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Abstract— Visual question answering (VQA) plays a vital

role in advancing surgical education. However, due to the

privacy concern of patient data, training VQA model with

previously used data becomes restricted, making it neces-

sary to use the exemplar-free continual learning (CL) ap-

proach. Previous CL studies in the surgical field neglected

two critical issues: i) significant domain shifts caused by

the wide range of surgical procedures collected from vari-

ous sources, and ii) the data imbalance problem caused by

the unequal occurrence of medical instruments or surgical

procedures. This paper addresses these challenges with a

multimodal large language model (LLM) and an adaptive

weight assignment strategy. First, we developed a novel

LLM-assisted multi-teacher CL framework (named LMT++),

which could harness the strength of a multimodal LLM as

a supplementary teacher. The LLM’s strong generalization

ability, as well as its good understanding of the surgical

domain, help to address the knowledge gap arising from

domain shifts and data imbalances. To incorporate the LLM

in our CL framework, we further proposed an innovative

approach to process the training data, which involves the

conversion of complex LLM embeddings into logits value

used within our CL training framework. Moreover, we de-

sign an adaptive weight assignment approach that bal-

ances the generalization ability of the LLM and the domain

expertise of conventional VQA models obtained in previ-

ous model training processes within the CL framework.

Finally, we created a new surgical VQA dataset for model
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evaluation. Comprehensive experimental findings on these

datasets show that our approach surpasses state-of-the-art

CL methods.

Index Terms— Surgical education, visual question an-

swering, continual learning, multi-modal large language

model

I. INTRODUCTION

H IGH-QUALITY surgical education is instrumental in
the professional advancement of clinical students, as

it equips them with the necessary knowledge and skills to
perform complex procedures and deliver excellent patient care.
However, traditional teaching methods, such as lectures and
textbooks, may not always sufficiently address the diverse
questions and concerns that students encounter during their
learning process. Expert surgeons serve as the primary source
of clinical students’ surgical knowledge, but they may not
always be available to provide immediate feedback due to
their demanding clinical and academic responsibilities [1]–
[3]. In recent years, surgical visual question answering (VQA)
models have garnered significant research interest [4], [5].
These models are typically trained using expert demonstration
videos or related images and can provide students with instant
access to expert knowledge, enabling them to clarify their
doubts and deepen their understanding of surgical procedures.
Moreover, the integration of VQA models into intelligent
systems strengthens their skills in grasping and interpreting
surgical scenes, thus establishing the groundwork for the
development of clinical assistance technologies like advanced
surgical robots [6], [7].

In surgical VQA, the needs of trainees are constantly
evolving, such as learning more surgical types and adapting
to different clinical systems. Additionally, enhanced surgical
techniques and new instruments are regularly introduced to
improve patient care. This will inevitably create new surgical
environments (i.e., recently developed surgical settings) and
generate new question-and-answer sets, thus resulting in a
myriad of fresh and creative VQA tasks. Given the rapid
update of surgical knowledge in VQA tasks, it is crucial to
leverage continual learning (CL) methods to overcome the
catastrophic forgetting problem [8].

Catastrophic forgetting has been largely resolved in the
healthcare and medical sector by early efforts that adapted
CL algorithms from general domains [9], [10]. For example,
[9] developed a replay-oriented CL algorithm for medical
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image analysis. These studies are exemplar-based, where old
patient data is accessible during model updates. However,
the exemplar-based approach is infeasible in practical surgical
VQA scenarios due to various constraints such as exorbitant
data storage costs, data privacy concerns, and complicated and
sensitive issues arising from the license of obtaining such data
from different medical centers.

Recent developments in CL studies placed significant em-
phasis on efficient knowledge updating under data privacy
constraints. Learning without Forgetting (LwF) [11] and Elas-
tic Weight Consolidation (EWC) [12] are widely used non-
exemplar-based CL approaches in medical studies like [13].
Additionally, [14] proposed CL algorithms for biological tis-
sues and surgical tools spatial identification tasks alongside
VQA, with particular attention to overlapping classes present
in both the current and previous datasets.

In this paper, we observed two key characteristics within the
medical and surgical domain that have been widely overlooked
in previous studies. These two characteristics are large domain
shifts and severe data imbalance, which give rise to poor
and inaccurate performances when addressing complicated and
intricate VQA tasks in the surgical field.

Domain shift is the first problem. Conventionally, a CL
model is updated using the teacher-student framework. This
framework involves training the latest model with the guidance
of a teacher model trained on previous data. The newly
developed model can be viewed as the student. During
the learning phase, the student model leverages the teacher
model’s logits, which helps it capture the teacher’s knowledge
without needing access to prior data [15]. However, if the
teacher encounters a completely foreign task within the new
data in the training phase, it can only offer an arbitrary
deduction as an estimate to guide the student [16]. This
phenomenon is also known as domain shift. This issue is
particularly common in surgical applications where surgical
scenes from different types of surgeries, even within distinct
and specialized categories, can vary greatly in appearance,
due to variations in surgical tools, medical procedures, and
techniques. For instance, data from a surgical procedure on
the liver can be significantly different from that of a kidney
surgery. This problem could be exacerbated by data collected
from various sources, given the differences in surgical proce-
dure guidelines and clinical systems applied. Significant and
detrimental domain shifts are common in surgical datasets and
can considerably impair the precision and effectiveness of the
CL model, as the student model ends up learning only the
teacher’s uneducated deductions.

