
Fish and Fisheries, 2025; 0:1–18
https://doi.org/10.1111/faf.70003

1 of 18

Fish and Fisheries

ORIGINAL ARTICLE OPEN ACCESS

Imputation of Fisheries Reference Points for Endangered 
Data-Poor Fishes, With Application to Rhino Rays
Catharine Horswill1,2   |  Holly K. Kindsvater3   |  Nick K. Dulvy4   |  Chris G. Mull4,5,6  |  Aaron B. Judah5,7   |  
Brooke M. D'Alberto8,9   |  Jason Matthiopoulos10   |  Marc Mangel11,12

1ZSL Institute of Zoology, London, UK  |  2Centre for Biodiversity and Environmental Research, Department of Genetics, Evolution and Environment, 
University College London, London, UK  |  3Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, Virginia, USA  |  4Earth to Ocean 
Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada  |  5Integrated Fisheries Lab, Department 
of Biology, Dalhousie University, Halifax, Nova Scotia, Canada  |  6Marine Conservation and Ecology Group, School of Aquatic and Fisheries Sciences, 
University of Washington, Seattle, WA, USA  |  7Department of Oceanography, University of Hawaiʻi at Mānoa, Honolulu, Hawaiʻi, USA  |  8Centre for 
Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, Australia  |  9CSIRO Oceans 
and Atmosphere, Hobart, Tasmania, Australia  |  10School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, 
UK  |  11Department of Biology, University of Bergen, Bergen, Norway  |  12Department of Applied Mathematics, University of California, Santa Cruz, 
California, USA

Correspondence: Catharine Horswill (catrsw@gmail.com)

Received: 17 January 2025  |  Revised: 8 May 2025  |  Accepted: 13 June 2025

Funding: This work was supported by the Research England, the Natural Environment Research Council (NE/P004180/1), US National Science 
Foundation (DEB-1555729, DEB-1556779), the Natural Sciences and Engineering Research Council of Canada, the Canada Research Chairs Program and 
Shark Conservation Fund.

Keywords: Chondrichthyes | conservation | life-history theory | missing data | phylogeny | taxonomy

ABSTRACT
For data-limited fish species, sustainable management frequently relies on biological metrics that are derived from life-history 
trait data, as opposed to high-resolution time series of catch and abundance. These biological metrics are used to assess a species' 
recovery potential at low population densities, as well as their extinction risk. However, for really data poor species, the life-
history traits required to derive these metrics are also often only partially known. Addressing this gap is essential for informing 
regulatory and conservation actions for vulnerable species and stocks lacking assessments. We developed a generalisable, phy-
logenetically informed framework for imputing missing life-history traits across different taxa and applied it to 57 species within 
the order Rhinopristiformes (rhino rays), an evolutionarily distinct and highly threatened group with notably sparse life-history 
data. We then used the imputed traits to derive four key management and conservation metrics: steepness of the Beverton–Holt 
stock–recruitment relationship, spawning potential ratio at maximum sustainable yield, maximum intrinsic population growth 
rate and generation length. We found strong correlations between mean life-history traits and three management metrics. While 
uncertainty in management metrics remained high due to intraspecific variability, measurement error and limited data, using 
reconstructed traits reduced uncertainty compared to using surrogate trait data from other populations or congeneric species. 
We provide imputed trait values and corresponding management and conservation metrics alongside uncertainty bounds that 
should be recognised in any subsequent conservation assessments and management strategy evaluations. The proposed frame-
work enables the generation of first-order, evidence-based management and conservation metrics for data-limited taxa, thereby 
supporting more informed decision-making for species without comprehensive species-level assessments.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
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A substantial proportion of exploited and threatened fish spe-
cies lack the long-term biological and fisheries data required to 
support conventional stock assessments methodologies. These 
methods, such as surplus production models, statistical catch-
-at-age models, stock–recruitment models, delay-difference 
models and virtual population analysis models, depend on 
high-resolution time series of catch, effort, abundance and de-
mographic structure. In the absence of such data, alternative 
approaches that use life-history trait data to estimate single-
species management metrics have been proposed as more 
feasible pathways for guiding precautionary management 
(Mangel et  al.  2010, 2013). These composite metrics include 
management reference points that describe recovery potential 
at low population density (e.g., maximum intrinsic population 
growth rate rmax), as well as biological parameters that define 
temporal thresholds for population decline (e.g., generation 
length). Key life-history traits used to estimate these man-
agement metrics include age at maturity, natural mortality 
(often inferred from longevity) and reproductive output (e.g., 
fecundity and recruitment potential). However, for many spe-
cies, these traits are estimated with considerable uncertainty, 
or are entirely absent from the literature (Guy et  al.  2021; 
Kindsvater et al. 2018). This data deficiency cannot be solved 
with even the most ambitious data collection strategy, and 
thus poses a major constraint on efforts to regulate fisheries 
sustainably and quantify extinction risk under frameworks 
such as the International Union for Conservation of Nature 
(IUCN) Red List, or Convention on International Trade in 
Endangered Species of Wild Fauna and Flora (CITES). In this 
context, identifying biologically plausible and empirically 
grounded values for life-history parameters represents a criti-
cal challenge for scientific advisory bodies and resource man-
agement agencies tasked with supporting the conservation of 
data-poor species (D'Alberto et  al.  2019; Pardo, Kindsvater, 
Cuevas-Zimbrón, et al. 2016).

Predictive approaches that combine hierarchical modelling, 
available life-history data and prior distributions based on 
established life-history theory, offer a new avenue for recon-
structing a species' or population's life-history strategy, and 
addressing taxonomic, spatial and temporal gaps in trait data 
(Horswill et  al.  2019, 2021; Thorson et  al.  2017). These meth-
ods consider multiple life-history traits, populations and species 
simultaneously in a Bayesian framework, and reconstruct miss-
ing values based on the established life-history trade-offs (i.e., 
covariation) connecting different traits. Life-history trade-offs 
are widely recognised across animal and plant taxa (Bakewell 
et al. 2020; Healy et al. 2019; Jeschke and Kokko 2009; Salguero-
Gómez et  al.  2016), and reflect the physiological connections 
between fitness-related traits, such as body growth, reproduc-
tion and survival (Bennett and Owens 2002; Gravel et al. 2024; 
Lande 1982; Stearns 1992; Wong et al. 2021). For instance, some 
species exhibit slow growth, late maturation, low fecundity and 
high rates of survival, whereas others show the opposite pattern 
(Bennett and Owens 2002; Lande 1982; Stearns 1992). Predictive 
Bayesian hierarchical approaches using life-history theory to 
reconstruct missing values have previously facilitated the esti-
mation of life-history traits that are poorly monitored and chal-
lenging to measure empirically (Horswill et al. 2019, 2021). The 
measures of uncertainty associated with reconstructed param-
eters have also been incorporated into projections of population 

size to provide a range of plausible outcomes that reflect, and 
maximise information from, available population-specific data 
(Horswill et al. 2021).

