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Abstract
Linear mixed effects models are widely used in statistical modelling. We consider a mixed effects model with Bayesian
variable selection in the random effects using spike-and-slab priors and develop a optimisation-based inference schemes
that can be applied to large data sets. An EM algorithm is proposed for the model with normal errors where the posterior
distribution of the variable inclusion parameters is approximated using an Occam’s window approach. Placing this approach
within a variational Bayes scheme allows the algorithm to be extended to the model with skew-t errors. The performance
of the algorithm is evaluated in a simulation study and applied to a longitudinal model for elite athlete performance in 100
metres track sprinting and weightlifting.

Keywords Variable selection · Occam’s Window · EM · Variational Bayes · Skew-t errors · Longitudinal modelling · Sport
performance

1 Introduction

Linear Mixed Effects (LME) models are widely used when
we have multiple observations on a sample of individuals,
such as repeated measures (e.g. Lindsey 1999, ), longitudinal
measurements (e.g. Fitzmaurice et al. 2008) or semiparamet-
ric regression models (e.g. Ruppert et al. 2003). Suppose
that there are M individuals with the i-th individual having
observations yi = (yi,1, . . . , yi,ni ), and design matrices X i

(ni × q) and Si (ni × p) modelled by

yi = ζ0 + X i ζ + Si β i + εi (1.1)

where ζ0 and ζ are fixed effects whose values are shared by
all individuals, β i are individual-specific zero-mean random
effects with covariance matrix �, and εi = (εi,1, . . . , εi,ni )

are i.i.d. zero-mean errors. In a Bayesian analysis of this
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model, the random effects and the errors are usually assumed
to be normally distributed.

In modern applications, either p or q (or both) may be
high-dimensional which has led to the use of variable selec-
tion in LME models. A prior distribution is given to ζ

and/or � which encourages elements to be shrunk towards
zero. Initial methodological and computational develop-
ments concentrated on the application of variable selection
to both the fixed and random effects by extending meth-
ods developed for linear models. Chen and Dunson (2003)
suggested using the form � = diag(λ) B diag(λ) where B
is a (p × p)-dimensional matrix and λ is p-dimensional
vector. Spike-and-slab variable selection priors are placed
on λ and ζ and inference uses Markov chain Monte Carlo
(MCMC) methods. This approach was subsequently devel-
oped to use variational Bayes (VB) inference with shrinkage
priors by Armagan and Dunson (2011). More recently, work
has focused on variable selection in the fixed effects only
(and so the random effects are effectively treated as nuisance
parameters) using VB methods. Tung et al. (2019) consider
using a Bayesian lasso prior (Park and Casella 2008) for
the fixed effects. This approach is extended by Degani et al.
(2022) to allow for general global-local priors (Bhadra et al.
2019), more sophisticated random effect structures and to
take advantages of fast matrix methods.

In contrast to previous work, we focus on Bayesian vari-
able selection in the setting where p is high-dimensional, ni
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can be large and the covariance of the random effects � is
assumed to be diagonal. This allows us to consider variable
selection at the individual levelwith potentially different vari-
ables used as random effects for each individual. The use of
Bayesian variable selection (rather than global-local shrink-
age priors) allows the direct calculation of posterior inclusion
probabilities for each random effect, which can be summa-
rized using the median model (Barbieri and Berger, 2004).
This is difficult with global-local shrinkage priors (see Ray
andBhattacharya xxxx, for a popular approach).Wealso con-
sider replacing the commonly-used normal distribution for
the observational errors εi, j with the more general skew-t
distribution (Azzalini and Capitanio 2003).

Our set-up is motivated by recent work in modelling elite
sporting performance over an athlete’s career in events such
as 100 metres track sprints or weightlifting. Interest focuses
on the trajectory of an individual’s sporting performance as
a function of age (see e.g. Berry et al. 1999) and these differ
between individuals due to individual physiology, injuries,
training, etc.We consider the approach ofGriffin et al. (2022)
who apply a linear mixed effects model to large databases
containing thousands of athletes with potentially hundreds
of performances. The fixed effects include polynomial terms
for age (providing a population effect of age), as well as
environmental conditions (such as wind speed), the month of
the event, or the prestige of an event. The difference between
an individual’s trajectory and the population effect of age
is modelled using linear splines as random effects. A spike-
and-slab variable selection prior is used to avoid overfitting
by the linear splines and suggests that this variable selection
should occur at the individual (rather than population) level.

Griffin et al. (2022) used MCMC to fit the model but this
can be slow and involve substantial amounts of memory if
there are a large number of observations and/or a large num-
ber of individuals.

The novelty and contribution of the paper is to develop an
EM-based method (Dempster et al. 1977;Meng and van Dyk
1997) for Bayesian inference in the LMEmodel with normal
errors and a VB approach (Blei et al. 2017) for this model
with skew t errors. We approximate the posterior distribu-
tion of the individual variable inclusion parameters using
an Occam’s window approach (Madigan and Raftery 1994)
and show how this can be included in EM-type and VB-type
algorithms.

The paper is organized as follows: Section 2 explains how
the model is formed. In Section 3, an EM algorithm for infer-
ence in the LME model with normal errors is developed
including the approximation of the posterior distribution of
the variable inclusion indicators using the Occam’s window
approach. In section 4 an extension to non-normal error is
presented which uses the Occam’s window approximation in
a VB algorithm and is developed for the specific case of skew
t errors. Section 5 includes a simulation study and applica-

tions to 100 metres track sprinting and weightlifting data
with a comparison of the algorithm to the MCMC algorithm
in Griffin et al. (2022). Lastly, Section 6 concludes. Appen-
dices gives further details of the algorithms and further results
from the simulation study.