Data imbalance is also an important issue. In real-world
surgical procedures, certain actions or instruments are en-
countered less frequently. For instance, tissue manipulation is
commonly observed in many surgical datasets since most surg-
eries involve interaction with tissues. Cutting actions are also
prevalent, especially in datasets centered around nephrectomy.
However, within the same nephrectomy dataset, stapling is
seldom observed. This is because the stapling action typically
takes place after vessel severance, a specialized technique
within the general nephrectomy procedure. When some classes
in the training data have substantially fewer instances than

others, this situation is referred to as data imbalance [17].
Previous CL algorithms have not specifically addressed the
challenge of imbalanced data, thus resulting in inadequate
training for underrepresented classes.

In order to address the knowledge constraints arising from
the two above-mentioned characteristics, we harnessed the
robust generalization capabilities of multimodal large language
models (LLMs). LLMs are trained with extensive datasets of
images and/or text from a variety of domains [18]–[21]. The
model’s powerful capability to answer questions spanning a
multitude of domains has garnered significant research interest
in different fields. Recent investigations have observed the
proficiency of state-of-the-art LLMs in answering medical
queries [22]. These observations encourage the use of LLMs’
responses to bridge the knowledge gaps whenever data used
for model training includes new knowledge for the teacher
model or is highly imbalanced. The straightforward rationale
stems from situations where the information encountered ex-
ceeds the teacher’s capabilities and scope; utilizing LLMs’
vast medical understanding is considerably more efficient than
trusting the teacher model’s incomplete training (caused by
the imbalanced data) or random guesses (caused by domain
shifts).

In addition to the LLM-aided multi-teacher CL framework,
we also introduce an adaptive weight assignment method to
balance insights from multiple teachers, which include the
LLM teacher and conventional CL teachers obtained in previ-
ous training phases under a CL setup. This mechanism aims
to leverage the general medical insights and generalization
ability of the LLM, as well as the domain expertise of previous
CL models, to help the student model learn problem-solving
abilities from different perspectives. The implementation of
adaptive weights enables ideal model training: it draws more
from a specific CL teacher model when the knowledge is from
a well-understood and specifically trained domain with ample
data; otherwise, it relies heavily on the LLM.

Moreover, this paper introduces a new surgical VQA dataset
to validate our scheme in practical surgical environments. We
devised a new QA pair generation method based on GPT-3.5
for constructing VQA datasets. We used in-context learning
(ICL) [23]–[25] to enhance the analysis of text descriptions
related to clinical images.

Our contributions are summarized as follows:
1) We proposed an LLM-assisted multi-teacher CL frame-

work, termed LMT++, and established an innovative
approach to extract logits from the investigated LLM,
offering vital guidance for future works to incorporate
LLMs under a CL setup.

2) We also developed an adaptive weighting scheme. The
strategy effectively leverages the LLM’s strong general-
ization ability and conventional CL teachers’ specialized
domain knowledge, thereby significantly enhancing the
student model’s training.

3) One new surgical VQA dataset is open-sourced, provid-
ing a valuable resource for future research. Addition-
ally, the creation of the VQA dataset highlights a new
approach for generating QA pairs using ICL.

A preliminary version of this work was presented in IEEE
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ICRA 2024 [26]. In this paper, we have substantially revised
and extended the original version. First, we advanced our
model training process by enhancing the “single CL teacher
plus an LLM” strategy with the “multiple CL teachers plus an
LLM” strategy so that the catastrophic forgetting problem can
be even more effectively addressed. For easier identification,
we refer to the “single CL teacher” scheme in our ICRA paper
as LMT, and we refer to the method presented in this paper
as LMT++. Furthermore, we constructed a new and more
challenging surgical VQA dataset that differs significantly
from the previously developed dataset (including the one we
proposed in [26]). We also visualized the diversity of the new
dataset by comparing it with previous ones in terms of organ,
procedure, robotic surgical system, and instrument. Our code
is available at https://github.com/yuyangdu01/LLM-CL-VQA.

II. PROPOSED METHOD

A. Preliminaries

Problem Formulation and Notations: Consider a CL
process with ω time periods, where t → {1, ..., ω} represents a
specific time period of the process. The training dataset at time
t is denoted by Dt, with each element dt,i → Dt representing
the ith training sample for time t. Each training sample dt,i
consists of a frame in the surgical setting and a variety of
corresponding clinical questions. The classes present in Dt

are denoted by Ct, where element ct,j denotes the jth class
appearing in Dt. If class ct,j constantly appears in Dt but
was absent in the earlier datasets used during model training
(i.e., Dt→1, Dt→2,. . . , D1), we say a domain shift has occurred
for class ct,j . Additionally, if class ct,j appears significantly
less frequently compared to other classes in Dt, then we can
assume that data imbalance has occurred for class ct,j .

Distillation Loss in Continual Learning: Knowledge dis-
tillation (KD) is an effective approach to enhance knowledge
retention from prior models and mitigate the catastrophic
forgetting issue without needing to revisit data used in prior
training phases [27]. There are three types of KD: response-
based KD, feature-based KD, and relation-based KD. This
paper will focus on response-based KD. Due to the versatility
and robustness of response-based KD, student and teacher
models can be used alongside various network architectures.
[28].

The expression below evaluates the distillation loss of the
KD process:

LKD = LCE

〈
ε
(
zT /ϑ

)
,ε

(
zS/ϑ

)〉
(1)

where LCE ↑·, ·↓ represents the cross-entropy loss; ε (·) de-
notes the softmax function; zT and zS refer to the output
logits of the teacher and the student models, respectively; ϑ
is a temperature hyperparameter that adjusts the smoothness
of the probability distributions. When ϑ = 1, the function
corresponds to the standard softmax function, and as ϑ in-
creases, the resulting probability distribution becomes softer,
revealing additional information such as the similarity between
the predicted class and other classes.

