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Quantum versus semiclassical signatures of correlated triple ionization in Dalitz plots
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We investigate correlated three-electron escape in Ne when driven by an intense, infrared laser field. We do
so by employing a reduced-dimensionality quantum-mechanical model and two three-dimensional semiclassical
models. One semiclassical model is a recently developed one that accounts with effective Coulomb potentials for
the interaction between two bound electrons (ECBB) while it fully accounts for all other interactions. The other
semiclassical model is the Heisenberg one, which effectively accounts for the interaction of each electron with
the core via a soft-core potential. We identify and compare the signatures of correlated three-electron escape for
both quantum and semiclassical models on Dalitz plots and find a better agreement between the quantum and
the ECBB model. We also show that a central “spot” on the Dalitz plots is reproduced by all models. Using the
ECBB model we associate this spot with the direct triple ionization pathway and argue this to be the case also for
the quantum model. Devising a simple classical model that accounts for the direct pathway of triple ionization,
we show that the width of this spot in the Dalitz plots solely depends on the time of tunnel ionization.
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I. INTRODUCTION

Studies of interaction of strong laser fields with atoms
and molecules brought out many intriguing phenomena: start-
ing with above-threshold ionization, nonsequential multiple
ionization, and high-harmonic generation, through attosecond
pulse generation, initiating eventually a spectrum of new ex-
perimental techniques, just to mention attosecond streaking
based measurements or attosecond transient spectroscopy [1].
Progress in experimental works has always been accompanied
by a considerable effort aimed at the theoretical description
of studied phenomena. Achieving the latter is still quite a
challenge, especially when focusing on processes where more
than two electrons are involved. Nonsequential multiple ion-
ization (NSMI) is an excellent example. While the description
of nonsequential double ionization may be considered settled
[2–14], the description of triple ionization cannot be consid-
ered as such, regardless of the effort that has been put into
addressing it [15–27]. Correlated multi-electron escape is a
fundamental phenomenon, since it is mediated by Coulomb
interaction. Combined with backscattering from the ion, an
example of correlated two-electron escape is the well-known
finger-like structure, which is exhibited in the correlated mo-
menta distributions obtained experimentally and theoretically
[8,9,28]. Concerning three-electron escape, correlation is not
fully represented in the experimental data available, since
they do not measure all three final electron momenta in co-
incidence [15–18]. In this work, we demonstrate correlation
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in three-electron escape using the Dalitz or ternary plots.
Their usefulness was first shown in the study of ion impact
ionization [29–31]. The Dalitz plots were later introduced in
strong-field triple ionization [26,27]. Here, we show that dis-
tributions visualized via Dalitz or ternary plots enable one to
also infer the contribution of various triple ionization channels
when combined with semiclassical calculations and, as such,
open a way of interpretation of momentum distributions ob-
tained in quantum-mechanical calculations and experiments.

There are several complementary theoretical approaches
to the problem of multiple ionization. One may try to use
the strong-field approximation, however, already for two
electrons the calculation becomes very complicated, not men-
tioning inclusion of a third electron [32]. Next, one may
use classical and semiclassical methods [14,19,21,22,33]
or directly tackle the numerical solution of an appropriate
Schrödinger equation [5,6,8,24,34–36]. In both, classical and
quantum, approaches one either uses the full geometry of
the problem or uses simplified models. Yet, in each case the
singularity of the Coulomb potential poses a problem.

Out of the multitude of possible strong-field phenomena,
here, we focus our attention on NSMI. In brief, NSMI is
considered a three-step process [2]: (i) an electron tunnel-
ionizes from the laser-field-lowered Coulomb potential,
(ii) this electron is accelerated in the laser field and can return
to rescatter from the parent ion and (iii) transfers energy to the
bound electrons leading to multiple ionization. The first step
is not allowed classically, therefore it is typically included via
the quantum-mechanical Ammosov-Delone-Krainov formula
[37,38] leading to a semiclassical approach. In modeling the
second and the third steps, semiclassical methods are founded
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on solving the Hamilton’s or Newton’s equations of motion.
In principle, for semiclassical methods, the number of active
electrons is not as challenging as for quantum approaches,
yet the Coulomb singularity in the electron-core interaction
term is problematic. The latter allows an electron to acquire a
negative energy of any value, which may be compensated via
electron-electron interaction leading to the escape of another
electron—a process known as unphysical or artificial autoion-
ization. Therefore, one introduces the soft-core Coulomb-like
potentials [39] or Heisenberg potentials [40,41] as a remedy.
Let us clarify, the Heisenberg potential (H model) effectively
leads to softening of the Coulomb singularity [33,42]. How-
ever, softening the Coulomb potential in classical models
does not accurately describe electron scattering from the core
[43,44]. One way to address this is to fully account for the
Coulomb interaction of each electron with the core as well as
for the Coulomb interaction between any pair of electrons that
are not both bound. In this case, effective Coulomb potentials
are used to account for the interaction of a bound-bound
electron pair (ECBB model) [33].

The quantum-mechanical approach includes all three steps
of the process by default, however, increasing the number
of electrons involved becomes a formidable task, especially
when the Schrödinger equation is solved on a grid. There-
fore, full-dimensional quantum calculations on a grid have
been performed only for two electrons and for a specific
range of parameters of the laser pulse (i.e., frequency, field
amplitude, phase, envelope) [6,8,34,45,46]. Models incorpo-
rating reduced geometries are used to allow greater flexibility
concerning the parameters of the laser pulses and the num-
ber of electrons involved [5,24,35,36,47]. In these models,
typically, each of the electrons is allowed to move along a
one-dimensional track. Combined with the use of the soft-
core Coulomb-like potential these models make the problem
computationally tractable. Using the value of the soft-core pa-
rameter to adjust the ionization energy is an additional benefit
of such an approach.