2 Sparse Linear Mixed Effects Models

Weconsider the LMEmodel in (1.1) and initially assume that

εi, j
ind.∼ N

(
0, σ 2

i

)
(we will consider relaxing this assump-

tion to a skew t error distribution in Section 4). The Bayesian
variable selection approach introduces individual indicator
variables γ i = (γi,1, . . . , γi,p) where γi, j is 1 if the j-th
random effect is included in the model and is 0 otherwise
for the i-th individual. We write ζ � = (ζ0, ζ ), Sγ

i as the
design matrix including only random effects with γi, j = 1,
pγ

i = ∑p
j=1 γi, j for the number of selected random effects

and β
γ

i for the corresponding coefficients. The LME model
becomes

yi = X i ζ
∗ + Sγ

i β
γ

i + εi .

The Bayesian model is completed by assigning priors to the
parameters. The commonly-used beta-binomial prior is used

for the inclusion variables γ i so that γi,k
i .i .d.∼ Bernoulli(hi )

and hi ∼ Be (a1, b1). This implies that

p(γ i ) = �(a1 + b1)

�(a1)�(b1)

�(pγ

i + a1)�(p − pγ

i + b1)

�(p + a1 + b1)
.

The regression coefficients for the included variables are
β

γ

i,1 ∼ N (0, ψ σ 2
i ) and β

γ

i, j | γi ∼ N (0, g2 σ 2
i ) for

j = 2, . . . , pγ

i + 1. We assume a vague prior for the fixed
effects, p(ζ ∗) ∝ 1 but other choices such as a normal prior,
g-prior, or global-local shrinkage prior could be used. The

error variance is assumed to be σ 2
i

i .i .d.∼ IG(a, b). The prior
is completed by specifying the hyperpriors: ψ ∼ IG(1, 1),
where IG(a, b) represents an inverse-gamma distribution
with shape a and mean b/(a − 1) if a > 1,

√
g ∼ HC(1),

where HC(γ ) represents a half-Cauchy distribution with
scale γ , p(a1, b1) ∝ 1 and p(a, b) ∝ 1.

3 EM algorithmwith normal errors

We develop an approach to inference in the model in
(1.1) when the sample size M is large. The parame-
ters are divided into a set of population-level parameters
χ = {ζ0, ζ , ψ, g2, a, b, a1, b1} and a set of individual-level
parameters νi = {γ i , β i , σ 2

i }. The maximum a posterior
(MAP) estimate of χ integrating over the individual-level
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parameters ν1, . . . , νM is found using the EM algorithm
(Dempster et al. 1977;Meng and van Dyk 1997). To simplify
the notation, we drop the γ superscript. The EM algorithm
iterates the following two steps:

1. Expectation Step: Calculate

Q(χ) =
M∑

i=1

Eνi |χ , yi

[
log P

(
yi | νi ,χ

)+ log P (νi |χ)
]

+ log P (χ)

=
M∑

i=1

Eγ i |χ , yi

[
Eβi ,σ

2
i |γ i ,χ , yi

[
log P

(
yi | γ i , β i , σ 2

i ,χ
)

+ log P(γ i , β i , σ 2
i | χ)

]]
+ log P (χ)

(3.1)

2. Maximization Step: Find arg maxχ Q(χ)

To use the EM algorithm we need to calculate the
posterior distributions of the individual-specific parameters
ν1, . . . , νM . Importantly, ν1, . . . , νM are conditionally inde-
pendent given χ under the posterior distribution. Taking the
expectation with respect to νi involves a sum over the model
space parameter γ i which can be challenging to calculate
since it involves 2p values. The computational time needed
to evaluate this sum increases exponentially with p and the
sum cannot be fully enumerated for p greater than 30.We use
the Occam’s window approach (Madigan and Raftery 1994)
to approximate this sum, which was introduced for graphical
models but can be applied to general Bayesianmodel averag-
ing problems. Suppose we have L models m�

1, . . . ,m
�
L , data

D, and a quantity of interest 
 with posterior predictive dis-
tribution p(
 | D,m�

l ) for the l-th model then the Bayesian
Model Averaged predictive distribution is

L∑

l=1

w�
l p(
 | D,m�

l ) (3.2)

where w�
l ∝ p(m�

l ) p(D | m�
l ) is the model weight for the

l-th model and the expectation of 
 is

L∑

l=1

w�
l E(
 | D,m�

l ) (3.3)

where E(
 | D,m�
l ) is the posterior expectation of
. If L is

large then this summay contain manymodels for whichwl is
very small and so the sums in (3.2) and (3.3) are approximated

by

K∑

l=1

wk p(
 | D,mk)

and

K∑

k=1

wk E(
 | D,mk)

respectively, where K � L , m1,m2 . . . ,mK are a subset of
m�

1,m
�
2, . . . ,m

�
L and the model weights are

wk = p(mk) p(D | mk)
∑K

t=1 p(mt ) p(D | mt )
.

We say thatm1,m2, . . . ,mK are themodels in Occam’s win-
dow and by defining mk = m�

ck , we can write

wk = w�
ck∑K

k=1 w�
ck

.

Themost accurate approximation ariseswhenm1,m2, . . . ,

mK are chosen to be the K models with the highest values of
w�
1, . . . , w

�
K (the K highest posterior probabilitymodels) and

the approximation will be accurate if these K models include
most of the posterior model probability, i.e.

∑K
k=1 w�

ck is
close to 1. Although, we cannot guarantee finding these K
highest probability models, we will discuss an algorithm in
Section 3.2 for finding models with higher posterior proba-
bilities.

