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ARTICLE INFO ABSTRACT

Keywords: This paper addresses the problem of friction-free contact between two elastic bodies. We develop
Elastic contact an augmented Lagrangian method that provides computational convenience by reformulating
Augmented Lagrangian the contact problem as a nonlinear variational equality. To achieve this, we propose a Nitsche-
Hybridization

based method incorporating a hybrid displacement variable defined on an interstitial layer.
This approach enables complete decoupling of the contact domains, with interaction occurring
exclusively through the interstitial layer. The layer is independently approximated, eliminating
the need to handle intersections between unrelated meshes. Additionally, the method supports
introducing an independent model on the interface, which we leverage to represent a membrane
covering one of the bodies as well as a plate resting on one of the bodies. We present the
formulation of the method, establish stability and error estimates, and demonstrate its practical
utility through illustrative numerical examples.

1. Introduction

Traditionally, two-body contact algorithms in finite element analysis rely on a node-to-segment approach, where the nodes of
one mesh are constrained from crossing the discrete boundary of the other. In a one-pass algorithm, only the nodes on one of the
surfaces are considered, which can result in local penetration if the mesh densities differ significantly. A two-pass algorithm, on the
other hand, considers nodes on both surfaces, but this can lead to ill-posed problems, cf. El-Abbasi and Bathe [1]. This arises when
nodes on the two surfaces are very close, as they may impose nearly identical contact conditions. To address this issue, additional
checks are necessary, as discussed by Puso and Laursen [2].

The contact constraints can be enforced using discrete Lagrange multipliers (contact pressures) associated with the nodes or a
nodal penalty method that penalizes the no-penetration constraint. Another classical approach is the distributed Lagrange multiplier
method [1,3], where the multiplier’s discretization is typically related to the surface mesh of one of the bodies to ensure stability.
Consequently, these approaches require careful handling of intersections between unrelated meshes. This challenge also applies to
distributed penalty methods and Nitsche’s method.

To overcome these limitations and enable a more flexible approximation of the interface variables, we extend the hybrid Nitsche’s
method [4,5], which incorporates an independent displacement field at the interface, to the case of friction-free elastic contact. The
hybrid field can serve as an auxiliary variable without direct physical interpretation, facilitating the transfer of information between
the contacting bodies. For instance, the hybrid field may be defined on a structured mesh for computational convenience. Another
advantages of a hybrid Nitsche method, as compared to the standard Nitsche method, is that it makes it convenient to eliminate
internal degrees of freedom in a parallel fashion so that the linear system can be solved by iterative substructuring methods, as
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discussed by Gustavsson et al. [6]. In the context of contact problems, however, the most interesting feature of the method lies
in the possibility of defining a model for the interface variable, such as a membrane covering one of the bodies or a shell located
between the two bodies. If this is to be done using Lagrange multipliers, the cost increases as two sets of multipliers must be used,
coupling the interface model from both sides of the contact zone. Model coupling is thus the focus of this paper.

We formulate the hybrid approach within an augmented Lagrangian framework, leveraging Rockafellar’s reformulation [7-9] of
the well-known Kuhn-Tucker contact conditions. For Nitsche’s method this reformulation was first proposed and analyzed by Chouly
and Hild [10], in the context of friction-free contact. This framework enables the definition of the Nitsche stabilization mechanism
for variational inequality problems, transforming the inequality constraints associated with contact into nonlinear equalities (see
also [11]). These equalities facilitate the application of iterative solution schemes in the spirit of Alart and Curnier [12]. We establish
theoretical results, including stability and approximation properties, to support the method’s robustness. Finally, we provide several
numerical examples to demonstrate our method’s practical application and performance.

1.1. Relation to previous work and outline

For a general overview of computational methods for contact we refer to [13]. Our method shares similarities with that of Chouly
and Hild [10] and the developments thereof [14-16], but with a significant distinction: it allows for an independent approximation
of the displacement field in the contact zone, decoupled from the approximation used in the elastic bodies. Nitsche’s method and
related stabilized Lagrange multiplier methods have been analyzed for contact problems also in [17], where estimates were proved
requiring no additional solution regularity.

