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 A B S T R A C T

This paper addresses the problem of friction-free contact between two elastic bodies. We develop 
an augmented Lagrangian method that provides computational convenience by reformulating 
the contact problem as a nonlinear variational equality. To achieve this, we propose a Nitsche-
based method incorporating a hybrid displacement variable defined on an interstitial layer. 
This approach enables complete decoupling of the contact domains, with interaction occurring 
exclusively through the interstitial layer. The layer is independently approximated, eliminating 
the need to handle intersections between unrelated meshes. Additionally, the method supports 
introducing an independent model on the interface, which we leverage to represent a membrane 
covering one of the bodies as well as a plate resting on one of the bodies. We present the 
formulation of the method, establish stability and error estimates, and demonstrate its practical 
utility through illustrative numerical examples.

1. Introduction

Traditionally, two-body contact algorithms in finite element analysis rely on a node-to-segment approach, where the nodes of 
one mesh are constrained from crossing the discrete boundary of the other. In a one-pass algorithm, only the nodes on one of the 
surfaces are considered, which can result in local penetration if the mesh densities differ significantly. A two-pass algorithm, on the 
other hand, considers nodes on both surfaces, but this can lead to ill-posed problems, cf. El-Abbasi and Bathe [1]. This arises when 
nodes on the two surfaces are very close, as they may impose nearly identical contact conditions. To address this issue, additional 
checks are necessary, as discussed by Puso and Laursen [2].

The contact constraints can be enforced using discrete Lagrange multipliers (contact pressures) associated with the nodes or a 
nodal penalty method that penalizes the no-penetration constraint. Another classical approach is the distributed Lagrange multiplier 
method [1,3], where the multiplier’s discretization is typically related to the surface mesh of one of the bodies to ensure stability. 
Consequently, these approaches require careful handling of intersections between unrelated meshes. This challenge also applies to 
distributed penalty methods and Nitsche’s method.

To overcome these limitations and enable a more flexible approximation of the interface variables, we extend the hybrid Nitsche’s 
method [4,5], which incorporates an independent displacement field at the interface, to the case of friction-free elastic contact. The 
hybrid field can serve as an auxiliary variable without direct physical interpretation, facilitating the transfer of information between 
the contacting bodies. For instance, the hybrid field may be defined on a structured mesh for computational convenience. Another 
advantages of a hybrid Nitsche method, as compared to the standard Nitsche method, is that it makes it convenient to eliminate 
internal degrees of freedom in a parallel fashion so that the linear system can be solved by iterative substructuring methods, as 
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discussed by Gustavsson et al. [6]. In the context of contact problems, however, the most interesting feature of the method lies 
in the possibility of defining a model for the interface variable, such as a membrane covering one of the bodies or a shell located 
between the two bodies. If this is to be done using Lagrange multipliers, the cost increases as two sets of multipliers must be used, 
coupling the interface model from both sides of the contact zone. Model coupling is thus the focus of this paper.

We formulate the hybrid approach within an augmented Lagrangian framework, leveraging Rockafellar’s reformulation [7–9] of 
the well-known Kuhn–Tucker contact conditions. For Nitsche’s method this reformulation was first proposed and analyzed by Chouly 
and Hild [10], in the context of friction-free contact. This framework enables the definition of the Nitsche stabilization mechanism 
for variational inequality problems, transforming the inequality constraints associated with contact into nonlinear equalities (see 
also [11]). These equalities facilitate the application of iterative solution schemes in the spirit of Alart and Curnier [12]. We establish 
theoretical results, including stability and approximation properties, to support the method’s robustness. Finally, we provide several 
numerical examples to demonstrate our method’s practical application and performance.

1.1. Relation to previous work and outline

For a general overview of computational methods for contact we refer to [13]. Our method shares similarities with that of Chouly 
and Hild [10] and the developments thereof [14–16], but with a significant distinction: it allows for an independent approximation 
of the displacement field in the contact zone, decoupled from the approximation used in the elastic bodies. Nitsche’s method and 
related stabilized Lagrange multiplier methods have been analyzed for contact problems also in [17], where estimates were proved 
requiring no additional solution regularity. 

The method we propose is also related to domain decomposition methods for contact problems. The pioneering works in for this 
approach were using Schwarz methods [18] or FETI methods [19]. Our work is more closely related to mortar methods combined 
with the Augmented Lagrangian method [20]. We refer to [11] for a discussion of the relation between the Augmented Lagrangian 
method and Nitsche’s method in the context of variational inequalities. For other work on mortar methods for contact problems we 
refer to [2,21–25]. Recent work has also explored mortar methods with NURBS or IGA, we refer to [26–28]. Another popular domain 
decomposition approach is the LaTin framework. For works relevant in our context we refer to [29,30] and more recently [31]. 
In the latter reference it is underlined that different coupling conditions can be integrated easily by changing the coupling form. 
Similarly to such methods the ideas we propose integrate seamlessly in the cutFEM framework combining the ideas of [32,33]. To 
the best of our knowledge however none of these references introduce mixed dimensional pde problems to handle interstitial layers 
with mechanical properties.

The structure of the paper is as follows: Section 2 introduces the contact model, derives the hybridized finite element method, 
and formulates the associated optimality equations. Section 3 presents a stability estimate, a best approximation result, and a 
discussion of the method’s convergence order. Section 4 provides several numerical examples to illustrate the practical application 
and performance of the method. Section 5 concludes the paper with a summary of key findings and insights.

2. A contact model problem

2.1. Hybridized problem formulation

We shall study several different contact problems between two elastic bodies occupying the domains 𝛺𝑖 ⊂ R𝑑 , 𝑖 = 1, 2, with 𝑑 = 2
or 3. Let 𝛺0 denote a hybrid object located between 𝛺1 and 𝛺2, see Fig.  1. For 𝑑 = 3, the hybrid object is a surface, and for 𝑑 = 2, 
it is a curve. The bodies 𝛺1 and 𝛺2 do not come into direct contact; all interactions are mediated through 𝛺0. Thus, all information 
exchanged between 𝛺1 and 𝛺2 passes through the hybrid space. We will consider two scenarios:

• Case 1. The hybrid space is an auxiliary tool to facilitate numerical computations. For example, it may consist of a structured 
mesh that efficiently transfers data between two unstructured meshes. In this scenario, the hybrid space must be stabilized, 
potentially by ensuring it conforms to the boundary of one of the bodies.

• Case 2. The hybrid space represents physical interactions between 𝛺1 and 𝛺2, such as a membrane or a plate residing between 
them, as described in [34].

In both cases, the hybrid object 𝛺0 is treated as the master object, while the elastic bodies 𝛺𝑖, 𝑖 = 1, 2, implement contact or 
equality constraints. The hybrid object is only influenced by the normal stresses exerted by the two elastic bodies.

We will demonstrate that both cases can be conveniently addressed and analyzed within a unified abstract framework. To achieve 
this, we will not initially specify the exact properties of the forms associated with the hybrid object. Instead, we will develop the 
analysis based on general abstract assumptions and define the specific hybrid forms for the applications presented below. This 
approach emphasizes the flexibility and generality of the framework.
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Fig. 1. Left: Case 1, hybrid space an auxiliary space weakly constrained to follow the boundary of one of the active bodies. Right: Case 2, hybrid space 
representing physics.

