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 A B S T R A C T

Recent advancements in deep learning techniques have contributed to developing improved polyp segmentation 
methods, thereby aiding in the diagnosis of colorectal cancer and facilitating automated surgery like endoscopic 
submucosal dissection (ESD). However, the scarcity of well-annotated data poses challenges by increasing the 
annotation burden and diminishing the performance of fully-supervised learning approaches. Additionally, 
distribution shifts due to variations among patients and medical centers require the model to generalize 
well during testing. To address these concerns, we present PedSemiSeg, a pedagogy-inspired semi-supervised 
learning framework designed to enhance polyp segmentation performance with limited labeled training data. 
In particular, we take inspiration from the pedagogy used in real-world educational settings, where teacher 
feedback and peer tutoring are both crucial in influencing the overall learning outcome. Expanding upon this 
concept, our approach involves supervising the outputs of the strongly augmented input (the students) using 
the pseudo and complementary labels crafted from the output of the weakly augmented input (the teacher) in 
both positive and negative learning manners. Additionally, we introduce reciprocal peer tutoring among the 
students, guided by respective prediction entropy. With these holistic learning processes, we aim to achieve 
consistent predictions for various versions of the same input and maximize the utilization of the abundant 
unlabeled data. Experimental results on two public datasets demonstrate the superiority of our method in polyp 
segmentation across various labeled data ratios. Furthermore, our approach exhibits excellent generalization 
capabilities on external unseen multi-center datasets, highlighting its broader clinical significance in practical 
applications during deployment.
1. Introduction

Polyp segmentation is a vital component in computer-aided diag-
nosis (CAD) systems used to detect and characterize colorectal polyps
(Summers et al., 2002), which are often precursors to colorectal cancer. 
Identifying and removing polyps at an early stage greatly lowers the 
risk of developing colorectal cancer, making accurate and efficient 
polyp segmentation an essential task in clinical practice (Jha et al., 
2021). Conventional methods for polyp segmentation heavily depend 
on time-consuming manual annotation by expert clinicians, making 
them susceptible to inter-observer differences. Additionally, the es-
calating quantity of screening colonoscopies has led to an enormous 
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volume of medical imaging data, rendering it unfeasible for clinicians 
to manually segment each polyp (Zhao et al., 2021; Wang and Zheng, 
2024). Therefore, there is a growing need for automated or semi-
automated polyp segmentation techniques to assist clinicians in their 
diagnostic workflow.

The advent of deep learning has revolutionized medical image anal-
ysis (Roy et al., 2022; Lin et al., 2022b), including polyp segmentation. 
Convolutional Neural Networks (CNNs) have demonstrated tremendous 
success in diverse computer vision tasks, motivating researchers to 
explore their potential in polyp segmentation (Fan et al., 2020; Shen 
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Fig. 1. Two effective pedagogical activities in human education. In (a) Teacher 
Bilateral Supervision, the teacher provides instructions on both correct and incorrect 
matters. For (b) Reciprocal Peer Tutoring, the student collaboratively learns from 
the high-achieving peer. Grade A⃝is higher than B⃝. Arrows indicate the direction of 
supervision.

et al., 2021; Zhang et al., 2022; Huang et al., 2022). Recently, sev-
eral works (Dong et al., 2021; Cai et al., 2022; Lin et al., 2022a) 
have also explored modern transformer-based approaches. However, 
training deep learning models for polyp segmentation typically de-
mands a substantial amount of annotated polyp images. Unfortunately, 
such annotated data is often limited in availability due to the labor-
intensive and time-consuming nature of the manual annotation process. 
Besides, variations among data sources, such as variances between 
patients and discrepancies in imaging protocols, can introduce data 
shifts that further complicate the generalization of the trained model 
during deployment (Ji et al., 2024b; Wang et al., 2023a; Hu et al., 
2022). Consequently, the scarcity of annotated data and the presence 
of data shifts pose significant challenges in the development of robust 
and accurate polyp segmentation algorithms.

In light of these challenges, annotation-efficient learning approaches
(Mei et al., 2025; Ji et al., 2024a; Li et al., 2024a) have gained 
significant attention as promising solutions. These encompass various 
strategies, including semi-supervised learning (SSL) (Wu et al., 2023b; 
He et al., 2023; Wang and Li, 2024; Xiong et al., 2024; Du et al., 
2025; Zhang and Zhang, 2025), which leverages a small labeled dataset 
alongside a large volume of unlabeled data; weakly-supervised learning 
(WSL) (Wang et al., 2023b; Wei et al., 2023; Long et al., 2025; Zhao 
et al., 2025), which utilizes coarser or less precise forms of anno-
tation; and barely-supervised learning (BSL) (Lucas et al., 2022; Wu 
et al., 2023a), which operates with even more sparsely annotated data. 
By capitalizing on partially or sparsely annotated data, these algo-
rithms aim to enhance label efficiency in developing cost-friendly polyp 
segmentation models. While demonstrating promising results, these 
methods still exhibit a performance gap compared to fully-supervised 
models, particularly concerning generalization to out-of-distribution 
domains.

As depicted in Fig.  1, the concurrent presence of (a) Teacher Bi-
lateral Supervision and (b) Reciprocal Peer Tutoring is frequently ob-
served and effective in real-world educational environments. This ap-
proach substantially enhances the overall learning outcomes. Inspired 
by such classroom practices, we propose a holistic pedagogy-inspired 
semi-supervised learning framework called PedSemiSeg for label-
efficient polyp segmentation. Specifically, we begin by revisiting the 
fundamental design principle of consistency regularization with weak-
to-strong perturbation in semi-supervised learning and introduce the 
concept of geometry-to-intensity augmentation to generate diverse vari-
ations of the same input. Going beyond traditional methods, Ped-
SemiSeg leverages both positive and negative learning from the weakly 
augmented branch and implements reciprocal peer tutoring among the 
strongly augmented branches. This fosters more efficient and effective 
2 
utilization of the unlabeled data and ultimately boosts overall perfor-
mance on the in-distribution SUN-SEG (Ji et al., 2022) and Kvasir-
SEG (Jha et al., 2020) datasets and out-of-distribution Polyp-Gen (Ali 
et al., 2023) dataset. Our main contributions are as follows:

- We design the sequential geometry-to-intensity augmentation, 
implemented in a weak-to-strong manner, to promote more com-
prehensive consistency regularization on unlabeled data.

- Drawing inspiration from the bilateral guidance in human ed-
ucation, where teachers instruct on both correct and incorrect 
aspects, we generate pseudo and complementary labels from the 
weakly augmented branch to facilitate both positive and negative 
learning for the strongly augmented counterparts.

- Motivated by collaborative learning among students, we intro-
duce reciprocal peer tutoring between two strongly augmented 
branches with the learning direction decided by their prediction 
uncertainty.

- Holistically, we propose PedSemiSeg, a pedagogy-inspired semi-
supervised learning method for label-efficient polyp segmenta-
tion. Our method exhibits superior performance on both in-
domain and external unseen datasets, thereby demonstrating its 
applicability for real-world computer-aided diagnosis and inter-
vention.

2. Related works

Semi-supervised learning (SSL) has gained considerable attention in 
medical image analysis, primarily due to the time-consuming and labor-
intensive nature of data annotation, particularly for intricate tasks such 
as registration (Zhu et al., 2021; Ma et al., 2017), segmentation (Chep-
lygina et al., 2019; Li et al., 2023a), and 3D reconstruction (Shi et al., 
2021, 2023). SSL utilizes unlabeled data to enhance model performance 
when labeled data is scarce, thereby enhancing annotation efficiency. 
In this context, various SSL strategies have emerged, including con-
sistency regularization (CR), self-training, adversarial learning, and 
uncertainty-based methods. These strategies allow for the exploitation 
of the wealth of unlabeled images while integrating the information 
from the limited labeled data.

