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Summary
Background In a warming world, it is generally accepted that increasing temperatures affect human health. In many 
regions of the world, however, these effects are poorly understood. To address this issue in Chile, we estimated the 
potential change in all-cause and cardiovascular and temperature-related (CVT) mortality and hospitalisations 
associated with four different climate scenarios by region.

Methods Using Chilean health data and ERA5 reanalysis data, we modelled the relationship between historical 
health outcomes and monthly temperature indices using Generalised Additive Models. After evaluating the models’ 
predictive performance, we used them to estimate changes in health outcomes associated with bias-adjusted climate 
projections representing four scenarios: short-term (2031–2060) and long-term (2061–2090) periods under both 
Representative Concentration Pathways (RCPs) 2.6 and 8.5.

Findings Scenario-based health outcomes show clear north-south variations. Compared to historical levels, all-cause 
mortality increases by ∼1.5% in northern regions but decreases by ∼1% in southern regions across scenarios. CVT 
mortality decreases (0.2–3.6%), especially in the south; however, Arica and Tarapacá in the north show sharp 
increases (up to 30%) under warmer scenarios. Conversely, all-cause and CVT hospitalisations increase in 
northern/central regions (higher in summer, lower in winter), while southern/austral regions show slight 
decreases (∼1%).

Interpretation These findings highlight the need for region-specific analyses and public health strategies in Chile. 
Northern regions might require plans that reduce the risk of heat-related mortality and morbidity, while 
southern regions might adjust healthcare services because of potential shifts in healthcare needs.
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Introduction
Climate change poses several challenges to public 
health by changing the expected weather patterns that 
have historically influenced the development of human 
societies. Therefore, understanding the potential health 
effects of new weather patterns from a local perspective 

is critical for informing local public health prepared
ness and adaptation actions, and for reducing climate 
change-related health risks.

In particular, ambient temperature and extreme 
temperatures (e.g., cold or warm spells) are rapidly 
changing, with some parts of the world experiencing 
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more frequent and intense hot temperature events than 
pre-industrial times.1 These events, although not all 
linked to climate change, have been associated with 
severe impacts on human health, including higher 
prevalence of heatstroke, heat exhaustion, cardiovascu
lar and respiratory diseases, and mortality.2,3 Whilst the 
health impacts of changing temperatures are increas
ingly studied globally, global and region-specific expo
sure-response functions may not be directly applicable 
elsewhere due to differing vulnerabilities, environ
mental contexts, and healthcare systems.

In this sense, relevant local scientific evidence is 
critical to inform effective local public health adaptation 
strategies in the face of climate change. This is particu
larly true for Chile (and other similar countries), a 
country characterised by remarkable climatic diversity 
along its extensive north-south axis, where health im
pacts observed in one region may not be representative 
of others. Despite this heterogeneity, evidence concern
ing climate change-related health impacts remains 
limited. One study, which informed the first Health 
National Adaptation Plan, is now outdated as it was 

based on previous climate projections (i.e., CMIP3)4 that 
have since been superceded.5 Several international 
collaborative studies, whilst including Chilean data, 
typically utilised information from only a few land-based 
weather stations, predominantly located in central 
Chile.6–10 This sparse spatial coverage has precluded a 
detailed examination of potential regional disparities in 
health outcomes across the country. Consequently, a 
significant knowledge gap exists regarding how different 
regions within Chile might be heterogeneously affected 
under various climate scenarios.

This study addresses these critical gaps by providing 
the first regional assessment of potential temperature- 
related mortality and hospitalisation changes across 
Chile under climate scenarios. Such a territorially 
focused analysis is essential to inform precise evidence 
for regional decision-makers, enabling the development 
of targeted public health interventions tailored to the 
specific risks and vulnerabilities of each diverse region. 
In particular, we estimated the potential change in all- 
cause and cardiovascular and temperature-related 
(CVT) deaths and hospitalisations associated with two 

Research in context

Evidence before this study
The spatial and temporal distribution of population exposure 
to extreme temperatures and the resulting health impacts (e. 
g., frostbite, heatstroke, and heat exhaustion) is changing 
due to climate change, challenging public health response. 
The health impacts associated with a change in the climate 
are usually assessed via setting-specific exposure-response 
functions. Currently however, most of the evidence comes 
from high-income countries: the resulting functions are not 
fully applicable to other settings, limiting a comprehensive 
global understanding of the problem. We searched PubMed 
in April 2025 using the search strategy (“extreme 
temperature” OR “hot” OR “heat” OR “cold”) AND (“human 
health” OR “mortality” OR “morbidity”) AND (“climate 
change”) AND (“scenario” OR “projection”) without 
restrictions on language or publication year. We identified 
five international studies using Chilean data (none from 
Chile). These studies used only four land-based monitors, 
limiting the ability to assess important regional variations in 
climate change-related health outcomes across Chile’s 
diverse north-south geography. To date, no study has 
analysed the regional variation in health impacts of changing 
temperatures under different climate scenarios in Chile.

