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Abstract— Obtaining dense contact information for feedback
control is vital for robotic manipulation. However, existing tac-
tile sensing technologies have a large footprint, making seamless
integration with current robotic devices difficult. This paper
presents a novel multi-layer Electrical Impedance Tomography
(EIT) sensor architecture designed to provide distributed, high-
density tactile sensing with a small form factor. Using our
multilayer structure, we address a common issue in other
EIT-based tactile skins that prevents electrodes from being
placed distally from the sensing surface. Our innovative multi-
layer design enables the development of complex-shaped soft
sensing skins without any electronic components on the sensing
surface, achieving very high accuracy. To demonstrate practical
applications, we fabricated a finger-shaped three-dimensional
(3D) skin and conducted experiments to collect real-world data.
We developed a perception model for the tactile sensor by
employing data-driven machine learning methods to predict
press localization and force with high accuracy based on EIT
signals. Our work presents a significant step towards developing
whole body full soft tactile sensors with a small form factor.

I. INTRODUCTION

In recent years, the deployment of robots has ex-
panded significantly beyond traditional industrial applica-
tions. Robots are now increasingly utilized in diverse interac-
tive tasks involving humans, real-world objects and complex
environments. The sense of touch is going to play a central
role in this advancement [1].

Tactile sensing, including the detection of pressure, strain,
and slip, is a crucial perception mode for robots to perceive
and navigate complex, unstructured environments [2]. Much
like how human skin perceives external physical stimuli,
flexible and stretchable electronic skins (or tactile skins) offer
promising solutions to robotic sensing challenges [3], [4],
[5].

Typically, tactile skins are developed using piezoresistive
materials arranged in a grid structure [6], [7], [8], [9].
Similarly, discrete tactile units (taxels) can be created and
distributed using capacitance-based sensors [10], [11] or
pressure-based sensors [12], [13]. However, technologies
based on individual taxel units present several challenges.
First, due to their grid-like structure, wiring becomes com-
plicated, with the number of electrodes scaling linearly with
the number of taxels. This also reduces their stretchability,
conformability, and robustness. Second, their spatial resolu-
tion is limited to the number of taxels, making scaling to
large areas difficult.
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Fig. 1. Design and working principle of the multi-layer EIT-based finger-
shaped soft artificial skin. The three-layer structure with 16 electrodes
mounted at the base allows a convex shape of the skin. In the single-
layer design (left), conductivity is uniform throughout the structure, resulting
in poor pressure response. The multi-layer design (right) features varying
conductivity with a low-conductivity middle layer, making the overall
structure more sensitive to external pressure stimuli and improving tactile
sensing capabilities.

Vision-based tactile skins are a promising route to address
these issues [14], [15], but they still require a housing unit
for the cameras near the skin. This increases their form
factor and reduces their applicability. These challenges have
led researchers to explore alternative approaches, among
which Electrical Impedance Tomography (EIT) has gained
significant attention [16], [17], [18].

EIT is a non-invasive medical imaging technique that
provides continuous images of internal tissue conductivity by
applying small currents and measuring voltages at the body
surface [19]. It is well-suited for electronic skin and tactile
sensing applications due to its ability to detect conductivity
changes caused by physical interactions over large, flexible
areas using only boundary and sparse electrodes [20], [21].
EIT-based tactile sensors offer several advantages includ-
ing durability, large-area scalability, ease of fabrication,
high-resolution, and a small form factor [18], [17]. The
potential of EIT-based sensors have been demonstrated in
various applications. These include soft robotic skins using
ionically conductive hydrogels [18], and large-area flexible
tactile sensors made from porous elastic polymers filled



with ionic liquids [22] that can achieve tactile information
reconstruction and ultrathin wearable electronics fabricated
with hybrid materials and carbon nanotubes for human-
machine interface [16]. Despite these advancements, EIT-
based sensors still face challenges when implemented in
complex morphologies, particularly in achieving high spatial
resolution and optimal electrode placement in non-planar
shapes limited to simple morphologies, reduced spatial
resolution, and challenges in electrode placement [23].