Governing equations for the elastic bodies. Following the problem definition of Fabre, Pousin, and Renard [35], the boundary 𝜕𝛺𝑖 of 
𝛺𝑖, for 𝑖 = 1, 2, is divided into three nonoverlapping parts: 𝜕𝛺𝑖,𝐶 (the potential zone of contact), 𝜕𝛺𝑖,𝑁  (the Neumann part), and 
𝜕𝛺𝑖,𝐷 (the Dirichlet part) which we, in the analysis, assume have non-zero measure to guarantee that Korn’s inequality holds. We 
let 𝒏𝑖 be the exterior unit normal to 𝜕𝛺𝑖.

Let 𝒖𝑖 ∶ 𝛺𝑖 → R𝑑 denote the displacement field on 𝛺𝑖. We assume that the two elastic bodies 𝛺𝑖, 𝑖 = 1, 2, are subjected to volume 
forces 𝒇𝑖 and, for simplicity, zero displacements on 𝜕𝛺𝑖,𝐷 and zero tractions on 𝜕𝛺𝑖,𝑁 ,

−∇ ⋅ 𝝈(𝒖𝑖) = 𝒇𝑖 in 𝛺𝑖 (1)

𝒖𝑖 = 𝟎 on 𝜕𝛺𝑖,𝐷 (2)

𝝈𝑛(𝒖𝑖) = 𝟎 on 𝜕𝛺𝑖,𝑁 (3)

We further assume that Hooke’s constitutive law holds 
𝝈(𝒖𝑖) = 𝜆𝑖 tr 𝝐(𝒖𝑖) 𝑰 + 2𝜇𝑖𝝐(𝒖𝑖), 𝝐(𝒖𝑖) =

1
2
(𝒖𝑖 ⊗ ∇ + ∇⊗ 𝒖𝑖) (4)

with Lamé parameters 𝜇𝑖 and 𝜆𝑖. We must add the equality or contact constraints on 𝜕𝛺𝑖,𝐶 to complete the equations.
The equality and inequality constraints. To define our contact constraints, we start by defining the distance between 𝛺𝑖 and 𝛺0, 

𝜌𝑖,0(𝒛) = (𝒏𝑖,0(𝒛), 𝒛 − 𝒑0(𝒛))R𝑑 (5)

where 𝒛 ∈ 𝜕𝛺𝑖,𝐶 , 𝒑0(𝒛) is the closest point mapping associated with 𝛺0, and 𝒏𝑖,0(𝒛) = 𝒏𝑖,0(𝒑0(𝒛)) is the pullback of the normal 
to 𝛺0 pointing into 𝛺𝑖, cf. Fig.  2. Taking the deformation fields 𝒗𝑖 on 𝛺𝑖 and 𝒗0 on 𝛺0 into account by replacing 𝒛 − 𝒑0(𝒛) by 
(𝒛 + 𝒗𝑖(𝒛)) − (𝒑0(𝒛) − 𝒗0(𝒑0(𝒛)), gives

𝜌𝑖,0(𝒛, 𝒗0, 𝒗𝑖) = (𝒏𝑖,0(𝒛), 𝒛 + 𝒗𝑖(𝒛))R𝑑 − (𝒏𝑖,0(𝒛),𝒑0(𝒛) + 𝒗0(𝒑0(𝒛))R𝑑 (6)

= (𝒏𝑖,0(𝒛), 𝒛 − 𝒑0(𝒛))R𝑑 + (𝒏𝑖,0(𝒛), 𝒗𝑖(𝒛) − 𝒗0(𝒑0(𝒛))R𝑑 (7)

= 𝜌𝑖,0(𝒛) + (𝒏𝑖,0(𝒛), 𝒗𝑖(𝒛) − 𝒗0(𝒑0(𝒛))R𝑑 (8)

= 𝜌𝑖,0(𝒛) − [𝑣𝑛]𝑖 (9)

Thus, we may extend the definition (5) to the deformed case by 

𝜌𝑖,0(𝒛, 𝒗0, 𝒗𝑖) = 𝜌𝑖,0(𝒛) − [𝑣𝑛(𝒛)]𝑖 on 𝜕𝛺𝑖,𝐶 (10)

where 
[𝑣𝑛(𝒛)]𝑖 = (𝒏𝑖,0(𝒛), 𝒗𝑖(𝒛))R𝑑 − (𝒗0(𝒑0(𝒛))R𝑑 (11)

is the jump in the normal displacements. In the following, we make the dependence on 𝒛 implicit and use the more compact notation 
𝑖̃,0(𝒗0, 𝒗𝑖) etc.

Remark 2.1.  Note that the exterior unit normal to the elastic body satisfies 𝒏𝑖 = −𝒏0 in the contact zone and 𝒏𝑖 ≈ −𝒏0 close to the 
contact if the boundary is smooth and thus 

[𝑣𝑛] ≈ 𝑣𝑖,𝑛 + 𝑣0,𝑛 = (𝒏𝑖, 𝒗𝑖)R𝑑 + (𝒏0, 𝒗0)R𝑑 (12)

which is the standard definition of the jump in the normal displacement.
We then have the following constraints,
3 
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Fig. 2. Closest point 𝒑0 and normal 𝒏𝑖,0.

• Hybridized equality constraint:
𝜌𝑖,0(𝒖𝑖, 𝒖0) = 0 on 𝜕𝛺𝑖,𝐶 (13)

• Hybridized contact constraints:
−𝜌𝑖,0(𝒖𝑖, 𝒖0) ≤ 0 on 𝜕𝛺𝑖,𝐶 (14)

𝜎𝑛(𝒖𝑖) ≤ 0 on 𝜕𝛺𝑖,𝐶 (15)

𝜎𝑛(𝒖𝑖)𝜌𝑖(𝒖𝑖, 𝒖0) = 0 on 𝜕𝛺𝑖,𝐶 (16)

where 𝜎𝑛(𝒗) is the (scalar) normal surface stress 
𝜎𝑛(𝒗𝑖) = 𝒏𝑖 ⋅ 𝝈(𝒗𝑖) ⋅ 𝒏𝑖 (17)

2.2. A hybrid Nitsche finite element method

Function and finite element spaces. We first define the natural function spaces for our continuous problem. Let 𝑉𝑖 = 𝐻1(𝛺𝑖) for 𝑖 = 1, 2, 
and 𝑉0 = 𝐻𝑠0 (𝛺0) where 𝑠0 depends on the physical properties of the hybrid space. For convenience, we define the product space 

𝑊 = 𝑉0 ⊕ 𝑉1 ⊕ 𝑉2 (18)

of R𝑑 valued displacement fields.
Next, we define the corresponding finite element spaces. To that end let ℎ,𝑖 be a quasi-uniform partition of 𝛺𝑖, into shape regular 

elements 𝑇 , with mesh-parameter ℎ𝑖 ∈ (0, ℎ0]. Let 𝑉ℎ,𝑖 ⊂ 𝑉𝑖 be a conforming finite element space on ℎ,𝑖 consisting of piecewise 
polynomials of order 𝑝𝑖. Let 𝜋ℎ,𝑖 ∶ 𝐻1(𝛺𝑖) → 𝑉ℎ,𝑖 be an interpolation operator such that 

‖𝑣 − 𝜋ℎ,𝑖𝑣‖𝐻𝑚(𝑇 ) ≲ ℎ𝑘−𝑚𝑖 ‖𝑣‖𝐻𝑘(𝑁(𝑇 )), 0 ≤ 𝑚 ≤ 𝑘 ≤ 𝑝𝑖 + 1 (19)