The method we propose is also related to domain decomposition methods for contact problems. The pioneering works in for this
approach were using Schwarz methods [18] or FETI methods [19]. Our work is more closely related to mortar methods combined
with the Augmented Lagrangian method [20]. We refer to [11] for a discussion of the relation between the Augmented Lagrangian
method and Nitsche’s method in the context of variational inequalities. For other work on mortar methods for contact problems we
refer to [2,21-25]. Recent work has also explored mortar methods with NURBS or IGA, we refer to [26-28]. Another popular domain
decomposition approach is the LaTin framework. For works relevant in our context we refer to [29,30] and more recently [31].
In the latter reference it is underlined that different coupling conditions can be integrated easily by changing the coupling form.
Similarly to such methods the ideas we propose integrate seamlessly in the cutFEM framework combining the ideas of [32,33]. To
the best of our knowledge however none of these references introduce mixed dimensional pde problems to handle interstitial layers
with mechanical properties.

The structure of the paper is as follows: Section 2 introduces the contact model, derives the hybridized finite element method,
and formulates the associated optimality equations. Section 3 presents a stability estimate, a best approximation result, and a
discussion of the method’s convergence order. Section 4 provides several numerical examples to illustrate the practical application
and performance of the method. Section 5 concludes the paper with a summary of key findings and insights.

2. A contact model problem
2.1. Hybridized problem formulation

We shall study several different contact problems between two elastic bodies occupying the domains £; ¢ R, i = 1,2, with d =2
or 3. Let 2, denote a hybrid object located between £, and ©2,, see Fig. 1. For d = 3, the hybrid object is a surface, and for d = 2,
it is a curve. The bodies £, and £2, do not come into direct contact; all interactions are mediated through €. Thus, all information
exchanged between 2, and €2, passes through the hybrid space. We will consider two scenarios:

+ Case 1. The hybrid space is an auxiliary tool to facilitate numerical computations. For example, it may consist of a structured
mesh that efficiently transfers data between two unstructured meshes. In this scenario, the hybrid space must be stabilized,
potentially by ensuring it conforms to the boundary of one of the bodies.

+ Case 2. The hybrid space represents physical interactions between 2, and £2,, such as a membrane or a plate residing between
them, as described in [34].

In both cases, the hybrid object @, is treated as the master object, while the elastic bodies £;, i = 1,2, implement contact or
equality constraints. The hybrid object is only influenced by the normal stresses exerted by the two elastic bodies.

We will demonstrate that both cases can be conveniently addressed and analyzed within a unified abstract framework. To achieve
this, we will not initially specify the exact properties of the forms associated with the hybrid object. Instead, we will develop the
analysis based on general abstract assumptions and define the specific hybrid forms for the applications presented below. This
approach emphasizes the flexibility and generality of the framework.
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Fig. 1. Left: Case 1, hybrid space an auxiliary space weakly constrained to follow the boundary of one of the active bodies. Right: Case 2, hybrid space
representing physics.

Governing equations for the elastic bodies. Following the problem definition of Fabre, Pousin, and Renard [35], the boundary 0, of
£, for i = 1,2, is divided into three nonoverlapping parts: 0%2; - (the potential zone of contact), dR2; 5 (the Neumann part), and
0%; p (the Dirichlet part) which we, in the analysis, assume have non-zero measure to guarantee that Korn’s inequality holds. We
let n; be the exterior unit normal to 0;.

Letu; : 2; — R? denote the displacement field on ;. We assume that the two elastic bodies £;, i = 1,2, are subjected to volume
forces f; and, for simplicity, zero displacements on 0£2; ;, and zero tractions on 9, y,

—V.o@)=f ing, (€Y
u, =0 on 0%, p, )
c,(u;)=0 on 08, y 3

We further assume that Hooke’s constitutive law holds
o(u;))=A; tre(u;) I +2u;eu;), e(u;)) = %(u,- ®V+VRu) 4)
with Lamé parameters y; and 4;. We must add the equality or contact constraints on 042, - to complete the equations.
The equality and inequality constraints. To define our contact constraints, we start by defining the distance between £, and @,
pi0(2) = (n;(2), 2 — py(2))Rd 5)

where z € dQ; ¢, py(z) is the closest point mapping associated with ), and n;((z) = n;((py(2)) is the pullback of the normal
to 2, pointing into £;, cf. Fig. 2. Taking the deformation fields v; on £; and v, on &, into account by replacing z — p,(z) by
(z +v;(2)) = (pp(2) — vy(py(2)), gives

010(2, 09, V) = (n;((2), 2 + v;(2))pa — (n;(2), po(2) + vo(Py(2))pa (6)
= (n;0(2), Z = po(2)pa + (1;9(2), v;(2) — Vo (Py(2)Ra )
= p;0(2) + (n;((2), v;(2) — Vo (Py(2))gd (8)
= pio(2) = [v,]; ©)

Thus, we may extend the definition (5) to the deformed case by

’ 510200, 0) = p,0(2) — [0,(2)], on 02, ¢ ‘ (10)

where

] [0,(D)]; = (,0(2), ,(2))a — Wo(Po(2))ga

(1)

is the jump in the normal displacements. In the following, we make the dependence on z implicit and use the more compact notation
Pi0(vg, v;) etc.