We can use Occam’s window in the EM algorithm by
defining different windows for each individual and apply-
ing the approximation to the expectation in Q(χ) in (3.1).
The models in Occam’s window for the i-th individ-
ual are denoted γ i,1, . . . , γ i,K with associated parameters
(β i,1, σ

2
i,1), . . . , (β i,K , σ 2

i,K ). The expectation of a function
f (γ i ) is approximated by the sum

K∑

k=1

wi,k f
(
γ i,k

)
(3.4)

where

wi,k = p
(
γ i,k | χ

)
mi
(
γ i,k

)

∑K
t=1 p

(
γ i,t | χ

)
mi
(
γ i,t

) (3.5)

and

mi
(
γ i,k

)=p
(
yi | γ i,k,χ

)=
∫

p
(
yi | γ i,k,β i,k, σ

2
i,k,χ

)

p
(
β i,k, σ

2
i,k | γ i,k,χ

)
dβ i,k dσ 2

i,k
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is the marginal likelihood of γ i,k . Substituting the Occam’s
window approximation in (3.4) into Q(χ) in (3.1) gives

Q(χ) =
M∑

i=1

Eγ i |χ , yi

[
Eβi ,σ

2
i |γ i ,χ , yi

[
log P

(
yi | γ i ,β i , σ

2
i ,χ

)
+ log P(γ i , β i , σ

2
i | χ)

]]

+ log P(χ)

=
M∑

i=1

K∑

k=1

wi,k Eβi,k ,σ
2
i,k |γ i,k ,χ , yi

[
log P

(
yi | γ i,k,β i,k, σ

2
i,k,χ

)

+ log P(γ i,k, β i,k, σ
2
i,k | χ)

]
+ log P(χ).

(3.6)

To evaluate these expectations, we define residuals r i =
yi−X i ζ

∗ and, for the k-thmodel, define Ai,k = Bi,k (Si,k)T

r i , Bi,k = ((Si,k)T Si,k + 
i
)−1

,C i,k = rTi
(
Ini − Si,k Bi,k

STi,k
)
r i , ai,k = a + ni/2, bi,k = b + C i,k/2, mi,k =

(Ai,k)1, M i,k = (Ai,k)2:(pi,k+1), qi,k = (Bi,k)1,1 and
Qi,k = (Bi,k)2:(pi,k+1),2:(pi,k+1) where 
i,k = diag(ψ−1,

g−1, . . . , g−1
︸ ︷︷ ︸

pγ
i,k times

).

The model weight defined in (3.5) is

wi,k ∝ p(γ i,k) p( yi | γ i,k,χ)

= �
(
pi,k + a1

)
�
(
p − pi,k + b1

)
(g2)−pγ

i,k/2

| (Bi,k)
−1 |−1/2 (b + C i,k/2

)−(a+ni ) .

The posterior distribution p(β i,k, σ
2
i,k | γ i,k,χ , yi ) can

be factorized as σ 2
i,k | γ i,k,χ , yi ∼ IG

(
ai,k, bi,k

)
and

β i,k |γ i,k, σ
2
i,k,χ , yi ∼ N

(
Ai,k, σ

2
i,kBi,k

)
. The posterior

expectations that we need to evaluate Q(χ) are

E

[
β i,k

σ 2
i,k

]

= ai,k
bi,k

Ai,k, E

[
βT
i,k,1β i,k,1

σ 2
i,k

]

=
(
qi,k + ai,k

bi,k
m2

i,k

)
,

E

[
βT
i,k,2:(pi,k+1)β i,k,2:(pi,k+1)

σ 2
i,k

]

=
(
tr
(
Qi,k

)+ ai,k
bi,k

(
M i,k

)T (M i,k
))

,

E

[
1

σ 2
i,k

]

= ai,k
bi,k

,

E
[
− log σ 2

i,k

]
= ψ(ai,k) − log bi,k,

E

[
1

u

]
= g2

1 + g2
(3.7)

where ψ(·) is the digamma function.
The maximizers of Q(χ) are available in closed-form for

some of the parameters. The maximizer of ζ � and ψ are

ζ � =
(

M∑

i=1

XT
i X i

K∑

k=1

wi,k E

[
1

σ 2
i,k

])−1

(
M∑

i=1

(X i )
T

K∑

k=1

wi,k

(

E

[
1

σ 2
i,k

]

yi − Si,kE

[
β i,k

σ 2
i,k

]))

and

ψ = 1

M + 4

(
M∑

i=1

K∑

k=1

wi,k E

[
β2
i,k,1

σ 2
i,k

]

+ 2

)

.

To find the maximizers of a and b, we solve the following
equations:

�′(a)

�(a)
= log b + 1

M

M∑

i=1

K∑

k=1

wi,k E

[

log

(
1

σ 2
i,k

)]

,

b = a M
∑M

i=1
∑K

k=1 wi,k E

[
1

σ 2
i,k

]

In the same way, we update to a1 to the maximizer of the
equation

log�(a1 + b1) − log� (p + a1 + b1) − log�(a1)

+ 1

M

M∑

i=1

K∑

k=1

wi,k log�
(
pi,k + a1

)
,

b1 to the maximizer of the equation

log�(a1 + b1) − log� (p + a1 + b1) − log�(b1)

+ 1

M

M∑

i=1

K∑

k=1

wi,k log�
(
p − pi,k + b1

)

and g to the maximizer of the equation

− log g
M∑

i=1

K∑

k=1

wi,k pi,k − 1

g

M∑

i=1

K∑

k=1

wi,k Eβi,k ,σ
2
i,k |γ i,k ,χ , yi

[∑pi .k
j=1 β2

i,k, j

σ 2
i,k

]

− log g − 2 log(1 + g).

The calculation of these values can be speeded up by only
summing over the k such that wi,k > ε where ε is chosen
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by the user to be small (we used ε = 0.01 in the simulation
study and real data example). This corresponds to using

Q(χ) =
M∑

i=1

K∑

k=1

I(wi,k > ε)wi,k Eβi,k ,σ
2
i,k |γ i,k ,χ , yi

[
log P

(
yi | γ i,k,β i,k, σ

2
i,k,χ

)

+ log P(γ i,k, β i,k, σ
2
i,k | χ)

]
.

3.1 Initialization

The convergence and computational time of the EM algo-
rithm can depend on initialisation of χ . We use the following
scheme to initialize the elements of χ :

• ζ � =
(∑M

i=1 X
� T
i X�

i

)−1 (∑M
i=1 X

� T
i y�

i

)
where y�

i =
yi − ȳi .

• To initialize b, we estimate the LME model

r i = yi − X iζ
� = μi + εi

where εi ∼ N (0, σ 2 Ini ) and set a = 10 and b = aσ̂ 2

where σ̂ 2 is the estimate of σ 2.