We finally define the product of the finite element spaces 
𝑊ℎ = 𝑉ℎ,0 ⊕ 𝑉ℎ,1 ⊕ 𝑉ℎ,2 (20)

where 𝑉ℎ,𝑖 are the 𝑑-dimensional versions of the corresponding scalar spaces.
Augmented Lagrangian formulation. We consider the nonlinear augmented Lagrangian formulation of Rockafellar [7–9], introduced 
in contact analysis by Alart and Curnier [12]. The basic idea is to write the Kuhn–Tucker conditions (14)–(16) in the equivalent 
form 

𝜎𝑛(𝒖𝑖) = [𝜎𝑛(𝒖𝑖) + 𝛾𝑖𝜌𝑖,0(𝒖0, 𝒖𝑖)]− = [𝜎𝑛(𝒖𝑖) − 𝛾([𝑢𝑛]𝑖 − 𝜌𝑖,0)]− (21)

where [𝑥]− = min(𝑥, 0) and 𝛾 > 0 is a parameter, see Appendix and [10]. Dimensional analysis indicates that 

𝛾𝑖 = 𝛾0ℎ
−1
𝑖 (22)

for a parameter 𝛾0 not dependent on ℎ𝑖, and we will see in the forthcoming analysis that this is indeed the proper choice.
To handle equality and inequality constraints in the same formulation, we define 

𝑆𝑖(𝒗) =

{

𝜎𝑛(𝒗𝑖) − 𝛾0ℎ−1𝑖 ([𝑣𝑛]𝑖 − 𝜌𝑖,0) Equality
[𝜎𝑛(𝒗𝑖) − 𝛾0ℎ−1𝑖 ([𝑣𝑛]𝑖 − 𝜌𝑖,0)]− Inequality

(23)

Note that 𝑆 (𝒗) is a function of 𝒗  and 𝒗 , so that 𝑆 (𝒗) = 𝑆 (𝒗 , 𝒗 ).
𝑖 0 𝑖 𝑖 𝑖 𝑖 0

4 
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Remark 2.2.  The quantity 
𝛴𝑛,𝑖(𝒗0, 𝒗𝑖) = 𝜎𝑛(𝒗𝑖) − 𝛾0ℎ

−1
𝑖 ([𝑣𝑛]𝑖 − 𝜌𝑖,0) (24)

is the so-called Nitsche normal stress, which is the natural approximation of the normal stress provided by the method and thus 

𝑆𝑖(𝒗) =

{

𝛴𝑛,𝑖(𝒗0, 𝒗𝑖) Equality
[𝛴𝑛,𝑖(𝒗0, 𝒗𝑖)]− Inequality

(25)

We note that the inequality constraint only allows negative normal stress.
We can now formulate a discrete minimum problem 

𝒖ℎ = argmin𝒗ℎ∈𝑊ℎ
𝐴(𝒗ℎ) (26)

where, with 

𝐼𝑎 =

{

{1, 2} Case 1
{0, 1, 2} Case 2 (27)

denoting the index set indicating the number of active forms in Case 1 (auxiliary hybrid space) and Case 2 (physical modeling 
hybrid space), the augmented Lagrangian takes the form

𝐴(𝒗) =
∑

𝑖∈𝐼𝑎

1
2
𝑎𝑖(𝒗, 𝒗) − 𝑙𝑖(𝒗) +

2
∑

𝑖=1

1
2
𝛾−10 ‖𝑆𝑖(𝒗)‖2𝐻−1∕2

ℎ (𝜕𝛺𝑖,𝐶 )
− 1

2
𝛾−10 ‖𝜎𝑛(𝒗𝑖)‖2𝐻−1∕2

ℎ (𝜕𝛺𝑖,𝐶 )
(28)

Here, for 𝑖 = 1, 2, the forms are defined by
𝑎𝑖(𝒗,𝒘) = (𝝈𝑖(𝒗𝑖), 𝝐(𝒘𝑖))𝛺𝑖

(29)

𝑙𝑖(𝒗) = (𝒇𝑖, 𝒗𝑖)𝛺𝑖
(30)

and the forms 𝑎0 and 𝑙0 are related to the hybrid space and may model some physics (Case 2) or could be zero (Case 1). In the latter 
case, 𝛺0 is connected weakly to 𝛺𝑖,𝐶 for one of the domains 𝛺𝑖, say 𝑖 = 1, through an equality constraint (13). Here and below also 
use the scalar products 

(𝑣,𝑤)𝐻𝑠
ℎ(𝜕𝛺𝑖,𝐶 ) = ℎ−2𝑠𝑖 (𝑣,𝑤)𝜕𝛺𝑖,𝐶

, 𝑠 ∈ R (31)

with associated norms 
‖𝑣‖2𝐻𝑠

ℎ(𝜕𝛺𝑖,𝐶 )
= (𝑣, 𝑣)𝐻𝑠

ℎ(𝜕𝛺𝑖,𝐶 ) = ℎ−2𝑠𝑖 ‖𝑣‖2𝜕𝛺𝑖,𝐶
, 𝑠 ∈ R (32)

These scalar products mimic the corresponding continuous 𝐻𝑠(𝜕𝛺𝑖,𝐶 ) product on the discrete spaces.

2.3. Optimality equations

The optimality equations take the form: find 𝒖ℎ ∈ 𝑊ℎ such that 
𝐴(𝒖ℎ, 𝒗) = 𝑙(𝒗) ∀𝒗 ∈ 𝑊ℎ (33)

Here, the forms are defined by
𝐴(𝒗,𝒘) = 𝑎(𝒗,𝒘) + 𝑏(𝒗,𝒘) − 𝑐(𝒗,𝒘) (34)

𝑎(𝒗,𝒘) =
∑

𝑖∈𝐼𝑎

𝑎𝑖(𝒗𝑖,𝒘𝑖) (35)

𝑏(𝒗,𝒘) =
2
∑

𝑖=1
𝑏𝑖(𝒗,𝒘) (36)

𝑐(𝒗,𝒘) =
2
∑

𝑖=1
𝑐𝑖(𝒗,𝒘) (37)

𝑙(𝒗) =
2
∑

𝑖=0
𝑙𝑖(𝒗𝑖) (38)

where 
𝑏𝑖(𝒗,𝒘) = 𝛾−10 ℎ𝑖(𝑆𝑖(𝒗), 𝐷𝑆𝑖(𝒘))𝜕𝛺𝑖,𝐶

(39)

with 𝑆𝑖 defined in (23) and 
𝐷𝑆 (𝒘) = 𝜎 (𝒘 ) − 𝛾 ℎ−1[𝑤 ] (40)
𝑖 𝑛 𝑖 0 𝑖 𝑛 𝑖

5 



E. Burman et al. Computer Methods in Applied Mechanics and Engineering 445 (2025) 118175 
and 
𝑐𝑖(𝒗,𝒘) = 𝛾−10 ℎ𝑖(𝜎𝑛(𝒗𝑖), 𝜎𝑛(𝒘𝑖))𝜕𝛺𝑖,𝐶

(41)

3. Error estimates

3.1. Properties of the forms

• The forms 𝑎𝑖, 𝑖 ∈ 𝐼𝑎, are coercive and continuous

‖𝒗‖2𝑉𝑖 ≲ 𝑎𝑖(𝒗, 𝒗) 𝒗 ∈ 𝑉𝑖 (42)

𝑎𝑖(𝒗𝑖,𝒘𝑖) ≲ ‖𝒗‖𝑉𝑖‖𝒘‖𝑉𝑖 𝒗,𝒘 ∈ 𝑉𝑖 (43)

For 𝑖 ∈ {1, 2}, 𝑉𝑖 = 𝐻1(𝛺𝑖) and 𝑉0 will depend on the choice of hybrid model. For a second order model 𝑉0 = 𝐻1(𝛺0) and for 
a fourth order model 𝑉0 = 𝐻2(𝛺0). We define the energy norm 

