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Abstract

Quantum annealing is a quantum algorithm for combinatorial optimi-
sation that operates by evolving a system towards a Hamiltonian whose
ground state encodes the optimal solution to a problem. The run-time
needed to reach a given ground-state fidelity is dictated by the size of
the minimum gap that appears between the ground- and first excited-
states in the associated energy spectrum. A particular problem for the
algorithm is the appearance of so-called perturbative crossings that form
as a result of highly competitive local optima and result in gap minima
that close exponentially with system size. The associated exponential
run-time scaling has consequences for the efficiency of the algorithm
and places infeasible demands on qubit coherence times.

We explore the use of a targeted XX-catalyst Hamiltonian that aims to
circumvent this bottleneck. We use perturbation theory to elucidate the
relationship between the structure of the problem Hamiltonian and the
effects of different coupling choices. Through this, we motivate particu-
lar choices of XX-couplings that could be identified through knowledge
of local optima which the algorithm is likely to return. We explore the
effectiveness of these catalysts numerically, utilising a problem graph
construction that allows us to controllably produce annealing spectra
featuring perturbative crossings with varying properties.

Overall we find that the catalysts perform well, being able to remove
perturbative crossings in a range of instances with the number of cou-
plings present in the catalyst scaling linearly with the system size. In
some cases we observe additional catalyst effects which complicate the
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outcome. In these cases we consider when and how they could be ex-
ploited in diabatic quantum annealing. Furthermore, we find that the
theoretical framework that we have used to understand the effects of
XX-catalysts extends well to other coupling choices, potentially proving
a useful tool in the design of catalyst Hamiltonians more generally.
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Impact Statement

This thesis is a theoretical and numerical investigation into the use of
catalyst Hamiltonians in quantum annealing – a quantum algorithm for
solving combinatorial optimisation problems. Specifically, this work in-
vestigates the use of a targeted catalyst to reduce the time required for
an annealing run to return the optimal solution with high fidelity. Re-
ductions to the annealing time are important for two reasons. First, they
lower the demand placed on the coherence times of the hardware, facili-
tating the solving of larger problems on nearer term processors. Shorter
annealing times may also offer better time scaling advantages over clas-
sical algorithms.

Being able to solve combinatorial optimisation problems has a variety of
real word applications. These include portfolio optimisation, resource
allocation, transport optimisation and drug design in chemistry. More
favourable time scaling will make the solving of larger and more inter-
esting problems more feasible. Furthermore, in many cases it is crucial
to be able to solve these problems in the shortest possible time to make
the results relevant.

With regards to what our work contributes towards this goal: our in-
vestigations highlight a particular form of XX-catalyst for the removal
of perturbative crossings in annealing spectra – which are a particular
annealing time bottleneck that forms in hard problems. Importantly, the
structure of these catalysts relates to potentially accessible information
about the problem. This could, in future, facilitate the design of an al-
gorithmic approach to their construction. We make some proposals in
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this dissertation as to how this could be achieved.

XX-couplings are not yet readily implementable on current hardware
and so this currently lies more within the scope of academic exploration.
The design of hardware that facilitates such couplings is, however, an
active field of research. That the XX-catalysts we have examined perform
well offers further motivation for the development of such hardware.

In motivating the catalyst Hamiltonians on which our thesis focuses,
we have introduced theoretical tools and a framework which could be
applied more generally in catalyst design for quantum annealing. We
have also introduced a graph construction which can serve as an aid in
related numerical investigations.

Finally, we have highlighted a particular setting, in which the catalyst
results in the creation of an additional gap minimum in the anneal-
ing spectrum, which could be used as a theoretical test-bed for diabatic
quantum annealing. Utilising this setting, we performed an investiga-
tion into the robustness of diabatic annealing strategies that offers in-
sight into what considerations would need to be made for such strate-
gies to be practically viable. With the implementation of XX-couplings
in hardware, this setting would also serve as a useful experimental test-
bed – requiring as few as five qubits and one XX-coupler to implement.
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rameters associated the problem instance are n0 = 3, n1 = 4,
W0 = 1.37, W1 = 1.00 and Jzz = 37.5. Plots (a) and (b) show
the results when a catalyst Hamiltonian containing an XX-
coupling with Jxx = 2 is introduced between the first two
vertices in G1 and plot (c) shows the results when all XX-
couplings in G1 are included. In all the plots, the overlap
with the problem 1ES, |↓↓↓↑↑↑↑⟩, is plotted with a solid or-
ange line. In (a), the solid purple line shows the overlap with
|↓↓↓↓↓↑↑⟩ – i.e., the state that the problem 1ES becomes cou-
pled to by the catalyst. In (b), the solid purple line shows the
overlap with |↓↓↓↓↑↓↑⟩. In (c) the overlaps with all the states
that have two up and two down spins in G1 are plotted with
a solid purple line. In this case, the catalyst does not break
the symmetry of the problem and so their evolutions are all
the same. The rest of the states are colour coded according
to which of these states they are closest to in Hamming dis-
tance. Equidistant states are plotted in grey. The plots on the
bottom row show the same data as the top row plots but for
a smaller range around zero. . . . . . . . . . . . . . . . . . . . 101

5.8 Plots showing the properties of the negative GS vector com-
ponents for an anneal to a problem instance with the param-
eters n0 = 4, n1 = 5, W0 = 1.37, W1 = 1.00 and Jzz = 37.5. (a)
shows the value of s for at which the first vector components
become negative with increasing |J′xx|. (b) shows the largest
magnitude reached by the negative vector components. The
numerical results when using a single XX-coupling and all-
to-all XX-couplings in G1 are plotted in the darker and lighter
purple respectively. We dismiss the vector components which
never drop below −0.05. The theoretical predictions for the
sign change location when a single coupling is used are plot-
ted in grey. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

xxi



List of Figures

6.1 Numerical results for the size of the minimum spectral gap,
∆Emin

01 (s), with varying catalyst strength and different cou-
pling choices. The results are for a problem graph with with
n0 = 4, n1 = 5, n2 = 3, W0 = 1.70,W1 = 1.35, W2 = 1.00 and
Jzz = 35. The plots in (a), (b) and (c) are for catalysts with
all-to-all couplings within sub-graph G0, G1 and G2 respec-
tively. Results using different couplings are plotted in differ-
ent colours. We include an additional panel in (b) showing a
zoomed-in view of the results closer to zero gap. . . . . . . . 118

6.2 Same as in figure 6.1 but in this case the sub-plots show the
results for catalysts containing all to all couplings between
vertices in G0 and G1 (a), G0 and G2 (b) and G1 and G2 (c). . 119

7.1 Plots showing the scaling behaviour of a catalyst on a bipar-
tite problem with the parameters δW = 0.37 and Jzz = 37.5.
The sub-graph sizes are scaled as n0 = (n − 1)/2 and n1 =

(n + 1)/2. The catalyst consists of all-to-all couplings within
G1 and is introduced with the opposite sign to the driver.
Plot (a) shows the size of the gap minimum in the catalyst
free setting (black) and the size of the gap minimum when
the optimal catalyst strength is used (purple). We also in-
clude the size of the spectral gap between the GS and 1ES at
the end of the anneal (grey). Plot (b) shows the |Jxx| values
which maximise the gap minimum. The lines are a guide to
the eye. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.2 Gap spectra corresponding to two 31-spin problem instances.
The top row (a-e) shows the results for a problem instance
with δW = 0.37, Jzz = 37.5 and the bottom row (f-j) shows the
results for an instance with δW = 0.01, Jzz = 5.33. A catalyst
is introduced that consists of all couplings within G1. The
catalyst strength, |Jxx|, associated with each plot increases
from left to right and its value is given above the plots. . . . 139

xxii



List of Figures

7.3 Data for the evolution of the instantaneous GS vector for two
43-spin problem instances. The plots on the top row (a-c) cor-
respond to an instance with δW = 0.37, Jzz = 37.5 (WGS pa-
rameters) and the plots on the bottom row (d-e) to an instance
with δW = 0.01, Jzz = 5.33. The left hand plots, (a) and (d),
show the catalyst free results. Plots (b), (c), (e) and (f) show
the results with a catalyst containing all-to-all XX-couplings
within G1. The catalysts strengths in each plot are as follows:
(b) Jxx = 0.00704, (c) Jxx = 0.01000, (e) Jxx = 0.00704, (f)
Jxx = 0.0975. The insets in plots (a) and (d) show a closer
view of the evolution around the location of the perturbative
crossing in the catalyst free cases. The inset in (a) in centred
on s = 0.9922088. . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.4 Plots showing the scaling behaviour of a catalyst on a bipar-
tite problem with the parameters δW = 0.01 and Jzz = 5.33.
The sub-graph sizes are scaled as n0 = (n − 1)/2 and n1 =

(n + 1)/2. The catalyst consists of all-to-all couplings within
G1 and is introduced with the opposite sign to the driver.
Plot (a) shows the size of the gap minimum in the catalyst
free setting (black) and the size of the gap minimum when
the optimal catalyst strength is used (purple). We also in-
clude the size of the spectral gap between the GS and 1ES at
the end of the anneal (grey). Plot (b) shows the |Jxx| values
which maximise the gap minimum. . . . . . . . . . . . . . . . 143

xxiii



List of Figures

7.5 Plots showing the scaling behaviour of a catalyst on a bipar-
tite problem with the parameters δW = 0.37 and Jzz = 37.5.
The sub-graph sizes are scaled as n0 = (n − 1)/2 and n1 =

(n+ 1)/2. The catalyst consists of a single coupling within G1

and is introduced with the opposite sign to the driver. Plot
(a) shows the size of the gap minimum in the catalyst free
setting (black) and the size of the gap minimum when the
optimal catalyst strength is used (purple). We also include
the size of the spectral gap between the GS and 1ES at the
end of the anneal (grey). Plot (b) shows the |Jxx| value which
maximises the gap minimum. . . . . . . . . . . . . . . . . . . 147

7.6 Gap spectra corresponding to bipartite problem instances
with the parameters δW = 0.37 and Jzz = 37.5. The plots are
grouped into three sets. (a-d), (e-j) and (k-p) show the results
for an 11, 21 and 31-vertex instance respectively. A catalyst is
introduced that consists of a single coupling within G1. The
catalyst strength, |Jxx|, associated with each plot is given on
the plots. Where it may be unclear, coloured arrows are used
to indicate gap minima that continuously evolve into one an-
other as the catalyst strength is increased. . . . . . . . . . . . 149

7.7 Plots showing the scaling behaviour of a catalyst on a bipar-
tite problem with the parameters δW = 0.01 and Jzz = 5.33.
The sub-graph sizes are scaled as n0 = (n − 1)/2 and n1 =

(n+ 1)/2. The catalyst consists of a single coupling within G1

and is introduced with the opposite sign to the driver. Plot
(a) shows the size of the gap minimum in the catalyst free
setting (black) and the size of the gap minimum when the
optimal catalyst strength is used (purple). We also include
the size of the spectral gap between the GS and 1ES at the
end of the anneal (grey). Plot (b) shows the |Jxx| value which
maximises the gap minimum. . . . . . . . . . . . . . . . . . . 152

xxiv



List of Figures

7.8 Gap spectra corresponding to bipartite problem instances
with the parameters δW = 0.01 and Jzz = 5.33 with the pres-
ence of a catalyst consisting of one XX-coupling between two
vertices in G1. Plots (a-c), (d-f) and (g-i) correspond to 11,
21 and 31-vertex instance respectively. The middle plots in
each column show the results when Jxx is chosen to minimise
the gap minimum created by the catalyst. The plots on the
top and bottom rows show the results when the the catalyst
strength is chosen to be 0.95 and 1.05 of this value respec-
tively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.9 Numerical results for a problem instance with n0 = 2, n1 = 3,
δW = 0.37 and Jzz = 37.5 (i.e., the parameters associated with
the WGS) and a catalyst consisting of a single XX-coupling
between two vertices in G1. (a) shows, for increasing catalyst
strength, results for the gap size at the AC, ∆E01(sx) (solid
purple), the location of the minimum gap, sx (dashed purple),
and the value of s for which either ⟨E0(s)|E0⟩ or ⟨E0(s)|E1⟩
becomes negative, sn (dashed grey). The evolution of the in-
stantaneous ground-state for different catalyst strengths is
shown in (b-f). These plots have sx marked with purple
dashed lines. The catalyst strengths for which we show the
evolution are marked on (a) with vertical grey dashed lines. 157

7.10 As for figure 7.9 but for the parameters associated with the
SGS setting, δW = 0.01, Jzz = 5.33. (b) shows the size
∆E01(sx’), and location sx’ of the new gap minimum that
forms in this setting and sx’ is marked on plots (c-j) with the
same lighter purple used in (b). . . . . . . . . . . . . . . . . . 158

xxv



List of Figures

7.11 Plots showing the scaling behaviour of a catalyst on a bipar-
tite problem with the parameters δW = 0.37 and Jzz = 37.5.
The sub-graph sizes are scaled as n0 = (n − 1)/2 and n1 =

(n + 1)/2. The catalyst consists of a n − 3 couplings within
G1 introduced with the opposite sign to the driver. Plot (a)
shows the size of the gap minimum in the catalyst free setting
(black) and the size of the gap minimum when the optimal
catalyst strength is used (purple). We also include the size
of the spectral gap between the GS and 1ES at the end of the
anneal (grey). Plot (b) shows the |Jxx| value which maximises
the gap minimum. . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.12 Plots showing the scaling behaviour of a catalyst on a bipar-
tite problem with the parameters δW = 0.01 and Jzz = 5.33.
The sub-graph sizes are scaled as n0 = (n − 1)/2 and n1 =

(n + 1)/2. The catalyst consists of a n − 3 couplings within
G1 introduced with the opposite sign to the driver. Plot (a)
shows the size of the gap minimum in the catalyst free setting
(black) and the size of the gap minimum when the optimal
catalyst strength is used (purple). We also include the size
of the spectral gap between the GS and 1ES at the end of the
anneal (grey). Plot (b) shows the |Jxx| value which maximises
the gap minimum. . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.13 Gap spectra corresponding to a problem instance with G0 =

12, G1 = 18, δW = 0.01 and Jzz = 5.33. A catalyst is intro-
duced that consists of all couplings within G1. The catalyst
strength, |Jxx|, associated with each plot is given above the
plots. Coloured arrows are used to indicate gap minima that
continuously evolve into one another as the catalyst strength
is increased. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

xxvi



List of Figures

8.1 Plot showing the numerically obtained catalyst strength, J∗xx,
that minimises the gap minimum introduced by the single-
coupling XX-catalyst when introduced to problem settings
with n0 = (n − 1)/2, n1 = (n + 1)/2, W0 = 1.01, W1 =

1.00 and Jzz = 5.33. The units are defined as discussed in
paragraph 8 of chapter 8. . . . . . . . . . . . . . . . . . . . . . 175

8.2 Numerical data corresponding to bipartite annealing in-
stances with n0 = (n − 1)/2, n1 = (n + 1)/2, W0 = 1.01,
W1 = 1.00 and Jzz = 5.33. The plots show different spectral
properties varying with ∆Jxx. Plot (a) shows how the size of
the new gap minimum varies for system sizes ranging from
5 to 17 in steps of 2. Plot (b) shows the magnitude of the
second derivative of the ground (blue) and first excited state
(orange) energies at the gap minimum for the 9-spin system.
The units are defined as discussed in paragraph 8 of chapter
8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

8.3 Numerical results corresponding to the 9-spin problem in-
stance with n0 = 4, n1 = 5, W0 = 1.01, W1 = 1.00, Jzz = 5.33
and a catalyst containing a single XX-coupling within G1. The
units are defined as discussed in paragraph 8 of chapter 8.
Plot (a) shows how the final GS and 1ES fidelities vary with
the total annealing time, ta, in blue and orange respectively.
The results without a catalyst are shown with dotted lines
and the results with the catalyst introduced with Jxx = J∗xx

are shown with solid lines. Plots (b) and (c) show the gap
spectrum for the 9-vertex instance without and with a cata-
lyst respectively. Plots (d) and (e) show the corresponding
dynamics for a ta = 2µs anneal with the state of the system
represented in terms of its overlap with the instantaneous
ground and first excited states in blue and orange respec-
tively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

xxvii



List of Figures

8.4 Plot showing the time needed to reach different final GS
fidelities for the catalyst-free 5-spin problem instance with
n0 = 2, n1 = 3, W0 = 1.01, W1 = 1.00 and Jzz = 5.33. The
crosses show the seven numerically sampled data points. A
least squares polynomial fit was then obtained. The Hamilto-
nians are introduced with an energy scale of GHz as defined
in paragraph 8 of chapter 8. . . . . . . . . . . . . . . . . . . . 179

8.5 Numerical results for the final GS fidelity with varying ta and
∆Jxx for the 9-spin system discussed in section 8.1. Figure (a)
shows a grid plot and Figures (b) and (c) show the slices of
this grid indicated with dashed white lines. (b) shows the
final GS fidelity with increasing anneal time, ta, for different
values of ∆Jxx. The coloured curves show the numerical re-
sults and the grey shaded areas and dashed curves show the
Landau-Zener predictions – obtained as described in Section
8.2. (c) shows the results for the final GS fidelity with varying
∆Jxx for different values of ta. The Hamiltonians are intro-
duced with an energy scale of GHz as defined in paragraph
8 of chapter 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

8.6 Cartoon of an avoided level crossing, illustrating the key com-
ponents that enter the Landau-Zener formula. . . . . . . . . . 184

8.7 Gap spectrum of an annealing instance with parameters n0 =

2, n1 = n2 = 3,W0 = 1.010, W1 = 1.005, W2 = 1.000 and
Jzz = 5.33. The units are defined as discussed in paragraph 8
of chapter 8. A catalyst is introduced which contains a single
XX-coupling between two vertices in G1 and another between
two vertices in G2. Each of these couplings is introduced
with Jxx = 1.125. The arrows indicate the different paths the
system could take, as discussed in section 8.3. . . . . . . . . . 190

xxviii



List of Figures

8.8 Plot (a) shows the decay rate of the final GS fidelity against
system size when |∆Jxx| = 0.05 in blue and when |∆Jxx| =
0.10 in orange. Results for positive and negative ∆Jxx are
plotted with dots and crosses respectively. Plot (b) shows the
system size scaling of the ∆Jxx FWHM of the final GS fidelity
for three different anneal times – 3, 5 and 10µs. The values in
this figure are obtained from the numerical data associated
with the problem instances with parameters n0 = (n − 1)/2,
n1 = (n + 1)/2, W0 = 1.01, W1 = 1.00 and Jzz = 5.33. The
Hamiltonians are introduced with an energy scale of GHz as
defined in paragraph 8 of chapter 8. . . . . . . . . . . . . . . . 192

9.1 In (a) we show how the sub-graph sizes scale for the tri-
partite instances examined in sections 9.1.1 and 9.2.1. In (b)
we illustrate the n-partite graph constructions used in sec-
tions 9.1.2 and 9.2.2 . . . . . . . . . . . . . . . . . . . . . . . . 198

9.2 Plots showing the effect of a 2-component catalyst on the an-
nealing spectrum corresponding to a tripartite problem graph
with the parameters n0 = 3, n1 = 4, n2 = 4, W0 = 1.6,
W1 = 1.3, W2 = 1.0 and Jxx = 35. Gap spectra are presented
in the top row and plots showing the evolution of the in-
stantaneous GS vector are presented on the bottom row. The
cartoons in the top row illustrate the expected perturbative
crossing structure. The overlaps with problem GS, 1ES and
3ES are highlighted in blue, orange and green respectively.
(a) shows the catalyst-free case. (b) shows the results when
a catalyst containing all-to-all XX-couplings within G1 is in-
troduced with J(1)xx = 0.31. (c) shows the results when we also
include an additional component to the catalyst consisting of
all-to-all couplings within G2 with J(2)xx = 0.12. . . . . . . . . . 201

xxix



List of Figures

9.3 Plots showing numerical results for the problem instances
scaled as shown in figure 9.1(a) with the problem parameters
W0 = 1.6, W1 = 1.3, W2 = 1.0 and Jzz = 35. Plot (a) shows the
scaling of the gap minimum without the presence of a cata-
lyst in black. The gap scaling when a two-component catalyst
is used is plotted in purple. The darker purple shows the re-
sults when the optimised parameters for each system size, as
shown in plot (b), are used. The results shown in the lighter
purple use the optimal parameters for the n = 23 system. In
orange, we plot the results when only one component of the
catalyst is included – i.e., the values plotted for J(1)xx in (b) are
used and J(2)xx is set to zero. Finally, we plot the spectral gap
at the end of the anneal for each system size in grey. The
majority of the grey points are obscured by the purple points. 203

9.4 Numerical results for the problem instances scaled as shown
in figure 9.1(b) with the problem parameters W0 = 1.30, W1 =

1.00, W2 = 0.99, W3 = 0.98... and Jzz = 35. Plot (a) shows the
minimum spectral gap with and without the presence of a
catalyst in purple and black respectively. The spectral gap at
the end of the anneal for each system size is plotted in grey.
Plot (b) shows the Jxx values associated with the catalyst at
each system size. . . . . . . . . . . . . . . . . . . . . . . . . . . 207

xxx



List of Figures

9.5 Plots showing the effect of a 2-component catalyst on the an-
nealing corresponding to a tripartite problem graph with the
parameters n0 = 2, n1 = 3, n2 = 3, W0 = 1.2, W1 = 1.1,
W2 = 1.0 and Jxx = 5. Gap spectra are presented in the top
row and plots showing the evolution of the instantaneous GS
vector are presented on the bottom row. The overlaps with
problem GS, 1ES and 2ES are highlighted in blue, orange and
green respectively. (a) shows the catalyst free case. (b) shows
the results when a catalyst containing a single XX-coupling
within G1 with J(1)xx = 2.14 is introduced. (c) shows the re-
sults when we also include an additional component to the
catalyst consisting of a single coupling within G2 with the
same catalyst strength. . . . . . . . . . . . . . . . . . . . . . . 210

9.6 Plots showing results for the closed system dynamics corre-
sponding to the setting with the gap spectrum depicted in
figure 9.5 (c). The Hamiltonians are introduced with an en-
ergy scale of GHz (as defined in paragraph 8 of chapter 8)
and the annealing time is chosen to be ta = 1µs. Plots (a)
and (b) show the evolution in terms of the system’s overlap
with the instantaneous states and problem states respectively
– with the overlap with the ground, first, and second excited
state plotted in blue, orange and green respectively. . . . . . 211

9.7 Plots showing numerical results for the problem instances
scaled as shown in figure 9.1(a) with the problem parameters
W0 = 1.02, W1 = 1.01, W2 = 1.00 and Jzz = 5. The Hamilto-
nians are introduced with an energy scale of GHz as defined
in paragraph 8 of chapter 8. A catalyst is introduced which
contains a single coupling within G1 and another within G2.
Both of these couplings are introduced with the same cata-
lyst strength, Jxx, which varies between system sizes. Plot (a)
shows the scaling of the annealing time, ta, needed to reach a
GS fidelity of 0.9 and plot (b) shows the Jxx values. . . . . . . 214

xxxi



List of Figures

9.8 Gap spectra showing the optimised diabatic path, as created
by a catalyst, for three different system sizes. Each instance
is a tripartite graph with W0 = 1.2, W1 = 1.1, W2 = 1.0 and
Jxx = 5. The sub-graph sizes in each case are n0 = (n − 2)/3
and n1 = n2 = (n + 1)/3. The catalyst in each case contains
two couplings – one between two vertices in G1 and another
between two vertices in G2. The coupling strengths used in
each case are (a) Jxx = 1.095, (a) Jxx = 1.080 and (a) Jxx =

1.090. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
9.9 Closed system dynamics of an anneal of duration ta = 0.12µs

for an annealing instance with G0 = 3, G1 = 4, G2 = 4, W0 =

1.02, W1 = 1.01, W2 = 1.00 and Jzz = 5. The Hamiltonians
are introduced with an energy scale of GHz as defined in
paragraph 8 of chapter 8. . . . . . . . . . . . . . . . . . . . . . 216

9.10 Gap spectrum corresponding to a setting with the parameters
G0 = 2, G1 = 3, G2 = 3, G3 = 3, G4 = 3, W0 = 1.020,
W1 = 1.015, W2 = 1.010, W3 = 1.005, W4 = 1.00 and Jzz =

5. A catalyst has been introduced that includes a coupling
within each of the sub-graphs Ga, a = 1, 2, 3, 4. The catalyst
is introduced with a catalyst strength Jxx = 0.842. . . . . . . . 217

xxxii



List of Acronyms

AC = Avoided level Crossing

AFM = Anti FerroMagnetic

AQA = Adiabatic Quantum Annealing

DQA = Diabatic Quantum Annealing

FM = FerroMagnetic

GS = Ground State

KES = Kth Excited State

K-SAT = K-variable Boolean SATisfiability problem

KZ = Kibble Zurek

LZ = Landau Zener

MIS = Max Independent Set

MWIS = Max Weighted Independent Set

NP = Nondeterministic Polynomial

P = Polynomial

PM = ParaMagnetic

QA = Quantum Annealing

QAOA = Quantum Approximate Optimisation Algorithm

QMC = Quantum Monte Carlo

xxxiii



List of Acronyms

QUBO = Quadratic Unconstrained Binary Optimisation

SG = Spin Glass

TTS = Time To Solution

xxxiv



Chapter 1

Introduction

Quantum annealing (QA) is a continuous-time quantum algorithm pro-
posed as a means of solving combinatorial optimisation problems faster
than can be achieved classically. The algorithm entered the literature
in the 1990s [4, 5, 6], motivated by the idea that quantum tunnelling
could be a route to escaping local optima – which pose one of the main
obstacles for classical algorithms. In combinatorial optimisation, one is
looking to either maximise or minimise some objective function over a
discrete, but often exponentially large, configuration space. Being able
to solve these kinds of problems has real world applications ranging
from portfolio optimisation [7] and resource allocation [8, 9, 10] to trans-
port optimisation [11]. In these applications it is of great interest to be
able to find the best solution in the shortest possible time.