2.1. Consistency regularization

Consistency regularization (CR) has been widely explored and
adopted in semi-supervised segmentation (Yang et al., 2023a; Guo 
et al., 2020; Luo et al., 2022b; Jia et al., 2024). It allows unlabeled data 
to regularize model training by enforcing invariance to perturbations. 
In general computer vision, FixMatch (Sohn et al., 2020) is one of the 
pioneering works focusing on consistency regularization. Noteworthy 
subsequent approaches include Cross-consistency Training (CCT) (Ouali 
et al., 2020) and Cross Pseudo Supervision (CPS) (Chen et al., 2021). 
More recently, ShrinkMatch (Yang et al., 2023b) aims to learn from 
unlabeled data by excluding confused classes to enhance certainty, 
while UniMatch V2 (Yang et al., 2025) incorporates a complementary 
dropout module to unify image-level and feature-level augmentations 
for improved consistency learning. In the medical domain, numerous 
approaches have been developed to address specific challenges. These 
include multiple consistency supervision for OCT images (Lu et al., 
2022), co-training between CNN and transformer on MRI cardiac im-
ages (Luo et al., 2022a), and cross-level contrastive learning on polyps 
and skin lesions (Zhao et al., 2022). Recently, CCL-MPC (Du et al., 
2025) employed dual-branch networks and dual augmented views 
to enhance class diversity and facilitate multi-perspective consistency 
learning for skin lesion and polyp datasets.
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2.2. Pseudo Labeling

Pseudo labeling (PL), like consistency regularization, is another 
essential SSL technique where the model’s own high-confidence pre-
dictions on unlabeled data serve as training targets. For instance, Chai-
tanya et al. (2023) proposes a pseudo-label-based self-training frame-
work and incorporates the local contrastive loss to efficiently explore 
the partially annotated datasets of cardiac and prostate anatomies. For 
fundus and prostate MRI segmentation, FSSL-DPL (Qiu et al., 2023) 
explores cross-domain scenarios and proposes a federated approach for 
generating and denoising pseudo labels. Recently, with the emergence 
of the foundation models (Bommasani et al., 2021), some works (Li 
et al., 2023b; Rahman et al., 2024) have also attempted to utilize the 
pretrained Segment Anything Model (SAM) (Kirillov et al., 2023) as a 
strong pseudo label generator.

2.3. Teacher–student framework

Teacher–student frameworks are a prominent and effective strategy 
in SSL, designed to improve learning from unlabeled data by having a 
‘‘teacher’’ model guide the training of a ‘‘student’’ model (Tarvainen 
and Valpola, 2017). This paradigm often integrates principles from 
consistency regularization and pseudo-labeling. Several core method-
ologies characterize teacher–student learning in SSL. A foundational 
approach is the Mean Teacher model (Tarvainen and Valpola, 2017; 
Wang et al., 2022). In this setup, the teacher model’s weights are an 
exponential moving average (EMA) of the student model’s weights. 
The student is trained on perturbed inputs, while the teacher, with 
its more stable, averaged weights, provides reliable pseudo-labels or 
consistency targets. This helps to smooth the learning trajectory and 
reduce noise from self-generated supervision. Concepts from knowledge 
distillation (Hinton et al., 2015) are frequently adapted in teacher–
student semi-supervised learning (Wang et al., 2024; Zhao et al., 2024; 
Shen et al., 2023). The student model can be trained to mimic the 
teacher’s soft probability outputs (logits) or its intermediate feature 
representations on unlabeled data. This allows the student to capture 
richer, more nuanced information than what hard pseudo-labels alone 
can provide. Some frameworks extend the teacher–student concept to 
dual or multiple networks that act as peers, effectively teaching each 
other (Chen et al., 2021; Zheng et al., 2022; Yang et al., 2025). For 
instance, in Cross Pseudo Supervision (CPS) (Chen et al., 2021), two 
student networks generate pseudo-labels for each other, encouraging 
the learning of diverse features and improving overall robustness. These 
methodologies aim to enhance the quality and stability of supervision 
signals derived from unlabeled data, making the SSL process more 
effective, particularly when labeled data is limited. By leveraging a 
more knowledgeable or stable teacher, the student can learn more 
efficiently and generalize better.

2.4. More SSL strategies

In addition to consistency regularization, pseudo labeling, and the 
teacher–student framework, several other SSL strategies have been de-
veloped. Negative learning involves identifying the least likely classes 
to provide indirect supervision signals (Kim et al., 2019; Chen et al., 
2020; Yao et al., 2022). For example, ACTION (You et al., 2023) 
leverages negative samples with global-local contrastive pre-training 
and anatomical contrast fine-tuning. Other strategies, such as affinity 
learning (Wu et al., 2023b), contrastive learning (Wang et al., 2022; 
Basak and Yin, 2023), confidence learning (Xie et al., 2021), adversarial 
learning (Lei et al., 2022), multi-modality (Li et al., 2024b), and 
multi-task learning (Luo et al., 2021), have also been developed to 
mitigate label scarcity issues. Existing SSL works often hybridize several 
strategies to achieve optimal learning outcomes.
3 
Fig. 2. Comparison of consistency regularization-based architectures. 𝐼 and 𝑂 represent 
the input image and output prediction. The superscripts 𝑤 and 𝑠 indicate weak and 
strong augmentation, while 𝑎 and 𝑏 represent different variants. The arrow ‘‘⤏’’ 
represents supervision from the weakly to the strongly augmented branches, with ‘‘⊕’’ 
and ‘‘⊖’’ denoting positive and negative learning, respectively. The bidirectional arrow 
‘‘↔’’ stands for supervision between the strongly augmented branches. Our framework, 
as depicted in (c), extended upon (a) and (b), incorporating more comprehensive 
supervision and resulting in more effective consistency regularization.

2.5. Our pedagogy-inspired SSL framework

In this paper, drawing inspiration from principles of human teaching 
and learning, we introduce a novel pedagogy-inspired framework, 
dubbed PedSemiSeg, for label-efficient polyp segmentation. As demon-
strated in Fig.  2, our framework extends upon previous consistency 
regularization-based architectures (Sohn et al., 2020; Yang et al., 
2023a) by incorporating more comprehensive and multi-faceted forms 
of supervision to maximize the value extracted from unlabeled data. 
Specifically, common SSL architectures like FixMatch (Sohn et al., 
2020) (Fig.  2(a)) primarily enforce consistency from a weakly aug-
mented branch (teacher) to a strongly augmented branch (student) 
using pseudo-labels. More advanced methods like UniMatch (Yang 
et al., 2023a) (Fig.  2(b)) may introduce mutual supervision between 
dual branches. In contrast, as illustrated in Fig.  2(c), our PedSemiSeg 
incorporates supervision from the weakly augmented branch to the 
strongly augmented counterpart, as well as supervision between the 
strongly augmented variants. To generate multiple views of the unla-
beled data, we devise a series of weak-to-strong augmentations using 
sequential geometry-to-intensity perturbations. Then, we derive artifi-
cial labels, i.e., pseudo and complementary labels from the ‘‘teacher’’ 
branch, to facilitate positive and negative learning of the ‘‘student’’ 
branch. Furthermore, we incorporate reciprocal peer tutoring between 
the ‘‘student’’ branches, where the learning direction is determined 
by respective prediction uncertainty. By combining teacher guidance, 
peer collaboration, and curriculum-style perturbations, our pedagogical 
framework represents the first holistic integration of educational theory 
with semi-supervised medical image analysis, offering a robust and 
effective approach for label-efficient segmentation tasks.

3. Methodology

The primary objective of this study is to develop a label-efficient 
semi-supervised learning methodology that can effectively accomplish 
precise and robust polyp segmentation. To enhance clarity, we first give 
an overall introduction of our PedSemiSeg framework in Section 3.1, 
including problem formulation, necessary notations, and relevant pre-
liminaries. Subsequently, we explain three fundamental components 
of our method, namely, Geometry to Intensity Perturbation in Sec-
tion 3.2, Positive and Negative Learning from the Teacher in Sec-
tion 3.3, and Uncertainty-guided Reciprocal Peer Tutoring in Sec-
tion 3.4. Finally, a detailed elaboration on the holistic loss supervision 
employed for model optimization is presented in Section 3.5.