‖𝒗‖2𝑎 = 𝑎(𝒗, 𝒗) =
∑

𝑖∈𝐼𝑎

𝑎𝑖(𝒗𝑖, 𝒗𝑖) (44)

• The forms 𝑏𝑖 satisfies the monotonicity and continuity
𝛾−10 ‖𝑆𝑖(𝒗) − 𝑆𝑖(𝒘)‖2

𝐻−1∕2
ℎ (𝜕𝛺𝑖,𝐶 )

≤ 𝑏𝑖(𝒗, 𝒗 −𝒘) − 𝑏𝑖(𝒘, 𝒗 −𝒘) (45)

|𝑏𝑖(𝒗, 𝒓) − 𝑏𝑖(𝒘, 𝒓)| ≤ 𝛾−10 ‖𝑆𝑖(𝒗) − 𝑆𝑖(𝒘)‖𝐻−1∕2
ℎ (𝜕𝛺𝑖,𝐶 )

‖𝐷𝑆𝑖(𝒓)‖𝐻−1∕2
ℎ (𝜕𝛺𝑖,𝐶 )

(46)

with vectorized versions,
2
∑

𝑖=1
𝛾−10 ‖𝑆𝑖(𝒗) − 𝑆𝑖(𝒘)‖2

𝐻−1∕2
ℎ (𝜕𝛺𝑖,𝐶 )

≤ 𝑏(𝒗, 𝒗 −𝒘) − 𝑏(𝒘, 𝒗 −𝒘) (47)

|𝑏(𝒗, 𝒓) − 𝑏(𝒘, 𝒓)| ≤
2
∑

𝑖=1
𝛾−10 ‖𝑆𝑖(𝒗) − 𝑆𝑖(𝒘)‖𝐻−1∕2

ℎ (𝜕𝛺𝑖,𝐶 )
‖𝐷𝑆𝑖(𝒓)‖𝐻−1∕2

ℎ (𝜕𝛺𝑖,𝐶 )
(48)

See the Appendix for derivations of these inequalities.
• The form 𝑐 is continuous 

𝑐(𝒗,𝒘) ≲ ‖𝒗‖𝑐‖𝒘‖𝑐 𝒗,𝒘 ∈ 𝑊 +𝑊ℎ (49)

and we have the inverse bound

‖𝒗‖2𝑐 =
2
∑

𝑖=1
𝛾−10 ‖𝜎𝑛(𝒗𝑖)‖2𝐻−1∕2

ℎ (𝜕𝛺𝑖,𝐶 )
≲

2
∑

𝑖=1
𝛾−10 ‖𝒗𝑖‖2𝑉𝑖 ≲ 𝛾−10 ‖𝒗‖2𝑎 𝒗 ∈ 𝑊ℎ (50)

where the last bound follows from (42) for 𝑖 ∈ {1, 2} and the fact that {1, 2} ⊂ 𝐼𝑎, in both Case 1 and Case 2.

3.2. Estimates

Proposition 3.1.  The discrete problem (33) admits a unique solution 𝒖ℎ ∈ 𝑊ℎ such that

‖𝒖ℎ‖2𝑎 +
2
∑

𝑖=1
𝛾−10 ‖𝑆𝑖(𝒖ℎ) − 𝑆𝑖(𝟎)‖2𝐻−1∕2

ℎ (𝜕𝛺𝑖,𝐶 )
≲

∑

𝑖∈𝐼𝑎

‖𝒇𝑖‖2𝑉 ∗
𝑖
+

2
∑

𝑖=1
𝛾−10 ℎ‖𝑆𝑖(𝟎)‖2𝜕𝛺𝑖,𝐶

(51)

Proof.  We have 
𝑙(𝒗) = 𝐴(𝒗, 𝒗) = ‖𝒗‖2𝑎 + 𝑏(𝒗, 𝒗) − ‖𝒗‖2𝑐 (52)

where 
𝑏(𝒗, 𝒗) = 𝑏(𝒗, 𝒗 − 𝟎) − 𝑏(𝟎, 𝒗 − 𝟎) + 𝑏(𝟎, 𝒗) (53)

and thus 
‖𝒗‖2𝑎 − ‖𝒗‖2𝑐 + 𝑏(𝒗, 𝒗 − 𝟎) − 𝑏(𝟎, 𝒗 − 𝟎) = 𝑙(𝒗) − 𝑏(𝟎, 𝒗) ≤ |𝑙(𝒗)| + |𝑏(𝟎, 𝒗)| (54)

Here we have using (50), for 𝛾0 large enough, 

‖𝒗‖2 − ‖𝒗‖2 ≥ ‖𝒗‖2 − 𝐶 𝛾−1‖𝒗‖2 ≥ (1 − 𝐶 𝛾−1)‖𝒗‖2 ≥ 𝐶 ‖𝒗‖2 (55)
𝑎 𝑐 𝑎 1 0 𝑎 1 0 𝑎 2 𝑎

6 
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with 𝐶2 > 0 and by (47), 

𝑏(𝒗, 𝒗 − 𝟎) − 𝑏(𝟎, 𝒗 − 𝟎) ≥
2
∑

𝑖=1
𝛾−10 ‖𝑆𝑖(𝒗𝑖) − 𝑆𝑖(𝟎)‖2𝐻−1∕2

ℎ (𝜕𝛺𝑖,𝐶 )
(56)

We thus have 

𝐶2‖𝒗‖2𝑎 +
2
∑

𝑖=1
𝛾−10 ‖𝑆𝑖(𝒗𝑖) − 𝑆𝑖(𝟎)‖2𝐻−1∕2

ℎ (𝜕𝛺𝑖,𝐶 )
≤ |𝑙(𝒗)| + |𝑏(𝟎, 𝒗)| (57)

Next, estimating the right hand side, we have 
|𝑙(𝒗)| ≲ ‖𝒇‖𝑊 ∗‖𝒗‖𝑊 ≲ ‖𝒇‖𝑊 ∗‖𝒗‖𝑎 (58)

and

|𝑏(𝟎, 𝒗)| ≤
2
∑

𝑖=1
𝛾−10 ‖𝑆𝑖(𝟎)‖𝐻−1∕2

ℎ (𝜕𝛺𝑖,𝐶 )
‖𝐷𝑆𝑖(𝒗)‖2𝐻−1∕2

ℎ (𝜕𝛺𝑖,𝐶 )
(59)

=
2
∑

𝑖=1
𝛾−10 ‖𝑆𝑖(𝟎)‖𝐻−1∕2

ℎ (𝜕𝛺𝑖,𝐶 )
‖𝑆𝑖(𝒗) − 𝑆𝑖(𝟎)‖2𝐻−1∕2

ℎ (𝜕𝛺𝑖,𝐶 )
(60)

≤
2
∑

𝑖=1

1
2
𝛾−10 ‖𝑆𝑖(𝟎)‖2𝐻−1∕2

ℎ (𝜕𝛺𝑖,𝐶 )
+ 1

2
𝛾−10 ‖𝑆𝑖(𝒗) − 𝑆𝑖(𝟎)‖2𝐻−1∕2

ℎ (𝜕𝛺𝑖,𝐶 )
(61)

where we used the identity 𝑆𝑖(𝒗) = 𝑆𝑖(𝟎) + 𝐷𝑆𝑖(𝒗), which holds for affine maps. Using kick-back for the second term in (61) these 
estimates prove the desired stability estimate. Using the Brouwer fixed point theorem, we can prove that there exists a solution; 
see [36] for details. Uniqueness follows from the stability estimate. □