Remark 2.1. Note that the exterior unit normal to the elastic body satisfies n; = —n,, in the contact zone and n; ~ —n,, close to the
contact if the boundary is smooth and thus

[v,] = v,y + vy, = (N, V)Ra + (R, Vo) pd (12)
which is the standard definition of the jump in the normal displacement.

We then have the following constraints,
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Fig. 2. Closest point p, and normal n, .

» Hybridized equality constraint:
Pio;up) =0  on 9, 13

+ Hybridized contact constraints:

—Pio(u;,up) <0 on 0Q; ¢ 14
o ) <0 on o2, (15)
o, (u)p;(u;up) =0 on 0%, ¢ (16)

where ¢, (v) is the (scalar) normal surface stress

c,(w)=n; o) n; a7

2.2. A hybrid Nitsche finite element method

Function and finite element spaces. We first define the natural function spaces for our continuous problem. Let V; = H'(2,) for i = 1,2,
and V,, = H*0(£,) where s, depends on the physical properties of the hybrid space. For convenience, we define the product space

W=rerer 18)

of R¢ valued displacement fields.

Next, we define the corresponding finite element spaces. To that end let 7, ; be a quasi-uniform partition of £;, into shape regular
elements 7, with mesh-parameter #; € (0, k). Let V},; C V; be a conforming finite element space on 7} ; consisting of piecewise
polynomials of order p,. Let z,; : H'(®2;) > V}; be an interpolation operator such that

o=z 0l gy S hf_mHU”Hk(N(T)y 0<m<k<p+1 (19

We finally define the product of the finite element spaces
Wh=Vio @ Vi1 @ Va2 (20)
where V), ; are the d-dimensional versions of the corresponding scalar spaces.

Augmented Lagrangian formulation. We consider the nonlinear augmented Lagrangian formulation of Rockafellar [7-9], introduced
in contact analysis by Alart and Curnier [12]. The basic idea is to write the Kuhn-Tucker conditions (14)-(16) in the equivalent
form

] 0,(8;) = [0,(u;) + 1,710 (g, u)1_ = [0, () — y([t4,]; = prp)]_ (21)

where [x]_ = min(x,0) and y > 0 is a parameter, see Appendix and [10]. Dimensional analysis indicates that

for a parameter y, not dependent on 4;, and we will see in the forthcoming analysis that this is indeed the proper choice.
To handle equality and inequality constraints in the same formulation, we define

A | o .
Si(l/) = {G"(vi) }’()hi ([Un]l pl,()) Equallty .

[o, (@) — voh7'([v,]; — pip)]-  Inequality

Note that S;(v) is a function of v, and v;, so that .S;(v) = S;(v;, vy).
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Remark 2.2. The quantity
%40, v) = 0,®) = roh; (0,1 = pi) 29

is the so-called Nitsche normal stress, which is the natural approximation of the normal stress provided by the method and thus

2,y v; Equalit
= {[Z((:’)o Z)J, inequaliy @
We note that the inequality constraint only allows negative normal stress.
We can now formulate a discrete minimum problem
’ wy, = argmin,,, ey, £4(v) (26)

where, with
I, = {1,2} Case 1 27)
{0,1,2} Case 2

denoting the index set indicating the number of active forms in Case 1 (auxiliary hybrid space) and Case 2 (physical modeling
hybrid space), the augmented Lagrangian takes the form

2
£,0) = [_; Ja@v) -1+ ; %yo_l”Sf(”)”zﬂg'/%mi.w -1 s 28)
Here, for i = 1,2, the forms are defined by
a;(v,w) = (6,(v), eW))) g, (29)
L) =(f.v)q (30)

and the forms g, and /, are related to the hybrid space and may model some physics (Case 2) or could be zero (Case 1). In the latter
case, £ is connected weakly to &, - for one of the domains £, say i = 1, through an equality constraint (13). Here and below also
use the scalar products

W02 00, 0) = R E 0wy, .. SER (31)

with associated norms
2 _ _ -2 2
||U||HZ((;_QLC) =, 0ms00,0) = i S||U||,;QLC, seR (32)

