
Received: 21 January 2025 Revised: 24 April 2025 Accepted: 20May 2025

DOI: 10.1002/alz.70379

R E S E A RCH ART I C L E

A novel approach to resilience and its links with education and
Alzheimer’s disease genetics

Maria Carrigan1,2,3 Diana I. Bocancea1,2 Jacob Vogel4 Anna C. van Loenhoud1

Niccoló Tesi5,6 Frederik Barkhof7,8 Paul J. Lucassen3 WiesjeM. van der Flier1,9

Harm J. Krugers3 Sven J. Van der Lee1,5 Rik Ossenkoppele1,4

1Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, AmsterdamUMC location VUmc, Amsterdam, the Netherlands

2AmsterdamNeuroscience, Neurodegeneration, Amsterdam, the Netherlands

3Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands

4Department of Clinical SciencesMalmö, Faculty ofMedicine, SciLifLab, Lund University, Lund, Sweden

5Section Genomics of Neurodegenerative Diseases and Aging, Department of Clinical Genetics, Vrije Universiteit Amsterdam, AmsterdamUMC, Amsterdam, the

Netherlands

6Delft Bioinformatics Lab, Delft University of Technology, Delft, the Netherlands

7Queen Square Institute of Neurology and Centre forMedical Image Computing, University College London, Queen Square, London, UK

8Department of Radiology &NuclearMedicine, AmsterdamNeuroscience, Vrije Universiteit Amsterdam, AmsterdamUMC, Amsterdam, the Netherlands

9Department of Epidemiology &Data Science, AmsterdamUMC location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands

Correspondence

Maria Carrigan, Alzheimer Center Amsterdam,

Neurology, Vrije Universiteit Amsterdam,

AmsterdamUMC location VUmc, De

Boelelaan 1118, 1081HZAmsterdam, the

Netherlands. Faculty of Science, Swammerdam

Institute for Life Sciences, University of

Amsterdam, Science Park 904, 1098 XH

Amsterdam, the Netherlands.

Email: m.carrigan@amsterdamumc.nl

Rik Ossenkoppele, Alzheimer Center

Amsterdam, Neurology, Vrije Universiteit

Amsterdam, AmsterdamUMC location VUmc,

De Boelelaan 1118, 1081HZAmsterdam, the

Netherlands.

Email: r.ossenkoppele@amsterdamumc.nl

Funding information

Alzheimer Nederland; Veni-program of

Zon-MW, Grant/AwardNumber:

09150161910095; European Research

Council

Abstract

INTRODUCTION:Cognitive resilience refers tomaintaining cognitive functiondespite

Alzheimer’s disease (AD) pathophysiology.

METHODS: We analyzed amyloid-positive individuals across clinical stages of AD in

two cohorts: the Amsterdam Dementia Cohort (ADC, N = 1036) and Alzheimer’s Dis-

easeNeuroimaging Initiative (ADNI,N=685). Cognitive resiliencewas conceptualized

from a canonical correlation analysis of magnetic resonance imaging and neuropsy-

chological data in each cohort separately. Model validation involved education as a

resilience proxy and key genetic factors (apolipoprotein E [APOE] ε4 and APOE ε2) of
AD.We explored associations between 83 AD risk loci and cognitive resilience.

RESULTS: Resilience was correlated with education (ADC: β= 0.144, p< 0.001; ADNI:

β = 0.149, p < 0.001) and APOE ε4 (βmeta-analysis= –0.052, p = 0.014). Exploratory sin-

gle nucleotide polymorphismmeta-analysis identified potential involvement of genetic

variants around genes UNC5CL, USP6NL, and TPCN1 in lower, and genes COX7C and

MINDY2 in higher resilience.
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DISCUSSION:Our novel resilience approach showed conceptual validity and potential

for future discovery of resilience-related genetic variants.

KEYWORDS

Alzheimer’s disease, canonical correlation analysis, cognitive resilience, genetic risk factors,
global cognition, magnetic resonance imaging

Highlights

⋅ Wedefine a novel approach to resilience using canonical correlation analysis (CCA).

⋅ Apolipoprotein E ε4 is linked to lower resilience, suggesting increased vulnerability.
⋅ Genetic loci aroundCOX7C andMINDY2 are potentially involved in higher resilience.

⋅ This novel approach may be used for multi-cohort studies such as genome-wide

association studies in the future.

1 BACKGROUND

Aggregation of amyloid beta (Aβ) is among the earliest pathological

changes in Alzheimer’s disease (AD).1 Despite abundant pathology,

some individuals show limited decline in memory and other cogni-

tive functions. Such individual differences in AD trajectories suggest

the presence of protective mechanisms, a concept known as cognitive

resilience.2

Resilience to AD-related neurodegeneration is influenced by var-

ious factors, including age, sex, genetic factors, environment, and

lifestyle.3 With consensus on AD-causative mutations in genes PSEN1,

PSEN2, and APP, involvement of genetic factors in AD is well estab-

lished and heritability is estimated around 60% to 80%.4,5 In sporadic

AD, the apolipoprotein E (APOE) ε4 variant raises the risk of devel-

oping AD by three to fifteen times,6,7 and a further 83 AD-related

genetic loci have been identified in a recent genome-wide association

study (GWAS).5 Conversely,APOE ε2and the recently discoveredAPOE
ε3 Christchurch mutation delay or even protect against the develop-

mentof clinical symptoms.3,6,8 This discoveryof protective genes toAD

sparked growing interest in genetic variants that may boost cognitive

resilience.3,4,9–11

In the past decade, research on cognitive resilience has relied on

quantifying this concept using proxy variables (e.g., education, IQ)

or, more recently, various residual approaches. Residual measures

are derived from regression models of cognition on brain pathology

(e.g., tau or atrophy) from which the model error term constitutes

the measure of resilience.12 As such, residuals reflect the degree

of cognitive resilience based on observed versus predicted cogni-

tion scores relative to the pathological burden.11,13 While these

measures are good predictors of future cognitive decline,14,15 they

constitute a derivative two-step approach in which the residual is

first calculated from the regression model and subsequently sub-

jected to the analysis of interest as its own measure of resilience.