From a complexity theory perspective, many combinatorial optimisation
problems of interest are considered NP-hard. That is, they are at least
as difficult to solve as every problem in NP. Taking a brief moment to
explain what this means: in complexity theory, NP is the set of deci-
sion problems for which a correct answer can be verified in polynomial
time. A subset of this complexity class is P, which is the set of decision
problems that can be solved in polynomial time. If P ̸=NP, as is widely
believed to be the case, we are left with a number of problems that can
be verified in polynomial time but take a super-polynomial time to solve.
The hardest problems in this class are the NP-complete problems. The
time required to obtain the solution to these problems, along with the
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1. Introduction

NP-hard problems of which they are a sub-set, is expected to be at least
exponential in the problem size.

This can, in part, be understood through the fact that an exponentially
large search space renders anything even approaching an exhaustive
search for an optimal solution completely intractable. Another issue is
the prevalence of local optima in which heuristic search algorithms can
become trapped as they attempt to navigate the complex optimisation
landscapes of these problems. To what extent quantum algorithms, in
general, can offer some kind of speed-up over classical approaches, and
what kind of speed-up we can expect this to be (e.g. polynomial, expo-
nential...), is a large and complex subject of discussion [12, 13, 14, 15, 16].
Some key examples of provable speed-up are Shor’s algorithm [17], of-
fering a super-polynomial speed-up over the fastest known classical al-
gorithms for integer factorization, and Grover’s algorithm [18], which
offers a quadratic speed-up for unstructured search.

When it comes to QA in particular, there is as of yet, little evidence of
definitive speed-up over classical algorithms for the purpose of com-
binational optimisation – though there do exist some provable speed-
ups in other contexts [19, 20, 21]. Outside of current hardware limita-
tions such as coherence times and connectivity, a particular problem that
plagues QA is an exponential, and sometimes super-exponential, sup-
pression to the tunnelling rate needed to escape the local optima of a
problem and reach to the global optimum. As we shall go on to discuss
later in this chapter, the prevalence of this exponential suppression ap-
pears to be linked to the hardness of the problem in the classical setting,
casting doubt on the idea of quantum tunnelling as a route to speed-up
for such problems – as per the initial motivation for the algorithm.

Reflective of the general uncertainty around what kind of advantage we
should expect to see from quantum algorithms, the context in which
the aforementioned tunnelling suppression is discussed differs between
papers within the literature. Whether or not QA, or indeed quantum
computing more generally, will prove able to efficiently solve NP-hard
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optimisation problems remains an open question that lies well outside
the scope of this work [12, 13, 14, 15, 16, 22, 23, 24, 25]. Certainly, there
is still an interest in finding exponential speed-up through QA, either
through identifying NP-hard problems to which the algorithm is espe-
cially suited, or novel variations on the algorithm aimed at circumvent-
ing the exponentially suppressed tunnelling rates. More widely though,
there is an assumption that quantum algorithms such as QA will not
have the capacity to change the complexity class of a problem and will
therefore not be able to solve NP-hard problems efficiently.

This, however, does not rule out the capacity for other types of speed-up
in QA that could still offer a significant time advantage over classical al-
gorithms. As such there is an interest in understanding whether QA can
offer a sub-exponential scaling advantage over classical algorithms and
developing strategies that reduce the severity of the exponential scaling.
There is also an interest in reducing the demand on the coherence times
of quantum hardware by shifting the exponential scaling to a different
part of the algorithm – we will explain more thoroughly what we mean
by this in the following section.

It is with these motivations in mind that we approach our work. In this
thesis we focus on a particular bottleneck within the quantum annealing
algorithm known as a perturbative crossing. These perturbative crossings
arise as a result of competing local optima in which the algorithm can
get stuck – requiring exponentially long run-times to be able to tunnel
out of. In particular, we will be exploring how accessible information
of the problem structure could be utilised in a targetted approach to
effectively guide the anneal towards the global optimum of the problem.

The remainder of this chapter is organised as follows. We will begin by
outlining the quantum annealing algorithm in its most standard form
in section 1.1. We then, in section 1.2, give a brief introduction to the
main hardware platforms that exist for implementing QA. Section 1.3
then provides an overview of the literature concerning the time scaling
of the algorithm in its standard form. In particular, we will highlight
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the specific bottleneck which this work aims to address. Finally, having
introduced the background required to better contextualise our discus-
sion, we end the chapter by giving a structural overview of the rest of
the thesis.

1.1 Quantum Annealing

The most standard form of QA operates by interpolating linearly be-
tween two non-commuting Hamiltonians. The first is a simple driver
Hamiltonian, Ĥd, and the second is the problem Hamiltonian, Ĥp, which
encodes the optimisation problem to be solved. The total Hamiltonian
can be written as

Ĥ(s) = (1 − s)Ĥd + sĤp, (1.1)

where s is a dimensionless annealing parameter that is varied monoton-
ically from 0 to 1 over the course of the anneal such that Ĥ(0) = Ĥd

and Ĥ(1) = Ĥp. A typical choice in the literature is to give s the time
dependence s(t) = t/ta where ta is the total annealing time. The driver
Hamiltonian in which the anneal starts is conventionally chosen to be a
homogeneous local X-field,

Ĥd = −
n

∑
i=1

σ̂x
i , (1.2)

where n is the total number of qubits and σ̂x
i denotes the Pauli-X op-

erator on the ith qubit. Its ground state is the symmetric equal super-
position over all computational basis states. The problem Hamiltonian
is then constructed out of Pauli-Z operators and encodes the optimisa-
tion problem to be solved such that the ground state of Ĥp encodes the
optimal solution.

Throughout this dissertation we refer to the eigenstates of this total
Hamiltonian as the instantaneous eigenstates and denote them and their
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corresponding energies as

Ĥ(s) |Ea(s)⟩ = Ea(s) |Ea(s)⟩ . (1.3)

The states are labelled starting from a = 0 in order of increasing energy.
We refer to the smoothly evolving spectrum of energies, {Ea(s)}, as the
annealing spectrum. Furthermore, since the annealing parameter, s, is
varied monotonically from zero to unity, we will often refer to s = 0 and
s = 1 as the start and end of the anneal respectively.

We will denote the problem eigenstates and their energies as

Ĥp |Ea⟩ = Ea |Ea⟩ . (1.4)

Since the problem Hamiltonian is diagonal in the computational basis,
the set of problem states, {|Ea⟩}, is simply the computational basis with
the states labelled by energy.

The anneal starts with the quantum system initialised in the ground
state of the driver Hamiltonian, |ψ(t = 0)⟩ = |E0(0)⟩. The aim is then
for the evolution to proceed adiabatically such that |ψ(t)⟩ ≈ |E0(s(t))⟩
for all t. If this is achieved, the system will end with |ψ(ta)⟩ ≈ |E0⟩ so
that, upon measurement, the ground state of Ĥp, and thus the optimal
solution to the problem, is obtained with high fidelity. The limit on the
rate at which the interpolation can progress while maintaining adiabatic
evolution is given by the adiabatic theorem. This theorem has a number
of formulations (see [26] and references therein) but in its most basic
form it states that the total annealing time, ta, must scale inversely with
the square of the instantaneous gap minimum between the ground and
first excited state. That is,

ta ∝
1

min
0≤s≤1

[E1(s)− E0(s)]
2 . (1.5)

If ta is selected such that equation 1.5 is not satisfied, then ground state
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amplitude may be lost to higher excited states. Thus, in this formulation
of QA, the efficiency of the algorithm depends on how the gap minimum
can be expected to scale with increasing problem size. Much work has
been devoted to understanding the gap behaviour in annealing spectra
and it is now generally agreed that the gap minimum can be expected
to close exponentially for hard problems. We discuss these results in
section 1.3.

The preceding discussion has equated the total run-time of the algo-
rithm with the time required to approach a unity ground-state (GS) over-
lap with an anneal. In practice, however, QA as an algorithm consists of
more steps than a single annealing run – e.g: pre-processing steps such
as mapping the problem to a suitable Hamiltonian [27, 28, 29? ] and em-
bedding this Hamiltonian into the native hardware graph [30, 31, 32].
More relevant to the discussion in our work is the fact that QA will
typically involve multiple annealing runs to increase the likelihood of
measuring the ground state at the end of the anneal. A helpful metric to
consider is the time to solution (TTS) which gives the total time needed
to reach a certain probability of measuring the ground state given the
final GS overlap obtained by the individual annealing runs. The expres-
sion for this is

TTS(PGS) = max
(

log(1 − PGS)

log(1 − | ⟨ψ(ta)|E0⟩ |2)
, 1
)

︸ ︷︷ ︸
required number of runs

×ta (1.6)

where PGS is the desired probability of measuring the GS. In general, an
increase in ta is expected to result in an increase in | ⟨ψ(ta)|E0⟩ | and so
a decrease in the number of runs needed to reach PGS.

In practice, restrictions set by the coherence time of the hardware mean
that it may be preferable to select ta such that PGS is reached by per-
forming an exponential number of annealing runs that all achieve an
exponentially small overlap with the GS – rather than to attempting to
run the anneal slowly enough for this overlap approach unity. We can
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Figure 1.1: A schematic illustrating the key features of a superconducting flux qubit
is shown in (a). The crosses denote the locations of the Josephson junctions. In (b)
we present a cartoon energy spectrum showing the two lowest lying potential wells
associated with the two states that define the qubit. The coloured arrows indicate the
features of the energy landscape that can be tuned by varying the applied flux depicted
in (a) in the corresponding colours.

think of this as the simplest case of moving the exponential time scaling
out of the annealing time to facilitate practical implementation.

This dissertation focuses on the algorithmic side of QA. No explicit as-
sumptions will be made regarding specific hardware limitations such
as the coherence time and connectivity that would be associated with a
particular platform. However, we will occasionally reference such lim-
itations when discussing our results to help place our findings within
the wider context of implementing the algorithm. To better contextu-
alise these discussions, we will now briefly outline the main platforms
on which QA has been implemented.

1.2 Hardware platforms

Unlike gate-based quantum computation, QA demands the capacity
for smoothly varying time-dependent fields and coupling strengths in
its implementation. As such, specialised hardware is required. The
state of the art in quantum annealing devices is the D-Wave Advan-
tage2 [33] which consists of around 4400 superconducting flux qubits
[34] arranged in the so-called Zephyr topology, in which each qubit is
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connected to 20 others.

The flux qubits themselves are artificial spin-1/2 systems, where the two
energy levels that define the qubit are the two directions of a circulat-
ing current around a ring of superconducting material. They consist, in
their most basic form, of loops of superconducting wires and Josephson
junctions [35] which introduce non-linearity to the response of the sys-
tem to flux. This non-linearity introduces the anharmonicity required to
separate off the two lowest energy levels to be used as a qubit.

A schematic of a superconducting flux a qubit is shown in figure 1.1(a)
and a cartoon energy landscape showing the two states defining the
qubit is shown in figure 1.1(b). By varying the flux threaded through
loop A, the energy difference between the two qubit states can be al-
tered, providing the mechanism for a tunable local Z-field. Meanwhile,
the flux threaded through loop B controls the width and height of the
potential barrier between the two qubit states, providing a tunable local
X-field. ZZ-interactions are implemented through inductive coupling
via intermediate coupling qubits. As such, the D-Wave architecture al-
lows for the implementation of local X- and Z- fields as well as ZZ-
couplings between qubits – which is sufficient to implement the stan-
dard annealing protocol outlined in the preceding section.

As we shall see in our discussion of the literature in chapter 2, there is
reason to believe that the introduction of other 2-local couplings may
be beneficial to QA. Particularly promising, and the focus of this thesis,
is the inclusion of XX-couplings. Such couplings do not currently exist
in superconducting annealing hardware. Some proposals have, how-
ever, been put forward as to their implementation [36, 37]. Furthermore,
rather that implementing them directly, it has been suggested that XX-
couplings could be emulated using currently available fields and cou-
plings [38].

Coherent quantum dynamics have been demonstrated on the D-Wave
Advantage [39]. However, significant effects from decoherence were
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seen for annealing times greater than a few tens of nanoseconds. That
the coherence times observed in superconducting annealing hardware
is significantly shorter than some of the reported coherence times for
superconducting qubits in other settings (which can be on the order of
1ms [40, 41, 42]) is due to the increased demand for qubit control in QA
necessarily introducing more noise channels which adversely affect the
qubit lifetimes.

While not as well developed as the D-Wave systems, with regards to
their use in quantum annealing, another promising platform for imple-
menting QA is the Rydberg atom array [43, 44, 45]. Here, the qubits
are encoded as the ground state and a highly excited Rydberg state of
a neutral atom. The atoms are arranged using optical tweezers into
the desired 2-dimensional graph structure for which nearest neighbour
interactions are facilitated by the Ryderg blockade mechanism, which
prohibits the excitation of multiple atoms to the Rydberg state within a
certain radius.

This Rydberg blockade mechanism allows for the native implementation
of the maximum-independent-set problem [46], This is an NP-complete
problem in which one is looking for the largest set of vertices in a graph
for which no two vertices are connected by an edge. This is achieved by
arranging the atoms, which encode the vertices of the problem graph,
such that any two that are connected by an edge in the problem are
within each others Rydberg radius. Off-resonant homogeneous laser
pulses are then used to drive transitions between the two qubit states
with the Rabi frequency and detuning effectively giving us a way to
set a global strength for the X- and Z- fields respectively such that an
annealing protocol can be carried out. 1 More recently, the capacity for
locally tuned Z-fields though local light shifts was demonstrated [47],
facilitating the implementation of a weighted variant of the maximum-
independent-set problem which is known to be harder to solve.

1In practice, the schedule used in [46] is a little different to the more traditional
annealing schedule given by equation 1.1. However, the overall concept is very much
the same.
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Because of the planar nature of the arrays, only unit disk graphs can be
implemented directly. However, a recent proposal for quantum wires –
i.e., chains of atoms in the blockade regime that can link different parts of
the graph – may be able to mitigate this problem [48]. Another proposal
for using Rydberg atoms to implement the quantum annealing algo-
rithm, which inherently circumvents the connectivity issue (albeit with
an additional qubit overhead), is to utilise the Lechner-Hauke-Zoller
(LHZ) scheme [45, 49] in which the qubits are arranged in a grid lattice
with problem-independent couplings. The problem parameters are then
encoded into the local fields.

One advantage that Rydberg atom arrays have over superconducting de-
vices is that they are inherently identical, avoiding potential fabrication
errors. The associated downside of this, however, is that they do not
possess the same tunability as a manufactured qubit. Another benefit
of using Rydberg atom qubits is that they do not require the millikelvin
temperatures that the D-Wave devices do. They also have significantly
longer coherence times – on the order of 100µs [46].

It is worth noting that, even with improvements to coherence times in
quantum annealing hardware, exponentially long annealing runs re-
main intractable without the error correcting framework that exists for
gate-based quantum computation. As we will see in the following sec-
tion, hard optimisation problems typically demand an exponentially
long run-time for a significant ground state overlap to be achieved at
the end of the anneal – hence, a desire for alternative methods in quan-
tum annealing.

1.3 Annealing-time bottlenecks in QA

This section concerns gap- and time-scaling results for QA as defined
by the total Hamiltonian in equation 1.1 and driver in equation 1.2. Our
discussion focuses on the scaling associated with a single anneal (rather
than the algorithm as a whole) and assumes the goal of adiabaticity. We

10



1.3. Annealing-time bottlenecks in QA

will start with some general results before discussing, in more detail,
the specific annealing-time bottleneck on which our work focuses.

Early studies that applied QA to small instances of various NP-hard
problems provided a mixed outlook as to the expected time scaling
for an anneal to reach a constant final GS overlap. In 2001, Farhi et
al. published results that examined QA applied to random instances
of the Exact-Cover problem [50]. Performing numerical simulations of
closed system dynamics under the Schrödinger equation, they deter-
mined that the median run time required to obtain a constant overlap
with the ground state at the end of the anneal scaled polynomially with
the system size. Similar results were obtained by Hogg for the k-SAT
problem [51]. However, work by Smelyanskiy et al. that looked at QA
applied to the Set-Partition problem found that the median scaling ap-
peared to be exponential [52]. Looking at the annealing spectra, they
associated this exponential scaling with the closing gap at an avoided
level crossing (AC) that appeared between the instantaneous ground
and first excited states. It was noted that the scaling only became expo-
nential above n = 10, indicating that studies on small system sizes may
not in general reveal the asymptotic scaling behaviour.

Quantum Monte Carlo (QMC) simulations allowed for investigations
up to much larger system sizes. As with the initial small system
Schrödinger studies, the early results were promising. In 2008, Young et
al. published a paper that looked at random instances of the Exact-Cover
problem up to system sizes of n = 128 and found that the median min-
imum gap appeared to close only polynomially with system size [53].
However, a subsequent study by the same authors that focused specifi-
cally on instances with only one solution (which are hard to solve clas-
sically) gave less favourable results [54]. Looking at system sizes up to
n = 256, they found that the fraction of instances with first order phase
transitions tended to one with increasing system size. In 2011, Hen and
Young published a paper that studied the gap scaling behaviour for var-
ious SAT problems and found the scaling to be exponential [55]. They
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also found that the the instances that were harder classically also tended
to be harder for QA.

Other studies have attempted to understand the gap scaling behaviour
through analytical methods. A paper by Znidaric and Horvat published
in 2006 derived an expression for the gap minimum for 3-SAT problems
[56]. This expression predicted an exponentially closing gap minimum
and gave good agreement with numerical results up to n = 30. How-
ever, the driver Hamiltonian used in this study was not the standard
homogeneous local X-field and it is not clear how these findings trans-
late to the more standard setting. Taking a different route, some insight
was obtained by Amin as to what properties in a problem Hamiltonian
might result in small gap minima [57]. Using perturbation theory it
was determined that problems with exponentially-many local optima
that are close in energy to but far apart in Hamming distance from the
global optimum would have exponentially closing gaps in their anneal-
ing spectra. Again, this suggests that problems that are harder to solve
classically will also be harder for QA.

Rather than considering optimisation problems, some analytical work
has focused on more analytically tractable physical models. The pres-
ence of a first order phase transition between a quantum-paramagnetic
(PM) and a spin-glass (SG) phase has been analytically confirmed for
both the random energy and the p-spin model [58, 59, 60]. The transition
that occurs between the quantum PM and the SG phase in the Hopfield
model has been shown to only be of second order [61] such that the as-
sociated gap minimum can be expected to close only polynomially with
the system size. However in this case it was shown that, depending on
how the patterns are embedded, the SG phase could contain multiple
tunnelling bottlenecks due to competing local optima. These tunnelling
occurrences were found to result in exponentially closing gaps.

Overall, these results suggest that we can generally expect exponentially
closing gaps to appear in annealing gap spectra – sometimes as a result
of the transition out of the quantum paramagnetic phase in which it
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Figure 1.2: Cartoon illustrating the formation of two perturbative crossings. On the left
we see a cartoon problem spectrum for which the 1ES and 2ES are close in energy to the
GS. On the right, we show example driver perturbations that result in the formation
of two perturbative crossings as the perturbed problem 2ES crosses the perturbed
problem 1ES and GS.

starts but also as a result of structure in the problem Hamiltonian. In
particular, problems that are hard in a classical setting seem to generally
also be hard for QA due to tunnelling into the ground state, which was
posited as a potential mechanism for speedup in QA, taking exponen-
tially long.

1.3.1 Perturbative crossings

In this section we highlight a particular source of small gaps in an-
nealing spectra known as perturbative crossings. These are localised
to localised transitions that can occur towards the end of the annealing
spectrum as a result of highly competitive local optima. Here, localisa-
tion refers to a state being restricted to a small portion of Hilbert space
consisting of states that are close in Hamming distance. Perturbative
crossings have also been linked to the idea of Anderson localisation –
a phenomenon in which disorder causes a system to become localised
[62].
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The formation of perturbative crossings can be understood by introduc-
ing Ĥd as a perturbation to the problem Hamiltonian and seeing if the
energies of any of the perturbed excited states cross with that of the
perturbed problem ground state [62, 63]. If such a crossing is predicted
by perturbation theory then we can expect the annealing spectrum to
exhibit an AC at the corresponding point in the anneal. It is this fea-
ture that we refer to as a perturbative crossing. A cartoon illustrating
the formation of two such perturbative crossings is presented in figure
1.2. On the left, a cartoon problem spectrum depicts a setting where the
first and second excited states are close in energy to the ground state.
On the right, example driver perturbations are shown that result in the
perturbed 2ES energy crossing both the perturbed 1ES and GS energy
resulting in two perturbative crossings.

It is clear that the lower in energy an excited state is, the more likely it
is to be involved in a perturbative crossing with the ground state since
a smaller perturbation will be required for a crossing to occur. Further
to this, insights have been obtained by considering the general form of
the perturbative corrections as to (a) precisely under what conditions we
can expect a perturbative crossing to occur and (b) what the size of the
gap minimum will be at the AC.

By examining the perturbative corrections to second order it is found
that, for the states with energy comparable to that of the ground state,
those which are coupled by the driver to lower energy states will receive
greater perturbations [63, 64]. Thus the perturbed energy of an excited
state is likely to cross that of the ground state if (a) it is close in energy
to the ground state and (b) the states that are one spin flip apart from it
are significantly lower in energy that those that are one spin flip apart
from the problem ground state. Following the terminology in [65], we
can refer to the set of states one spin flip apart from a particular state
as its neighbourhood. That these conditions produce a bottleneck in the
algorithm can be understood intuitively as QA having to avoid a wide
local optimum [63]. Further, degenerate states that are precisely two

14



1.3. Annealing-time bottlenecks in QA

spin flips apart have also been shown to produce perturbative crossings
with the ground state [63, 64]. This can be understood through level
repulsion.

The finite gap at the point of the crossing predicted by perturbation
theory is associated with the tunnelling amplitude between the two per-
turbed problem states and will thus depend on their overlap. It has
been noted that a perturbative crossing that forms closer to the end of
the anneal can be expected to be associated with a smaller gap [63] due
to the fact that the problem states will have undergone less perturbation
at the point of the crossing and will therefore be less mixed and have
a smaller overlap with each other. The gap size has also been found
to be exponential in the Hamming distance between the problem states
involved in the perturbative crossing [63]. Since this Hamming distance
can generally be expected to grow linearly with system size, this implies
an exponentially closing gap.

