s

0))

+ �(1� (st = s
0))E�⇡

(N)
(st+1, s

0),
(�.��)

where the expectation is wrt p⇡(st+1|st). Once again, we can con�rm that this is consis-

tent with the FR by noting that forN = 1, the NR recursion recovers the FR recursion.

Crucially, we also recover the SR recursion in the limit asN !1:

lim
N 7!1

�⇡
(N)

(s, s0)

= (st = s
0)(1 + �E�⇡

(1)
(st+1, s

0)) + �(1� (st = s
0))E�⇡

(1)
(st+1, s

0)

= (st = s
0) + �E�⇡

(1)
(st+1, s

0).

This is consistent with the intuition that the SR accumulates every (discounted) state

occupancy in a potentially in�nite time horizon of experience. While De�nition �.C.�

admits a recursive form which is consistent with our intuition, Eq. (�.��) reveals an in-

convenient intractability: the Bellman target for�⇡
(N)

requires the availability of�⇡
(N�1)

.

This is a challenge, because it means that if we’d like to learn any NR for �niteN > 1,

the agent alsomust learn and store�⇡
(1)
, . . .�⇡

(N�1)
. Given these challenges, the question

of how to learn a tractable general occupancy representation remains. From a neurosci-

enti�c perspective, a �xed depletion amount is also inconsistent with both behavioral

observations and neural imaging (Pine et al., ����), which indicate instead that utility

disappears at a �xed rate in proportion to the current remaining utility, rather than in

proportion to the original utility. We address these theoretical and practical issues in the

next section.

Appendix �.D: Additional Related Work

Another important and relevant sub-�eld of reinforcement learning is work which stud-

ies non-stationary rewards. Perhaps most relevant, the setting of DMU can be seen as
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a special case of submodular planning and reward structures (Wang et al., ����; Pra-

japat et al., ����). Wang et al. (����) focus speci�cally on planning and not the form

of diminishment we study, while Prajapat et al. (����) is a concurrent work which fo-

cuses on the general class of submodular reward problems and introduces a policy-based,

REINFORCE-like method which is necessarily on-policy. In contrast, we focus on a

particular sub-class of problems especially relevant to natural behavior and introduce a

family of approaches which exploit this reward structure, are value-based (andwhich can

be used tomodify the critic in policy-basedmethods), and are compatible with o�-policy

learning. Other important areas include convex (Zahavy et al., ����) and constrained (Alt-

man, ����; Moskovitz et al., ����b)MDPs. In these cases, non-stationarity is introduced

by way of a primal-dual formulation of distinct problem classes into min-max games.

Appendix �.E: Further Experimental Details

�.E.� Policy Evaluation

We perform policy evaluation for the policy shown in Fig. �.� on the 6 ⇥ 6 gridworld

shown. The discount factor � was set to �.� for all experiments, which were run forH =

10 steps per episode. The error metric was the mean squared error:

Qerror ,
1

|S||A|
X

s,a

(Q⇡(s, a)� Q̂(s, a))2, (�.��)

where Q⇡ is the ground truth Q-values and Q̂ is the estimate. Transitions are deter-

ministic. For the dynamic programming result, we learned the �R using Eq. (�.�) for

� 2 {0.5, 1.0} and then measured the resulting values by multiplying the resulting �R

by the associated reward vector r 2 {�1, 0, 1}36, which was�1 in all wall states and+1

at the reward state g. We compared the results to the ground truth values. Dynamic pro-

gramming was run until the maximum Bellman error across state-action pairs reduced

below �e-�. For the tabular TD learning result, we ran the policy for three episodes start-

ing from every available (non-wall) state in the environment, and learned the �R for
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� 2 {0.5, 1.0} as above, but using the online TD update:

��(st, at) ��(st, at) + ↵�t,

�t = 1(st)� (1 + ����(st+1, at+1))

+ �(1� 1(st))� ��(st+1, at+1)� ��(st, at),

where at+1 ⇠ ⇡(· | st+1). The learnedQ-values were then computed in the same way as

the dynamic programming case and compared to the ground truth. For the �F result, we

�rst learnedLaplacian eigenfunctionbase features as described inTouati et al. (����) from

a uniform exploration policy and normalized them to the range [0, 1]. We parameterized

the base feature network as a �-layer MLP with ReLU activations and �� units in the

hidden layer. We then used the base features to learn the �Fs as in the tabular case, but

with the �F network parameterized as a three-layer MLP with �� units in each of the

hidden layers and ReLU activations. All networks were optimized using Adam with a

learning rate of �e-�. The tabular and neural network experimentswere repeated for three

random seeds, the former was run for �,��� episodes and the latter for �,���.