This can lead to confusion in interpretation and understanding

of the etiology of cognitive resilience. To resolve this issue while

maintaining the conceptual advantages of the standard residual

approach, we propose a novel approach to operationalizing cognitive

resilience by using a canonical correlation analysis (CCA) model.16

CCA is a multivariate statistical model that identifies associations

between two high-dimensional sets of variables, in this case cogni-

tion and magnetic resonance imaging (MRI) data. Specifically, CCA

finds the shared correlation structure within the co-analyzed variable

sets and describes the symmetrical linear relationship that sum-

marizes the data compactly. CCA has been applied previously to

study brain–behavior relationships,17–19 demonstrating its suitability

in summarizing multidimensional data into latent dimensions.16 CCA’s

main advantage over the standard residual approach is its ability to

leverage all available data across domains, rather than focusing on

select variables. This approach effectively captures the complexity

of cognition and neurodegeneration when pooling data from multi-

ple cohorts, making it particularly useful for large-scale multicenter

GWAS.

To provide proof-of-principle for this approach, we defined a CCA-

based quantitative framework of resilience using cognition and neu-

roimaging data from two independent cohorts of Aβ-positive individu-
als.We first validated themodel by examining the association between

our resilience framework and education (an established resilience

proxy). Second, we investigated the association of key genetic AD risk

(i.e., APOE ε4) and AD protective (i.e., APOE ε2) factors with resilience.
Third, we explored the association of cognitive resilience on a single

nucleotide polymorphism (SNP) level of 83 GWAS-based AD genetic

loci.5 We hypothesized to observe a positive association between edu-

cation and resilience, and a negative association between APOE ε4
and resilience. Because the protective effects of APOE ε2 are primar-

ily linked to Aβ aggregation, we anticipated no association between

resilience and APOE ε2 in either cohort due to our sample selection.

Finally, based on incomplete annotation of functional downstream

effects of genetic loci associated with risk for developing AD, we

hypothesized to discover associations between some of these variants

and cognitive resilience.
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TABLE 1 Sample characteristics.

ADC

(N= 1036)

ADNI

(N= 685)

Sex

Males (%) 525 (50.67) 376 (54.91)

Age (years)

Mean (SD) 65.9 (6.80) 75.0 (7.25)

Diagnosis

AD 705 (68.1%) 212 (30.9%)

MCI 219 (21.1%) 286 (41.8%)

CU 112 (10.8%) 187 (27.3%)

APOE, carriership

ε4 726 (70.1%) 447 (65.3%)

ε2 62 (6.0%) 35 (5.1%)

Education (years)

Mean (SD) 11.5 (2.97) 16.0 (2.79)

MMSE

Mean (SD) 22.6 (5.37) 26.2 (3.76)

MRI AD signaturea

Mean (SD) 2.63 (0.151) 2.64 (0.190)

Abbreviations: AD, Alzheimer’s disease; ADC, Amsterdam Dementia

Cohort; ADNI, Alzheimer’s Disease Neuroimaging Initiative; APOE,
apolipoprotein E; CU, cognitively unimpaired; MCI, mild cognitive impair-

ment; MMSE, Mini-Mental State Examination; MRI, magnetic resonance

imaging; SD, standard deviation.
aCortical thickness (mm).

2 METHODS

2.1 Sample characteristics

2.1.1 Amsterdam Dementia Cohort

We inlcuded a total of 1036 Aβ-positive subjects across clinical stages
of AD from the Amsterdam Dementia Cohort (ADC, Table 1) who

were assessed at the memory clinic between 2002 and 2020. Partici-

pant selection was based on the following criteria: (1) Aβ positivity as
determined using either cerebrospinal fluid (CSF; Aβ42 < 813 pg/L20

[n= 1059]) or positron emission tomography (PET; i.e., [11C]Pittsburgh

compound-B or [18F]flutemetamol21 [n = 88]), (2) availability of a MRI

scan on 1.5 or 3T scanner, (3) availability of neuropsychological data,

and (4) availability of genetic data. We investigated subjects across

clinical stages of AD, including cognitively unimpaired (CU) individu-

als (n = 112), those with mild cognitive impairment (MCI, n = 219),

and individuals with AD dementia (n = 705). Clinical diagnosis was

established in a multidisciplinary team by consensus, according to

the respective criteria by the National Institute on Aging–Alzheimer’s

Association.22 Individuals who presented with subjective cognitive

complaints but tested within normal limits at neuropsychological

examination were classified as CU, as were those with no complaints

but Aβ positivity.23 Exclusion criteria were: (1) substantial scanning or

RESEARCH INCONTEXT

1. Systematic review: Literature search revealed that sev-

eral studies have examined the biological and genetic

underpinnings of cognitive resilience in the context of

Alzheimer’s disease (AD), but there has been limited con-

sensus on methodologies for assessing resilience. This

study contributes to the field by proposing a canoni-

cal correlation analysis to investigate cognitive resilience

in amyloid-positive individuals across two cohorts: the

Amsterdam Dementia Cohort and Alzheimer’s Disease

Neuroimaging Initiative.