Theorem 3.1.  The solution 𝒖ℎ ∈ 𝑊ℎ to (33) satisfies the following best approximation estimate

‖𝒖 − 𝒖ℎ‖2𝑎 +
2
∑

𝑖=1
𝛾−10 ‖𝑆𝑖(𝒖) − 𝑆𝑖(𝒖ℎ)‖2𝐻−1∕2

ℎ (𝜕𝛺𝑖,𝐶 )
(62)

≲ inf
𝒗ℎ∈𝑊ℎ

(

(1 + 𝛾−10 )‖𝒖 − 𝒗ℎ‖2𝑎 +
2
∑

𝑖=1
𝛾−10 ‖𝜎𝑛(𝒖𝑖 − 𝒗ℎ,𝑖)‖2𝐻−1∕2

ℎ (𝜕𝛺𝑖,𝐶 )
+ 𝛾0‖[𝒖 − 𝒗ℎ]𝑖‖2𝐻1∕2

ℎ (𝜕𝛺𝑖,𝐶 )

)

(63)

Proof.  We first note that we have the Galerkin orthogonality 
𝑎(𝒖 − 𝒖ℎ, 𝒗) + 𝑏(𝒖, 𝒗) − 𝑏(𝒖ℎ, 𝒗) − 𝑐(𝒖 − 𝒖ℎ, 𝒗) = 0, ∀𝒗 ∈ 𝑊ℎ (64)

Next, we split the error, 𝒆 = 𝒖 − 𝒖ℎ, in an approximation error 𝜽 and a discrete error 𝒆ℎ ∈ 𝑊ℎ, 
𝒆 ∶= 𝒖 − 𝒖ℎ = (𝒖 − 𝒗ℎ) + (𝒗ℎ − 𝒖ℎ) = 𝜽 + 𝒆ℎ, 𝒗ℎ ∈ 𝑊ℎ (65)

Using the coercivity (44) of 𝑎, monotonicity (47) of 𝑏, followed by Galerkin orthogonality (64), we get

‖𝒆‖2𝑎 +
2
∑

𝑖=1
𝛾−10 ‖𝑆𝑖(𝒖) − 𝑆𝑖(𝒖ℎ)‖2𝐻−1∕2

ℎ (𝜕𝛺𝑖,𝐶 )
(66)

≤ 𝑎(𝒆, 𝒆) + 𝑏(𝒖, 𝒆) − 𝑏(𝒖ℎ, 𝒆) (67)

= 𝑎(𝒆,𝜽) + 𝑏(𝒖,𝜽) − 𝑏(𝒖ℎ,𝜽) + 𝑎(𝒆, 𝒆ℎ) + 𝑏(𝒖, 𝒆ℎ) − 𝑏(𝒖ℎ, 𝒆ℎ)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=𝑐(𝒆,𝒆ℎ)

(68)

= 𝑎(𝒆,𝜽) + 𝑏(𝒖,𝜽) − 𝑏(𝒖ℎ,𝜽) + 𝑐(𝒆, 𝒆ℎ) (69)

≤ ‖𝒆‖𝑎‖𝜽‖𝑎 +
2
∑

𝑖=1
𝛾−10 ‖𝑆𝑖(𝒖) − 𝑆𝑖(𝒖ℎ)‖𝐻−1∕2

ℎ (𝜕𝛺𝑖,𝐶 )
‖𝐷𝑆𝑖(𝜽)‖𝐻−1∕2

ℎ (𝜕𝛺𝑖,𝐶 )
+ 1

2
‖𝜽‖2𝑐 +

3
2
𝐶𝛾−10 ‖𝜽‖2𝑎 +

3
2
𝐶𝛾−10 ‖𝒆‖2𝑎 (70)

In (70) we used the continuity of 𝑎 and 𝑏, and the estimate
𝑐(𝒆, 𝒆ℎ) = 𝑐(𝜽, 𝒆ℎ) + 𝑐(𝒆ℎ, 𝒆ℎ) (71)

≤ ‖𝜽‖𝑐‖𝒆ℎ‖𝑐 + ‖𝒆ℎ‖2𝑐 (72)

≤ 1
2
‖𝜽‖2𝑐 +

3
2
‖𝒆ℎ‖2𝑐 (73)

≤ 1
2
‖𝜽‖2𝑐 +

3
2
𝐶𝛾−10 ‖𝒆ℎ‖2𝑎 (74)

≤ 1
2
‖𝜽‖2𝑐 +

3
2
𝐶𝛾−10 ‖𝜽‖2𝑎 +

3
2
𝐶𝛾−10 ‖𝒆‖2𝑎 (75)
7 
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where we used the inverse estimate (50). Splitting the first and second terms in (70) using 𝑎𝑏 ≤ 𝑎2∕2 + 𝑏2∕2 and taking 𝛾0 large 
enough, we may use a kick-back argument to get

‖𝒆‖2𝑎 +
2
∑

𝑖=1
𝛾−10 ‖𝑆𝑖(𝒖) − 𝑆𝑖(𝒖ℎ)‖2𝐻−1∕2

ℎ (𝜕𝛺𝑖,𝐶 )
(76)

≲ ‖𝜽‖2𝑎 +
2
∑

𝑖=1
𝛾−10 ‖𝐷𝑆𝑖(𝜽)‖2𝐻−1∕2

ℎ (𝜕𝛺𝑖,𝐶 )
+ 𝛾−10 ‖𝜽‖2𝑎 + ‖𝜽‖2𝑐 (77)

≲ (1 + 𝛾−10 )‖𝜽‖2𝑎 +
2
∑

𝑖=1
𝛾−10 ‖𝜎𝑛(𝜽𝑖)‖2𝐻−1∕2

ℎ (𝜕𝛺𝑖,𝐶 )
+ 𝛾0‖[𝜃𝑛]𝑖‖2𝐻1∕2

ℎ (𝜕𝛺𝑖,𝐶 )
(78)

where we used the triangle inequality to conclude that
𝛾−10 ‖𝐷𝑆𝑖(𝒗)‖2𝐻−1∕2

ℎ (𝜕𝛺𝑖,𝐶 )
= 𝛾−10 ℎ‖𝜎𝑛(𝒗𝑖) − 𝛾0ℎ

−1[𝑣𝑛]𝑖‖2𝜕𝛺𝑖,𝐶
(79)

≤ 𝛾−10 ℎ‖𝜎𝑛(𝒗𝑖)‖2𝜕𝛺𝑖,𝐶
+ 𝛾0ℎ

−1
‖[𝑣𝑛]𝑖‖2𝜕𝛺𝑖,𝐶

(80)

= 𝛾−10 ‖𝜎𝑛(𝒗𝑖)‖2𝐻−1∕2
ℎ (𝜕𝛺𝑖,𝐶 )

+ 𝛾0‖[𝑣𝑛]𝑖‖2𝐻1∕2
ℎ (𝜕𝛺𝑖,𝐶 )

(81)

Thus, the proof is complete. □

Remark 3.1.  Letting ℎ(𝜕𝛺𝑖,𝐶 ) denote the elements in ℎ,𝑖 with a face that intersects 𝜕𝛺𝑖,𝐶 and using the element-wise trace 
inequality ‖𝑤‖