• There are

(
p
k

)
possible sub-models of Si with k vari-

ables. We find the smallest p� for which
∑p�

k=1

(
p
k

)
≥

K . For i = 1, . . . , M , we calculate the marginal like-
lihood for model with 1, . . . , p� possible variables and
initialize Occam’s window for the i-th individual with K
models with the highest marginal likelihoods.

3.2 Updating Occam’s window

The success of the algorithm depends on finding high proba-
bility models in Occam’s window and a greedy search algo-
rithm is used to achieve this. We define m̃i = min{m(γ i,k)}
and update Occam’s window for the i-th individual using the
following steps:

1. choose a model uniformly at random. Let that model be
γ i,k .

2. choose a variable j , uniformly at random from 1, . . . , p.
3. propose a new model γ̃ with the values γ̃ j = 1 − γ i,k, j

and γ̃m = γ i,k,m for m 	= j . The new model γ̃ will
include variable j if it is excluded from γ̃ i,k, j or vice
versa.

4. check that γ̃ is not in Occam’s window. If it is not, include
γ̃ in Occam’s window if mi (γ̃ ) > m̃i by replacing the
model corresponding to the value m̃i and then re-calculate
m̃i .

We could choose to use same number of updates of
Occam’s window for each athlete in each iteration of the
algorithm.However,we choose to improve efficiency by only
updating L models across all athletes in one iteration of the
algorithm and biasing the number of updates towards indi-
viduals where changes are more likely to be accepted. Define
ti to be the number of updates since the previous successful
update and at the start ti = 0 for all athletes. We sample
ri ∼ Ex(1 + ti ) and pi = ri∑M

j=1 r j
for i = 1, . . . , M . The

probabilities pi will tend to be larger for individuals who
are regularly updated as for those ti will be set to zero and
hence E[ri ] = 1

1+ti
. Define li to be the number of times that

Occam’s window for the i-th individuals is updated and gen-
erate l1, . . . , lM from a multinomial distribution with total
sample size L and probabilities p1, . . . , pm .

The algorithm alternates between updating Occam’s win-
dow and the population-level parameters χ .

4 Extending the algorithm tomore
complicatedmodels

The algorithm developed in the previous section works for
inference in the LME model in (1.1) with normal errors but
the need for other error distributions has become clear over
time, with skew-normal or skew-t being popular choices,
for example, in medical research (Ferede et al. 2024), sports
statistics (Griffin et al. 2022) and fire claims (Gong et al.
2023). We will consider skew t distributed errors (Azza-
lini and Capitanio 2003), which includes the skew-normal
distribution as a special case, in a linear mixed model for
elite athletic performances due to the occurrence of unusu-
ally poor performances. Our Occam’s window approach
can be extended using a VB algorithm (see Blei et al.
2017, for a review). VB algorithms have been developed for
skew-normal and t distributions using latent variable rep-
resentations. Wand et al. (2011) consider inference about
the parameters of the skew-normal and t distributions and
Guha et al. (2015) consider inference in inverse problems
with skew-t errors.

We denote the skewness and degrees of freedom parame-
ters by c and f . A convenient latent variable representation
writes the model in (1.1) with skew t errors in the following
form:

yi = X i ζ
∗ + Sγ

i β
γ

i + c√
1 + c2

di + ε∗
i (4.1)

where

ε∗
i
ind.∼ N

(

0,
σ 2
i

ρi

1

1 + c2

)

, di
ind.∼ T N[0,∞]

(

0,
σ 2
i

ρi

)

,
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ρi ∼ Ga
(

f

2
,
f

2

)

and division by a vector refers to element-wise division.
The introduction of latent variables ρi and di where ρi =
(ρi,1, . . . , ρi,ni ) and di = (di,1, . . . , di,ni ) respectively leads
to a conditionally normal linear model. We will use the prior
distributions f ∼ Ga(2, 0.1) and c ∼ N (0, 102).

Again, we drop the γ superscript notation. The individual-
level parameters are now νi = {γ i ,β i , σ

2
i , ρi , di }. The

Occam’s window approach developed in Section 3 can be
used in a VB method for the individual-level parameters.
The variational distribution is

q(γ i ,β i , σ
2
i , ρi , di | χ , yi ) = qηi (ρi , di ) qφi

(γ i ,β i , σ
2
i )

where ηi and φi are variational parameters. We write Eηi and
Eφi

as expectations with respect to qηi and qφi
respectively.

We use the mean-field approximation of the distribu-
tion qψi (ρi , di ). Unlike Guha et al. (2015) who factor-
ize this distribution as qρi

(ρi ) qdi (di ), we derive their
joint mean-field distribution which can be factorized as∏ni

j=1

[
qηi, j (ρi, j | di, j ) qηi, j (di, j )

]
. The density qηi, j (di, j ) is

proportional to

I(di, j > 0)

(
f +1
ν

(
di, j − μ

)2

f + 1
+ 1

)−(
f +1
2 + 1

2 )

where

μ =
c
√
1 + c2

∑K
k=1 wi,k Eφi

[
1
σ 2
i

(
yi, j − X i, j ζ

∗ − Sγ
i, jβ

γ
i

)]

(1 + c2)
∑K

k=1 wi,k Eφi

[
1
σ 2
i

] ,

1

ν
= 1 + c2

λ

K∑

k=1

wi,k Eφi

[
1

σ 2
i

]

,

which is a truncated t-distribution.Thedistributionqηi, j (ρi, j |
di, j ) = Gamma

(
a�
i, j , b

�
i, j

)
where a = 1+ f

2 and

b = 1

2

K∑

k=1

wi,k Eφi

[
1

σ 2
i

(√
1 + c2

(
yi, j − X i, jζ

∗

−Sγ

i β
γ

i

)− cdi, j
)2 + f

2

]
.

Expectations of functions of ρi and di needed to update
the variational parameter φi are approximated using Monte
Carlo averages.