These analytical findings have been confirmed numerically for a vari-
ety of systems. In [65] a tunable maximum-weighted-independent-set
problem on a spin chain is used to demonstrate that if a non-degenerate
|E1⟩ has a lower energy neighbourhood than |E0⟩, a perturbative cross-
ing will form. It is demonstrated in [66] how a perturbative crossing can
be predictably created in 3-SAT problems, and [63, 67, 68] contain ex-
amples of crossings forming between the ground state and a degenerate
excited state. In addition to these results, which show that such cross-
ings can form for the reasons theoretically predicted, it has also been
suggested that the likelihood of not observing a perturbative crossing
with the ground state will vanish with increasing problem size [62].
This suggestion stems from the fact that the chance of a perturbative
crossing forming grows with the number of states with energy compa-
rable to that of the ground state and this is generally expected to grow
exponentially with the system size.
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1.4 Thesis Outline

In this introductory chapter, we have outlined how quantum annealing
operates in its most standard form and discussed the exponential gap
(and therefore annealing time) scaling that is expected to be present for
the algorithm in this form. We have also drawn attention to a particular
source of exponentially closing gap known as a perturbative crossing –
which is the annealing-time bottleneck on which this work focuses.

This rest of this dissertation is organised as follows. In chapter 2, we give
an overview of some of the variations on QA that have been proposed
in order to address the problem of exponentially closing gaps. There
are a great many avenues that people have explored in this respect in-
cluding counter-diabatic diving, in which an additional Hamiltonian is
introduced to suppress diabatic transitions [69, 70, 71, 72, 73, 74, 75],
and reverse annealing, in which the system is initialised in with diag-
onal Hamiltonian rather than a transverse field [70, 76, 77, 78, 79, 80].
We will be focusing our attention on methods that involve changing the
path that the anneal takes to Ĥp, through either inhomogeneous driving
or the introduction of what is known as a catalyst Hamiltonian, in order
to favourably alter the annealing spectrum.

We will begin by outlining some general strategies that have been con-
sidered before moving on to targeted approaches that utilise information
about the problem in some way. We also give an overview of the liter-
ature relating to diabatic quantum annealing, in which transitions into
higher excited states are exploited in order to facilitate a faster route
to the final ground-state. The possibility of diabatic approaches being
utilised is something that we will be returning to at various points when
discussing our results.

Chapter 3 concerns the problem instances we will be utilising through-
out this work in order to facilitate our numerical investigations. We
begin this chapter by outlining the theory behind perturbative crossings
in some more detail. We then describe how we construct our problem
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instances and how their structure relates to the formation of perturba-
tive crossings. Finally, we present numerical results showing that we
are able to use these problem instances to produce annealing spectra
with the desired properties. Our numerical methods are then outlined
in chapter 4. These are included after chapter 3 since they include a
Hilbert space reduction that makes use of symmetries present in our
problem instances.

Chapters 5-9 contain our results. Chapter 5 introduces the idea of a
targeted XX-catalyst for the removal of perturbative crossings. We begin
by examining the effect of different XX-couplings using two different
perturbative approaches. This analysis allows us to build a picture of
how XX-couplings could be chosen in order to mitigate the appearance
of a perturbative crossing. We then test these ideas numerically with a
few example systems. Overall, we find the effects of the catalyst to be
in line with the theoretical predictions and that we are able to extend
our analysis to account for further details in our observations. We also
discuss some potential ideas for how and when such catalysts could be
utilised. In particular, we note that it may be possible to identify suitable
XX-couplings using information obtained from catalyst free annealing
runs.

The main focus of this dissertation is on the use of XX-couplings. How-
ever, in chapter 6, we take a brief detour to examine the effect of other
2-local catalyst choices. We begin with a numerical investigation be-
fore using the same theoretical framework as we did in the XX case to
shed some light on our results. For the majority of cases, we find that
the results from the perturbative analysis match up well with what was
observed numerically. Notably, however, we were not able to account
for the success of the catalysts involving just one σy operator – i.e., the
catalyst Hamiltonians with complex components. We end by discussing
how these findings could be utilised in the design of effective catalysts.

We then turn our attention back to the targeted XX-catalysts introduced
in chapter 5. In chapter 7 we carry out a numerical investigation ex-
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amining how the capacity of the proposed catalyst to remove a single
perturbative crossing scales with system size – as well as how this ca-
pacity is affected by the number of couplings included in the catalyst
and the severity of the gap scaling in the original annealing spectrum.
Our results suggest that a catalyst containing a number of couplings
that scales linearly with system size may be sufficient to remove a per-
turbative crossing, regardless of the severity of the initial gap scaling. As
part of this investigation, we explore the effect of introducing a single
targeted XX-coupling. Here we observe additional effects from the cat-
alyst which differ depending on the severity of the original gap scaling
and include the manifestation of new gap minima in the annealing spec-
trum. We discuss potential causes for the appearance of these new gap
minima as well as the possibility of utilising them as part of a diabatic
anneal.

In chapter 8, we use one of these scalable instances as a toy model to
investigate the robustness of diabatic annealing in settings where the
spectrum is being manipulated in order to facilitate the diabatic anneal.
As we will be discussing in section 2.3, the success of diabatic annealing
is likely to be far more sensitive to the choice of annealing time than an
adiabatic anneal. In settings where the annealing spectrum is being al-
tered to create a diabatic path for the system to follow, any enhancement
to the final ground-state overlap will also be sensitive to any parameters
involved in this alteration. We begin with a numerical study in which
we first confirm a possible enhancement to the final GS fidelity. Then,
varying the parameters associated with the anneal, we observe a trade-
off between the precision needed in the annealing-time chosen and how
the catalyst is introduced. Finally, we introduce a Landau-Zener model
to understand the physics behind our observations, allowing us to con-
sider how these findings would extend to more general systems and
methods for diabatic annealing.

In our final results chapter (chapter 9) we extend the targeted XX-
catalysts discussed so far to settings where multiple perturbative cross-
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ings are present. From the discussion in [62], we can surmise that a
realistic problem setting is likely to contain a multitude of such cross-
ings. As such, for a catalyst to be an effective solution to this particular
bottleneck, it must have the capacity to address multiple perturbative
crossings at once. In the first half of this chapter, we consider the ca-
pacity of a catalyst consisting of multiple components to remove sev-
eral perturbative crossings, thereby facilitating an adiabatic anneal for
shorter run-times. We then, in the second half of the chapter, examine
the possibility of using these catalysts to construct more complex dia-
batic paths through the spectrum. Our initial results appear promising
however we feel that further investigations will be needed before any
concrete conclusions can be made.

We conclude this dissertation, in chapter 10, by summarising and dis-
cussing our findings, highlighting some key results, and proposing av-
enues for future work.
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Chapter 2

Alternative approaches in
quantum annealing

In this chapter we discuss some of the many variations upon the most
straightforward formulation of QA, as defined in section 1.1, that have
been proposed in order to circumvent the problem of exponentially clos-
ing gaps. We will predominantly be focusing on strategies which aim to
prevent the appearance of small spectral gaps by altering the path that
is taken to the problem Hamiltonian, Ĥp. Two ways by which this path-
change can be achieved are by introducing inhomogeneity to the driver
or by introducing a third term into the annealing Hamiltonian, usually
referred to as a catalyst. The potential for success of these approaches
will be discussed in sections 2.1.1 and 2.1.2 respectively. There has also
been an interest in developing strategies that make use of pre-existing
or accessible knowledge of the problem in order to alter the annealing
path in some targeted way and this will be discussed in section 2.2 –
with targeted inhomogeneous driving being discussed in section 2.2.1
and targeted catalysts being discussed in section 2.2.2.

While we may not expect these strategies to result in a sub-exponential
time scaling for the algorithm, they are still appealing for a couple of rea-
sons. Firstly, even if the closing of the spectral gap minimum remains
exponential, there may be a quantitative suppression of the scaling ex-
ponent allowing for a faster time to solution. Furthermore, a strategy
that takes exponentially long to find a path with a polynomially closing

21



2. Alternative approaches in quantum annealing

gap minimum in the associated spectrum would allow the exponential
scaling to be moved out of the annealing run-time. This potentially
allows for a single anneal to reach a near unity overlap with the GS
without exceeding the coherence time of the hardware. The run-time of
the algorithm is then a question of the severity of the exponential scaling
associated with finding this annealing path.

For the most part, the discussion in sections 2.1 and 2.2 assumes the
goal of adiabaticity. However, it has also been suggested that a faster
time to solution may be obtained by utilising the diabatic transitions
that occur when the adiabatic condition is not met. In this paradigm,
known as diabatic quantum annealing (DQA), the idea is to exploit a
path through the instantaneous state spectrum which will result in a
high overlap with the ground state at the end of the anneal but which
can be followed for shorter run times. Where and how this may be
achieved will be discussed in section 2.3.

2.1 Non-targeted approaches

We begin by discussing the non-targeted approaches that exist in the
literature to changing the annealing path – i.e., approaches which are
applied without any prior knowledge of the problem. We will start with
inhomogeneus driving strategies, in section 2.1.1, before going on to the
use of catalyst Hamiltonians, in section 2.1.2.

2.1.1 Inhomogeneous driving

One straightforward way of introducing inhomogeneity into the driver
is simply to randomise the local field strengths in some way. The pos-
sibility of such a strategy being able to remove perturbative crossings
was examined for 3-SAT problems [66] with the results indicating that
the number of drivers one would need to try before an appropriate path
was found would scale polynomially with the number of low energy
local optima. Since this number is expected to scale exponentially with
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Figure 2.1: Plot illustrating how the local driver fields are varied across an Ising chain
in [3]. Here, hx denotes the strength with which the driver is initialised on each qubit.
The driver schedule is characterised by a slope with angle α moving across the chain
with a speed of v.

the problem size, the overall scaling of the algorithm would remain ex-
ponential. However the annealing runs need only be polynomial in the
problem size.

More recently, the effect of highly non-local drivers with random field-
strengths were investigated [? ]. These drivers, based on a bosonic
spin version of the Sachdev-Ye-Kitaev model, were found to reduce the
annealing time by several orders of magnitude in the best cases. Limits
to the system sizes that could be investigated meant that meaningful
conclusions regarding the scaling could not be reached. However, it
seems likely that these non-local drivers would perform at least as well
as the randomised local drivers since more connectivity betweens states
should allow the system to more easily explore the Hilbert space.

The idea of better connectivity within the Hilbert space being benefi-
cial to QA in particular was considered more rigorously in an analytical
and numerical investigation led by Roopayan Ghosh [81] with which
we were involved. In this work, it was found that including more cou-
plings and of higher order will tend to increase the success probability
of the algorithm. In the extreme case, where all couplings, are included
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we are guaranteed to be connecting the global optimum with any lo-
cal optimum the algorithm might otherwise become trapped in. Sets of
couplings that fall short of this case can still perturbatively couple the
global and local optima – with more and higher order couplings offer-
ing routes between the optima that require fewer orders of perturbation
theory. (This work considers the introduction of additional couplings in
the form of a catalyst hamiltonian however the same arguments would
apply to a driver.)

Of course, higher order couplings are generally harder to implement
in practice. It is also worth noting that, while the use of more chaotic
drivers may improve the final GS fidelity, they would be significantly
harder to initialise in than the standard homogeneous transverse field
due to complex and potentially unknown ground states. Indeed, if our
new choice of driver has a GS which is NP-hard to find, we have simply
replaced one hard problem with another. As we will go on to explain
at the start of section 2.1.2, this is an advantage that the introduction
of a catalyst Hamiltonian has over changing the make-up of the driver
Hamiltonian. Indeed, the authors of [? ] note this and also apply their
drivers in the form of a catalyst in the same work.

Another possibility is to alter the driving schedule in some way. A
particular way this can be achieved is to stagger the times at which
the local X-fields are reduced [3, 82]. This can be understood through
figure 2.1 which illustrates this idea for a spin chain. It can be seen
that as the slope moves across the chain at a speed v, only some of the
qubits will have their transverse field strengths decreasing at a given
time. The rate of this decrease will depend on v as well as the gradient
of the slope, α. This driver is motivated by the idea that, if different
parts of the system move through a phase transition at different times,
excitations may be suppressed as a result of the parts of the system
that have already crossed the phase transition communicating their state
back to the parts that have not.

This idea has been explored with a ferromagnetic (FM) Ising chain in
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terms of the Kibble-Zurek (KZ) Mechanism. As the transverse field is
decreased, the system must pass from a PM to a FM phase however
if the driver is reduced too rapidly, the final state may contain excita-
tions in the form of “kinks” between spin domains. The faster the phase
transition is crossed, the higher the kink density and thus the residual
energy at the end of the anneal. In [82] an expression is derived which
suggests that there is a critical velocity that depends on the KZ corre-
lation length and the energy gap at freeze-out. If the rate at which the
critical point propagates through the system is below this, the excita-
tions could be suppressed. These analytical results are supported with
numerical simulations of the dynamics. Later work [3] further explored
these ideas more in the context of QA. The authors considered a weakly
disordered spin-chain and examined the dependence of the residual en-
ergy on the angle α and the velocity ν in figure 2.1. They found that for
very short anneals homogeneous driving was optimal, but for longer
anneals, inhomogeneous driving was able to reduce the residual energy
of the solutions by several orders of magnitude. Their results also sug-
gested that this strategy was relatively insensitive to the hardness of
problem.

A related protocol was proposed in [83]. In this case the driver field
strengths are homogeneously reduced for all qubits as in the standard
case but with the fields being totally turned off for each qubit in turn as
the anneal progresses. It was shown analytically that this could remove
the 1st order phase transition present in the p-spin model. The authors
support this finding by calculating the gap sizes with and without this
inhomogeneity in the driver both by using a semi-classical analysis and
numerically. They also demonstrate that this strategy works when ran-
dom local Z-fields are introduced into the model which is understood to
be a harder problem. A later paper [84] by the same authors determined
that if non-deal conditions were considered (e.g. finite temperatures), a
first order phase transition may not be avoidable. However, a quantita-
tive improvement to the tunnelling amplitude was still possible. Similar
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results to this were found for the Weak-Strong-cluster problem [85]. In
this work dynamic simulations were also performed and it was found
that not only was the ground state overlap significantly improved but
also that the improvement ratio grew with system size. While these re-
sults suggest that some form of staggered driver schedule may be ben-
eficial, it is still unclear whether or such a strategy would provide the
same advantage in a more realistic problem setting.

2.1.2 Catalysts

Rather than altering the driver terms or schedule, another way to change
the annealing path is to introduce an additional term into the annealing
Hamiltonian. This Hamiltonian is typically introduced with a pre-factor
of s(1 − s) into equation 1.1 such that its contribution is zero at the start
and end of the anneal. An inherent benefit of this is that the initial-
isation of the system is unaffected. Before we begin this section, we
introduce the concept of “non-stoquasticity” which will be relevant to
our discussion. A Hamiltonian is stoquastic if all the off diagonal ele-
ments are real and non-positive. Conversely, a Hamiltonian is said to be
non-stoquastic if some of the off diagonal elements are positive and/or
complex1. There is a great deal of discussion in the literature regarding
the importance of non-stoquastic Hamiltonians and how they differ to
stoquastic Hamiltonians – we will discuss these points when and where
they become relevant.

The idea of introducing a random additional Hamiltonian was explored
analytically [86] for a highly symmetric 3-SAT problem for which QA
exhibited an exponentially closing gap as a result of getting stuck in
a local optimum. By examining the effective potentials it was deter-
mined that 351/1000 of the randomly generated catalysts were effec-

1In some cases, the term “non-stoquastic” is reserved for Hamiltonians for which
there is no possible rotation into a stoquastic form. However, determining whether or
not such a rotation exists is, in general, NP-hard. In this thesis, we use the term non-
stoquastic simply to describe the off-diagonal elements of a Hamiltonian in a particular
basis.
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tively able to guide QA to the global optimum thereby removing the
exponentially closing gap. More evidence that randomly generated cat-
alysts may be able to enhance the success of QA came from a numeri-
cal study applying catalysts with the same connectivity as the problem
graph to 20-qubit max-2-SAT problems that were hard for QA when a
standard linear interpolation was used [87]. Specifically, it was found
that stoquastic catalysts almost always enhanced the final ground state
overlap – albeit not by very much. Meanwhile, catalysts with complex
off-diagonal elements didn’t help as often but produced a much greater
GS overlap enhancement when they did. Similar results were found for
catalysts that contained only local fields [88]. It was found in [87] that
the improvement to the final GS overlap generally coincided with an
enhancement of the gap minimum. Interestingly however, some cases
where observed where complex, i.e., non-stoquastic, catalysts were able
to greatly enhance the final GS overlap while the size of the gap mini-
mum remained very small. We will return to this point in section 2.3.

There has also been a great amount of interest in whether catalysts of
certain forms could offer a general advantage. Specifically there has
been much investigation into the effect of stoquastic and non-stoquastic
XX-couplings. A study examining random instances of Ising spin
glasses reflected the random catalyst results in that introducing a sto-
quastic homogeneous XX-field was found to enhance the success prob-
ability more often that introducing a non-stoquastic XX-field did [89].
This was again reflected in the effect on the gap minimum which was
generally enhanced using the stoquastic catalyst and reduced in may
instances using the non-stoquastic catalyst. The stoquastic and non-
stoquastic catalysts were also generally found to reduce and increase
the frequency of ACs respectively. The same kind of results were found
when applying these catalysts to 18-variable 2-SAT problems [90]. How-
ever in this case, it was determined that the effect of the non-stoquastic
catalyst was highly dependent on the strength with which the catalyst
was introduced – with the fraction of instances that showed gap entice-
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ment increasing with the catalyst strength. They also found that the
non-stoquastic catalyst would in some cases cause the AC present in the
original spectrum to become stretched and this was also found to en-
hance the final GS probability. As in [87], both [89] and [90] found cases
where the the success of QA was improved without the gap minimum
being enhanced (or the AC becoming stretched).

The various findings that stoquastic catalysts are generally more suc-
cessful at providing gap enhancement are supported by analytical re-
sults comparing the energy spectra of non-stoquastic Hamiltonians to
their stoquastic counterparts [91]. For local Hamiltonians that are diag-
onal in the X-basis, it was shown that the gap between the ground and
first excited state could always be increased by making the Hamiltonian
stoquastic in the Z-basis. This work also utilised ideas from spectral
graph theory to study the properties of the low lying energy spectra of
general Hamiltonians and were able to offer some intuition as to why
stoquastic Hamiltonians can generally be expected to have larger gaps
between their ground and first excited states.

However, there are also examples where non-stoquastic XX-catalysts
have been shown to result in significant gap enhancement. A numer-
ical study examining the size of the gap minimum in the annealing of
the weak-strong cluster problem found that if the catalyst strength was
optimised for each system size, a non-stoquastic XX-catalyst could re-
place the exponentially closing gap present in the linear anneal with a
gap minimum that tended to a constant [67]. The gap scaling remained
exponential when a stoquastic catalyst was used. The study also exam-
ined a geometrically local Ising example and found that a non-stoquastic
XX-catalyst removed the perturbative crossing present in the original
annealing spectrum. This effect was linked to the fact that the cata-
lyst coupled the local optima responsible for the perturbative crossing
together.

The effects of XX-catalysts have also been studied analytically for the
p-spin and Hopfield models – two settings where a first order phase

28



2.1. Non-targeted approaches

transition is present for the standard linear anneal. It was shown that in-
troducing non-stoquastic XX-couplings to the p-spin model allowed for
a path through phase space that avoided all first order phase transitions
so long as p was finite and greater than 3 [92]. (In the case of p → ∞ the
first order phase transition persists.) This finding was confirmed by nu-
merical results which showed that for a large enough catalyst strength,
a non-stoquastic XX-catalyst could reduce the exponentially closing of
the gap minimum to a polynomially closing gap [67]. This is in contrast
to the stoquastic XX-catalyst which was not able to achieve the same
results. Similar results were found for the Hopfield model [93].

The success of a non-stoquastic XX-catalyst in removing the first order
phase transition in the p-spin model was initially attributed to the fact
that the ground state of the p-spin model had a greater overlap with
the GS of this catalyst than with that of the driver (and indeed of the
stoquastic XX-catalyst). However, it was later found that higher order
non-stoquastic XX-catalysts of the form (∑i σ̂x

i )
k had similar effects for

both odd and even k [92] – with the overlap between the p-spin ground
state and that of the odd k catalyst being exponentially suppressed with
increasing system size compared to the GS of the driver Hamiltonian.
Another suggestion for why the non-stoquastic XX-catalysts were able to
remove the first order phase transition came from a study that examined
how its introduction affected the trace-norm distance between the semi-
classical spin coherent states and the true ground state, as well as its
effect on the level of entanglement present in the system [94]. It was
found that both of these quantities were increased by the introduction
of the catalyst at the location of the phase transition suggesting that
additional quantum effects introduced by the non-stoquasticity may be
responsible for the removal of the first order phase transition.

However, it was determined that neither stoquastic nor non-stoquastic
XX-couplings were able to remove the 1st order phase transition present
in the anneal for the frustrated Ising ladder [95]. It was suggested this
may be due to the fact that the two phases associated with the phase
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transition are separated by different topological structures and the phase
transition may therefore be more stable to the introduction of additional
terms. Further, it was found that for the weak-strong cluster problem
studied in [67], whether a stoquastic or a non-stoquastic XX-catalyst was
able to remove the first order phase transition depended on where the
couplings were applied [96].

Overall, the results suggest that the effect a given catalyst might have is
highly dependent on the system that it is applied to.

2.2 Targeted approaches

That there may not be one single approach that can produce annealing
spectra with a polynomially closing gap minimum is perhaps unsur-
prising since this would imply a polynomial algorithmic run-time. The
results presented in the previous section suggest that it may be benefi-
cial to use a different random driver or catalyst for each polynomially
long annealing run performed. The number of runs may still need to
be exponential in the problem size however at least some of the anneal-
ing runs would be likely to achieve a high overlap with the final GS –
thereby allowing a quantitative improvement to the scaling over the case
where where the standard interpolation is used.

Another route would be to develop strategies that utilise pre-existing or
accessible information about a given problem to engineer some targeted
path change. Again, we may still expect the scaling associated with find-
ing this path to be exponential – but by guiding the search in some way
we may expect a more favourable exponent. In this section we outline a
few such ideas from the literature both with regard to inhomogeneous
driving and the introduction of catalysts.
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2.2.1 Inhomogeneous driving

One avenue for incorporating problem specific information into the
driver is to utilise information about the couplings within the sys-
tem which, unlike the eigenspectrum of the problem Hamiltonian, are
known a priori. It has been proposed that a pre-processing step could be
used to construct a targeted version of the staggered catalysts discussed
in section 2.1.1 where multiple critical fronts are introduced based on
the problem structure [97]. This strategy was found to be able to reduce
the scaling of previously exponentially closing gaps to sub-polynomial
for a variety of Ising Hamiltonians. This kind of approach has also been
explored to mitigate the problem of freeze-out – a phenomenon in which
certain qubits become frozen long before the computation is completed.
In this case, the hypothesis that more strongly coupled qubits would
freeze out earlier than those that are only weakly coupled to the rest of
the system was utilised to identify the qubits that were more prone to
freeze out. Their annealing schedule was then delayed [85]. Testing this
approach using the D-Wave 2000Q, it was determined that the TTS could
generally be improved with the hardest instances showing the greatest
time reduction – often by an order of magnitude.

Rather than altering the schedules, one can of course introduce inhomo-
geneity into the fields themselves. An analytical and numerical study
looking at the 1D Ising model showed that it may be possible to miti-
gate disorder in the problem Hamiltonian, responsible for the presence
of small gap minima, through the introduction of appropriately chosen
driver fields [98]. The strengths of the driver fields are chosen based off
the adjacent problem coupling strengths which can simply be read off
the Hamiltonian.

Another route would be to utilise information about the eigenspectrum of
Ĥp which is not known a priori, but which it may be possible to obtain
in some way. For instance, if the only exponentially closing gaps in the
annealing spectra are associated with perturbative crossings then we can
expect QA run in polynomial time to return precisely the local optima
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responsible for perturbative crossings that take the system out of the
ground state. Given that it is the neighbourhoods around the problem
states (as defined by the driver) that dictate whether or not the pertur-
bative crossings forms, an intuitive approach to removing them is to
tune the relative strengths of the local fields – effectively adjusting the
relative contributions from the different states in the neighbourhoods.
That such an approach can work was demonstrated for the maximum
independent set (MIS) problem with an assignment of local fields that
only required knowledge of the local optima [64]. This approach was
later worked into a recursive strategy in which the driver fields are ad-
justed after each set of annealing runs, based on what solution states are
returned [99]. Simulating this procedure for fifty 64-vertex MIS prob-
lems, for which perturbative crossings existed in the original spectrum,
it was found that 13 iterations were sufficient to produce an annealing
spectrum that allowed QA to reach the ground state in polynomial time.