2. Interpretation: The study found resilience to correlate

with education and apolipoprotein E ε4. In addition, we

identified several single nucleotide polymorphisms to be

potentially involved in the mechanisms behind resilience,

including genetic variants around genes TPCN1, UNC5CL,

USP6NL, COX7C, andMINDY2. Our findings highlight the

effectiveness of canonical correlation analysis in measur-

ing resilience, particularly in multi-cohort studies.

3. Future directions: Future research should include bigger

samples to explore the genetic mechanisms of resilience,

focusing on sex-dependent variants, and investigate the

role of lifestyle factors in enhancing resilience.

movement artifacts onMRI aswell as a failed imageprocessing scan; (2)

an interval> 6months betweenMRI and neuropsychological testing in

AD cases, and > 12 months in CU or MCI cases; or (3) age < 50 years.

All participants underwent standard dementia screening, including a

structured caregiver interview, medical history and physical exami-

nation, lumbar puncture and/or PET imaging, brain MRI, genotyping,

and extensive neuropsychological testing.24 In addition, as a measure

of education, participants were scored using the seven-item Verhage

scale, which is a standardizedmeasure based on theDutch educational

system, with higher scores representing more advanced levels of edu-

cation (e.g., 1= primary school not completed, 7= academic degree).25

For comparability to the Alzheimer’s Disease Neuroimaging Initiative

(ADNI), we converted the measure of education in ADC from Ver-

hage to years (e.g., 1 = 5 years, 7 = 17 years; Table S1 in supporting

information).26

2.1.2 ADNI

We further assessed 685 Aβ-positive individuals across clinical stages
of AD from the ADNI cohort, included between 2006 and 2020 (Table

1). Aβ positivity was defined using cohort-specific PET standardized

uptake value ratio (SUVR) thresholds (i.e., [11C]Pittsburgh compound-

B [1.5 SUVR], [18F]Florbetapir [1.11 SUVR] or [18F]Florbetaben [1.08

SUVR]).27,28 Specifically, we used demographic data including educa-

tion as measured in years, neuropsychological data, as well as MRI and
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genetic data. Detailed information on methodology of either of these

data sets can be found onwww.adni-info.org. Participant selectionwas

based on the same criteria as used in ADC.Our sample consisted of CU

individuals (n = 187), individuals with MCI (n = 286), and individuals

with AD dementia (n= 212).

2.2 Measures of cognition

2.2.1 ADC

Cognitive performance was sampled from several previously estab-

lishedcognitivedomains23 usinga comprehensivebatteryof neuropsy-

chological tests. Global cognition was assessed using the Mini-Mental

State Examination (MMSE). We included total immediate and delayed

recall of the 15 words test (a Dutch version of the Rey Auditory Ver-

bal Learning Test [RAVLT]), the recognition index calculated based on

false positives and false negatives of the 15 words test, and total recall

on condition A of the Visual Association Test as measures pertaining

to thememory domain. The executive functioning domainwas covered

by the Frontal Assessment Battery, digit span backward, Stroop test

condition 3 (color-word task), Trail Making Test (TMT) Part B (TMT-B),

and letter fluency. For the attention domain, digit span forward, TMT

Part A (TMT-A), and Stroop test conditions 1 and 2 (word and color,

respectively) were used. Finally, we included the naming part of the

Visual Association Test and Animal Fluency to measure the language

domain. For individuals with missing TMT-B data but available data for

the TMT-A, we imputed TMT-B by calculating the missing score using

the available individual TMT-A score and a diagnostic-group specific

TMT-A/TMT-B ratio. We excluded individuals (n = 8) with fewer than

three cognitive tests available. Further, we excluded those cognitive

tests that were missing in > 50% of the participants (e.g., the Complex

Figure of Rey that was only available in 34.44% of participants), result-

ing in a total of 16 cognitive variables. Finally, the Stroop test and TMT

scores were inverted to match the directionality of the other 11 cogni-

tive tests (i.e., lower scores representing worse cognitive functioning)

to facilitate interpretation of the results.

2.2.2 ADNI

A total of 11 neuropsychological tests were included from ADNI, cov-

ering five cognitive domains in addition to global cognition, which was

assessed using the MMSE. The memory domain was measured by the

RAVLT immediate and delayed recall, Logical Memory I, as well as the

Alzheimer’s Disease Assessment Scale Cognitive subscale (ADAS-Cog)

immediate and delayed recall. As in ADC, the TMT-B was included

as a measure of executive functioning, while Part A of the same test

was used to assess the attention domain. For the language domain,

we included Animal Fluency and the Boston Naming Test. Finally, we

included the Clock Drawing Test to assess visuospatial capabilities.

Individual test scoreswere further processed for theCCAmodel.Miss-

ing data on TMT-B was imputed similarly to the ADC cohort, and

similar exclusion criteria were applied. In further concordance with

procedures performed in ADC, TMT scores were inverted, as were

scores of the RAVLT delayed recall, and ADAS-Cog immediate and

delayed recall.