B. Multi-teacher CL Framework with LLM

In order to address the challenges arising from data imbal-
ances and domain shifts, we incorporate a supplementary mul-
timodal LLM teacher, known for its exceptional adaptability
and generalization capability, to facilitate improved knowledge
transfer. When previously obtained teacher models encounter
knowledge that they are unfamiliar with, the LLM teacher
would assist the student in learning from a more relevant and
suitable source of knowledge.

The multi-teacher CL approach used in this paper is illus-
trated in Fig. 1. The general loss function L is depicted in the
equation below:

L = ϖL0 +
t→1∑

i=1

ϱiL
i
KD + ςLLLM

KD (2)

where the hard labels governed the cross-entropy loss L0; the
KD loss between the new CL model trained at time t (i.e.,
the student model) and the previous CL model trained at time
i is denoted as Li

KD, in which i → {1, 2, . . . , t ↔ 1} denotes
the multiple conventional teacher models; LLLM

KD is the KD
loss between the student model and the LLM teacher; ϖ, ϱi,
and ς are normalized adaptive weights of the L0, Li

KD, and
LLLM
KD , respectively. The sum of ϖ, ϱi, and ς is one. We refer

readers to Section II-C for details about the weight assignment
scheme.

Throughout this work, we denote the logits of the student
model as zt, the logits of the old teacher models as zi, and
the logits of the LLM teacher model as zLLM . In addition,
we write Li

KD and LLLM
KD as

Li
KD = LCE

〈
ε
(
zi/ϑ

)
,ε

(
zt/ϑ

)〉
(3)

and
LLLM
KD = LCE

〈
ε
(
zLLM/ϑ

)
,ε

(
zt/ϑ

)〉
(4)

Given that the LLM teacher is implemented within an
intricate and complicated transformer network, which differs
considerably from both traditional teacher and student models,
several transformation steps are required to derive logits from
the embeddings. Information regarding the chosen LLM and
the transformation from embedding to logits is provided in the
following section.

In this paper, an open-access multimodal LLM featuring
both visual and linguistic capabilities, known as InstructBLIP
[29], was selected as the LLM teacher. InstructBLIP consists
of three elements: an image encoder to process the input
image, a text-in-text-out LLM that handles the output, and an
image-text transformer that connects both modules. Due to its
modular design, InstructBLIP offers high flexibility and versa-
tility, allowing us to effectively and efficiently utilize a diverse
array of text-to-text LLMs. Additionally, we selected FlanT5
[30], an instruction-tuned model derived from Transformer T5,
as the text-in-text-out LLM to ensure the generalization and
adaptive capabilities of our implemented model.

The embeddings derived from FlanT5’s last fully connected
layer are used to form a self-attention matrix, referred to as
eLLM . The dimension of eLLM is N ↗ (M + 1)↗ P , where
the number of classes at time t is depicted as N , i.e., the
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Fig. 1: The proposed multi-teacher CL framework. This system processes bimodal inputs (text and image) to generate deductions
for the corresponding VQA task. Our weight adaption scheme (highlighted in the light orange zone) is formulated to balance
the general information and knowledge provided by the LLM with the synthesized surgical and medical proficiency of multiple
teacher models. The light-blue highlighted region illustrates the frozen LLM while the light-yellow region symbolizes the
several conventional teacher models and the student model. Finally, the light-green zone represents the ground truth.

cardinality of Ct; P corresponds to the LLM’s vocabulary;
and M indicates the number of tokens we used to represent
each class label.1 As indicated in (4), the desired logits zLLM

should have a size of N ↗ 1.
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Fig. 2: The workflow logits transformation after extracting the
embeddings.

Details on the transformation of N ↗ (M + 1) ↗ P em-
beddings into the N ↗ 1 logits are provided as follows. As
depicted in Fig. 2, the extracted embeddings are reshaped to
form a new matrix eRLLM . Subsequently, one-hot encoding and
tokenization are applied to the classification label set Ct. It is
important to note that both eRLLM and CT have dimensions
N (M + 1)↗ P . Next, the cross-entropy loss between eRLLM
and CT is calculated by

LI
CE (i) = LCE

〈
eRLLM (i), CT (i)

〉
(5)

The resulting vector LI
CE has dimensions of N (M + 1)↗1.

To achieve the corresponding cross entropy for each label,
we first reshape this vector to an N ↗ (M + 1) matrix and
perform column summation. In the resulting N ↗ 1 vector V ,
the predicted loss of label ct,j , depicted as element V (j), is
inversely proportionate to the likelihood of label ct,j selected
as the eventual classification outcome. In contrast, in the

1The second dimension of the matrix is M +1 rather than M because we
add one additional pause token for each word to indicate the end of a word.

desired logits vector zLLM , element zLLM (j) ought to be
directly associated with the classification probability of ct,j so
that the output of the softmax layer, denoted as ε

(
zLLM/ϑ

)
,

can formulate a probability vector. Hence, an additional trans-
formation of vector V is required to ensure that its elements
are directly proportional to the classification probability. A
potential approach could be to invert the elements of V , i.e.,
zLLM (j) = 1/V (j).