2
𝜕𝑇 ≲ ℎ−1‖𝑤‖

2
𝑇 + ℎ‖∇𝑤‖

2
𝑇  for 𝑤 ∈ 𝐻1(𝑇 ), we obtain

𝛾−10 ℎ𝑖‖𝜎𝑛(𝒗𝑖)‖2𝜕𝛺𝑖,𝐶
+ 𝛾0ℎ

−1
𝑖 ‖[𝑣𝑛]𝑖‖2𝜕𝛺𝑖,𝐶

(82)

≲ 𝛾−10 ℎ𝑖‖𝜎𝑛(𝒗𝑖)‖2𝜕𝛺𝑖,𝐶
+ 𝛾0ℎ

−1
𝑖 ‖𝑣𝑖,𝑛‖

2
𝜕𝛺𝑖,𝐶

+ 𝛾0ℎ
−1
𝑖 ‖𝑣0,𝑛‖

2
𝛺0

(83)

≲ 𝛾−10 (‖∇𝒗𝑖‖2ℎ(𝜕𝛺𝑖,𝐶 )
+ ℎ2𝑖 ‖∇

2𝒗𝑖‖2ℎ(𝜕𝛺𝑖,𝐶 )
) + 𝛾0(ℎ−2𝑖 ‖𝒗𝑖‖2ℎ(𝜕𝛺𝑖,𝐶 )

+ ‖∇𝒗𝑖‖2ℎ(𝜕𝛺𝑖,𝐶 )
) + 𝛾0ℎ

−1
𝑖 ‖𝑣0,𝑛‖

2
𝛺0

(84)

Setting 𝒗 = 𝜽 = 𝒖 − 𝒗ℎ, and taking 𝒗ℎ to an interpolant 𝜋ℎ𝒖 of the exact solution 𝒖 that satisfies optimal order interpolation error 
bounds (19), we conclude that our best approximation result, indeed leads to the optimal order energy error estimate,

‖𝒖 − 𝒖ℎ‖2𝑎 +
2
∑

𝑖=1
𝛾−10 ‖𝑆𝑖(𝒖) − 𝑆𝑖(𝒖ℎ)‖2𝐻−1∕2

ℎ (𝜕𝛺𝑖,𝐶 )
≲

{

∑2
𝑖=1 ℎ

2𝑝0+1
0 (ℎ0∕ℎ𝑖) +

∑2
𝑖=1 ℎ

2𝑝𝑖
𝑖 Case 1

ℎ2(𝑝0+1−𝑠0)0 +
∑2

𝑖=1 ℎ
2𝑝0+1
0 (ℎ0∕ℎ𝑖) +

∑2
𝑖=1 ℎ

2𝑝𝑖 Case 2 (85)

Here, in Case 2, 𝑎0 is a form defined on 𝐻𝑠0 (𝛺0) and we assume that 𝑉ℎ,0 ⊂ 𝐻𝑠0 (𝛺0). In Case 1 when 𝑎0 is not present the estimate 
simplifies. For both cases we can take piecewise constants in 𝑉0,ℎ and still get convergence, see the numerical example Section 4.1.1. 
Note that we can take ℎ0 arbitrarily small compared to ℎ𝑖, but not the other way around.

4. Numerical examples

One domain is fixed using Dirichlet boundary conditions in the numerical examples presented below. To remove the rigid body 
motions of the other, we use scalar Lagrange multipliers to ensure that the mean horizontal displacements are zero. We emphasize 
that our interface variable can be vector valued (𝒖0) or scalar (𝒏 ⋅ 𝒖0) depending on the problem type. We comment on this below.

4.1. A 2D Hertz problem

4.1.1. Comparison to the standard Nitsche method
In this Section, we study how the discretization of the interface (without interface model) compares to a standard Nitsche method 

as given in [10]. In doing this, we tie the interface variable to the surface of one of the bodies. It is then clear that the discretization 
of the bodies determines the error of the computation in the limit of fine discretization of the interface variable, as the interface 
variables cannot improve the accuracy of the discretization of the surface of the body to which it is tied. Here the interface variable 
is a scalar, approximating the normal displacement.

We consider a half-cylinder in contact with a rectangular block. The domains, load and boundary conditions are given in Fig. 
3; the meshes used are given in Fig.  4. These meshes are fixed using the computations: 19600 bilinear elements for the block and 
30752 linear triangular elements for the half cylinder. The block is fixed vertically at its bottom boundary and horizontally at 
(𝑥, 𝑦) = (0,−1). The half-cylinder (𝛺1) is loaded by a line load 𝒇 = (0,−50) at 𝑦 = 1 and has elastic moduli 𝐸1 = 7000 and 𝜈1 = 0.3. It 
is meshed using 𝑃 1 triangles. The block (𝛺2) has elastic moduli 𝐸2 = 4000, 𝜈2 = 0.3 and is discretized using 𝑄1 elements. We assume 
plane strain so that 𝜆𝑖 = 𝜈𝑖𝐸𝑖∕((1 + 𝜈𝑖)(1 − 2𝜈𝑖)) and 𝜇𝑖 = 𝐸𝑖∕(2(1 + 𝜈𝑖)), and we set 𝛾𝑖 = 10(𝜆𝑖 + 𝜇𝑖). For the approximation of 𝒏 ⋅ 𝒖0
we use three different choices: equidistributed piecewise constants, equidistributed linear continuous elements, and equidistributed 
quadratic continuous elements, on 

𝛺 ∶= {𝑥 ∈ [−0.4, 0.4], 𝑦 = 0} (86)
0
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Fig. 3. Domains, load and boundary conditions used for the Hertz problem.

Fig. 4. Meshes used for the Hertz problem.

These approximations are tied to the upper boundary of the block by an equality constraint. In Fig.  5 we show the solution obtained 
with Nitsche’s original method compared with the corresponding Hertz solution for two cylinders in contact, the upper with radius 
𝑟 = 1 and the lower with 𝑟 = ∞ (cf., e.g., [37]). This is not identical to the setup in the problem we solve but indicates the accuracy 
of the solution. In Fig.  6 we compare the different approximation of the interface variable and compare the error to that of the 
standard Nitsche method. With 𝑝 = 𝒏1 ⋅ 𝝈1 ⋅ 𝒏1 and 𝑝ℎ its discrete counterpart, we define the pressure error as 

𝑒𝑝 =
‖𝑝 − 𝑝ℎ‖𝐿2

‖𝑝‖𝐿2

(87)

We start by dividing 𝛺0 into two elements and then successively double the number of elements on the interface. We see that the 
quadratic approximation needs about 16 elements to achieve the expected accuracy, the linear about 64 elements, whereas the 
piecewise constant approximation needs more than 2048 (last data point). The number of surface elements on 𝛺2 coinciding with 
𝛺0 equals 224. Thus, with a good approximation of the interface variable, not many elements are needed to regain the accuracy of 
the original Nitsche method in this case.

4.1.2. Contact zones and pressures
In this Section, we show how the different methods act in the contact zone, and what pressure distributions they give. We show 

the case of log(ℎ0) ≈ −5.07, corresponding to 128 elements for the approximation of 𝒏 ⋅ 𝒖0 (cf. Fig.  6 for errors). In Fig.  7 we show 
a zoom of the edge of the contact zone, and in Fig.  8 we show the corresponding computed pressure. We note that the sources of 
the error are the spikes in pressure caused by the jumps in the discretization of 𝒏 ⋅ 𝒖0. In Figs.  9–12 we show contact zones and 
pressures for linear and quadratic approximations of 𝒏 ⋅ 𝒖0. At this discretization, they are close, but for coarser discretizations, the 
kinks in the linear approximation will lead to a larger error than in the quadratic approximation, as seen in Fig.  6. 
9 



E. Burman et al. Computer Methods in Applied Mechanics and Engineering 445 (2025) 118175 
Fig. 5. Exact (dashed line) and computed pressures with the original Nitsche method.