In the following we use both semiclassical and quan-
tum approaches to describe triple ionization of atoms in
strong laser fields. Our goal is to study “fingerprints” of
correlated electron escape found in the final momenta of
the escaping electrons. Collecting experimental data for
triple and higher ionization is still a difficult task when
it comes to measuring momenta of all electrons and the
nucleus; it may be feasible in the future [13,48–53].
To visualize the momenta of the three outgoing elec-
trons and identify the electron-electron correlations, we
map all relevant events onto Dalitz plots [26,27,29–31].
We find that a middle spot in the Dalitz plots of the elec-
tron momenta is a fingerprint of correlated electron-escape
which is reproduced in a consistent manner regardless of the
approach taken, i.e., semiclassical or quantum.

The paper is structured as follows, first, we briefly in-
troduce the semiclassical and quantum models employed in
this work. Then, we discuss the obtained electron momenta
distributions in the context of Dalitz plots and compare the
semiclassical with the quantum results. Next, we examine
signatures of direct ionization, i.e., simultaneous emission of
all three electrons following recollision, in the Dalitz plots.
We identify a spot in the middle of Dalitz plots as a signature

of direct ionization. Very importantly, we devise a simple
classical model to explain the width of this spot and connect
this width with the time the recolliding electron tunnel-ionizes
through the field-lowered Coulomb potential.

II. DESCRIPTION OF THE MODELS

A. Classical models

We employ two three-dimensional (3D) semiclassical
models of NSMI developed in the nondipole framework, ac-
counting for the motion of the core and the three electrons.
In what follows, we describe the formulation of the ECBB
model and the H model that address multi-electron escape in
strongly driven atoms. The two methods resolve in a different
way unphysical autoionization in 3D semiclassical models
that fully account for the Coulomb singularity, with the ECBB
model having better agreement with experiment [42].

1. Effective Coulomb potential method

The cornerstone of the effective-Coulomb-potential model
[33,42] is the exact treatment of the two interactions that we
consider the most important during a recollision. Namely, we
account for the full Coulomb potential between each electron,
bound or quasifree, and the core. Quasifree refers to a recollid-
ing electron or an electron escaping to the continuum. We also
treat the exact Coulomb potential, and hence the exact energy
transfer between any pair of a quasifree and a bound electron.
To tackle the problem of artificial autoionization, we take a
different approach to softening the Coulomb potential. Specif-
ically, we use effective Coulomb potentials to account for
the interaction of a bound-bound electron pair (ECBB), i.e.,
we approximate the energy transfer from a bound to another
bound electron. Hence, we expect the ECBB model to be more
accurate for laser pulse parameters where multi-electron ion-
ization due to transfer of energy between electrons in excited
states after recollisions plays less of a role. A sophisticated
element of the ECBB model is its ability to classify an electron
as quasifree or bound on the fly during time propagation. That
is, we decide on the fly if the interaction between a pair of
electrons will be described by the full or an effective Coulomb
potential. To do so, we use a set of simple criteria detailed
below.

The Hamiltonian of the three-electron atom is given by

H =
4∑

i=1

[p̃i − QiA(y, t )]2

2mi
+

4∑
i=2

QiQ1

|r1 − ri|

+
3∑

i=2

4∑
j=i+1

[1 − ci, j (t )]
QiQj

|ri − r j | +
3∑

i=2

4∑
j=i+1

ci, j (t )

× {Veff [ζ j (t ), |r1 − ri|] + Veff [ζi(t ), |r1 − r j |]}, (1)

where Qi is the charge, mi is the mass, ri is the position vector
and p̃i is the canonical momentum vector of particle i. The
mechanical momentum pi is given by

pi = p̃i − QiA(y, t ), (2)

where A(y, t ) is the vector potential and E(y, t ) =
−∂A(y, t )/∂t is the electric field. The effective Coulomb
potential that an electron i experiences at a distance |r1 − ri|
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from the core (particle 1 with Q1 = 3), due to the charge
distribution of electron j is derived as follows [33,54]: We
approximate the wave function of a bound electron j with a
1s hydrogenic wave function

ψ (ζ j, |r1 − r j |) =
(

ζ 3
j

π

)1/2

e−ζ j |r1−r j |, (3)

with ζ j the effective charge of particle j [33,54]. The reason
we choose the 1s hydrogenic wave function to describe elec-
tron j is that it leads to a simple expression for the charge
distribution and in turn for the effective potential that electron
j creates, as we show in what follows. Hence, using Gauss’s
law, one finds that the potential produced due to the charge
distribution −|ψ (ζ j, |r1 − r j |)|2 is given by

Veff (ζ j, |r1 − ri|) = 1 − (1 + ζ j |r1 − ri|)e−2ζ j |r1−ri|

|r1 − ri| , (4)

with ζ j the effective charge of particle j [33,54]. When ri →
r1, the effective potential is equal to ζ j , hence ensuring a
finite energy transfer between bound electrons i and j. As a
result no artificial autoionization takes place. The functions
ci, j (t ) determine at time t during propagation whether the full
Coulomb or effective Veff (ζi, |r1 − r j |) and Veff (ζ j, |r1 − ri|)
potentials describe the interaction between electrons i and j
[33]. The effective potentials are activated only when both
electrons in a pair are bound. The simple criteria we use to
determine if an electron is bound or quasifree is as follows: A
quasifree electron can transition to bound following a recol-
lision. Specifically, after a quasifree electron has its closest
approach to the core, it is considered bound if its position
along the z axis is influenced more by the core than the electric
field. Specifically, we check if the position of the electron
along the electric field, i.e., z axis here, has at least two
extrema of the same kind, i.e., two maxima or two minima,
in a time interval less than half a period of the laser field.
At the time when the second extremum is identified in the
position of the electron along the electric field, this electron is
registered as bound [33]. On the other hand, a bound electron
can transition to quasifree due to transfer of energy during
a recollision or from the laser field. In the former case, a
bound electron becomes quasifree if its potential energy with
the core constantly decreases following recollision. A bound
electron can also transition to quasifree due to the laser field
if its energy becomes and remains positive. The criteria are
discussed in detail and illustrated in Ref. [33].