To address these limitations, we present a novel multi-
layer design for EIT-based artificial skin [23]. This de-
sign achieves enhanced sensitivity across 3D geometries
through its varying conductivity layers, generating distinct
and robust signals throughout the sensing area that enable
effective machine learning analysis. This design offers two
key advantages: the ability to achieve complex shapes, and
enhanced sensitivity to external stimuli due to the multilayer
structure. Based on this innovative approach, we have
developed a finger-shaped artificial skin that is both soft and
stretchable. The 3-D skin has no electrodes on the sensing
surface, has high spatial resolution and the ability to detect
contact forces as well. Our extensive testing demonstrates
the skin’s stability and high sensitivity.

II. THEORY

EIT is a non-invasive imaging technique that reconstructs
the internal conductivity distribution of a conductive body
through boundary electrical potential measurements. In the
EIT-based tactile sensing skin system, the EIT technique is
When applied to a thin, soft, and stretchable conductive
layer whose internal resistance responds to its physical
deformation this technique creates an effective tactile sensing
skin system [24]. In the tactile EIT-based skin system, a
known current is injected through a pair of electrodes (source
and sink), while voltages (electric potentials) are measured
between non-current electrode pairs. across another pair
of electrodes. This injected current generates an electrical
potential distribution u across the conductive body Ω. The
relationship between the potential distribution u and the
body’s internal impedance distribution σ is governed by the
equation:

∇ · (σ ·∇u) = 0 in Ω (1)

When external forces are applied to the skin, its internal
impedance distribution σ changes as a function of contact
information: position (x,y) and force magnitude F. The volt-
age measurements u from the remaining electrodes can be
used to reconstruct this impedance distribution by solving the
nonlinear inverse problem. A complete measurement cycle
requires using all electrode combinations for current injection
and voltage measurement. There are two main injection
modes: adjacent and opposite [25] [26]. In the adjacent mode,
two injection electrodes are next to each other, while in the
opposite mode, the two injection electrodes are separated
by half the electrodes. The choice affects the measurement
count per driving pair. For n electrodes skin, there are (n−3)
measurements for the adjacent mode and (n− 4) measure-
ments for the opposite mode. This work employed adjacent
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Fig. 2. Fabrication process of the finger-shaped soft artificial skin. (a)
Cutting the conductive rubber sheet into the desired shape with eight
elongated electrodes. (b) Placing the prepared inner conductive layer on the
3D-printed stand. (c) Preparing the hydrogel mixture in a 55°C water bath.
(d) Pouring the hydrogel into the 3D-printed mold and carefully inserting
the stand with the inner layer, ensuring even distribution of hydrogel on
the surface. (e) After curing, removing the mold and applying the outer
conductive layer over the hydrogel surface to complete the three-layer
structure.

opposite current injections and adjacent measurements. By
using the learning-based methods, this inverse problem can
be formulated as a mapping function between the electrical
measurements and contact information:

u = f (σ(x,y,F)) (2)

where f (σ()) represents the nonlinear relationship that can
be learned through data-driven methods.

The sensitivity of the skin at different locations is deter-
mined by changes in electrical potential distribution upon
touch. In single-layer, EIT-based skins, the region of sen-
sitivity diminishes as the distance from the injection and
measurement electrodes increases, limiting their applicability
to simple skin shapes with distributed electrodes. Scaling
EIT-based technologies for complex skin surfaces with distal
electrodes is feasible using multilayer architectures [23]. The
key concept is to induce significant impedance changes upon
contact by layering a high-impedance layer between two
low-impedance, electrode-carrying layers (Figure 1). Since
the overall impedance of the multilayer structure is high,
determined primarily by the thin middle layer, any change
in this layer (caused by touch) significantly alters the current
pathway. This enables the creation of complex-shaped, EIT-
based tactile skins with distal electrodes.