C. Adaptive Weight Assignment

In (2), the weights of L0, Li
KD, and LLLM

KD are represented
as ϖ, ϱi, and ς, respectively. In this paper, we dynamically
adjust ς and ϱ (i.e., the total value of ϱi) during the model
training using the weight assignment method detailed in sub-
sequent paragraphs while treating ϖ as hyperparameters. And
we have ϱi shares ϱ equally, i.e., we have

ϱi = ϱ/(t↔ 1) (6)

The extent of domain shift in a surgical dataset can be
measured while training the model at time t by analyzing the
a1verage accuracy of the previous models from 1 to Dt on
the dataset utilized in the training phase. If the previous CL
models perform well and attain high precision, it suggests that
the models are familiar with the knowledge in Dt. Conversely,
if they exhibit inferior performance and yield poor accuracy
on Dt, especially relative to the LLM teacher, it suggests
that the prior CL models lack adequate expertise for this
training iteration. Based on the above reasoning, ϱ and ς
are adjusted according to the accuracy of the LLM and the
average accuracy of the multiple CL models on Dt. A larger
difference in accuracy indicates a considerable and critical
domain shift. Therefore, it is ideal that a higher weight is
allocated to the LLM to harness its broad knowledge base
and immense generalization ability in the medical and surgical
domain.

In addition to addressing domain shift, this approach also
aims to mitigate the presence of data imbalance within the
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surgical dataset through the application of adaptive weighting.
We observe that the distribution of labels within the dataset
involved in the test phase was uneven, with some surgical
procedures and medical tools and instruments being regularly
referenced, while others are seldom exemplified. This can
be illustrated using the Nephrectomy dataset example high-
lighted in the earlier section. In a Nephrectomy-related surgical
dataset, cutting actions are commonly referenced, whereas
stapling is seldom mentioned due to its specialized role in
the procedure, occurring only after vessel cutting. Even if the
prior CL models possessed a certain amount of knowledge and
information regarding these less frequently mentioned areas,
their expertise is limited due to the shortage of training data.
In these scenarios, a higher weight is assigned to the LLM
teacher to utilize its broad medical insights to compensate for
and bridge the knowledge gaps.

It is clear that both domain shifts and data imbalances
influence the assignments of ϱ and ς. As such, ϱ and ς are
expressed as

ϱ = φDSϱDS + φDIϱDI (7)

and
ς = φDSςDS + φDIςDI (8)

where hyperparameters φDS and φDI are assumed to satisfy
φDS + φDI = 1 ↔ ϖ, reflecting the importance of domain
shift (DS) and data imbalance (DI) in our model training,
respectively. If the focus is more on domain shift, φDS is
increased while φDI is decreased. Conversely, if the focus is
on data imbalance, the opposite is done. Furthermore, ϱDS

and ςDS in (7) and (8) denote the weight share of the old CL
teachers and the LLM teacher with respect to domain shifts,
respectively; ϱDI and ςDI denote the weight share of the two
types of teachers in relation to data imbalance. To ensure that
ϱ + ς = 1↔ ϖ, we need to verify that

ϱDS + ςDS = 1 (9)

and
ϱDI + ςDI = 1 (10)

We then elaborate on how ϱDS and ςDS are assigned. It
is known that ϱDS and ςDS are determined by the average
accuracyk

of the previous CL teachers and the accuracy of the LLM
teacher on Dt. Given Dt, the average classification accuracy
of the CL models from time 1 to t ↔ 1 and that of the LLM
are represented as accavg and accLLM , respectively. To satisfy
the constraints in (9) and (10), we have

ϱDS =
accavg

accavg + accLLM
(11)

and
ςDS =

accLLM

accavg + accLLM
(12)

The issue regarding domain shift is effectively rectified using
the assignment scheme in (11) and (12), as the LLM will
receive a larger weight when the old CL models are generating
arbitrary deductions.

Next, we discuss how ϱDI and ςDI are determined. At time
t, the set of previously encountered data is denoted by Dt,...,1

(i.e., Dt,...,1 = Dt ↘ Dt→1... ↘ D1). The kth class labels in
Dt,...,1 are denoted by ck, and the occurrence count of ck is
represented by dk. To assess the extent of data imbalance in
Dt,...,1, we propose the concept of imbalance ratio as in [31],
which is defined as:

IR = max(dk)/min(dk) (13)

It is important to note that dk in (13) cannot be zero given the
definition provided.

Under the constraint in (9) and (10), we have

ϱDI =
1

1 + logN IR
(14)

and
ςDI =

logN IR

1 + logN IR
(15)

where N is a hyperparameter.
From (14) and (15), it is observed that whenever the data

imbalance is sever, ςDI becomes large, allowing the LLM’s
general domain knowledge to be effectively utilized to address
the knowledge gap. This approach helps to alleviate the data
imbalance issue.

Finally, we give the expression of ϱ and ς as follows:

ϱ = φDS
accavg

accavg + accLLM
+ φDI

1

1 + logN IR
(16)

and

ς = φDS
accLLM

accavg + accLLM
+ φDI

logN IR

1 + logN IR
(17)

Substituting (16) into (6), we have

ϱi =
φDS

t↔ 1

accavg
accavg + accLLM

+
φDI

t↔ 1

1

1 + logN IR
(18)

III. EXPERIMENTS AND ANALYSIS

A. Existing Dataset

EndoVis17 comprises frames obtained from various
recorded robotic abdominal surgeries originating from a public
challenge dataset [32]. The curated QA pairs in this dataset
contain single-word answers, which are classified into surgical
maneuvers or instrument placement. A total of 5 videos
were involved in the experiments, resulting in 73 frames and
376 QA pairs for the training set, and 24 frames with 96
corresponding QA pairs for the test set.