2.2.2 Catalysts

We now consider how problem-specific information could be utilised
to construct a catalyst Hamiltonian that changes the annealing path in
some targeted way. One straightforward approach that has been ex-
plored is to select a particular form for the catalyst that has free pa-
rameters and then optimise these parameters for a particular problem
instance. A numerical study applying this approach to randomly gen-
erated quadratic unconstrained binary optimisation (QUBO) problems
suggested that a catalyst containing only single qubit operators could be
optimised to produce an annealing spectrum where the smallest spec-
tral gap between the ground state and the first excited state was at s = 1
[88]. Since this gap is only dependent on the problem and not the path
taken, this suggests that the optimised catalyst has successfully pro-
vided an optimal route from the driver to the problem Hamiltonian. In
the procedure, the parameter that was being optimised was the minimal
spectral gap. In practice however, one does not have access to this with-
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out having already solved the problem and so optimising the catalyst
parameters in this way is not a tractable solution. In order to implement
such a strategy more practically, one could imagine a similar procedure
where the energy of the lowest energy state obtained by a set of an-
nealing runs was used in place of the gap minimum. More generally
however, these results suggest that a catalyst choice may always exist
that removes the bottlenecks in an anneal.

Another idea that has been introduced is to use a diagonal catalyst that
biases the Hamiltonian towards the global optimum [68]. For the p-
spin model it was shown that so long as sufficiently many spins are
biased in the correct direction the 1st order phase transition could be
removed for an optimised catalyst strength. That the phase transition
re-appears for catalyst strengths greater than this can be understood as
a result of the incorrectly biased spins. Similar results were obtained
for the weak-strong cluster problem. The feasibility of this as a strategy
however, depends on how readily one can identify a state that is close
in Hamming distance to the ground state without knowledge of the
ground state itself. One might consider that knowledge of the local
optima, which could be identified through fast annealing runs, classical,
or hybrid methods, could be used in some way. However, as the authors
note, in many cases the local optima are very far in Hamming distance
from the global optimum. In fact, such cases are likely to correspond to
the hardest QA instances [63]. Nevertheless, it remains a possibility that
such catalysts may be of use provided some mechanism for selecting a
state to bias towards is determined.

As discussed in section 2.1.2, there has been a particular interest in the
use of XX-couplings in catalysts. More recently, there has been a fo-
cus on understanding how the effect a particular XX-catalyst has on the
spectrum relates to the couplings it introduces between problem states.
We noted earlier that the success of a non-stoquastic XX-catalyst in re-
moving the perturbative crossing for a particular geometrically-local
Ising example was attributed to the fact that this catalyst coupled the
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local optima responsible for the perturbative crossing to each other [67].
A similar phenomenon was observed for a maximum-weighted inde-
pendent set (MWIS) problem [100], however in this case the catalyst
was specifically crafted to introduce the desired couplings between the
local optima. As in [67], it was demonstrated both analytically and nu-
merically that introducing the catalyst with the same sign as the driver,
such that the total Hamiltonian was stoquastic, had the opposite effect
of reducing the size of the gap minimum. (We note that in this set-
ting, additional structure in the problem means that the effect of the
non-stoquastic catalyst becomes more complicated for higher catalyst
strengths – this will be discussed further in section 2.3.) In addition to
demonstrating that such a targeted catalyst has the desired effect, this
work also proposed a method for determining the appropriate couplings
in polynomial time using information obtained from fast annealing runs
with the standard schedule.

That there may be a way to obtain a gap spectrum with a polynomi-
ally closing gap in polynomial time is a more promising result than is
generally expected. While it is not impossible that poly-time quantum
algorithms could be found for solving NP-hard problems, it is worth
noting that the strategy proposed in [100] makes some assumptions re-
garding the structure of the problem which might account for the effi-
ciency of the proposed algorithm. That being said, the required graph
structure is precisely that which causes the perturbative crossing in the
original annealing spectrum, and so the method may be applicable to
some appreciable fraction of hard MWIS instances.

Another example of targeted XX-couplings being introduced to remove
a perturbative crossing can be found in [65]. (Here the couplings are
simply added to the driver rather than in a catalyst. The analytical rea-
soning for its success, however, would also apply had they been intro-
duced in a separate Hamiltonian.) In this case the perturbative crossing
in the original annealing spectrum is the result of a non-degenerate first
excited state with a significantly lower energy neighbourhood than the

34



2.3. Diabatic quantum annealing

ground state – i.e., the 1ES is coupled to more low energy states by the
driver than the GS is. Here the couplings are introduced with the same
sign as the driver (such that the total Hamiltonian remains stoquastic)
and couples the ground state low energy states, while coupling the first
excited state to significantly higher energy neighbours. The catalyst ef-
fectively extends the neighbourhoods of the two states in such a way
that the ground state becomes the state with the lower energy neigh-
bourhood. The approach is not dissimilar to the idea of adjusting the
local field strengths [64] described in 2.2.1. However in this case, rather
than tuning the weight of the contributions from different neighbours,
new neighbours are being added.

We note that the author of [65] does not propose this as a strategy
for removing perturbative crossings but rather the results are used to
highlight the importance of the neighbourhoods around the low energy
states. Indeed, choosing a catalyst based on to which states it will cou-
ple the problem ground state is, of course, not a practical strategy as it
assumes knowledge of the solution to the problem.

2.3 Diabatic quantum annealing

Rather than attempting to enhance the gap minimum in order to facili-
tate adiabaticity, another route being explored to reduce the run-time of
QA is to exploit transitions to higher energy levels in some way. Anneal-
ing protocols that do this are known as Diabatic Quantum Annealing
(DQA) protocols. Crucially, not having to remain in the GS means that
exponentially closing gaps do not necessarily mean the anneal must be
run exponentially slowly.

We have already discussed how hardware restrictions may make it nec-
essary to run exponentially many short anneals for which adiabaticity is
not preserved. In this situation, the diabaticity is not helping the anneal
reach the GS but rather is a unwanted side effect of running the anneal
within the coherence time of the hardware that we must compensate for.
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However, there are also examples where allowing the system to evolve
diabatically is useful in helping the system reach a higher overlap with
the GS.

The first, and arguably still the most decisive, example of this is for the
oracular glued trees problem [19]. As a result of its symmetric nature,
two exponentially closing gap minima form in the annealing spectrum
which can be exploited. Specifically, rather than running the anneal
slowly enough that the evolution remains adiabatic, an annealing time
can be selected for which the system transitions into the first excited
state at the first gap minimum – since it can transition back into the
ground state at the second. By carefully studying the gap spectrum and
the dynamics both at and away from the exponentially closing gaps, the
authors are able to show that QA offers an exponential speedup over
classical algorithms for this problem.

While not offering as decisive a speedup, there have since been other
examples of utilising transitions out of the ground state to enhance the
success of the QA algorithm. It has been noted in multiple settings
[87, 101, 102, 103] that when restricted to modest annealing times, faster
run times actually achieved a greater overlap with the ground state at
the end of the anneal. This is accounted for by the fact that if there is
a small gap towards the end of the anneal then it may be beneficial for
some of the amplitude to leak out of the ground state prior to this point.
That way some of the amplitude may be returned to the ground at the
location of the gap minimum – rather than the evolution being totally
adiabatic until the small gap at which point all the GS amplitude may
be lost.

A similar idea was discussed in [104] which looked at permutation sym-
metric problems. Here it was found that the system was able to return to
the ground state through a cascade of diabatic transitions after spending
the majority of the anneal in higher energy states. Utilising this, DQA
was found to be optimal over Adiabatic QA (AQA) in this setting. It
was later suggested however that this diabatic speedup is lost when the
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symmetry of the problem is broken [105]. In addition to this, there is
also the issue of how precise the annealing time must be in order to
achieve this speedup [104, 105].

So far we have discussed cases where the annealing spectrum already
has properties that are in some way exploitable by DQA. However, there
are also examples in the literature where a diabatic anneal is facilitated
by a change to the annealing path. As discussed in section 2.1.2, non-
stoquastic catalysts have been linked to an increase in the number of
ACs involving the ground state [89, 90] which naturally suggests a
greater potential for diabatic evolution. Further, it was noted that the
introduction of a non-stoquastic catalyst was sometimes able to drasti-
cally increase the final GS overlap while not actually enhancing the size
of the gap minimum [87, 89, 90]. This enhancement to the success prob-
ability was explicitly linked to the occurrence of diabatic transitions in
[90] through numerical simulation of the dynamics, with the increase in
ACs effectively providing potential routes back to the ground state.

That a non-stoquastic catalyst generally increases the number of ACs
between the ground and first excited state is in line with the findings
that non-stoquastic Hamiltonians tend to have smaller gaps in their low
energy spectra [91]. It is also in line with ideas introduced in [100] where
it is demonstrated that there are more ways for an AC to form with the
ground state if it has negative vector components – which it can only
have if the Hamiltonian is non-stoquastic.

While the introduction of additional ACs in the spectra have a chance
of offering a diabatic path to the ground state that can be followed effi-
ciently, the complicated spectra that are produced in this way may not
always aid the computation. Recently however, an example of a more
targeted approach has been put forward [100]. Considering a MWIS
problem where the graph structure results in a perturbative crossing be-
tween the GS and a highly degenerate 1st excited state (1ES), the author
demonstrates how a catalyst can be constructed that replaces the single
AC at the end of the anneal with a correlated double AC which can be
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exploited to reach the ground state diabatically in polynomial time. The
catalyst that achieves this is the same catalyst that was found to result in
gap enhancement when introduced with a different strength (discussed
in section 2.2.2) for which a polynomial time method is proposed for
acquiring the information required to construct it. Another potential
strategy for controllably altering the annealing spectrum has been pro-
posed in which a pre-anneal is introduced to create an additional small
gap at the start of the annealing spectrum. This has the to potential to
circumvent the existence of a small gap later in the spectrum [106].

It is also possible that, rather than altering the annealing spectrum,
more successful anneals that utilise diabatic dynamics could be achieved
through clever optimisation of the annealing schedule. The main evi-
dence for this comes from a study on the quantum approximate opti-
misation algorithm (QAOA) – which can be thought of as a Trotterised
QA algorithm where the lengths of time that the driver and the problem
Hamiltonians are applied at each step are parameters to be optimised.
As such, annealing schedules and QAOA parameters can be mapped
on to each other. A study comparing the success of QAOA and QA
for Max-Cut problems [102] determined that for QAOA instances which
corresponded to annealing spectra with larger gaps, the TTS with the
optimal QAOA parameters followed the Landau-Zener (LZ) prediction
– suggesting that the optimal QAOA parameters corresponded to an
adiabatic annealing trajectory. However, for instances corresponding to
annealing spectra with smaller gaps, the QAOA TTS fell away from
the LZ prediction and plateaued. This suggests that the optimal QAOA
schedule corresponds to an annealing schedule which utilises some kind
of diabatic dynamics.

Comparing the QAOA TTS for these instances to the TTS for a stan-
dard linear anneal with the same run-time for the individual runs, it
was found that QAOA significantly outperformed QA. This suggests
that the optimised QAOA parameters correspond to some cleverly op-
timised annealing schedule which makes more efficient use of diabatic
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dynamics to end up with a higher ground state overlap – rather than just
running the anneal more quickly. Mapping the QAOA parameters to a
QA schedule for a representative instance and looking at the dynam-
ics, it was confirmed that this was indeed the case. Further evidence
that the optimal annealing schedule may be one that cleverly makes use
of diabaticity came a few years later in a study that looked at optimis-
ing annealing schedules directly [107]. Here, optimising the annealing
schedule was found to reduce the exponential run-time needed to find
the GS of the frustrated ring model with QA to a polynomial run-time.
Examining the dynamics associated with the optimised schedules, it was
found that this improvement was being facilitated by a complex diabatic
evolution.

There is of course the question of what we an expect of the time scaling
associated with optimising the annealing schedule. In [107], the time
requirements for the systems examined, which had up to 39 spins, sug-
gested that the scaling was sub-exponential. It is worth noting however
that, while hard to solve with QA, the frustrated ring model is easy to
solve classically. It is possible that the non-exponential time scaling to
find an optimal path is related to this.

Aside from the examples discussed here in which diabatic dynamics
are demonstrated to be able to help QA reach the ground state faster,
there are additional reasons why diabatic QA may be considered su-
perior to its adiabatic counterpart. Firstly, DQA allows for universal
computation which adiabatic QA does not without the introduction of
non-stoquasticity [22, 108]. Currently, the overheads involved in any of
the proposed methods mean that the use of QA for universal computa-
tion is intractable – however the fact that DQA allows for universality
suggests that it is inherently more powerful that adiabatic QA.

However, DQA comes with its own problems. It has already been noted
that the run-time may need to be chosen very precisely in order for DQA
to outperform adiabatic QA [104, 105]. Further to this, an annealing pro-
tocol that attempts to utilise excited states as a path to the ground state

39



2. Alternative approaches in quantum annealing

is likely to be more adversely affected by certain open system effects
such as relaxation.

2.4 Discussion

In this chapter we have discussed some of the variants on quantum an-
nealing that exist in the literature. These variants included the use of
inhomogeneous drivers, the introduction of catalyst Hamiltonians and
the exploitation of diabatic transitions in order to circumvent the prob-
lem of exponentially closing gaps in the annealing spectrum. Let us
highlight some of the key takeaways.

With regards to driver and catalyst selection, inhomogeneous drivers
and catalyst hamiltonians with randomly selected components seemed
to have some capacity to help QA achieve a high GS fidelity for shorter
annealing times [66, 86, 87, 88? ]. Considering the use of catalysts specif-
ically, numerical studies found that stoquastic catalysts resulted in gap
enhancement more frequently than non-stoquastic ones [87, 88, 89, 90]
– a finding that was corroborated by theoretical work [91]. Meanwhile,
non-stoquastic catalyst choices were found to have the capacity to fa-
cilitate diabatic annealing through the introduction of additional gap
minima [87, 89, 90, 100]. The majority of the literature surrounding cat-
alyst Hamiltonians has focused on the use of XX-couplings. However,
the introduction of higher order X-terms were also found to be bene-
ficial [81, 92? ] with respect to enhancing the size of the spectral gap
minimum. That higher order couplings tend to perform well can be un-
derstood as the system more easily being able to traverse between local
and global optima.

Outside of introducing new couplings and/or altering the local-field
strengths, another promising approach was to stagger the driver sched-
ule such that different parts of the system would be pushed through a
phase transition at different times [3, 82, 83, 85]. It is, however, hard
to say exactly how any of these approaches will perform in general

40



2.4. Discussion

problem settings. Where concrete results demonstrating a quantifiable
speed-up over the standard formulation of QA do exist [82, 83, 92, 93],
they relate to analytically tractable models which do not reflect the typ-
ical structure one would expect to see in a Hamiltonian that encodes a
difficult to solve optimisation problem. Indeed, by virtue of being ana-
lytically tractable, the models in question are only difficult for QA and
do not actually correspond to hard problems. This does not necessar-
ily invalidate the conclusions from these works – in which polynomial
annealing times were facilitated by the removal of a first order phase
transition. A strategy that is able to remove a first order phase transi-
tion in some simple model may well have a similar effect on a first-order
phase transition present in a more complex setting.

That being said, if we assume that QA will not be able to solve NP-hard
problems efficiently, that necessarily implies that there will be no “one
size fits all” approach that facilitates polynomial time annealing runs
that can reach the final GS with high fidelity. (Although, in theory, there
could exist generic approaches that offer sub-exponential improvements
to the annealing time.) And indeed this is reflected in the literature as a
whole – motivating approaches which attempt to facilitate polynomial
annealing run-times even if the overall scaling of the algorithm remains
exponential in the problem size. For instance, while randomly generated
drivers and catalysts may offer faster routes to the GS, the results in [66]
suggest that an exponential number would likely need to be tried before
finding a suitable choice. There is also the fact that different approaches
perform differently in different settings. While stoquastic catalysts tend
to result in more gap enhancement than non-stoquastic ones, there are
cases where non-stoquastic catalysts are able to remove first-order phase
transitions [67, 92, 93] where stoquastic ones cannot. Other studies have
highlighted the importance of where the catalyst couplings are placed
within the problem graph structure [81, 96, 100] as well as the sensitivity
of their effects to the strength with which the catalyst is introduced
[90, 100]. This naturally leads to the idea that it may be beneficial to

41



2. Alternative approaches in quantum annealing

actively incorporate problem-specific information into the way in which
the algorithm is run.

Of course not all the information we might wish to utilise is available
to us. For instance, optimising the catalyst parameters based on in-
formation on the instantaneous gap spectrum [88], or biasing towards
the problem GS [68] are not likely to be viable strategies in practice –
though there may be ways to utilise the ideas introduced in these works
in other approaches. Information to which we would have access from
the specification of the problem alone includes surface level information
on the graph structure – e.g. what couplings are present. Ideas have
been put forward that incorporate this kind of information into the se-
lection of local-driver field-strengths [98], the design of inhomogeneous
driving schedules [85, 97] and the construction of n-local XX-catalysts
[81]. There have also been proposals to use knowledge of the local op-
tima of a problem, which could be obtained through classical methods
or “failed” annealing runs, in driver [64, 99] or catalyst [65, 67, 100]
design.

Overall, a number of potential avenues for enhancing QA have been
proposed – with different approaches likely to have different levels of
viability on different hardware setups. In this dissertation, we aim to
add to the arsenal of these. In particular, we will be focusing our atten-
tion on the inclusion of XX-couplings in the form of a catalyst Hamilto-
nian for the removal of perturbative crossings. Specifically, we will be
examining the relationship between the structure of the problem spec-
trum and which XX-terms are most effective, thereby motivating a from
of targeted catalyst Hamiltonian.
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Chapter 3

Problem Instances

We are interested in examining the effects of different XX-catalysts on
perturbative crossings. Specifically, we will be considering perturbative
crossings that form as a result of non-degenerate excited states with
lower energy neighbourhoods than the ground state. Not only do we
wish to investigate how the couplings present in the catalyst impact the
annealing spectrum but also how the effect of the catalyst depends on
the properties of the perturbative crossings. To facilitate this, we con-
struct a scalable instance of the MWIS problem that allows us to easily
adjust key properties of the problem Hamiltonian that are responsible
for the formation of such crossings. The MWIS problem is a natural
choice due to (a) the free parameters present in the encoding of the
problem into an Ising Hamiltonian and (b) the ease with which we can
adjust the neighbourhoods around the local optima.

We begin this chapter by going through the theory behind the forma-
tion of perturbative crossings. We then give a description of the MWIS
problem and its encoding into an Ising Hamiltonian in section 3.2. Sec-
tion 3.3 then describes the problem instances used in this work, how
their structure relates to the theory of perturbative crossings and how
this enables us to produce annealing spectra with the desired proper-
ties. Section 3.4 covers how we select and normalise the parameters that
go into the MWIS Ising Hamiltonian. Finally, in section 3.5, we present
numerical results showing that we can indeed controllably manipulate
the annealing spectrum in the ways described.
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3.1 Perturbative crossings

As described in section 1.3.1, we can understand perturbative crossings
by introducing Ĥd as a perturbation to the problem Hamiltonian such
that the total Hamiltonian is written

Ĥ(λ) = Ĥp + λĤd. (3.1)

The perturbed energies up to second order corrections are then given by

Ea(λ) = Ea + λ ⟨Ea|Ĥd|Ea⟩+ λ2 ∑
c ̸=a

| ⟨Ec|Ĥd|Ea⟩ |2
Ea − Ec

= Ea + λ2 ∑
c∈Nx(a)

1
Ea − Ec

, (3.2)

where we have used Nx(a) to denote the neighbourhood of a – i.e.,
the set of states to which a is coupled by the driver. To get from
the first to the second line of equation 3.2, we have used the fact that
| ⟨Eb|Ĥd|Ea⟩ | = 1 for b ∈ Nx(a) and 0 otherwise. The first order term
vanishes since Ĥd cannot couple a problem state to itself. Note that we
can transform between the perturbed Hamiltonian in equation 3.1 and
the annealing Hamiltonian in equation 1.1 with s = 1/(1 + λ).

We can say that a crossing occurs between two problem states a and b
(b > a) if there exists some λx such that Eb(λ) < Ea(λ) for λ ≥ λx.
If this λx is within the convergence radius of the expansion, this in-
dicates the formation of an AC in the annealing spectrum at the cor-
responding sx = 1/(1 + λx). In general, the crossings of interest are
those between the lowest energy instantaneous states and, in particular,
those involving the instantaneous ground state. We therefore restrict
ourselves to considering the problem ground state and problem states
with E0 < Ea ≤ E0 + δ where δ is small compared to the energy gap
between the problem ground state and the rest of the spectrum. We re-
fer to this set of problem states as Lδ. If all states in Lδ are more than
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3.1. Perturbative crossings

one spin flip apart from each other, as will be the case if these states
correspond to local optima, then each term in the sum from equation
3.2 will be negative for all states a ∈ Lδ. For clarity we can write, for the
states a ∈ Lδ,

Ea(λ) = Ea − λ2 ∑
c∈Nx(a)

1
|Ec − Ea|

. (3.3)

Taking of the absolute value in the denominator is redundant since Ec −
Ea will always be positive in this context however we include it to make
the sign of these terms explicit. Since the contributions to the sum are all
cumulative, it is clear that a state a ∈ Lδ will receive a greater negative
perturbation if it has more states in its neighbourhood that are close
in energy to it. And since Lδ contains the very lowest energy states,
the neighbours that provide the greatest contributions to the sum in
equation 3.3 will be the lowest energy neighbours.

Thus, for a crossing to occur between two states a and b ∈ Lδ (b > a),
Nx(b) must contain more low energy states than Nx(a). Explicitly, there
must be a positive λx for which

Ea(λx) = Eb(λx),

Ea − λ2
x ∑

c∈Nx(a)

1
|Ec − Ea|

= Eb − λ2
x ∑

c∈Nx(b)

1
|Ec − Eb|

,

∆Eab = λ2
x

 ∑
c∈Nx(b)

1
|Ec − Eb|

− ∑
c∈Nx(a)

1
|Ec − Ea|

 , (3.4)

where we have used ∆Eab to denote the energy difference Eb − Ea. In
order for the crossing to occur at small λx, such that perturbation the-
ory remains valid, the difference in the energies of the neighbourhoods
around a and b must be large enough compared to the unperturbed
energy gap ∆Eab = O(δ).

Before moving on, we note briefly that if we were to instead use an
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inhomogeneous driver of the from

Ĥd = −
n

∑
i=1

γiσ̂
x
i , (3.5)

then the numerators in equation 3.3 will be replaced by the |γi|2 for
which ⟨Ec|σ̂x

i |Ea⟩ = 1. As such, the local field strengths γi can be used to
tune the relative contributions of the neighbours as discussed in section
2.2.1. We do not utilise inhomogeneous driving in this work however
the ideas behind the catalysts that we use are not unrelated.

Now that we have established the conditions under which a perturba-
tive crossing occurs, we can move on to considering the size of the gap
minimum that occurs as a result. We noted in section 1.3.1 that the de-
generacy at the crossing point is removed by tunnelling between the two
perturbed states which will depend on their overlap. We can write the
perturbed states as

|Ea(λ)⟩ =
2n−1

∑
c=0

cac(λ) |Ec⟩ , (3.6)

where the cac(λ) values are the components of the perturbed vector
|Ea(λ)⟩ in the computational basis – or, equivalently, the overlaps of
|Ea(λ)⟩ with the problem eigenstates. Thus, for the gap size at the per-
turbative crossing, we can write

∆Eab(λx) ∝ ⟨Ea(λ)|Eb(λ)⟩ =
2n−1

∑
c=0

cac(λx)cbc(λx). (3.7)

Perturbation theory tells us that, for any perturbed problem state a, the
magnitude of cac(λx) will be exponentially small in the Hamming dis-
tance between |Ea⟩ and |Ec⟩ – since |Ec⟩ will only enter the perturbative
expansion on the order of this Hamming distance. Because each term in
equation 3.7 will depend on the Hamming distance between each state, a
and b, and the state c, we can expect ∆Eab(λx) to decrease exponentially
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with the Hamming distance with between |Ea⟩ and |Eb⟩. This Hamming
distance will, to some extent, be instance specific – in that it depends
on how well separated the problem’s local optima are. However, we
can generally expect this Hamming distance to grow linearly with the
number of spins in the system resulting in a gap minimum that closes
exponentially with the problem size.

