RESEARCH ARTICLE | JULY 11 2025
How Laplace pressure reshapes local structure: Voronoi
analysis of water and argon droplets

Pal Jedlovszky © ; Marcello Sega &

’ '.) Check for updates ‘

J. Chem. Phys. 163, 024709 (2025)
https://doi.org/10.1063/5.0275651

@ B

View Export
Online  Citation

Articles You May Be Interested In

Chemical Physics

T
o
4]
c
-
=)
O
ﬂ
Q
L
-

Voronoi neighbor statistics of hard-disks and hard-spheres

J. Chem. Phys. (August 2005)

Voronoi cell analysis: The shapes of particle systems

Am. J. Phys. (June 2022)

Global and local Voronoi analysis of solvation shells of proteins

J. Chem. Phys. (August 2010)

Ublishing The Journal of Chemical Physics

Special Topics Open

for Submissions

Learn More

AIP
é/:. Publishing

8Y:6£:91 GZ0Z AN ¥


https://pubs.aip.org/aip/jcp/article/163/2/024709/3352396/How-Laplace-pressure-reshapes-local-structure
https://pubs.aip.org/aip/jcp/article/163/2/024709/3352396/How-Laplace-pressure-reshapes-local-structure?pdfCoverIconEvent=cite
javascript:;
https://orcid.org/0000-0001-9304-435X
javascript:;
https://orcid.org/0000-0002-0031-905X
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0275651&domain=pdf&date_stamp=2025-07-11
https://doi.org/10.1063/5.0275651
https://pubs.aip.org/aip/jcp/article/123/7/074502/931399/Voronoi-neighbor-statistics-of-hard-disks-and-hard
https://pubs.aip.org/aapt/ajp/article/90/6/469/2820132/Voronoi-cell-analysis-The-shapes-of-particle
https://pubs.aip.org/aip/jcp/article/133/8/084108/189379/Global-and-local-Voronoi-analysis-of-solvation
https://e-11492.adzerk.net/r?e=eyJ2IjoiMS4xMyIsImF2IjozMzYxNTcyLCJhdCI6MTA0NTAsImJ0IjowLCJjbSI6NDE2NzY3NzcxLCJjaCI6NjExNDcsImNrIjp7fSwiY3IiOjQ3NjAxMjk1MywiZGkiOiIyMzM5YjRlODFiMjg0Yjg0YWQ5ZThlNzU4MjM1YmNhNiIsImRqIjowLCJpaSI6IjI1ZmNiMzVmYWYyZTQ1YTFiYzZiMmM0ZjRmODYyNjU3IiwiZG0iOjMsImZjIjo2NTA4NjYyMDcsImZsIjo2MTkxODEwNTAsImlwIjoiMjAuODEuMzQuMTc3IiwibnciOjExNDkyLCJwYyI6MCwib3AiOjAsIm1wIjowLCJlYyI6MCwiZ20iOjAsImVwIjpudWxsLCJwciI6MjQwMDM3LCJydCI6MSwicnMiOjUwMCwic2EiOiI5NyIsInNiIjoiaS0wMTcwMDdkODUxOTJjMDAxNCIsInNwIjoxNzk0NjMsInN0IjoxMjg4MjAxLCJ1ayI6InVlMS0zNjQ1Mjk3ZjliMzM0ZDU5OWE3ODlkNTZiMWVjNjE4NSIsInpuIjozMDczNzAsInRzIjoxNzUyNTExMTg4NTc3LCJnYyI6dHJ1ZSwiZ0MiOnRydWUsImdzIjoibm9uZSIsInR6IjoiQW1lcmljYS9OZXdfWW9yayIsInVyIjoiaHR0cHM6Ly9wdWJsaXNoaW5nLmFpcC5vcmcvcHVibGljYXRpb25zL2pvdXJuYWxzL3NwZWNpYWwtdG9waWNzL2pjcC8_dXRtX3NvdXJjZT1wZGYtZG93bmxvYWRzJnV0bV9tZWRpdW09YmFubmVyJnV0bV9jYW1wYWlnbj1IQV9KQ1BfU1QrT3Blbitmb3IrU3Vic19QREZfMjAyNCJ9&s=6I8-ps7XXlAPsDwpkeD-7Favqjc