EndoVis18 also comprises frames obtained from various
recorded robotic abdominal surgeries originating from a public
challenge dataset [1]. In addition to the movement-related
and placement-related questions in EndoVis17, EndoVis18
also includes questions about human biological organs. This
introduces a domain shift at t = 2. Furthermore, EndoVis18
covers 5 more action classes (i.e., clipping, looping, staple,
suction, and suturing), which considerably contribute to data
imbalance. The dataset consists of 14 videos. The training
dataset training consists of 1560 frames with 9014 QA pairs,
while the test set comprises 447 frames with 2769 QA pairs.

DAISI-VQA is the VQA dataset we created in our earlier
ICRA conference paper [26]. The development of DAISI-VQA
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TABLE I: Data diversity. EV17, EV18, D-V, and L-V represent EndoVis17, EndoVis18, DAISI-VQA, and LRSP-VQA datasets.
Number T and Number N denote the number of total types and new types, respectively.

EV17 EV18 D-V L-V

Organ kidney kidney Number T = 25, Number N = 24 Number T = 10, Number N = 9

Procedure nephrectomy nephrectomy uncountable Number T = 11, Number N = 10

Surgical
Assisting System Da-Vinci XI Da-Vinci X, Da-Vinci XI No surgical assisting system involved,

all operations are manually conducted
Da-Vinci X, Da-Vinci XI,

Da-Vinci SI, Da-Vinci SP, Hugo RAS

Instrument Number T: 5 Number T = 8, Number N = 3 Number T = 32, Number N = 24 Number T = 18, Number N = 10

is based on the DAISI dataset reported in [33]. Image frames
and instructional texts for various surgical procedures on dif-
ferent organs are featured in the original DAISI dataset, where
each procedure is illustrated by several images accompanied
by relevant texts.

For generating QA pairs, the original DAISI dataset is
initially refined by removing irrelevant frames and images
(such as those without any surgical content) and unnecessary
descriptions (such as those detailing the hospitals, medical
centers, or surgeons). Subsequently, QA pairs were generated
based on the text description associated with each image. To
produce appropriate questions and precise answers for each
image, this paper introduces a new data creation method-
ology. This methodology processes the textual depictions
and narrations associated with the respective images using
GPT-3.5 before implementing an advanced few-shot learning
method customized for LLMs called in-context learning (ICL)
[24]. Specifically, we provided GPT-3.5 with a prompt that
encompasses different reference QA pair examples to illustrate
the formulation of surgical questions and demonstrate how
answers could be derived from the related text-based descrip-
tions. After presenting these example QA pairs, the detailed
description of a new, unaddressed DAISI image was attached
to the prompt, and GPT-3.5 was then instructed to generate QA
pairs based on the textual description provided. Leveraging its
robust analytical and emulation capabilities, GPT-3.5 analyzed
the examples, understood our task requirements, and generated
suitable and sensible QA pairs for the provided description.

The DAISI-VQA dataset includes 353 surgical images and
545 QA pairs. We allocated approximately 80% of this data
to the training set, leaving the remainder for testing.

B. New Dataset Construction

LRSP-VQA is a new dataset constructed in this paper.
It refers to the Live Recorded Surgical Procedures VQA
dataset we built with 36 video demonstrations about robotic-
assisted surgical operations. These videos were collected from
YouTube and were selected based on their in-video narration
of the surgical procedures and the quality of the recording.
We segmented the videos into 150 shorter parts, with each
video snippet corresponding to one surgical phase within the
whole procedure. The primary objective of this operation was
to guarantee that each segment contained the same set of
surgical instruments throughout. Subsequently, we extracted
frames from each video segment and obtained over 10,000

image frames from the 150 video segments. In the third step,
we filtered out relevant portions of the video transcriptions
corresponding to each specific video segment. These textual
transcriptions contained the surgical instructions and expla-
nations that were provided audibly in the video and could
therefore serve as valuable descriptions for these selected
surgical videos. With all the images and textual descriptions
obtained above, we leveraged GPT-3.5 for QA pair generation
in a way similar to the QA pair generation in DAISI-VQA.

In LRSP-VQA, there are 1,136 QA pairs, and each QA pair
has an associated surgical image. We allocated an estimated
80% of the data for training and utilized the rest for testing.

After a brief introduction to each dataset, we present Table
I, which provides a detailed comparison of the four datasets in
terms of the organ(s) and procedure(s) involved, surgical as-
sisting system(s) applied, and surgical instruments used. This
comparison can help readers better understand the significant
data diversity we introduced in the new dataset, which is
crucial for validating our model’s performance under severe
domain shifts and data imbalances. The comparison results
are as follows:

1) Organ: The two datasets we created show higher di-
versity in terms of organs involved: surgical QA pairs
in DAISI-VQA and LRSP-VQA involve 25 and 10
different organs, respectively, while previous datasets
(i.e., EndoVis17 and EndoVis18) focus on the kidney
only.

2) Surgical procedure: EndoVis17 and EndoVis18 only
consider nephrectomy, while LRSP-VQA investigates
nine additional clinical procedures. For DAISI-VQA,
detailed information about the number of clinical pro-
cedures is hard to obtain, as the construction of the
DAISI dataset has filtered out information about detailed
clinical procedures used. However, we note that the
number of clinical procedures in DAISI-VQA at least
exceeds that of LRSP-VQA, given the large number of
organs investigated.