Added value of this study
This is the first study to estimate the potential impacts of 
climate change on temperature-related mortality and 
hospitalisations at a regional level in Chile, highlighting a 
diverse range of potential health impacts across age 
categories and geographical areas. The geographical diversity 
arises mainly due to the north-south extent of the country, 

with climates ranging from arid deserts to polar. This 
diversity is reflected in a clear north-south regional variation 
in scenario-based health outcomes compared to the 
historical climate, where northern regions (considered arid 
and dry) show the highest relative increases in mortality and 
hospitalisations and southern regions (considered temperate 
and polar) show relative decreases. This emphasises that 
previous national-scale studies, based on limited data, may 
not capture the full picture due to regional differences. 
Additionally, the analysis of hospitalisations broadens the 
focus to capture less severe but widespread health effects 
and is needed in the development of medium- and long- 
term resourcing strategies.

Implications of all the available evidence
The evidence shows that climate change is changing 
population exposure to potentially harmful temperatures, 
with resulting health outcomes varying depending on the 
frequency and intensity of these changes, as well as sub- 
national social characteristics. To effectively protect people’s 
health, the results from this study demonstrate that a one- 
size-fits-all approach is insufficient. Local analyses are needed 
for tailoring public health approaches that reduce the 
exposure and/or vulnerabilities to climate hazards, for 
example, through the implementation of heat-health plans 
or mental health hotlines during specific weather events. 
Also, understanding the potential changes in healthcare 
demands under different climate scenarios helps public 
health preparedness and planning of services, which 
potentially enables better targeting of resources and 
improved health outcomes.
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climate scenarios across two future periods and all 16 
administrative regions of Chile.

Methods
In this observational study, we analysed health out
comes (i.e., mortality and hospitalisations) at a monthly 
temporal resolution across all 16 administrative regions 
of Chile (“region” hereafter. Appendix Figure 1A). This 
monthly scale was chosen as it allowed us to focus on 
the health impacts pertinent to long-term climate 
change: understanding responses to projected climate 
scenarios necessitates focussing on long-term shifts in 
seasonal exposure patterns and the resulting cumula
tive health burdens, rather than solely on acute and 
short-duration physiological responses. The monthly 
resolution facilitated i) the detection of climate change 
signals (long-term trends, changed seasonality) whilst 
potentially reducing noise associated with daily 
variability, and ii) substantial optimisation of compu
tational resources required for fitting complex spatio- 
temporal models across all regions and decades. To 
ensure our monthly analysis remained sensitive to 
climate-relevant variability, we employed diverse 
monthly temperature indices reflecting within-month 
extremes and spell durations (e.g., TXx, WSDI, SU).

Using these monthly indices and regional health 
data, we first estimated exposure-response functions 
defining the historical relationship between tempera
ture and health outcomes. We then used these empir
ically derived functions to estimate the potential change 
in health outcomes with the latest set of high spatial 
resolution climate projections currently available for 
South America, under Representative Concentration 
Pathways (RCPs) 2.6 and 8.5 in the short- (2031–2060) 
and long-term (2061–2090). These two RCPs were 
chosen as they represent respectively the lowest and 
highest scenarios in terms of radiative forcing (i.e., the 
net amount of energy entering the Earth’s atmo
sphere),11 giving the opportunity to analyse potential 
health impacts across the whole range of scenarios for 
which projections are available.

We have checked the information in this manuscript 
against the suggestions from “The REporting of studies 
Conducted using Observational Routinely-collected 
health Data (RECORD) statement”.12

Temperature indices
Monthly climate change-related temperature indices 
were calculated from historical (1990–2019) and 
projected (2031–2090) data. Several potential tem
perature indices were considered based on their 
relevance to climate change and human health.13–15 

Ten high temperature indices were included: 
monthly maximum value of daily maximum tem
perature (TXx), monthly maximum value of daily 

minimum temperature (TNx), monthly number of 
summer days (SU25 and SU30), monthly number of 
tropical nights (TR20), monthly number of warm 
days (TX90p), monthly number of warm nights 
(TN90p), warm spell duration index (WSDI), monthly 
number of heatwaves (HWn and HWx). Seven low 
temperature indices were included: monthly mini
mum value of daily maximum temperature (TXn), 
monthly minimum value of daily minimum tem
perature (TNn), monthly number of frost days (FD), 
monthly number of ice days (ID), monthly number of 
cold days (TX10p), monthly number of cold nights 
(TN10p), cold spell duration index (CSDI). One index 
focused on the monthly mean of the daily tempera
ture range (DTR), and three on relative humidity 
(RHmin, RHmean, Rhmax) were included.