The Journal . —
of Chemical Physics ARTICLE pubs.aip.orglaip/jcp

How Laplace pressure reshapes local structure:
Voronoi analysis of water and argon droplets

Cite as: J. Chem. Phys. 163, 024709 (2025); doi: 10.1063/5.0275651 @ Lk @
Submitted: 14 April 2025 + Accepted: 5 June 2025 -
Published Online: 11 July 2025

Pal Jedlovszky' and Marcello Sega™®

AFFILIATIONS

I Department of Chemistry, Eszterhazy Karoly Catholic University, Leanyka utca 12, H-3300 Eger, Hungary
2Department of Chemical Engineering, University College London, London WCIE 7JE, United Kingdom

2 Author to whom correspondence should be addressed: m.sega@ucl.ac.uk

ABSTRACT

Curvature induces pressure differences across liquid—vapor interfaces and introduces corrections to surface tension that are described by clas-
sical thermodynamics in the macroscopic limit via the Tolman length. At the nanoscale, however, deviations from this behavior are difficult
to interpret due to the nonlocal character of the stress tensor and the ambiguity in defining bulk phases. We address this by applying Voronoi
tessellation to nanodroplets of argon and water to examine how curvature alters the local molecular structure. Unlike conventional density
profiles—smeared out by capillary fluctuations—the Voronoi analysis yields a quasi-local geometric observable that can resolve curvature-
induced changes in packing even near the molecular liquid surface. We find that inhomogeneity effects extend deep into the droplet interior.
Using a simple classic thermodynamic framework to remap the droplet molecular volumes onto those of the flat interface, we find a collapse
onto a single trend, suggesting that there are no specific curvature-induced changes beyond those implied by macroscopic thermodynamics.
Remarkably, this collapse holds even for droplets smaller than those where classical approaches fail to extract a consistent Tolman length
using local pressure tensor definitions.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0275651

I. INTRODUCTION The surface of tension is defined thermodynamically via excess
quantities, ensuring the relation (p* - p" )8V = ydA + CSR, where
p" and p" denote the pressures in the two bulk phases, and 6V, 84,
and 6R are the volume, surface area, and curvature radius changes,
respectively. The associated coefficients are the surface tension y and
the curvature coefficient C. Since A/8V and §R/8V depend on dif-
ferent powers of the radius at which they are calculated, but the
difference Ap = p* — p* does not, it follows that y and C depend on
the choice of the radius R used to locate the Gibbs dividing surfaces.
The customary approach is then to define the specific Gibbs dividing
surface known as the surface of tension of radius R;, defined as the
one for which the curvature term COR vanishes, or, equivalently, for
which the macroscopic Laplace pressure jump expression is formally
recovered,” *

A detailed picture of how curvature modifies the local structure
of fluid interfaces is essential for understanding, designing, and con-
trolling systems across biology, chemistry, physics, and engineer-
ing,' from nucleation, growth, and phase transitions to nanodroplet”
and film stability’ and static and dynamic wetting.”” At the
nanoscale, the macroscopic assumptions about bulk-phase separa-
tion and the nature of the pressure field become questionable, moti-
vating the need for structural observables that remain meaningful
when classical thermodynamic assumptions break down.