3.1. Preliminaries and overview

In semi-supervised learning, only a small portion of the training 
dataset is well annotated, while the majority remains unlabeled. The 
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Fig. 3. Overall diagram of our proposed PedSemiSeg, a pedagogy-inspired semi-supervised approach for polyp segmentation. As depicted in (a), the labeled data undergoes 
conventional supervised training to optimize the segmentation model 𝑓𝑠𝑒𝑔 with the supervised loss 𝑠. Meanwhile, the unlabeled input, as shown in (b), first goes through 
sequential weak-to-strong (geometry-to-intensity) perturbations to generate three variants. These variants are then fed into the model, resulting in one ‘‘teacher’’ branch and two 
‘‘student’’ branches. Inspired by pedagogical activities, we obtain pseudo and complementary labels with argmax and argmin, respectively, to facilitate positive learning + and 
negative learning − from the teacher branch. Additionally, the dual student branches engage in reciprocal peer tutoring 𝑎↔𝑏 between themselves, where their prediction entropy 
 determines the learning direction.
complete training dataset can be represented as 𝐷 = {𝐷𝑙 , 𝐷𝑢}, where 
𝐷𝑙 = {𝑥𝑙 , 𝑦𝑙} represents the labeled data with input samples 𝑥𝑙 and cor-
responding labels 𝑦𝑙, and 𝐷𝑢 = {𝑥𝑢} represents the unlabeled data. The 
primary objective of semi-supervised training is to effectively exploit 
the abundant unlabeled data 𝐷𝑢 in conjunction with the limited labeled 
data 𝐷𝑙 to obtain a performant segmentation model, referred to as 
𝑓𝑠𝑒𝑔 . Generally, the overall training loss  consists of two components, 
namely the supervised loss 𝑠 on 𝐷𝑙 and the unsupervised loss 𝑢 on 
𝐷𝑢.

As depicted in Fig.  3, our PedSemiSeg deals with labeled and 
unlabeled data separately. Specifically, for the labeled input 𝑥𝑙, the 
model generates predictions 𝑦̂𝑙 on its weakly augmented version 𝑥𝑙𝑤
and computes supervised loss 𝑠 using the corresponding ground truth 
mask 𝑦𝑙. On the other hand, our framework adopts the prevailing 
design principle of consistency regularization in semi-supervised learn-
ing, when training with unlabeled data. Concretely, we utilize the 
model’s prediction on the unlabeled input 𝑥𝑢 subjected to weak aug-
mentations 𝐴𝑤 to generate the pseudo label 𝑦̂+ and complementary 
label 𝑦̂−. These artificial labels then supervise the model’s prediction 
on the same input but with strong augmentations 𝐴𝑠 in positive and 
negative learning regimes, respectively. Additionally, we apply dual-
stream strong augmentations on the corresponding input 𝑥𝑢, resulting 
in two parallel predictions 𝑦̂𝑎 and 𝑦̂𝑏. Subsequently, we establish recip-
rocal supervision between these predictions, with the direction deter-
mined by the prediction uncertainty. Consequently, we construct three 
learning mechanisms: positive learning (+) aligns student predic-
tions with high-confidence teacher pseudo-labels, negative learning
(−) enforces divergence from error-indicative complementary labels, 
and reciprocal peer tutoring (𝑎↔𝑏) facilitates uncertainty-guided 
knowledge exchange between student branches.

3.2. Weak-to-strong image perturbation

The fundamental idea of consistency regularization-based approa-
ches in semi-supervised segmentation is to produce multiple perturbed 
versions of a given input and encourage the model to generate con-
sistent predictions across these variations. As illustrated in Fig.  3, 
in our approach, we implement a sequential augmentation strategy 
that transitions from geometric to intensity transformations, emulating 
the pedagogical principle of curriculum learning, i.e., progressively 
increasing task complexity to stabilize model training.
4 
3.2.1. Geometry-based weak perturbations
In the first step, we utilize several widely-used geometric transfor-

mations as the weak perturbations 𝐴𝑤, including Resize, Crop, Horizon-
talFlip, and VerticalFlip. Such transformations mimic viewpoint changes 
caused by endoscope movement while preserving lesion morphology 
and intensity distributions, yielding minimally perturbed input variants 
that maintain reliable spatial relationships for pseudo-label generation.

3.2.2. Intensity-based strong perturbations
Following the weak perturbations, we apply strong perturbations 

𝐴𝑠 using the nonlinear intensity-based ColorJitter augmentations to 
simulate photometric variations across clinical environments. These 
perturbations involve random changes in brightness, contrast, saturation, 
and hue. By replicating challenges such as uneven illumination, spec-
ular highlights, and color calibration discrepancies across endoscopy 
systems, these augmentations generate input variants that broaden the 
effective input distribution while maintaining the integrity of lesion 
geometry.

3.2.3. Assignment of the teacher and the students
As shown in Fig.  3, for the unlabeled input 𝑥𝑢, our framework gen-

erates one weakly augmented variant 𝑥𝑢𝑤 = 𝐴𝑤(𝑥𝑢) and two strongly 
augmented variants 𝑥𝑢𝑠𝑎, 𝑥𝑢𝑠𝑏 = 𝐴𝑠(𝐴𝑤(𝑥𝑢)) through weak-to-strong per-
turbations. Intuitively, the segmentation network 𝑓𝑠𝑒𝑔 exhibits higher 
confidence in making predictions for the weakly augmented input 
than for the strongly augmented variants. Therefore, we designate the 
weakly augmented branch as the ‘‘teacher’’ branch, while the strongly 
augmented branches serve as the peer ‘‘students’’ branches. For clarity, 
we denote the direct model outputs, also known as the logits, as 𝑙𝑢𝑤 =
𝑓𝑠𝑒𝑔(𝑥𝑢𝑤), 𝑙𝑢𝑠𝑎 = 𝑓𝑠𝑒𝑔(𝑥𝑢𝑠𝑎), and 𝑙𝑢𝑠𝑏 = 𝑓𝑠𝑒𝑔(𝑥𝑢𝑠𝑏), respectively. These 
logits can be further converted to probability maps 𝑝𝑢𝑤, 𝑝𝑢𝑠𝑎, and 𝑝𝑢𝑠𝑏
with the Softmax operation.

This sequential perturbation strategy is designed to address two 
key clinical realities. First, anatomical spatial relationships – such as 
shape, size, and position – remain relatively stable under endoscope 
motion, making geometric perturbations a reliable source for generat-
ing pseudo-labels. Second, photometric variability is the primary factor 
driving cross-center domain shifts in endoscopic imaging, necessitat-
ing aggressive intensity augmentations to enhance model robustness. 
By strategically combining these approaches, our framework ensures 
both stability in geometric features and adaptability to photometric 
variations, aligning closely with real-world clinical conditions.
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3.3. Positive and negative learning from the teacher

To boost the overall learning outcomes in practical educational 
settings, an effective teacher should not only instruct students on what 
is correct, but also inform them about what is erroneous. Drawing in-
spiration from this notion, our framework incorporates a ‘‘teacher’’ role 
which generates pseudo-labels for the ‘‘students’’ to engage in positive 
learning regarding the appropriate class assignment for each pixel. It 
also provides complementary labels to facilitate negative learning by 
emphasizing the classes that are least likely to be associated with each 
pixel.

3.3.1. Positive learning with pseudo labels
Pseudo-label generation is a widely embraced technique in the 

realm of semi-supervised learning, enabling the acquisition of artificial 
labels that serve as supervision signals during the training process 
with unlabeled data that lacks ground truth annotations. This strategic 
approach aligns with the established positive learning paradigm in 
image segmentation, where labels conventionally indicate the most 
probable class affiliation for each pixel.

To derive the pseudo label 𝑦̂+ for an unlabeled input image 𝑥𝑢, 
we employ a threshold-based approach utilizing the probability map 
𝑝𝑢𝑤 provided by the ‘‘teacher’’. This approach can be mathematically 
formulated as follows: 
𝑦̂+ = argmax𝐶 1(Norm(𝑝𝑢𝑤) > 𝜏)𝑝𝑢𝑤. (1)

Here, 𝜏 ∈ [0, 1] represents the confidence threshold used to truncate 
the min–max normalized probability map 𝑝𝑢𝑤, thereby producing a 
mask through the application of the indicator function 1(⋅) to filter 
out unreliable pixel predictions. We set 𝜏 = 0.8 in our implementation 
according to extensive ablation studies discussed in Section 5.3.2. 𝐶
denotes the total number of classes, which in the context of the polyp 
segmentation task is equal to 2. The crafted pseudo labels from the 
‘‘teacher’’ can subsequently be utilized to supervise the two outputs of 
the ‘‘students’’ in a positive learning manner. Specifically, the positive 
learning loss can be expressed as follows: 

+ = (𝑦̂+
⊕
←←←←←←←←←→ 𝑦̂𝑎) + (𝑦̂+

⊕
←←←←←←←←←→ 𝑦̂𝑏), (2)

where ‘‘ ⊕←←←←←←←←←→’’ denotes positive supervision, indicating that the pseudo 
label 𝑦̂+ is used to guide the training of both 𝑦̂𝑎 and 𝑦̂𝑏 in a positive 
fashion.