Despite progress in reconstructing life-history trait values, 
there have been surprisingly few studies using these values 
to resolve composite management metrics across broad spa-
tial or taxonomic scales (but see Thorson 2020). Furthermore, 
previous research suggests that theoretical estimates of man-
agement metrics show little correlation with life-history traits 
(Thorson  2020). Understanding correlations between man-
agement metrics and major axes of life-history variation helps 
predict how different species respond to exploitation, especially 
data-limited species. However, these relationships are inher-
ently complex (Goodwin et al. 2006; Myers et al. 2002; Shertzer 
and Conn 2012; Thorson 2020) and, as yet, have not been exam-
ined using life-history derivations.

Chondrichthyan fishes (Class Chondrichthyes), encompassing 
sharks, rays and chimaeras, are among the most data-deficient 
vertebrate taxa in global fisheries (Walls and Dulvy 2020). These 
species typically have a long lifespan, slow growth rate and low 
fecundity, leading to low productivity and relatively high vulner-
ability to fishing. For many species, there is also a lack of both 
high-resolution time-series data, as well as species-specific life-
history data. The absence of these fundamental data impedes 
the development of both quantitative stock assessments and 
management metrics, respectively. The Order Rhinopristiformes 
(hereafter referred to as rhino rays) exemplifies these critical 
knowledge gaps. This order encompasses seven phylogenetically 
distinct families, many of which are classified as highly threat-
ened under the IUCN Red List criteria (Dulvy et al. 2021). On av-
erage, each species within this order represents over 10 million 
years (MY) more evolutionary time than the other chondrich-
thyan species (Stein et  al.  2018). The loss of these taxa would 
therefore represent a disproportionate erosion of evolutionary 
heritage.

Most rhino ray species inhabit shallow, dynamic coastal ecosys-
tems, such as estuaries, mangrove forests and nearshore soft-
sediment environments. These habitats are often logistically 
difficult to access and survey. Monitoring is further compli-
cated by weak fisheries regulation and low reporting accuracy 
(Jabado 2019; Sherman et al. 2023). Targeted and incidental cap-
tures in multispecies fisheries constitute major threats to rhino 
rays across their range (Harrison and Dulvy  2014; Robillard 
and Séret 2006). Larger-bodied families, specifically sawfishes 
(Pristidae), wedgefishes (Rhinidae) and giant guitarfishes 
(Glaucostegidae), have been particularly affected due to their dis-
proportionate market value in the international shark fin trade 
(McClenachan et al. 2016). This economic demand has contrib-
uted to widespread population declines, with many species now 
extirpated or severely reduced in parts of their historical range 
(Dulvy et al. 2016; Jabado 2018; Seidu et al. 2022). Despite re-
cent progress in estimating rmax for the nine best-studied rhino 
ray species (D'Alberto et al.  2019), most taxa within the order 
remain poorly understood (e.g., Dulvy and Simpfendorfer 2022). 
The combination of data scarcity and weak regulatory over-
sight has resulted in minimal formal management of rhino rays 
(Sherman et al. 2023), posing a significant risk to the long-term 
viability of wild populations (Dulvy et al. 2021; Jabado 2019).
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To support the conservation and management of rhino rays, 
the recent IUCN Red List Reassessment for Chondrichthyes 
inferred species-specific estimates of generation length by 
heuristically ‘borrowing’ congeneric life-history information 
using expert assessments of taxonomic affinity and relative 
body size (Dulvy et  al.  2021; Kyne et  al.  2020). Integrating 
surrogate and observed life-history trait data can overlook 
the life-history trade-offs that physiologically link a species' 
demographic traits (Stearns 1992), leading to potential biases 
and inaccuracies (Devenish-Nelson et  al.  2013; Hernández-
Camacho et al. 2015; Johnson et al. 2010). It also means that 
conservation assessments, such as the IUCN Red List, and 
trade regulations, such as CITES, are restricted to using sim-
pler management metrics that can be estimated with limited 
life-history trait data, such as rmax and generation length. 
Predictive approaches using life-history theory to reconstruct 
missing trait data (Horswill et  al.  2019, 2021) offer a prom-
ising new avenue for resolving more complex management 
metrics that are based on many life-history traits, such as 
spawning potential ratio at maximum sustainable yield. Such 
approaches would expand the body of information than can 
be applied to the conservation and management of data-poor 
fishes, such as rhino rays.

In this study, we extend our Bayesian hierarchical approach 
(Horswill et al. 2019, 2021) to reconstruct an 11-trait vector of 
life-history parameters for 57 species of rhino ray. We then use 
these reconstructed life-history strategies to demographically 
derive four species-specific management metrics that are com-
monly used to regulate fisheries and assess extinction risk in 
fishes (Kindsvater et  al.  2016). The selected metrics are three 
management reference points (steepness of the Beverton–Holt 
stock recruitment relationship, spawning potential ratio at max-
imum sustainable yield and rmax) and one biological parameter 
frequently used in conservation assessments to infer extinction 
risk and define temporal thresholds for population decline (gen-
eration length). We provide a new framework for deriving steep-
ness of the Beverton–Holt stock recruitment relationship and 
spawning potential ratio at maximum sustainable yield from 
life-history data. We also examine whether using the recon-
structed life-history trait values to estimate management met-
rics, as opposed to trait data from other populations of the same 
or congeneric species, reduces associated uncertainty in the 
derived metrics. We then assess correlations between manage-
ment metrics and major axes of life-history variation, as well as 
relationships among the different metrics themselves. Finally, 
to understand the transferability of the proposed framework to 
species where phylogeny is poorly resolved, we assess the impor-
tance of accounting for taxonomic proximity during life-history 
trait imputation.

1   |   Methods

1.1   |   Life-History Traits for the Rhino Rays

We collated data for an 11-trait life-history strategy across 
57 species of rhino ray (Figure  1). This included spe-
cies within the following genera (in alphabetical order): 
Acroteriobatus, Anoxypristis, Aptychotrema, Glaucostegus, 
Pristis, Pseudobatos, Rhina, Rhinobatos, Rhynchobatus, 

Trygonorrhina, Zanobatus, Zapteryx. We excluded species 
Trygonorrhina melaleuca and Rhinobatos formosensis because 
they are considered synonyms of Trygonorrhina dumerilii and 
Rhinobatos schlegelii, respectively (Fricke et al. 2024). Of the 
11 traits, 10 were selected to support the calculation of the four 
focal management metrics (Cortés  2016; Mangel et  al.  2010, 
2013; Pardo, Kindsvater, Cuevas-Zimbrón, et al. 2016). These 
10 traits were: length at 50% maturity (Lmat, cm), length at birth 
(Lbirth, cm), maximum age (Amax, years), age at 50% maturity 
(Amat, years), reproductive frequency per year (V ; also known 
as the inter-brood interval), litter size (F), the somatic growth 
coefficient (k) and asymptotic body length (L∞) estimated from 
von Bertalanffy's growth function, and finally, the intercept 
(c) and slope (b) parameters describing the length (L) to weight 
(W ) exponential relationship with age (a; i.e., W (a) = cL(a)b). 
For the eleventh trait, we included maximum length (Lmax, 
cm) because life-history theory predicts that this variable is 
strongly correlated with many of the other life-history traits, 
and the ease of measuring body length means that an esti-
mate of this trait is available for all species (Figure 1). Varying 
amounts of information on the remaining traits were avail-
able for each species (Figures 1 and 2; Appendix S2, Table A2). 
Few studies provided information on more than one or two 
life-history traits, and therefore, examination of trade-offs be-
tween life-history traits at the individual-study level was not 
possible.