We use a vector potential of the form

A(y, t ) = −E0

ω
exp

[
−2 ln (2)

(
ct − y

cτ

)2
]

sin (ωt − ky)ẑ,

(5)
where k = ω/c is the wave number of the laser field. The
direction of the vector potential and the electric field is along
the z axis, while the direction of light propagation is along
the y axis. The magnetic field, B(y, t ) = ∇ × A(y, t ), points
along the x axis. The pulse duration is τ = 25 fs, while
the wavelength is 800 nm. For Ne, we consider intensities
1.0, 1.3 and 1.6 PW/cm2. The highest intensity considered
here is chosen such that the probability for a second electron
to tunnel ionize solely due to the laser field is very small

[42]. Hence, electron-electron correlation prevails in triple
ionization, with the bound electrons ionizing only due to
recollisions. One electron tunnel ionizes through the field-
lowered Coulomb barrier at time t0 along the direction of
the total laser field. Tunneling occurs with a nonrelativistic
quantum-mechanical tunneling rate described by the instan-
taneous Ammosov-Delone-Krainov (ADK) formula [37,38]
with the empirical corrections by Tong and Lin for high in-
tensities [55]. Using this formula, we obtain a rate that also
accounts for depletion of the initial ground state [42]. We find
the time t0 in the time interval [−2τ, 2τ ] where the electric
field is nonzero, using importance sampling [56], with τ the
full width at half maximum of the pulse duration in intensity.
The exit point of the recolliding electron along the direction
of the electric field is obtained analytically using parabolic
coordinates [57]. The electron momentum along the electric
field is set equal to zero, while the transverse one is given
by a Gaussian distribution. This distribution represents the
Gaussian-shaped filter with an intensity-dependent width aris-
ing from standard tunneling theory [38,58,59]. For the initially
bound electrons, we employ a microcanonical distribution
[33], while the core is initially at rest.

In our formulation, we fully account for the Coulomb sin-
gularities. Hence, an electron can approach infinitely close to
the nucleus during time propagation. To ensure the accurate
numerical treatment of the N-body problem in the laser field,
we perform a global regularization. This regularization was
introduced in the context of the gravitational N-body problem
[60]. To integrate Hamilton’s equations of motion, we use
a leapfrog technique [61,62] jointly with the Bulirsch-Stoer
method [63,64]. This leapfrog technique allows integration
of Hamilton’s equation when the derivatives of the positions
and the momenta depend on the quantities themselves. The
steps involved in this technique, employed in this work, are
described in detail in Ref. [33].

2. Heisenberg potential method

An alternative approach for excluding unphysical autoion-
ization in 3D semiclassical treatments is adding a Heisenberg
potential for the interaction of each electron with the nucleus
[40]. This amounts to adding a potential barrier that mimics
the Heisenberg uncertainty principle and prevents each elec-
tron from a close encounter with the nucleus. The advantage
of this model is that it describes electronic interactions via
Coulomb forces at all times during time propagation. How-
ever, the reduction of the phase space that each electron can
access does not accurately describe the interaction of each
electron with the nucleus, leading to “softer” recollisions upon
the return of the recolliding electron to the core [33].

The Heisenberg potential, originally proposed by
Kirschbaum and Wilets in Ref. [40], is given by

VH,i = ξ 2

4αμr2
i,1

exp

{
α

[
1 −

(
ri,1 pi,1

ξ

)4
]}

, (6)

where ri,1 = r1 − ri is the relative position of each one of the
three electrons i = 2, 3, 4 with respect to the core i = 1, pi,1
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is the corresponding relative momentum,

pi,1 = mip1 − m1pi

m1 + mi
, (7)

and μ = m1mi/(mi + m1) is the reduced mass of the electron
core system. This potential restricts the relative position and
momentum of electron i according to

ri,1 pi,1 � ξ . (8)

Hence, the Heisenberg potential acts as a repulsive poten-
tial when the electron is close to the nucleus. Including the
Heisenberg potential for all electron-core pairs, we find that
the Hamiltonian is given by

H =
4∑

i=1

[p̃i − QiA(y, t )]2

2mi
+

3∑
i=1

4∑
j=i+1

QiQj

|ri − r j | +
4∑

i=2

VH,i.

(9)

B. Quantum model

The numerical treatment of three-electron atoms in a com-
plete configuration space poses a significant challenge. We
employ a model with restricted dimensionality capable of
capturing the core dynamics of electrons in a strong field
[19,24]. In this model, each electron moves along a one-
dimensional (1D) track inclined at a constant angle α with
respect to the laser pulse’s polarization axis (tan α = √

2/3).
The tracks form a constant angle of π/6 between each pair.
This geometry is determined through a local stability analysis
of the adiabatic full-dimensional potential [19,65,66] and has
been successfully applied in previous studies of three-electron
dynamics [24–26,67–69].