�.E.� Policy Learning

We ran the experiments for Fig. �.� in a version of the TwoRooms environment from

the NeuroNav benchmark (Juliani et al., ����) with reward modi�ed to decay with a

speci�ed �true = 0.5 and discount factor � = 0.95. The initial rewards in the top right

goal and the lower room goal locations were 5 and the top left goal had initial reward

10. The observations in the neural network experiment were one-hot state indicators.

The tabularQ� experiments run the algorithm in Algorithm � for ��� episodes for � 2

{0.0, 0.5, 1.0}, with �true set to �.�, repeated for three random seeds. Experiments used

a constant step size ↵ = 0.1. There were �ve possible actions: up, right, down, left,

and stay. The recurrent A�C agents were based on the implementation from the BSuite

library (Osband et al., ����) and were run for �,��� episodes of maximum lengthH =

100 with � = 0.99 using the Adam optimizer with learning rate �e-�. The experiment

was repeated for three random seeds. The RNN was an LSTM with ��� hidden units

and three output heads: one for the policy, one for the value function, and one for the
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Algorithm � Online TabularQ�-Learning Update

�: Require: Current �R-values �(t)

�
2 R|S|⇥|A|⇥|S|, current reward vector r(t), ob-

served (st, at, st+1) tuple
�: ComputeQ�-values: Q

(t)

�
 (�(t)

�
)Tr(t)

�: Select greedy action: at+1  argmax
a2A

Q
(t)

�
(st+1, a)

�: Update��:

�(t+1)

�
(st, at) �(t)

�
(st, at) + ↵�

(t)
, where

�
(t) = 1(st)� (1 + ���(t)

�
(st+1, at+1))

+ �(1� 1(st))� �(t)

�
(st+1, at+1)� �(t)

�
(st, at).

�: Return updated�(t+1)

�

�F. The base features were one-hot representations of the current state, ���-dimensional

in this case.

�.E.� Tabular GPI

Theagent is assumed tobe givenorhavepreviously acquired fourpolicies{⇡0, ⇡1, ⇡2, ⇡3}

individually optimized to reach rewards located in each of the four rooms of the envi-

ronment. There are three reward locations {g0, g1, g2} scattered across the rooms, each

with its own initial reward r̄ = [5, 10, 5] and all with � = 0.5. At the beginning of

each episode, an initial state s0 is sampled uniformly from the set of available states. An

episode terminates either when the maximum reward remaining in any of the goal states

is less than 0.1 or when the maximum number of stepsH = 40 is reached. Empty states

carry a reward of 0, encountering a wall gives a reward of�1, and the discount factor is

set to � = 0.97.

For each of the four policies, we learn �Rs with � equal to 0, 0.5, and 1.0 using

standarddynamic programming (Bellman error curves plotted inFig. �.��), and record the

returns obtainedwhile performingGPE+GPIwith each of these representations over the

course of �� episodes. Bellman error curves for the�Rs are In the left panel of Fig. �.�, we

can indeed see that using the correct � (�.�) nets the highest returns. Example trajectories

for each of �R are shown in the remaining panels.
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�.E.� Pixel-Based GPI

In this case, the base policies ⇧ were identical to those used in the tabular GPI ex-

periments. First, we collected a dataset consisting of ��� observation trajectories

(o0, o1, . . . , oH�1) 2 OH withH = 19 from each policy, totalling 6, 460 observations.

Raw observations were 128 ⇥ 128 ⇥ 3 and were converted to grayscale. The previous

seven observations were stacked and used to train a Laplacian eigenfunction base feature

network in the same way as Touati et al. (����). For observations less than seven steps

from the start of an episode, the remaining frames were �lled in as all black observations

(i.e., zeros). The network consisted of four convolutional layers with �� 3⇥ 3 �lters with

strides (2, 2, 2, 1), each followed by a ReLU nonlinearity. This was then �attened and

passed through a Layer Norm layer (Ba et al., ����) and a tanh nonlinearity before three

fully fully connected layers, the �rst twowith �� units each andReLUnonlinearities and

the �nal, output layer with �� units. The output was L2-normalized as in Touati et al.

(����). This network � : O7 7! RD (with D = 50) was trained on the stacked ob-

servations for �� epochs using the Adam optimizer and learning rate �e-�with batch size

B = 64. To perform policy evaluation, the resulting features, evaluated on the dataset of

stacked observationswere collected into their owndataset of (st, at+1, st+1, at+1) tuples,

where st , ot�6:t. The “states” were normalized to be between � and �, and a vector w

was �t to the actual associated rewards via linear regression on the complete dataset. The

�F network was then trained using a form of neural �tted Q-iteration (FQI; Riedmiller,

����) modi�ed for policy evaluation with �Fs (Algorithm ��). The architecture for the

�F network was identical to the base feature network, with the exception that the hidden

size of the fully connected layers was ��� and the output dimension was D|A| = 250.

FQI was run forK = 20 outer loop iterations, with each inner loop supervised learning

setting run for L = 100 epochs on the current dataset. Supervised learning was done

using Adam with learning rate �e-� and batch sizeB = 64. Given the trained networks,

GPI proceeded as in the tabular case, i.e.,

at = argmax
a2A

max
⇡2⇧

wT
'
⇡

✓
(st, a). (�.��)



�.�. Conclusion ���

Figure �.�: Learning curves for �F policy evaluation. Results are averaged over three runs,
with shading indicating one unit of standard error.

�� episodes were run from random starting locations forH = 50 steps and the returns

measured. Learning curves for the base features and for �F �tting are shown in Fig. �.�.

The �F curve measures the mean squared error as in Eq. (�.��).

The feature visualizations were created by performing PCA to reduce the average

�F representations for observations at each state in the environment to �D. Each point

in the scatter plot represents the reduced representation on the xy plane, and is colored

according to the �-conditioned value of the underlying state.