1.2   |   Model of Life-History Traits

To reconstruct a full 11-trait life-history strategy for the 57 spe-
cies of rhino ray in our study, we used an established Bayesian 
hierarchical approach (Horswill et  al.  2019, 2021). The hier-
archical model consisted of a demographic component with 
shared terms to describe covariation among life-history traits 
across species, and an observation component to account for 
species-level process variation and important sources of uncer-
tainty (Horswill et al. 2019, 2021). In the demographic compo-
nent, we imputed mean values for the ith life-history trait in the 
jth species (T̂ i,j) using linear predictor functions (Equation 1). 
We scaled the observed trait data between 0 and 1 using gener-
ous minimum and maximum trait-specific bounds on the ob-
served scale. To define the minimum and maximum bounds 
for each trait, we buffer the observed minimum and maximum 
values by two standard deviations estimated from the observed 
trait-specific data. We also truncated the lower bound at zero 
or at a specified biological threshold to prevent implausible val-
ues (Appendix S2, Table A3). We then transformed these data 
to the logit scale to constrain the imputation of outliers within 
biologically plausible ranges for each trait. Finally, to promote 
convergence during model fitting we standardised each trait 
to a mean of 0 and a standard deviation of 1 (Congdon 2003). 
For species with published trait-specific values, original data 
points were highly correlated with the back-transformed me-
dian posterior reconstructed values, indicating that the data 
transformations did not generate shrinkage towards the im-
puted correlations connecting different traits (Appendix S2, 
Figure A4).

To account for possible phylogenetic nonindependence be-
tween species (Figure  1), we included a grouped random 
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effect (�) in the trait functions that was specific to each trait 
(i, Equation 1). This term predicted a grouped (m) mean value 
for each trait, where species were categorically coded and 
grouped according to their phylogenetic branch lengths from 
the tips. This involved slicing the tree at 100 MY and group-
ing the descendant species (Appendix S2, Figure A2, phyloge-
netic tree selected from Stein et al. 2018). We chose to group 
species based on phylogenetic distances to allow phylogenetic 
information to inform the reconstruction of missing values 
simultaneously with covariance among life-history traits. We 
also tested the sensitivity of our results to the phylogenetic dis-
tance used to define taxonomic groups (see The Importance 
of Accounting for Taxonomic Proximity When Imputing Life-
History Traits and Management Metrics and Appendix S2). In 
addition, we included a second trait-specific random effect (�, 
Equation 1) to quantify life-history trade-offs between traits at 
the species level ( j).

We modelled the two random-effect terms (� and �) using multi-
variate normal (MVN) distributions. Here, the multivariate nor-
mal distribution for the grouped random-effect term (�) predicts 
the mean trait (i) values for each phylogenetic group (m) as a func-
tion of a trait-specific mean value (��) and a variance–covariance 
matrix (

∑
�) that describes trait correlations across the different 

groupings of taxonomic proximity (Equation  2). Similarly, the 
multivariate normal distribution for the species term (�) predicts 
the mean trait values for each species as a function of a phylo-
genetically grouped mean value (��) and a variance–covariance 
matrix (

∑
�) that describes trait correlations within different 

groupings of taxonomic proximity. Here, we assume the same 
variance–covariance structure between traits across groupings. 
We assigned the trait-specific mean values (�) of both multivariate 
normal distributions using normal prior distributions centred on 
zero (Equation 2). For the grouped term (�), being centred on zero 
reflects the expectation that transformed trait values have a group 
mean value close to zero. For the species term (�), being centred 
on zero allows this function to operate as a classic random effect, (1)T̂ i,j = � i,m + �i,j

FIGURE 1    |    Phylogeny of rhino rays (order Rhinopristiformes, tree trimmed from Stein et al. 2018). Stacks show the availability of empirical data 
for each species (n = 57) across an 11-trait life-history strategy (key denotes corresponding trait where the top is the outer most cell). Shaded cells in-
dicate that life-history data are available in the original dataset for that species. Coloured external ring identifies genus and matches the colour legend 
in Figure 2. Size of the genus body silhouette comparatively reflects maximum length. Traits are: Maximum length (Lmax, cm), length at birth (Lbirth, 
cm), length at 50% maturity (Lmat, cm), maximum age (Amax, years), age at 50% maturity (Amat, years), reproductive frequency per year (V), litter size 
(F), the somatic growth coefficient (k) and asymptotic length (L∞) from von Bertalanffy's growth function, and finally the intercept (c) and slope (b) 
parameters describing the species-level length (L) to weight (W) exponential relationship with age (a) (i.e., W (a) = cL(a)b). Appendix S2, Table A2 
shows number of studies for each species per trait.

Trygonorrhina

Aptychotrema

Zapteryx

Rhynchobatus
Anoxypristis

Pristis

Glaucostegus

Pseudobatos

Acroteriobatus

1. Lmax
2. Lmat
3. Lbirth
4. Amax
5. Amat
6. V
7. F
8. k
9. L∞
10. c
11. b

Zanobatus

Rhinobatos

Rhina
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that is, estimating species-level residuals from the group mean for 
each trait (� i,m). Following previous work imputing trade-offs at 
different taxonomic levels (Horswill et al. 2019), we set the stan-
dard deviation of these prior distributions to 0.26 (i.e., a precision 
of 15) and 0.14 (i.e., a precision of 50) for the grouped and species-
level terms, respectively. Assigning a standard deviation less than 
1 prevents imputation of the grouped terms from being overly  
flexible:

The variance–covariance matrices (
∑

� and 
∑

�: Equation 2) of 
the multivariate normal distributions were assigned scaled in-
verse Wishart prior distributions (Gelman and Hill 2006). This 
approach allows the life-history trade-offs (i.e., correlations) 
among the full set of life-history traits to emerge during model 
fitting. We report the estimated pairwise correlations between 
life-history traits using Spearman correlation coefficients, cal-
culated from the median posterior values of each trait. To keep 
the inverse Wishart prior distributions uninformed and allow 
the strength and direction of trade-offs to be determined during 
model fitting, we used an identity matrix (I) for the scale ma-
trix (Ω) and set the degrees of freedom to one more than the 
dimensions of the variance–covariance matrix (n = 11 traits). 
This achieves a uniform prior distribution on the individual 

(2)

� i,m∼MVN

(
�� ,

∑
�

)
,�� ∼N(0, 15)

�i,j∼MVN

(
�� ,

∑
�

)
,�� ∼N(0, 50)

FIGURE 2    |    Strength of trade-offs between the original data trait available for an 11-trait life-history strategy of 57 species of rhino ray (order 
Rhinopristiformes). Traits shown on the logit scale. Species are coloured by genus with the colour ramp corresponding to the observed gradient in 
the observed data for body size (Lmax), from small (red) to large (blue). This figure reflects analysis based on phylogenetic Tree 1 (slice length = 100 
MY, Appendix S2, Figure A2). Trait notation detailed in Figure 1.
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correlation parameters, that is, an equally likely probability be-
tween −1 and 1 (Gelman and Hill 2006). We also incorporated 
a scaling parameter (�), assigned from a uniform distribution 
bound between 0 and 5, to overcome any constraints on the vari-
ance parameters of the variance–covariance matrices associated 
with using an inverse Wishart model (Gelman and Hill 2006). 
For example, for the group level multivariate normal distribu-
tion, the Wishart prior distribution was:

We used the observation component of the hierarchical model 
(Equation 4) to account for trait-specific uncertainty associated 
with measurement error and species-level process variability in 
the data (e.g., spatial and temporal variation). We assumed a nor-
mal (N) error structure around the imputed trait values (T̂ i) for 
each species ( j, Equation 1) and assigned the precision of these 
distributions (�) from trait-specific prior distributions centred on 
50 (Equation 4). This assumes a high precision on the observed 
values to minimise shrinkage during model fitting towards the 
imputed correlations connecting different traits. The observa-
tion component thus not only supports the imputation of miss-
ing values but also allows posterior distributions for observed 
data points to be obtained. Finally, to incorporate trait-specific 
uncertainty generated by spatial and temporal variation, as well 
as observation error, we included the observed trait data (T) at 
the study level (p) for each trait (i) and species ( j):

We implemented the above hierarchical model in JAGS (v. 
4.3.0) via the ‘jagsUI’ library (v 1.4.9) for program R (v. 4.4.2, 
R Core Team  2024). Models were fitted by running three 
Monte Carlo Markov chains (MCMC) for 1 × 105 iterations and 
retaining every 10th step to increase the effective MCMC sam-
ple size for the same amount of computer memory. The first 
5000 MCMC draws were removed as burn-in and each chain 
was initialised at different points in the parameter space. 
Convergence of the chains was confirmed using the Brooks–
Gelman–Rubin diagnostic tool (all values r̂  ≤ 1.01) and the 
effective sample size for each parameter (minimum effective 
sample size = 1410).

1.3   |   Calculating Management Metrics: Steepness, 
Spawning Potential Ratio, Maximum Intrinsic 
Population Growth Rate and Generation Length

We back-transformed the imputed life-history trait data from the 
hierarchical model (Equations 1–4) and used these values on the 
observed scale to estimate four species-specific management met-
rics: steepness of the Beverton–Holt stock recruitment relationship 
(h, steepness from hereon), spawning potential ratio at maximum 
sustainable yield (SPRMSY, spawning potential ratio from hereon), 

maximum intrinsic population growth rate (rmax) and generation 
length (GL). In the following sections we explain how each man-
agement metric can be resolved from the life-history trait values 
imputed by our hierarchical model; however, for simplicity in our 
notation, we drop the species index ( j). As rhino rays are vivipa-
rous, we define steepness as the recruitment (year class) produced 
by reproductive females when biomass is 20% of unfished levels, 
relative to recruitment produced by reproductive females when the 
population is unfished (Mace and Doonan 1988). Similarly, spawn-
ing potential ratio (SPRMSY) is defined as the reproductive biomass 
per recruit from a population fished to the biomass that produces 
maximum sustainable yield, relative to the reproductive biomass 
per recruit when a population is unfished (Mangel et  al.  2013). 
Based on these definitions, steepness and spawning potential ratio 
both reflect the productivity of a stock at low density. We define 
rmax as the maximum population growth rate of a severely de-
pleted stock in an unlimited environment, that is, in the absence 
of density-dependent regulation (Cortés  2016; Pardo, Kindsvater, 
Reynolds, and Dulvy 2016). Finally, we define generation length 
(GL) based on its use within the IUCN Red List assessment pro-
cess for Chondrichthyes, that is, as a time-scaler that accounts for 
differences between species' life histories (here, age of maturity 
and maximum age; Dulvy et al. 2021; Pardo, Kindsvater, Cuevas-
Zimbrón, et al. 2016). We estimated all management metrics using 
program R (v. 4.4.2, R Core Team 2024). To account for uncertainty 
in the life-history trait parameters used to estimate the four man-
agement metrics, we randomly selected 500 thinned MCMC draws 
(minimum effective sample size available for traits = 4299) from 
the complete joint posterior distribution of the hierarchical model 
reconstructing life-history traits. This approach also maintains co-
variance between different combinations of traits in the estimated 
management metrics (e.g., Horswill et al. 2021).

1.4   |   Estimating Steepness and Spawning Potential 
Ratio From Life-History Traits

The Beverton–Holt stock recruitment relationship can be formu-
lated so that the two key parameters are maximum productivity 
per unit spawning biomass (i.e., per capita productivity) and a 
measure of the strength of density dependence (Mangel  2021). 
However, Mangel et al. (2010, 2013) showed that when formulated 
in this manner management reference points, steepness (h) and 
spawning potential ratio (SPRMSY), can be estimated independently 
of the second density dependence parameter and approximated as 
a function of: (1) the number of offspring per unit reproductive bio-
mass (defined below as �—because we are considering viviparous 
species we exchange the term ‘number of eggs’ with ‘number of 
pups’), and (2) the spawning biomass in the steady-state popula-
tion (defined below as Wf). These key parameters (� and Wf) can 
be derived considering the age-structured dynamics of a focal pop-
ulation using seven of the life-history parameters imputed by our 
hierarchical model.

When the population reaches a stable age distribution, the num-
ber of individuals of age a is independent of time. From here 
on, we consider only the female population and assume a 1:1 
sex ratio. We denote the number of females in each age class as 
N(a), where an overbar is used to separate this variable from 
the notation used to define a stochastic normal distribution (e.g., 
Equation 4). Total population size (N) is then estimated as:

(3)

Ω� = In

Q� ∼ InvWishart
(
Ω� ,n+1

)
∑
�

=Diag
(
��
)
Q�Diag

(
��
)

�� ∼U (0, 5)

(4)
Tp,i,j∼N

(
T̂ i,j, � i

)

� i∼N(50, 0.1)
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If N(0) is the number of recruits when the population is in a stable 
age distribution and S(a) is cumulative survival from recruit to age 
a, then N(a) = S(a)N(0). We also make the common assumption 
in fisheries that survival to age a follows an exponential distribu-
tion with rate of natural mortality (M), so that S(a) = e−Ma.

Next, we follow Kenchington (2014) to determine the rate of nat-
ural mortality from maximum age (Amax):

This estimator of natural mortality is considered suitable for 
Chondrichthyes (Kenchington 2014), although different estima-
tors are available (Zhou et al. 2022). Following the assumption 
that Equation 6 describes natural mortality, the number of indi-
viduals of age a in a stable age distribution is estimated as:

Using this formulation, total population size in the steady state 
is the sum over all ages: N =

Amax∑
a= 0

N(a) = N(0)
Amax∑
a= 0

e−Ma. Here, the steady-
state number of recruits is moved outside of the summation be-
cause it is independent of age.

Next, to determine pup production of the steady-state population, 
we let pm(a) denote the fraction of individuals of age a who are 
reproductively mature; for simplicity, we assumed that pm(a) is 
0 for ages below the age of maturity (Amat) and 1 for ages equal 
to or above the age of maturity. We let W (a) denote the weight of 
individuals of age a and estimate this based on the species-specific 
allometric relationship between length (L) and weight (W) at age 
a (i.e., W (a) = cL(a)b), assuming an asymptotic relationship be-
tween length and age (i.e., L(a + 1) = L∞

(
1 − e−k

)
+ L(a)e−k, von 

Bertalanffy 1938) and that length at birth (Lbirth) reflects length in 
the first age class (i.e., L(1)).