Fig. 6. A comparison of different discretizations of 𝒏 ⋅ 𝒖0.
10 
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Fig. 7. Zoom of the contact zone for piecewise constant 𝒏 ⋅ 𝒖0.

Fig. 8. Contact pressure for piecewise constant 𝒏 ⋅ 𝒖0.

4.2. Contact problems with model coupling

In this section, we focus on the qualitative behavior of our models, as no exact solutions are known.

4.2.1. The plate model
In this example, we use a plate model to calculate the hybrid variable. We consider the Kirchhoff plate model, posed on a 

rectangular domain 𝛺0, in the (𝑥, 𝑦)−plane, where we seek an out-of-plane (scalar) displacement 𝑢0, with 𝒖0 = (0, 0, 𝑢0), to which 
we associate the strain (curvature) tensor 

𝝐 (∇𝑢 ) ∶= 1 (

∇⊗ (∇𝑢 ) + (∇𝑢 )⊗ ∇
)

= ∇⊗ ∇𝑢 = ∇2𝑢 (88)
𝑝 0 2 0 0 0 0

11 
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Fig. 9. Zoom of the contact zone for piecewise linear 𝒏 ⋅ 𝒖0.

Fig. 10. Contact pressure for piecewise linear 𝒏 ⋅ 𝒖0.

and the plate stress (moment) tensor

𝝈𝑝(∇𝑢0) ∶=𝐷
(

𝝐(∇𝑢0) + 𝜈(1 − 𝜈0)−1div ∇𝑢0 𝑰
)

(89)

=𝐷
(

∇2𝑢0 + 𝜈(1 − 𝜈0)−1𝛥𝑢0𝑰
)

(90)

where 

𝐷 ∶=
𝐸0𝑡3 (91)
12(1 + 𝜈0)

12 
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Fig. 11. Zoom of the contact zone for piecewise quadratic 𝒏 ⋅ 𝒖0.

Fig. 12. Contact pressure for piecewise quadratic 𝒏 ⋅ 𝒖0.
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with 𝐸0 the Young’s modulus, 𝜈0 the Poisson’s ratio, and 𝑡 the plate thickness. The equilibrium equations of a free Kirchhoff plate 
take the form 

div 𝐝𝐢𝐯 𝝈𝑝(∇𝑢0) = 0 in 𝛺0 (92)

where 𝐝𝐢𝐯  and div denote the divergence of a tensor and a vector field, respectively. Multiplying by 𝑣 and integrating by parts, the 
form 𝑎0(⋅, ⋅) is found as 

𝑎0(𝑢0, 𝑣) ∶= (𝝈𝑝(∇𝑢0), 𝝐𝑝(∇𝑣))𝛺0
(93)

We consider a problem consisting of 𝛺1 being a stiff ball of radius 𝑟 = 1, 𝛺2 a block of dimensions (−2.5, 2.5)×(−2.5, 2.5)×(−1, 0), 
and 𝛺0 a plate resting on the block. Fig.  13 shows the configuration and meshes used. The ball has constitutive parameters 
𝐸1 = 20 000, 𝜈1 = 0.33, the block has 𝐸2 = 25, 𝜈 = 0.33, and the plate has 𝐸0 = 1000, 𝑡 = 0.1, and 𝜈 = 0.5. The ball is being pushed 
downwards by a volume force 𝒇1 = (0, 0,−10). We take 𝛾𝑖 = 100𝐸𝑖. The block and the ball are discretized using 𝑃 1 tetrahedral 
elements, and the plate is discretized using Bogner–Fox–Schmit elements [38], which is basically the outer product of cubic splines 
with some degrees of freedom removed, The reason for choosing this element is that it is very simple to implement on rectangular 
grids. Dirichlet boundary conditions 𝒖2 = 𝟎 are applied to the block at the bottom and at the sides.

In Fig.  14 we show the initial configuration; in Fig.  15, we show the deformation of the whole configuration; in Fig.  16, we show 
the deformation of the plate and the block.

4.2.2. The membrane model
In what follows, 𝛤 ∶= 𝛺0 denotes a closed and oriented surface, for simplicity without boundary, which is embedded in R3 and 

equipped with exterior normal 𝒏𝛤 . The membrane is assumed to occupy the domain 𝛺𝑡 = 𝛤 × (−𝑡∕2, 𝑡∕2) with 𝑡 the thickness of the 
membrane, assumed constant for simplicity. We let 𝜌 denote the signed distance function fulfilling ∇𝜌|𝛤 = 𝒏𝛤 .

For a given function 𝑢 ∶ 𝛤 → R, we assume that there exists an extension 𝑢̄, in some neighborhood of 𝛤 , such that 𝑢̄|𝛤 = 𝑢. The 
tangent gradient ∇𝛤  on 𝛤  can be defined by 

∇𝛤 𝑢 = 𝑃𝛤∇𝑢 (94)

with ∇ the R3 gradient and 𝑃𝛤 = 𝑃𝛤 (𝒙) the orthogonal projection of R3 onto the tangent plane of 𝛤  at 𝒙 ∈ 𝛤  given by 

𝑃𝛤 = 𝑰 − 𝒏𝛤 ⊗ 𝒏𝛤 (95)

where 𝑰 is the identity matrix. The tangent gradient defined by (94) is easily shown to be independent of the extension 𝑢. In the 
following, we shall not distinguish between functions on 𝛤  and their extensions when defining differential operators.

The surface gradient has three components, which we shall denote by 

∇𝛤 𝑢 =∶
(

𝜕𝑢
𝜕𝑥𝛤

, 𝜕𝑢
𝜕𝑦𝛤

, 𝜕𝑢
𝜕𝑧𝛤

)

(96)

For a vector-valued function 𝒗(𝒙), we define the tangential Jacobian matrix as the transpose of the outer product of ∇𝛤  and 𝒗, 

(

∇𝛤 ⊗ 𝒗
)T ∶=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕𝑣1
𝜕𝑥𝛤

𝜕𝑣1
𝜕𝑦𝛤

𝜕𝑣1
𝜕𝑧𝛤

𝜕𝑣2
𝜕𝑥𝛤

𝜕𝑣2
𝜕𝑦𝛤

𝜕𝑣2
𝜕𝑧𝛤

𝜕𝑣3
𝜕𝑥𝛤

𝜕𝑣3
𝜕𝑦𝛤

𝜕𝑣3
𝜕𝑧𝛤

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (97)

the surface divergence ∇𝛤 ⋅ 𝒗 ∶= tr∇𝛤 ⊗ 𝒗, and the in-plane strain tensor 

𝝐𝛤 (𝒖) ∶= 𝑃𝛤 𝝐(𝒖)𝑃𝛤 , where 𝝐(𝒖) ∶= 1
2
(

∇⊗ 𝒖 + (∇⊗ 𝒖)T
)

(98)

is the 3D strain tensor. The corresponding stress tensor is given by 
𝝈𝛤 = 2𝜇𝛤 𝝐𝛤 + 𝜆𝛤 tr𝝐𝛤 𝑃𝛤 (99)

where, with Young’s modulus 𝐸𝛤  and Poisson’s ratio 𝜈𝛤 , 

𝜇𝛤 =
𝐸𝛤 𝑡

2(1 + 𝜈𝛤 )
, 𝜆𝛤 =

𝐸𝛤 𝜈𝛤 𝑡
1 − 𝜈2𝛤

(100)

are the Lamé parameters in plane stress (multiplied by the thickness).
The equilibrium equations on an unloaded membrane are given by (cf. [39]) 

− ∇𝛤 ⋅ 𝝈𝛤 (𝒖0) = 𝟎 on 𝛤 , (101)

By multiplying the equilibrium equation by 𝒗0 and integrating by parts, we find the form 𝑎0(⋅, ⋅) as 

𝑎 (𝒖 , 𝒗 ) = (2𝜇 𝝐 (𝒖 ), 𝝐 (𝒗 )) + (𝜆 ∇ ⋅ 𝒖 ,∇ ⋅ 𝒗 ) (102)
0 0 0 𝛤 𝛤 0 𝛤 0 𝛤 𝛤 𝛤 0 𝛤 0 𝛤
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Fig. 13. Geometry and meshes used for the plate contact problem.