3.2 The MWIS problem

Now that we have outlined the theory behind the annealing bottleneck
we wish to study, let us move on to describing our problem setting. The
MWIS problem takes as its input an undirected, weighted graph and
aims to find the set of vertices with the largest weight for which no two
vertices are connected by an edge. In its Ising formulation, each vertex
of the problem graph is represented by a spin. Each basis state then
represents a set of vertices, with spin up denoting a vertex that is in
the set and spin down denoting a vertex that is not. For instance, the
problem state |Ea⟩ = |↓↑↑↓↑⟩ corresponds to the set of vertices {2, 3, 5}.
Note that, for this encoding, flipping a spin corresponds to either adding
or removing a vertex from the set.

The vertex weights are implemented with local Z-fields and the inde-
pendent set condition by introducing an edge penalty. This penalty is
achieved by adding an anti-ferromagnetic ZZ-coupling, with a strength
Jzz, between any two qubits corresponding to vertices connected by an
edge. More specifically, the problem Hamiltonian is given by

Ĥp = ∑
i∈{vertices}

(di Jzz − 2wi)σ̂
z
i + ∑

(i,j)∈{edges}
Jzzσ̂z

i σ̂z
j , (3.8)

where di is the degree and wi the weight of vertex i. The appearance of
the edge penalty strength, Jzz, in the local field terms is to account for the
fact that two down spins coupled by an edge should not be penalised.
i.e., it is acceptable for two adjacent spins to not be included in the set.
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Assuming a high enough Jzz is chosen, the energies of the problem states
will form clusters based on how many edge dependencies are present
in the corresponding set of vertices. The higher the magnitude of Jzz,
the greater the separation between these clusters. Within the clusters,
the energies of the states will be ordered by the total weight of the cor-
responding set, with the highest weighted set having the lowest energy.

We now describe how we construct our family of MWIS instances.

3.3 Problem graph structure

In order to produce annealing spectra with a desired perturbative cross-
ing structure we need to be able to (a) select the number of excited states
that have an energy close to that of the ground state, (b) tune how close
in energy to the ground state these excited states are, and (c) adjust the
energy spectra of the neighbourhoods around these states. The prob-
lems we construct, as well as the ways we utilise the free parameters
in the corresponding Ising Hamiltonian encodings, are inspired by the
MWIS instances used in [65].

As depicted in figure 3.1(a), the graphs used in this work are complete
k-partite graphs with na vertices in each sub-graph, Ga. As such, the
graphs have k maximally independent sets, giving the MWIS problem
on these graphs k local optima – with each local optimum correspond-
ing to the selection of all the vertices within one sub-graph. We allocate
a total weight, Wa, to each sub-graph which we split evenly between
the vertices such that each vertex in sub-graph Ga has a weight Wa/na.
Given this problem structure, the problem Hamiltonian given in equa-
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Figure 3.1: An illustration of our graph structure, as described in section 3.3, is shown
in (a). (b) shows the bipartite graph scaling used to obtain the results in figure 3.4(d).
An example graph with n0 = 3, n1 = 2 and n2 = 4 is shown in (c) and a cartoon show-
ing the perturbations to the three lowest energy states of the corresponding problem
Hamiltonian is shown in (d). Here the coloured lines represent the perturbed problem
energies up to second order and the grey curves illustrate the resultant instantaneous
energies.
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Figure 3.2: Cartoons illustrating the perturbed ground and first excited state energies
of a problem Hamiltonian corresponding to a bipartite graph where n1 > n0. Taking
the setting depicted in (a) as a base, (b) demonstrates the effect of increasing the dif-
ference between W0 and W1 and (c) demonstrates the effect of decreasing Jzz – both
of which increase the value of λ for which the crossing occurs. (d) then demonstrates
the effect of increasing both the weight difference and Jzz, keeping the location of the
crossing the same.

tion 3.8 can be written as follows:

Ĥp =
k−1

∑
a=0


Jzz ∑

b ̸=a
nb︸ ︷︷ ︸

di∀i ∈ Ga

−2
Wa

na︸︷︷︸
wi∀i ∈ Ga

 ∑
i∈Ga

σ̂z
i + Jzz ∑

i∈Ga

∑
b>a

∑
j∈Gb

σ̂z
i σ̂z

j

 .

(3.9)
The outer sum goes over all the sub-graphs in the problem. The first
term introduces the local fields on the qubits associated with the vertices
in a given sub-graph. For clarity, we highlight the parts corresponding to
the degree, di, and weight, wi, of the vertices. The second term in equa-
tion 3.9 introduces the necessary ZZ-couplings – each with a strength of
Jzz. 2k + 1 parameters are required to define a problem instance and its
encoding into an Ising Hamiltonian. These are the k weights, Wa, the k
sub-graph sizes, na, and the edge penalty, Jzz.

The sub-graph weights, Wa, will decide which of the k local optima is
the global optimum and the ordering of the other local optima. If the
weights are selected to be sufficiently close together, the k local optima
will be the highest weighted independent sets and will thus correspond
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to the k lowest energy states in the associated problem spectrum1. How
close the sub-graph weights are to each other will dictate how close
in energy these states are. We have thus established how this graph
structure can be used to select both the number of states with energy
comparable to the ground state and also how close in energy these states
are, as desired.

Next, we describe how we can control the spectra of the neighbourhoods
around the states corresponding to the local optima. This is achieved
through the allocation of sub-graph sizes. Recall that flipping one of
the spins in |Ea⟩ from down to up corresponds to adding a vertex to
the corresponding set and that flipping a spin from up to down corre-
sponds to removing a vertex. This means that a state |Ea⟩, associated
with the local optimum corresponding to sub-graph Ga, will have na

neighbours corresponding to independent sets and ∑b ̸=a nb neighbours
corresponding to dependent sets. By our selection of Jzz, we can ensure
that all the states corresponding to independent sets have lower energies
than those corresponding to dependent sets. As such, we can say that
states corresponding to local optima associated with larger sub-graphs
will have lower energy neighbourhoods. This means that the parame-
ters na can be used to set the strengths of the perturbations. Naturally,
increasing the difference between the sub-graph sizes will enhance the
difference between the energies of the neighbourhoods and thus the dif-
ference in the level of the perturbation from the driver. However, we can
also enhance this difference by increasing Jzz since this will increase the
energy difference between the states corresponding to independent and
dependent sets. Note that increasing Jzz does not alter the problem that
is encoded.

To summarise the above, we can use the number of sub-graphs, k, to

1For a sufficiently large weight differences, sub-sets of one of the higher weighted
sub-graphs may have a larger weight than one of the other maximally independent
sets. When this is the case, the local optima will not correspond to the very lowest
excited states. This does not affect the way in which the desired perturbative crossings
form but will of course impact the labeling of the states.
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set the number of problem states with energy comparable to that of the
ground state and we can use the sub-graph weights, Wa, to decide how
close in energy these states are. We can then decide on the level of per-
turbation that each problem state will receive from the driver with the
sub-graph sizes, na, as well as enhance or reduce the difference between
these perturbations by tuning Jzz. For ease of notation we will always
set the weights such that W0 > W1 > . . . . This is so that, for a < k,
we can equate the problem state |Ea⟩ with the local optimum associated
with selecting all the vertices in sub-graph Ga.

To better understand how these parameters will result in a particular
perturbative crossing structure we consider the tripartite example graph
in figure 3.1(c) with n0 = 3, n1 = 2 and n2 = 4. These parameter
choices mean that out of the three problem states corresponding to the
three local optima, the 2ES will have the lowest energy neighbourhood,
followed by the GS and then the 1ES. We therefore expect the 2ES to
receive the greatest negative perturbation from the driver and the 1ES
to receive the smallest. A cartoon of the resultant crossing structure is
shown in figure 3.1(d). Effectively, by choosing the sub-graph sizes we
can decide how the energies of the problem states re-order themselves.

It is straightforward to understand how changing the sub-graph weights
and Jzz will effect the nature of the perturbative crossings using the ideas
introduced in section 3.1. Consider the cartoon in figure 3.2(a) which
depicts the perturbed problem ground and first excited state energies
in a setting where we have chosen n1 > n0 such that a perturbative
crossing forms. By increasing the weight difference, δW = W0 − W1,
we can increase the energy difference, ∆E01 = E1 − E0, between the
unperturbed problem states. As shown in figure 3.2(b), this will result
in the crossing happening for a larger value of λ and thus a smaller
value of s. Lowering the strength of the edge penalty Jzz will have a
similar effect since the difference between the perturbation strengths
will be reduced – this is illustrated in figure 3.2(c). Finally, figure 3.2(d)
depicts a setting where we have increased both δW and Jzz such that
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the location of the crossing remains the same but the 1ES has received
a significantly greater perturbation at the crossing point compared to
the setting depicted in (a). Recall from the discussion in section 3.1 that
we expect a larger perturbation of the states at the point of crossing to
result in a greater overlap between the two states at this point and so
a larger gap minimum. We therefore expect setting (d) to have a larger
gap minimum than setting (a) in its associated annealing spectrum but
for the location of this gap minimum to be the same.

In section 3.5 we will present numerical results confirming that we are
able to controllably produce annealing spectra as outlined in this section.
First, however, we give more detail on the parameters that enter Ĥp.

3.4 Problem parameters

The preceding section described how the parameters, {na}, {Wa} and
Jzz, will be used to to alter the gap spectrum of Ĥp in order to tune the
properties of the perturbative crossings that form in the annealing spec-
trum. In this section we discuss how these values are actually chosen
and how we normalise the parameters that enter equation 3.9.

First, it is important to differentiate between the MWIS problem itself
and the Hamiltonian that is constructed to encode it. Note that the
problem is defined solely by the parameters {na} and {Wa} while Jzz is
a parameter associated exclusively with the problem’s encoding into an
Ising Hamiltonian. With regards to the MWIS problem, one need not
worry about selecting an appropriate scale with regards to the magni-
tudes of {Wa}. However, once these values are substituted into 3.9, we
must consider what this means for the energy scale of Ĥp in relation
to Ĥd and, if a catalyst is present, Ĥc. As such, a consistent means of
re-scaling the parameters is required to ensure that Ĥp has an appropri-
ate energy scale. (The parameters, {Wa}, will also affect the minimum
value of Jzz that ensures that all the states corresponding to dependent
sets are higher in energy than those corresponding to independent sets.
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Selecting Jzz values will be discussed towards the end of this section.)

We want to be able to adjust the values of {Wa} and Jzz to alter the
relative gaps between states in the problem spectrum without changing
the energy scale of Ĥp. With all other factors being equal, increasing this
energy scale will result in gap enhancement and so we wish to keep it
constant for a given system size, n = ∑k−1

a=0 na. Furthermore, we wish to
maintain a consistent relationship between the energy scales of Ĥp and
Ĥd with increasing n.

With the preceding discussion in mind, we introduce the normalisation
factor

F =
E2n−1(0)− E0(0)

E2n−1 − E0
, (3.10)

where the numerator and denominator are the spectral range of Ĥd and
Ĥp respectively. The numerator is trivially

E2n−1(0)− E0(0) = 2 × n = 2
k−1

∑
a=0

na. (3.11)

We can use equation 3.9 to obtain expressions for E0 and E2n−1 in terms
of the parameters {na}, {Wa} and Jzz. Assuming that a sufficiently high
Jzz has been chosen (and recalling that we allocate the largest weight to
G0) we know that the ground state will have all the spins in G0 pointed
up and the rest pointed down. Similarly, we know that the highest
excited state, E2n−1, will be the state with all spins pointed up since this
corresponds to the set with the maximum number of edge violations.
From this we obtain the following expressions:

E0 = −2W0 +
k−1

∑
a=1

[
2Wa − Jzzna

a−1

∑
b=0

nb

]
, (3.12)

E2n−1 =
k−1

∑
a=0

[
Jzzna

(
a−1

∑
b=0

nb + 2
k−1

∑
b=a+1

nb

)
− 2Wa

]
. (3.13)
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Substituting equations 3.11, 3.12 and 3.13 into equation 3.10 we get:

F =
∑
a

na

k−1
∑

a=1

[
n0na Jzz + na Jzz ∑

b ̸=a
nb − 2Wa

] . (3.14)

For an un-normalised set of problem weights, {Wa}, and an edge
penalty, Jzz, we can now obtain the normalised parameters:

W ′
a = Escale × F × Wa, J′zz = Escale × F × Jzz . (3.15)

Here, Escale sets the energy scale of Ĥp in relation to Ĥd. Escale = 7.5
is used throughout this work. This value has been chosen because it
allows key features of the annealing spectra to be easily distinguished
for the smaller system sizes – such that we can use the full instantaneous
spectra of these instances as illustrative examples. Selecting a much
smaller Escale results in the perturbative crossings being squashed at the
very end of the anneal. Significantly larger values of Escale lead to less
pronounced gap minima.

In selecting the un-normalised weights, the lowest weighted sub-graph
is always given a weight of unity (with the exception of one instance in
chapter 9). The other sub-graphs are then given weights 1 < Wa ≤ 1.7
depending on how close in energy we want to make the states corre-
sponding to the local optima. Jzz is then chosen in response to these
values in order to produce an annealing spectrum with the desired prop-
erties. Note that the values of {Wa} and Jzz quoted throughout this text
are the un-normalised parameters. The corresponding normalised pa-
rameters can be found in appendix B.

Throughout this section we have referred to choosing a sufficiently high
Jzz to ensure that the states corresponding to independent sets all have
lower energies than those corresponding to dependent sets. It is clear
that the highest energy state corresponding to an independent set will
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be the state with all spins pointed down – representing the empty set.
While it is easy enough to obtain an expression for this energy from
equation 3.9, determining an expression for the lowest energy state cor-
responding to a dependent set is not so straightforward. This is because
the set of vertices that this state corresponds to is instance dependent.
We know that the state in question should contain only one edge vio-
lation and so should consist of one vertex from one sub-graph and one
vertex from another. However, the selection of sub-graphs that results
in the largest weighted set of two vertices will depend on both the total
sub-graph weights and their sizes since it is the weights on the individ-
ual vertices that is relevant. In practice, therefore, we simply check that
the problem spectrum contains no states corresponding to dependent
sets that are lower in energy than the all spin down state.

Finally, the values of na that have been used vary between 2 and 37 and
the total system sizes we examine range from n = 5 to n = 73. These
larger system sizes are tractable as a result of symmetries in the problem.
How these symmetries were used to reduce the size of the Hilbert space
is discussed in section 4.2.

3.5 Spectral Properties

We now present numerical results corresponding to different parameter
settings to confirm that we are able to produce the desired perturbative
crossings and that we are able to alter their properties in the way de-
scribed. We begin by demonstrating that we can controllably produce
different AC structures between the k lowest instantaneous states us-
ing our k-partite graphs. We then move to a bipartite graph for sim-
plicity to show how tuning the edge penalty and weight difference,
δW = W0 − W1, alters the properties of the perturbative crossing that
forms.

In figure 3.3 we present annealing spectra corresponding to the three ex-
ample graphs shown in the top row. These results are obtained through
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Figure 3.3: Numerical results for the annealing spectra associated with three different
example graphs. Each column corresponds to a different graph which is depicted on
the top row. All three instances share the same un-normalised parameters: W0 =
1.04, W1 = 1.02, W2 = 1.00 and Jzz = 2. The second row shows the gap spectra as
well as an inset cartoon illustrating the perturbations to the problem state energies.
Rows three, four and five show the evolution of the ground, first and second excited
states respectively in terms of their overlaps with the problem states – the problem
ground first and second excited state overlaps are highlighted in blue, orange and
green respectively.
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Figure 3.4: (a-c) show numerical results for annealing spectra corresponding to differ-
ent bipartite MWIS problems. Gap spectra are shown on the top and the evolution of
the instantaneous ground state vectors are shown on the bottom. The gap spectra in-
sets show a close-up view of the gap minima. The problem parameters are: (a) n0 = 3,
n1 = 2, W0 = 1.01, W1 = 1.00, Jzz = 5.33. (b) n0 = 2, n1 = 3, W0 = 1.01, W1 = 1.00,
Jzz = 5.33 and (c) n0 = 2, n1 = 3, W0 = 1.37, W1 = 1.00, Jzz = 37.5. (d) shows the min-
imum gap with increasing system size for three different parameter settings. The grey
line corresponds to the parameter settings in (a) and the two purple lines correspond
to the parameter settings in (b) and (c). For the cases where an AC is produced the
sub-graph sizes are scaled as n0 = (n − 1)/2 and n1 = (n + 1)/2. For the case where
we do not produce an AC the sub-graph sizes are reversed.
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numerical diagonalisation of the total Hamiltonian at different values
of s. Details on the tools we use to perform the diagonalisation will
be given in the following chapter. That our numerical methods are not
presented prior to this point is because they include a Hilbert space re-
duction that makes use of the graph structure introduced in this chapter.

In the second row of figure 3.3, we plot the energy gaps ∆E0a as a func-
tion of s and also include an inset cartoon depicting the perturbations to
the problem state energies. In the third, fourth and fifth rows of figure
3.3 we show the corresponding evolution of |E0(s)⟩, |E1(s)⟩ and |E2(s)⟩
respectively.

We have not attached a unit to the energies we present in figure 3.4 as
it is not currently relevant to the discussion. This is because we are
currently only interested in particular features of the energy landscape
(such as the formation of gap minima) and the relative energy gaps as-
sociated with different parameter settings. The values can simply be
understood as being in relation to the local driver fields being intro-
duced with a magnitude of unity. Since the parameters of Hp are nor-
malised with respect to the driver (as discussed in the previous section)
and we are currently only working with the normalised annealing time
(s = t/ta), this is sufficient to define the setting. More formally, for a
driver introduced with energy hx, the plotted values are the resultant
energy gaps divided by hx. 2

The sub-graph weights associated with each of the example graphs are
W0 = 1.04, W1 = 1.02 and W2 = 1.00 and the edge penalty chosen is
Jzz = 2. Figure 3.3(a) depicts a setting where the ground state has the
lowest energy neighbourhood by virtue of the corresponding local op-
timum containing the most vertices. The first and second excited states
corresponding to the other two local optima both have neighbourhoods
with comparable energy spectra. This is reflected in the corresponding

2For a realistic annealing setting, one could consider these energies to be in GHz –
which is reflective of the energy scales used by the D-Wave quantum annealers [109].
In later sections of this dissertation, where it does become relevant, this is indeed the
energy scale that we use.
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cartoon where we show the problem ground state receiving the greatest
negative perturbation from the driver and the other two states receiving
the same perturbations as each other such that no perturbative crossings
are expected to form. Looking at the associated gap spectrum we see
that this is indeed the case in that no small gap minima form between
the instantaneous energy levels. Looking at the instantaneous vectors,
we see that the evolution proceeds monotonically towards the corre-
sponding problem state – i.e., |Ea(s)⟩ evolves monotonically towards
|Ea⟩. Considering the large s values, which is where we would expect
to see perturbative crossings were there any present, we see that each
state |Ea(s)⟩, remains dominated by the corresponding problem state,
|Ea⟩, rather than there being a sharp amplitude exchange into a different
problem state which we would expect to see at a perturbative crossing.

Next, consider the problem graph shown in figure 3.3(b) where we have
now given the problem 1ES a lower energy neighbourhood than the
ground state. As depicted in the corresponding cartoon, we now expect
a perturbative crossing to form between these two states resulting in an
AC between the instantaneous ground and first excited states. Looking
at the associated gap spectrum we do indeed observe the appearance of
a small gap minimum forming between the two states. Considering the
evolution of the instantaneous ground state, moving backwards from
s = 1, |E0(s)⟩ can be seen to be dominated by |E0⟩ until there is a sharp
exchange into |E1⟩ at the location of the gap minimum – reflecting the
perturbed problem 1ES becoming lower in energy than the perturbed
problem GS. The reverse behaviour is observed for the instantaneous
1ES. Conversely, the instantaneous 2ES evolves smoothly away from |E2⟩
as s decreases away from s = 1, reflecting the fact that it does not partake
in a perturbative crossing.

Finally, consider the setting depicted in figure 3.3(c). This is the same
example as that discussed in section 3.3 and we expect the problem en-
ergies to re-order themselves such that two perturbative crossings form
as illustrated in the corresponding cartoon. Once again, this is reflected
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in the gap spectrum where we observe a gap minimum forming be-
tween the ground and first excited state at around s = 0.81, followed
by a gap minimum between the first and second excited state at around
s = 0.88. The expected abrupt changes in the instantaneous states are
observed at the locations of the gap minima. In particular, note how the
|E2⟩ amplitude can be traced through from the instantaneous ground
state, through the first excited state and into the second excited state as
the perturbed problem 2ES goes from having the lowest energy to the
highest with increasing s (or decreasing λ).

Before moving on, we briefly consider the path a system might take
through these annealing spectra. Let us assume that an annealing time
is chosen that allows the evolution to proceed adiabatically at all points
other than at the perturbative crossings at which point all its ampli-
tude is transferred. Under these conditions, the system will end with a
high overlap with the state that has the lowest energy neighbourhood
– the ground, first and second excited states for the three examples re-
spectively. Effectively quantum annealing with its standard driver and
linear interpolation searches for the low energy state with the lowest
energy neighbourhood – rather than the very lowest energy state.

We now demonstrate the effects of altering the sub-graph weights and
edge penalty. For simplicity we move to a bipartite graph with n1 > n0

such that we produce one perturbative crossing whose properties we
can tune. Numerical results for a graph with n0 = 2 and n1 = 3, and
two different settings for the weights and edge penalty, are presented in
figures 3.4(b) and (c). The gap spectra are presented in the top row and
the evolution of the instantaneous ground state on the bottom.

The results in figure 3.4(b) correspond to a setting with W0 = 1.01,
W1 = 1.00 and Jzz = 5.33. The result is that the perturbed problem states
have undergone little change before the crossing point at s = 0.9. This is
reflected in the fact the instantaneous ground state goes from |E0(s)⟩ ≈
|E1⟩ to |E0(s)⟩ ≈ |E0⟩ at the perturbative crossing. For comparison,
figure 3.4(a) depicts a setting with the same parameters but with the
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sub-graph sizes swapped so that no perturbative crossing forms.

The parameters used for the anneal in figure 3.4(c) are W0 = 1.37,
W1 = 1.00 and Jzz = 37.5 – that is, we have increased both the weight
difference and the edge penalty. (The specificity of this edge penalty
and that from the preceding parameter set, Jzz = 5.33, are so that both
perturbative crossings occur at s = 0.9.) Looking at the evolution of the
instantaneous GS in this setting, we see that |E0(s)⟩ is significantly more
mixed just before the perturbative crossing reflecting the fact that the
problem 1ES has undergone a greater perturbation at the point of the
crossing. These two settings correspond to the cartoons in figures 3.2(a)
and (d) respectively. As expected, we see that the gap minimum in the
second setting is significantly larger than that in the first. We also note
that the exchange that happens in the instantaneous ground state at the
crossing point is more abrupt in the setting with the smaller gap. The re-
lation between the rate of change of the instantaneous ground state and
the gap separating it from |E1(s)⟩ is well understood and expressions
explicitly linking them can be found in [110].

Finally, we consider the scaling of the gap minimum between the ground
and first excited state with increasing system size – these results are
presented in figure 3.4(d). We plot the results corresponding to the
parameter settings from figures 3.4(b) and (c) in light and dark purple
respectively. The sub-graph sizes are scaled as shown in figure 3.1(b)
such that G1 always has one more vertex than G0. We see that while
both gap minima appear to close exponentially, the scaling exponent is
more severe for the parameter setting associated with figure 3.4(b). We
will be utilising these two parameter settings throughout this work and
refer to them as the weak gap scaling (WGS) and strong gap scaling
(SGS) settings. For comparison we also include the scaling of the gap
minimum when there is no perturbative crossing. This is plotted in grey
and we see that we no longer observe the same closing of the gap.