If � is the number of pups per unit spawning biomass that survive 
to recruitment, then total pup production in the steady state is:

We again replace N(a) by N(0)e−Ma and move the number of re-
cruits outside of the summation to write:

The number of pups produced per individual is therefore:

One of the outputs of our hierarchical model is the annual num-
ber of pups produced by a mature female. This quantity is the 
product of the following three parameters: the average litter size 
for a species (F), reproductive frequency per year (V) and 0.5 (to 
account for the fact we are considering female births only). For 
viviparous rhino rays, survival of pups in their first year of life is 
very high relative to spawning teleost fishes; while some mortal-
ity is expected, it is likely to be comparable to the rate of natural 
mortality estimated in Equation 6 (e.g., Kindsvater et al. 2018). 
Therefore, we can assume that:

From this, we estimate the annual number of offspring per unit 
reproductive biomass as:

Next, we follow Mangel et al.  (2010, 2013), Mangel  (2021) and 
Myers et al. (1999) to let Wf  denote the mass of reproductive fe-
males in a steady-state population:

so that steepness is:

In the Appendix S1, we provide a new derivation of Equation 14 
from a starting point based on total egg (or pup) production 
rather than spawning biomass and illuminate the assumptions 
about reproductive biology that allow steepness to be deter-
mined by spawning biomass, as in Equation 14. For reporting 
purposes, we truncated all values of steepness at a lower bound 
of 0.2 for reasons explained in He et al. (2006). Finally, we used 
the estimated species-specific values of steepness (h) to derive 
species-specific spawning potential ratios (SPRMSY) following 
Mangel et al. (2013) as follows:

1.5   |   Estimating Maximum Intrinsic Population 
Growth Rate (rmax) From Life-History Traits

We estimated species-specific values of rmax using a simplified 
version of the Euler–Lotka equation that accounts for juvenile 
mortality (Cortés  2016; Pardo, Kindsvater, Cuevas-Zimbrón, 
et al. 2016; Pardo, Kindsvater, Reynolds, and Dulvy 2016):

(5)N =

Amax∑
a= 0

N(a)

(6)M =
4.3

Amax

(7)N(a) = N(0)e−Ma

(8)E = �

Amax∑
a= 0

N(a)pm(a)W (a)

(9)E = �N(0)

Amax∑
a= 0

e−Mapm(a)W (a)

(10)
E

N
=

�N(0)
Amax∑
a= 0

e−Mapm(a)W (a)

N(0)
Amax∑
a= 0

e−Ma

= �

Amax∑
a= 0

e−Mapm(a)W (a)

Amax∑
a= 0

e−Ma

(11)0.5FV =
E

N
= �

Amax∑
a= 0

e−Mapm(a)W (a)

Amax∑
a= 0

e−Ma

(12)

� =
0.5FV

⎛⎜⎜⎝

Amax∑
a = 0

e−Mapm(a)W (a)

Amax∑
a = 0

e−Ma

⎞⎟⎟⎠

(13)Wf =

Amax∑
a=Amat

e−MaW (a)

(14)h =
�Wf

4 + �Wf

(15)SPRMSY =

√
1 − h

4h

(16)lAmatb = (ermax )Amat − e−M (ermax )Amat−1
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Here, lAmat is survival to maturity and is calculated as 
lAmat = e−MAmat, b is the annual reproductive output of females 
(i.e., 0.5FV), Amat is age at maturity in years, and M is natu-
ral mortality estimated following Equation  6. We then solved 
Equation 16 numerically for rmax using the nlmimb function in 
the core Program R stats package (v. 4.4.2, R Core Team 2024).

1.6   |   Estimating Generation Length (GL) From 
Life-History Traits

To estimate species-specific values of generation length (GL), we 
followed the approach used in the IUCN Red List reassessment 
for Chondrichthyes (Dulvy et al. 2021):

Here, Amat and Amax are age at maturity and maximum age, re-
spectively, and the constant z depends on the total mortality rate 
of adults, which is typically around 0.3 for mammals (Pacifici 
et al. 2013). In agreement with previous work on Chondrichthyes 
(Dulvy et  al.  2021), we assumed a more conservative value of 
z = 0.5 to account for the likelihood that measured age struc-
tures are likely to be truncated by overexploitation (Barnett 
et al. 2017) and due to concerns of systematic underestimation 
of chondrichthyan ages (Harry 2018).

1.7   |   Comparing Management Metrics Used 
in Assessments, and Estimated Using Observed 
Life-History Traits, With Those Derived From 
Reconstructed Life-History Traits

To examine the influence of using reconstructed life-history 
data to estimate the four management metrics (i.e., steepness, 
SPRMSY, rmax and GL), we compared metrics calculated using 
four different methods. First, we collated estimates of species-
specific generation length used in the recent IUCN red listing 
process for rhino rays (Dulvy et al. 2021). Data were available 
for 42 of our study species, and were either empirically estimated 
from species-specific ageing studies (n = 12), or taken from con-
generic species and scaled relative to body size (n = 30, Kyne 
et al. 2020). Second, we randomly sampled the empirical data-
set to combine available species-specific  life-history trait data. 
Third, we randomly selected species-specific reconstructed 
life-history parameters from the posterior distribution of the 
hierarchical model excluding the imputed covariance between 
life-history traits. To remove covariance between traits, we ran-
domly selected life-history parameters from independent trait-
specific uniform distributions that were bound by the minimum 
and maximum back-transformed posterior values for each trait 
imputed by the hierarchical model. This method offers a partic-
ularly conservative approach because it provides equal weight-
ing in the marginal aspects of the posterior distribution during 
trait selection. Finally, we retained the imputed covariance be-
tween life-history traits by randomly selecting reconstructed 
life-history parameters from the complete joint posterior distri-
bution of the hierarchical model. For all methodologies, we as-
sumed that drawing life-history parameters from the full range 
of published (i.e., observed) or reconstructed values accounts 

for uncertainty associated with temporal and spatial variation 
in traits, and represents scenarios under a range of density-
dependent regulation. We estimated all four management 
metrics across each method using program R (v. 4.4.2, R Core 
Team 2024).

1.8   |   Relationships Between Life-History Traits 
and Management Metrics, and the Importance 
of Maintaining Covariation Between Life-History 
Traits for Detecting These Relationships

Although theoretical predictions indicate that steepness and 
asymptotic size should be positively correlated (Andersen and 
Beyer  2015; Mangel et  al.  2013), relationships between man-
agement metrics and life-history traits have proved challeng-
ing to demonstrate in practice (Myers et al. 2002; Shertzer and 
Conn 2012; Thorson 2020). We examined whether it was possible 
to detect a linear relationship between each management met-
ric and the imputed species-specific trait values for asymptotic 
body length (L∞) and natural mortality (M) by calculating the 
Spearman correlation coefficient between mean values. To un-
derstand the components influencing these relationships, we 
also examined whether their detection relied on maintaining the 
imputed covariance between life-history traits. Analysis was con-
ducted using program R (v. 4.4.2, R Core Team 2024).