The Hamiltonian is given by

H =
3∑

i=1

p2
i

2
+ V + Vint, (10)

where V and Vint represent the atomic and interaction poten-
tials, respectively. The atomic potential in the restricted space
is expressed as

V = −
3∑

i=1

3√
r2

i + ε2
+

3∑
i, j=1;i< j

q2
ee√

(ri − r j )2 + rir j + ε2
,

(11)
with a smoothing factor ε = √

0.83 and an effective charge
qee = 1 to reproduce the triple ionization potential of the neon
atom (Ip = 4.63 a.u.). The interaction term is described as

Vint =
√

2

3
A(t )

3∑
i=1

pi, (12)

where the vector potential is defined as

A(t ) = F0

ω
sin2

(
πt

Tp

)
sin (ωt + φ)

for t ∈ [0, Tp]. The laser pulse parameters are field am-
plitude F0; carrier frequency ω = 0.06 a.u.; pulse length
Tp = 2πnc/ω; number of optical cycles, nc = 3; and carrier-
envelope phase φ set to zero.

To study the interaction of three-electron atoms with a
laser pulse, we need a wave function describing the motion
of three electrons (assuming the nucleus is infinitely heavy).
The wave function is composed of spatial and spin parts and
requires antisymmetry with respect to electron exchange. For
a simplified Hamiltonian described in Eq. (10) and an atom
with s2 p1, two electrons have the same spin, providing the spin
part possesses symmetry in the exchange of these electrons.
Thus, the spatial part must be antisymmetric in that exchange.
Without loss of generality, the wave function for such an atom
in the restricted-space model can be written as [69]

� ∝ �12(r1, r2, r3)|UUD〉 + �23(r1, r2, r3)|DUU〉
+ �13(r1, r2, r3)|UDU〉. (13)

Here, U and D represent electrons with spin-up and spin-
down, respectively. The subscripts denote the electron pair
with respect to exchange of which the wave function is an-
tisymmetric.

The Hamiltonian, Eq. (10), does not affect the spin part
of the wave function during evolution. Thus, for simplicity in
the numerical implementation, it suffices to evolve only one
of the three terms on the right side of Eq. (13). During cal-
culations, we evolve the wave function �12(r1, r2, r3), which
is antisymmetric with respect to the exchange of electrons 1
and 2, but neither symmetric nor antisymmetric with respect
to the exchange of electrons 1 ↔ 3 and 2 ↔ 3. The initial
wave function, representing the ground state, is obtained using
imaginary time propagation of the Hamiltonian, Eq. (10),
without the interaction with the field and enforcing the proper
symmetry [24].

The numerical solution of the time-dependent Schrödinger
equation (TDSE) with the Hamiltonian, Eq. (10), extends the
method used in the two-dimensional case described elsewhere
[26,36]. The TDSE is solved on a large three-dimensional grid
using a split-operator technique and the fast Fourier transform
algorithm. For obtaining momentum distributions of outgoing
electrons, the wave function cannot be absorbed at the grid’s
edges. Thus, we divide the evolution space into “bounded
motion” and “outer” regions. The evolution in the bounded
motion region proceeds without further simplifications, while
in the outer regions, the Hamiltonian is successively simpli-
fied by neglecting the interaction of electrons with the nucleus
and other electrons. This allows representation and evolution
of the wave function in the momentum representation in the
outer regions, simplifying the evolution to the multiplication
by an appropriate phase factor. The transfer between the
bounded motion and outer regions is achieved through smooth
cutting and coherent adding of the wave function, following
the procedure introduced in Ref. [5]. At the simulation’s end,
the wave function from outer regions can be integrated over
the “bounded” part, yielding momentum distributions corre-
sponding to single ionization, double ionization, and triple
ionization. The grid has n = 1024 nodes in each direction,
with a step size of dr = 0.195. The time step is dt = 0.05,
and the total number of steps amounts to 6500. Further details
of the algorithm for simulating momentum distributions of
the three-electron atom can be found in the Supplemental
Material of Ref. [26].
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FIG. 1. Schematic visualization of a point in the ternary plot.

C. Dalitz plots

To visualize three-electron distributions we use the so-
called Dalitz or ternary plots [26,27,29–31]. These are
obtained by first projecting the data onto the sphere of
radius R = (p2

1 + p2
2 + p2

3)1/2, where pi is the ith electron’s
momentum along the polarization axis. Then, using gnomonic
projection onto planes tangent to the sphere the final ternary
plots are reached in each octant of the momentum space.
Ternary plots are read in the following way (see Fig. 1): the
vertices of the triangle are denoted 1, 2, 3 and correspond to
momentum components along the polarization axis of three
electrons, i.e., the point of the vertex is equivalent with the
statement that the given electron carried all momentum. Posi-
tions of the points inside the triangle are defined by a set of
three distances p1, p2, p3 to the sides of the triangle opposite
to vertices 1,2,3, respectively. The closer to the side the point
is the smaller momentum is carried by the given electron. In
the momentum space spanned by momenta components along
the polarization axis there are two types of octants available.
The first type are those that collect events in which all elec-
trons propagate in the same hemisphere, i.e., have the same
direction of momentum along the polarization axis. In that
category there are two octants, marked (+ + +) or (− − −).
The second type of octants is the one in which one of the
electrons has the opposite momentum orientation along the
polarization axis relative to the other two electrons, i.e., two
electrons propagate in the same hemisphere and the third in
the other. In that category there are six octants, marked as
(+ + −) and all possible permutations thereof.