These scalar products mimic the corresponding continuous H*(d£; ) product on the discrete spaces.
2.3. Optimality equations

The optimality equations take the form: find u;, € W), such that

’ Aw,v)=I1w) VveWw, (33)

Here, the forms are defined by

AW, w) = a(w,w) + b(v,w) — c(v,w) B4
aw,w) =Y a,(v,w) (35)
i€l,
2
bv,w) =Y b(v,w) (36)
i=1
2
c(v,w) = z c;(v,w) 37)
i=1
2
)= Y 1) (38)
i=0
where
bi(w, w) = 15" hi(S; ), DS;W))s0, . 39

with S; defined in (23) and

DS;w) = o,;) - yoh ' [w,]; (40)
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and

@, w) = vy hi(o, @), 0,@))ag, .

3. Error estimates

3.1. Properties of the forms

The forms a;, i € I, are coercive and continuous
ol Sa@.v)  veV,

a@.w) Sl lwly,  vweV,

Computer Methods in Applied Mechanics and Engineering 445 (2025) 118175

(41)

(42)
(43)

For i € {1,2}, V; = H'(£2;) and V,, will depend on the choice of hybrid model. For a second order model V¥, = H!(£2;) and for

a fourth order model V, = H?(£2,). We define the energy norm

o2 = aw.v) = Y 4@, v,

iel,
The forms b; satisfies the monotonicity and continuity

75 1Si@) - S,-(w)lli;, P, S D@0 -0 = b - w)

-1
15,0.1) = b )] <75 1S,0) = S @1z g, IDS,O,-

with vectorized versions,
2
-1 2
S.(v)—=S. < b(v,v— — b(w,v —

2 o I1Si@) ‘(W)”H;‘/Z(a.o < bw,v-w) - bw,v—w)
2

160.1) = w01 < 37518, = @ g, IDSP
f

See the Appendix for derivations of these inequalities.

The form ¢ is continuous

cw,w) S vl lwll, vwew+Ww,

and we have the inverse bound
2

2
o2 =y

2
-1 2 -1 2 -1 2
o,W; < v; pS v
y I0) llo,( ,)||H;]/2(09LC) i=§l IO Il l||VI 1) llell,

09, 0)

44)

(45)

(46)

1/2(09[!:)

(47)

(48)

49

vew, (50)

where the last bound follows from (42) for i € {1,2} and the fact that {1,2} c I,, in both Case 1 and Case 2.

3.2. Estimates

Proposition 3.1. The discrete problem (33) admits a unique solution u, € W), such that

2

llupl2+ Y

7o I1S;wy) = S; O _,
i=1 Hh

020 e,

Proof. We have

I(v) = A@w,v) = [v]|? + bw,v) - ||vl)?

where

b(v,v) = b(v,v—0) - b0,v —0) + b(0,v)

and thus

w112 = wlI? + b, v — 0) — b(0,v — 0) = [(v) — b0, v) < |I()] + |50, V)|

Here we have using (50), for y, large enough,

2 2 2 -1 2 -1 2 2
llelly =Nl = llwlly — Crrg vl = (1= Cryg Hlivlly 2 Glivll
0 0

2
S D AN+ D5 SO,
Y=l '

(51)

(52)

(53)

(54)

(55)
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with C, > 0 and by (47),

2
-1 2
bw,v —0) — b(0,v - 0) > Z, v 18wy - s,-(t))uHh,1 Poae (56)
We thus have
2
AN “L1S:(w;) — S,0)])? < b(0, 57
2||v||a+i§y0 15,(v,) — Si( )||H;1/z(mhc)_|(v>|+|< v)| (57)
Next, estimating the right hand side, we have
@) S 1wl S 0 =Nl (58)
and
2
-1 2
|5(0, v)|<21y0 15,01l -1, IPSI@ 00,0 (59)
2
-1 _q. 2
; 1Sl 1720, 1@ = SO ) (60)
2
< 2‘,—y0‘||S<0>||2 g0t yO‘uS(v) OI e (61)

) (02 )

where we used the identity S;(v) = S;(0) + DS;(v), which holds for affine maps. Using kick-back for the second term in (61) these
estimates prove the desired stability estimate. Using the Brouwer fixed point theorem, we can prove that there exists a solution;
see [36] for details. Uniqueness follows from the stability estimate. []

Theorem 3.1. The solution u;, € W), to (33) satisfies the following best approximation estimate
2