1.9   |   Relationships Between Management Metrics

Given the number of species-specific life-history parameters re-
quired to estimate each management metric (Equations 5–17), it 
can be argued that rmax and generation length are considerably eas-
ier to resolve than steepness and spawning potential ratio. These 
simpler metrics are also already used in conservation assessments, 
such as the IUCN Red Listing process and CITES. To examine 
whether rmax and generation length can provide information on 
steepness and spawning potential ratio within these existing as-
sessment frameworks, we estimated the Spearman correlation co-
efficient between metrics based on the mean derived values.

1.10   |   The Importance of Accounting 
for Taxonomic Proximity When Imputing 
Life-History Traits and Management Metrics

To examine whether model fit or outputs (i.e., the derived man-
agement metrics) were considerably altered by the method used 
to group taxonomically similar species, we tested five additional 
structures for describing taxonomic proximity. Specifically, as 
well as the baseline 100 MY slice, we considered 125 and 150 
MY slices ( Appendix  S2, Figure A2). We also grouped spe-
cies together in a single taxonomic random-effect term (�, 
Equation 1); removed this taxonomic proximity term from the 
model; and finally, replaced the phylogenetic slice with genus 
groupings (i.e., nm = 12). We included two options for removing 
the taxonomic random-effect term (i.e., grouping species in a 
single random-effect term and removing this term from the 
model) to control for any change in parameter constraint gen-
erated by term removal. Finally, to examine the influence of the 

(17)GL = Amat + z
(
Amax − Amat

)
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phylogenetic tree used to determine taxonomic distance, we re-
ran the analysis using four additional randomly selected trees 
from Stein et al. (2018) (Appendix S2: Figure A1.1).

2   |   Results

2.1   |   Model of Life-History Traits

We obtained published values for 65% of life-history traits across 
an 11-trait life-history strategy and 57 species of rhino ray. This 
equates to 410 out of 627 traits having available data (Figure 2). 
We identified pairwise correlations between the traits that have 
comparatively more data (Figure 2). The reconstructed dataset 
(Figure  3) was also characterised by strong pairwise correla-
tions between most trait combinations (� ≤ −0.35 or � ≥ 0.35), 
with the exception of the somatic growth coefficient (k) from 
von Bertalanffy's growth function and the intercept (c) and slope 
(b) parameters describing the species-specific length to weight 
relationship with age (Figure 3). These three parameters were 
positively correlated with each other. In addition, the intercept 
demonstrated a positive correlation with maximum age and age 
at 50% maturity, and the slope parameter demonstrated a neg-
ative correlation with length at birth (Figure  3, Appendix S2, 
Table A4).

There was a large degree of overlap in life-history traits within 
and across genera reflecting the similar range of life-history 
strategies among these closely related species (Figure  3). As 
might be expected, the 95% credible intervals of reconstructed 
traits increased when data were missing (e.g., see maximum age, 
age at 50% maturity and reproductive frequency, Appendix S2, 
Figure A3, Tables A5.1 and A5.2). This pattern was also observed 
in the subsequent calculation of natural mortality (Appendix S2, 
Table A6). Finally, for species with published trait-specific values, 
original data points were highly correlated with the median poste-
rior reconstructed values (Appendix S2, Figure A4).

2.2   |   Comparing Management Metrics Used 
in Assessments, and Estimated Using Observed 
Life-History Traits, With Those Derived From 
Reconstructed Life-History Traits

The values of generation length used in the IUCN red list-
ing process for rhino rays that were estimated from ageing 
studies exhibited a strong positive correlation with our de-
rived values of generation length based on the reconstructed 
life-history traits (Figure  4A). By contrast, we identified a 
much weaker correlation between our derived values and 
the values of generation length used in the IUCN red listing 
process that were scaled estimates from congeneric species  
(Figure 4B).

The empirical dataset of observed rhino ray life-history traits 
(Figure  1,2) supported the data-driven demographic estima-
tion of species-specific steepness and spawning potential ratio 
for one species, rmax for two species, and generation length 
for six species (Appendix S2, Table  A2, Figure  5). The cal-
culated management metrics based on these data produced 
large estimates of uncertainty (Figure 5), with the exception 

of generation length for Acroteriobatus annulatus where only 
one estimate of maximum age (Amax) and age at 50% maturity 
(Amat) was available, preventing an estimate of uncertainty 
from being calculated (Figure  5D). Using the reconstructed 
life-history parameters to estimate the four management met-
rics altered the mean values and decreased the level of un-
certainty associated with all metrics (Figure 5). Maintaining 
covariance between the reconstructed life-history traits did 
not markedly alter the calculated mean values, although levels 
of uncertainty generally decreased.

Management metrics derived using the imputed dataset of 
rhino ray life-history traits generated large estimates of un-
certainty with many species having comparable bounds 
(Figures  6 and 7; Appendix S2, Table  A7, Figure  A3). This 
uncertainty reflects temporal and spatial variation in ob-
served life-history traits, as well as measurement error and 
data availability. Based on the derived mean values, steepness 
ranged from 0.48 to 0.84 (low: Rhinobatos irvinei, and high: 
Zapteryx exasperate), spawning potential ratio ranged from 
0.18 to 0.24 (low: Pristis pectinata, Pristis pristis, Rhinobatos 
horkelii, Zapteryx exasperate, and high: Rhinobatos percel-
lens), rmax ranged from 0.01 to 0.59 (low: Rhinobatos produc-
tus, and high: Glaucostegus obtusus), and generation length 
ranged from 5.14 to 21.25 (low: Acroteriobatus annulatus, and 
high: Pristis pristis; Appendix S2, Table A7).

2.3   |   Relationships Between Life-History Traits 
and Management Metrics, and the Importance 
of Maintaining Covariation Between Life-History 
Traits for Detecting These Relationships

Based on the mean posterior values, we found that rhino ray 
asymptotic body length and natural mortality were strongly 
correlated with steepness, spawning potential ratio and gener-
ation length (Figure 6A–H,M–P). By contrast, the correlations 
between mean asymptotic body length, natural mortality and 
maximum intrinsic population growth rate (rmax) were weaker 
(Figure 6I–L). We also identified that mean steepness, gener-
ation length and rmax were greatest in larger-bodied, longer-
lived species, whereas mean spawning potential ratio was 
greatest in smaller-bodied, shorter-lived species (Figure  6). 
Maintaining covariance between the reconstructed life-
history traits when calculating management metrics did not 
qualitatively alter the identified correlations connecting mean 
asymptotic body length and natural mortality with manage-
ment metrics (Figure 6). Derived values of steepness, spawn-
ing potential ratio, rmax and generation length are provided at 
the species and genus level in Appendix S2, Tables A7 and A8 
(Figure 6).

2.4   |   Relationships Between Management Metrics

We identified strong positive correlations between steepness, 
rmax (Figure  7A, Spearman correlation coefficient � = 0.44) 
and generation length (Figure  7B, � = 0.64). We also identified 
strong negative correlations between spawning potential ratio, 
rmax (Figure  7C, � = −0.51) and generation length (Figure  7D, 
� = −0.71). We infer this occurs because maximum sustainable 
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yield will be at a lower biomass for species with higher rmax and 
generation lengths, compared to species with lower rmax and gen-
eration lengths, such that the difference in spawning biomass per 
recruit with and without fishing will be greater (Figure 7).