3) Surgical assisting system: Many surgical VQA datasets
are built with videos recorded by surgical robots. For ex-
ample, the surgical operation in EndoVis17 is completed
by the Da Vinci X robotic surgical system [34], while the
later-released EndoVis18 applies a more advanced Da
Vinci Xi platform [35]. For the DAISI-VQA dataset, all
surgical operations are manually conducted, which also
differs significantly from EndoVis17 and EndoVis18.
For our datasets, LRSP-VQA introduces two of the
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TABLE II: Benchmarking experiments - Accuracy.

Accuracy (t = 1 to t = 2) Accuracy (t = 2 to t = 3) Accuracy (t = 3 to t = 4)
EV17 EV18 Avg. EV17 EV18 D-V Avg. EV17 EV18 D-V L-V Avg.

FT 0.2917 0.5905 0.4411 0.0938 0.3286 0.7632 0.3952 0.1250 0.1123 0.4561 0.6782 0.3429
ER 0.5417 0.5782 0.5599 0.5313 0.6071 0.7544 0.6309 0.5313 0.5544 0.7018 0.6552 0.6106

LwF 0.4479 0.5309 0.4894 0.5104 0.4745 0.6754 0.5535 0.0938 0.1322 0.3421 0.5632 0.2828
Online-EWC 0.4167 0.5002 0.4584 0.0625 0.3611 0.7368 0.3868 0.1250 0.1116 0.7018 0.6609 0.3998

EWC++ 0.4792 0.4680 0.4736 0.0938 0.3734 0.7105 0.3926 0.1250 0.1098 0.5877 0.6552 0.3692
LMT++ 0.5104 0.5619 0.5362 0.5313 0.5056 0.7456 0.5942 0.1979 0.1546 0.6842 0.5747 0.4029

TABLE III: Benchmarking experiments - F-score.

Accuracy (t = 1 to t = 2) Accuracy (t = 2 to t = 3) Accuracy (t = 3 to t = 4)
EV17 EV18 Avg. EV17 EV18 D-V Avg. EV17 EV18 D-V L-V Avg.

FT 0.1843 0.3806 0.2825 0.0327 0.0982 0.8751 0.3353 0.0436 0.0425 0.2088 0.5034 0.1996
ER 0.3344 0.3681 0.3512 0.2784 0.3792 0.8721 0.5099 0.3048 0.2740 0.8440 0.4772 0.4750

LwF 0.3034 0.2966 0.3000 0.2367 0.1708 0.3945 0.2673 0.0286 0.0274 0.1250 0.4472 0.1570
Online-EWC 0.2276 0.2012 0.2144 0.0362 0.1316 0.8648 0.3442 0.0400 0.0427 0.2400 0.4956 0.2046

EWC++ 0.2229 0.2624 0.2427 0.0532 0.1922 0.7293 0.3249 0.0400 0.0339 0.2059 0.4816 0.1903
LMT++ 0.3091 0.3185 0.3138 0.2851 0.1862 0.8692 0.4468 0.0810 0.0528 0.3329 0.4512 0.2295

TABLE IV: Ablation study - Accuracy.

Accuracy (t = 1 to t = 2) Accuracy (t = 2 to t = 3) Accuracy (t = 3 to t = 4)
EV17 EV18 Avg. EV17 EV18 D-V Avg. EV17 EV18 D-V L-V Avg.

Scenario 1 0.4271 0.5677 0.4974 0.3333 0.3398 0.7544 0.4759 0.1563 0.1322 0.5702 0.6149 0.3684
Scenario 2 0.4063 0.5702 0.4882 0.5208 0.4810 0.7456 0.5825 0.1042 0.1008 0.7193 0.6207 0.3862
Scenario 3 0.4167 0.5670 0.4918 0.5104 0.4464 0.7368 0.5645 0.1042 0.1553 0.6667 0.6379 0.3910
Scenario 4 0.4479 0.5309 0.4894 0.5104 0.4745 0.6754 0.5535 0.0938 0.1322 0.3421 0.5632 0.2828
LMT++ 0.5104 0.5619 0.5362 0.5313 0.5056 0.7456 0.5942 0.1979 0.1546 0.6842 0.5747 0.4029

TABLE V: Ablation study - F-score.

Accuracy (t = 1 to t = 2) Accuracy (t = 2 to t = 3) Accuracy (t = 3 to t = 4)
EV17 EV18 Avg. EV17 EV18 D-V Avg. EV17 EV18 D-V L-V Avg.

Scenario 1 0.2336 0.2365 0.2351 0.1218 0.1035 0.8736 0.3663 0.0688 0.0539 0.2291 0.4983 0.2125
Scenario 2 0.2595 0.3101 0.2848 0.2195 0.1933 0.8678 0.4269 0.0515 0.0257 0.2937 0.4876 0.2147
Scenario 3 0.2658 0.2883 0.2770 0.2151 0.2090 0.8648 0.4296 0.0256 0.0231 0.2313 0.5740 0.2135
Scenario 4 0.3034 0.2966 0.3000 0.2367 0.1708 0.3945 0.2673 0.0286 0.0274 0.1250 0.4472 0.1570
LMT++ 0.3091 0.3185 0.3138 0.2851 0.1862 0.8692 0.4468 0.0810 0.0528 0.3329 0.4512 0.2295

latest robotic surgical systems in the Da Vinci series
(i.e., Da Vinci Si [36] and Da Vinci SP [37]) and a
robotic surgical system from a new series (the Hugo
RAS platform [38]).

4) Instruments: The latest two datasets show much higher
diversity in terms of instruments involved: QA pairs
in DAISI-VQA and LRSP-VQA using 32 and 18 dif-
ferent instruments, respectively, while previous datasets
involve fewer instruments, with EndoVis17 and En-
doVis18 discussing 5 and 8 surgical instruments, respec-
tively.