�.E.� Continuous Control

�-SAC See Appendix �.I for details.

�.E.� Learning the �O with FB

Training the �O with the FB parameterization proceeds in much the same way as in

(Touati and Ollivier, ����b), but adjusted for a di�erent norm and non-Markovian envi-

ronment. We summarize the learning procedure in Algorithm ��. The loss function L is

derived in Appendix �.H, with the addition of the following regularizer:

kEs⇠⇢B!(s)B!(s)
> � Ik2.

This regularizer encouragesB to be approximately orthonormal, which promotes iden-

ti�ability of F✓ andB! (Touati and Ollivier, ����b).
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Algorithm �� FittedQ�-Iteration
�: Require: Dataset of base features {�(s) 2 RD}s2S , decay rate �, discount factor
�, reward feature vectorw 2 RD, batch sizeB, learning rate ↵

�: Initialize �F '✓ parameters ✓(1) (we drop the subscript � and superscript ⇡ for con-
cision)

�: for k = 1 . . . , K do
�: // Stage �: Construct dataset
�: D  ?
�: for (s, a) 2 S ⇥A do
�: for (s0, a0) 2 S ⇥A do
�: D  D [ {((s, a), y(s, a))}where

y(s, a)

= wT [�(s)� (1 + ��'̄
✓(k)(s

0
, a

0)) + �(1� �(s))� '̄
✓(k)(s

0
, a

0)]

�: end for
��: end for
��: // Stage �: Supervised learning
��: Randomly initialize ✓0
��: for ` = 1, . . . , L do
��: Randomly shu�eD
��: for {((s, a), y)}B

b=1
2 D do

��: ✓`  ✓`�1 � ↵r✓
1

2B

P
B

b=1

�
yb �wT

'✓`�1
(sb, ab)

�2

��: end for
��: end for
��: ✓

(k+1)  ✓L

��: end for

L(✓,!) = 1

2B2

X

j,k2J2

 
F✓(sj, aj, zj)

>
B!(s

0

k
)

� �
X

a2A

⇡zj(a|sj+1)F✓�(sj+1, a, zj)
>
B!�(s0

k
)

!2

� 1

B

X

j2J

F✓(sj, aj, zj)
>
B!(sj)

+
�(1� �)

B

X

j2J

µ(sj)F✓(sj, aj, zj)
>
B!(sj)

·
X

a2A

⇡zj(a|sj+1)F✓�(sj+1, a, zj)
>
B!�(sj)

+ �

0

@ 1

B2

X

j,k2J2

B!(sj)
>
B̄!(s̃k)B̄!(sj)

>
B̄!(s̃k)�

1

B

X

j2J

Bw(sj)
>
B̄!(sj)

1

A

(�.��)
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Algorithm �� �O FB Learning
�: Require: Probability distribution ⌫ overRd, randomly initialized networksF✓, B!,
learning rate ⌘, mini-batch size B, number of episodes E, number of epochs M ,
number of time steps per episode T , number of gradient stepsN , regularization co-
e�cient �, Polyak coe�cient ↵, initial diminishing constant �, discount factor �,
exploratory policy greediness ✏, temperature ⌧

�: // Stage �: Unsupervised learning phase
�: D  ?
�: for epochm = 1, . . . ,M do
�: for episode i = 1 . . . , E do
�: Sample z ⇠ ⌫

�: Observe initial state s1
�: for t = 1, . . . , T do
�: Select at ✏�greedy with respect to F✓(st, a, z)>z
��: Observe reward rt(st) and next state st+1

��: D  D [ {(st, at, rt(st), st+1)}
��: end for
��: end for
��: for n = 1, . . . , N do
��: Sample a minibatch {(sj, aj, rj(sj), sj+1)}j2J ⇢ D of size |J | = B

��: Sample a minibatch {s̃j}j2J ⇢ D of size |J | = B

��: Sample a minibatch {s0
j
}j2J

iid⇠ µ of size |J | = B

��: Sample a minibatch {zj}j2J
iid⇠ ⌫ of size |J | = B

��: For every j 2 J , set ⇡zj(·|sj+1) = softmax
�
F✓�(sj+1, ·, zj)>zj/⌧

�

��: Update ✓ and ! via one step of Adam onL(✓,!)
��: Sample a minibatch {(sj, rj(sj), sj+1, rj+1(sj+1))}j2J of size |J | = B from

D
��: L�(�) 1

2B

P
j2J

(sj+1 = sj) (rj+1(sj+1)� �rj(sj))2
��: Update � via one step of Adam onL�(✓,!) (Eq. (�.��))
��: end for
��: ✓

�  ↵✓
� + (1� ↵)✓

��: !
�  ↵!

� + (1� ↵)!
��: end for
��: // Stage �: Exploitation phase for a single episode with initial reward r0(s)
��: zR  

P
s2S

µ(s)r0(s)B!(s)
��: Observe initial state s1
��: for t = 1, . . . , T do
��: at  argmax

a2A
F (st, a, zR)>zR

��: Observe reward rt(s) and next state st+1

��: zR  
P

s2S
µ(s)rt(s)B!(s)

��: end for
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Figure �.�: A simple grid and several policies.