2.3 MRI acquisition and pre-processing

2.3.1 ADC

Acquisition of 3D T1-weighted MRI was performed on 10 different

MRI scanners of 1.5–3T (n = 188 and n = 959, respectively) accord-

ing to standardized acquisition protocols as described elsewhere.29

The MRI data was processed with FreeSurfer software (http://surfer.

nmr.mgh. harvard.edu/; v7.1). We extracted cortical thickness and sur-

face area in 68whole-brain segmented regions of theDesikan–Killiany

atlas,30 as well as 16 subcortical volumes, intracranial volume (ICV),

andwhitematter hypointensities (WM-hypo; aT1-imagederivedproxy

measure of white matter hyperintensities).31–33 The MRI data was

quality checked (QC) visually, excluding scans with poor cortical seg-

mentation while poorly segmented subcortical volumes were set to

missing values at the regional level. Where longitudinal MRI data was

available, we selected the scan closest to the date of neuropsycholog-

ical testing, but no more than 6 months apart in individuals with AD

and nomore than 12months apart inCU individuals. Cortical thickness

measures, surface areas, and subcortical volumes were harmonized

using neuroCombat,34,35 including scanner type as a nuisance variable

and the biological variables age, sex, and diagnosis as variables whose

explained variance was preserved in the data. Subsequently, we calcu-

lated weighted cortical thickness composites for whole brain, frontal,

temporal, parietal, and occipital regions, and an unweighted corti-

cal thickness composite for AD-signature regions. WM-hypo scores

were inverted to align the directionality among the MRI variables (i.e.,

higher values reflect a positive outcome across all variables) and log-

transformed. All volumetric variables (i.e., subcortical volumes and

WM-hypo) were adjusted for ICV by regressing out the effect of ICV

from each variable. This adjustment was performed after imputing

missing values, as described below.

2.3.2 ADNI

WeassessedMRI data froma total of 21differentMRI scanners of 1.5–

3T (n= 235 and n= 450, respectively). ADNI imageswere downloaded

and preprocessed in house using the same FreeSurfer pipeline used in

ADC. As these images were not visually QCed, they were processed

as follows.We identified potentially failed segmentations based on the

SurfaceHoles variable (i.e., scans with a value larger than median ± 3 x

interquartile range thresholded SurfaceHoles, given that a larger value

has been suggested as an indicator of poor segmentation quality) and

assessed respective images visually. For subcortical volumes,we identi-

fied outlying values (based on the diagnostic group–specific sum of the

mean ± 2 standard deviations) and subsequently set those to missing
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values. All further data processing was performed according to pro-

cedures employed in the ADC, extracting all MRI variables described

above.

2.4 Cognitive resilience

We define the cognitive resilience framework as the variance in

cognition unexplained by brain atrophy in participants with amyloid

pathology, using the first pair of canonical variates from CCA to quan-

tify cognition and brain dimensions (see section 2.6 for details). While

this approach uses the same underlying conceptual framework as a

residualmethod, the difference is that rather than extracting themodel

error term (i.e., residuals) and calling it cognitive resilience, we main-

tain the latent variables of cognition and brain as they are estimated

from theCCAand incorporate them in the following analyses (i.e., tests

for associations with genetic variables) within one model (as explained

below).

2.5 Genetic profiling/measures

2.5.1 ADC

Genetic variants were determined using standard genotyping, impu-

tation, and QC methods as described elsewhere.36,37 In essence,

high-quality genotyping in all individuals was performed using Illu-

mina Global Screening Array (GSA; Illumina, Incl; individual call

rate > 99%, variant call rate > 99%). All individuals’ genetic sex

matched their reported sex. We excluded variants deviating from

Hardy–Weinberg equilibrium at p < 1×10−6, genotypes were lifted

over to GRCh38/hg38, and prepared for imputation using provided

scripts (HRC-1000G-check-bim.pl) specifying TOPMED as reference

panel.38 This script compares variant ID, strand, and allele frequencies

to the TOPMED reference panel (version r2, N = 194,512 haplo-

types fromN= 97,256 individuals).39 All individuals and variants were

imputed using the Michigan Imputation server (https://imputation.

biodatacatalyst.nhlbi.nih.gov/). The server uses EAGLE (v2.4) to phase

data and Minimac4 to perform genotype imputation to the reference

panel (version r2).40,41 Before analysis, we excluded individuals with

a family relation (identity-by-descent ≥ 0.2),42 and we kept only indi-

viduals of European ancestry (based on 1000Genomes clustering).43

Finally, we extracted imputed dosages of 83 SNPs previously associ-

ated with AD. All genetic loci were coded ordinal for further analysis,

with0=noallele, 1=1allele, and2=2copiesof the respective allele. In

addition, for the purpose of this study, all genetic loci were flipped to

risk, meaning that the higher the number of alleles the higher the risk

of developing AD.

2.5.2 ADNI

Genetic variants were determined by standard genotyping and impu-

tation methods. All individuals were genotyped in three batches as

previously described.44 We applied established QC and imputation

methods to each batch individually. High-quality genotypes were used

in all individuals (individual call rate>99%, variant call rate>99%), and

departure from Hardy–Weinberg equilibrium was considered signifi-

cant at p<1×10−6. Genotypeswere then lifted over toGRCh38/hg38,

prepared for imputation, and imputed as previously done for ADC indi-

viduals. Again, we extracted imputed dosages of 83 SNPs previously

associated with AD. Of these, 81 were imputed with high quality, while

2 SNPs weremissing (rs117618017 and rs7157106). To increase com-

parability to ADC, we replaced themissing SNPs by a variant in linkage

disequilibrium (rs75763893 and rs2753568, respectively). In addition,

due to a lowcall rate, oneSNP (rs56407236)was excluded from further

analyses.