D. Direct vs delayed triple-ionization pathways

In the classical models, we register a triple ionization
(TI) event as direct if three electrons ionize shortly after
recollision. Namely, we consider the difference between the
ionization time of an electron and the time when a recollision
takes place. If this time difference is smaller than the time
interval when a sharp change occurs in the interelectronic
potential energy, we register this electron as ionizing shortly
after recollision. Otherwise, if this time difference is larger
than the above-defined time interval, we register this electron
as ionizing with a delay after recollision. In our studies, we
find that the sharp change of the interelectronic potential

energy occurs in a time interval of T/8, with T being the
period of the laser field. We register a triple ionization event
as delayed if at least one electron ionizes with a delay after
recollision. For the intensities considered in this work, we find
that the biggest contribution to delayed events is TI events
where only one electron ionizes with a delay after recollision.
Hence, in what follows, we only consider the latter delayed
events and we refer to them as delayed. For TI, we identify
direct and delayed events as follows [33,42]:

(1) We find the ionization time of each of the three elec-
trons, t i

ion.
(2) We register the maxima in the interelectronic potential

energies as a function of time between electron pairs i, j and
i, k and j, k during the time intervals when in these pairs one
electron is quasifree and the other is bound. Next, for each
electron i, we identify the maximum for each one of the i, j
and i, k potential energies that is closest to the time t i

ion. We
denote these times as t i, j

rec and t i,k
rec. We obtain at most six such

times for TI events.
(3) For each time t i, j

rec we identify the time t2 of closest
approach to the core of the quasifree electron (either electron
i or j) that is closest to t i, j

rec and denote it as t i, j
2 . We obtain at

most six such times for TI events.
We label an event as direct or delayed TI if four of the times

t i, j
2 are the same, accounting for one electron being quasifree

and the other two bound. That is, if electron i is quasifree
during the recollision closest to the ionization time t i

ion then
the times t i, j

2 , t i,k
2 , t j,i

2 , and t k,i
2 should be the same. The times

t j,i
2 and t k,i

2 are associated with the recollision times t j,i
rec and t k,i

rec
for the bound electrons j and k, respectively. For the quasifree
electron we obtain two recollision times t i, j

rec and t i,k
rec associated

with the ionization time t i
ion. We choose the one with the

largest difference from t i
ion, guaranteeing a stricter criterion

for direct TI events. Next, we label a TI event as direct if
the following conditions are satisfied: 
t1 = |t i, j

rec − t i
ion| < tdiff

or (t i
ion < t i, j

rec and t i
ion < t i,k

rec ) and 
t2 = |t j,i
rec − t j

ion| < tdiff and

t3 = |t k,i

rec − t k
ion| < tdiff. The condition (t i

ion < t i, j
rec and t i

ion <

t i,k
rec ) has also been used in our previous studies [14,70] to

account for a quasifree electron ionizing significantly earlier
before recollision. This happens mostly at high intensities.
We label events as delayed pathway TI, when two electrons
ionize shortly after recollision, while one electron ionizes with
a delay. That is, for these delayed events one out of the three
times 
t1, 
t2, and 
t3 is larger than tdiff and the other two
times are less than tdiff. The time tdiff is determined by the time
interval where the interelectronic potential energy undergoes
a sharp change due to a recollision. For the intensities consid-
ered here, we find tdiff ≈ T/8.

III. RESULTS AND DISCUSSIONS

A. Laser pulse parameters for the semiclassical
and quantum models

For the Ne results presented in this work, for the ECBB
and H models we consider a pulse duration of τ = 25 fs,
wavelength of 800 nm and intensities 1, 1.3, and 1.6 PW/cm2.
For the quantum model, the pulse duration is three optical
cycles with wavelength 760 nm and intensities 0.5, 0.75, 1.7,
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FIG. 2. Momenta distributions for triple ionization events visu-
alized with the help of Dalitz plots (ternary plots): (a) semiclassical
calculations with the ECBB model, I = 1.6 PW/cm2; (b) semi-
classical calculations with the H model, α = 2, I = 1.6 PW/cm2;
(c) semiclassical calculations with the H model, α = 4, I =
1.6 PW/cm2; (d) quantum calculations, I = 1.7 PW/cm2.

and 2.55 PW/cm2. We have used these parameters in previous
semiclassical [42] as well as quantum studies [24–26,67–69]
addressing triple ionization in strongly driven Ne. Another
reason we use the same parameters as in previous studies for
the semiclassical and quantum models is that these are ex-
tremely demanding computations. Also, the focus of this work
is not a quantitative comparison of the two models but rather
a qualitative one that focuses on interpreting the features of
the Dalitz plots and attributing them to different ionization
pathways. In this sense, having different parameters for the
semiclassical and quantum models allows us to cover a wider
parameter space, see, for instance, Fig. 4(e). Finally, to ensure
that where we directly compare the distributions obtained with
the ECBB model and the quantum model, see Fig. 2, our
results and conclusions are not affected by the difference in
the laser parameters, we have performed a computation with
the ECBB model for a wavelength of 760 nm and an intensity
of 1.7 PW/cm2, i.e., the parameters of the quantum model.
We find almost identical results with those presented in this
work for the ECBB model for a wavelength of 800 nm and
intensity of 1.6 PW/cm2. Moreover, we note that we consider
a longer pulse duration for the semiclassical models, since
otherwise the results would be phase dependent and signifi-
cantly more computationally challenging to obtain. However,
we expect that a shorter pulse duration would result in an even
bigger contribution of the direct pathway in the ECBB model
and hence a more pronounced central “spot” (see discussion
below) and an even better agreement with quantum results.

B. General observations

Let us begin our discussion by presenting the main features
of correlated triple ionization on Dalitz plots, see Fig. 2.
Figures 2(a)–2(c) correspond to results obtained with the two
semiclassical models and Fig. 2(d) to results obtained with
the quantum model. For the distribution presented in Fig. 2(a)
we used the ECBB model, whereas for Figs. 2(b) and 2(c) we

used the H model with different values of the parameter α;
for the quantum case the soft-core 1D + 1D + 1D potential is
used. We find that for each of the plots in Fig. 2 the momentum
distribution is concentrated and peaked in the middle of the
triangle and stretches towards its sides. The interpretation of
the observed distribution is rather straightforward. The peak in
the middle of the triangle corresponds to dominance, for the
chosen laser intensity, of events in which all three electrons
escape in the same hemisphere, i.e., the electrons are escaping
in the same direction along the polarization of the laser field,
with similar momenta. The tails of the distribution that stretch
towards the sides of the triangle correspond to events in which
one of the three electrons has significantly smaller momentum
compared with the other two electrons, which escape with
similar momenta.