Appendix �.F: Additional Results
See surrounding sections.

Figure �.��: Convergence of dynamic programming on FourRooms with and without
stochastic transitions.

Figure �.��: GPIwith noisy transitions in FourRooms. Toverify that performancewasmain-
tained even with stochastic transitions, we added a ��% probability that a given ac-
tionwould result in a random transition to neighboring state. Results are consistent
with Fig. �.�, indicating the having the correct value of � produces better perfor-
mance.

Appendix �.G: Advantage of the Correct �
Importantly, for GPE using the �R to work in this setting, the agent must either learn or

be providedwith the updated reward vector r� after each step/encounter with a rewarded
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Figure �.��: Visualizing the SR, the �R and the FR. We can see that the�⇡
1
is equivalent to

the SR and �⇡
0
is equivalent to the FR, with intermediate values of � providing a

smooth transition between the two.

state. This is because the �R is forward-looking in that it measures the (diminished) ex-

pected occupancies of states in the future without an explicit mechanism for remember-

ing previous visits. For simplicity in this case, we provide this vector to the agent at each

step—though if we view such a multitask agent as simply as a module carrying out the
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Figure �.��: A �-state toy environment.

directives of a higher-level module or policy within a hierarchical framework as in, e.g.,

Feudal RL (Dayan andHinton, ����), the explicit provision of reward information is not

unrealistic. Regardless, a natural question in this case iswhether there is actually any value

in using the �Rwith the corret value of � in this setting: If the agent is provided with the

correct reward vector, then wouldn’t policy evaluation work with any �R?

To see that this is not the case, consider the three-state toy MDP shown in Figure

Fig. �.��, where r̄(s1) = 10, r̄(s2) = 6, r̄(s0) = 0, �(s1) = 0, �(s2) = 1.0, and

� = 0.99. At time t = 0, the agent starts in s0. Performing policy evaluation with

�(s1) = �(s2) = 1 (i.e., with the SR) would lead the agent to go left to s1. However,

the reward would then disappear, and policy evaluation on the second step would lead

it to then move right to s0 and then s2, where it would stay for the remainder of the

episode. In contrast, performing PI with the correct values of � would lead the agent

to go right to s2 and stay there. In the �rst two timesteps, the �rst policy nets a total

reward of 10+ 0 = 10, while the second policy nets 6+ 5.94 = 11.94. (The remaining

decisions are identical between the two policies.) This is a clear example of the bene�t

of having the correct �, as incorrect value estimation leads to suboptimal decisions even

when the correct reward vector/function is provided at each step.

Appendix �.H: The � Operator
To learn the �O, we would like to de�ne �⇡

�
(st, ds0) , '

⇡

�
(st, s0)µ(ds0) for some base

policy µ. However, this would lead to a contradiction:

�⇡
�
(s, A[B) =

Z

A

'
⇡

�
(s, ds0)µ(ds0) +

Z

B

'
⇡

�
(s, ds0)µ(ds0) = �⇡

�
(s, A) +�⇡

�
(s, B)

for all disjointA,B, contradicting Lemma �.B.�.
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For now, we describe how to learn the �O for discrete S , in which case we have

�⇡
�
(s, s0) = '

⇡

�
(s, s0)µ(s0), i.e., by learning ' we learn a weighted version of �. We

de�ne the following norm, inspired by Touati et al. (����):

k�⇡
�
k2
⇢
, E s⇠⇢

s0⇠µ

"✓
�⇡
�
(s, s0)

µ(s0)

◆2
#
,

where µ is any density on S . In the case of �nite S , we let µ be the uniform density. We

thenminimize the Bellman error for�⇡
�
with respect to k ·k2

⇢,µ
(dropping the sub/super-

scripts on� and ' for clarity):

L(�) = k'µ� (I � (11T + ��P
⇡
'µ) + �(11T + I)� P

⇡
'µ)k2

⇢,µ

= Est⇠⇢,s
0⇠µ

h⇣
'(st, s

0)� (st = s
0)

µ(s0)

+ �(1� �) (st = s
0)

µ(s0)
Est+1⇠p⇡(·|st)�̄(st+1, s

0)� �Est+1⇠p⇡(·|st)'̄(st+1, s
0)
⌘2i

+c
= Est,st+1⇠⇢,s

0⇠µ

h
('(st, s

0)� �'̄(st+1, s
0))2
i

� 2Est,st+1⇠⇢

"
X

s0

µ(s0)'(st, s
0)

(st = s
0)

µ(s0)

#

+ 2�(1� �)Est,st+1⇠⇢

"
X

s0

µ(s0)'(st, s
0)'̄(st+1, s

0)µ(s0)
(st = s

0)

µ(s0)

#

+c
= Est,st+1⇠⇢,s

0⇠µ

h
('(st, s

0)� �'̄(st+1, s
0))2
i
� 2Est⇠⇢['(st, st)]

+ 2�(1� �)Est,st+1⇠⇢[µ(st)'(st, st)'̄(st+1, st)],

Note that we recover the SM loss when � = 1. Also, an interesting interpretation is that

when the agent can never return to its previous state (i.e., '(st+1, st) = 0), then we also

recover the SM loss, regardless of �. In this way, the above loss appears to “correct” for

repeated state visits so that the measure only re�ects the �rst visit.
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Figure �.��: Performance of the�O-FBwith two values of�. Results averaged over six seeds
and �� episodes per seed. Error bars indicate standard error.