Collinearity among the monthly temperature indices 
was assessed. Pairwise correlations revealed varying 
degrees of association between indices (Appendix 
Section 6.2). Multicollinearity can hinder the interpre
tation of regression coefficients and reduce the preci
sion with which each one is estimated, essentially 
because different linear combinations of collinear 
indices produce similar predictions so that it is hard to 
isolate their individual effects. In the current context 
however, the focus is on prediction (i.e., evaluating the 
effects of alternative climate scenarios) and the indi
vidual coefficients are of limited interest: they are 
considered in combination rather than individually and 
hence multicollinearity is not a problem, precisely 
because different sets of plausible coefficients yield 
similar predictions. Empirical confirmation of this is 
provided by, for example, in Morris and Lieberman, 
2018.16

Temperature indices were aggregated spatially by 
region using population-weighting derived from the 
Global Human Settlement Layer (GHSL) dataset (see 
below) to ensure that the aggregated indices reflected 
the regional population exposure.

Historical climate data from 1990 to 2019
Temperature data (2 m temperature and 2 m dew point 
temperature) from 1990 to 2019 were obtained from the 
ERA5 reanalysis dataset17 in October 2020. The datasets 
provide hourly estimates on a 0.25◦ × 0.25◦ latitude- 
longitude grid (approximately 28 km × 28 km at the 
Equator), offering better temporal and spatial coverage 
than land-based monitors.

Projected climate data from 2031 to 2090
This study used regional-scale climate projections at the 
same spatial resolution as the ERA5 dataset. At the time of 
writing, for South America the most recent set of such 
projections is from the Coordinated Regional Climate 
Downscaling Experiment (CORDEX), which employed 
CMIP5 (i.e., Climate model Intercomparison Project 
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version 5) Global Climate Model (GCM) simulations to 
drive a set of higher-resolution Regional Climate Models 
(RCMs)18 under various RCPs.11 We used simulations 
from the GCM MPI-M-MPI-ESM-MR19,20 coupled with the 
RCM ICTP-RegCM4-7,21 which have shown a good 
reproduction of the observed surface air temperature over 
South America.22–24 Daily maximum 2 m temperature, 
minimum 2 m temperature, and mean 2 m relative hu
midity data from 2031 to 2090 were downloaded from the 
C3S-CDS platform25 in February 2022.

Bias adjustment was performed to correct for po
tential systematic errors in the climate model simula
tions (Appendix Section 3).

Health outcomes data
Datasets of deaths and hospitalisations (based on hos
pital discharges) were obtained from the Ministry of 
Health of Chile.26 These official registries are consid
ered reliable, benefiting from national coverage and 
routine quality assurance processes conducted by the 
relevant authorities.

The deaths dataset covered from 1990 to 2019 
(total of 2,658,985 deaths) and hospitalisations from 
2002 to 2019 (total of 29,402,229 hospitalisations), 
both containing anonymised individual-level infor
mation. The following variables were considered: 
date of the event, sex (i.e., female/male), age cate
gories (5-year groups), region of residence, region of 
hospitalisation (as healthcare centre’s region), length 
of stay (days), cause of the event (coded using the 
International Classification of Diseases (ICD) ver
sions 9 and 10).

Besides mortality and hospitalisations due to all 
causes, we included cardiovascular diseases (e.g., ICD- 
10 I00–I99) as a major climate-sensitive health 
outcome and commonly associated with temperature 
extremes, complementing the specific but often 
underreported direct temperature causes (e.g., ICD-10 
T67-68).27 Mortality and hospitalisations due to CVT 
causes were identified according to ICD (Appendix 
Section 4). Deaths and hospitalisations were aggre
gated to provide counts for each combination of year, 
month, region, sex, and age categories.

Population data
Two population datasets were used: i) population size 
by year, region, sex, and age categories based on the 
1992 and 2017 Chilean censuses,28 and ii) the Global 
Human Settlement Layer (GHSL) that contained an 
estimated number of people living per grid cell at a 
spatial resolution of 0.0025◦ × 0.0025◦ (approximately 
250 m × 250 m at the Equator), for 1975, 1990, 2000, 
and 2015.29 Annual population estimates were derived 
from both datasets using linear extrapolation and 
interpolation: this is justified because the rate of pop
ulation change has varied little between the times for 
which data are available (Appendix Section 5).

Exploratory data analysis
Outliers were investigated and removed in cases where 
it could be established that they were unconnected with 
the aims of the study (Appendix Section 6.1). Historical 
mortality and hospitalisations showed systematic vari
ations associated with time, seasonality (e.g., higher 
rates in cold months, i.e., May–September and lower 
rates in warm months i.e., December–March), region, 
sex (e.g., females had higher all-cause hospitalisation 
rates than males, but males had higher rates than fe
males in all-cause and CVT mortality and CVT hospi
talisations), and age categories. Also, the relationship 
between the outcome and any one of these variables 
itself potentially varies with the others, so that their 
potential effects must be considered in combination 
rather than individually. The relationship between 
health outcomes and population-weighted temperature 
indices showed that the effects of temperature indices 
may be considered separately from those of the other 
variables, with no obvious indication that the effects 
vary, for example, between regions, sexes, or age cate
gories (Appendix Section 6).

Estimation of exposure-response relationships
For each response variable (all-cause mortality, CVT 
mortality, all-cause hospitalisations, and CVT hospital
isations), models were fitted to estimate the time trend 
and seasonality, together with variation associated with 
region, sex, age categories (5-year groups), ICD change 
(from ICD-9 to ICD-10 in 1997, only for CVT mortality), 
and population-weighted temperature indices derived 
from the ERA5 reanalysis.