2.6 Statistical analyses

All data pre-processing and statistical analysis was performed in R

version 4.2.1.45

2.6.1 Data imputation

Missing values in the cognitive tests were imputed with a predictive

mean matching model implemented with themice46 package. Age, sex,

education, diagnosis, and all the available cognitive testswere included

in the single imputation model. Similarly, missing values in subcortical

MRI volumes were imputed under the same method, using sex, age,

diagnosis, the volumevariables, aswell as the cortical thickness in lobar

composite regions,WM-hypo, and ICV.

2.6.2 CCA

We fitted a CCA model16,18,47 to identify latent dimensions of the

brain–cognition relationship using the candisc package. The model

takes as input two data matrices: the X matrix consisting of MRI-

derived brain variables (i.e., all the regional cortical thickness variables,

subcortical volumes,WM-hypo and ICV [1036 × 84]), and the Ymatrix

of all cognitive tests [1036 × 16] (in ADC, [685 × 84] and [685 × 11]

in ADNI, respectively). All variables were z scored prior to model fit-

ting using the entire study population as the reference group. The CCA

model then decomposes the data into pairs of canonical variates by

finding a linear combination of X (MRI) that maximally correlates with

a linear combination of Y (cognition). These linear combinations of X

and Y constitute the MRI and cognition canonical variates, respec-

tively. The first pair of canonical variates is computed such that their

correlation is maximized (i.e., the canonical correlation). Multiple sub-

sequent canonical pairs of brain and cognition variates (orthogonal

with all the previous ones) can be calculated, with the maximum num-

ber of pairs boundby thedimensionof the smallestmatrix (16 cognitive

tests in ADC). A property of the CCA is that the first X canonical vari-

ate explains the largest amount of variance in Y, with each subsequent

variate explaining less and less variance in Y. We calculated therefore

the amount (i.e., percentage) of variance that each canonical variate
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explains of its counterpart original variable’s data matrix (also called

the redundancies).

While we inspected the first three pairs for better understanding

of the CCA model output, our interest lies in the first canonical pair,

capturing the most percentage of co-variance and constituting our

framework of resilience, hence we report results of this pair further.

Significance of the canonical correlations was tested with a permuta-

tion test, in which the rows of the Y matrix were shuffled in 10,000

iterations to generate a null distribution of canonical correlations. Fur-

thermore,weextractedandplotted the loadings (i.e., the correlation) of

each set of original variables on their respective canonical variates, to

investigate the contribution of the individual original variables to the

canonical pair. Sex and age were not included in the CCA model and

the input variables were not pre-adjusted for it, as we did not want to

remove variance associatedwith these twovariables at this stage. Both

age and sex are accounted for in all mainmodels as covariates.

2.6.3 Statistical models

In each cohort separately, we used the first set of canonical variates

as our operationalization of resilience for further analyses. First, we

tested the association of the canonical variate of cognition with edu-

cation in a linear regression analysis while adding the canonical variate

ofMRI, corrected by age and sex.

Y1 ∼ X1 + Age + Sex + Education (1)

Second, we tested the associations of our framework with AD risk

(i.e.,APOE ε4) andADprotective (i.e.,APOE ε2) factors in separate linear
regression analyses correcting for X1, age, and sex.

Y1 ∼ X1 + Age + Sex + APOEi (2)

Next, we explored the association of resiliencewith themost robust

genetic loci of AD5 on a single-SNP level in separate linear regression

analyses correcting forX1, age, sex, andpopulation substructure (PC1–

PC5).

Y1 ∼ X1 + Age + Sex + SNPn + PC1 + PC2 + PC3 + PC4 + PC5 (3)

Wemeta-analyzed the results of the SNPs across both cohorts using

a fixed effect inverse variancemeta-analysis.

Finally, given recent recommendations to use interactions to cap-

ture resilience,15,48 we performed sensitivity analyses using interac-

tions between X1 and education, APOE, and single-SNPs.

3 RESULTS

3.1 CCA model

In this section,wepresent the results of applying theCCAmodel to two

high-dimensional datasets, including cognition and MRI data. In ADC,

given the lowest dimension of 16 cognitive tests, the model yielded 16

modesof association that describe theexplained co-variance.We focus

on the first mode in all subsequent analyses, which explained 38.6% of

the co-variance (Figure 1). Figure 2A shows the correlation plot of the

first set ofMRI versus cognition canonical variates (R=0.77,p<0.001).

Figure 2B and 2C show the canonical loadings of each cognitive test

on the first canonical variate of cognition (Figure 2B) and the canoni-

cal loadings of each MRI variable on the first canonical variate of MRI

(Figure 2C). In ADNI, an independent CCA model yielded 11 modes

based on the availability of 11 cognitive tests. Comparable to ADC,

the first mode showed a correlation of R = 0.81 (p < 0.001), explaining

49.5% of the co-variance in the data (see Figure S1 in supporting infor-

mation). It is important to clarify that these percentages represent the

explained co-variance in the original MRI cognition datasets and not

the variance in cognition explained by MRI data (i.e., redundancy). For

reference, the variance in cognition explained by MRI (redundancy) in

the firstmodewas27.3% forADCand34.7% forADNI, highlighting the

need to distinguish between these twometrics in interpretation.