While the final state of the escaping electrons is easily
read from the distributions in Fig. 2, the pathway that leads
to this state is not immediately evident. We attribute features
of these distributions to different pathways the electrons fol-
low to escape by further analyzing the results obtained with
the semiclassical ECBB model. In Fig. 3, we present the
Dalitz plots according to the triple ionization pathway the
electrons follow to escape. Figures 3(a) and 3(b) (top row)
show all TI events, Figs. 3(e) and 3(f) (bottom row) show
direct TI events, where all electrons escape simultaneously
after recollision. Also, Figs. 3(c) and 3(d) (middle row) show
delayed TI events, where two electrons escape immediately
after recollision and one escapes with a delay. For the in-
tensities considered when using the ECBB model, the direct
and delayed pathways contribute roughly equally and account
for more than 85% of all events. Also, Figs. 3(a), 3(c), and
3(e) (left column) show TI events where electrons escape in
the same direction along the laser polarization axis, whereas
Figs. 3(b), 3(d), and 3(f) (right column) show TI events where
one of the three electrons escapes in a direction opposite to the
other two electrons. Comparing the different rows in Fig. 3, it
is clear that the direct TI events predominantly populate the
center of the momentum distribution, while delayed events
populate the tails. In addition, inspection of the right column
in Fig. 3 reveals that the electron escaping in the opposite
direction does so with much lower momentum compared with
the other two electrons escaping with similar momenta. What
is more, such events correspond mostly to delayed ioniza-
tion. In view of the above associations between features of
the Dalitz plots and TI pathways, Fig. 4 reveals that for the
ECBB model direct ionization becomes more dominant with
increasing intensity from 1 to 1.6 PW/cm2 [see Figs. 4(f)–
4(h)]. A similar trend is observed for the quantum-mechanical
calculations with increasing intensity from 0.5 to 1.7 PW/cm2

[see Figs. 4(a)–4(d)]. In the following, we refer to the part
of the momentum distribution located in the middle of the
triangle that corresponds to the direct ionization as the central
spot.

Results obtained with the quantum model need some
further commenting. In Figs. 4(a)–4(d) we show momenta
distributions for triple ionization events in which all elec-
trons escape in the same direction with respect to the laser
polarization axis. First, the model we use was designed to
trace direct ionization by restriction of the space to specified
tracks along which electrons may move. These tracks were
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FIG. 3. Dalitz plots for TI events at I = 1.3 PW/cm2 obtained
with the ECBB model: Panels (a) and (b) show all events, panels
(c) and (d) show delayed ionization events, and panels (e) and (f)
show direct ionization events. For panels (a), (c), and (e), ternary
plots are obtained for all electrons moving in one direction. For
panels (b), (d), and (f), ternary plots are obtained for one electron es-
caping in a direction opposite with respect to the other two electrons
(bottom corners of triangle correspond to electrons moving in the
same direction). For all panels the classical events were symmetrized
to account for the electrons being indistinguishable.

chosen to coincide with lines along which classical saddle
points of potential move when the field intensity is changed
(see discussion on saddles in Refs. [7,65] and its application
in Refs. [24,36,71]). Such a choice of track favors direct
ionization making it more visible, while keeping overall very
good agreement with experiments [47]. Second, the quantum
calculations are performed for very short pulses (nc = 3) and
for single CEP (φ = 0). Thus, concerning comparison with
semiclassical results, one may only compare overall trends,
since the quantum momenta distributions are phase-dependent
[72] due to the short laser-pulses employed. Moreover, in
the quantum case, disentangling the three-electron momenta
distribution into parts that correspond to the direct and delayed
paths of ionization, in a similar way as is done for semi-
classical results (see Fig. 3), is beyond capabilities offered
by our approach. Since all ionization paths, possible in our
model, give their input to the final distribution of electron
momenta, the observed complex pattern is a consequence of
their relative contribution. However, the quantum and semi-
classical (mainly the ECBB model) Dalitz plots resemble each

other. Indeed, they both have the central spot that does not
change its width significantly as the field intensity changes
[see Fig. 4(e)]. Thus one can argue that the direct ionization
channel indeed may be contained within the quantum Dalitz
(+ + +) plots, and even dominate the distributions there for
all studied intensities except the highest one. For the intensity
I = 2.55 PW/cm2, Fig. 4(d), three separate maxima located
at some distance from the center of the triangle are visible,
suggesting stronger contribution of delayed ionization. The
resemblance between Figs. 4(c) and 4(h), i.e., between the
quantum and the semiclassical Dalitz plots, is striking.

An interesting conclusion can be made about the role of
soft-core potentials in strong-field simulations. Soft-core po-
tentials are very useful and often are the first-choice tools
for simulations, both in classical and quantum realms. As
an example, we recall the work by Majorosi, Benedict, and
Czirják [73], where HHG obtained with a 3D hydrogen model
including the Coulomb potential was successfully reproduced
with a single-dimensional soft-core potential model. How-
ever, the first choice is not necessarily the finest one. The
Heisenberg potential (H model) effectively leads to softening
of the Coulomb singularity [33,42], therefore in the following
discussion the H model will serve as an example of a soft-core
semiclassical model. At first glance, the general shapes of
momentum distributions obtained by both H model and ECBB
are similar, and one is tempted to assume that the partic-
ular choice of potentials for simulations should not change
the qualitative picture of triple ionization. Nevertheless, a
more careful analysis of Fig. 2 reveals that correlated escapes
are less prominent in Figs. 2(b) and 2(c), than in Fig. 2(a).
When these results are compared with the quantum results
in Fig. 2(d), it is justified to conclude that the ECBB model
is better suited for tracing correlations during multi-electron
escape. Let us recall that the quantum model considered here
is designed in a way that favors the direct (correlated) escape
despite the fact that it uses the soft-core potential. Whether
there are better potentials in the case of simplified quantum
models remains an open issue.