Nl = w5 + ; 7 110 = Sl s (62)
2
3 vhigvh ( A+l —v, )2+ ; vy o, (u; — v”"')llif;‘/%mi, ,t Yolllu — v, 1112 00,0 ) (63)
Proof. We first note that we have the Galerkin orthogonality
a(u — uy,v) + b(u,v) — b(u,,v) — c(u —uy,v) =0, Yv e W, (64)
Next, we split the error, e = u — u,,, in an approximation error 0 and a discrete error e, € W,
e =u—u,=W-vy+ W, —uy) =0+e,, v, €W, (65)
Using the coercivity (44) of a, monotonicity (47) of b, followed by Galerkin orthogonality (64), we get
2
llel; + ; 10 1100 = Sl s (66)
< a(e,e)+ b(u,e) — b(uy, e) 67)
=a(e,0) + b(u,0) — b(uy, 0) + a(e, e,) + b(u, ey) — b(uy, e;) (68)
=c(e.ep) :
=a(e, 0) + b(u, 9) — b(uy,,0) + c(e, ey) (69)
< llell l6ll, + Z Yo 1) = Si@pll 125,  IDSON 1200, )+ ||e||2 +3 crl el + crl llell (70)
In (70) we used the continuity of a and b, and the estimate
cle,ey) =c(0,e,) + cley, ep) (71)
<li6lcllell + lle,lI? (72)
< 21012 + 2ey 2 73)
< 21012+ 255 el 74)
< 21012+ 275 1012 + 2 ¢ el 75)
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where we used the inverse estimate (50). Splitting the first and second terms in (70) using ab < a?>/2 + b*>/2 and taking y, large
enough, we may use a kick-back argument to get

2

2 -1 2
ells + S;(w) — S;(u 76
llell; ;n) 15,60 = S,@I s (76)

2
2 -1 2 -1 2 2
SN0+ 275 IDSION oy + 75 1015+ 161 (77)
2
sa+yrhlen? + o, O _, , +7ll0,1:117 78
S+ghliel; ;yo T CLICAT T (78)

where we used the triangle inequality to conclude that

7! IIDSi(v)IIiI,l Poo ™ 75 hllon@) = roh™ [, )il5, (79)
L o,

<75 o @)l3q, . +voh™ Ilo,ill5, (80)

-1 2 2
=7, Ila,,(vi)IIH,:l/z(mh + rolllo, i 11° | (81)

o H)%092;¢)

Thus, the proof is complete. []

Remark 3.1. Letting 7,(0R2; ) denote the elements in 7,; with a face that intersects 0£2; - and using the element-wise trace
inequality [|wl|2, $ h~"|lwl|2 + Al Vw]||2 for w € H'(T), we obtain

oT ~
7 hilleu@pl5q,  + rohi v, lill5g, . (82)
S 15 hillo, @3, . + 10 iali3g, . + 7ol ol (83)
S1 WV, o, o+ PEIVPUIIT, (g, ) + 702 IS, g o+ IVEHIT, 0, )+ 70k Lol (84)

Setting v = 0 = u — v;,, and taking v, to an interpolant ,u of the exact solution u that satisfies optimal order interpolation error
bounds (19), we conclude that our best approximation result, indeed leads to the optimal order energy error estimate,

2 2, 1 2p;
{zf, h* ho /b)) + T, Case 1

lla = w12+ D vy 1S @) = S,y 3100 i
a Z 0 i i hO(P()+ S0 +Zi2=1 h0P0+ (hO/hi)+ zle h2p, Case 2

b 85
H;l/z(ﬁgi.c) ~ (85)

i=1
Here, in Case 2, q, is a form defined on H*0(£2,) and we assume that V,,; C H*0(£,). In Case 1 when qj is not present the estimate
simplifies. For both cases we can take piecewise constants in ¥}, , and still get convergence, see the numerical example Section 4.1.1.
Note that we can take h, arbitrarily small compared to &;, but not the other way around.

4. Numerical examples

One domain is fixed using Dirichlet boundary conditions in the numerical examples presented below. To remove the rigid body
motions of the other, we use scalar Lagrange multipliers to ensure that the mean horizontal displacements are zero. We emphasize
that our interface variable can be vector valued (u,) or scalar (n - u;) depending on the problem type. We comment on this below.