This scaling behaviour further confirms that an AC can be controllably
introduced into the annealing spectrum. In addition, we have demon-
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strated that we are able to tune the problem parameters to quantitatively
change the nature of the AC without changing the optimal solution that
Ĥp encodes or the structure of the local optima.

3.6 Summary

In this chapter, we have introduced the MWIS problem instances that
we will be using throughout this work. We began by describing the
theory behind perturbative crossings and, in particular, what spectral
features of the problem Hamiltonian would cause one to form. We then
introduced our problem graphs and linked their structure and defining
parameters to the these key spectral features. We outlined and demon-
strated how these graphs could be used to controllably produce anneal-
ing spectra with the desired perturbative crossing structures.

These graphs will provide a numerical test-bed for different catalyst
choices in chapters 5 and 6 which, alongside our theoretical analysis,
will allow us to motivate the inclusion of particular XX-coupling choices.
Furthermore, we will be utilising the the straightforward scalability of
these graphs to study the scaling behaviour of the proposed catalysts
with both the size of the problem graph and also the number of local
optima in chapters 7 and 9 respectively.
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Chapter 4

Numerical Methods

This chapter outlines the tools we have used to obtain our numerical
results. These include standard pre-written packages as well as tools
that we have implemented. Section 4.1 concerns the diagonalisation of
our Hamiltonains. Next, in section 4.2, we describe how we make use
of symmetries in the system in order to reduce the size of the Hilbert
space. Finally, in section 4.3, we discuss the closed system dynamics.

All simulations were performed with python on a 2.4 GHz Quad-Core
Intel processor with 16GB of RAM. The two main packages we have
made use of are numpy and qutip.

4.1 Diagonalisation

The main framework by which we consider the effects of different cat-
alyst Hamiltonians is through their impact on the instantaneous an-
nealing gap spectra and the evolution of the instantaneous states – as
obtained by numerical diagonalisation of the total Hamiltonian at dif-
ferent time-steps. We use the numpy function numpy.linalg.eigh [111]
which takes, as its input, a complex hermitian matrix or a real symmet-
ric matrix. The function makes use of LAPAK routines [112] – specifically,
syevd for real symmetric matrices and heevd for complex hermitian ma-
trices. These routines compute all the eigenvalues and, optionally, the
eigenvectors of the matrix using divide and conquer algorithms.
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4.1.1 Global Sign Selection

One additional complexity is the selection of the global signs associated
with the instantaneous eigenvectors at each time step. In terms of the
physics, the global phase has no physical significance. And indeed, as
far as the diagonalisation is concerned, the global sign of the vector does
not have a definite value. However, as we shall now go on to explain,
interpreting our data will require us to establish some kind of consistent
global sign.

Figure 4.1(a) shows the the instantaneous GS vectors returned by the di-
agonaliser for an example 3-spin system with the different vector com-
ponents plotted in different colours. The results at each time step that
we have sampled are technically completely correct. However, in order
for us to understand the evolution of this state, some post-processing is
still required. If we simply connect up the raw data, as shown in fig-
ure 4.1(b), we end up with a picture that suggests rapid changes in the
GS vector at various points during the anneal. For the data presented,
it is relatively easy to deduce intuitively that the rapid changes indi-
cated by following the evolution in this way are not actually happening.
However, there are also some more rigorous ways to understand that
the deduced evolution presented in figure 4.1(b) is incorrect. Firstly,
the instantaneous vectors must be normalised to one, meaning that we
cannot have as many vector components crossing zero as figure 4.1(b)
would suggest. We can also check the interpolated evolution by sam-
pling points in between two time steps and seeing if they lie along, or
close to, the previously interpolated trajectory.

In most cases, it is straightforward but time consuming to “fix” these
global sign flips manually. Given the prevalence of this form of data in
our research, we chose to implement tools to automate this process.
Again, as far as the sampled data points are concerned, there is no
“incorrect” choice of global phase that needs to be “fixed” – it is only
the suggested evolution from connecting these points that is incorrect.
Specifically then, what we want is a means of selecting the global sign
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4.1. Diagonalisation

Figure 4.1: Plots showing the diagonalisation results for the instantaneous GS of a 3-
spin example instance at 21 points in the anneal. The different problem state overlaps,
⟨E0(s)|Ei⟩, are plotted in different colours. The problem parameters associated with
this example are n0 = 1, n1 = 2, W0 = 1.2, W2 = 1.0 and Jzz = 20. A catalyst Hamilto-
nian that consists of a single XX-coupling between the two vertices in G1 is introduced
with a strength of 2. Plot (a) shows the raw results as returned by numpy.linalg.eigh.
Plot (b) shows the same results but where we have connected the data points. Finally,
plot (c) shows the data once processed as discussed in section 4.1.1.
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of each sampled vector such that the implied evolution between these
points reflects the actual evolution that would be obtained if more points
were sampled in between. We do this by combing through the sampled
data points and deciding whether or not a non-physical global sign flip
has occurred.

In order to automatically search for these global sign flips we imple-
mented two heuristic methods. (Simply checking if all the vector com-
ponents have changed sign between two points is unfortunately not suf-
ficient since a vector component that has changed its relative sign be-
tween these points will have kept its sign if a global sign change has
occurred.) The two methods work as follows:

1. For a given threshold, Mthresh, assume a global sign change has
occurred if all vector components with a magnitude exceeding
Mthresh change sign.

2. For a given threshold, Nthresh, assume a global sign change has
occurred if more than Nthresh vector components change sign.

Overall we found that the first method worked better and that selecting
Mthresh = 0.05 tended to perform well. In practice it is straightforward
to confirm that the global signs have been chosen appropriately and in
some cases we switched between methods, adjusting Mthresh and Nthresh

as needed. Figure 4.1(c) shows the evolution of our example instance
after this post-processing.

4.2 Hilbert space reductions

In order to make our simulations more tractable, we utilise symmetries
present in the Hamiltonians to reduce the size of the Hilbert space –
taking a similar approach to that used in [67]. We would like to thank
Tameem Albash for taking the time to discuss this with us.

As described in chapter 3, the problem instances we will be working
with are defined on complete k-partite graphs constructed out of k dis-
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connected sub-graphs, Ga (where a = 0, 1 . . . k − 1). Each sub-graph,
Ga, is allocated a total weight, Wa, which is split evenly between the na

vertices in the sub-graph. As a result, Ĥp is invariant under permuta-
tions of qubits within the sub-graphs. Since the driver, Ĥd, is simply a
homogeneous local X-field across all the qubits, the total Hamiltonian,
Ĥ(s) = (1 − s)Ĥd + sĤp, is also invariant under such transformations.
Let us first describe how we utilise these symmetries in the catalyst free
setting before going on to describe how we augment this approach to
account for the introduction of the catalyst.

The crux of the approach is that the system is initialised in the equal su-
perposition state such that the evolution starts in the subspace spanned
by the states that are symmetric under the aforementioned permuta-
tions. In the closed system setting, the evolution is confined to this
subspace which means that we can drastically reduce the size of the
Hilbert space we need to consider. A natural basis for this subspace can
be constructed from Dicke states associated with each of the sub-graphs
Ga.

For each sub-graph, Ga, we can write the total Z-spin operator,

Ŝz
a =

1
2 ∑

i∈Ga

σ̂z
i , (4.1)

of which the Dicke states, |sa, ma⟩, are eigenstates – sa being the total spin
associated with the state. Their eigenvalues are ma which run from −sa

to sa in integer steps. Equivalently, we can write out the corresponding
X and Y operators as

Ŝx
a =

1
2 ∑

i∈Ga

σ̂x
i (4.2)

and
Ŝy

a =
1
2 ∑

i∈Ga

σ̂
y
i . (4.3)

In the catalyst free case, and indeed for most of the catalysts we examine,
we will only need Ŝz

a and Ŝx
a to construct our Hamiltonians. The only
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point at which we will need Ŝy
a is in chapter 6.

In order to construct Ĥ(s) out of these total spin operators, we explicitly
compute the matrix elements

⟨sa, ma|Ŝz
a|sa, m′

a⟩ = δma,m′
a
× ma, (4.4)

and

⟨sa, ma|Ŝx
a |sa, m′

a⟩ =

δma,m′
a−1 ×

1
2

√
sa(sa + 1)− ma(ma + 1)

+ δma,m′
a+1 ×

1
2

√
sa(sa + 1)− ma(ma − 1). (4.5)

The matrix elements of Sy
a , when we need them, are calculated as

⟨sa, ma|Ŝy
a |sa, m′

a⟩ =

δma,m′
a−1 ×

i
2

√
sa(sa + 1)− ma(ma + 1)

− δma,m′
a+1 ×

i
2

√
sa(sa + 1)− ma(ma − 1). (4.6)

The driver Hamiltonian can then be written in much the same way as it
was using the Pauli-X operators, as

Ĥd = 2 ∑
a

Ŝx
a . (4.7)

Similarly, we can write the problem Hamiltonian as

Ĥp = 2 ∑
a

haŜz
a + 4Jzz ∑

a, b>a
Ŝz

aŜz
b, (4.8)

where ha and Jzz are, respectively, the local field, and coupling strengths
as calculated in section 3.4. We have dropped some identity terms that
would make this problem Hamiltonian fully equivalent to the Hamilto-
nian in equation 3.8. However, the effect of this is only to introduce a
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shift in the absolute values of the energies. The spectral gaps are un-
changed.

The eigenstates of equation 4.8, which span the symmetric subspace
to which the evolution is restricted, are products of the Dicke states
associated with the different permutation symmetries of the sub-graphs:

|m0, m1, . . . , mk−1⟩

≡ |n0

2
, m0⟩ ⊗ |n1

2
, m1⟩ ⊗ · · · ⊗ |nk−1

2
, mk−1⟩

= ∏
0≤a<k−1

|na

2
, ma⟩ . (4.9)

The total number of states is

∏
0≤a<k−1

(na + 1), (4.10)

such that the Hilbert space now scales linearly with the increase of ver-
tices in any one of the sub-graphs, Ga. In practice, we will usually be
increasing the size of all sub-graphs when scaling our graph structures
such that the size of the Hilbert space scales as a polynomial of order k.
The Hilbert space scales exponentially with the number of sub-graphs, k.

The situation is slightly complicated by the introduction of different cat-
alyst Hamiltonians, Ĥc, which we will be introducing to our total Hamil-
tonian with the pre-factor s(1 − s). Depending on our choice of Ĥc, this
catalyst may disrupt the symmetry shared by Ĥd and Ĥp. We will be
exploring a variety of different catalysts over the course of this disserta-
tion – and the exact nature of these different catalysts will be discussed
within the chapters in which they are introduced. However, they all
share the property that the resultant symmetries can be captured by
splitting off some of the vertices from one or more sub-graphs. That is,
we can rewrite the necessary sub-graphs as Ga = Ga′ ∪ Ga′′ such that
na = na′ + na′′ .
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The effect on the construction of Ĥd and Ĥp in equations 4.7 and 4.8
is that we must simply replace the relevant total spin operators with
Ŝα

a = Ŝα
a′ + Ŝα

a′′ (where α = x, y or z). However, we now have the ca-
pacity to construct various 2-local catalyst Hamiltonians. To give some
examples, all-to-all couplings can be introduced within one of the sub-
graphs or a part of one of the sub-graphs with 2(Ŝα

a ⊗ Ŝα
a ) or 2(Ŝα

a′′ ⊗ Ŝα
a′′)

respectively. As a sub-case of this, a single coupling can be introduced
if n′′ is chosen to be 2. We can introduce all-to-all couplings between
one part of a sub-graph another another with 4(Ŝα

a′ ⊗ Ŝα
a′′) or all-to-all

couplings between two different sub-graphs with 4(Ŝα
a ⊗ Ŝα

b ).

4.3 Closed system dynamics

Simulations of the closed system dynamics were done using the qutip

function, qutip.sesolve [113] which is an ordinary differential equa-
tion (ODE) solver. (Strictly speaking, we use the qutip.mesolve [114]
function which is a Lindblad master equation solver. This was so that,
if needed, we could easily extend to open systems. qutip.mesolve de-
faults to qutip.sesolve in the closed system setting.) The function is
handed the Hamiltonian, the initial state of the system and a list of
times for which to obtain the state of the system. The function can also
be handed a set of solver options, the default values for which can be
found at [115]. The only parameter that we change from the default
value is nsteps which is the maximum number of steps the ODE solver
takes at each specified time. The default value for this is 1000. In order
for the integration to converge, however, this value needed to be raised
as high as 108 in the most extreme case.

Outside of our dynamic simulations, we represent the various Hamilto-
nians and state vectors using numpy arrays. In order to use qutip.sesolve,
we must first create corresponding qutip quantum objects for each of
the relevant Hamiltonians and states. This can be done straightfor-
wardly in each case by handing the constructor, qutip.Qobj the asso-
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ciated numpy array. The time-dependent Hamiltonians are represented
with qutip.QobjEvo objects. These are constructed out of the time-
independent Hamiltonians (Ĥd, Ĥp and Ĥc in our case) and their sched-
ules in the form of functions.

qutip.sesolve returns a results object from which we can extract numpy
arrays representing the state vectors to use in the rest of our code. Specif-
ically, we obtain the overlaps of these state vectors with the instanta-
neous eigenstates, |Ea(s)⟩, and with the problem eigenstates, |Ea⟩.

4.4 Summary

In this chapter, we have outlined how we perform the numerical diag-
onalisation and closed system dynamics that make up a large portion
of this thesis. We have also described how we perform a Hilbert space
reduction which, alongside the scalable graphs introduced in chapter 3,
allows us to study the scaling behaviour of the catalysts we examine in
this dissertation.

Numerical diagonalisation of the annealing Hamiltonian is used through-
out all of our results chapters to understand how the catalysts affect both
the gap spectra and the evolution of the instantaneous eigenstates asso-
ciated with the anneal. Simulation of the closed system dynamics is only
used in chapters 8 and 9 where we explore diabatic annealing processes
that are difficult to analyse using the annealing spectrum alone.
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Chapter 5

Targeted XX-Couplings

This chapter lays the groundwork for the theory behind the targeted
XX-couplings that we explore in this work. It introduces key ideas that
will be returned to throughout this dissertation, and illustrates these
ideas with numerical examples. The findings in this chapter give the
first indications that the specific catalysts that we examine in this work
have the desired effect of enhancing the gap minimum at a perturba-
tive crossing. This chapter also establishes how the theory behind the
targeted couplings relates to our graph structure.

The catalyst Hamiltonian, Ĥc, with which we introduce the additional
couplings enters Ĥ(s) as follows:

Ĥ(s) = (1 − s)Ĥd + s(1 − s)Ĥc + sĤp. (5.1)

The pre-factor s(1 − s) ensures that these additional couplings leave the
initial and final ground states unchanged such that the ground state
we initialise in remains the equal superposition state and we can read
off the solution from the final ground state. Throughout this chapter,
and indeed this dissertation, we associate the terms stoquastic and non-
stoquastic with the catalysts that we are using. It should be noted that
the catalyst Hamiltonians are not in fact non-stoquastic in and of them-
selves but rather their addition results in a total Hamiltonian that is non-
stoquastic for s ̸= 0, 1. There has been much discussion in the literature
regarding the importance of non-stoquasticity in QA [100, 108, 116]. In
our use of the term we are simply describing a Hamiltonian with posi-
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tive as well as negative off-diagonal elements and make no assumptions
regarding the relationship between non-stoquasticity and computational
complexity.

The catalysts that we consider in this section have the form

Ĥc = Jxx ∑
(i,j)∈Ecat

σ̂x
i σ̂x

j . (5.2)

That is, the catalysts consist of some sub-set, Ecat, of possible XX-
couplings between vertices that are all introduced with the same sign
and magnitude. We allow for the inclusion of vertex pairs in Ecat that
do not correspond to edges in the problem graph. Note that a nega-
tive Jxx will result in the XX-couplings entering Ĥ(s) with the same sign
as the driver couplings, resulting in a stoquastic Hamiltonian for all s.
If we choose Jxx to be positive however, the total Hamiltonian will be
non-stoquastic for s ̸= 0, 1.

This chapter is structured as follows. Section 5.1.1 and 5.1.2 describe
two theoretical approaches to understanding how the presence of a per-
turbative crossing will be affected by the introduction of different XX-
couplings. Both approaches make use of perturbation theory. Numerical
results that confirm the predictions made in sections 5.1.1 and 5.1.2 are
presented in section 5.2. Section 5.3 then draws attention to the impor-
tance of the relative signs between the instantaneous vector components,
how these are affected by the introduction of a non-stoquastic catalyst
and what impact this has on the effectiveness of the catalysts. Finally,
we take some time to discuss the implications of our results and how
they could be used in section 5.4 before summarising our findings in
section 5.5.

before summarising out findings

we summarise our findings in section 5.4 and discuss how they may be
used in practice.
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5.1 Theoretical motivation

5.1.1 Perturbative introduction of (Ĥd + Ĥc) to Ĥp

One can understand the effects of specific stoquastic XX-couplings on the
presence of perturbative crossings in the annealing spectrum in much
the same way that we understood the formation of these crossings in
the first place (section 3.1). That is, we introduce Ĥc as an additional
perturbation to Ĥp, writing the perturbed Hamiltonian as

Ĥ(λ) = Ĥp + λ(Ĥd + Ĥc). (5.3)

In equation 5.1 we see that Ĥd and Ĥc do not enter with the same pre-
factor. Assuming, however, that Ĥc enters the Hamiltonian linearly is
an acceptable approximation for small values of λ. Such an approach
is taken in [67] to understand why the introduction of a non-stoquastic
all-to-all XX-field is able to elevate the exponentially closing gap in one
of the example problems studied. Their setting is however somewhat
different to ours in that the results hinge on the degeneracy of the states.
We also note that [65] outlines some ideas similar to those we introduce
here. However, the inclusion of XX-couplings is only a brief aside to
illustrate their larger point which relates more closely to the formation
of perturbative crossings in a standard QA protocol. Our aim here is
to discuss these ideas more fully with the aim of drawing some general
conclusions regarding the expected effects of different XX-couplings.

Carrying out the perturbation in equation 5.3, the perturbed problem
states are given to second order by

Ea(λ) = Ea + λ(⟨Ea|Ĥd|Ea⟩+ ⟨Ea|Ĥc|Ea⟩)

+ λ2 ∑
c ̸=a

(
| ⟨Ec|Ĥd|Ea⟩ |2

Ea − Ec
+

| ⟨Ec|Ĥc|Ea⟩ |2
Ea − Ec

)
. (5.4)

As in the case without the catalyst, the first order corrections are zero
since the problem states cannot be coupled to themselves by either Ĥd
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or Ĥc. Substituting in Ĥd as before, and now also the catalyst from
equation 5.2, we arrive at

Ea(λ) = Ea + λ2

 ∑
c∈Nx(a)

1
Ea − Ec

+ J 2
xx ∑

c∈Nxx(a)

1
Ea − Ec

 . (5.5)

We have used Nxx(a) to denote the set of states that a is coupled to by
the catalyst.

As in our original discussion of the formation of perturbative crossings,
let turn our focus to the states a ∈ Lδ. From the arguments in section 3.1,
we make the same assumption that Ec > Ea for c ∈ Nxx(a) and a ∈ Lδ,
meaning that all the contributions to the two sums will be negative. As
in section 3.1, we re-write equation 5.5 to make this explicit:

Ea(λ) = Ea − λ2

 ∑
c∈Nx(a)

1
|Ec − Ea|

+ J 2
xx ∑

c∈Nxx(a)

1
|Ec − Ea|

 . (5.6)

We to see that the catalyst couplings contribute to the perturbation in
much the same way as the driver couplings. That is, a state in Lδ that
is coupled to more low energy neighbours will receive a greater nega-
tive perturbation. As for how this can remove a perturbative crossing,
consider a setting where

∑
c∈Nx(b)

1
|Ec − Eb|

> ∑
c∈Nx(a)

1
|Ec − Ea|

(5.7)

for two states (b > a) in Lδ such that a perturbative crossing forms
between states |Ea⟩ and |Eb⟩. There may be a choice of XX-couplings be-
tween qubits which results in Nxx(a) containing generally lower energy
states than Nxx(b), such that:

∑
c∈Nxx(b)

1
|Ec − Eb|

< ∑
c∈Nxx(a)

1
|Ec − Ea|

. (5.8)
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Looking at equation 5.6, it is clear that increasing the magnitude of Jxx

enhances the negative perturbation to both |Ea⟩ and |Eb⟩. However, the
increase will be greater for |Ea⟩ such that, for some Jxx, the magnitude
of the second order correction to |Ea⟩ will be larger than that to |Eb⟩:

∑
c∈Nx(b)

1
|Ec − Eb|

+ J 2
xx ∑

c∈Nxx(b)

1
|Ec − Eb|

<

∑
c∈Nx(a)

1
|Ec − Ea|

+ J 2
xx ∑

c∈Nxx(a)

1
|Ec − Ea|

. (5.9)

In fact, equation 5.9 does not need to hold for us to expect the perturba-
tive crossing to be lifted. It is sufficient that the difference in magnitude
between the two sides of the equation is small enough (compared to the
energy gap ∆Eab in the problem spectrum) that the value of λ at which
the crossing would occur sits outside the range for which perturbation
theory remains valid. We would also expect any reduction in difference
between the two sides of the equation to result in some gap enhance-
ment since the crossing states will be more mixed and so will have a
larger overlap.

To summarise, if a perturbative crossing exists between |Ea⟩ and |Eb⟩
(b > a), this crossing can be removed by introducing XX-terms that cou-
ple |Ea⟩ to lower energy states than they couple |Eb⟩ to. That this works
is confirmed numerically in section 5.2. This is not dissimilar to the ideas
introduced in [64]. However, in their case, this is achieved through inho-
mogeneous driving to re-scale the contributions from different coupled
states rather than introducing new ones.

The fact that Jxx only appears in equation 5.6 squared suggests that this
effect is insensitive to the sign with which these couplings enter Ĥ(s).
From our numerical results, however, we find that the above conclusions
only apply when the Jxx is introduced with the same sign as the driver.
Introducing the XX-couplings in this way results in a stoquastic Ĥ(s)
∀s. It is not entirely clear how to reconcile the numerical results (as
well as the theoretical results in the following section) with the pertur-
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bative argument we have made here. The best we can suggest is that
this perturbative argument does not account for some of the additional
complexities that can arise when Ĥ(s) is non-stoquastic – at least not
without including higher order corrections.

Let us now consider how one might want to use the ideas introduced
here to design a targeted catalyst. Typically, we are interested in remov-
ing perturbative crossings which involve the ground state since these
are what will result in exponentially closing gaps between the instanta-
neous ground and first excited states. In order to remove these perturba-
tive crossings in the way described in this section, one would need to be
able to identify coupling(s) that result in Nxx(0) containing states with
very low energy. However, the capacity to identify such couplings as-
sumes access to knowledge of the problem ground state which one may
not have. Certainly, if one had full knowledge of the problem ground
state this would mean that the optimal solution to the problem was al-
ready known in advance. In practice, therefore, the ideas introduced
here may not be the most useful with regards to coupling selection –
though it is not inconceivable that a setting may exist in which one has
sufficient knowledge of the global optimum to select suitable couplings
while still not knowing the optimal solution in full.

Far more useful, however, would be the capacity to design a catalyst
Hamiltonian based of knowledge of the local optima. Indeed, under-
standing how this can be done and how effective the catalysts that have
been designed in this way are is the focus of this thesis. In the following
two sections we will see how couplings introduced with the opposite sign
to the driver (Jxx > 0) have the potential to remove a perturbative cross-
ing between two problem states, |Ea⟩ and |Eb⟩ (b > a), if chosen to give
the higher energy state, |Eb⟩, a low energy neighbourhood, Nxx(b). This
can be intuitively thought of as a reversal of the stoquastic approach
introduced in this section. However, as we have already noted, the per-
turbative argument made here is not sufficient to differentiate between
the two settings. We now go through a different perturbative argument
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which does allow us to understand the behaviour of the case where
Jxx > 0.