Classical thermodynamics relies on two core concepts: that
of the equimolar dividing surface and the surface of tension. The
equimolar surface is the surface at which the mass excess vanishes.
For a spherical droplet, the equimolar radius, R,, is usually defined

implicitly through the following relation: 29(R;
ap- 28, @
Rs
/ Re [pL - p(r)]r2 dr = / < [p(r) - pv]72 dr. 1) where the dependence of y on the surface of tension radius Ry has
0 R been made explicit.
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As Tolman calculated, the surface tension of a curved interface
can be related to that of a planar one, y__, via

Ve _2%
V(Rs)—Hzé/Rs—Yoo(l RS)- ®3)

The Tolman length, defined as § = R, — Ry, represents the separation
between the radius of the surface of tension, Ry, and is typically of the
order of the molecular size or less in magnitude, although its precise
value is not easy to estimate. Measuring & accurately is complicated
by a range of factors, such as whether the system involves droplets
or cavitating bubbles, the nature of the interaction potentials (sym-
metric or asymmetric), how close the system is to the critical point,
and whether particle-based or mesoscopic models are used.” '

Tolman’s original derivation is a thermodynamic approach
that leaves out structural detail. As long as the bulk phases are
well-defined, the surface of tension [defined by Eq. (2)] and the
corresponding Tolman length can be seen simply as a geometrical
consequence. However, even statistical mechanical treatments do
not fully resolve this issue, since the concept of local stress lacks
a well-defined definition.!” Depending on how one calculates the
local stress, the estimated position of the surface of tension can vary
by about a molecular diameter, as shown by both theoretical and
simulation-based studies.”'”"”

When the curvature approaches the scale of the bulk correlation
length, additional effects may come into play. These include finite
size corrections and changes in the molecular arrangement at the
curved liquid-vapor interface. Under such conditions, the Tolman
length might appear to vary with size. However, the concept of Tol-
man length itself begins to lose meaning in this limit, since it relies
on having a clearly defined liquid bulk phase, which might no longer
hold at this scale.

To better understand how curvature affects the structure of
nanoscopic droplets, here we explore the changes in the volume of
Voronoi cells as a structural marker for the effect of curvature. We
show that even if a bulk phase cannot be identified, a classic thermo-
dynamic framework can still be used to link back to the macroscopic
limit, giving the opportunity to test where it holds and where it
breaks down.

Il. METHODS

We performed molecular dynamics simulations of nan-
odroplets and planar slabs of water and argon, as depicted in
Fig. 1. Water was modeled using the TIP4P/2005 potential,'”’
while argon was modeled using the Lennard-Jones potential Ur;(r)
= 4¢[(a/r)'* - (0/r)®], with parameters o = 3.4 A and e = 0.9964
kJ/mol (equivalent to 119.84 K).”’ The simulations were carried out
in the NVT (canonical) ensemble using the Verlet integration algo-
rithm?' with a time step of 2 fs. The Nosé-Hoover’””" thermostat
with a relaxation time of 0.5 ps was used to keep the temperature of
the systems fluctuating around 90 and 300 K for argon and water,
respectively. The long range contributions to both dispersion and
electrostatic interactions were calculated using the smooth version
of the particle mesh Ewald’* method with a real-space cutoff of 13 A
and a relative value of the real space part of the potential at the cut-
offs of 10 and 107 for the dispersion and electrostatic interactions,
respectively. The treatment of long range dispersion corrections is
especially important in the case of argon” but has a sizable impact
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FIG. 1. Snapshots of the (from left to right) slab, largest and smallest droplets of
(from top to bottom) argon and water. Only part of the simulation box is shown.
Periodic copies of the slab in the vertical direction are shown.

also in water.”® The molecular structure of water was kept rigid
using the SETTLE algorithm.”” Simulation boxes were chosen large
enough for periodic image interaction to be minimal (yielding a
0.02% relative RMS force deviation for the largest water droplet
system) and to ensure adequate vacuum padding in slab systems.

The number of molecules and simulation box edge lengths are
summarized in Table I, along with the calculated average equimolar
radii.

To distinguish liquid from vapor phase molecules, we used the
DBSCAN (Density-Based Spatial Clustering of Applications with
Noise) algorithm.”® The search radius was set to 12 A, and the
threshold density for defining core points was determined automat-
ically from the bimodal distribution of local densities, selecting the
minimum between the liquid-like and vapor-like peaks.”” Molecules
forming the largest dense cluster were assigned to the liquid phase;
all others were tagged as vapor.