L(�)

= Est,at,st+1⇠⇢,s
0⇠µ

h�
F (st, at, z)

>
B(s0)� �F̄ (st+1, ⇡z(st+1), z)

>
B̄(s0)

�2i

� 2Est,at⇠⇢

⇥
F (st, at, z)

>
B(st)

⇤

+ 2�(1� �)Est,at,st+1⇠⇢

⇥
µ(st)F (st, at, z)

>
B(st)F̄ (st+1, ⇡z(st+1), z)

>
B̄(st)

⇤

(�.��)

Even though the �O is not a measure, we can use the above loss to the continuous

case, pretending as though we could take the Radon-Nikodym derivative �(s,ds
0
)

µ(ds0) .

�.H.� Experimental Results with the FB Parameterization

To show that knowing the correct value of � leads to improved performance, we trained

�O with the FB parameterization on the FourRooms task of Fig. �.�, but with each

episode initialized at a random start state and with two random goal states. Average per-

epoch reward is shown in Fig. �.��. We tested performancewith�true,�agent 2 {0.5, 1.0},

where �true denotes the true environment diminishing rate and �agent denotes the dimin-

ishing rate that the agent uses. For the purpose of illustration, we do not allow the agent

to learn �. We see in Fig. �.�� that using the correct � leads to signi�cantly increased per-

formance. In particular, the left plot shows that assuming � = 1, i.e., using the SR, in a

diminishing environment can lead to highly suboptimal performance.

Hyperparameters used are given in Table �.� (notation as in Algorithm ��).
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Hyperparameter Value

M ���
E ���
N ��
B ���
T ��
� �.��
↵ �.��
⌘ �.���
⌧ ���
✏ �

Table �.�: �O-FB hyperparameters.

�.H.�� �O and the Marginal Value Theorem

To study whether the agent’s behavior is similar to behavior predicted by the MVT, we

use a very simple task with constant starting state and vary the distance between rewards

(see Fig. �.��(a)). When an agent is in a reward state, we de�ne an MVT-optimal leaving

time as follows (similar to that of (Wispinski et al., ����) but accounting for the non-

stationarity of the reward).

Let R denote the average per-episode reward received by a trained agent, r(st) de-

note the reward received at time t in a given episode,Rt =
P

t

u=0
r(su) denote the total

reward received until time t in the episode, and letT be episode length. Then, on average,

the agent should leave its current reward state at time t if the next reward that it would

receive by staying in st, i.e., �r(st), is less than

R�Rt

T
.

In otherwords, the agent should leave a reward statewhen its incoming reward falls below

the diminished average per-step reward of the environment. We computeR by averaging

reward received by a trained agent over many episodes.

Previous studies have trained agents that assume stationary reward to perform for-

aging tasks, even though the reward in these tasks is non-stationary. These agents can still

achieve good performance andMVT-like behavior (Wispinski et al., ����). However, be-
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Figure �.��: Analysis of MVT-like behavior of �O-FB. a) Three environments with equal
start state and structure but di�erent distances between reward states. b)Di�erence
between the agent’s leave times and MVT-predicted leave times for � = 0.99, with
discounting taken into account. The agent on average behaves similar to the dis-
counted MVT. c) Di�erence between the agent’s leave times and MVT-predicted
leave times for � = 1.0, i.e., with no discounting taken into account. The agent on
average behaves similar to the MVT. Results for (b) and (c) are averaged over three
seeds. Error bars indicate standard error.

cause they target the standard RL objective

E⇡

"
1X

k=0

�
k
r(st+k)

���st = s

#
,

which requires � < 1 for convergence, optimal behavior is recovered only with respect

to the discounted MVT, in whichR (and in our case, Rt) weights rewards by powers of

� (Wispinski et al., ����).

In Fig. �.��(b-c) we perform a similar analysis to that of (Wispinski et al., ����) and

show that, on average over multiple distances between rewards, �O-FB performs simi-

larly to the discounted MVT for � = 0.99 and the standard MVT for � = 1.0. An

advantage of the �O is that it is �nite for � = 1.0 provided that � < 1. Hence, as op-

posed to previous work, we can recover the standardMVTwithout the need to adjust for

discounting.

Hyperparameters used are given in Table �.� (notation as in Algorithm ��).