3.3.2. Negative learning with complementary labels
The utilization of positive learning with pseudo labels enables the 

segmentation model to acquire knowledge from pixel predictions that 
exhibit higher confidence. However, it is also valuable to leverage the 
information provided by unreliable pixel predictions, as they can offer 
complementary guidance regarding what should not be classified as 
the target class. In our framework, we can obtain the low-confidence 
complementary labels from the probability map of the ‘‘teacher’’ using 
the following expression: 

𝑦̂− = argmin𝐶 𝑝𝑢𝑤. (3)

These complementary labels can be employed to guide the negative 
learning process with: 

− = (𝑦̂−
𝜆⊖
←←←←←←←←←←←←←→ 𝑦̂𝑎) + (𝑦̂−

𝜆⊖
←←←←←←←←←←←←←→ 𝑦̂𝑏). (4)

Here, ‘‘ ⊖←←←←←←←←←→’’ denotes negative supervision. The coefficient 𝜆 ∈ [0, 1]
represents a dynamic weighting factor for each sample, which adjusts 
the strength of negative learning based on prediction entropy. It can be 
formulated as follows: 

𝜆 = 1 −
(𝑝𝑢𝑤)

, (5)

log (𝐻 ⋅𝑊 )

5 
where 𝐻 and 𝑊  denote the height and weight of the input image, 
respectively. (𝑝𝑢𝑤) represents the entropy of the probability map of 
the ‘‘teacher’’ and can be calculated as: 

(𝑝𝑢𝑤) = −
𝐶
∑

𝑐=1
𝑝𝑢𝑤(𝑐) log(𝑝𝑢𝑤(𝑐)). (6)

Note that higher entropy corresponds to lower confidence or larger 
uncertainty in prediction.

3.4. Uncertainty-guided reciprocal peer tutoring

In addition to the positive and negative learning from the ‘‘teacher’’, 
our framework introduces a novel learning paradigm known as ‘‘peer 
tutoring’’. This paradigm facilitates the bidirectional transfer of knowl-
edge between the dual ‘‘students’’, where the learning direction in 
this paradigm is not fixed but determined based on the performance 
of each student in every training iteration. Specifically, the learning 
direction is from the less proficient student to the higher-achieving one, 
mimicking the process of knowledge exchange in a classroom setting. In 
terms of semi-supervised learning, we derive the pseudo label from the 
high-confidence prediction to guide the training of the low-confidence 
counterpart.

Concretely, for the two probability maps of the dual ‘‘students’’, 
namely 𝑝𝑢𝑠𝑎 and 𝑝𝑢𝑠𝑏, we can quantify their uncertainty by calculating 
their entropy using a similar formulation as Eq. (6). Then we compare 
the computed entropy values and select the probability map with lower 
entropy to provide supervision for the counterpart with higher entropy. 
Our ‘‘peer tutoring’’ process shares similarities with positive learning 
from the ‘‘teacher’’, as described in Section 3.3.1. In this context, our 
directional supervision is expressed as: 

𝑎↔𝑏 =

⎧

⎪

⎨

⎪

⎩

𝑦̂𝑎+
⊕
←←←←←←←←←→ 𝑦̂𝑏 if (𝑝𝑢𝑠𝑎) < (𝑝𝑢𝑠𝑏),

𝑦̂𝑏+
⊕
←←←←←←←←←→ 𝑦̂𝑎 if (𝑝𝑢𝑠𝑎) ≥ (𝑝𝑢𝑠𝑏),

(7)

where 𝑦̂𝑎+ and 𝑦̂𝑏+ represent the pseudo labels derived from 𝑝𝑢𝑠𝑎 and 
𝑝𝑢𝑠𝑏 according to Eq. (1).

Our uncertainty-guided bidirectional peer supervision promotes a 
collaborative learning framework where the ‘‘students’’ mutually bene-
fit from each other’s insights. It allows the dual ‘‘students’’ to leverage 
each other’s strengths and compensate for their weaknesses.

3.5. Holistic loss supervision

To establish comprehensive and efficient loss supervision, we have 
utilized two commonly employed loss functions in image segmentation: 
the Dice Similarity Coefficient (DSC) loss 𝓁𝐷𝑆𝐶 and the Cross-Entropy 
(CE) loss 𝓁𝐶𝐸 , as the foundational building blocks of our holistic loss 
function. The incorporation of the DSC loss, which emphasizes spatial 
overlap and overall segmentation quality, along with the CE loss, which 
ensures accurate pixel-wise classification, enables us to achieve more 
precise and visually coherent segmentation outcomes.

To improve data efficiency in semi-supervised training, our overall 
loss function includes two components: the supervised loss 𝑠 on the 
labeled data and the unsupervised loss 𝑢 on the unlabeled data. With 
two foundational loss functions, we can formulate the supervised loss 
as follows: 
𝑠 = 𝓁𝐶𝐸 (𝑙𝑙 , 𝑦𝑙) + 𝓁𝐷𝑆𝐶 (𝑝𝑙 , 𝑦𝑙), (8)

where 𝑙𝑙 and 𝑝𝑙 denote the logit and probability map of the labeled 
input. In addition, the positive supervision, referred to as ‘‘ ⊕←←←←←←←←←→’’ in Eqs. 
(2) and (7), is also the direct sum of 𝓁𝐷𝑆𝐶 and 𝓁𝐶𝐸 . Hence, the positive 
learning loss + can be expanded as follow: 

+ = 𝓁𝐶𝐸 (𝑙𝑢𝑠𝑎, 𝑦̂+) + 𝓁𝐷𝑆𝐶 (𝑝𝑢𝑠𝑎, 𝑦̂+)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑦̂+
⊕
←←←←←←←←←→𝑦̂𝑎

+ 𝓁𝐶𝐸 (𝑙𝑢𝑠𝑏, 𝑦̂+) + 𝓁𝐷𝑆𝐶 (𝑝𝑢𝑠𝑏, 𝑦̂+)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑦̂+
⊕
←←←←←←←←←→𝑦̂𝑏

.

(9)
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Similarly, the bidirectional peer tutoring loss 𝑎↔𝑏 can be expressed as 

𝑎↔𝑏 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝓁𝐶𝐸 (𝑙𝑢𝑠𝑏, 𝑦̂𝑎+) + 𝓁𝐷𝑆𝐶 (𝑝𝑢𝑠𝑏, 𝑦̂𝑎+)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑦̂𝑎+
⊕
←←←←←←←←←→𝑦̂𝑏

if (𝑝𝑢𝑠𝑎) < (𝑝𝑢𝑠𝑏),

𝓁𝐶𝐸 (𝑙𝑢𝑠𝑎, 𝑦̂𝑏+) + 𝓁𝐷𝑆𝐶 (𝑝𝑢𝑠𝑎, 𝑦̂𝑏+)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑦̂𝑏+
⊕
←←←←←←←←←→𝑦̂𝑎

if (𝑝𝑢𝑠𝑎) ≥ (𝑝𝑢𝑠𝑏).

(10)

The negative supervision, denoted by ‘‘ ⊖←←←←←←←←←→’’, is adapted from the Cross-
Entropy loss. The negative learning loss − can be defined as: 
− = 𝓁𝐶𝐸 (1 − 𝑙𝑢𝑠𝑎, 𝑦̂−)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑦̂−
⊕
←←←←←←←←←→𝑦̂𝑎

+𝓁𝐶𝐸 (1 − 𝑙𝑢𝑠𝑏, 𝑦̂−)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑦̂−
⊕
←←←←←←←←←→𝑦̂𝑏

. (11)

Herein, the unsupervised loss 𝑢, comprising of +, −, and 𝑎↔𝑏, can 
be formalized as 
𝑢 = + + − + 𝑎↔𝑏. (12)

Collectively, the total objective loss function can be expressed as 
 = 𝑠 +𝑤𝑢 ⋅ 𝑢. (13)

Here, 𝑤𝑢 serves as a weighting coefficient that adjusts the influence 
of the unsupervised loss. Notably, 𝑤𝑢 exponentially increases from 0 
to its maximum value, 𝑤𝑢

𝑚𝑎𝑥, ensuring a progressively amplified incor-
poration of the unsupervised loss. This strategy facilitates the gradual 
acquisition of knowledge from the more reliable supervised learning 
at the earlier training stage, when the model is still relatively weak in 
generating high-quality pseudo labels for learning from unlabeled data. 
As the training process continues, the model improves and can gener-
ate less noisy pseudo labels. Consequently, the model can effectively 
exploit the abundant unlabeled data without encountering substantial 
misguidance.