4.1. A 2D Hertz problem

4.1.1. Comparison to the standard Nitsche method

In this Section, we study how the discretization of the interface (without interface model) compares to a standard Nitsche method
as given in [10]. In doing this, we tie the interface variable to the surface of one of the bodies. It is then clear that the discretization
of the bodies determines the error of the computation in the limit of fine discretization of the interface variable, as the interface
variables cannot improve the accuracy of the discretization of the surface of the body to which it is tied. Here the interface variable
is a scalar, approximating the normal displacement.

We consider a half-cylinder in contact with a rectangular block. The domains, load and boundary conditions are given in Fig.
3; the meshes used are given in Fig. 4. These meshes are fixed using the computations: 19 600 bilinear elements for the block and
30752 linear triangular elements for the half cylinder. The block is fixed vertically at its bottom boundary and horizontally at
(x,¥) = (0,—-1). The half-cylinder (£2,) is loaded by a line load f = (0,—50) at y = 1 and has elastic moduli E; = 7000 and v, = 0.3. It
is meshed using P! triangles. The block (£2,) has elastic moduli E, = 4000, v, = 0.3 and is discretized using Q, elements. We assume
plane strain so that 4, = v;E;/((1 + v;)(1 —2v;)) and y; = E;/(2(1 + v;)), and we set y; = 10(A; + y;). For the approximation of n - u,
we use three different choices: equidistributed piecewise constants, equidistributed linear continuous elements, and equidistributed
quadratic continuous elements, on

Q) :={x€[-04,04],y =0} 0
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(0, -50)

f

Q

Q

(0}

Uy =

Fig. 3. Domains, load and boundary conditions used for the Hertz problem.

0.5+

Fig. 4. Meshes used for the Hertz problem.

These approximations are tied to the upper boundary of the block by an equality constraint. In Fig. 5 we show the solution obtained

with Nitsche’s original method compared with the corresponding Hertz solution for two cylinders in contact, the upper with radius

r =1 and the lower with r

[371). This is not identical to the setup in the problem we solve but indicates the accuracy

o (cf., e.g.,

of the solution. In Fig. 6 we compare the different approximation of the interface variable and compare the error to that of the

, we define the pressure error as

and p,, its discrete counterpart.

-n;

10

standard Nitsche method. With p = n,

(87)

llp = pullr,
2l

p

We start by dividing £, into two elements and then successively double the number of elements on the interface. We see that the

quadratic approximation needs about 16 elements to achieve the expected accuracy, the linear about 64 elements, whereas the

piecewise constant approximation needs more than 2048 (last data point). The number of surface elements on £, coinciding with

£, equals 224. Thus, with a good approximation of the interface variable, not many elements are needed to regain the accuracy of

the original Nitsche method in this case.

4.1.2. Contact zones and pressures

In this Section, we show how the different methods act in the contact zone, and what pressure distributions they give. We show

the case of log(h,) ~ —5.07, corresponding to 128 elements for the approximation of n - u (cf. Fig. 6 for errors). In Fig. 7 we show

a zoom of the edge of the contact zone, and in Fig. 8 we show the corresponding computed pressure. We note that the sources of

the error are the spikes in pressure caused by the jumps in the discretization of n - u,. In Figs. 9-12 we show contact zones and

pressures for linear and quadratic approximations of n - u;,. At this discretization, they are close, but for coarser discretizations, the

kinks in the linear approximation will lead to a larger error than in the quadratic approximation, as seen in Fig. 6.
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Fig. 6. A comparison of different discretizations of n - u,.
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Fig. 7. Zoom of the contact zone for piecewise constant n - u;.
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Fig. 8. Contact pressure for piecewise constant n - u,.

4.2. Contact problems with model coupling
In this section, we focus on the qualitative behavior of our models, as no exact solutions are known.

4.2.1. The plate model

In this example, we use a plate model to calculate the hybrid variable. We consider the Kirchhoff plate model, posed on a
rectangular domain £, in the (x, y)—plane, where we seek an out-of-plane (scalar) displacement u,, with u, = (0,0, 4;), to which
we associate the strain (curvature) tensor

€,(Vug) 1= % (V® (Vup) + (Vug) ® V) = V ® Vg = V2u, (88)

11
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Fig. 9. Zoom of the contact zone for piecewise linear n - u,.
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Fig. 10. Contact pressure for piecewise linear n - u.

and the plate stress (moment) tensor

0, (Vug) :=D (e(Vuy) + v(1 — vp) " div Vuy I) (89)
=D (VZuy + v(1 — vp) ™' AuyT) (90)
where
. EP
= ey e