Appendix �.I: SAC
Mitigating Value OverestimationOne well-known challenge in deep RL is that the

use of function approximation to compute values is prone to overestimation. Standard

approaches to mitigate this issue typically do so by using two value functions and ei-

ther taking the minimum mini2{1,2} Q
⇡

i
(s, a) to form the Bellman target for a given
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(s, a) pair (Fujimoto et al., ����) or combining them in other ways (Moskovitz et al.,

����b). However, creating multiple networks is expensive in both computation and

memory. Instead, we hypothesized that it might be possible to address this issue by us-

ing �-based values. To test this idea, we modi�ed the Soft Actor-Critic (SAC; Haarnoja

et al., ����) algorithm to compute �Fs-based values by augmenting the soft value target

TsoftQ = rt + �EVsoft(st+1), where Vsoft(st+1) is given by the expression

Eat+1⇠⇡(·|st+1)

h
Q̄(st+1, at+1) + (�� 1)wT(�(st, at)� '�(st+1, at+1))

� ↵ log ⇡(at+1 | st+1)
i

Aderivation as well as pseudocode for themodi�ed loss is provided in Section �.E.�. Ob-

serve that for � = 1, we recover the standard SAC value target, corresponding to an as-

sumed stationary reward. We apply this modi�ed SAC algorithm, which we term �-SAC

to feature-basedMujoco continuous control taskswithinOpenAIGym(Brockman et al.,

����). We found that concatenating the raw state and action observations �̃t = [st, at]

and normalizing them to [0, 1]make e�ective regressors to the reward. That is, we com-

pute base features as

�
b

t
=

�̃
b

t
�minb �̃

b

t

maxb �̃b

t �minb �̃
b

t

,

where b indexes (st, at) within a batch. LetX 2 [0, 1]B⇥D be the concatenated matrix

of features for a batch, whereD = dim(S) + dim(A). Then,

wt =
�
X

T
X
��1

X
Tr,

where here r denotes the vector of rewards from the batch. In addition to using a �xed

� value, ideally we’d like an agent to adaptively update � to achieve the best balance of

optimism and pessimism in its value estimates. Following Moskovitz et al. (����b), we

frame this decision as a multi-armed bandit problem, discretizing � into three possible

values {0, 0.5, 1.0} representing the arms of the bandit. At the start of each episode, a

random value of � is sampled from these arms and used in the value function update.
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The probability of each arm is updated using the Exponentially Weighted Average Fore-

casting algorithm (Cesa-Bianchi and Lugosi, ����), whichmodulates the probabilities in

proportion to a feedback score. As in Moskovitz et al. (����b), we use the di�erence in

cumulative (undiscounted) reward between the current episode ` and the previous one

`�1 as this feedback signal:R`�R`�1. That is, the probability of selecting a given value

of � increases if performance is improving and decreases if it’s decreasing. We use iden-

tical settings for the bandit algorithm as in Moskovitz et al. (����b). We call this variant

�-SAC.

We plot the results for SAC with two critics (as is standard), SAC with one critic,

SAC with a single critic trained with �F-based values (“x-SAC” denotes SAC trained

with a �xed � = x), and �-SAC trained on the HalfCheetah-v� and Hopper-v�Mujoco

environments. All experiments were repeated over eight random seeds. HalfCheetah-v�

was foundbyMoskovitz et al. (����b) to support “optimistic” value estimates in that even

without pessimism to reduce overestimation it was possible to perform well. Consistent

with this, we found that single-critic SACmatched the performance of standard SAC, as

did �-SAC (which amounts to training a standard value functionwith the auxiliary task of

SFprediction). Fixing lower values of�performedpoorly, indicating that over-pessimism

is harmful in this environment. However, �-SAC eventually manages to learn to set � =

1 andmatches the �nal performance of the best �xed algorithms. Similarly, inMoskovitz

et al. (����b) it was observed that strong performance in Hopper-v� was associated with

pessimistic value estimates. Consistentwith this,�-SAC learns to select lower values of�,

againmatching the performance of SACwhile only requiring one critic and signi�cantly

reducing the required FLOPS Fig. �.��. We consider these results to be very preliminary,

and hope to perform more experiments on other environments. We also believe �-SAC

could be improved by using the di�erence between the current episode’s total reward and

the average of the total rewards fromprevious episodesR`�(`�1)�1
P

`�1

i=1
Ri as amore

stable feedback signal for thebandit. There is alsonon-stationarity in thebase features due

to the per-batch normalization, which could also likely be improved. Hyperparameters

are described in Table �.�.
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Hyperparameter Value

Collection Steps ����
RandomAction Steps �����
Network Hidden Layers ���:���
Learning Rate 3⇥ 10�4

Optimizer Adam
Replay Bu�er Size 1⇥ 106

Action Limit [�1, 1]
Exponential Moving Avg. Parameters 5⇥ 10�3

(Critic Update:Environment Step) Ratio �
(Policy Update:Environment Step) Ratio �
Has Target Policy? No
Expected Entropy Target �dim(A)
Policy Log-Variance Limits [�20, 2]
Bandit Learning Rate⇤ �.�
�Options⇤ {0, 0.5, 1.0}

Table �.�: Hyperparameters for SACMujoco experiments. ⇤Only applicable to �-SAC

Figure �.��: �-SAC (� critic) matches the performance of SAC (� critics) by adapting �
online.

Figure �.��: �-SAC matches performance while saving in computational cost.
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Appendix �.J: Replenishing Rewards
We list below a few candidate reward replenishment schemes, which are visualized in

Fig. �.��.

Time elapsed rewards

r(s, t) = �
n(s,t)/m(s,t)

r̄(s),

wherem(s, t) is the time elapsed since the last visit to state s:

m(s, t) , t�max{j|st+j = s, 0  j  t� 1}.