4. Experimental settings

4.1. Dataset

In this work, we employ the SUN-SEG (Ji et al., 2022) and Kvasir-
SEG (Jha et al., 2020) datasets to conduct our semi-supervised polyp 
segmentation experiments. The recently curated SUN-SEG (Ji et al., 
2022) dataset, derived from the SUN Colonoscopy Database (Mis-
awa et al., 2021), comprises 100 distinct polyp cases encompassing 
diverse and challenging scenarios. This dataset provides an ideal foun-
dation for the development and evaluation of segmentation models 
in realistic clinical environments. To reduce data redundancy, the 
original dataset is downsampled by a factor of 5. The downsampled 
dataset is then randomly divided into training, validation, and testing 
sets, consisting of 70, 10, and 20 cases, respectively. This division 
yields 6677, 1240, and 1993 frames in each corresponding split, ensur-
ing a balanced and representative evaluation of model performance. 
The Kvasir-SEG (Jha et al., 2020) dataset, widely recognized and 
extensively used in the field, consists of 1000 images of gastroin-
testinal polyps accompanied by meticulously annotated and verified 
segmentation masks. The dataset exhibits significant variability in im-
age resolution, ranging from 332 × 487 to 1920 × 1072 pixels. The 
dataset is partitioned for training and testing, following the methodol-
ogy established in prior work (Fan et al., 2020), ensuring consistency 
and comparability with existing research.

In addition to evaluating the model’s performance on in-distribution 
data, we assess its generalization capabilities on external, unseen 
datasets. For this purpose, we utilize the PolypGen (Ali et al., 2023) 
dataset, an expanded version of the EndoCV2021 (Ali et al., 2021) 
6 
Fig. 4. Sample images from six medical centers of the PolypGen (Ali et al., 2023) 
dataset, illustrating significant appearance variations that lead to notable domain gaps.

Challenge, comprising data collected from six centers across Europe 
and Africa. The dataset includes 256, 301, 457, 227, 208, and 88 
samples from each center, respectively. Spanning diverse populations, 
endoscopic systems, and surveillance experts from Norway, France, 
the United Kingdom, Egypt, and Italy, this dataset exhibits significant 
domain gaps, as illustrated in Fig.  4. As a comprehensive open-access 
resource, PolypGen (Ali et al., 2023) serves as a robust benchmark for 
evaluating the generalizability of polyp segmentation methods across 
varied clinical settings.

4.2. Implementation details

We implement PedSemiSeg using PyTorch (Paszke et al., 2019), 
adopting UNet (Ronneberger et al., 2015) as the segmentation back-
bone due to its proven effectiveness in medical imaging and com-
patibility with established semi-supervised frameworks. To ensure a 
fair comparison with baseline methods (CCT (Ouali et al., 2020), 
CPS (Chen et al., 2021), URPC (Luo et al., 2022b), FixMatch (Sohn 
et al., 2020), and EVIL (Chen et al., 2024)), we utilize the SSL4MIS1 
codebase with consistent hyperparameters across all experiments. Ad-
ditionally, to provide a comprehensive performance context, we in-
clude two fully-supervised variants of the vanilla UNet (Ronneberger 
et al., 2015) model. The first, denoted as Full-UNet, is trained with 
100% of the labeled training data and serves as the upper-bound 
performance reference. The second, termed Part-UNet, is trained with 
the same partial labeled data fractions (1/2, 1/4, 1/8, 1/16) as the 
semi-supervised methods, establishing the lower-bound performance 
for each respective labeled ratio. The training protocol employs SGD 
optimization with a momentum of 0.9 and weight decay of 0.0001, 
initializing the learning rate at 0.01 followed by polynomial decay over 
20,000 iterations. A batch size of 16 balances computational efficiency 
with gradient stability, containing equal proportions of labeled and 
unlabeled samples.

Weak augmentations include geometric transformations such as 
random resizing (224 × 224 crop), horizontal/vertical flipping, and 
border cropping (maximum 7 pixels), while strong augmentations apply 
photometric perturbations via ColorJitter with randomized brightness 
(±0.4), contrast (±0.4), saturation (±0.4), and hue (±0.2) adjustments. 
The unsupervised loss weight 𝑤𝑢 follows a ramp-up schedule from 0 to 
𝑤𝑢

𝑚𝑎𝑥 = 1 during the first 5000 iterations, allowing gradual integration 
of pseudo-labels as model predictions stabilize. Confidence threshold 
𝜏 = 0.8 for pseudo-label generation is determined through ablation 
studies presented in Section 5.3.2, filtering uncertain predictions while 
retaining sufficient supervision signals.

For evaluation, we report the mean and standard deviation of Dice 
Similarity Coefficient (DSC), Intersection-over-Union (IoU), Precision, 

1 https://github.com/HiLab-git/SSL4MIS

https://github.com/HiLab-git/SSL4MIS
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Fig. 5. Average performance across multiple labeled data ratios on SUN-SEG (Ji et al., 2022) and Kvasir-SEG (Jha et al., 2020) datasets. Our proposed PedSemiSeg consistently 
maintains higher DSC, IoU, and Precision, and lower HD values, demonstrating its robustness in various labeling settings.
Fig. 6. Qualitative comparison of polyp segmentation performance on the in-distribution dataset SUN-SEG (Ji et al., 2022) and Kvasir-SEG (Jha et al., 2020). DSC values of all 
predictions are overlaid for direct numerical comparison. Our proposed PedSemiSeg can generate more precise segmentation masks for polyps for both datasets.
and Hausdorff Distance (HD) across three independent training runs. 
All experiments are conducted on an NVIDIA RTX3090 GPU. Code is 
available for reference at https://github.com/lofrienger/PedSemiSeg.

5. Results and analysis

5.1. In-distribution evaluation

Our proposed PedSemiSeg demonstrates superior segmentation per-
formance under limited supervision across both SUN-SEG (Ji et al., 
2022) and Kvasir-SEG (Jha et al., 2020) datasets. As detailed in Table 
1, PedSemiSeg consistently outperforms other semi-supervised methods 
across all labeled data ratios (1/2, 1/4, 1/8, and 1/16). For instance, 
with only 1/16 labeled data, PedSemiSeg achieves a DSC of 0.6832 ± 
0.0268 on SUN-SEG (Ji et al., 2022) and 0.6532 ± 0.0384 on Kvasir-
SEG (Jha et al., 2020), surpassing the strong baseline EVIL (Chen 
et al., 2024) by 0.65% and 1.18% DSC, respectively. Moreover, Ped-
SemiSeg demonstrates notable robustness, with less performance degra-
dation than other baselines as labeled data diminishes, highlighting its 
effectiveness in scenarios with minimal supervision.

Table  1 also includes results for Full-UNet (Ronneberger et al., 
2015) (trained with 100% labeled data) and Part-UNet (Ronneberger 
et al., 2015) (trained with the corresponding partial labeled data), 
serving as upper and lower performance bounds, respectively. The Full-
UNet establishes the performance ceiling, achieving a DSC of 0.7254 on 
7 
SUN-SEG (Ji et al., 2022) and 0.8195 on Kvasir-SEG (Jha et al., 2020). 
Conversely, the Part-UNet results illustrate the significant performance 
drop when a fully-supervised model is trained with limited data. For 
instance, on SUN-SEG (Ji et al., 2022), the Part-UNet DSC degrades 
from 0.6803 ± 0.0251 (1/2 ratio) to 0.6372 ± 0.0350 (1/16 ratio). A 
similar, more pronounced trend is observed on Kvasir-SEG (Jha et al., 
2020), where the Part-UNet DSC falls from 0.7368 ± 0.0321 (1/2 ratio) 
to 0.5105 ± 0.0450 (1/16 ratio).