12
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Fig. 11. Zoom of the contact zone for piecewise quadratic n - u,.
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Fig. 12. Contact pressure for piecewise quadratic n - u,.
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with E, the Young’s modulus, v, the Poisson’s ratio, and ¢ the plate thickness. The equilibrium equations of a free Kirchhoff plate
take the form

div div 6,(Vug) =0 in Q, (92)

where div and div denote the divergence of a tensor and a vector field, respectively. Multiplying by v and integrating by parts, the
form a(-,-) is found as

ay(up, v) 1= (6,(Vuy), e[](VU))Q0 93)

We consider a problem consisting of £, being a stiff ball of radius r = 1, 2, a block of dimensions (-2.5,2.5)x(-2.5,2.5)x(-1,0),
and 2, a plate resting on the block. Fig. 13 shows the configuration and meshes used. The ball has constitutive parameters
E; =20000, v; = 0.33, the block has E, = 25, v = 0.33, and the plate has E, = 1000, ¢ = 0.1, and v = 0.5. The ball is being pushed
downwards by a volume force f; = (0,0,—10). We take y; = 100E,;. The block and the ball are discretized using P' tetrahedral
elements, and the plate is discretized using Bogner—-Fox-Schmit elements [38], which is basically the outer product of cubic splines
with some degrees of freedom removed, The reason for choosing this element is that it is very simple to implement on rectangular
grids. Dirichlet boundary conditions u, = 0 are applied to the block at the bottom and at the sides.

In Fig. 14 we show the initial configuration; in Fig. 15, we show the deformation of the whole configuration; in Fig. 16, we show
the deformation of the plate and the block.

4.2.2. The membrane model

In what follows, I" := €, denotes a closed and oriented surface, for simplicity without boundary, which is embedded in R® and
equipped with exterior normal n. The membrane is assumed to occupy the domain 2, = I" x (—1/2,/2) with 7 the thickness of the
membrane, assumed constant for simplicity. We let p denote the signed distance function fulfilling Vp| = n,.

For a given function u : I' — R, we assume that there exists an extension #, in some neighborhood of I', such that i|, = u. The
tangent gradient V on I" can be defined by

Vyu=PrVu 94
with V the R? gradient and P, = P-(x) the orthogonal projection of R® onto the tangent plane of I' at x € I' given by
Pr=I-nQ@np (95)

where I is the identity matrix. The tangent gradient defined by (94) is easily shown to be independent of the extension u. In the
following, we shall not distinguish between functions on I' and their extensions when defining differential operators.
The surface gradient has three components, which we shall denote by
Ju Jdu Ju
Vru=: | —, —,— 96
r <6xf oyl 6zr> (96)
For a vector-valued function v(x), we define the tangential Jacobian matrix as the transpose of the outer product of V and v,
Jdv; v, vy
oxI" oyl ozl
dv, ov, ov,

T
v v) = R 97
(Vr®wv) oxI 9yl ozl ©7
dy on o
oxI" oyl ozl
the surface divergence V- v :=trV; ® v, and the in-plane strain tensor
€ru) := Prew)Py, where e() := % (Vou+(Vew') (98)
is the 3D strain tensor. The corresponding stress tensor is given by
or =2urer + Aptrep Pr (99)
where, with Young’s modulus E;- and Poisson’s ratio v,
Ert Epvrt
=—"3 )= 100
resasyy T (100)
are the Lamé parameters in plane stress (multiplied by the thickness).
The equilibrium equations on an unloaded membrane are given by (cf. [39])
—V,-op() =0 onT, (101)
By multiplying the equilibrium equation by v, and integrating by parts, we find the form a,(-,-) as
ag(uy,vy) = Qureruy), erWy))r +ArVp -uy, Vi -vg)r (102)

14
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Fig. 13. Geometry and meshes used for the plate contact problem.

In this case, the interface variable is thus a vector-valued function.

We consider a problem with £, a ball and £, a block of the same dimensions as in the previous Section. The ball and block
have fixed constitutive parameters E; = 1000, v; = 0.33 and E, = 100, v, = 0.3. The ball is covered by a membrane with 7 = 0.1
and v = 0.5, whose Young’s modulus we vary to show its stiffening effect. The discretization of the ball and the block are as in
the previous section, and we let the surface mesh of the ball serve as a P! mesh for the membrane. We use y;, = 100E;. The ball is
again loaded with a volume load f, = (0,0, —-10).