III. FABRICATION AND EXPERIMENT

A. Skin Design and Fabrication

The fabrication of the finger-shaped soft artificial skin
involves a multistep process, as illustrated in Fig. 2. This
skin design consists of three primary layers: two conductive
rubber sheets and one hydrogel layer sandwiched between
them. The top and bottom layers are made of commercially
available conductive rubber sheets (The Pi Hut, Conductive
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Fig. 3. (a) Experimental setup showing the finger-shaped soft skin pressed by a robotic arm equipped with force sensors. Key components include the
EIT board and Arduino Mega 2560 for data collection. The sensor uses a cylindrical coordinate system (θ ,h) (b) Raw EIT signals across 208 channels
for presses on two different points (A and B) with varying forces. (c) Colored map showing the normalized difference from the baseline for different press
localizations and forces. It corresponds to the raw signals shown in (b), with each row representing a different press condition. (d) Temporal visualization
of EIT signals from selected channels during repeatable presses on point A, where ’P’ indicates press and ’R’ indicates release.

Rubber Sheet / Stretch Sensor). These sheets have high
electrical conductivity, with a bulk sheet resistivity of ap-
proximately 70 ohm·mm in their relaxed state. The middle
hydrogel layer is crafted by combining gelatin (sourced from
pork), glycerol, and water in a precise ratio of 1:1.5:2.5
by weight, following the method described by Hardman et
al. [27]. This mixture is heated in a water bath maintained
at 55 ◦C. The assembly process utilizes custom 3D-printed
polylactic acid (PLA) molds to place and shape the skin. The
inner conductive layer is placed on a support, followed by
pouring and curing the hydrogel middle layer in the mold and
finally applying the outer conductive layer. The finalized skin
remains attached to the support for subsequent experimental
tests. After assembly, the skin was wrapped with plastic tape
to ensure consistent contact between outer conductive layer
and middle hydrogel layer, as the adhesive properties of the
hydrogel degrade after thousands of press cycles.

The artificial skin’s electrode configuration is designed
to optimize sensing capabilities across its entire surface.
Each conductive layer features 8 long strips that serve as
electrodes, resulting in a total of 16 electrodes for the entire
skin structure. Furthermore, the electrodes on the upper
and lower conductive layers are positioned in an interlaced
pattern. This arrangement guarantees that the whole skin is
effectively ’wrapped’ by the conductive layers, creating a
continuous sensing field throughout the structure. By placing
all the electrodes at the base of the artificial skin, this
design allows for the creation of more complex and diverse
skin shapes. The base-mounted electrodes leave the rest of
the skin’s surface free from rigid components, it can bend,
stretch, and compress freely. This conformability is essential

for applications where the sensor needs to wrap around
robots’ joints or cover irregular surfaces.

B. Hardware Setup

The experimental hardware setup is illustrated in Fig. 3
(a). The fabricated finger-shaped artificial skin, secured in
its custom 3D-printed support, is fixed to a flat table. A
UR5 robotic arm is used to apply precise pressure at various
points on the skin’s surface. Attached to the end-effector are
force sensors (Sparkfun TAL220 Series Parallel Beam Load
Cell) to measure the applied force accurately. Besides, an
M4 screw is affixed to the bottom of the force sensor as the
press probe, providing a 4 mm diameter pressing surface.

The electrodes of the artificial skin are connected to a
specialized EIT board [28], which is capable of injecting
alternating current (AC) into the skin and measuring the
voltages between electrode pairs. at a high frequency of
20kHz. The board provides adjustable AC current injection
using a signal generator (AD5930) with output voltages
ranging from -5V to 5V at a frequency of 20KHz. An
ADC converter performs voltage measurements at a 20MHz
sampling rate. We oversample the impedance measurements
to reduce noise. Each frame was obtained at 2.2 Hz

The electrodes on the upper conductive layer are con-
nected to odd-numbered pins on the EIT board, while those
on the lower layer are connected to even-numbered pins.
This alternating connection ensures that adjacent voltage
measuring pairs on the EIT board always span the entire
three-layer structure of the artificial skin. In this way, each
measurement can capture the conductivity changes across
all layers, including the middle hydrogel layer. This design
significantly enhances the sensor’s sensitivity to conductivity
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Fig. 4. Data Collection, processing, and model training pipeline for the
finger-shaped soft artificial skin. The left side illustrates the multithreaded
data collection. The right side shows the data processing, aligning, and
transforming to a structured format for neural network training.

variations throughout the entire structure. The force sensors
are connected to an Arduino Mega 2560 microcontroller via
the amplifier (SparkFun Load Cell Amplifier - HX711). This
setup allows for real-time force data collection alongside the
EIT measurements.