Visual assessment of the original variables’ loadings on the canon-

ical variates reveals highly similar pattern across cohorts, indicating

that the first canonical dimension of MRI data captures a comparable

dimension in the two cohorts (see also Figure S2 in supporting informa-

tion). In both cohorts, parietal, temporal, and subcortical brain regions

loaded most strongly, while frontal, occipital, and cingulate regions

loaded less strongly. Despite varying cognitive tests per cohort and the

resulting increase in disparity of loadings on the canonical variate of

cognition between cohorts, there was a strong overlap regarding the

weight of domains. Global cognition as measured by theMMSE loaded

very high in both cohorts, while the domain of attention weighed less

on the canonical variate of cognition. Memory had a stronger overall

loading in ADC compared to ADNI, whereas executive functioning had

a higher loading in ADNI.

In sum, the canonical variates captured relatively comparable

dimensionsofMRIandcognition in twodifferent cohorts characterized

by inherent differences in cognitive tests, MRI scanners, and sample

compositions.

3.2 Education attainment

To validate our proposed resilience framework, we tested the associa-

tion between our resilience framework with education in each cohort

separately (Figure 3). We found that higher education was associated

with higher cognitive resilience in both ADC (β = 0.144, confidence

interval [CI: 0.105, 0.183], p < 0.001) and ADNI (β = 0.149, CI [0.105,

0.193], p< 0.001).

3.3 APOE ε4 and APOE ε2

Next,we investigated the relationshipbetween theproposed resilience

framework and genetic risk (Figure 3). Carriership of theAPOE ε4 allele
showed a non-significant association with lower cognitive resilience in
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CARRIGAN ET AL. 7 of 14

F IGURE 1 Operationalization of resilience using a canonical correlation analysis. This figure illustrates schematically (left panel) how
cognition andMRI data acquired asmultidimensional datasets are correlated in a canonical correlation analysis. The right panel show the results of
this analysis for the ADC (top) and the ADNI cohort (bottom).We show the percentage of the total covariance in the data explained by each
canonical mode, as well as eachmode’s (i.e., canonical pair of covariates) correlation. Note that the number of modes per cohort is based on the
number of cognitive tests included in eachmodel, as this represents the smallest input variable (16 in ADC and 11 in ADNI). ADC, Amsterdam
Dementia Cohort; ADNI, Alzheimer’s Disease Neuroimaging Initiative; CCA, canonical correlation analysis; MRI, magnetic resonance imaging.

ADC (β = –0.048, CI [–0.102, 0.006], p = 0.080) and ADNI (β = –0.056,

CI [–0.125, 0.013], p = 0.109). We found no significant relationship

between APOE ε2 allele carriership and cognitive resilience in either

cohort (ADC:β=–0.035,CI [–0.201, 0.131],p=0.681;ADNI:β=0.059,

CI [–0.141, 0.259], p= 0.562).

3.4 Exploratory single-SNP level meta-analysis

The associations between cognitive resilience and AD risk were meta-

analyzed on a single-SNP level from both cohorts (Figure 4, Figure S3

in supporting information). We found associations with lower cogni-

tive resilience for APOE ε4 (β = –0.053, CI [–0.095, –0.011], p = 0.013),

and genetic variants rs10947943 around geneUNC5CL (β= –0.065, CI

[–0.123, –0.007], p = 0.029), rs7912495 around gene USP6NL (β = –

0.047, CI [–0.09, –0.003], p = 0.036), and rs6489896 around gene

TPCN1 (β = –0.084, CI [–0.167, –0.001], p = 0.047). In addition, there

were two genetic variants that were associated with higher levels of

cognitive resilience. These were genetic loci rs62374257 around gene

COX7C (β = 0.049, CI [0.001, 0.098], p = 0.045), and rs602602 around

gene MINDY2 (β = 0.068, CI [0.022, 0.113], p < 0.01). None of the

presented associations on a single-SNP level survived multiple testing

correction (see Table S2 in supporting information).

3.5 Sensitivity analyses

When using interaction analyses to caprture resilience, we found that

education modulated the relationship between cognition and brain

pathology as measured by MRI in both ADC (β = –0.041, CI [–0.082,

0.000], p<0.05) andADNI (β=0.051,CI [0.008, 0.095], p<0.05), albeit

in opposite directions. We found no interaction effect between MRI

andAPOE ε4 (ADC: β=0.000, CI [–0.053, 0.054], p=0.992; ADNI: β= –

0.035, CI [–0.101, 0.303], p = 0.290) nor APOE ε2 (ADC: β = –0.013,

CI [–0.180, 0.155], p = 0.883; ADNI: β = –0.017, CI [–0.237, 0.203],

p = 0.881). Importantly, in our single-SNP meta-analysis, we found all

six SNPs identified in our main analysis as significantly moderating the

relationship between MRI and cognition (APOE ε4: β = –0.054, CI [–
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8 of 14 CARRIGAN ET AL.

F IGURE 2 First mode of the canonical correlation analysis in the AmsterdamDementia Cohort. In (A), the correlation of the first canonical
pair is illustrated, colored by diagnosis (cognitively unimpaired, mild cognitive impairment, and Alzheimer’s disease dementia) including the null
distribution of the permutation test. B, Individual cognitive test loadings on the first canonical variate of cognition (Y), colored by representative
cognitive domains. C, MRI variable loadings on the first canonical variate of brain status (X) plotted on the brain, whereas (D) shows the individual
variable loadings, colored by brain lobar areas. AD, Alzheimer’s disease; CN, cognitively normal; MCI, mild cognitive impairment; MRI, magnetic
resonance imaging.

0.096, –0.012], p = 0.012; UNC5CL: β = –0.061, CI [–0.118, –0.004],

p = 0.037; USP6NL: β = –0.047, CI [–0.09, –0.003], p = 0.036; TPCN1:

β= –0.084, CI [–0.166, –0.001], p= 0.048;COX7C: β= 0.050, CI [0.002,

0.099], p= 0.041;MINDY2: β= 0.067, CI [0.022, 0.113], p= 0.004).