The liquid-vapor interface was identified using the GITIM
(Generalized Identification of Truly Interfacial Molecules) algo-
rithm,’” which generalizes the ITIM method’! to arbitrarily shaped
interfaces. GITIM performs a Delaunay triangulation of the centers
of liquid-phase molecules and tags as interfacial those atoms that

TABLE I. Details of the simulation setups.

xandy
System N (Re) (A) edges (A) zedge (A)
Ar drop 1184 22.1 200.0 200.0
Ar drop 2340 27.8 200.0 200.0
Ar drop 4063 339 200.0 200.0
Ar drop 6444 39.8 200.0 200.0
Ar drop 9622 46.2 200.0 200.0
Ar drop 13705 52.1 200.0 200.0
Ar slab 3000 00 36.01 216.1
H,O drop 1903 23.7 150.0 150.0
H,O drop 3738 29.7 150.0 150.0
H,O drop 6457 35.7 150.0 150.0
H,O drop 10276 41.7 150.0 150.0
H,O drop 15337 47.7 150.0 150.0
H,O drop 21877 53.7 150.0 150.0
H,O slab 4320 00 37.36 240.0

J. Chem. Phys. 163, 024709 (2025); doi: 10.1063/5.0275651
© Author(s) 2025

163, 024709-2

8%:6€:91 GZ0Z AInF ¥1.


https://pubs.aip.org/aip/jcp

The Journal
of Chemical Physics

are the vertices of tetrahedra able to accommodate a probe sphere
of a chosen radius. We have selected the probe radius as R, = 2.0
and 2.2 A for argon and water, respectively, following the recipe that
allows us to match the location of the equimolar dividing surface
in flat interfaces.’> In water, only oxygen atoms were considered in
the determination of the interface and used as a proxy for the water
molecule. Successive layers were assigned by repeatedly applying the
GITIM algorithm. Both DBSCAN and GITIM were used as imple-
mented in the Pytim package,” based on MDAnalysis™ and freely
available at https://github.com/Marcello-Sega/pytim.

To probe molecular packing, we computed the Voronoi
tessellation”* of the atomic centers of the molecules in the lig-
uid phase. The Voronoi tessellation is a space-filling partitioning
of the simulation box in a set of polyhedra that is a generalization
of the Wigner-Seitz cell’” for disordered systems, with an illustri-
ous history in the interpretation of the properties of liquids™ ** and
disordered packing in general,** including granular systems* and
biological tissues,"® but also as a tool for multiphysics simulations.*’

The cell associated with a given molecule (here, we use the loca-
tion of the argon and oxygen atoms as molecular centers) is a convex
polyhedron whose internal points are closer to the molecule than
to any other one. In practice, the faces of the polyhedra are bisect-
ing planes of the segments connecting two neighboring molecules.
Periodic boundary conditions were taken into account during tessel-
lation to ensure consistent treatment of molecules at the box edges.
We implemented a custom observable in the Pytim package to com-
pute Voronoi-based statistics layer-by-layer, allowing us to associate
each molecule with a well-defined local volume. Figure 2 reports
the Voronoi tessellation of a two dimensional system for illustrative
purposes. Note that in Fig. 2, we did not draw the large polyhedra
associated with the particles located at the border of the droplet and
defined through the particles in the periodic copies of the system.

Unlike the conventional density field, defined as p(r)
=Y (8(r—r;)) (with the angular brackets denoting a canonical
average) or its inverse—the local molecular volume—which are
strictly local quantities, the corresponding Voronoi-based estimates

FIG. 2. An illustrative, two dimensional system in the shape of a circular droplet
with local density decreasing when nearing the border. The Voronoi cell edges are
reported as black lines.
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depend explicitly on the arrangement of a molecule and its neigh-
bors. For this reason, we refer to them as quasi-local quantities.
Recently, the Voronoi cells have been used in this way to define
and analyze the quasi-local density in water droplets, as they allow
us to bypass the large oscillations that characterize the conventional
density profiles of droplets close to their center.**

In addition, we computed several thermodynamic quantities in
the following way. We estimated the isothermal compressibility,