Occam’s window can be used to define a variational
distribution for γ i , β i and σ 2

i with variational parameters
φi = (wi , a�

i , b�
i , Ai , Bi ) which has the form

p(γi ) = wi,k, k = 1, . . . , K

σ 2
i | γi = k ∼ IG

(
a�
i,k, b

�
i,k

)
,

βi | σ 2
i , γi = k ∼ N (Ai,k, σ

2Bi,k).

The mean-field variational distribution for qφi
(γ i ,β i , σ

2
i ) is

proportional to

− 1

2σ 2
i

ni∑

j=1

Eηi [ρi, j ]
[
(
√
1 + c2

(
yi, j − X i, jζ

∗)

−
√
1 + c2Sγ

i, jβ
γ

i − 1

Eηi [ρi, j ]
cEηi

[
ρi, j di, j

]]2

− 1

2σ 2
i

c2
ni∑

j=1

Eηi

[
ρi, j d

2
i, j

]
+ 1

2σ 2
i

c2
ni∑

j=1

Eηi

[
ρi, j di, j

]2

Eηi [ρi, j ]

− 1

2σ 2
i

ni∑

j=1

Eηi

[
ρi, j d

2
i, j

]
− ni log σ 2

i − 1

2
log(ψσ 2

i )

− 1

2

(β
γ

i )T
iβ
γ

i

σ 2
i

− pγ

i

2
log(g2σ 2

i ).

This can be approximated using Occam’s window by choos-
ing

Bi,k =
(
S�
i, j

T S�
i, j + �i

)−1
,

Ai,k = Bi,k S�
i, j

T ri, j ,

a�
i,k = α + ni ,

b�
i,k =

ni∑

j=1

rTi, j

(
I − S�

i, j Bi,k S�
i, j

T
)
ri, j + (1 + c2)

×
ni∑

j=1

Eηi

[
ρi, j d

2
i, j

]
− c2

ni∑

j=1

Eηi

[
ρi, j di, j

]2

Eηi [ρi, j ]
,

wi,k ∝ �(pi,k + a1) �(p − pi,k + b1) b
−(α+ni )
i,k

|Bi,k | 12 (g2)−pγ
i /2

where S�
i is a (ni × p)-dimensional matrix whose j-th row

is
√
Eηi [ρi, j ] (1 + c2) Si, j and ri, j = √

Eηi [ρi, j ]
√
1 + c2

(
yi, j − X i, jζ

∗) − c
Eηi [ρi, j di, j ]√

Eηi [ρi, j ]
for i = 1, . . . , M and j =

1, . . . , ni . All expectations needed to update ηi can be cal-
culated using the expressions in (3.7).
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The global parameters χ are estimated by maximising the
Q function

Q(χ) =
M∑

i=1

K∑

k=1

wi,kEηi

[
Eφi

[
log P

(
yi | νi ,χ

)

+ log P(νi | χ)
]]+ log P(χ). (4.2)

The algorithm updates parameters in three blocks

1. Update χ by finding the values that maximize Q(χ) in
(4.2).

2. Simulate ρi and di for i = 1, . . . , M and calculateMonte
Carlo average of functions of ρi and di needed to evaluate
model probabilities.

3. Update Occam’s window.

5 Examples and Illustrations

5.1 Simulation Study

To understand the performance of the algorithms. We per-
formed a simulation study using both the model with skew t
errors and different values of the model parameters. In each

data set, there were n = 300 individuals, q = 6 fixed effects
and p = 10 or p = 20 random effects. We choose ζ0 = 0
and ζi ∼ N (0, 1) for i = 1, . . . , 5 as the coefficients of
the fixed effects. For the i-th individual we choose between
a large number of observations ni = 200 with probability
q and a small number of observations ni = 50 otherwise.
The regressors are independent with Xi, j ∼ N (0, 1) and
Si, j ∼ N (0, 1). The error variance is generated σ 2

i ∼
IG(10, 0.1) and the coefficients of the random effects are
independent with βi,k ∼ si,k N (0, 1) + (1 − si,k) δβi,k=0

where si,k ∼ Bernoulli(h).
The data sets are formed by different combinations of the

following parameters.We consider settingswhich have small
(p = 10) or large (p = 20) number of random effects with
the sparser (h = 0.1) or denser (h = 0.25) coefficients.
The proportion of larger data sets for individuals is either
q = 0.15 or q = 0.3. We consider a symmetric version
(c = 0) or fairly heavily skewed (c = 4) and heavy-tailed
( f = 5) and close to normal tails ( f = 20). This leads to
5 different parameters with 2 possible values leading to 32
combinations. All results are calculated using 30 replicate
data sets and with two possible values of Occam’s window
K = 30 and K = 100.

We compare the performance of the algorithm for vari-
able selection, prediction and estimation of the skewness c

Fig. 1 Simulation study: The
average true Positive Rate
(TPR) for γ i . The symbols
represent q = 0.15 and window
= 30 (�), q = 0.15 and window
= 100 (◦), q = 0.3 and window
= 30 (�), and q = 0.3 and
window = 100 (•)

123



  122 Page 8 of 18 Statistics and Computing           (2025) 35:122 

Fig. 2 Simulation study:
Average Root Mean Squared
Prediction Error. The symbols
represent q = 0.15 and window
= 30 (�), q = 0.15 and window
= 100 (◦), q = 0.3 and window
= 30 (�), and q = 0.3 and
window = 100 (•)

and the degrees of freedom f . The variable selection per-
formance is assessed using the median model (Barbieri and
Berger 2004) for each individual, that is the model including
the k-th variable if p(γi,k | y( j)) > 0.5 for the i-th athlete
and j-th replicate. To measure the accuracy of the median
model, we calculate the true positive rate (TPR), the proba-
bility of an important variable being selected in the median
model, and the true negative rate (TNR), the probability of a
redundant variable not being selected in the median model.
We assess predictive performance by generating a validation
set of 1000 observations for each athlete in each replicate.We
calculate the root mean squared prediction error (RMSPE)
averaged over observations, athletes and replicates. The abil-
ity to estimate the skewness c and degrees of freedom f are
measured using the root mean squared error (RMSE).