We used Negative Binomial Generalised Additive 
Models (GAMs) with log link functions due to their 
flexibility and ability to capture relationships in the 
data, without imposing specific assumptions on the 
forms of those relationships.30 The Negative Binomial 
distribution was chosen primarily to model the data’s 
inherent variance-mean relationship (hetero
scedasticity), ensuring reliable inference. The models 
were fitted using penalised smoothing splines, with the 
degree of smoothing determined using generalised 
cross-validation as implemented in the bam function31 

from the R package mgcv.32 Time trends, included to 
represent long-term temporal variation that cannot 
otherwise be attributed to the climatic covariates, and 
seasonality were modelled using tensor product inter
action smooths with cubic and cyclic cubic regression 
spline, respectively, and with a basis dimension of 10 in 
both cases. Region, sex, age category, and ICD change 
(from ICD-9 to ICD-10 in 1997) were included as factor 
variables (treatment coding), and the effect of 
population-weighted temperature indices was consid
ered linear on the log scale. Covariate selection followed 
an iterative approach,33,34 in which covariates were 
considered in groups successively expanding the model 
and then removing individual redundant terms. 
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Redundant terms were identified based on the Akaike 
information criterion (AIC),35 the Bayesian information 
criterion (BIC),36 and their effect on the model’s pre
dictions and the associated standard errors (Appendix 
Section 7). The latter criterion is intended to protect 
against the tendency of AIC to overfit when using large 
datasets37: a complex model may be selected using AIC 
despite its predictions being very similar, for practical 
purposes, to those from a much simpler model.

The final models for each health outcome are 
detailed in Appendix Section 8. Various checks were 
performed to verify the ability of the model to capture 
the structure in the data, along with checks to ensure 
that the spline basis dimensions were adequate 
(Appendix Section 9).

The models’ predictive performance was then 
assessed using a five-fold cross-validation approach that 
has been suggested for use in similar contexts 
(Appendix Section 9).38,39 The datasets were divided into 
five temporally-ordered, non-overlapping subsets. For 
each subset and response variable, the selected model 
structure was refitted to the remaining four subsets and 
then used to obtain out-of-sample predictions.39 Pre
diction performance was assessed using the root mean 
squared error (RMSE), the mean absolute error (MAE), 
the mean and standard deviation of the standardised 
prediction error, and the log-likelihood.

Results from the cross-validation for the first and 
last subsets showed that it would be inappropriate to 
use the models for projecting health outcomes 
beyond the time period used for model fitting; 
however, the stability of the coefficients across the 
cross-validation suggests that the models could be 
used to explore the hypothetical effects of tempera
ture indices associated with different climate change 
scenarios.

Assessment of potential consequences of future 
climate change on health outcomes
To assess the potential consequences of future climate 
change on health outcomes, the fitted historical models 
were used to generate predictions under different 
climate scenarios. This was achieved by replacing the 
historical temperature indices with the corresponding 
bias-corrected outputs from climate model simulations: 
this will lead to changes in the model predictions of 
health outcomes, which are solely attributable to the 
climate scenarios.

All-cause and CVT deaths and hospitalisations were 
estimated under two climate scenarios of bias-adjusted 
temperature indices across two future periods: i) 
RCP2.6 in the short-term, that is, between 2031 and 
2060 (named S26 hereafter), ii) RCP8.5 between 2031 
and 2060 (named S85), iii) RCP2.6 in the long-term, 
between 2061 and 2090 (named L26), and iv) RCP8.5 
between 2061 and 2090 (named L85).

It is important to clarify that these scenario-based 
estimates i) represent the predicted difference in 
total health outcomes associated with the scenario- 
specific temperature regimes, compared to pre
dictions using historical temperatures; and ii) are not 
absolute forecasts of future mortality or hospitalisation 
counts (i.e., these are hypothetical estimates, repre
senting what health outcomes might have been 
observed during our historical study period if ambient 
temperatures had corresponded to those projected in 
each specific scenario).

Based on the similarities between some estimates 
and to align with age categories commonly used in 
public health in Chile, results were aggregated to five 
age categories (i.e., 0–4, 5–19, 20–39, 40–59, 60+). 
Model-based point estimates, standard deviation of the 
prediction errors, and 95% prediction intervals were 
obtained as described in Appendix Section 10.

Role of the funding source
The funders did not have any role in study design, data 
collection, data analysis, interpretation, writing of the 
report.

Results
Overall, estimated outcomes vary by health outcome, 
region, climate scenario. Mortality shows slight in
creases or decreases depending on the scenario and the 
cause, while hospitalisations consistently increase 
across all scenarios at the national level. Seasonal pat
terns of health outcomes also slightly change depend
ing on the region, age category, and climate scenario. 
Differences by sex mirror historical observations, and 
estimates for CVT outcomes are driven primarily by 
adults aged 20+ due to low rates in younger groups. All 
details in Appendix Section 11.