C. Raw Data Visualization

The working principle of the EIT-based soft artificial skin
is illustrated in Fig. 1. This skin has a configuration of
16 electrodes and its data collection occurring in discrete
frames. For each frame, a driving current is applied to a
specific pair of electrodes, highlighted in orange. Simul-
taneously, the board measures potential differences across
all other adjacent remaining electrode pairs, denoted in red.
There are two methods for selecting the driving electrodes:
adjacent and opposite. In the adjacent mode, the driving
electrodes are next to each other, while in the opposite
mode, the driving electrodes are separated by 7 intervening
electrodes in this configuration. The choice of mode affects
the number of measurements taken per driving pair: 13 for
adjacent mode and 12 for opposite mode. In this experiment,
we employed the adjacent mode, which results in a total of
16×13 = 208 valid measurements in each collection frame.

Fig. 3(b) shows the raw EIT signals for the soft artificial
skin at rest (baseline) and during presses at two different
points (A and B) with varying forces. The data reveals unique
signal patterns for different press localizations, demonstrat-
ing the skin’s ability to differentiate spatial stimuli. More-
over, for each localization, the signal deviation from the base-
line correlates with the applied force magnitude, indicating
its force sensitivity. The signal difference for these presses
is visualized as a colored map in Fig. 3(c). The contrasting
patterns for points A and B further illustrate the skin’s spatial
discrimination capability, while the increasing color intensity
with higher force applications (e.g., from A1 to A3) confirms
the skin’s ability to discern force magnitudes. To evaluate
the repeatability of the skin’s response, Fig. 3(d) shows the

temporal change of signals from selected channels during
multiple press-release cycles at point A. Channels 20, 82,
and 158 exhibit clear and significant responses to the applied
pressure while channels 153 and 154 show minimal reactivity
to this localization press.

This analysis demonstrates three key properties of the
EIT-based soft artificial skin: spatial sensitivity, which can
generate unique signal patterns for different press localiza-
tions; force sensitivity, the signal deviation from the baseline
correlates strongly with the applied force; and repeatability,
which exhibits consistent signal patterns for repeated stimuli
at the same localization. Furthermore, the clear and consis-
tent relationship between EIT signals and both localization
and force inputs provides a solid foundation for advanced
data analysis techniques. This proves the feasibility of the
subsequent work: collecting a comprehensive dataset for
training a neural network to predict touch location and force
based on the raw EIT signals.

D. Data Collection and Neural Network Training

The data collection process involves EIT signal acquisi-
tion, robotic arm movement, press force measurement and
their synchronization. The objective of the process is to
gather comprehensive data on the artificial skin’s response
to various pressure stimuli on its surface. Firstly, a dedicated
thread continuously reads EIT signals from the sensor at a
frequency of 2.2 Hz through the USB connection of the EIT
board and the PC. Each reading is timestamped for later
alignment. The robotic arm control thread executes a four-
state movement cycle for each target data point.

• Move: A cylindrical coordinate of the target point (θ ,h)
on the sensor’s surface is generated. The arm moves the
probe to a plane just the same height as this point.

• Press: The end-effector moves horizontally, using the
probe to press on the target point. The press distance d
is randomized within a predetermined range to vary the
applied force across trials.

• Hold: The probe maintains its position for 3 seconds,
ensuring stable pressure is applied and allowing the
sensor to reach a steady-state response.

• Release: The probe is lifted from the sensor surface.
This cycle is then repeated with the opposite probe and
sensor, providing complete data collection across the entire
sensor surface. During the arm movement cycle, force read-
ings from the sensors (Ft) are recorded at a frequency of 5.0
Hz. These readings are timestamped (t) and paired with the
current robotic arm state St (move, press, hold, or release)
and the target point coordinate (θ ,h)t .