TheTPR’s are shown inFigure 1. It is high (above 0.92) for
all settings of simulation parameters. Some of these parame-
ters have stronger effects than others. The TPR is higher with
smaller p, larger data sets and lighter tails. These results are
not surprising since the variable selection problem becomes
easier with smaller p or more information. It is not clear
why heavier tails has an effect. The other simulation param-
eters (skewness, window size and proportion of redundant

variables) have very little effect on performance. We also
calculated the TNR for all settings of the simulation parame-
ters but these were all very close to one and show the method
can effectively identify redundant variables.

The RMSPEs for different simulation parameter settings
are shown in Figure 2. The mean error variance is E[σ 2

i ] =
0.011 and so the RMSPE cannot be lower than approxi-
mately

√
0.011 = 0.105. The RMSPE are influenced by

both variable selection accuracy and estimation of the regres-
sion coefficients for important variables. For this reason, the
effects of the simulation parameters are different from the
effects of the TPR. The method provides RMSPE’s close
to the approximate minimum for most simulation parameter
settings. Unsurprisingly, the number of variables p plays a
role here and theRMSPE is larger for larger p. The other sim-
ulation parameter play a much smaller role here apart from
when p = 20 and h = 0.15 when more skewness (larger c)
and lighter tails (larger f ) lead to smaller RMSPE.

The RMSE for the skewness and degrees of freedom are
given inAppendix 7. The skewness iswell-estimated for both
c = 0 and c = 4. The degrees of freedom is unsurprisingly
harder to estimate, but we show good performance when
c = 0. With c = 4, the errors are larger but the estimated
error distribution are often similar.
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Fig. 3 Simulation study:
Average time in minute. The
symbols represent q = 0.15 and
window = 30 (�), q = 0.15 and
window = 100 (◦), q = 0.3 and
window = 30 (�), and q = 0.3
and window = 100 (•)

5.2 Application tomodelling elite sporting
performance trajectories

Griffin et al. (2022) develop an LME model for elite sport-
ing performance that models the evolution of an athlete’s
performance as a function of their age. These trajectories
have several applications, including identifying athletes with
the potential for future success in order to prioritize fund-
ing and resource allocation, setting performance goals, or
guiding training programs. An LME allows us to account
for the irregular intervals between observations, confounders
(such as wind speed in track sprinting, seasonality effects,
and competition level), and to adjust for selection effects due
to ability differences across athletes (for example, excep-
tional athletes often compete in international competitions at
a younger age).

Griffin et al. (2022) use the LME model in (1.1) where
the response yi, j is the j-th performance of the i-th athlete.
The fixed effects design matrix X i contains the first four
powers of age, which leads to a flexible population-level age
effect, and any confounders (for example, wind speed in 100
metres sprints). The randomeffects designmatrix Si contains
linear splines basis function, which allows a flexible form for
the individual performance trajectories. Variables selection

allows us to use a large number of basis function p (we use
p = 100) whilst avoiding overfitting. Skew t errors are more
appropriate here since athletes usually underperform by a
larger amount than they overperform.

We compare the performance of our VB method for the
LME model with skew-t errors to the results in Griffin et al.
(2022), which used MCMC. The data is from 100 metres
track sprinting and weightlifting for both females and males.
For 100 metres track sprinting, there are a total of 48,999
observations for 1297 female athletes and a total of 95,376
observations for 2,834 male athletes. For weightlifting there
was a total of 11,690 observations for 1,212 female athletes
and 14,557 observation for 1609 male athletes. In the 100
metres track data, we also include wind speed and the month
of the race as confounders since we can have a large effect on
performance. There are no confounders for the weightlifting
data. We fit the LME to the data for 100 metres sprinting and
weightlifting separately for male and female athletes leading
to four regressions.

The computational times of VB and MCMC are provided
in Table 1. They show that the VB algorithm is around 5 or
6 times faster than the MCMC method. The table also pro-
vides the estimates of the skewness and degrees of freedom
from the VB algorithm and the posterior means calculated
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Table 1 VB and MCMC
estimates of c and f and timings
(in minutes) for male and female
100 metres track sprinting and
weightlifting

VB MCMC
Time c f Time c f

100 metres Males 50 0.9 25 > 360 1.21 18.4

Females 46 0.9 20.4 > 360 1.35 19.6

Weightlifting Males 59 −1.09 18.4 > 360 −1.91 7.8

Female 75 −1.1 5.8 > 360 −1.64 6.9

Fig. 4 Fitted population
performance trajectories for
both males and females in 100
metres (top row) and
weightlifting (bottom row)
estimated using the VB
algorithm with skew t errors

usingMCMC.Overall, the estimates are very similar. Specif-
ically, in the 100 metres, the skewness is estimated to be
0.7 for males and 0.9 for females using VB, whereas they
are 1.21 for males and 1.35 for females using MCMC. The
degrees of freedom is estimated to be 19.05 for males and
20.4 for females using VB which are close to the estimates
with MCMC (18.4 for males and 19.6 for females). For the
weightlifting dataset, the skewness estimates are -0.6 and -
1.1 for males and females respectively with VB whereas, for
MCMC, these are -1.91 and -1.64. Although we can observe
a difference in estimates between the two methods both give
a negative sign. Finally, the degree of freedom estimate for
females is close (5.8 with VB and 6.9 with MCMC) but the
estimates for men are more different (17 for VB and 7.8 for
MCMC). Overall, the VB algorithm tends to give similar
results to MCMC for these parameters.

The population performance trajectory, individual level
performance trajectories and excess performance play key
roles in the modelling approach and are interesting to practi-
tioners. Figure showing inference about these functions using
MCMC are given in Griffin et al. (2022).

Plots of the population performance trajectory (modelled
by the polynomial terms of age) are shown in Figure 4.
Improving performance corresponds to faster times in 100
metres and larger weights lifted in weightlifting. The trajec-
tories show a familiar result, also observed by Griffin et al.
(2022), that, on average, performance quickly improves until
the mid-twenties when performance starts to slowly deterio-
rate.