All-cause mortality
Overall, all-cause mortality is higher in S26 (+0.15%), 
S85 (+0.05%), and L26 (+0.15%), but lower in L85 
(−0.2%) compared to the historical climate (Fig. 1). 
However, scenario-related changes compared to the 
historical climate show a marked decreasing gradient 
from north to south. From Arica to O’Higgins (except 
for Valparaíso), there is an increase in mortality across 
most of the scenarios, ranging from +2.3% (Tarapacá, 
L85) to +0.1% (Metropolitana, L85): see Appendix 
Figure 1A for region locations. Then, from Maule to 
Magallanes, there is a consistent decrease in mortality, 
ranging from −0.1% (Maule, S26) to −2.1% (Aysén, L85) 
(Fig. 2). Seasonally, estimates for the 60+ age group, 
particularly from Arica to Metropolitana regions, show 
slight increases during summer months (i.e., 
December–March) and slight decreases during winter 
months (i.e., June–August) across all scenarios 
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Fig. 1: Model-based estimates of all-cause mortality by scenarios. Points represent point estimates and horizontal bars represent the upper 
limit (UL) and the lower limit (LL) of the 95% prediction interval (PI 95%).

Fig. 2: Model-based estimated number of all-cause deaths for the historical climate (Hist.) and hypothetical scenarios by region. NB: these 
plots are not on the same vertical scale because of the variation between regions. Plot layout (from top to bottom and left to right) reflects 
the north-south alignment of the regions. Points represent point estimates and horizontal bars represent the upper limit and the lower limit 
of the 95% prediction interval.
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compared to the historical climate (Appendix 
Figures 51A–66A).

Cardiovascular and temperature-related mortality
Overall, CVT mortality across all scenarios is between 
0.5% and 0.8% lower than the historical climate, 
particularly in S85 and L85 (Fig. 3). However, this 
overall decrease is reversed in the northernmost re
gions: Arica and Tarapacá show CVT mortality in
creases up to almost 30% higher in L85 (Fig. 4). From 
Arica to Metropolitana region, CVT mortality over 
summer months is markedly higher in warmer sce
narios (S85 and L85) compared to the historical climate, 
particularly for age category 40–59 and 60+. In southern 
regions, there is a slight decrease in winter months 
(Appendix Figures 67A–82A).

All-cause hospitalisations
Overall, all-cause hospitalisations are significantly 
higher across all scenarios than the historical climate, 
with the highest estimates in S85 (+3.6%) and L85 
(+4.2%) (Fig. 5). In general, estimates are between 0.2% 
(Araucanía, S26) and 7.2% (Metropolitana, L85) higher 
across all scenarios compared to the historical climate 
in northern, central, and central-south regions (i.e., 
from Arica to Araucanía); and between 0.3% (Los Rios, 
S85) and 2.5% (Magallanes, L85) lower in southern 
regions (i.e., from Los Rios to Magallanes) (Fig. 6). 
There are also seasonal variations in these changes. In 

northern regions (from Arica to Atacama) estimates are 
higher in summer and lower in winter in S85 and L85, 
particularly for age categories 20–30 and above. In 
central regions (from Coquimbo to Biobio), all scenario- 
related hospitalisations are higher over most of the year 
compared to the historical climate (Appendix 
Figures 83A–98A).

Cardiovascular and temperature-related 
hospitalisations
Similar to all-cause hospitalisations, CVT hospital
isations are between 1.5% and 2% higher across all 
scenarios than the historical climate (Fig. 7). Overall, 
CVT hospitalisations increase compared to the histori
cal climate in northern and central regions (i.e., from 
Antofagasta to Biobio), and decrease in southern re
gions (i.e., from Araucanía to Magallanes) (Fig. 8). In 
terms of seasonality, northern-central (i.e., from Ata
cama to O’Higgins) regions show a slight increase in 
CVT hospitalisations from autumn to spring months 
across all scenarios compared to the historical climate, 
while southern regions, CVT hospitalisations are lower 
over most of the year across all scenarios (Appendix 
Figures 99A–114A).

Discussion
This study is the first to estimate the potential 
temperature-related health consequences associated 

Fig. 3: Model-based estimates of CVT mortality by scenarios. Points represent point estimates and horizontal bars represent the upper limit 
(UL) and the lower limit (LL) of the 95% prediction interval (PI 95%).
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with climate change at a regional level in Chile. 
Overall, the variation in estimates between scenarios 
and regions reflects a combination of factors: the 
magnitude of projected temperature changes, 

underlying regional demographics, and the issue that 
most of historical mortality and morbidity burden has 
been associated with low, rather than high, 
temperatures.40

Fig. 4: Model-based estimated number of CVT deaths for the historical climate (Hist.) and hypothetical scenarios by region. NB: these plots 
are not on the same vertical scale because of the variation between regions. Plot layout (from top to bottom and left to right) reflects the 
north-south alignment of the regions. Points represent point estimates and horizontal bars represent the upper limit and the lower limit of 
the 95% prediction interval.