Due to themax term inm(s, t), the corresponding representation

E⇡

"
1X

k=0

�
k
�
n(s,t)/m(s,t) (st+k = s

0)
���st = s

#

does not admit a closed-form recursion. However, we empirically tested a version of this

type of reward with Q�-learning in the TwoRooms environment, modi�ed so that the

exponent on � is n(s, t)/(0.1m(s, t)). This was done so that reward replenishes at a

slow rate, reducing the deviation from the standard diminishing setting. Episode length

was capped atH = 100. All other settings are identical to theQ� experiment described

in Appendix �.E. Results are presented in Fig. �.�� and a GIF is included in the supple-

mentary material.

Eligibility trace rewards

r(s, t) =

 
1� (1� �d)

t�1X

j=0

�
t�j

r
(st+j = s)

!
r̄(s),

where �d,�r 2 [0, 1] are diminishment and replenishment constants, respectively. De-

noting the corresponding representation by⌦⇡, i.e.,

⌦⇡(s, s0)

= E
"

1X

k=0

�
k

 
1� (1� �d)

kX

j=0

�
k�j

r
(st+j = s

0)

!
(st+k = s

0)

�����st = s

#
,
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Figure �.��: Visualizing three di�erent replenishment schemes. For all schemes, r̄(s) = 1
andvisits tos are at t = 2, 5. (Left)The time elapsed rewardwith� = 0.5; (Middle)
The eligibility trace reward with �r = �d = 0.5; (Right) The total time reward
with �d = 0.5,�r = 0.9.

we obtain the following recursion:

⌦⇡(s, s0) = (s = s
0)(�d � ��r(1� �d)Est+1⇠p⇡(·|s)M

⇡

��r
(st+1, s

0))

+ �Est+1⇠p⇡(·|s)⌦
⇡(st+1, s

0),

where M⇡

��r
denotes the successor representation of ⇡ with discount factor ��r. This

representation could be learned by alternating TD learning between ⌦⇡ andM⇡

��r
. We

leave this to future work.

Total time rewards

r(s, t) = �
n(s,t)

d
�
n(s,t)�t

r
r̄(s),

where �d,�r 2 [0, 1] are diminishment and replenishment constants, respectively. The

corresponding representation is

P
⇡(s, s0) = E

"
1X

k=0

�
k
�
nt(s

0
,k)

d
�
k�nt(s

0
,k)

r
(st+k = s

0)

�����st = s

#
,

which satis�es the following recursion:

P
⇡(s, s0) = (s = s

0) + �(�d (s = s
0) + 1

� (s = s
0))(�r(1� (s = s

0)) + (s = s
0))Est+1⇠p⇡(·|s)P

⇡(st+1, s
0).

While neither the reward nor the representation are guaranteed to be �nite, P ⇡ could be

learned via TD updates capped at a suitable upper bound.
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Figure �.��: Performance on TwoRooms with replenishing rewards. Return is averaged
over �ve runs, with shading indicating one unit of standard error.

Appendix �.K: � vs. �
Wenowbrie�ydiscuss the interactionbetween the temporal discount factor� commonly

used inRL and the diminishing utility rate�. The key distinction between the two is that

all rewards decay in value every time step with respect to �, regardless of whether a state

is visited or not. With �, however, decay is speci�c to each state (or (s, a) pair) and only

occurs when the agent visits that state. Thus, � decays reward in a global manner which

is independent of the agent’s behavior, and � decays reward in a local manner which de-

pendent on the agent’s behavior. In combination, they have the bene�cial e�ect of ac-

celerating convergence in dynamic programming (Fig. �.��). This indicates the potential

for the use of higher discount factors in practice, as paired with a decay factor �, similar

(or faster) convergence rates could be observed even as agents are able to act with a longer

e�ective temporal horizon.

Appendix �.L: Compute Resources
The �F-based experiments shown were run on a single NVIDIA GeForce GTX ����

GPU.The recurrentA�Cexperiments took roughly ��minutes, base feature learning for

policy composition took approximately ��minutes, �F learning for policy composition

took approximately �� hours, and the SAC experiments took approximately � hours per

run. The �F training required roughly ��GB of memory due to the size of the dataset.

All experiments in Section �.� and Appendix �.H were run on a single RTX���� GPU
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and each training and evaluation run took about ��minutes. All other experiments were

run on a ����MacBook Air laptop �.�GHzQuad-Core Intel Core i�CPU and took less

than one hour to train.
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���



Chapter �

General Conclusions

�.� Summary
Recalling Chapter �, the question which motivated the work presented in this thesis was

as follows:

How can bounded agents learn and act e�ciently in a seemingly unbounded world?

The answer to this question, in the most general sense, is structure: patterns in the world

and in the goals an agent wishes to accomplish allow it to identify how to act with much

less computational expense than would otherwise be possible. The last �ve chapters have

focused on two forms of structure which are plausibly present in real world decision-

making and which can be exploited by decision-makers.