2.5   |   The Importance of Accounting for Taxonomic 
Proximity When Imputing Life-History Traits 
and Management Metrics

Changing the structure used to taxonomically group spe-
cies did not appear to qualitatively alter the fit of the 

hierarchical model reconstructing life-history traits or in-
fluence the derived species-specific management metrics 
(Figure  8, Appendix  S2: Table  A1.2, Figure  A1.5). These 
results were also replicated across four additional ran-
domly selected phylogenetic trees (Appendix  S2: Table  A1.1,  
Figures A1.2–A1.4).

3   |   Discussion

In this study, we describe a framework for imputing species-
specific life-history parameters for data-limited fishes and detail 

FIGURE 3    |    Strength of trade-offs between the reconstructed (posterior median) values for an 11-trait life-history strategy of 57 species of rhino 
ray (order Rhinopristiformes). Traits shown on the logit scale. Species are coloured by genus with the colour ramp corresponding to the observed 
gradient in the observed data for body size (Lmax), from small (red) to large (blue). This figure reflects analysis based on phylogenetic Tree 1 (slice 
length = 100 MY, Appendix S2, Figure A2). Trait notation detailed in Figure 1.
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how these values can be used to demographically resolve four 
key management metrics commonly used to regulate fisheries 
and assess extinction risk (Kindsvater et al. 2016). The key met-
rics included in this study are steepness of the Beverton–Holt 
stock–recruit relationship, spawning potential ratio at maxi-
mum sustainable yield, maximum intrinsic population growth 

rate (rmax) and generation length. We apply our framework to a 
highly threatened group of species, rhino rays, that includes some 
of the most data-poor, evolutionarily distinct and highly threat-
ened taxonomic families on the planet. Our study represents one 
of the first to demographically resolve species-specific values of 
steepness, spawning potential ratio, rmax and generation length 

FIGURE 4    |    (A) Values of generation length estimated from ageing studies and used in the IUCN red listing process for rhino rays (circles) ex-
hibited a strong positive correlation with our derived values of generation length based on reconstructed life-history traits (Spearman correlation 
coefficient, �age). (B) We identified much weaker correlation with the scaled congeneric values of generation length (triangles; �surr). Species are co-
loured by genus following the legend shown in Figure 2. Uncertainty in the derived values reflects the 500 randomly selected thinned MCMC draws 
of the life-history trait data used for calculation; mean values with 95% credible intervals. For reference, the 1:1 relationship is also shown as a grey 
diagonal line.

 14672979, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/faf.70003 by C

atharine H
orsw

ill - U
niversity C

ollege L
ondon , W

iley O
nline L

ibrary on [10/07/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



12 of 18 Fish and Fisheries, 2025

across a large group of data-poor fishes. This was possible, in 
part, due to the relatively narrow range of annual fecundity val-
ues among viviparous species. Using reconstructed life-history 
trait values to calculate management metrics provides a first 
approximation of these values for extremely data-limited spe-
cies. We also show that using reconstructed life-history trait 

values can markedly decrease associated uncertainty in the 
derived management metrics compared to using empirical trait 
data from other populations of the same, or congeneric, spe-
cies (Figures  4 and 5). Despite this improvement, uncertainty 
in the derived management metrics was still large across spe-
cies. Based on mean values, we found strong correlations be-
tween life-history traits (asymptotic body length and natural 
morality) and three management metrics (Figure 6), as well as 
between the data-intensive management metrics (i.e., steepness 
and spawning potential ratio) and those that can be resolved 
with relatively fewer life-history traits and are already used in 
the conservation assessment of Chondrichthyes including rhino 
rays (i.e., rmax and generation length, Figure 7). Finally, we show 
that the derived management metrics are relatively insensitive 
to the phylogenetic structure used to group species when recon-
structing missing life-history traits (Figure 8, Appendix S2).

The derived management metrics are provided with large esti-
mates of uncertainty across species. This uncertainty reflects 
intraspecific variability and measurement error in the observed 
data, as well as model uncertainty associated with limited empir-
ical data across species. Uncertainty in the derived management 
metrics should be incorporated into any subsequent conserva-
tion assessments and management strategy evaluations. Based 
on the mean values, rhino ray values of steepness were gener-
ally higher than reported for other commercially important fish 
families (Sebastidae, Salmonidae, Scombridae and Lutjanidae, 
Thorson  2020). This challenges assumptions that long lived, 
large-bodied species have lower steepness values (Shertzer and 
Conn 2012). However, the estimated range of mean spawning 
potential ratios was still clustered in the high teens and low 
twenties indicating poor spawning potential and high risk of 
recruitment overfishing (Goodyear 2014). Taken together, these 
results present a rather optimistic conclusion, whereby an en-
forced catch moratoria on rhino ray families could support pop-
ulation recovery.

Despite using seven life-history traits to derive steepness and 
spawning potential ratio, using the mean values we identified 
strong correlations between these management metrics and 
major axes of life-history variation (asymptotic body length and 
mortality). Specifically, we find that mean steepness is gener-
ally greater for larger-bodied, longer-lived rhino rays. This result 
likely reflects the greater litter sizes and lengths at birth of the 
larger-bodied species relative to the shorter-lived rhino rays in 
this group, such that a greater number of recruits can be pro-
duced each year. Coupled with their longer lifespans, this will 
allow a higher standing population biomass under natural con-
ditions. This finding agrees with previous research based on a 
limited number of species reporting that larger rhino ray species 
from Rhinidae and Glaucostegidae have comparatively higher 
rmax values compared to smaller species from the same families 
(D'Alberto et al. 2019). That we found strong relationships be-
tween mean steepness and major axes of fish life-history vari-
ation (i.e., asymptotic body length and mortality) also contrasts 
with previous studies examining this relationship at higher tax-
onomic levels and reporting considerably weaker associations 
(Shertzer and Conn 2012; Thorson 2020). We show that account-
ing for covariance between life-history traits at the species level 
does not influence the detection of this relationship (Figure 6). 
However, we identify large variation in steepness within a 

FIGURE 5    |    Metrics of population dynamics (A—steepness, B—
spawning potential ratio at maximum sustainable yield SPRMSY, C—
maximum per capita growth rate of a population rmax, D—generation 
length GL) were estimated with greater uncertainty using the observed 
life-history trait data (purple), compared to the reconstructed parame-
ters without (green) and with (yellow) covariance retained. This analy-
sis only included species with published values of the life-history traits 
required to calculate each management metric. Mean values are shown 
as black points.
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genus, as well as overlap between genera, and hypothesise 
that this likely complicates the relationship between steepness 
and life-history traits when examined using higher taxonomic 
groupings.

Strong, positive correlations between steepness and asymp-
totic size are predicted from size-structured community 
theory (Andersen and Beyer 2015). A correlation between steep-
ness and life-history traits is also implicitly predicted in the 

derivation of steepness using an age-dependent model (Mangel 
et  al.  2013). However, the estimation of stock–recruitment pa-
rameters, such as steepness, is historically based on time series 
of spawning biomass and subsequent recruitment (Myers 2001; 
Myers et al. 2002). Therefore, the derivation of this measure has 
been largely limited to species and populations subject to long-
term monitoring. The framework detailed in our study allows 
species-specific values of steepness and potential spawning 
ratio to be demographically resolved in data-poor situations. 