Fig. 5: Model-based estimates of all-cause hospitalisations by scenarios. Points represent point estimates and horizontal bars represent the 
upper limit (UL) and the lower limit (LL) of the 95% prediction interval (PI 95%).
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High temperature indices show a considerable 
warming pattern across the country, particularly in 
northern regions (i.e., from Arica to Coquimbo), which 
are considered arid to warm temperate regions.41 For 

example, the median of the ambient temperature 
increases by approximately 5 ◦C and monthly warm 
nights (TN90p) triple in L85 by 2090 compared to the 
historical climate. Less intense warming trends of these 

Fig. 6: Model-based estimated number of all-cause hospitalisations for the historical climate (Hist.) and hypothetical scenarios by region. NB: 
these plots are not on the same vertical scale because of the variation between regions. Plot layout (from top to bottom and left to right) 
reflects the north-south alignment of the regions. Points represent point estimates and horizontal bars represent the upper limit and the 
lower limit of the 95% prediction interval.

Fig. 7: Model-based estimates of CVT hospitalisations by scenarios. Points represent point estimates and horizontal bars represent the upper 
limit (UL) and the lower limit (LL) of the 95% prediction interval (PI 95%).
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indices are observed in central to southern regions, 
which are considered warm temperate to polar re
gions.41 Low temperatures also show a warming 
pattern, meaning fewer events of cold temperatures. 
These shifts in temperature indices are reflected in the 
changes in health outcomes.

Differences in health outcomes across the country 
likely relate to physiological limits of heat tolerance.2,42 

In the northern and central zones, projected warming 
may exceed the body’s heat tolerance capacity, particu
larly during summer. Conversely, warming levels in the 
central-south, southern, and austral zones might 
reduce the significant historical risk from cold exposure 
without reaching dangerous heat thresholds, potentially 
lowering cold-related mortality and morbidity. Our 
findings suggest mortality estimates are highly sensi
tive to reduced cold exposure, while hospitalisation es
timates appear more responsive to warming. 
Consequently, the overall national estimates presented 
here represent a net balance between these competing 
effects: significant reductions in cold burden can lead to 
net mortality decreases, while increased warming ap
pears to drive net hospitalisation increases. This bal
ance varies by region, outcome, and scenario intensity, 
explaining nuances like the S85 vs L85 all-cause mor
tality difference or patterns between RCP2.6 and 
RCP8.5.

Evidence from 2001 to 2020 in the United Kingdom 
indicates a net mortality decrease linked to milder 
winters, alongside net increases in hospital admissions 

(including injuries) on warmer days compared to colder 
ones.43 Complementary evidence suggests that inten
tional injuries and violence increase on warmer days 
and nights,44–46 which might be triggered by physiolog
ical discomfort, frustration, and changes in daily activ
ities.47 Two additional studies suggest that all-cause 
hospital admissions and respiratory-related intensive 
care demand increase under warmer climate 
scenarios.48,49

Based on this evidence, the current study suggests 
one possible explanation for the increased rate of hos
pitalisations under warmer scenarios in Chile. In 
northern and in some central and central-south zones, 
this increase, particularly in summer, may be associ
ated to heat-related causes. In south and austral zones, 
however, this increase might be more influenced by 
changes in social behaviour that lead to a rise in hos
pitalisations due to injuries. As our models are not 
capable of distinguishing between heat-related causes 
and behavioural-mediated factors, this interpretation 
represents just one possible explanation of the results. 
Overall, the analysis identified five distinct zones in 
Chile based on varying patterns of temperature indices 
and estimated health outcomes (Table 1), which carry 
significant public health and social implications for 
Chile, particularly given existing socio-economic 
disparities.

In northern regions, already burdened with high 
poverty rates,50 the estimated increases in all-cause 
mortality (∼2%) and CVT mortality (up to 30%) has 

Fig. 8: Model-based estimated number of CVT hospitalisations for the historical climate (Hist.) and hypothetical scenarios by region. NB: these 
plots are not on the same vertical scale because of the variation between regions. Plot layout (from top to bottom and left to right) reflects 
the north-south alignment of the regions. Points represent point estimates and horizontal bars represent the upper limit and the lower limit 
of the 95% prediction interval.
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important social implications. The potential loss of 
healthy and working-age individuals in a society re
duces the labour force, negatively affecting local and 
national productivity and economic growth, and leads 
to broader and cascading social challenges.51 Families 
may lose a primary breadwinner, potentially worsening 
mental health, increasing the risk of financial strain 
and poverty, limiting educational opportunities, and 
exacerbating existing health and social inequalities.52,53

The estimated increase in hospitalisations across the 
country presents further public health and social chal
lenges. Higher demand for healthcare services pres
sures an already overburdened and under-resourced 
healthcare system,54 requiring more resources, infra
structure and equipment, and health personnel. This 
added to unequal access and resources available in 
different regions, might exacerbate health inequities, 
worsen population health outcomes, and even further 

increase mortality rates.55 Seasonal shifts in hospital
isations, with an increased demand in warmer months 
and decreased demand in winter months, require 
health systems to adjust resource allocation strategies, 
ensuring that healthcare services and delivery is 
responsive to changing demands across the year. 
Additionally, higher rates of hospitalisation are also 
linked to greater rates of work absence, lower quality of 
life, and potential long-term disabilities,56 all affecting 
families’ wellbeing and income, exacerbating health- 
poverty traps (i.e., poor health leads to poverty and 
vice versa)57 and impacting productivity and economic 
development at a national scale.