From the above discussion, it is evident that our datasets are
significantly different from those developed previously, and
an obvious domain shift can be introduced when these two
datasets are applied at t = 3 and t = 4.

C. Implementation Details of Our Method and Baselines

We assessed our method LMT++ against the following
algorithms in a CL setting:

1) Fine Tune (FT): FT is a core approach for adaptation in
CL. It involves introducing new data to update a model
that has already been trained on prior tasks. While FT is
capable of quickly adapting to new tasks, it is prone to
catastrophic forgetting and often results in the poorest
mean accuracy and performance in a CL setting [39].

2) Experience Replay (ER): Through the retention of the
original and prior training data in a memory buffer, ER
can alleviate and prevent catastrophic forgetting. The
model revisits examples from this buffer when training
on new tasks, thereby retaining knowledge of the old
tasks [40]. Although ER performs well in a CL process,
it may not always be feasible in medical applications due
to ethical concerns arising from the storage and retention
of patient data. In this study, we use ER only as an
upper-performance benchmark.

3) Learning without Forgetting (LwF): By maintaining
past knowledge in a distilled model, LwF ensures an
efficient CL process, enabling the learning of new mate-
rial without forgetting previously acquired information.
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LwF is a renowned CL algorithm that uses knowledge
distillation (KD) as part of the training procedure. [11].

4) Elastic Weight Consolidation++ (EWC++): With au-
tomated weight importance adjustments and simplified
Fisher information matrix calculations, EWC++ en-
hances the original EWC algorithm and offers greater
scalability and flexibility. [41]

5) Online Elastic Weight Consolidation (Online-EWC):
Online-EWC is another enhanced variation of the origi-
nal EWC algorithm. It improves the efficiency of updat-
ing critical model parameters, helping to safeguard prior
information and knowledge when fresh insights and new
data are introduced [42].

The implementation details of our method are as follows.
The model is first trained on EndoVis17 at t = 1 with a
learning rate of 5 ↗ 10→6 and for 60 epochs, as outlined in
[32]. At t = 2, the model is then trained on EndoVis18 with
a learning rate of 5 ↗ 10→5 and for 80 epochs, according
to the settings in [1]. Subsequently, for t = 3, the model
is trained on DAISI-VQA with a learning rate of 5 ↗ 10→6

and for 80 epochs. Ultimately, at t = 4, the model is finally
trained on LRSP-VQA, using a learning rate of 1↗ 10→5 and
for 80 epochs. The mentioned algorithms above are trained
using an NVIDIA Tesla T4 GPU and implemented using
PyTorch. The Adam optimizer is employed consistently across
all experiments.

D. Experimental Results and Associated Discussions

Prior to the result analysis, it is important to highlight
that the evaluation approach employed in this paper is not
based on the model’s performance on a single dataset. Rather
than focusing on specific instances, we prioritize the model’s
average performance, particularly in terms of accuracy and F-
score, across the different datasets evaluated at various time
points. This measurement approach is essential because a CL
model that struggles with catastrophic forgetting may achieve
satisfactory performance on the latest dataset while failing on
those it encountered in the past. A robust and adaptable CL
model is capable of maintaining a strong performance across
all datasets. While it may not always outperform a weaker
model on a single dataset, it typically delivers better average
results and performances overall. Therefore, evaluating the
model’s average performance across all the tested datasets is
a standard practice in CL research [1], [9], [10], [32], and this
paper adopts the same approach.

We first analyze the benchmarking results presented in
Tables II and III. As anticipated, FT exhibits the most severe
catastrophic forgetting among all tested methods, resulting in
the poorest performance. ER, which represents the ideal upper
bound, shows the strongest result. Our method consistently
outperforms all other tested schemes throughout the pro-
cess. Compared to previous approaches, our method improves
model accuracy by an average of 4.54% over the second-
best model from t = 2 to t = 4. Additionally, we averagely
enhanced the F-score of the second-best model by an average
of 15.27%.

The results highlighted our approach’s exceptional capabil-
ity to learn new information without losing previously acquired

knowledge. We attribute the model’s strong performance to
two key factors: 1) the incorporation of LLM during the
training phase, which effectively addresses the challenges
brought about by domain shifts and data imbalances, and 2) the
dynamic weight adjustment scheme, which strikes a balance
between expert teacher models and the LLM teacher.

To further validate the effectiveness of each component in
our proposed method, we conducted an ablation study. The
following scenarios were taken into consideration:

1) When assigning weights, set aside data imbalance and
prioritize domain shift. (i.e., φDI = 0 and φDS = 1).

2) When assigning weights, set aside domain shift and
concentrate exclusively on data imbalance (i.e., φDI = 1
and φDS = 0).

3) Remove the adaptive weight assignment mechanism
altogether and apply a fixed weight throughout the entire
CL process.

4) Remove the LLM teacher and use previously obtained
models as conventional teachers in the CL process.

The results of the ablation study, shown in Tables IV and
V, demonstrate that our method outperforms its variations in
Scenarios 1/2/3/4 at t = 2, t = 3, and t = 4. Fig. 3 (a)
provides an example to illustrate the ablation experiments. In
Scenarios 1/2/3/4, the tested model misidentifies the number
of surgical instruments as 3, generating the incorrect answer
“Yes”. However, with all components integrated, our model
successfully provides the correct answer “No”. And Fig. 3
(b) illustrates the accuracy of tool state identification for
the needle driver. The tested model incorrectly predicts the
state as “Idle” while our method correctly identifies as “Tool
Manipulation”. The results emphasize that each proposed
component is crucial to the final performance, proving their
indispensability in our methodology.