10V
Kr = _V(aP)N,T’ (4)

using the following fluctuation formula:*’

1 (AV?) 5

T T (V) ©)
where kg is Boltzmann’s constant and T is the absolute temperature,
from simulations of the bulk liquid in the NpT ensemble at the same
state point as the slab systems. For the NpT simulations, we used
a Parrinello-Rahman barostat’” with a time constant of 4 ps. The
planar surface tension y__ was calculated from the slab simulations
using the mechanical route y_ = (py — py)/2Lz, where py, and p,
are the normal and lateral pressure tensor elements, respectively, and
L, is the simulation box edge length in the direction perpendicular
to the interface.

Finally, a straightforward calculation shows that, in a finite sim-
ulation box, the definition of the equimolar radius, Eq. (1), can be
recast into the simpler explicit form

R= 2 NP ©)
4m (pL—pv)
where V is the simulation box volume and N is the total number of
molecules in the simulation box.

lll. RESULTS AND DISCUSSION

Figure 3 shows the layer-resolved average molecular volumes
computed via Voronoi tessellation for nanodroplets and slabs of
argon and water. The legend reports the equimolar radius of the
droplet as well as the average number of molecules in the liquid
phase, Ny, as determined by the DBSCAN procedure. To determine
R., instead, we use its definition, Eq. (6), and estimate pp =1 JuL
using the average Voronoi volume of atoms in the deepest resolved
layer of each droplet, that is, the last one with acceptable statistics.
This avoids invoking a bulk region, which cannot be consistently
defined in small droplets. The vapor density p, appearing in the
denominator of Eq. (6) is negligible, but this is not the case, at least
for argon at 90 K, for the term p,, V at the numerator (p,, is instead
practically zero for water at 300 K), and so p,, has to be estimated
from the number of molecules in the gas phase and its volume. The
latter can be calculated as that of the simulation box with the exclu-
sion of that occupied by the liquid—for which a rough estimate using
p; N1 is usually sufficient when, as in our case, the simulation box is
much larger than the droplet.

The first data point shown corresponds to the second molecu-
lar layer, as Voronoi volumes in the outermost layer are ill-defined
due to large voids and incomplete coordination shells, as depicted
schematically in Fig. 2. Even in the second layer, particularly for
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FIG. 3. Molecular volumes determined via the Voronoi tessellation as a function
of the molecular layer for argon (left panel) and water (right panel). Error bars
represent one standard deviation and are, in some cases, smaller than the sym-
bol. Layer 1 corresponds to the surface of the droplet/slab. The average distance
between layers is 3.2 and 2.9 A for argon and water, respectively.

small droplets, residual influence from these interfacial voids may
persist. This is because the GITIM algorithm assigns atoms to lay-
ers based on a Delaunay triangulation, but it incorporates excluded
volume effects through the atomic and probe sphere radii. As a
result, it is not guaranteed that atoms labeled as “second layer” do
not have any facet shared with large voids in the vapor phase. To
avoid overinterpretation, here we do not draw conclusions from
the second-layer data. From the third layer onward, instead, atoms
are reliably shielded from the interface, and their Voronoi volumes
reflect genuine local packing environments.

For both water and argon, the molecular volumes below the sec-
ond layer are consistently smaller in the droplets than in the slabs.
This effect becomes stronger with decreasing droplet size, consistent
with curvature-induced compression. In argon, the molecular vol-
umes decrease steadily with depth and appear to plateau, in the slab,
only around the seventh or eighth layer. The droplets show no clear
plateau or, at best, just a mild indication of the presence of a plateau.
It is worth noting that while layers deeper than those reported in
Fig. 3 did appear during the analysis, the number of atoms involved
was so small that statistical noise rendered their average volumes
unreliable, and we excluded them from the analysis.

Water exhibits a markedly different behavior. The change in
molecular volume as a function of the layer is negligible if com-
pared to argon, particularly so in the slab, but to a lesser extent also
in the droplets. This decreased susceptibility to the pressure change
could well be an effect of the greater structural rigidity provided by
the hydrogen-bond network of water. Still, also in water droplets,
the molecular volumes do not reach a plateau, with the possible
exception of layer 12 and above.