Conversely, the estimated reduction in mortality and 
hospitalisations associated with fewer cold events, 
especially in southern regions, might offer some public 
health benefits. Fewer deaths and hospitalisations 
might lead to less pressure on healthcare systems, 

Zones Characteristics

Northern zone The northern zone includes northern regions (i.e., Arica, Tarapacá, Antofagasta, Atacama, and Coquimbo), generally characterised by similar projected changes in 
climate indices. However, two sub-zones emerge based on estimated health outcomes. The first covers Arica and Tarapacá (sub-tropical regions) where warmer 
scenarios are associated with higher estimated mortality and hospitalisations compared to the historical period, with notable increases under L85 in summer, autumn, 
and spring. The difference in estimated all-cause mortality between these two regions might relate to a decrease in estimated deaths in winter in Arica under L85, not 
seen in Tarapacá. In Arica, scenarios S26 and L26 correspond to lower estimated hospitalisations, contrasting with the increases estimated under warmer scenarios 
S85 and L85. The second sub-zone covers Antofagasta, Atacama, and Coquimbo. Here, estimated deaths under S26 and L26 are higher than under S85 and L85, 
respectively, which might be linked to projected increases in some low-temperature indices (cold nights/days) in S26/L26; however, overall warming is associated with 
estimated increases in summer deaths and decreases in winter deaths. Estimated hospitalisations increase with warmer projected temperatures, and estimated CVT 
hospitalisations also appear sensitive to more extreme warming, with Antofagasta (L85) showing a marked increase compared to Atacama and Coquimbo. In 
summary, projected extreme warming in northern regions is associated with potentially significant increases in overall estimated rates of human mortality and 
morbidity. Differences in estimated health outcomes between geographically contiguous regions (e.g., Antofagasta vs Atacama) may reflect differences in population 
characteristics and distribution.

Central zone The central zone (from Valparaíso to O’Higgins) also shows two sub-zones. Valparaíso (first sub-zone), with population concentrated coastally, shows a warming 
pattern, but less intense than the north, alongside significant decreases in low-temperature indicators. This aligns with estimated health outcomes: warmer scenarios 
are generally associated with decreases in estimated all-cause deaths, CVT deaths, and CVT hospitalisations, especially in winter. However, estimated all-cause 
hospitalisations show the opposite pattern, increasing with warmer temperatures particularly in autumn and winter. This potential mortality benefit aligns with 
evidence suggesting people in moderate cold climates could benefit from reduced cold-related outcomes under warming.48 The contrasting pattern for all-cause 
hospitalisations might be explained by increases in other temperature-sensitive causes (e.g., gastrointestinal) or by behavioural changes leading to illness/injury 
requiring admission under warmer conditions (discussed further below). 
The second sub-zone (Metropolitan and O’Higgins regions) shows overall warming but also slight increases in cold night/day indices, especially in L85. Overall, the 
warmest scenario (L85) is associated with lower estimated all-cause deaths, CVT deaths, and CVT hospitalisations compared to other scenarios, likely linked to the 
reduction in cold-related outcomes. Here, estimated deaths and CVT deaths slightly increase in summer but decrease notably in winter/spring under L85, driving the 
overall reduction. Estimated CVT hospitalisations increase across the whole year, although L85 shows summer reductions. Estimated all-cause hospitalisations, 
however, are higher in autumn/spring under L85 compared to other scenarios, consistent with the behavioural change hypothesis.

Central-South 
zone

This zone includes Maule, Ñuble (forming one sub-zone), and Biobío (another sub-zone). Maule and Ñuble show significant warming and decreases in cold indices. 
These changes correspond to lower estimated mortality, especially in winter, although estimated mortality increases in summer under S85/L85, consistent with their 
hot summer/cold winter climate.49 Similar to other zones, warmer temperatures (S85, L85) are associated with estimated increases in all-cause hospitalisations. 
Estimated CVT hospitalisations appear to reflect a balance between cold/warm indices, with significantly lower estimates from January to June under L85. Biobío, 
though contiguous, shows less intense warming but significant decreases in cold indices, similar perhaps to Valparaíso (with population also concentrated coastally). 
Here, warmer scenarios are associated with lower estimated mortality, especially in autumn, winter, and spring. Although estimated hospitalisations are higher than 
the historical period (mainly April–September), they show a decreasing trend under warmer scenarios, notably for CVT hospitalisations in L85 due to spring/summer 
reductions. These results support the idea that warming scenarios in such regions can reduce cold-related health burdens.