FIGURE 6    |    In rhino rays (order Rhinopristiformes), asymptotic body length (L∞) and natural mortality (M) demonstrate strong correlations 
with steepness (A–D; lower bound truncated at 0.2 for reasons explained in He et al. 2006) and spawning potential ratio (SPRMSY; panels E–H). 
Correlations between life-history traits and intrinsic population growth rate (rmax) were weaker (panels I, J), whereas correlations with generation 
length (GL) were also strong (panels M–P). These results were unaltered by omitting covariance between life-history traits. Uncertainty reflects the 
500 randomly selected thinned MCMC draws of the life-history trait data used to calculate the management metrics; mean values with 95% credible 
intervals. Spearman correlation coefficients (�) detailed in each panel. This figure reflects analysis based on phylogenetic Tree 1 (slice length = 100 
MY, Appendix S2, Figure A2). Species are coloured by genus following the legend shown in Figure 2. Trait notation detailed in Figure 1.
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This enables first-order estimates of key management metrics 
for species where, to date, it has not been possible to assess the 
status of a fish stock and determine whether management action 
is needed.

Steepness and spawning potential ratio were obtained using im-
puted life-history parameters, where maximum observed age 
was used to calculate natural mortality based on the empirical 
estimator proposed by Kenchington (2014) (Equation 6). This es-
timator is considered suitable for elasmobranchs and other taxa 
exhibiting life histories that diverge from the teleost archetype. 
However, its application requires that the maximum observed 
age reflect pre-exploitation conditions. Given that rhino rays are 
subject to both targeted and incidental capture in multispecies 
fisheries throughout their range, the observed maximum ages 
used in this analysis likely reflect truncated age structures due 
to historical and ongoing exploitation. As a result, estimates of 
natural mortality derived using this method may be downwardly 
biased, potentially leading to underestimation of population re-
covery potential. Future analyses would benefit from evaluating 
the sensitivity of derived management metrics to alternative nat-
ural mortality estimators (e.g., Zhou et al. 2022), as well as from 
comparative assessments using independent methods to esti-
mate management reference points from life-history traits (e.g., 
Zhou et al. 2020). Furthermore, steepness is not a fixed species-
specific trait but can vary over space and time in response to 
environmental conditions and population dynamics (Thorson 
et  al.  2019). However, for most Rhinopristiformes, data limita-
tions preclude temporal reconstruction of life-history traits or 
intraspecific variation in management metrics. This constraint 
reflects a broader challenge common to many chondrichthyan 

taxa, in contrast to more data-rich groups where such analyses 
are feasible (e.g., Horswill et al. 2019, 2021). Nonetheless, the hi-
erarchical modelling framework used in this study incorporates 
reported intraspecific variability and measurement error in life-
history traits via the observation component. This design allows 
uncertainty associated with such variation, as well as data avail-
ability, to be propagated through to the estimated management 
metrics. As empirical trait data become increasingly available, 
re-application of our analysis will improve precision and refine 
inference.

The reported values of steepness, spawning potential ratio, rmax 
and generation length, with their associated measures of uncer-
tainty (Appendix S2, Table A7), can be used to provide first-order 
information on species where assessments are currently limited 
or incomplete. For example, the IUCN Red Listing process and 
CITES use rmax and generation length to define temporal thresh-
olds for population decline and determine extinction risk. We 
show that our method for deriving values of generation length 
is potentially more reliable for data-limited species, compared to 
using scaled estimates from congeneric species (Figure 4). In ad-
dition, we show that a species' rmax and generation length empir-
ically relates to its steepness and spawning potential ratio. This 
has been shown theoretically (Mangel et al. 2010), however by 
demonstrating the relationship at the species level, we show that 
easily resolved management metrics (i.e., rmax and generation 
length) can provide information on a species ability to respond 
to direct and indirect fishing pressure. This finding is useful 
for the current assessment frameworks already using rmax and 
generation length, although the analytical framework described 
in our paper also facilitates the straightforward calculation of 

FIGURE 7    |    In rhino rays (order Rhinopristiformes), derived estimates of (A, B) steepness (lower bound truncated at 0.2 for reasons explained in 
He et al. 2006) and (C, D) spawning potential ratio (SPRMSY) demonstrate strong correlations with intrinsic population growth rate (rmax) and genera-
tion length (GL). Uncertainty reflects the 500 randomly selected thinned MCMC draws of the life-history trait data used to calculate the management 
metrics; mean values with 95% credible intervals. Spearman correlation coefficients (�) detailed in each panel. This figure reflects analysis based on 
phylogenetic Tree 1 (slice length = 100 MY, Appendix S2, Figure A2). Species are coloured by genus following the legend shown in Figure 2.
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FIGURE 8    |     Legend on next page.
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additional reference points (i.e., steepness of the Beverton–Holt 
stock recruitment relationship and spawning potential ratio at 
maximum sustainable yield), that could considerably enhance 
the depth of information available for species management.

We tested several methods to account for phylogenetic nonin-
dependence between species when imputing life-history traits. 
This included no structuring (i.e., all species are considered 
independent), taxonomically grouping species using genus and 
phylogenetically grouping species using three different mea-
sures of phylogenetic distance. We did not identify a qualita-
tive difference between these approaches based on model fit or 
the imputed management metrics (Appendix  S2). This likely 
reflects the closely related nature of the species considered in 
our study (Uyeda et  al.  2018). However, it indicates that our 
framework may also be transferable to other closely related 
groups of data-poor species where taxonomy is poorly re-
solved. It also suggests that our results are unlikely to change 
as the phylogeny of rhino rays is refined. Future work may 
also consider using the continuous phylogenetic distance be-
tween pairwise combinations of species to provide a prior for 
the multivariate normal distributions determining life-history 
trade-offs in the hierarchical model (Equation 2). This devel-
opment will require some consideration of how to connect the 
dimensions of a species-by-species matrix describing phyloge-
netic distance to the dimensions of a trait-by-trait matrix link-
ing life-history parameters.

In this study, we describe a modelling framework for imputing 
life-history traits and deriving management metrics for taxo-
nomic groups of fishes where data limitation prevents stock as-
sessment and the estimation of management and conservation 
metrics. We show that using reconstructed life-history trait 
values to derive management metrics can markedly decrease 
uncertainty compared to using empirical trait data from other 
populations of the same, or congeneric, species. Based on mean 
values and applying this framework to Rhinopristiformes, we 
identified strong correlations between major axes of life-history 
variation and three key management metrics: steepness of the 
Beverton–Holt stock–recruitment relationship, spawning poten-
tial ratio at maximum sustainable yield and generation length. 
These relationships remained robust when accounting for co-
variance among life-history traits and phylogenetic noninde-
pendence among species, indicating that the framework may 
be applicable to other closely related groups where taxonomy 
is poorly resolved. In addition to point estimates, we provide 
associated uncertainty intervals with all trait estimates and 
management metrics that reflect temporal and spatial variation, 
measurement error and data availability. These uncertainty 
estimates should be explicitly incorporated into conservation 
assessments and management strategy evaluations to support 
precautionary, evidence-based decision-making. Collectively, 

our findings offer a practical and generalisable approach for 
maximising information from fragmented datasets to derive 
first-order estimates of key life-history and management param-
eters for severely data-limited fish families.
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