These results highlight several important aspects of how curva-
ture affects molecular packing in nanodroplets. First, the notion of a
bulk-like liquid core breaks down even for droplets whose equimo-
lar radius is one order of magnitude larger than the molecular size.

ARTICLE pubs.aip.org/aipl/jcp

Second, the finite compressibility of the liquid emerges not only
through the global dependence of volume on curvature radius but
also through its layer-resolved variation as a function of depth, sug-
gesting that the local molecular volume reflects a gradient in the local
effective stress, driven by the reduced coordination and interaction
experienced near the surface. Only atoms sufficiently deep in the
droplet feel the full internal pressure imposed by curvature.

The question that arises now is to what extent the observed vari-
ations in molecular volume near the interface are due to curvature-
induced pressure and to what extent they instead reflect intrinsic
structural features of the liquid. Here, we use the term “intrinsic”
to refer to structural effects that cannot be accounted for by a simple
thermodynamic modeling. In other words, we aim to separate the
contribution of Laplace pressure and compressibility from structural
effects not captured by classical thermodynamics.

To this end, we adopt a strategy to link the change in molecular
volume to the internal pressure via the isothermal compressibility
wer. Under the assumption that the Voronoi volume serves as a proxy
for the (inverse) local density, one can perform an expansion to first
order in the inverse curvature radius around 1/R, = 0,

_ o L(R.)—
o(R) v = 5 Pzpw[p (RS) - pes ], (7)

with p_ being the vapor pressure of the planar interface and voo
being the molecular (not the molar) volume of the liquid in the
bulk of the planar interface. For our systems, the difference p”(R)
- p.. is practically indistinguishable from the Laplace pressure drop
Ap = p*(Rs) = p¥ (Rs). This can be seen from Kelvin’s equation,
PV(RS) _ Voo

log 2 \fs) _ Voo
8 Poo ksT

[pV(Rs) ~Poo + %ﬁzs)]. ®)

If the condition p__ veo << kpT is met, as it is in the present cases,
then

(%) e ] o

V ~
P (Rs) % poo exp[ R ksT

For both water and argon, the argument of the exponential
function is roughly of the same order, for example, around about 0.4
fora 25 A radius droplet, so that p ~ 1.5p__ is at most of the order of
magnitude of one bar. This is a much smaller value than the Laplace
drop for such a droplet, about 120 and 600 bar for argon and water,
respectively, so that p__ and p" (R;) can be used interchangeably in
our equations, or, for that matter, disregarded.

The molecular volume change in Eq. (7) can then be expressed
in terms of pressure drop using the definition of the compressibility
as U(Ry) — Voo ® —VookrAp. Using Laplace’s formula, we reach the
expression

v(Rs) _ 1 2xry(Rs)
Voo Rs

2KT Yoo

=1 .
R, +0

(10

We note in passing that the x7y_ factor is similar to the analyt-
ical expression for the Tolman length proposed by Blockhuis and
colleagues.'”

Figure 4 presents the sampled molecular volumes rescaled
by the volume ratio expected from purely thermodynamic effects,
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FIG. 4. Molecular volumes rescaled using Eq. (10) as a function of the molecu-
lar layer for argon (left panel) and water (right panel). Error bars represent one
standard deviation and are, in some cases, smaller than the symbol. Layer 1 cor-
responds to the surface of the droplet/slab. The average distance between layers
is 3.2 and 2.9 A for argon and water, respectively.

Eq. (10) [i.e., we plot v(Rs)/[1 - 2kry. /(Re + 8)]], for droplets of
various sizes, alongside the slab reference profiles. As values for the
Tolman length of droplets, we used some recent estimates: § ~ —0.34
A for argon’' and 6 ~ 0.5 A for water."”*>> Here, we note that
Eq. (10) is not particularly sensitive to the actual value of §, at least
for the range of R, values we investigated. Factorovich et al. found a
similar lack of sensitivity in fitting Kelvin’s equation as a function of
the droplet size,”* although they addressed much smaller droplets,
down to the molecular cluster sizes. With the resolution of our data,
thus, changing & by a factor of 2 does not affect the overall qualitative
picture. Because of this, the expression for § that can be obtained by
inverting Eq. (10) is not particularly useful.