4 DISCUSSION

The current study provides a novel approach to quantifying cognitive

resilience by using a CCA model on cognition and neuroimaging data.
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CARRIGAN ET AL. 9 of 14

F IGURE 3 Associations of cognitive resilience with education and APOE per cohort. Coefficients of linear regression analyses per cohort
between the canonical variate for cognition (Y) and the variable of interest, corrected by the canonical variate forMRI (X), age, and sex. Significant
associations between education and higher resilience in both ADC (p< 0.001) and ADNI (p< 0.001). Non-significant association for APOE ε4with
lower resilience in ADC (p= 0.080) and ADNI (p= 0.109). No associationwas found for APOE ε2 in either cohort (ADC: p= 0.681; ADNI: p= 0.562).
ADC, AmsterdamDementia Cohort; ADNI, Alzheimer’s Disease Neuroimaging Initiative; APOE, apolipoprotein E;MRI, magnetic resonance
imaging.

We showed its comparability across two independent cohorts and

demonstrated concept validity by observing an association between

our resilience framework and education, a well-known proxy for cog-

nitive resilience, across both cohorts. Moreover, our results suggest a

potential link between APOE ε4, a major risk gene for developing AD,

and lower cognitive resilience. As expected, no association was found

between APOE ε2 and cognitive resilience in either cohort. Finally, in

an exploratory gene-based test, we investigated the association of 83

genetic loci previously associated with AD in the context of amyloid

positivity with our operationalization of cognitive resilience. While we

observed some interesting resilience–gene associations, therewere no

single-SNP associations that survived multiple-comparison correction

(falsediscovery rate<0.05). Altogether, theCCAmodels holdspromise

for discoveryof novel geneticmarkers of resilience in future large-scale

multicenter GWAS.

4.1 CCA

We chose to employ a CCA as opposed tomore traditional approaches

to quantifying cognitive resilience, as it offers a valuable advantage of

allowing one to incorporate varying high-dimensional data per cohort

rather than requiring variables to be similar across cohorts. This is

especially useful in the context of larger studies such as GWAS anal-

yses, in which cognitive resilience is to be defined across multiple

cohorts. In this study we showed comparably high correlations of the

first mode, that is, the first set of canonical variates, in both cohorts,

with relatively high co-variance explained. Further, we observed com-

parable loadings of the original variables on the canonical variates

based on visual assessment for each domain across cohorts. This com-

parability in loadings was especially expected in the brain domain

given that our input variables for brain were FreeSurfer-based in both

cohorts and thus the same variables. For cognition, we also expected

similar cognitive domains to weigh similarly, while assuming some

greater variability due to different tests. Moreover, we were able to

cover one more cognitive domain in ADNI compared to ADC (i.e., the

visuospatial domain). In addition to different input variables, differ-

ences in loading weights are likely to also be the result of different

cohort composition.

4.2 Higher education associates robustly with
higher resilience

The positive relationship of educational attainment and cognitive func-

tion in older age in the context of AD pathology has been extensively

demonstrated.2,49,50 Specifically, it has been shown repeatedly that

higher educated individuals, as measured in years of formal education,

had less cognitive impairment than individualswith lower levels of edu-

cation at similar levels of brain pathology.2,49–52 In addition, a recent

study on healthy brain aging in Latin America showed that education is

the most important (potentially modifiable) factor contributing to cog-

nitive decline, demonstrating its significance over other variables such

as sex and age.53 Therefore, education is considered an established

proxy measure of cognitive resilience, highlighting the advantages in

cognitive function that are not explainedby thedegreeof brain atrophy

volume or pathology.49,51,52 We successfully showed this positive rela-

tionship between education and the CCA-based cognitive resilience
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10 of 14 CARRIGAN ET AL.

F IGURE 4 Exploratory single-SNP level analysis of resilience and AD risk genes. Coefficients of fixed effect meta-analysis results, as well as
cohort-specific analyses. Significance is reported for themeta-analysis, albeit none of the results survive false discovery rate correction. Genetic
variant rs602602 around geneMINDY2 (A, p< 0.01) and variant rs62374257 around gene COX7C (B, p= 0.045) associated with higher resilience.
Genetic variants rs10947943 around geneUNC5CL (C, Pp= 0.029), rs7912495 around geneUSP6NL (D, p= 0.036), rs6489896 around gene
TPCN1 (E, p= 0.047), and APOE ε4 (F, p= 0.014) associated with lower resilience. AD, Alzheimer’s disease; ADC, AmsterdamDementia Cohort;
ADNI, Alzheimer’s Disease Neuroimaging Initiative; APOE, apolipoprotein E; SNP, single nucleotide polymorphism.

framework in the two independent cohorts. In addition, our sensitivity

analyses using interactions to capture resilience showed a modify-

ing role of education in the relationship between brain pathology and

cognition, albeit surprisingly with opposing directionality in ADC and

ADNI.