In Fig. 17, we show the deformations and normal stress on the ball surface when the membrane has zero stiffness (acts as a
standard hybrid variable), in Fig. 18, we show the deformations and normal stress on the ball surface when E; = 2000, and, finally,
in Fig. 19 when E = 20000. The stiffening effect is clearly visible. Note that, counterintuitively, the maximum normal stress on the
ball surface decreases as the membrane stiffens, even though the contact zone decreases. This is due to the membrane equilibrating

15



E. Burman et al. Computer Methods in Applied Mechanics and Engineering 445 (2025) 118175

Fig. 14. Initial configuration.

1
2 2 -1 0

Fig. 15. Deformation of the configuration.
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Fig. 16. Deformation of the plate and the block.
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Fig. 17. Deformations and normal stress on the ball surface with zero stiffness of the membrane.
the stresses over the ball more effectively as it stiffens. The stresses shown have been L,-projected from the piecewise constant
stresses onto V}, ;.
5. Conclusions
In this work, we have developed a novel augmented Lagrangian framework for modeling friction-free contact between two elastic
bodies. The core of our approach is a Nitsche-based method with a hybrid displacement variable defined on an interstitial layer. This

formulation introduces significant flexibility by decoupling the computational domains, allowing the bodies in contact to interact
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Fig. 18. Deformations and normal stress on the ball surface with E;. =2000.

exclusively through the layer. The independent approximation of the layer avoids challenges associated with the intersection of
unrelated meshes and opens possibilities for additional modeling, such as incorporating a membrane or other interface effects.

We demonstrated the stability and accuracy of the method by proving stability estimates and deriving error bounds. These
theoretical results underline the robustness and convergence of the approach, making it suitable for complex contact problems
where traditional methods may face limitations.

Moreover, the hybrid variable approach offers a natural framework for incorporating additional physical phenomena or
constraints at the interface, such as thin structures or surface layers, without altering the underlying contact model. This adaptability
enhances the potential applicability of the method to a wide range of problems in computational mechanics.

18
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Fig. 19. Deformations and normal stress on the ball surface with E; = 20000.

The numerical examples illustrate the proposed method’s practical performance, showcasing its ability to handle challenging
scenarios with minimal mesh constraints and good agreement with theoretical predictions. These examples highlight the method’s
versatility in different interface approximations and configurations.

19



E. Burman et al. Computer Methods in Applied Mechanics and Engineering 445 (2025) 118175

Future work will focus on extending the proposed approach to contact problems involving friction, nonlinear materials, or
dynamic interactions. Additionally, exploring further applications of the hybrid interface variable to other types of coupled
multiphysics problems, such as fluid—structure interaction or thermal contact, could provide valuable insights and broaden the
scope of this method.

In summary, this paper’s augmented Lagrangian hybrid Nitsche method offers a flexible, stable, and computationally efficient
approach to friction-free contact problems. We believe this framework represents a significant step forward in addressing the
challenges associated with contact mechanics and provides a solid foundation for further research and application.
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Appendix. Additional verifications

In this appendix, we include technical details for the reader’s convenience.

* (21). For a,b € R,
a<0, b<0, ab=0 < a=[a-b]_ (103)
Proof. 1. Assume that a = [a — b]_ then we directly have a < 0. If a = 0 then 0 = [0 - b]_ = [b],, which means that » < 0 and clearly
ab=0.If a <0 then a — b < 0 and therefore a = [a — b]_ = a — b which imply b = 0 and therefore ab = 0.

2. Assume a <0, b <0, and ab = 0. Then ab = 0 imply either a or bis 0. If a =0 and b <0, then [a —b]_ =[-b]_ =[b], =0, and
it follow that a=[a—b]_.If b=0and a <0 then a=[a—b]_ =[a]_a. [

* (47). For an affine mapping B : R" - R™ it holds

I[B@)_ — [B@)]_l}n < (B@)I_ — [Bw)]_, DB — w))gm (104)

Proof. Note that, for a,b € R,

([a]l_ = [b]_)(a—b) =[al_a—[a]l_b—[bl_a+ b[b]_ (105)
> [a]® - 2[a]_[b]_ + [b]* (106)
= ([al_ - []_)? (107)

where we used the identity [a]_a = [a]?, and the inequality [a]_b < [a]_[b]_, for a,b € R.
Next for an affine mapping we have

DB(v —w) = B(v) - B(w) (108)

and thus
([BW)]_ — [B(w)]_, DB(v — w))gn (109)
=([B(v)]- - [Bw)]_, B(v) — B(w))gn (110

Proceeding component-wise as above, we will directly obtain the estimate. []
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