Crucially, our PedSemiSeg consistently and substantially outper-
forms the Part-UNet across all labeled ratios on both datasets. For 
example, with only 1/16 labeled data on SUN-SEG (Ji et al., 2022), 
PedSemiSeg (DSC: 0.6832) surpasses Part-UNet (DSC: 0.6372) by a 
significant margin of 4.6%. On Kvasir-SEG (Jha et al., 2020) with 1/16 
data, PedSemiSeg (DSC: 0.6532) outperforms Part-UNet (DSC: 0.5105) 
by an even larger margin of 14.27%. This demonstrates our method’s 
superior ability to leverage unlabeled data effectively, achieving strong 
performance even when supervised signals are scarce. While there is 
still a gap to the Full-UNet upper bound, PedSemiSeg significantly 
narrows this gap compared to the Part-UNet lower bound, showcasing 
its strong label efficiency. For instance, on SUN-SEG (Ji et al., 2022) 
with 1/2 labeled data, PedSemiSeg (DSC: 0.7225) nearly matches the 
Full-UNet performance (DSC: 0.7254) and substantially exceeds the 
Part-UNet (DSC: 0.6803).

Fig.  5 illustrates the average performance across labeled ratios, 
where PedSemiSeg maintains superior DSC, IoU, Precision, and lower 

https://github.com/lofrienger/PedSemiSeg
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Table 1
Quantitative segmentation results on SUN-SEG (Ji et al., 2022) and Kvasir-SEG (Jha et al., 2020) datasets with 1/2, 1/4, 1/8, and 1/16 labeled ratios. Our proposed PedSemiSeg consistently outperforms 
other semi-supervised baselines across all labeled ratios on both datasets. The blue-shaded rows indicate the upper-bound performance of fully-supervised training with vanilla UNet (Ronneberger et al., 
2015) and 100% labeled data, while the gray-shaded rows show the lower-bound performance of fully-supervised training with the corresponding partial labeled data. The best results are highlighted 
in bold, and runner-ups are underlined.
Dataset: SUN-SEG Ji et al. (2022)
Method Labeled Ratio DSC ↑ IoU ↑ Precision ↑ HD ↓ Method Labeled Ratio DSC ↑ IoU ↑ Precision ↑ HD ↓
Full-UNet Ronneberger et al. (2015) 1 0.7254±0.0213 0.6305±0.0185 0.7792±0.0229 4.2199±0.1241 Full-UNet Ronneberger et al. (2015) 1 0.7254±0.0213 0.6305±0.0185 0.7792±0.0229 4.2199±0.1241

Part-UNet Ronneberger et al. (2015) 0.6803±0.0251 0.5750±0.0210 0.7300±0.0275 4.3726±0.1887 Part-UNet Ronneberger et al. (2015) 0.6430±0.0314 0.5397±0.0258 0.7011±0.0320 4.6601±0.2128
CCT Ouali et al. (2020)

1/2

0.7068±0.0236 0.6149±0.0204 0.7492±0.0257 4.1347±0.1612 CCT Ouali et al. (2020)
1/8

0.6680±0.0261 0.5631±0.0232 0.7243±0.0284 4.5845±0.2247
URPC Luo et al. (2022b) 0.6796±0.0253 0.5769±0.0215 0.7342±0.0266 4.3149±0.1693 URPC Luo et al. (2022b) 0.6694±0.0279 0.5652±0.0244 0.7089±0.0278 4.3446±0.1704
CPS Chen et al. (2021) 0.7213±0.0212 0.6175±0.0193 0.7440±0.0219 4.1967±0.1644 CPS Chen et al. (2021) 0.6826±0.0267 0.5736±0.0225 0.7244±0.0284 4.6706±0.2290
FixMatch Sohn et al. (2020) 0.7145±0.0210 0.6159±0.0181 0.7690±0.0226 4.1346±0.1620 FixMatch Sohn et al. (2020) 0.6991±0.0274 0.5914±0.0232 0.7388±0.0290 4.6324±0.2270
EVIL Chen et al. (2024) 0.7191±0.0211 0.6233±0.0183 0.7595±0.0223 3.8729±0.1563 EVIL Chen et al. (2024) 0.7043±0.0276 0.6024±0.0236 0.7448±0.0292 4.1177±0.1669
PedSemiSeg (Ours) 0.7225±0.0198 0.6288±0.0173 0.8272±0.0227 3.7899±0.1530 PedSemiSeg (Ours) 0.7096±0.0243 0.6094±0.0209 0.7432±0.0255 4.0701±0.1652

Part-UNet Ronneberger et al. (2015) 0.6729±0.0291 0.5688±0.0302 0.7150±0.0290 4.4518±0.2021 Part-UNet Ronneberger et al. (2015) 0.6372±0.0350 0.5307±0.0311 0.6716±0.0352 4.9127±0.2508
CCT Ouali et al. (2020)

1/4

0.6839±0.0268 0.5807±0.0228 0.7230±0.0283 4.3338±0.1700 CCT Ouali et al. (2020)
1/16

0.6544±0.0301 0.5511±0.0270 0.6899±0.0338 4.5259±0.2218
URPC Luo et al. (2022b) 0.6959±0.0273 0.5940±0.0233 0.7399±0.0290 4.2204±0.1656 URPC Luo et al. (2022b) 0.6658±0.0294 0.5597±0.0247 0.7006±0.0309 4.5022±0.2205
CPS Chen et al. (2021) 0.6967±0.0273 0.5974±0.0234 0.7352±0.0288 4.1300±0.1621 CPS Chen et al. (2021) 0.6545±0.0321 0.5489±0.0269 0.6932±0.0340 4.7933±0.2349
FixMatch Sohn et al. (2020) 0.6935±0.0272 0.5951±0.0234 0.7500±0.0294 4.1907±0.1642 FixMatch Sohn et al. (2020) 0.6749±0.0298 0.5761±0.0254 0.7123±0.0315 4.2575±0.2083
EVIL Chen et al. (2024) 0.6952±0.0272 0.5971±0.0234 0.7372±0.0289 4.2943±0.1684 EVIL Chen et al. (2024) 0.6767±0.0299 0.5672±0.0250 0.7007±0.0309 4.3605±0.2141
PedSemiSeg (Ours) 0.7094±0.0243 0.6125±0.0210 0.7694±0.0264 4.0991±0.1606 PedSemiSeg (Ours) 0.6832±0.0268 0.5892±0.0231 0.7437±0.0292 4.2415±0.1661

Dataset: Kvasir-SEG Jha et al. (2020)
Method Labeled Ratio DSC ↑ IoU ↑ Precision ↑ HD ↓ Method Labeled Ratio DSC ↑ IoU ↑ Precision ↑ HD ↓
Full-UNet Ronneberger et al. (2015) 1 0.8195±0.0241 0.7355±0.0216 0.8910±0.0262 4.8761±0.1434 Full-UNet Ronneberger et al. (2015) 1 0.8195±0.0241 0.7355±0.0216 0.8910±0.0262 4.8761±0.1434

Part-UNet Ronneberger et al. (2015) 0.7368±0.0321 0.6412±0.0295 0.8341±0.0350 5.3273±0.2104 Part-UNet Ronneberger et al. (2015) 0.5418±0.0412 0.4391±0.0378 0.7450±0.0485 5.7815±0.2850
CCT Ouali et al. (2020)

1/2

0.7329±0.0288 0.6399±0.0251 0.8020±0.0314 5.3267±0.2090 CCT Ouali et al. (2020)
1/8

0.6839±0.0335 0.5874±0.0288 0.8076±0.0396 5.3816±0.2637
URPC Luo et al. (2022b) 0.7458±0.0293 0.6564±0.0257 0.8540±0.0335 5.0111±0.1966 URPC Luo et al. (2022b) 0.6777±0.0332 0.5818±0.0285 0.8141±0.0399 5.3826±0.2636
CPS Chen et al. (2021) 0.7559±0.0296 0.6729±0.0264 0.8425±0.0330 4.9428±0.1939 CPS Chen et al. (2021) 0.6644±0.0326 0.5660±0.0278 0.8014±0.0393 5.4163±0.2653
FixMatch Sohn et al. (2020) 0.7842±0.0307 0.6913±0.0271 0.8754±0.0343 5.1472±0.2018 FixMatch Sohn et al. (2020) 0.6958±0.0341 0.5979±0.0293 0.8005±0.0392 5.3247±0.2608
EVIL Chen et al. (2024) 0.7868±0.0309 0.6987±0.0274 0.8757±0.0343 5.1177±0.2006 EVIL Chen et al. (2024) 0.6908±0.0339 0.6054±0.0297 0.7952±0.0390 5.3095±0.2600
PedSemiSeg (Ours) 0.7916±0.0271 0.7037±0.0241 0.8925±0.0306 4.8772±0.1913 PedSemiSeg (Ours) 0.7235±0.0319 0.6294±0.0278 0.8408±0.0372 5.2707±0.2065