C. The central spot in Dalitz plots

The correspondence of the central spot in Dalitz (+ + +)
plots mainly with the direct triple ionization channel has been
discussed in the previous section. That discussion can be
culminated to four important conclusions or conjectures: (i)
the spot in semiclassical (+ + +) Dalitz plots is unambigu-
ously connected with direct triple ionization; (ii) semiclassical
and quantum (+ + +) Dalitz plots are quite similar; (iii) it
is possible to argue for a general correspondence between
semiclassical and quantum notions of direct ionization, and
(iv) the size of the spot is nearly independent for a wide
interval of field intensities for both quantum and semiclassical
models. Since the central spot is formed predominantly by
the direct channel, then a simplified classical model for direct
triple ionization is expected to reproduce especially the last
property. In what follows, we construct such a simple classical
model for direct triple ionization events and show that this
model indeed predicts a nearly constant size of a spot in Dalitz
(+ + +) plots. Recalling the three-step model, initially one
electron tunnel-ionizes close to the field maximum. Then, it
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FIG. 4. Dalitz plots for data from quantum calculations: (a) I = 0.5 PW/cm2, (b) I = 0.75 PW/cm2, (c) I = 1.7 PW/cm2, (d) I =
2.55 PW/cm2. (e) Dependence of the angular half-width of three-electron momentum distribution in (+ + +) octant after direct triple
ionization on the value of the ponderomotive energy of the electron gained by the laser field—the quantum-mechanical model (circles),
the classical model (triangles) and simplified analytic models (solid line βs

3E , dashed line β3E )—see discussion in the text. Dalitz plots for data
from ECBB semiclassical calculations: (f) I = 1 PW/cm2, (g) I = 1.3 PW/cm2, and (h) I = 1.6 PW/cm2.

propagates in the field and can turn back and recollide with
its parent ion. Upon recollision, the energy gained by the
electron in the laser field minus the energy spent to over-
come the ionization potential is redistributed among all three
electrons, i.e., among the tunnel-ionizing and the two bound
electrons. In a direct triple ionization event, the electrons are
released soon after recollision. Also, we consider that triple
ionization takes place following just one recollision, which
is supported by our semiclassical calculations [42]. In this
simplified classical model, we ignore the Coulomb potential
and any electron-electron interaction. Hence, as a result of a
single recollision in a direct triple ionization event, an electron
can gain a momentum p0 due to the energy redistributed by the
tunnel-ionizing electron upon recollision. However, an elec-
tron also gains an additional momentum 
p—a boost from
the electric field of the laser pulse, which is equal to minus
the value of the vector potential at the time of ionization,
similar to attosecond streaking [74]. In this simplified model,
the momentum shift 
p of each electron is the same, thus, in
the case when all electrons escape in the same direction, for
instance (+ + +), the final momentum distribution is simply
shifted from p0.

It is easiest to first illustrate the above ideas for double ion-
ization, see Fig. 5. If the energy of the returning electron is Ur

and the ionization potential of the bound electron is Ip2 (sec-
ond ionization potential), then the total energy that is shared
among the two electrons just after recollision is Ur − Ip2. For

a monochromatic laser field, the maximum total energy is
Etm = 3.17Up − Ip2. Also, the additional momentum 
p is
given by ±2ξ

√
Up, where ξ accounts for the recollision time

shift with respect to the time when the vector potential has its
maximum [75]. For the case of an electron returning to the ion

FIG. 5. Schematic illustration of the momentum distribution that
electrons gain upon a single recollision in the laser field. See text for
explanation of values depicted here.
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with the maximum possible energy, i.e., 3.17Up, one obtains
approximately ξ ≈ 0.95. Hence, in the momentum space, any
direct double-ionization event is placed in the right-upper
quarter (or left-bottom) of the circle p2

1 + p2
2 = 2Etm, see

gray-dashed line in Fig. 5. Results are similar for both quarters
so we only focus on the right-upper one, see Fig. 5. The radius
of the circle is p0 = √

2Etm. Following ionization, the laser
field is shifting the electron momentum by 
p = 2ξ

√
Up,

giving rise to the black-solid line in Fig. 5. It is clear from
the geometry in Fig. 5 that the angle between the diagonal
and one of the black-solid-line endpoints is equal to

β2E = π

4
− arctan


p


p + p0

= π

4
− arctan

2ξ
√

Up

2ξ
√

Up + √
2(3.17Up − Ip2)

. (14)

This angle corresponds to the maximum deviation from the
diagonal where both electrons have the same momentum.
Hence, for double ionization the distribution of direct ioniza-
tion events will be within the angle 2β2E from Eq. (14).

Following a similar reasoning, we next obtain the corre-
sponding angle β for direct triple-ionization events. Direct
events are placed in the (+ + +) and (− − −) octants
of a sphere in momentum space. We illustrate our ideas
focusing on the octant (+ + +). In this case, the angle
βs

3E , where s stands for “simplified,” is obtained in a sim-
ilar manner as β2E —the difference being that the angle
arctan(
p/[

√
2
p + p0]) is not subtracted from π/4 but

from the angle between the main diagonal of the octant and its
bottom plane, which is arctan(

√
2/2). Also, the momentum

p0 is determined in a similar way as for two electrons, i.e.,
p0 = √

2(3.17Up − Ip23), where Ip23 stands for the sum of the
second and third ionization potentials. For Ne considered here
Ip23 = 3.83 a.u. Thus, we obtain

βs
3E = arctan

(√
2

2

)

− arctan
1.9

√
Up

1.9
√

2Up + √
2(3.17Up − Ip23)

. (15)

In Fig. 4(e) the solid yellow line shows the dependence of
the angle βs

3E on Up. Although the curve does not fit the
exact values of the angle extracted from our simulations, it
shows the same trend; that is, first the angle grows and then it
saturates.