Excess performance measures the difference between an
athlete’s individual performance trajectory and the popula-
tion (average) performance trajectory. This can be important
to understand how an athlete is performing relative to their
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Fig. 5 Individual performance (with observed performances) (top row) and excess performance trajectories (bottom row) for 100 metres for males,
shown as posterior median (solid line) and 95% central credible interval (dashed lines)

age-matched peers and is important for evaluating the success
of training or for understanding the variability of individual
athlete performance around the population trend. In the linear
spline model, this is the overall effect of the random effects
evaluated at different ages (see Griffin et al. 2022 for more
details).

We present fitted individual performance trajectories and
excess performance for some athletes in 100 metre sprinting,
shown as posteriormedianwith 95%credible interval, in Fig-
ures 5 (for males) and 6 (for females).We can see that the VB
method is able to account for the differences in the individual
performance trajectories, provide appropriate functional fits
of the excess performance and sensible posterior credible
intervals. Athlete 1’s posterior median individual perfor-
mance trajectory is fairly constant (consistently 0.5 sec faster
than the rest of population) but has substantial variability
within a year. The observations for Athlete 2 and Athlete 3
cover a longer time span and show more variation in their
performance levels. Athlete 2’s individual performance tra-
jectory shows faster improvement around the age of 20 and
later peak than Athlete 3. The 95% credible intervals give
a reasonable measure of uncertainty. Athlete 1 has only 54

observations leading to a much larger credible interval than
Athlete 2 (who has 141 observations) and Athlete 3 (who
has 139 observations). Figure 6 shows the same results for
three female 100m sprinters. These show similar results to
the men. The fitted individual trajectories are able to track
the observations. There is substantial differences between the
excess performance trajectories which indicate that the vari-
able selection at an individual level is needed to model these
data using linear splines. The credible intervals also give a
sensible measure of uncertainty.

Appendix 8 includes the individual performance and
excess performance trajectories for weightlifting in both
male and female populations.

6 Conclusions

We develop an EM algorithm for LME with normal errors
which is extended to an LME with skew t errors using a VB
approach. The latter approach could be extended to other
non-normal error distributions using a latent variable repre-
sentationwhich leads to a conditional normal linearmodel. A
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Fig. 6 Individual (with observed performances) (top row) and excess performance trajectories (bottom row) for female 100 metre sprinters, shown
as posterior median (solid line) and 95% central credible interval (dashed lines)

simulation study shows that the VB algorithm has good per-
formance for a range of values of the degrees of freedom and
skewness. An application of the algorithm to a longitudinal
model used in the modelling of elite sporting performance
show that the method has similar inference to MCMC on a
real-world data set.

Appendix A EM calculations with normal
errors

The full expression of (3.6) is

Q(χ) =
M∑

i=1

K∑

k=1

wi,k Eβi,k ,σ
2
i,k |γ i,k ,χ , yi

[
log P

(
yi | β i,k, σ

2
i,k,χ

)
+ log P

(
β i,k, σ

2
i,k | χ

)]

+ log P(χ)

= −1

2

M∑

i=1

K∑

k=1

wi,k Eβi,k ,σ
2
i,k |γ i,k ,χ , yi

⎡

⎣ 1

σ 2
i,k

ni∑

j=1

(
yi, j − X i, jζ

∗ − Si, jβ i,k
)2 + log σ 2

i,k

⎤

⎦

− 1

2

M∑

i=1

K∑

k=1

wi,k Eβi,k ,σ
2
i,k |γ i,k ,χ , yi

[

log(ψ σ 2
i,k)+pi,k log(g σ 2

i,k)+
1

σ 2
i,k

(β i,k)
T 
i,k β i,k

]

+ M a log b − M log�(a) − (a + 1)
M∑

i=1

K∑

k=1

wi,k Eβi,k ,σ
2
i,k |γ i,k ,χ , yi

[
log σ 2

i,k

]

− b
M∑

i=1

K∑

k=1

wi,k Eβi,k ,σ
2
i,k |γ i,k ,χ , yi

[
1

σ 2
i,k

]

+ M (log�(a1 + b1) − log� (p + a1 + b1))

− M (log�(a1) + log�(b1)) +
M∑

i=1

K∑

k=1

wi,k

(
log�

(
pγ

i,k + a1
)

+ log�
(
p − pγ

i,k + b1
))

− 2 logψ − 1

ψ
− 1

2
log g − log(1 + g)

123



Statistics and Computing           (2025) 35:122 Page 13 of 18   122 

where 
i,k = diag

⎛

⎜⎜
⎝ψ−1, g−1, . . . , g−1

︸ ︷︷ ︸
pγ
i,k times

⎞

⎟⎟
⎠.

To work out the expectations, it’s useful to note that if
X ∼ N (μ,�), then

E[X] = μ, E[XT BX] = tr(B�T ) + μT Bμ

Appendix B EM calculations with skew-t
errors

The full expression of (4.2) is

Q(χ) =
M∑

i=1

K∑

k=1

wi,k Eηi

[
Eφi

[
log P

(
yi | νi ,χ

)

+ log P(νi )
]]+ log P(χ)

= −
M∑

i=1

K∑

k=1

wi,k

2
EηiEφi

⎡

⎣ 1

σ 2
i,k

ni∑

j=1

ρi, j

×
(√

1 + c2
(
yi, j − X i, jζ

∗ − Si, jβ i
)− c di, j

)2]

−
M∑

i=1

K∑

k=1

wi,k

2
EηiEφi

⎡

⎣
ni∑

j=1

(

log

(
σ 2
i,k

(1 + c2)ρi, j

)

+ log

(
σ 2
i,k

ρi, j

))

+ ρT
i d

2
i

σ 2
i,k

⎤

⎦

−
M∑

i=1

K∑

k=1

wi,k

2
Eφi

[

log(ψ σ 2
i,k) + βT

i,k
iβ i,k

σ 2
i,k

+ pi,k
2

log(g2 σ 2
i,k)