In both argon and water, the molecular volume curves collapse
well onto the slab reference one, confirming that the compressibility-
based correction does, in fact, correctly capture the curvature-
induced pressure, supporting the consistency of the thermodynamic
framework we used to interpret curvature effects. Evident differ-
ences appear in the second layer, but as we mentioned already, this
could well be an artifact of the method. Nevertheless, we find it strik-
ing that the inhomogeneity that characterizes the deeper layers can
be so well reconciled by using the simple proposed thermodynamic
rescaling.

It is also worth noting that the nanodroplets of argon stud-
ied here are all smaller than those for which Blockhuis and van
Giessen observed a linear relationship between R.Ap and 1/R., con-
sistent with a constant Tolman length.”' This breakdown occurred
precisely in the regime where the local pressure tensor becomes
unreliable. In contrast, the analysis based on molecular volumes and
their rescaling via macroscopic thermodynamic quantities bypasses
this limitation and reveals a consistent structural response even at
these high degrees of curvature.
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IV. CONCLUSIONS

At the nanoscale, curvature effects are expected to play a
relevant role in determining the behavior of liquid-vapor inter-
faces. However, it is currently unclear to what extent the changes
induced by curvature are governed by purely thermodynamic effects
and to what extent intrinsic structural changes such as curvature-
dependent local structural rearrangement are involved. In this work,
we addressed this problem by focusing on a structural observable:
the molecular volume extracted from Voronoi tessellation. This
quantity serves as a quasi-local probe of molecular packing and
offers a way to assess how curvature modifies the internal struc-
ture of nanodroplets even in the absence of a clearly identifiable bulk
phase.

We combined this geometric approach with a simple ther-
modynamic expression, in which changes in molecular volume are
related to the Laplace pressure jump via the isothermal compress-
ibility and surface tension. Using this framework, we rescaled the
layer-resolved molecular volumes in argon and water droplets of
varying sizes and compared them to the respective planar slab ref-
erences. This approach enabled us to investigate the extent of the
purely thermodynamic contribution of the Laplace pressure, provid-
ing the possibility to identify eventual intrinsic structural responses
to curvature.

Our goal was not to estimate the Tolman length but to
explore whether structural signatures—in particular, molecular
volumes—reflect the expected response to the Laplace pressure. The
rescaling of molecular volumes within a classical thermodynamic
framework does indeed capture, with the exception of the first two
layers, the overall behavior of the response of argon and water. The
collapse of the rescaled volume curves on top of the flat interface
ones indicates that the differences can be fully ascribed to the Laplace
pressure drop and interpreted in terms of the usual thermodynamic
framework only.

Note that our results do not exclude curvature-dependent
effects on the Tolman length.” However, the collapse also hap-
pens for curvature radii that were previously beyond the reach of
approaches relying on local pressure tensor definitions.'?

The non-homogeneity of the local volumes within a single
droplet, instead, most likely reflects the presence of a finite inter-
action range and the corresponding non-locality of quantities such
as the energy or the stress tensor. We note in passing that this can,
in fact, result in an implicit dependence of the surface tension on
the size of the droplet beyond what Eq. (3) (with a size-independent
Tolman length) describes, as the latter takes into account only the
geometric effect.

It would be interesting to look more in detail at the origin
of the increased molecular volume in the second layer. In water,
there are indications that in the first two to three layers, the frac-
tion of LDL-like water at 300 K is larger than in the bulk."**>*® This
would qualitatively explain the increased volume of the second layer,
although a more quantitative justification is in order. The authors
are not aware of any similar mechanism in argon, so no option can
be excluded, and further investigations are in order.
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