Part I described how shared behavioral structure across tasks can be used by agents

to learn new policies more quickly. Speci�cally, Chapter � showed that the smaller the

largest disagreement among optimal policies is for a group of tasks, the more quickly

that an agent can learn to solve new tasks from the same group. This structure is cap-

tured in the form of a default policy which asymptotically approaches the barycenter of

the optimal policies for the task family faced by the agent. The decision-making control

policy is then guided by a KL penalty for deviating from the default policy. While this

approach can provide signi�cant speed-ups in learning when such behavioral structure is

present, it can fail if the default policy over�ts to optimal policies seen early in training

whose decisions don’t re�ect the overall behavioral patterns required for the population

of tasks at hand. Chapter � addresses this shortcoming, deriving a minimum description
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length-inpsired policy optimization objective which regularizes the complexity of the de-

fault policy to prevent it from over�tting in this way. This approach, MDL-C, achieves

both theoretical performance guarantees and strong empirical performance in discrete

and continuous control tasks. In Chapter �, MDL-C is applied to a variety of behavioral

simulations from cognitive control, reward-based learning, and judgment and decision-

making, and is found to qualitativelymatch human and animal decision-making patterns

which are consistent with dual process theories of cognition.

Part II focused on the advantages a�orded to agents by a di�erent form of structure:

consistent environment dynamics across tasks. Previouswork (Dayan, ����; Barreto et al.,

����) established that this form of structure can be used to learn the successor represen-

tation (SR), a state representation which enables an agent to quickly perform policy eval-

uation and generalized policy improvement (GPI) for new tasks. In Chapter �, the SR

is extended to account for tasks whose rewards are depleted after they are �rst accessed.

While seemingly esoteric, this form of reward structure underpins many arti�cially and

biologically relevant decision-making problems, such as e�cient path planning, targeted

exploration, foraging, and escape from predation. Like the SR, the resulting representa-

tion, the �rst-occupancy representation (FR), can be used for policy evaluation and GPI

for tasks whose reward structures obey this “�rst occupancy” principle. However, unlike

the SR, the FR can also be used as the basis of a shortest-path planning algorithm over

policies. A static reward structure (the standard in MDPs) and a �rst occupancy-based

reward structure represent two extremes of reward persistence, while often the degree to

which stimuli are rewarding diminishes at intermediate rates across repeated exposures.

This principle of diminishing marginal utility, well-studied in behavioral economics and

psychology, has received scant attention in machine learning. Chapter � shows that solv-

ing tasks with this form of reward structure e�ciently requires that an agent learn a rep-

resentation which generalizes the SR and the FR, which we term the �-representation.

�.� Discussion

A promising direction for future work would be to consider the interactions between

these (and other) forms of structure. Agents which could both learn policies more
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quickly and compose them e�ciently using these strategies would be exciting from the

points of view of both machine learning and neuroscience. There are many interesting

questions to be explored in creating agents which can both learn and compose policies,

such as when composition rather than learning is “good enough” and which policies a

bounded agent should maintain. Moreover, as discussed in Chapter �, the decompos-

ability of an agent’s goals and objectives into separate tasks is itself a form of structure,

and one question that this thesis does not address (apart from FR planning for subgoal

identi�cation in navigation) is how to identify and exploit this structure, breaking down

a long-horizon goal into the optimal sequence of manageable sub-problems. There are

already promising works studying this problem in both machine learning (Singh, ����;

McGovern and Barto, ����; Veeriah et al., ����; Hafner et al., ����; Dayan and Hinton,

����; Vezhnevets et al., ����; Xie et al., ����) and neuroscience (Braver and Bongiolatti,

����; Correa et al., ����; Shamash et al., ����b; Correa et al., ����), and integrating these

ideas with those presented here is an exciting prospect.

Finally, it’s worthwhile to consider the implications of the results presented here

for the recent advances in developing extremely large-scale models for not only language

modeling but also increasingly other modalities such as vision. These so-called founda-

tion models (Bommasani et al., ����), consisting of billions or trillions of parameters and

trained on vast amounts of data, are driving rapid advances in machine learning across

a variety of domains. There are three main avenues through which the methods dis-

cussed in this thesis can be relevant. First, while the majority of the FLOPs expended

while training these models are spent in a self-supervised pre-training phase, an impor-

tant component of this process is to �ne-tune the resulting models to solve problems

for which de�ning a clear self-supervised or supervised learning problem is challenging

(e.g., to behave like a helpful chatbot) using reinforcement learning from human feed-

back (RLHF; Christiano et al., ����). A common approach in RLHF is to �ne-tune a

model using policy optimization with a KL penalty with respect to the same model as

it was before the start of RLHF. This is the exact scenario (in that the KL penalty is ap-

plied with respect to a default policy that is not necessarily similar to the control policy)

studied in the single-task results of Chapter �, and applying the results derived there to
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improve RLHF could constitute a valuable contribution to the training process for these

models. Second, an inability to perform consistent, grounded reasoning is a weakness

of current models. One promising direction of work on this problem proposes to iter-

atively prompt these models when deployed to allow them to implement various search

or planning strategies for more coherent reasoning (Zhou et al., ����; Yao et al., ����).

Insights from methods like FR planning (Chapter �) could be helpful in this pursuit.

Finally, there is a major e�ort underway to make these models more “agentic” (Di Palo

et al., ����)—that is, to give them the ability to take actions within their environments

(e.g., web interaction (Nakano et al., ����) or robotics (Brohan et al., ����)) and adapt

appropriately to sparse, delayed feedback to solve long-horizon tasks. RL likely has much

to contribute to this venture.
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