After collection, the data undergoes several processing
steps to be prepared for model training. To align the EIT
signal with the robot movement and force readings, the force
data is first resampled to 20 Hz using linear interpolation.
This matches the frequency of the robotic arm control thread.
The EIT readings, originally collected at 2.2 Hz, are then
aligned with their nearest corresponding force measurements,
target localizations, and arm states based on timestamps.
The angular component θ of the localization element is
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converted to its sine and cosine to avoids discontinuities and
ambiguities for training process. For each EIT data collection
cycle, the board yields 256 sets of voltage measurement data,
while some measurements from electrodes serving as current
sources are set to 0. The final EIT signal frame comprises
208 non-zero signal sets, denoted as [cm,cn, ...ck]. The final
data frame structure, as illustrated in Fig. 4, includes the
timestamp, robot state, aligned force, transformed target
point localization, and the non-zero EIT signals.

For the neural network training, the data is organized
into input-output pairs. The input consists of 416 features,
representing the EIT signals before and during the press
state. The output corresponds to the transformed target
point localization and force. The neural network architecture
comprises an input layer of 416 nodes, followed by three
hidden layers with 300, 50, and 20 nodes respectively, and a
4-node regression output layer. The complete dataset consists
of 1,900 presses totaling 22,858 data frames, which are
split into training, validation, and test (80%, 10%, 10%)
sets. Training (stochastic gradient descent with momentum)
begins with a learning rate of 0.005, and batch size of 1024.

IV. RESULTS

A. Localization and Force Prediction

We evaluated the performance of the trained neural net-
work for predicting press localization and applied force mag-
nitude. Fig. 5(a) shows the comparison between predicted
and ground truth values for angle, height, and force. The
results demonstrate effective prediction performance, partic-
ularly in localizing press points. For localization, the high
R2 values for angle and height indicate a strong correlation
between the predicted and actual values. The Mean Absolute
Errors (MAE) further confirm the high accuracy. To put
the localization accuracy into perspective, we calculated the
average distance error on the unrolled surface of the cylin-
drical skin is 2.74 mm. This level of precision is particularly
impressive when considering that the pressing probe used in
our experiments is an M4 screw with a 4 mm diameter.

While force prediction accuracy is reasonably with an
average error of 0.77 N over a 10 N force range, the R2 values
suggest that estimating applied force is more challenging
than determining press localization for the trained model.
One reason for this could be the complex nonlinear behaviour
of our sensing material, which would require more dynamic
data to be more informative. Hence, a higher sampling rate
is imperative for better force estimation. The comprehensive
visualizations in Fig. 5(d-e) provide additional insights into
the localization and force prediction along a spiral trajectory
on the sensor surface. These visualizations further validate
the trained neural network’s capability to accurately predict
press points and estimate forces in various locations.

B. Error Distribution Map Analysis

Fig. 5(b-c) presents unrolled surface maps of the cylindri-
cal skin, the interpolated colored maps illustrate the spatial
distribution of distance and force prediction errors. We
employed MATLAB’s ’natural’ scatter interpolation method

to get these continuous error distribution maps. This natural-
neighbor interpolation method produces a C1 continuous
surface except at the sample points, offering a smooth
representation of error variation across the surface.

The distance error map shows an intriguing pattern of
eight linear regions with high prediction accuracy. These
regions correspond precisely to the locations of the eight
long strip electrodes on the outer conductive layer of the
skin. This observation reveals that the areas directly above
the electrodes probably have higher sensitivity to conduc-
tivity changes. It also suggests that increasing the number
and density of electrodes could potentially enhance overall
prediction accuracy across the entire skin surface.

The force error distribution map shows a non-uniform
pattern across the sensor surface, while the right half has
higher prediction accuracy. This uneven distribution can be
attributed to factors in both the fabrication process and the
experimental setup. During the skin’s fabrication, the stand
is inserted into a mold filled with hydrogel, which then cures
to form the middle layer. However, the stand is not always
positioned perfectly at the center of the mold, resulting in
an uneven distribution of the hydrogel middle layer around
the surface. This non-uniform thickness of the middle layer
could contribute to variations in force sensitivity across the
skin. Additionally, the press data collections are done by two
force sensors, each covering half of the skin’s surface. The
skin stand is not perfectly centered between the two force
sensors, potentially leading to systematic differences in force
measurements across the surface.