]

+ M (a log b − log�(a)) − (a + 1)
M∑

i=1

K∑

k=1

wi,k

Eφi

[

log σ 2
i,k − b

1

σ 2
i,k

]

+ M (log�(a1 + b1)

− log� (p + a1 + b1) − log�(a1) − log�(b1))

+
M∑

i=1

K∑

k=1

wi,k
(
log�

(
pi,k+a1

)+ log�
(
p−pi,k+b1

))

+
(

f

2
log

(
f

2

)
− log�

(
f

2

)) M∑

i=1

ni

+
M∑

i=1

ni∑

j=1

(
f − 2

2
Eηi

[
log ρi, j

]− f

2
Eηi

[
ρi, j
])

− 2 logψ − 1

ψ
− 1

2
log g − log(1 + g)

− 1

2

c2

1002
+ log f − 0.1 f

where 
i = diag

⎛

⎜⎜
⎝ψ−1, (g2)−1, . . . , (g2)−1

︸ ︷︷ ︸
pγ
i t imes

⎞

⎟⎟
⎠.

It is useful to define X�
i, j,m =

√
Eηi [ρi, j ] (1 + c2) Xi, j,m

and ri, j = √Eηi [ρi, j ]
√
1 + c2 yi, j −c Eηi [ρi, j di, j ] for i =

1, . . . , M , j = 1, . . . , ni and m = 1, . . . , q and S�
i, j,m =

√
Eηi [ρi, j ] (1 + c2) Si, j,m for i = 1, . . . , M , j = 1, . . . , ni

and m = 1, . . . , pi,k , and r i = (ri,1, . . . , ri,ni )
The algorithm uses the following updates

ζ � =
(

M∑

i=1

X� T
i X�

i

K∑

k=1

wi,k Eφi

[
1

σ 2
i,k

])−1

(
M∑

i=1

X� T
i

K∑

k=1

wi,k

(

Eφi

[
1

σ 2
i,k

]

r i−Eφi

[
S�
i,kβ i,k

σ 2
i,k

]))

and

ψ = 1

M + 4

(
M∑

i=1

K∑

k=1

wi,k E

[
β2
i,k,1

σ 2
i,k

]

+ 2

)

,

To find the maximizers of a and b, we solve the following
equations:

�′(a)

�(a)
= log b + 1

M

M∑

i=1

K∑

k=1

wi,k E

[

log

(
1

σ 2
i,k

)]

,

b = a M
∑M

i=1
∑K

k=1 wi,k E

[
1

σ 2
i,k

]

In the same way, we update to a1 to the maximizer of the
equation

log�(a1 + b1) − log� (p + a1 + b1) − log�(a1)

+ 1

M

M∑

i=1

K∑

k=1

wi,k log�
(
pi,k + a1

)
,

b1 to the maximizer of the equation

log�(a1 + b1) − log� (p + a1 + b1)

− log�(b1) + 1

M

M∑

i=1

K∑

k=1

wi,k log�
(
p − pi,k + b1

)
,
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g to the maximizer of the equation

− log g
M∑

i=1

K∑

k=1

wi,k pi,k − 1

g

M∑

i=1

K∑

k=1

wi,k

Eβi,k ,σ
2
i,k |γ i,k ,χ , yi

[∑pi .k
j=1 β2

i,k, j

σ 2
i,k

]

− log g − 2 log(1 + g),

c to the maximizer of the equation

− (1 + c2)
M∑

i=1

ni∑

j=1

Eηi

[
ρi, j
] K∑

k=1

wi,k

2
Eφi

[
1

σ 2
i,k

(
yi, j − X i, jζ

∗ − Si, jβ i
)2
]

+ 2c
√
1 + c2

M∑

i=1

ni∑

j=1

Eηi

[
ρi, j di, j

] K∑

k=1

wi,k

2
Eφi

[
1

σ 2
i,k

(
yi, j − X i, jζ

∗ − Si, jβ i
)
]

− c2
M∑

i=1

ni∑

j=1

Eηi

[
ρi, j d

2
i, j

] K∑

k=1

wi,k

2
Eφi

[
1

σ 2
i,k

]

+ log
(
1 + c2

) M∑

i=1

ni − 1

2

c2

1002

and f to the maximizer of the equation

+
(

f

2
log

(
f

2

)
− log�

(
f

2

)) M∑

i=1

ni

+
M∑

i=1

ni∑

j=1

(
f − 2

2
Eηi

[
log ρi, j

]− f

2
Eηi

[
ρi, j
]
)

+ log f − 0.1 f .

7 Further simulation results

Figures 7 and 8 show the RMSEs for the parameters c and f
in the simulation study.

Fig. 7 Simulation study:
Average Root Mean Squared
Error for c. The symbols
represent q = 0.15 and window
= 30 (�), q = 0.15 and window
= 100 (◦), q = 0.3 and window
= 30 (�), and q = 0.3 and
window = 100 (•)
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Fig. 8 Simulation study:
Average Root Mean Squared
Error for f . The symbols
represent q = 0.15 and window
= 30 (�), q = 0.15 and window
= 100 (◦), q = 0.3 and window
= 30 (�), and q = 0.3 and
window = 100 (•)

8 Further results of the application to
modelling elite sporting performance
trajectories

Figures 9 and 10 show individual performance and excess
performance trajectories for 12 weightlifters (6 male and 6
female). All three athletes show similar patterns with their

performances improving to a peak in their mid-twenties.
There are less performance than the 100 metres sprinting
example (for example, 20, 16 and 16 observations respec-
tively for the athletes in Figure 10) but the model still able to
capture the tends in the data and to provide sensiblemeasures
of the uncertainty in the estimation.
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Fig. 9 Individual performance (with observed performances) and excess performance trajectories for male weightlifters, shown as posterior median
(solid line) and 95% central credible interval (dashed lines)
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Fig. 10 Individual performance (with observed performances) and excess performance trajectories for female weightlifters, shown as posterior
median (solid line) and 95% central credible interval (dashed lines)
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