In this case, the interface variable is thus a vector-valued function.
We consider a problem with 𝛺1 a ball and 𝛺2 a block of the same dimensions as in the previous Section. The ball and block 

have fixed constitutive parameters 𝐸1 = 1000, 𝜈1 = 0.33 and 𝐸2 = 100, 𝜈2 = 0.3. The ball is covered by a membrane with 𝑡 = 0.1
and 𝜈𝛤 = 0.5, whose Young’s modulus we vary to show its stiffening effect. The discretization of the ball and the block are as in 
the previous section, and we let the surface mesh of the ball serve as a 𝑃 1 mesh for the membrane. We use 𝛾𝑖 = 100𝐸𝑖. The ball is 
again loaded with a volume load 𝒇2 = (0, 0,−10).

In Fig.  17, we show the deformations and normal stress on the ball surface when the membrane has zero stiffness (acts as a 
standard hybrid variable), in Fig.  18, we show the deformations and normal stress on the ball surface when 𝐸𝛤 = 2000, and, finally, 
in Fig.  19 when 𝐸𝛤 = 20000. The stiffening effect is clearly visible. Note that, counterintuitively, the maximum normal stress on the 
ball surface decreases as the membrane stiffens, even though the contact zone decreases. This is due to the membrane equilibrating 
15 
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Fig. 14. Initial configuration.

Fig. 15. Deformation of the configuration.

Fig. 16. Deformation of the plate and the block.
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Fig. 17. Deformations and normal stress on the ball surface with zero stiffness of the membrane.

the stresses over the ball more effectively as it stiffens. The stresses shown have been 𝐿2-projected from the piecewise constant 
stresses onto 𝑉ℎ,1.

5. Conclusions

In this work, we have developed a novel augmented Lagrangian framework for modeling friction-free contact between two elastic 
bodies. The core of our approach is a Nitsche-based method with a hybrid displacement variable defined on an interstitial layer. This 
formulation introduces significant flexibility by decoupling the computational domains, allowing the bodies in contact to interact 
17 
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Fig. 18. Deformations and normal stress on the ball surface with 𝐸𝛤 = 2000.

exclusively through the layer. The independent approximation of the layer avoids challenges associated with the intersection of 
unrelated meshes and opens possibilities for additional modeling, such as incorporating a membrane or other interface effects.

We demonstrated the stability and accuracy of the method by proving stability estimates and deriving error bounds. These 
theoretical results underline the robustness and convergence of the approach, making it suitable for complex contact problems 
where traditional methods may face limitations.

Moreover, the hybrid variable approach offers a natural framework for incorporating additional physical phenomena or 
constraints at the interface, such as thin structures or surface layers, without altering the underlying contact model. This adaptability 
enhances the potential applicability of the method to a wide range of problems in computational mechanics.
18 
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Fig. 19. Deformations and normal stress on the ball surface with 𝐸𝛤 = 20000.

The numerical examples illustrate the proposed method’s practical performance, showcasing its ability to handle challenging 
scenarios with minimal mesh constraints and good agreement with theoretical predictions. These examples highlight the method’s 

versatility in different interface approximations and configurations.

19 
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Future work will focus on extending the proposed approach to contact problems involving friction, nonlinear materials, or 
dynamic interactions. Additionally, exploring further applications of the hybrid interface variable to other types of coupled 
multiphysics problems, such as fluid–structure interaction or thermal contact, could provide valuable insights and broaden the 
scope of this method.

In summary, this paper’s augmented Lagrangian hybrid Nitsche method offers a flexible, stable, and computationally efficient 
approach to friction-free contact problems. We believe this framework represents a significant step forward in addressing the 
challenges associated with contact mechanics and provides a solid foundation for further research and application.
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Appendix. Additional verifications

In this appendix, we include technical details for the reader’s convenience.

• (21). For 𝑎, 𝑏 ∈ R, 
𝑎 ≤ 0, 𝑏 ≤ 0, 𝑎𝑏 = 0 ⟺ 𝑎 = [𝑎 − 𝑏]− (103)

Proof.  1. Assume that 𝑎 = [𝑎− 𝑏]− then we directly have 𝑎 ≤ 0. If 𝑎 = 0 then 0 = [0− 𝑏]− = [𝑏]+, which means that 𝑏 ≤ 0 and clearly 
𝑎𝑏 = 0. If 𝑎 < 0 then 𝑎 − 𝑏 < 0 and therefore 𝑎 = [𝑎 − 𝑏]− = 𝑎 − 𝑏 which imply 𝑏 = 0 and therefore 𝑎𝑏 = 0.

2. Assume 𝑎 ≤ 0, 𝑏 ≤ 0, and 𝑎𝑏 = 0. Then 𝑎𝑏 = 0 imply either 𝑎 or 𝑏 is 0. If 𝑎 = 0 and 𝑏 ≤ 0, then [𝑎 − 𝑏]− = [−𝑏]− = [𝑏]+ = 0, and 
it follow that 𝑎 = [𝑎 − 𝑏]−. If 𝑏 = 0 and 𝑎 ≤ 0 then 𝑎 = [𝑎 − 𝑏]− = [𝑎]−𝑎. □

• (47). For an affine mapping 𝐵 ∶ R𝑛 → R𝑚 it holds 
‖[𝐵(𝒗)]− − [𝐵(𝒘)]−‖2R𝑚 ≤ ([𝐵(𝒗)]− − [𝐵(𝒘)]−, 𝐷𝐵(𝒗 −𝒘))R𝑚 (104)

Proof.  Note that, for 𝑎, 𝑏 ∈ R,

([𝑎]− − [𝑏]−)(𝑎 − 𝑏) = [𝑎]−𝑎 − [𝑎]−𝑏 − [𝑏]−𝑎 + 𝑏[𝑏]− (105)

≥ [𝑎]2− − 2[𝑎]−[𝑏]− + [𝑏]2− (106)

= ([𝑎]− − [𝑏]−)2 (107)

where we used the identity [𝑎]−𝑎 = [𝑎]2−, and the inequality [𝑎]−𝑏 ≤ [𝑎]−[𝑏]−, for 𝑎, 𝑏 ∈ R.
Next for an affine mapping we have 

𝐷𝐵(𝒗 −𝒘) = 𝐵(𝒗) − 𝐵(𝒘) (108)

and thus
([𝐵(𝒗)]− − [𝐵(𝒘)]−, 𝐷𝐵(𝒗 −𝒘))R𝑚 (109)

= ([𝐵(𝒗)]− − [𝐵(𝒘)]−, 𝐵(𝒗) − 𝐵(𝒘))R𝑚 (110)

Proceeding component-wise as above, we will directly obtain the estimate. □
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