5.1.2 Perturbative introduction of Ĥc to Ĥ(λ)

In the previous section we introduced (Ĥc + Ĥd) as a perturbation to Ĥp

in order to understand how the introduction of Ĥc affected the presence
of perturbative crossings in the spectrum. The approach we take in
this section is to introduce Ĥc to the perturbed Hamiltonian, Ĥ(λ) =

Ĥp + λĤd, from section 3.1. The new total Hamiltonian reads

Ĥ(λ, µ) = Ĥ(λ) + µĤc, (5.10)

and the perturbed energies, to first order, are given by

Ea(λ, µ) = Ea(λ) + µ ⟨Ea(λ)| Ĥc |Ea(λ)⟩

= Ea(λ) + µ

(
2n−1

∑
b=0

⟨Ea(λ)|Eb⟩ ⟨Eb|
)

Ĥc

(
2n−1

∑
c=0

|Ec⟩ ⟨Ec|Ea(λ)⟩
)

. (5.11)

Substituting in equation 5.2 for Ĥc, we can write

Ea(λ, µ) = Ea(λ) + 2µJxx ∑
(b,c)∈Cxx

⟨Ea(λ)|Eb⟩ ⟨Ec|Ea(λ)⟩ , (5.12)

where we have used Cxx to denote the set of problem state pairs that are
coupled by Ĥc. Note that every coupling included in Ecat will pair up
the eigenstates of Ĥp – introducing 2n/2 pairs to Cxx. As such, Cxx will
contain nedges × 2(n−1) pairs. Something similar to this is carried out in
[100] for the specific Hamiltonian considered there.

We are interested in the effect of Ĥc on two perturbed states whose en-
ergies cross, resulting in a perturbative crossing in the annealing spec-
trum. Specifically, we are focusing our attention on crossings between
states in Lδ. From the discussion in section 3.1 we know that |Ea(λ)⟩ will
be dominated by |Ea⟩ and states that are close in energy and Hamming
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distance to |Ea⟩. As such, we can expect larger terms to enter the sum
in equation 5.12 if we choose XX-terms that couple |Ea⟩ to states that
are close in energy to it – as well as coupling the states that are close in
energy and Hamming distance to |Ea⟩ to each other. (Recall that, since
Lδ are the lowest energy states, the problem states that will be close in
energy to those in Lδ will be other low energy states.)

To understand what this means for the energies, Ea(λ, µ), we must gain
some insight into the signs of the overlaps, ⟨Ea(λ)|Eb⟩, that appear in the
sum, i.e., the signs with which the different problem states enter |Ea(λ)⟩.
In the stoquastic setting, the ground state vector of the total Hamilto-
nian is guaranteed to contain no negative components. However, recall
that |Ea(λ)⟩ are the perturbed problem states and not the instantaneous
eigenstates of the total Hamiltonian such that the perturbed GS, |E0(λ)⟩,
may not always be the lowest energy state. In fact, in the settings we are
most interested in (i.e., settings where the GS undergoes a perturbative
crossing), |E0(λ)⟩ will certainly not remain the lowest energy state as λ

is increased. Furthermore, we also need to understand the signs of the
higher energy states.

Fortunately, perturbation theory tells us that we can expect the pre-
factors of the problem states with the largest contributions to |Ea(λ)⟩
to be positive. As such, we expect that introducing the catalyst with a
positive Jxx will result in Ea(λ, µ > 0) > Ea(λ, 0) and introducing the
catalyst with a negative Jxx will result in Ea(λ, µ > 0) < Ea(λ, 0). We
will come back to the implications this has for the catalyst’s effect on a
perturbative crossing at the end of this section. First, we will go through
the argument for why we expect the dominant problem states to enter
|Ea(λ)⟩ with positive coefficients.

Note that at this point we are considering perturbations to the problem
states from the introduction of the driver (such that we can understand
the corrections to the energies of these perturbed states as a result of a
separate perturbation from the catalyst). Perturbative corrections of dif-
ferent orders introduce problem states to |Ea(λ)⟩ with different Ham-
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ming distances from |Ea⟩. Specifically, the kth order corrections will in-
troduce states that are a Hamming distance k from |Ei⟩ as well as some
states with a Hamming distance < k. (The first, second and third order
corrections can be found in Appendix C). Let us consider some state,
|Eb⟩, that has a Hamming distance, d, from |Ea⟩. The contribution of
|Eb⟩ to the perturbed state, |Ea(λ)⟩, can come from multiple corrections
of order k ≥ d however the largest contribution will come from the dth

order correction. And this we find will always be positive for a ∈ Lδ.

The equation associated with the kth order correction is

(Ea − Ĥp) |E(k)
a ⟩ = Ĥd |E

(k−1)
a ⟩ −

k

∑
i=2

E(i)
a |E(k−i)

a ⟩ . (5.13)

The sum starts at i = 2 and not one because in our setting the first
order correction to the energies is zero. Pre-multiplying by |Eb⟩ and
rearranging we obtain

⟨Eb|E
(k)
a ⟩ = ⟨Eb|Ĥd|E

(k−1)
a ⟩

(Ea − Eb)
−

k

∑
i=2

E(i)
a
⟨Eb|E

(k−i)
a ⟩

(Ea − Eb)
. (5.14)

The first term in equation 5.14 is responsible for the lowest order (and
therefore presumably largest) contribution to the states that have a Ham-
ming distance d = k from |Ea⟩. Starting with

|E(1)
a ⟩ = ∑

b ̸=a

⟨Eb|Ĥd|Ea⟩
(Ea − Eb)

|Eb⟩ ,

we can recursively determine that the first term in equation 5.14 will
be a sum of terms of the following form: The numerators are a prod-
uct of k matrix elements, ⟨Eb|Ĥd|Ec⟩ (where the states, |Eb⟩ and |Ec⟩,
can be the problem state being perturbed, |Ea⟩, or any other problem
state), while the denominators will be products of k energy differences,
(Ea − Eb). The matrix elements will all be either −1 or zero depending
on whether or not the two problem states are one spin flip apart. Fur-
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thermore, because we are considering perturbations to states in Lδ, we
can continue to assume that the energy differences, (Ea − Eb), will be
negative. As, a result, each term in the sum will be positive such that
the lowest order term contributing to each problem state that enters the
perturbative correction is also positive. It is of course possible that, as
a result of higher order corrections, some problem states may end up
with a negative pre-factor however it is reasonable to assume that these
are likely to be negligible.

We have considered the effect of an XX-catalyst, of the form given in
equation 5.2, on the perturbed energies of the low energy local optima.
So far we have established the following:

• The catalyst will have the greatest effect on the perturbed energy,
Ea(λ), if the XX-terms are chosen to couple |Ea⟩ to other low en-
ergy states and/or couple together low energy states that are close
in Hamming distance to |Ea⟩.

• The energy will increase if the catalyst is introduced with Jxx > 0 -
i.e., the opposite sign to the driver (non-stoquastic total Ĥ(s)).

• The energy will decrease if the catalyst is introduced with Jxx < 0 -
i.e., the same sign as the driver (stoquastic total Ĥ(s)).

Note that the final point is in agreement with the findings presented in
the previous section. Thus, this approach also leads us to conclude that
introducing negative XX-terms that couple the problem GS to other low
energy states will help to remove any perturbative crossings it is partici-
pating in and hence enhance the minimum spectral gap between the in-
stantaneous ground and first excited state. In addition to this however,
the conclusions from this section also suggest that coupling together
other low energy states that are simply close in Hamming distance to
the GS could result in a similar effect.

In contrast to the previous section, the conclusions in this section sug-
gest that catalysts with Jxx > 0 will have the opposite effect to those
introduced with Jxx < 0 – i.e., they will increase the energy of the per-
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turbed state rather than reduce it. As such, these results suggest that a
perturbative crossing between the GS and the athES could be removed
by instead introducing positive XX-terms that couple |Ea⟩ to low energy
states – or by coupling low energy states that are close in Hamming
distance to |Ea⟩ to each other. It is catalysts motivated by this obser-
vation on which the majority of this thesis is concerned. However, in
the following, we present numerical results confirming the predictions
regarding the stoquastic catalysts as well.

5.2 Numerical results

We now present numerical data confirming the validity of the conclu-
sions reached in the preceding section. To recap: we expect an XX-
catalyst to have the greatest impact on the energy of a perturbed state
|Ea(λ)⟩ (a ∈ Lδ) when the XX-terms couple the problem state |Ea⟩ to
other low energy states and/or low energy states that are close in Ham-
ming distance to |Ea⟩ to each other. Throughout this work we will refer
to this as selecting couplings that “target” the state |Ea⟩. We expect the
effect of such a catalyst to be an increase in the energy of |Ea(λ)⟩ if the
catalyst enters with the opposite sign to the driver (Jxx > 0) and a de-
crease in the energy if the catalyst enters with the same sign as the driver
(Jxx < 0). As such, a perturbative crossing between two states, |Ea⟩ and
|Eb⟩ (a, b ∈ Lδ and b > a), can potentially be removed by a selecting cou-
plings that target |Ea⟩ and choosing Jxx > 0 or by selecting couplings
that target |Eb⟩ and choosing Jxx < 0. Correspondingly, we expect that
choosing the same couplings but flipping the signs of Jxx will result in
the catalyst increasing the severity of the perturbative crossing.

To demonstrate these effects numerically we must establish what these
coupling selections look like with respect to the problem instances we
make use of in this work. The MWIS problem instances we construct
result in perturbative crossings forming between states corresponding
to the local optima associated with selecting all the vertices in one of
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Figure 5.1: This figure demonstrates how introducing different XX-terms results in
different couplings between the problem states. Each sub-figure represents a different
set of vertices or, equivalently, an eigenstate of the problem Hamiltonian. The selected
vertices are circled in red and any edge dependencies are highlighted. For instance,
figure (g) shows the set containing two vertices in G0 and one in G2 which is encoded
by the problem state with all the corresponding spins pointed up. The figures in
the top row (a-c) show the local optima of the problem. Below these (d-f), we show
the neighbours introduced to these states by an XX-term between two vertices in G0.
Finally, on the bottom row (g-i), we show the neighbours introduced to the local optima
by an XX-term between G0 and G2.

the disconnected sub-graphs. To couple one of these states, |Ea⟩, asso-
ciated with the sub-graph, Ga, to a low energy state, we can introduce
an XX-coupling between two vertices in Ga. This will couple |Ea⟩ to a
state corresponding to an independent set containing all but two of the
vertices in Ga. It will also couple states corresponding to sub-sets of Ga

(which are low energy states close in Hamming distance to |Ea⟩) to each
other. Meanwhile, the states corresponding to the other local optima
will be coupled to dependent sets that contain all the vertices in their
associated sub-graphs plus two from Ga.

This is demonstrated in figure 5.1 for a problem graph with n0 = 3,
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n1 = 2 and n2 = 4. Figures 5.1(a-c) illustrate the states corresponding
to the three local optima of the problem with the selected vertices high-
lighted in red. Below these, in figures 5.1(d-f), we show the states that
these local optima become coupled to through the introduction of an
XX-term in G0. Edge dependencies are highlighted in red. We see that
the local optimum consisting of all the vertices in G0 becomes coupled
in an independent set while the other two become coupled to depen-
dent sets. Because of how the energy cost penalising dependent sets is
introduced (see chapter 3) the independent set will be one of the low-
est energy states in the spectrum despite having only one vertex in the
corresponding set. The dependent sets will be significantly higher in
energy.

We also demonstrate in this figure the result of introducing an XX-
coupling between two vertices in different sub-graphs – specifically,
between one vertex in G0 and another in G2. The states that the in-
dependent set states (a-c) become coupled to are shown in the bottom
row (d-f). As indicated by the highlighted red edges, all of these states
correspond to independent sets. Again, the reason for using the graph
structure that we do is not because of specific interest in the graph struc-
ture itself because but because of how we can relate it to the properties
of the problem spectrum. As such these couplings are not of particu-
lar interest for our investigation. For completeness, we have included
some results where couplings have been placed between sub-graphs in
Chapter 6. However, we do not touch on these for the remainder of this
Chapter.

5.2.1 Gap minima

We now present, in figure 5.2, numerical data for the size of the gap
minimum at the perturbative crossing for a problem graph with the
sub-graph sizes n0 = 3, n1 = 4 and n2 = 2 – see figure 3.3(b) for an
illustration. The result of allocating these sizes to the sub-graphs is that
a perturbative crossing forms between the ground and first excited state
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Figure 5.2: Size of the gap minimum as a function of catalyst strength, |J′xx|, for a
problem with parameters n0 = 3, n1 = 4, n2 = 2, W0 = 1.70, W1 = 1.35, W2 = 1.00
and Jzz = 35. Plots (a) and (b) show the results when the catalyst is introduced with
the same and the opposite sign to the driver respectively (i.e., the stoquastic and non-
stoquastic case). In blue, orange and green we show the results when the catalyst
consists of couplings within G0, G1 and G2 respectively. Results using all the possible
couplings within the sub-graph are plotted with solid lines and the results when only
one coupling is used are plotted with dashed lines.

while the second excited state does not participate in a perturbative
crossing. This effectively allows for a “dud” coupling location, the use
of which is expected to have minimal effect on the size of the gap mini-
mum. The weights allocated to the sub-graphs are W0 = 1.70, W1 = 1.35
and W2 = 1.00 and the edge penalty is Jzz = 35. These parameters result
in perturbative crossings closer in nature to those produced by the WGS
parameters from section 3.5. As we will be exploring, in chapter 7, the
effects of the catalyst can be a little more involved in settings associated
with a more severe gap scaling.

We choose to scale the catalyst strength by the number of couplings
present in the catalyst as follows:

Ĥc =
J′xx√nedges

∑
(i,j)∈Ecat

σ̂x
i σ̂x

j , (5.15)

where nedges is the number of terms in Ecat. The scaling compensates
for the fact that introducing more couplings will result in more terms
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entering the sums in equations 5.6 and 5.12 and so larger perturbations.
This allows us to make a more direct comparison between the effect of
using different numbers of couplings in the catalyst. Taking the square
root of nedges in equation 5.15 was motivated specifically by equation
5.6 where Jxx enters at second order. However, the catalyst strength,
Jxx, enters equation 5.12 at first order. In this sense there is no clear
“correct” way to scale the catalyst strength and so when comparing the
effects from different numbers of couplings one should not focus on the
precise values of J′xx at which the effects of the catalyst are observed.

Figure 5.2(a) shows how the size of the gap minimum varies with |J′xx|
for a stoquastic catalyst (J′xx < 0). As in section 3.5, we present the
data with arbitrary units – i.e., we have scaled the catalyst strength and
energy gaps to the driver Hamiltonian. (Indeed, since we are often only
interested in a comparison between the gap sizes with and without a
catalyst, we present our data this way throughout this chapter as well
as in chapters 6, 7 and parts of chapter 9.) The results are colour coded
based on which sub-graph the XX-couplings are introduced in: blue for
G0, orange for G1 and green for G2. Results when a single coupling
within the sub-graphs are used are plotted in dashed lines and results
when all possible couplings within the sub-graphs are used are plotted
in solid lines. There is no solid line corresponding to G2 since there is
only one possible coupling.

We see that introducing XX-couplings into G0 (i.e., selecting the cou-
plings to target |E0⟩) results in an enhancement to the gap minimum.
Meanwhile, introducing XX-couplings into G1 (i.e., selecting the cou-
plings to target |E1⟩) results in a suppression of the gap minimum. This
is in line with the theoretical predictions from the previous two sections.
As expected, minimal effect is seen from introducing a coupling within
G2. Some slight gap enhancement is seen which may be a result of some
contribution to the perturbative crossing from the perturbed problem
state |E2(λ)⟩. (Recall that greater mixing of states will result in a larger
gap minimum due to an increased tunnelling rate). However, since this
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enhancement is very minor, we will not dwell on understanding its ori-
gin.

Comparing the single-coupling results to those where all-to-all cou-
plings within a given sub-graph are used, we see qualitatively simi-
lar effects. In the case of coupling(s) being included in G0, the size
of the gap minimum approaches the gap size at the end of the an-
neal, ∆E01(= 0.052), which is the maximum enhancement possible since
Ĥ(s = 1) is unchanged. The size of the gap minimum continues to tend
to ∆E01 as |J′xx| is increased above 2. The behaviour of the stoquastic
catalysts containing couplings in G1 is for the size of the gap minimum
to tend to 0. In addition to this however, oscillations in the data can be
seen from around |J′xx| = 1. Note that the “jagged” look to these oscilla-
tions is not an artifact of the sampling grain of either s for the individual
spectra or |J′xx|. These oscillations do not impact the main results pre-
sented here or in the rest of this dissertation and so, once again, we have
chosen not to dwell on their origin.

Let us now turn to figure 5.2(b) which shows the same data for a non-
stoquastic catalyst (J′xx > 0). Here we can see that it is coupling in G1

that enhance the size of the gap minimum and couplings in G0 that
suppress it – in line with the theoretical predictions from the previous
section. As before, introducing a coupling within G2 has minimal ef-
fect. In this case, it has even less effect which is to be expected since
increasing the energy of |E2(λ)⟩ will not increase its involvement in the
perturbative crossing.

There are some notable differences between the stoquastic and non-
stoquastic case – beyond the results for G0 and G1 being flipped. In
the stoquastic setting, monotonic enhancement of the gap minimum
towards ∆E01 is seen when couplings in G0 are used. Conversely, in
the non-stoquastic setting (using couplings in G1) the gap minimum
reaches a maximum value for some |J′xx| before decreasing again. Simi-
larly, rather than tending to zero, introducing non-stoquastic couplings
into G0 results in the size of the gap minimum approaching zero before
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increasing again. We can relate this behaviour to the appearance of neg-
ative problem state overlaps which arise for sufficiently large J′xx. This
will be discussed in section 5.3.

Returning to the use of non-stoquastic couplings in G1, there is also a
notable difference in the performance between the single and the all-to-
all coupling cases. When all-to-all couplings are used, the maximum gap
enhancement reached by the catalyst is comparable to that reached by
the stoquastic G0 catalyst. However, the enhancement achieved when
only a single coupling is used is significantly lower. This can also be
accounted for by considering the signs of the problem state overlaps.

So far we have confirmed that we are able to affect the gap minima at
the perturbative crossings using XX-couplings in a way that is consistent
with the theory introduced in the previous sections. We have also high-
lighted some key differences between the stoquastic and non-stoquastic
settings and suggested that their origin may relate to appearance of neg-
ative components to the instantaneous state vectors. This discussion will
be expanded in section 5.3. We will now examine how the introduction
of the different XX-couplings affect the evolution of the instantaneous
ground state vector – specifically the presence of the different problem
states involved in the perturbative crossings. This will help confirm that
the gap enhancement and suppression we have seen in this section are
indeed the results of the predicted energy shifts to the perturbed prob-
lem states.

5.2.2 Evolution of the instantaneous GS

In this section we present numerical results for the evolution of the in-
stantaneous GS vector for an example instance with n0 = 2, n1 = 3 and
n2 = 4. This selection of sub-graph sizes results in all three of the prob-
lem states participating in perturbative crossings. An illustration of the
graph structure can be seen in figure 5.3(a) and a cartoon showing the
expected perturbations is shown in figure 5.3(b). We can see that a per-
turbative crossing forms between |E0(λ)⟩ and |E1(λ)⟩ which takes place
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Figure 5.3: (a) shows a problem graph with n0 = 2, n1 = 3 and n2 = 4. A cartoon
illustrating the expected perturbations to the three lowest energy states of the corre-
sponding problem Hamiltonian is shown in (b). (c) shows numerical results for the
overlap of the instantaneous ground state with the three lowest energy problem states
when W0 = 1.70, W1 = 1.35, W2 = 1.00 and Jzz = 35.

Figure 5.4: Cartoons depicting the action of different catalyst Hamiltonians on the
perturbed problem states depicted in figure 5.3(b). The catalysts are as follows: (a)
stoquastic in G0, (b) stoquastic in G1, (c) stoquastic in G2, (d) non-stoquastic in G0, (e)
non-stoquastic in G1, (f) non-stoquastic in G2.
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between the instantaneous first and second excited state. There are also
two perturbative crossings involving |E2(λ)⟩ – one with |E1(λ)⟩ and one
with |E0(λ)⟩. These form between the instantaneous first and second
excited states and the ground and first excited states respectively. We
expect the instantaneous ground state vector to have a sizable contribu-
tion from |E2⟩ prior the AC in which it is involved before transitioning to
being dominated by |E0⟩. Figure 5.3(c) shows numerical results for the
evolution of the instantaneous GS vector in terms of its overlap with the
three lowest energy problem states. We see that at s ≈ 0.9, |E0⟩ and |E1⟩
have similar contributions while |E2⟩ has a much greater presence. The
AC occurs at s ≈ 0.95 at which point the instantaneous GS transitions
sharply into being dominated by |E0⟩ .

Now let us consider the impact of different catalyst Hamiltonians on
the evolution of the instantaneous ground state. Figure 5.4 shows six
cartoons illustrating the impact of different choices of XX-couplings on
the perturbed problem states associated with the example in figure 5.3.
The top (a-c) and bottom (d-f) rows illustrate the expected effect of the
stoquastic and non-stoquastic catalysts respectively. The three columns,
going from left to right, correspond to the selection of XX-couplings
within G0, G1 and G2 respectively. These cartoons will help aid our
discussion of the numerical results.

The plots in 5.5 show the overlap of the instantaneous GS with |E0⟩, |E1⟩
and |E2⟩ in blue, orange and green respectively. The dashed lines (which
are the same in each plot) show the results without a catalyst and the
solid lines show the results using different catalysts in each plot. Where
it is hard to see the dashed lines we advise the reader to refer to figure
5.3(c). Each of the catalysts contains a single coupling introduced with
strength |J′xx| = |Jxx| = 0.5. This value has been chosen to be low
enough for there to be minimal negative components to the GS vector
in the non-stoquastic setting but high enough that the changes to its
evolution are easily observable. (We will not always restrict ourselves to
the regime where |E0(s)⟩ has negligible negative components however
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Figure 5.5: The plots in this figure show the absolute value of the overlap of the
instantaneous ground state with the three lowest energy problem states for an instance
with the parameters: n0 = 2, n1 = 3, n2 = 4, W0 = 1.70, W1 = 1.35, W2 = 1.00
and Jzz = 35. The overlaps with |E0⟩, |E1⟩ and |E2⟩ are plotted in blue, orange and
green respectively. Each plot shows the effect on the spectrum of a different catalyst
Hamiltonian. In each case the overlaps without the presence of the catalyst are plotted
with dashed lines (these are the same in each plot) and the solid lines show the overlaps
with the catalyst introduced. The top and bottom rows show the results when J′xx is
negative and positive respectively and the first, second and third columns show the
results when the catalyst is introduced between vertices in G0, G1 and G2 respectively.
In each case only one coupling in the sub-graph is used. The catalyst strength is
|J′xx| = 0.5. The resultant change to the size of the gap minimum is given on each plot.

they would only serve to complicate the discussion at this point.) The
six plots correspond to the cartoons in figure 5.4. That is, the top row
(a-c) shows the results when a stoquastic catalyst is used and the bottom
row (d-f) shows the results for a non-stoquastic catalyst. Results when
the coupling is placed between two vertices in G0, G1 and G2 are shown
in the first, second and third columns respectively.

Looking at the effect of introducing a stoquastic catalyst into G0 we
see an increase in the presence of |E0⟩ and, correspondingly, a slight
suppression to the presence of |E2⟩. The presence of |E1⟩ is largely
unchanged. Looking at the associated cartoon in figure 5.4(a), we can
understand these changes to be a result of the reduction in energy to the
perturbed problem GS, bringing a greater contribution from |E0⟩ to the
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Figure 5.6: The plots in this figure show the absolute value of the overlap of the in-
stantaneous ground state with the three lowest energy problem states for an instance
with the parameters: n0 = 2, n1 = 3, n2 = 4, W0 = 1.70, W1 = 1.35, W2 = 1.00 and
Jzz = 35. The overlaps with |E0⟩, |E1⟩ and |E2⟩ are plotted in blue, orange and green
respectively. Each plot shows the effect on the spectrum of a different catalyst Hamil-
tonian. In each case the overlaps without the presence of the catalyst are plotted with
dashed lines (these are the same in each plot) and the solid lines show the overlaps
with the catalyst introduced. The top and bottom rows show the results when J′xx is
negative and positive respectively and the first, second and third columns show the re-
sults when the catalyst is introduced between vertices in G0, G1 and G2 respectively. In
each case, all potential couplings within the sub-graph are used. The catalyst strength
is |J′xx| = 0.5. This strength is scaled as shown in equation 5.15. The resultant change
to the size of the gap minimum is given on each plot.

instantaneous GS. Conversely, a non-stoquastic XX-coupling between
vertices in G0 suppresses the presence of |E0⟩ as the perturbed problem
GS is increased – as illustrated in figure 5.4(d). In this case, |E0⟩ has a
near zero presence immediately prior to the perturbative crossing such
that there is a very small overlap between the instantaneous GS before
and after the AC – resulting in a highly suppressed tunnelling rate. As
expected, the stoquastic catalyst enhances the size of the gap minimum
while the non-stoquastic catalyst suppresses it. Accompanying this, we
see that the exchange at the AC is visibly softened in figure 5.5(a) while
in figure 5.5(d) it becomes more abrupt.