C. Improved Force Prediction by Sensor-Specific Training

To address the non-uniform force prediction accuracy
observed in the initial analysis and to minimize the influence
of fabrication inconsistencies and experimental setup varia-
tions, we implemented a sensor-specific training approach.
Instead of training a single model with combined data,
we separated the dataset based on the two force sensors
(SparkFun TAL220) used in data collection and trained
individual models for each sensor’s measurements. Instead
of training a single model with data from both force sensors,
we trained separate models for each sensor. The results of
this approach are illustrated in Fig. 6.

As shown in Fig. 6, Sensor 2 demonstrates better predic-
tion accuracy compared to Sensor 1. This difference reveals
that the area covered by Sensor 2 likely has a more uniform
hydrogel layer distribution. Our final observation of the skin
after the experiment confirmed this hypothesis, showing that
this side indeed has a thicker and even hydrogel layer.
Comparing the combined distribution map with Fig. 5(c),
which was based on a single model trained with data from
both sensors, this sensor-specific training shows a marked
improvement in overall accuracy with MAE = 0.6556N
(14.7% improvement). These results highlight the importance
of considering individual sensor characteristics and local
structural variations in the training process. By accounting
for the unique properties and positioning of each force
sensor, as well as potential inconsistencies in the skin’s
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Fig. 6. Comparison of force prediction errors using sensor-specific training.
The top two are individual error distribution maps for each sensor. The
bottom combined force error distribution map showing improved accuracy
and uniformity compared to the single-model approach

fabrication, we were able to achieve more accurate and
consistent force predictions across the entire surface of the
artificial skin.

V. CONCLUSION

In this paper, we presented a novel multi-layer EIT-based
soft sensor architecture designed for distributed high-density
tactile sensing of complex shapes. Our 3D finger-shaped
soft artificial skin with innovative design and electrode
placement demonstrates remarkable stability and robustness
over thousands of press cycles, with the perception model
achieving high accuracy in tactile information prediction.
with high accuracy. The high prediction accuracy of our
EIT-based soft artificial skin sensor can be attributed to
several key factors. Primarily, the The novel multi-layer
design plays a crucial role in enhancing its sensitivity to
external pressure. By incorporating multiple layers with
varying conductivity (hydrogel and conductive rubber), the
skin structure responds more distinctly to applied forces,
resulting in more complex and informative EIT signals.
Using the machine learning method, the 3D tactile infor-
mation can be extracted from the EIT signals with much
higher accuracy than existing EIT-based tactile sensors,
achieving 2.74mm average localization error and 0.77N
force prediction error. Another significant contributor is the
high-resolution EIT measurement system. The 16-electrode
configuration provides dense spatial sampling, yielding 208

valid measurements per frame, which enables the detection
of subtle conductivity changes throughout the sensor. It
is important to note that While the current results were
achieved using a 4 mm diameter M4 screw as a probe, per-
formance could be further improved through enhanced There
is potential to improve our results with better data collection
protocols, larger datasets data and refined neural network
architectures. Besides, the base-mounted electrode placement
enables a continuous and fully soft cylindrical sensing area.
This sensing technology has potential applications in robotic
manipulation and human-robot interaction where precise
tactile feedback is crucial. The flexible design allows it to
cover complex geometries such as robotic hand, joints and
limbs, to provide stable and accurate tactile sensing and
perception for delicate manipulation and safe interactions.

Our work faces several limitations. The hydrogel middle
layer’s susceptibility to water loss degrades the sensor’s
press response sensitivity after three months of use. Future
work will explore more stable layer materials and improved
sealing methods, such as additional silicone encapsulation, to
extend the sensor’s lifespan. The static perception model also
presents limitations. Each prediction cycle (press-response-
collection-prediction) takes approximately 3 seconds, limit-
ing dynamic performance in real-time tactile sensing. The
insights gained from distance and force error distribution
maps not only validate the effectiveness of our multi-layer
EIT sensor design, but also point towards specific strate-
gies for enhancing the sensor’s its performance in future
iterations. Refining the fabrication process to ensure more
uniform hydrogel distribution could enhance consistency in
force sensitivity. Additionally, exploring increased higher
electrode densities and alternative electrode configurations
could potentially lead to even higher greater accuracy in both
localization and force prediction.
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