Part-UNet Ronneberger et al. (2015) 0.6740±0.0417 0.5813±0.0342 0.7716±0.0421 5.7455±0.2857 Part-UNet Ronneberger et al. (2015) 0.5105±0.0450 0.4138±0.0402 0.6719±0.0520 6.4052±0.3189
CCT Ouali et al. (2020)

1/4

0.7089±0.0347 0.6180±0.0303 0.7945±0.0389 5.3771±0.2635 CCT Ouali et al. (2020)
1/16

0.6059±0.0386 0.4929±0.0339 0.7158±0.0456 5.8337±0.2859
URPC Luo et al. (2022b) 0.7051±0.0345 0.6052±0.0297 0.7936±0.0389 5.4364±0.2664 URPC Luo et al. (2022b) 0.5937±0.0378 0.4891±0.0336 0.7194±0.0458 5.8642±0.2874
CPS Chen et al. (2021) 0.7369±0.0361 0.6446±0.0316 0.8242±0.0404 5.3979±0.2645 CPS Chen et al. (2021) 0.6098±0.0389 0.5163±0.0354 0.7603±0.0485 5.7274±0.2807
FixMatch Sohn et al. (2020) 0.7367±0.0361 0.6407±0.0314 0.8367±0.0410 5.3097±0.2601 FixMatch Sohn et al. (2020) 0.6354±0.0405 0.5268±0.0361 0.7599±0.0484 5.6030±0.2745
EVIL Chen et al. (2024) 0.7498±0.0367 0.6606±0.0324 0.8238±0.0403 5.0133±0.1965 EVIL Chen et al. (2024) 0.6414±0.0408 0.5437±0.0373 0.7834±0.0499 5.5043±0.2697
PedSemiSeg (Ours) 0.7622±0.0336 0.6695±0.0295 0.8682±0.0383 5.0357±0.1974 PedSemiSeg (Ours) 0.6532±0.0384 0.5445±0.0320 0.7832±0.0460 5.4783±0.2147
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Table 2
Quantitative comparison of generalizability across six data centers of the PolypGen (Ali et al., 2023) dataset. The models are trained with 1/16 labeled SUN-SEG (Ji et al., 2022) 
dataset. Best and runner-up DSC results are bolded and underlined, respectively. Our proposed PedSemiSeg demonstrates superior performance over other methods.
 Center ID
(No. frames) CCT (Ouali et al., 

2020)
URPC (Luo et al., 
2022b)

CPS (Chen et al., 
2021)

FixMatch (Sohn 
et al., 2020) EVIL (Chen et al., 

2024)
PedSemiSeg (Ours) Full-UNet (Ronneberger 

et al., 2015)
 1 (256) 0.5712 ± 0.0281 0.6035 ± 0.0305 0.5384 ± 0.0271 0.6223 ± 0.0307 0.5493 ± 0.0278 0.6725 ± 0.0326 0.7126 ± 0.0282   2 (301) 0.4306 ± 0.0221 0.4457 ± 0.0216 0.4583 ± 0.0232 0.5238 ± 0.0272 0.4861 ± 0.0239 0.5681 ± 0.0275 0.6936 ± 0.0269   3 (457) 0.5721 ± 0.0225 0.6258 ± 0.0246 0.5532 ± 0.0218 0.6071 ± 0.0251 0.6697 ± 0.0261 0.6754 ± 0.0263 0.7093 ± 0.0243   4 (227) 0.1563 ± 0.0088 0.1518 ± 0.0087 0.1435 ± 0.0090 0.1516 ± 0.0085 0.1617 ± 0.0090 0.1673 ± 0.0093 0.2724 ± 0.0142   5 (208) 0.2782 ± 0.0146 0.3294 ± 0.0157 0.2673 ± 0.0130 0.2504 ± 0.0131 0.3321 ± 0.0158 0.3722 ± 0.0178 0.4358 ± 0.0201   6 (88) 0.4285 ± 0.0268 0.4623 ± 0.0270 0.4702 ± 0.0272 0.4305 ± 0.0268 0.4848 ± 0.0281 0.4793 ± 0.0273 0.5754 ± 0.0297  
 Mean ± STD 0.4062 ± 0.1629 0.4364 ± 0.1806 0.4052 ± 0.1602 0.4310 ± 0.1943 0.4473 ± 0.1855 0.4891 ± 0.1872 0.5665 ± 0.1682  
Table 3
Ablation study on the unsupervised loss components. The combination of +, −, 
and 𝑎↔𝑏 yields optimal performance. The best and runner-up results are in bold and 
underlined.

 + − 𝑎↔𝑏 DSC ↑ Precision ↑  
 3 7 7 0.6501 ± 0.0228 0.6911 ± 0.0347  
 3 3 7 0.6714 ± 0.0331 0.7128 ± 0.0251  
 3 7 3 0.6792 ± 0.0235 0.7373 ± 0.0254  
 3 3 3 0.6832 ± 0.0268 0.7437 ± 0.0292 

HD on both datasets. Qualitative results in Fig.  6 further validate our 
method’s ability to generate precise segmentation masks under chal-
lenging conditions (e.g., mucosal folds, specular reflections), whereas 
baseline methods produce fragmented or over-segmented predictions.

5.2. Out-of-distribution evaluation

In medical practice, significant data variability across patients and 
clinical settings is prevalent. Consequently, it is essential for segmen-
tation models to not only achieve high performance on the training 
dataset but also demonstrate robust generalization on external, unseen 
domains. Such generalization is critical for enhancing annotation effi-
ciency and minimizing the need for costly retraining. Considering this, 
we evaluate our proposed method on the extensive out-of-distribution 
PolypGen (Ali et al., 2023) dataset, utilizing a model trained with only 
1/16 of the labeled data from the SUN-SEG (Ji et al., 2022) dataset.

As shown in Table  2, our PedSemiSeg model demonstrates superior 
generalization performance, outperforming state-of-the-art methods in 
5 out of 6 data centers. Specifically, our approach achieves an average 
Dice Similarity Coefficient (DSC) across the six data centers that sur-
passes the second-best method by 4.18%. This remarkable performance 
can be attributed to two key factors: First, the hybrid weak-to-strong 
image augmentation strategy enhances the model’s ability to learn 
diverse feature representations. Second, the holistic loss supervision 
design, which incorporates guidance from the teacher to the student 
model as well as reciprocal peer tutoring among student models, fosters 
more effective consistency regularization. These results collectively 
highlight the robustness and adaptability of our method in diverse 
clinical settings.

5.3. Ablation study

5.3.1. Unsupervised loss components
In our PedSemiSeg, we introduce three unsupervised loss compo-

nents to leverage the unlabeled data, namely positive and negative 
learning from the teacher (+ and −) as well as reciprocal peer 
tutoring between the students (𝑎↔𝑏). To understand the individual 
and collective contributions of these components, we conduct a decom-
positional analysis of these losses. Experiments are performed on the 
SUN-SEG (Ji et al., 2022) dataset with a labeled ratio of 1/16. The 
results, presented in Table  3, demonstrate that the combined use of 
these three loss components achieves optimal DSC and Precision results. 
This underscores the effectiveness of our comprehensive design, which 
is inspired by human pedagogical principles and teaching activities. By 
integrating positive and negative learning from the teacher alongside 
9 
Fig. 7. Ablation study on the confidence threshold 𝜏. Optimal DSC and Precision 
metrics are obtained when 𝜏 = 0.8.

Fig. 8. Ablation study on the maximum loss weighting coefficient 𝑤𝑢
𝑚𝑎𝑥. Optimal DSC 

and Precision metrics are obtained when 𝑤𝑢
𝑚𝑎𝑥 = 1.

collaborative peer tutoring, our framework maximizes the potential of 
unlabeled data, leading to improved generalization and robustness in 
polyp segmentation.

5.3.2. Confidence threshold
The confidence threshold is a critical parameter for filtering unre-

liable pseudo-labels and retaining high-quality ones to ensure robust 
training. To identify the optimal value for the confidence threshold 
𝜏, as defined in Eq. (1), we conduct a comprehensive ablation study. 
As illustrated in Fig.  7, a threshold value of 𝜏 = 0.8 achieves the best 
performance in terms of both DSC and Precision metrics. This finding 
underscores the importance of carefully selecting the confidence thresh-
old to balance the trade-off between retaining reliable pseudo-labels 
and minimizing noise in the training process.