South zone This zone (Araucanía, Los Ríos) shows warming and significant decreases in cold indices. These changes correspond to lower estimated all-cause deaths, CVT deaths, 
and CVT hospitalisations. All-cause hospitalisations show mixed results (associated mainly with estimated increases in summer/autumn for ages 5+). The warmest 
scenario (L85) and its associated reduction in cold indices correspond to significantly lower estimated deaths, especially in winter/spring. However, this pattern does 
not correspond to a similar reduction in estimated CVT hospitalisations (though spring shows reduction). As these regions have Mediterranean climates, it is plausible 
that warmer scenarios would be associated with an overall decrease in climate-sensitive mortality and morbidity estimates.

Austral zone The final zone (Los Lagos, Aysén, Magallanes) shows warming (less difference between scenarios except L85) and significant reductions in cold indices. These changes 
correspond to lower estimates for all health outcomes across all scenarios compared to the historical period. As expected in cold climates, the warmest scenario (L85) 
is associated with lower estimated mortality, especially in winter. Estimated all-cause hospitalisations follow a pattern similar to northern zones (increase, except 
Magallanes), which might also be related to social behaviour changes under warmer scenarios.

Table 1: Zones in Chile based on variations in temperature indices and health outcomes.
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allowing for re-allocation of resources to other activities 
that promote and protect people’s health. Additionally, 
communities might remain socially and economically 
active for longer, contributing to further development at 
individual and societal levels.58 However, it is possible 
that temperature increases might trigger changes in so
cial behaviour, which in turn might lead to higher rates 
of injuries derived from outdoor activities or violence. If 
this happened to be the case, appropriate public health 
surveillance and responses would be required.

Overall, these findings highlight the need for region- 
specific public health strategies in Chile. Northern re
gions might require heat plans that reduce the risk of 
heat-related mortality and morbidity, while southern 
regions might adjust healthcare demand and potential 
shifts in healthcare needs.

It is important to note that the estimates of this 
study may be conservative, as they do not fully account 
for potential cascading and broader health impacts of 
climate change, including those related to water and 
food insecurity derived from climate change-influenced 
drought.59

This study complements and expands the evidence 
already published. A study that used A1b SRES scenario 
(in which the CO2 emissions are lower than those for 
RCP8.5 but much higher than RCP2.660) and non- 
accidental hospital admissions showed that warmer 
scenarios are linked to higher hospital admissions, 
qualitatively agreeing with our findings. However, es
timates are not fully comparable as it compared pro
jected estimates only with those for the year 2008 and 
did not disaggregate the estimations by age or season
ality.4 Further studies by the Multi-Country Multi-City 
(MCC) Collaborative Research Network also qualita
tively aligns with our findings, showing that warmer 
scenarios would decrease cold-related deaths and in
crease heat-related deaths (0.2% decrease in excess 
mortality by 2050–59 compared to 2010–19).6,10 How
ever, MCC analyses for Chile relied on only four land- 
based monitors in the central zone of the country, 
providing limited insight into the substantial regional 
heterogeneity demonstrated here. Methodological dif
ferences, including our use of multiple extreme tem
perature indices versus primarily mean temperature, 
also limit direct comparison of specific risk 
estimates.2,61

This study has some limitations. The cross- 
validation results demonstrated that the underlying 
time trend, representing the effects of social and other 
changes that are unrelated to the temperature indices 
considered in the study, could not be extrapolated reli
ably beyond the period used for model fitting: thus, it 
was not possible to produce true projections of health 
outcomes into the future. Instead, the results represent 
what could have occurred in the past if temperatures 
had been as projected under the hypothetical scenarios: 
they suggest the potential impacts of climate change 

considered in isolation, therefore. This hypothetical, 
comparative approach helps explain why results some
times appear counterintuitive (e.g., lower mortality 
under more extreme warming scenarios or compared to 
historical levels), as they reflect the modelled net bal
ance of changing risks (discussed earlier) rather than 
absolute future forecasts. Nonetheless, health outcomes 
in the future might be different as social variables have 
an important role in modulating the impact of envi
ronmental change. For example, the presented models 
do not explicitly include variables related to population 
adaptation or acclimatisation to ambient temperatures, 
or the use of air conditioning, which may have an 
important impact on health.62 A statistical approach 
considering such effects would require extensive data 
on relevant covariates which, at present, are not avail
able. In view of this, the approach of this study can be 
seen as a pragmatic one that seeks to maximise the use 
of the data that are available.

This study has been further limited by the absence of 
ethnicity in the original health databases, and the lack of 
availability of high-resolution climate projections for 
South America: the relevant CORDEX archive provides 
projections from only one Regional Climate Model (RCM) 
at the resolution required. As more high-resolution pro
jections become available, it will be of interest to place the 
current results within the context of those obtained from 
an ensemble of different RCMs that could potentially have 
different biases and patterns of change.

Conclusion
This is the first study that estimated the effects of 
climate change scenarios on temperature-related mor
tality and hospitalisations at a regional level in Chile, 
revealing seasonal, regional, and age-related differ
ences. The findings not only contribute to the evidence 
on the field, but also provide information for potential 
health and climate adaptation policies in Chile.
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