4.3 APOE ε4 carriership associated with lower
cognitive resilience

Investigating the main risk factor for sporadic AD, our meta-analysis

demonstrated an association between APOE ε4 carriership and lower

cognitive resilience, as well as a significant role of APOE ε4 in moder-

ating the relationship between brain pathology and cognition (albeit

not surviving multiple testing correction). This finding was supported

by a non-significant association of APOE ε4 carriership and lower

cognitive resilience in each cohort seperately, whereas we found no

interaction effect on a single cohort level. Previous studies investigat-

ing resilience in the context of APOE ε4 have predominately focused

on those individuals that demonstrated high rather than low cogni-

tive resilience, highlighting possible risk mediation through modifiers,

including genetic interactions with protective loci (i.e., APOE ε2/ε4
carriership) ormodifiable risk factors (i.e., education).54 This is presum-

ably due to the fact that an association between APOE ε4 carriership

and lower cognitive resilience is in line with heightened risk to devel-

oping AD.6 As such, under consideration of our sensitivity analyses,

our results suggest two possibilities in which (1) APOE ε4 carriership

increases vulnerability through lower levels of cognitive resilience that
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CARRIGAN ET AL. 11 of 14

otherwisemight protect against cognitivedeclineor (2)APOE ε4affects
cognition independently of neurodegenerationmeasurable onMRI.

APOE ε2, on the other hand, is a key genetic protective factor in the
context of AD. Our meta-analysis did not show a significant main or

interaction effect for APOE ε2, and we found no association of APOE

ε2 and cognitive resilience in either cohort. While the mechanisms

behind APOE ε2’s protective effects are not fully understood, its role

in reducing AD risk and slowing cognitive decline is thought to be

linked primarily to its impact on cortical Aβ deposition.54–56 Therefore,
the lack of a relationship between APOE ε2 carriership and cognitive

resilience in our amyloid-positive population is not surprising. How-

ever, Aβ deposition and cognitive resilience are not mutually exclusive.

Other studies suggest that APOE ε2 may reduce AD risk through Aβ-
independent mechanisms, such as preserving gray matter volume and

brain integrity in regions associated with cognitive resilience.57 Addi-

tionally, theAPOE ε3Christchurchmutation, anotherAPOE variant, has

been linked to relative protection from AD.8 For instance, a homozy-

gous carrier of the APOE ε3 Christchurch variant developed MCI

nearly three decades later than expected, despite AD-causative PSEN1

carriership and presence of amyloidosis.58 Distinguishing between

protection from AD pathology and cognitive resilience despite brain

pathology is hence crucial.

4.4 Some genetic loci associated with AD risk
show potential involvement in cognitive resilience

In addition to the major risk and protective variants of APOE, the

most influential genetic factor in the context of AD, a number of

other genetic loci have been found to be significantly associated with

risk of developing AD.5 Among these genetic loci, genetic variants

around genes UNC5CL, USP6NL, and TPCN1 were associated with

lower cognitive resilience in our study, and were found to moderate

the relationship between brain pathology and cognition, suggesting

a greater vulnerability to AD. In addition, two SNPs were associated

with higher levels of cognitive resilience. All effects were confirmed

in the interaction resilience analysis, highlighting the potential role of

both variants in enhancing resilience. Of these, variant rs62374257

is located around gene COX7C, which contributes to mitochondrial

bioenergetics, suggesting a possible involvement of brain metabolic

processes in resilience to AD.59 The second SNP associated with high

cognitive resilience, rs602602, is located near geneMINDY2. This asso-

ciation stands in contrast to another study that reported a positive

association of MINDY2 and the expression of the AD-causative APP

gene in the risk of developing AD.60 However, none of the afore-

mentioned genetic loci surived a correction for multiple testing, thus

warranting careful interpretation of the results.

4.5 Strengths and limitations

This study has several strengths, including the application of a well-

established startistical method in a novel context across two indepen-

dent cohorts. We were able to show that the first mode of the CCA

seems to capture similar modes across different cohorts, yielding a

major methodological advantage for multi-cohort studies that so far

were limited by composite measures or similar tests. There are also

several limitations to consider. Despite key advantages regarding the

application of a CCA compared to the standard residual approach in

terms of capturing a more well-rounded and cohort-specific definition

of resilience through use of all data available, this method does not

solve known methodological drawbacks of residual approaches.15 As

such, we propose using CCAs over standard residual approaches as a

better way of residualizing, yet recognize the need for future research

focusing on developing different methods of measuring resilience that

do not suffer the inherent limitations of residuals.15 Moreover, in

this study, we tested associations of key genetic risk and protective

factors of AD, both of these loci being located on the APOE gene

(alleles ε4 and ε2, respectively). Despite these genes being widely

studied in the context of AD, it is important to acknowledge that

these loci do not necessarily relate to cognitive resilience to AD to

the same extent, or may not be related to resilience at all. Instead,

APOE might affect cognition in the context of AD only through brain

resistance, rather than resilience. Furthermore, we believe that cog-

nitive resilience is a complex trait influenced by many genes, each

contributing only a small effect. As a result, detecting these genes

necessitates a larger sample size than what is available in this study.

Future studies should thus investigate the relationship between cogni-

tive resilience to AD and AD-related genes in unbiased GWAS studies.

Another aspect to consider when interpreting the results of this study

is that both cohorts were highly educated and predominantly White.

This should be addressed in future investigations through inclusion of

racially/ethnically diverse cohorts and individuals with lower socioe-

conomic status. In addition, the use of brain atrophy as a proxy for

pathology, while practical due to the availability of large datasets, is

inherently imperfect. Future research should prioritize more specific

biomarkers, such as plasma phosphorylated tau217, tau PET imaging,

or downstream markers in biofluids to provide a more precise under-

standing of resilience mechanisms. Altogether, this research serves as

a proof of concept for future, more extensive GWAS studies, which

could provide additional insights into the polygenic nature of cognitive

resilience and help identify novel genetic contributors.
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