5.3.3. Loss weighting coefficient
As formulated in Eq. (13), our holistic loss function integrates 

a dynamic weighting coefficient 𝑤𝑢 to regulate the influence of the 
unsupervised loss during training. The maximum value of 𝑤𝑢, denoted 
as 𝑤𝑢

𝑚𝑎𝑥, plays a pivotal role in balancing the contributions of labeled 
and unlabeled data. An excessively large 𝑤𝑢

𝑚𝑎𝑥 overemphasizes the 
unsupervised loss, while a value that is too small fails to leverage 
the rich knowledge embedded in the abundant unlabeled data. Both 
extremes compromise the effectiveness of semi-supervised learning. To 
address this, we conduct an ablation study to identify the optimal 
𝑤𝑢

𝑚𝑎𝑥 value that harmonizes the supervised and unsupervised losses. As 
demonstrated in Fig.  8, a 𝑤𝑢

𝑚𝑎𝑥 value of 1 achieves the highest DSC 
and Precision metrics, respectively. This finding highlights the impor-
tance of carefully calibrating 𝑤𝑢

𝑚𝑎𝑥 to maximize the synergy between 
supervised and unsupervised learning components.
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Table 4
Performance comparison between Transformer and CNN-based segmentation networks 
on SUN-SEG (Ji et al., 2022) and Kvasir-SEG (Jha et al., 2020) datasets. Swin-Unet 
(Cao et al., 2021) demonstrates modest improvements over UNet (Ronneberger et al., 
2015). The best results are bolded.
 Backbone SUN-SEG (Ji et al., 2022) Kvasir-SEG (Jha et al., 2020)
 DSC ↑ Precision ↑ DSC ↑ Precision ↑  
 UNet (Ronneberger et al., 2015) 0.6832 ± 0.0268 0.7437 ± 0.0292 0.6532 ± 0.0384 0.7832 ± 0.0460   Swin-Unet (Cao et al., 2021) 0.6954 ± 0.0314 0.7683 ± 0.0277 0.6785 ± 0.0262 0.7926 ± 0.0431 

5.3.4. Backbone architecture
To assess the compatibility of PedSemiSeg with different network

architectures, we replaced the default UNet (Ronneberger et al., 2015)
backbone with Swin-Unet (Cao et al., 2021), a segmentation model
based on Swin transformer (Liu et al., 2021). As shown in Table  4,
experiments on the SUN-SEG (Ji et al., 2022) dataset (1/16 labeled
ratio) reveal that Swin-Unet (Cao et al., 2021) achieves a DSC of
0.6954, outperforming UNet (Ronneberger et al., 2015) (DSC = 0.6832)
by 1.22%. On Kvasir-SEG (Jha et al., 2020), Swin-Unet (Cao et al.,
2021) also yields performance gains. This improvement stems from
the self-attention mechanism, which captures long-range dependencies
and global context—particularly beneficial for segmenting polyps with
irregular shapes or diffuse boundaries. However, Swin-Unet (Cao et al.,
2021) incurs higher computational costs, reducing inference speed.
Despite this trade-off, the results confirm PedSemiSeg’s adaptability
to diverse architectures, allowing users to prioritize either efficiency
(CNN-based UNet (Ronneberger et al., 2015)) or accuracy (transformer-
based Swin-Unet (Cao et al., 2021)) based on clinical requirements.
This flexibility underscores the framework’s generalizability beyond
specific network designs.

6. Discussion

6.1. Methodological and clinical insights

The proposed PedSemiSeg framework addresses the challenges of
limited annotated data and domain shifts in polyp segmentation by in-
tegrating pedagogy-inspired learning mechanisms. By emulating
teacher–student interactions and peer collaboration, our method lever-
ages consistency regularization through sequential geometry-to-intensity
augmentations. Weak geometric perturbations preserve spatial relation-
ships critical for pseudo-label reliability, while strong photometric vari-
ations simulate cross-center imaging discrepancies. This curriculum-
style augmentation strategy aligns with clinical realities, where polyps
retain anatomical consistency despite endoscopic viewpoint changes or
illumination differences.

The bilateral supervision mechanism – using pseudo-labels for pos-
itive learning and complementary labels for negative guidance – re-
duces overconfidence in erroneous predictions. This approach mirrors
clinical training, where experts highlight both pathological features
and common diagnostic pitfalls. Qualitative results demonstrate im-
proved boundary precision and reduced false positives near mucosal
folds, a persistent challenge in polyp segmentation. The entropy-guided
reciprocal peer tutoring further enhances consensus on ambiguous
regions, as evidenced by superior performance on the multi-center
PolypGen (Ali et al., 2023) dataset.

6.2. Limitations

Despite the promising results achieved by PedSemiSeg, our method
exhibits certain limitations that warrant further investigation. As de-
picted in Fig.  9, the segmentation accuracy declines notably for small
polyps and those obscured by clinical artifacts such as specular reflec-
tions, blood, or complex tissue textures. These challenges reflect inher-
ent difficulties in polyp segmentation, particularly in a semi-supervised
learning context. For small polyps, primary factors contributing to
this reduced accuracy include: (1) Limited Spatial Information: their
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Fig. 9. Visualization of typical challenge cases in polyp recognition and segmentation. 
The black boxes indicate the target polyps. The blue and green masks, overlaid on the 
original images, represent the ground truth and inaccurate prediction, respectively.

small pixel footprint offers scarce data for learning distinctive features. 
(2) Class Imbalance in Training Data: datasets like SUN-SEG (Ji et al., 
2022), Kvasir-SEG (Jha et al., 2020), and PolypGen (Ali et al., 2023) 
often underrepresent small polyps, biasing models towards larger, more 
frequent ones. (3) Feature Extraction Difficulties Due to Down-
sampling: UNet-based architectures, including ours, can lose critical 
fine-grained details of small polyps in deeper, downsampled layers. 
(4) Annotation Challenges: the inherent difficulty in accurately an-
notating small polyps can lead to noisy initial labels, which then 
propagate and degrade pseudo-label quality within our semi-supervised 
framework. (5) Generalization Across Diverse Datasets: if the limited 
labeled training subset (e.g., 1/16 of SUN-SEG (Ji et al., 2022)) lacks 
sufficient examples of small polyps, the model’s ability to generalize to 
new datasets where small polyps are more common or morphologically 
varied is compromised. Besides, while the framework introduces no 
additional inference cost, the dual-student design moderately increases 
training time compared to simpler consistency-based approaches.

6.3. Clinical implications

PedSemiSeg’s ability to achieve competitive performance with min-
imal labeled data (e.g., 1/16 labeled ratio) reduces annotation bur-
dens, making it viable for resource-constrained settings. Its robust 
generalization across diverse datasets, including the multi-center Polyp-
Gen (Ali et al., 2023), suggests adaptability to heterogeneous clinical 
environments without site-specific retraining. This is critical for scal-
able deployment in global healthcare systems with varying endoscopic 
equipment and protocols.

7. Conclusion

This work presents PedSemiSeg, a pedagogy-inspired semi-supervi
sed framework for label-efficient polyp segmentation. By integrating 
sequential geometry-to-intensity augmentations, bilateral teacher su-
pervision, and entropy-guided peer tutoring, the method achieves state-
of-the-art performance on in-distribution datasets (SUN-SEG (Ji et al., 
2022) and Kvasir-SEG (Jha et al., 2020)) and demonstrates strong gen-
eralization on the multi-center PolypGen (Ali et al., 2023) benchmark. 
Grounded in educational theory, the framework’s design principles fa-
cilitate effective utilization of unlabeled data while mitigating domain 
shifts, addressing critical challenges in medical image analysis. This ap-
proach not only enhances segmentation accuracy but also underscores 
the potential of pedagogically inspired methodologies in advancing 
computational tools for medical imaging.

Future work will focus on extending PedSemiSeg to video colonos
copy analysis and integrating shape priors to address rare polyp mor-
phologies. Lightweight architectural adaptations could reduce compu-
tational overhead without sacrificing accuracy, enhancing deployability 
in real-time systems. Collaborative studies with clinicians will evaluate 
the framework’s impact on screening efficiency and lesion characteri-
zation accuracy. By bridging the gap between algorithmic innovation 
and clinical workflows, PedSemiSeg contributes to the development of 
scalable and generalizable AI tools in gastrointestinal endoscopy, ulti-
mately advancing early detection and treatment of colorectal cancer.
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