Q: Are there only 3 surgical 
instruments involved in this procedure?

Scenarios  1/2/3/4
A: Yes.

Our Method
A: No.

Q: What is the state of the needle_driver?

Scenarios  1/2/3/4
A: Idle.

Our Method
A: Tool_Manipulation.

Fig. 3: Two samples in LRSP-VQA testing dataset, where
only our method successfully identifies the (a) top: instrument
counting, and (b) bottom: tool state during a surgical operation.

IV. HOW LLM WORKS: CASE STUDY AND DISCUSSION

Following the above experimental results, we now discuss
a problem the reader may be interested in: why integrating
InstructBLIP as a supplementary teacher enhances the student
model’s performance in the VQA task. This question becomes
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Fig. 6: Logits of CL teacher, LLM teacher, and the student for the case studied in Fig. 5.

even more interesting after we have noticed that the multi-
modal LLM itself may not always have perfect performance
when addressing the surgical VQA task independently. In
fact, through the experiments in this paper, we observed
that InstructBLIP sometimes defaulted to answering questions
with “kidney” (see our later examples). This outcome is
understandable, given that InstructBLIP was trained on a
broad spectrum of general domain datasets, making it more
accustomed to commonly used words (such as “kidney”) rather
than specific medical terminologies. However, it is crucial to
emphasize that even if the LLM does not perform perfectly
independently on the surgical task, it still makes valuable
contributions within our multi-teacher CL framework thanks
to the information embedded in the LLM’s logits. In particular,
the LLM’s logits can work with traditional CL teachers under
the proposed adaptive weighting scheme. The following case
study illustrates how LLM logits aid the CL training process.

Q: What is the state of monopolar 
curved scissors?

CL Teachers    A: Cutting.

Ground Truth A: Cutting.                

(a)

Q: What is the state of monopolar 
curved scissors?

CL Teachers    A: Idle.

Ground Truth A: Cutting.                

(b)

Fig. 4: Two LRSP-VQA images that help to illustrate the
conventional CL teachers’ confusion between cutting and idle.

To begin with, we point out a typical confusion that con-
ventional CL teachers may have between “cutting” and “idle”
with the illustration of the two LRSP-VQA images below.
A “cutting” operation usually involves the use of surgical
scissors. When the scissors are fully opened (see Fig. 4a), the
CL teachers can precisely identify the operation as “cutting”.
However, when the surgical scissor is slightly or partially
opened (see Fig. 4b), the CL teachers may mistakenly classify
the “cutting” operation as “idle”. This confusion is reasonable,
as a slightly opened surgical scissor during “cutting” may

Q: what is the state of surgical scissor?

CL Techer
A: Idle.

LLM
A: Kidney.

Our Method
A: Cutting.

Fig. 5: An image illustrating the “cutting” operation on a
kidney. The joint effort of the CL teacher and the LLM teacher
results in the correct knowledge distillation to the student.

appear similar to an “idle” one.
We then take a close look at the LLM’s logits in order to

understand how the LLM assists conventional CL teachers in
accurate categorization and effective knowledge distillation.
Here we take an EndoVis18 image at t = 2 for example,
which simplifies the analysis by avoiding introducing multiple
CL teachers into the analysis (our experiment here focuses on
the LLM’s logits). Fig. 5 presents a “cutting” operation on a
kidney, where the conventional CL teacher allocated its largest
logits value to “idle” and the second biggest value to “cutting”
(see Fig. 6), implying the CL teacher’s wrong classification
in this example. The LLM teacher, as we can also see from
Fig. 6, assigns the highest logits to “kidney” and the second-
highest to “cutting.” Even though neither the CL teacher nor
the LLM teacher independently produces precise answers,
their combined capability, obtained through the weighted sum-
mation described in (2), correctly identifies the operation as
“cutting”. With the LLM functioning as an additional teacher
in our multi-teacher framework, the student model becomes
more adept at efficiently identifying the differences between
similar answers. This example underscores the value of our
proposed multi-teacher CL framework with adaptive weights,
which effectively leverages the information in the LLM’s logits
to enhance overall accuracy and performance.

V. CONCLUSION AND FUTURE WORK

We present an LLM-assisted multi-teacher framework for
enhanced surgical VQA performance under a CL setup. With
this innovative framework, we incorporate a multimodal LLM
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into the CL training process to address the challenges of
domain shift and data imbalance, effectively mitigating the
catastrophic forgetting issue. The technical contributions of
this paper are as follows. First, the novel data processing
technique illustrated in this paper allows for the extraction of
logits from complex LLM embeddings. Second, our adaptive
weight assignment strategy strikes a balance between the
domain-specific knowledge of previous CL teacher models and
the LLM teacher’s robust generalization capabilities. Third,
the application of these methodologies has demonstrated high
accuracy in handling VQA tasks in practical surgical scenarios.
Finally, a newly released surgical VQA dataset serves as
vital assets for future studies and research in this domain.
Another notable contribution we made to the community is
the introduction of a new research trajectory for utilizing
LLMs in CL studies. In future works, we hope to explore
the decomposition of representations into spatial and temporal
spaces, which have higher task-invariance, to further reduce
model forgetting. Additionally, integrating multimodal data,
such as kinematics data from robot-assisted clinical systems,
may further improve the model’s performance in a CL setup.
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