In the model discussed above, we assumed that the rescat-
tering electron (i) starts its one-dimensional motion along
the field-polarization direction at the position of the atomic
core and (ii) propagates in the external electric field, while
Coulomb interactions with all other particles are ignored until
the rescattering electron returns to the core. At this instant,
the rescattering electron can instantly redistribute its energy
between itself and the two other electrons that have a total
bound energy of I23. In this model, we also assume that the
rescattering electron (iii) starts its motion at a time such that
this electron returns to the core with the maximum energy
3.17Up; this time may be interpreted as the tunnel-ionization
time through the field-lowered Coulomb potential (which cor-

FIG. 6. Angle βM
3E dependence on the time of tunnel ionization

of the rescattering electron and on the ponderomotive energy. The
purple curve identifies the value of the tunnel-ionization time t ′ that
corresponds to the largest possible βM

3E for each Up. The turquoise
curve identifies the angle βM

3E = βs
3E that corresponds to the time t ′

that results in ξ = 0.95 and κ = 3.17.

responds to the start of the propagation time in the ECBB
model).

Next, we introduce an improvement to assumption (iii)
of this simplified model. We allow the rescattering electron
to tunnel-ionize at different times t ′, which can lead to the
electron returning to the core with energy smaller than 3.17Up

but potentially with larger angles β3E . In this modified model,
both the momentum 2ξ (t ′)

√
Up and the energy κ (t ′)Up of the

rescattering electron upon its return to the core depend on the
time t ′, with κ = 3.17 corresponding to the maximum return
energy. The formula for βM

3E , with M standing for “modified,”
takes the form

βM
3E = arctan

(√
2

2

)

− arctan
2ξ (t ′)

√
Up

2ξ (t ′)
√

2Up + √
2(κ (t ′)Up − Ip23)

. (16)

In Fig. 6, we show the dependence of the angle βM
3E on

both Up and t ′. We note that the time t ′ in Fig. 6 changes
from the time corresponding to the maximum of the elec-
tric field plus to this time and a time interval such that the
ionization rate is not very low. We find that, for each value
of Up there exists a time t ′ that maximizes βM

3E . This one-
to-one dependence is represented with the purple curve in
Fig. 6. The turquoise curve identifies the angle βM

3E = βs
3E

that corresponds to the time t ′ that results in κ = 3.17. We
find that the improved simplified model results in an angle
βM

3E > βs
3E . This is better illustrated as a function of Up in

Fig. 4(e), where βM
3E (Up) is depicted with a dashed-green line,

while βs
3E (Up) corresponding to the maximum return energy

of 3.17Up is depicted with a solid yellow line. We also find
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that in Fig. 4(e) the angle βM
3E (Up) agrees better than βs

3E (Up)
with the results obtained from the ECBB model depicted with
the blue triangles. This is expected since the variation of the
tunnel-ionization time t ′ is naturally embedded in the ECBB
model.

Next, we discuss the behavior of the angles β
M/s
3E (Up) in

Fig. 4(e) for lower field intensities. The simplified classical
model provides angles β

M/s
3E (Up), i.e., the width of the central

spot, only for ponderomotive energies larger than Ip23/3.17,
see Eqs. (15) and (16). We also find that, for low intensities,
β

M/s
3E (Up) differ significantly from the corresponding values

obtained with the quantum and the ECBB model. The main
reason is that, in the simplified model we do not account for
Coulomb interactions.

Also, the quantum and classical results in Fig. 4(e) re-
flect the same trend, i.e., a nearly constant width of the
momentum distribution when the intensity increases. How-
ever, unsurprisingly, the measured values of β obtained from
quantum simulations do not fit as well as the ECBB classi-
cal model the results obtained with our simplified classical
model. The quantum calculations are performed using a
reduced-dimensionality model; therefore, one can only expect
qualitative agreement with the simplified classical model. This
trend of a nearly constant width of the momentum distribution
as a function of intensity is also reproduced by the simpli-
fied classical model. Indeed, a comparison of βM

3E (Up) with
βs

3E (Up) suggests that the width of the momentum distribu-
tion mainly depends on the tunnel-ionization time (simplified
model) and subsequently on the time of recollision and hence
does not change significantly with the intensity of the field.
Both curves saturate for large values of Up. The remaining
discrepancies of the simplified model with the quantum model
and the ECBB model most probably stem from not account-

ing for electron-electron and electron-ion interactions in the
simplified model. Hence, the simplified model reproduces the
main features of the angle β3E as a function of Up.

IV. CONCLUSIONS

We have provided an analysis of signatures of particular
triple ionization channels in Dalitz plots of the electron mo-
menta. We have compared data obtained after simulations
with a quantum-mechanical restricted-space model with data
obtained with semiclassical simulations with the ECBB and
Heisenberg models. After a qualitative comparison of the
corresponding Dalitz plots, we find that the results for all
numerical models suggest that a central spot in Dalitz plots for
electrons propagating all in the same hemisphere correspond
to direct ionization. We have rationalized our hypothesis, con-
structing a simple classical model for direct ionization that
predicts how the spot size changes with increasing intensity
of the laser field. The model independence of this imprint of
direct ionization manifested on Dalitz plots, suggests that the
occurrence of this central spot in Dalitz plots should also be
observed in experiments.
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