Let us now turn to the case where we introduce the XX-coupling be-
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tween two vertices in G1 – figures 5.5(b) and (e). Similar to the G0

coupling, we see that in the stoquastic case, the presence of |E1⟩ is en-
hanced while, in the non-stoquastic case, its presence is suppressed. The
changes in size of the gap minimum are less pronounced for these two
catalysts however we do see some suppression to the gap minimum for
both. For the stoquastic catalyst, we see that the presence of |E1⟩ is now
greater than that of |E2⟩ in the catalyst free setting. Meanwhile, the
presence of |E0⟩ is largely unaffected. Effectively, the reduction to the
energy of the perturbed problem 1ES, as shown in 5.4(b), has replaced
the original perturbative crossing with a more severe one. The gap sup-
pression in figure 5.5(e) may be a result of the instantaneous GS being
less mixed prior to the crossing.

Finally, we turn our attention to the case where the XX-coupling is in
G2. As before, we see the expected enhancement and suppression to the
presence of |E2⟩ in the stoquastic and non-stoquastic settings respec-
tively. In the stoquastic setting, this enhancement is accompanied by a
suppression to the presence of |E0⟩ and |E1⟩ and a sharpening of the ex-
change at the AC. As expected, this results in a reduction to the size of
the gap minimum. In the non-stoquastic setting, the suppression to |E2⟩
is accompanied by an enhancement to the presence of both |E0⟩ and
|E1⟩ and the exchange at the AC becomes dominated by an exchange
between |E0⟩ and |E1⟩. The gap minimum is very slightly enhanced.
However, due to the 2ES-GS perturbative crossing being replaced by a
1ES-GS perturbative crossing, as seen in 5.4(f), this enhancement is min-
imal.

Figure 5.6 shows equivalent data to that in figure 5.5 but with catalysts
containing all the couplings in the specified sub-graph. The findings
are very much the same but with small quantitative differences. (Note
that we plot the absolute value of the state overlaps. In figure 5.5 this
was irrelevant because all the overlaps were positive. However, in figure
5.6, two state overlaps dip very slightly into the negative. This can be
seen in figure 5.6(e) at s ≈ 0.9 and in figure 5.6(f) at s ≈ 0.95.) That
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the results using a single coupling and those using all-to-all couplings
with a scaled |J′xx| are qualitatively the same gives further weight to
the theoretical arguments put forward in the previous section. i.e., the
effect of the catalyst on the perturbative crossings is through cumulative
perturbations to the energies, |Ea(λ)⟩, in line with equations 5.6 and
5.12.

Effectively, we can think of introducing a stoquastic (non-stoquastic)
catalyst that targets a particular problem state as guiding the anneal to-
wards (away) from that state. As such, we would expect a stoquastic cat-
alyst targeting the problem GS, to always offer significant enhancement
to the gap minimum between the ground the first excites state. Further-
more, if perturbative crossings are the only source of gap minima in the
annealing spectrum, we might expect such a catalyst to always result in
Emin

01 (s)] ≈ E01(s = 1) for sufficiently large |J′xx|.

The capacity for the non-stoquastic catalysts to enhance the gap mini-
mum however will be more dependent on the precise structure of the
perturbative crossings in the annealing spectrum. In the previous sec-
tion, we saw that the all-to-all non-stoquastic catalyst targeting |E1⟩ was
able to achieve similar gap enhancement to the stoquastic catalysts tar-
geting |E0⟩ (figure 5.2). There, |E1⟩ was the only state engaged in a
perturbative crossing with |E0⟩ such that guiding the anneal towards
|E0⟩ or away from |E1⟩ have similar effects. For the problem instance we
have used as our example in this section, this is not the case. Looking at
figure 5.3(b) we see that, even if we are able to remove the perturbative
crossing between |E0⟩ and |E2⟩ by guiding the anneal away from |E2⟩,
we will be left with a perturbative crossing between |E0⟩ and |E1⟩ – as
seen in figures 5.5(f) and 5.6(f). Chapter 9 of this dissertation explores
the possibility of removing multiple perturbative crossings with a non-
stoquastic catalyst that contains couplings targeting different problem
states.

We now turn to turn our attention to the signs of the instantaneous GS
vector components and how these relate to the effect of the catalyst.
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5.3 Signs of the ground-state vector compo-

nents

In the preceding sections we have seen that the stoquastic and non-
stoquastic catalysts we examine have, in many ways, inverted effects.
There are however some qualitative differences between the two cases
which we have suggested may relate to how the signs of the instan-
taneous vector components change in response to the introduction of
the catalyst. That the relative signs between vector components corre-
sponding to different problem states could play an important role in un-
derstanding the effect of a catalyst Hamiltonian is highlighted in [100].
With regards to our work, recall that the theoretical arguments we pre-
sented in section 5.1 hinged on the non-negligible vector components of
the relevant states being non-negative. And while we were able to show
that this was indeed the case prior to the introduction of the catalyst, it
is reasonable to expect this condition to no longer be met for sufficiently
large Jxx.

In this section we explore how the introduction of non-stoquastic XX-
couplings affect the signs that the different vector components take over
the course of the anneal. We will focus our attention on the instanta-
neous GS where we are able to make some analytical observations. It is
also perturbative crossings with the GS that are of the greatest interest
since these are what will bottleneck the algorithm. In particular, we will
examine how the coupling choices affect the relative signs between vec-
tor components corresponding to different problem states and at what
point in the anneal we expect negative GS vector components to emerge.
We relate these findings back to how we can expect the effect of a non-
stoquastic catalyst to diverge from the predictions in section 5.1 as Jxx

increases. The conclusions from this section will also be particularly
helpful to our discussion in chapter 7.

We begin by recounting an argument introduced in [100]. In this work,
the author uses the expectation value of the total Hamiltonian to moti-
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vate the introduction of specific XX-couplings in order to achieve par-
ticular relative signs between certain GS vector components. Here we
effectively do the reverse in that we consider the introduction of XX-
terms that couple problem states together as motivated by the preced-
ing sections and seek to understand what this means for the signs with
which these problem states contribute to the instantaneous GS. We also
use this energetic argument to derive an approximate expression for the
value of s at which the first negative vector components appear in the
GS. We supplement this discussion with numerical results using our ex-
ample graphs. These numerical results show good agreement with the
theoretical predictions.

The expectation value of Ĥ(s) for the instantaneous ground state is
given by

⟨Ĥ(s)⟩ = ⟨E0(s)| Ĥ(s) |E0(s)⟩ =
− (1 − s) ∑

(a,b)∈Cx

⟨E0(s)|Ea⟩ ⟨Eb|E0(s)⟩

+ s(1 − s)Jxx ∑
(a,b)∈Cxx

⟨E0(s)|Ea⟩ ⟨Eb|E0(s)⟩

+ s
2n−1

∑
a=0

Ea| ⟨E0(s)|Ea⟩ |2, (5.16)

where Cx and Cxx denote the set of pairs of states that are coupled by
the driver and the catalyst respectively. The final term in this expression,
which arises as a result of the problem Hamiltonian, is irrelevant to our
discussion since it is unaffected by the signs of the vector components.
With respect to the driver term, which enters the expression with a neg-
ative sign, it is energetically favourable for components corresponding
to pairs of states in Cx to have the same sign. This can only be true
for every pair if all the components have the same sign. In the stoquas-
tic setting, where Jxx is negative, it will also be energetically favourable
for pairs of states in Cxx to have the same sign. That the lowest en-
ergy is achieved by all the components of the ground state having the
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same sign is consistent with what we already know from the Perron-
Frobeneus theorem – that the GS of a stoquastic Hamiltonian will have
only positive vector components. When Jxx is positive however, pairs of
states appearing in Cxx will reduce the energy when the corresponding
components have opposite signs to each other.

Let us now consider how this may affect the signs of the GS vector com-
ponents over the course of the anneal. At s = 0, when the catalyst
contribution is zero, it is energetically favourable for all the components
to have the same sign. However, for high enough Jxx, we may expect one
or more of the terms in the catalyst sum to become dominant enough
at some s that the energy would be lowered by certain components be-
coming negative. Determining what combination of components being
negative will minimise the energy at any given s is in general likely to be
very complicated. Not only is there the balance between the driver and
the catalyst terms in equation 5.16 to consider but, if there are multiple
couplers in the catalyst, there may be conflicting pairs of states whose
components would lower the energy by having the opposite sign.

The situation becomes a little easier to understand if we limit ourselves
to a single XX-coupling such that there are no conflicting pairs of cou-
pled states with respect to the catalyst. In the limit where 1/Jxx → 0 (i.e.,
the catalyst dominates significantly over the driver), it would be energet-
ically favourable for the components of the instantaneous GS vector to
split into two oppositely signed sets with one problem state from each
pair in Cxx appearing in each set. In practice we might expect some
of the pairs entering the sum to have a larger product such that they
take opposite signs first while it remains energetically favourable for
others to keep the same sign as each other. The non-stoquastic catalysts
we consider here are those containing XX-terms chosen to couple some
low energy local optimum, |Ea⟩, participating in a perturbative crossing
with the ground state, to another low energy state, |ENxx(a)⟩. By the fact
that there is a crossing between |Ea(λ)⟩ and |E0(λ)⟩ we can expect both
|Ea⟩ and |ENxx(a)⟩ to have a large contribution to the instantaneous GS.

100



5.3. Signs of the ground-state vector components

Figure 5.7: Plots showing the evolution of the instantaneous GS vector in terms of its
overlap with the eigenstates of Ĥp. The parameters associated the problem instance
are n0 = 3, n1 = 4, W0 = 1.37, W1 = 1.00 and Jzz = 37.5. Plots (a) and (b) show
the results when a catalyst Hamiltonian containing an XX-coupling with Jxx = 2 is
introduced between the first two vertices in G1 and plot (c) shows the results when all
XX-couplings in G1 are included. In all the plots, the overlap with the problem 1ES,
|↓↓↓↑↑↑↑⟩, is plotted with a solid orange line. In (a), the solid purple line shows the
overlap with |↓↓↓↓↓↑↑⟩ – i.e., the state that the problem 1ES becomes coupled to by
the catalyst. In (b), the solid purple line shows the overlap with |↓↓↓↓↑↓↑⟩. In (c) the
overlaps with all the states that have two up and two down spins in G1 are plotted
with a solid purple line. In this case, the catalyst does not break the symmetry of the
problem and so their evolutions are all the same. The rest of the states are colour coded
according to which of these states they are closest to in Hamming distance. Equidistant
states are plotted in grey. The plots on the bottom row show the same data as the top
row plots but for a smaller range around zero.

As such, we may expect this to be the first term in the catalyst sum to
affect the signs of the problem state overlaps of the GS and so for the
corresponding GS components, ⟨E0(s)|Ea⟩ and ⟨E0(s)|ENxx(a)⟩, to take
opposite signs. If the product of the other pairs of overlaps that enter
the sum are significantly smaller we might expect the driver terms to
dictate the rest of the signs such the rest of the overlaps share the sign
of whichever state, ⟨E0(s)|Ea⟩ or ⟨E0(s)|ENxx(a)⟩, they are closer to.

Looking at the signs of the GS coefficients for various example graphs
we find that this is indeed the case. We present, as an example, results
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for a bipartite instance in which an XX-term is introduced that cou-
ples |E1⟩ to another low energy state, |ENxx(1)⟩ – see figure 5.7(a). The
overlaps of the instantaneous GS with |E1⟩ and |ENxx(1)⟩ are plotted in
solid orange and purple respectively. The overlaps with the states that
are closer in Hamming distance to each are plotted in the correspond-
ing colours with dashed lines. States that are equidistant from the two
states are shown in grey. We see that, at s ≈ 0.4, the GS overlaps with
|E1⟩ and |ENxx(1)⟩ take different signs – with ⟨E0(s)|E1⟩ becoming nega-
tive. Furthermore, we see that the overlaps with the states that are closer
in Hamming distance to |E1⟩ also become negative.

In figure 5.7(b) we show the same data but with the solid purple line
highlighting the overlap with a state that is symmetrically equivalent to
|ENxx(1)⟩ in the catalyst free setting – both represent sets containing all
but two vertices in G1. The dashed purple lines show the overlaps with
states that are closer in Hamming distance to this state than |E1⟩. We
see that the states sorted in this way do not consistently share the same
signs – lending weight to the arguments we have presented regarding
the key elements that contribute to the signs taken by the problem state
overlaps.

We do not necessarily expect this exact pattern to hold for all settings
where a single XX-term is introduced – i.e., the largest pair that enters
the catalyst sum in equation 5.16 dictates two overlaps that take the
opposite sign to each other while the rest of the states become sorted by
which state in this pair they have the shortest Hamming distance from.
It may be that more than one term in this sum becomes sufficiently
large, for comparable Jxx and s, such that the states having opposite
signs is more energetically favourable than the states sorting themselves
by Hamming distance from one pair of states coupled by the XX-term.

The crucial observation however is this: We have motivated the intro-
duction of XX-terms that couple problem states together that have a
large presence in the perturbed problem state, |Ea(λ)⟩, responsible for
a perturbative crossing with the GS. The purpose of these couplings is
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to introduce large terms into the sum in equation 5.12 so that |Ea(λ)⟩
receives large positive perturbations. Such couplings will only result in
a positive perturbation if the overlaps with the pairs of coupled problem
states share the same sign. The preceding discussion however suggests
that these overlaps will take opposite signs for sufficiently large Jxx pre-
cisely because of their large contribution to |Ea(λ)⟩. At this point equa-
tion 5.12 implies that continuing to increase Jxx will result in a negative
perturbation to |Ea(λ)⟩. In contrast to the stoquastic case, this suggests a
limit to the gap enhancement that can be achieved in this way before we
start to see it begin to close again – which is in line with the numerical
results presented in figure 5.2.

That the gap enhancement from the non-stoquastic catalyst is expected
to peak for some Jxx rather than continue to increase monotonically does
not necessarily impose a problem for the use of such a catalyst. The cru-
cial consideration will be how this gap enhancement scales with system
size – which we investigate in the following chapters. We have also so
far only focused our attention on the case where the catalyst contains a
single XX-term. As we will now see, the situation is somewhat helped
by the introduction of additional couplings.

In figure 5.7(c) we show the evolution of the instantaneous GS when the
catalyst contains all possible XX-couplings within G1. The overlaps with
the different problem states are coloured as in figure 5.7(a). In this case
however all the states corresponding to sets consisting of all but two
of the vertices in G1 are symmetrically equivalent and so their overlaps
with the GS have the same evolution (shown by the solid orange curve).
Here we see that, for values of s at which we see negative overlaps,
the overlap of the ground state with |E1⟩ does not consistently have
the opposite sign to the states it becomes coupled to by the catalyst.
We also see that the magnitude of the negative overlaps are suppressed
compared to the case where a single coupling is used.

We suggest that these findings relate to the fact that the catalyst now
contains conflicting pairs of states in Cxx with non-negligible contribu-
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tions to the GS. That is, |E1⟩ is coupled to each state corresponding to a
set that consists of all but two vertices in G1 and these states also become
couples to each other. It is clear that not all of the pairs of states can
have overlaps with the opposite sign to each other. While this particular
observation relates specifically to our graph structure and choice of cat-
alyst, we suggest that introducing more XX-couplings will tend to result
in more conflicting pairs of problem states such that these findings are
likely to extend to other settings as well. This suggests that using multi-
ple couplings will tend to suppress the problem of key pairs of overlaps
taking the opposite sign and so result in the capacity for greater gap
enhancement. This is again in agreement with the numerical results in
5.2(b).

5.3.1 Sign change location

In order to provide some more rigour to the preceding discussion, we
use equation 5.16 to derive an expression for the value of s at which
we expect the appearance of negative vector components and compare
this to numerical results. In order to do this we must return to the case
where the catalyst contains a single coupling. As part of this derivation
we assume that the problem states can be split into two sets such that
the ground state overlaps with all the states in one set change sign at
some value of s. Rewriting equation 5.16 in terms of these two sets,
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which we denote A and B, we get

⟨Ĥ(s)⟩ = −(1 − s)

(
∑

(a,b)∈CA
x

⟨E0(s)|Ea⟩ ⟨E0(s)|Eb⟩

+ ∑
(a,b)∈CB

x

⟨E0(s)|Ea⟩ ⟨E0(s)|Eb⟩+ ∑
(a,b)∈CI

x

⟨E0(s)|Ea⟩ ⟨E0(s)|Eb⟩
)

+ s(1 − s)Jxx

(
∑

(a,b)∈CA
xx

⟨E0(s)|Ea⟩ ⟨E0(s)|Eb⟩

+ ∑
(a,b)∈CB

xx

⟨E0(s)|Ea⟩ ⟨E0(s)|Eb⟩+ ∑
(a,b)∈CI

xx

⟨E0(s)|Ea⟩ ⟨E0(s)|Eb⟩
)

+ s ∑
a∈A∪B

Ea| ⟨E0(s)|Ea⟩ |2, (5.17)

where we have used used the superscripts A and B to denote the sets
of pairs of states where both states are in A or B respectively and the
superscript I to denote pairs of states for which one state is in A and the
other is in B.

We then write the expression in terms of the magnitudes of the coeffi-
cients in the case where all the coefficients have the same sign and in
the case where the coefficients in different sets have opposite signs. By
setting the expression for the latter case as smaller than the expression
for the first and re-arranging, we obtain,

sJxx >

∑
(a,b)∈CI

x

| ⟨E0(s)|Ea⟩ ⟨E0(s)|Eb⟩ |

∑
(a,b)∈CI

xx

| ⟨E0(s)|Ea⟩ ⟨E0(s)|Eb⟩ |
. (5.18)

This expression tells us, for a given s, whether or not the two sets having
the opposite signs will reduce the energy of the ground state. Assuming
that the sign change happens as soon as it would lower the energy, we
can use this expression to determine an approximation for the value of s
at which the sign change occurs. We refer to this value as sn. To use this

105



5. Targeted XX-Couplings

Figure 5.8: Plots showing the properties of the negative GS vector components for an
anneal to a problem instance with the parameters n0 = 4, n1 = 5, W0 = 1.37, W1 = 1.00
and Jzz = 37.5. (a) shows the value of s for at which the first vector components become
negative with increasing |J′xx|. (b) shows the largest magnitude reached by the negative
vector components. The numerical results when using a single XX-coupling and all-
to-all XX-couplings in G1 are plotted in the darker and lighter purple respectively.
We dismiss the vector components which never drop below −0.05. The theoretical
predictions for the sign change location when a single coupling is used are plotted in
grey.

expression we sort the problem states by Hamming distance from some
key pair of coupled states that we assume will take opposite signs. The
states that are equidistant we add to the set associated with the lower
energy problem state. Similar results are however obtained if they are
added to the other set. We numerically sample the magnitudes of the GS
vector components at different points in the anneal for a given Jxx. These
values can then be plugged into equation 5.18 for each s to determine
whether we expect the overlaps in the different sets to have the opposite
sign at this point in the anneal.

Figure 5.8(a) shows how sn varies with increasing catalyst strength for
an example graph with n0 = 4, n1 = 5, W0 = 1.37, W1 = 1.00, Jzz = 37.5
and a catalyst introduced into G1. The theoretical predictions are shown
in grey and the numerical results when a single coupling is used are
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shown in the darker purple. In fact there are a number of negligible
problem state overlaps that dip very slightly into the negative. As such,
we discount any overlaps that do not drop below 0.05 when obtaining
sn from the numerical data. (This is why the numerical data does not
extend to J′xx = 0.) We see that there is good agreement between the nu-
merical data and the theoretical prediction. We also include numerical
results for the case when the catalyst contains all couplings within G1 –
plotted in the lighter purple. We see the results are qualitatively similar
to the single coupling case. Once again, our way of scaling Jxx by the
number of couplings included in Ĥc means that one should not read too
much into lower values of sn associated with the all-to-all catalyst.

Finally, we return very briefly to the magnitudes of the negative vector
components. Figure 5.8(b) shows the largest magnitude reached by a
negative problem state overlap with increasing catalyst strength. The
results when Ĥc contains a single coupling and all-to-all couplings in
G1 are plotted in the darker and lighter purple respectively. In the sin-
gle coupling case, this magnitude is clearly seen to increase with Jxx

– as one might expect from the preceding discussion. There is also a
slight increase in the all-to-all coupling case. The magnitude is however
significantly suppressed compared to the single coupling case. Again,
this suggests that introducing more couplings will allow the catalyst
to achieve greater gap enhancement by alleviating the issues associated
with the negative vector components.

5.4 Discussion

Using perturbation theory, we determined that a perturbative crossing
between two states, |Ea⟩ and |Eb⟩ (b > a), could be removed by either:

• selecting XX-terms that couple |Ea⟩ to other low energy states
and/or low energy states that are close in Hamming distance to
|Ea⟩ to each other and introducing these terms with the same sign
as the driver. (This results in a total Hamiltonian that is stoquastic.)
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Or

• selecting XX-terms that couple |Eb⟩ to other low energy states
and/or low energy states that are close in Hamming distance to
|Eb⟩ to each other and introducing these terms with the opposite
sign to the driver. (This results in a total Hamiltonian that is non-
stoquastic.)

While both the stoquastic and non-stoquastic catalysts resulted in gap
enhancement, our numerical investigation revealed differences between
the effect of the two catalysts that our initial theoretical investigations
did not account for. We found that, while the stoquastic catalysts re-
sulted in monotonic enhancement to the spectral gap with increasing
Jxx, the gap enhancement from the non-stoquastic catalysts reached a
maximum for some Jxx. Increasing Jxx beyond this point caused the gap
minimum to begin decreasing once more. Furthermore, the stoquastic
catalyst produced similar gap enhancement whether just one or all pos-
sible couplings were used. Conversely, the maximum gap enhancement
reached by the non-stoquastic catalyst was greater if more couplings
were used.

We attributed the behaviour in the non-stoquastic setting to the effect
of the catalyst on the relative signs of the instantaneous vector compo-
nents. By considering the expectation value of the ground state we were
able to shed some light on the relationship between the XX-terms in
the catalyst and the relative signs between key vector components. In
addition to explaining the aforementioned differences between the sto-
quastic and non-stoquastic settings, this also allowed us to deduce that
these results are likely not specific to our problem graphs. Rather, any
non-stoquastic XX-terms chosen as motivated in section 5.1 will result
in the gap enhancement reaching some maximum value rather than in-
creasing monotonically with Jxx – and this maximum can be increased
by introducing additional XX-terms.

Both our analytical discussion and numerical investigations have consid-
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ered perturbative crossings that form as a result of highly competitive
non-degenerate local optima. And indeed it is perturbative crossings of
this form on which our dissertation is focused. However, as noted in sec-
tions 1.3.1 and 3.1, it is also possible for perturbative crossings to form
as a result of degenerate local optima separated by a Hamming distance
of two. In this case, if we introduce XX-couplings that target the local
optima as we have motivated here, there are two scenarios that could
arise. The first is a similar scenario to that which occurs for the non-
degenerate case – i.e., one or more of the degenerate local optima could
become coupled to one or more other low energy states. However, there
is now also the possibility of coupling the degenerate local optima to
each other. For latter case, it has already been shown that such coupling
choices have the capacity to remove the perturbative crossing when in-
troduced with the opposite sign to the driver [67, 100]. With regards
to the first of these scenarios: whether or not the arguments made in
section 5.1.2 apply to the degenerate case will depend on whether the
dominant vector components of the relevant perturbed problem states
are positive – as we showed for the non-degenerate setting. This, how-
ever, we leave as a question for future work.

With regards to understanding how useful the catalysts we have intro-
duced will be in helping quantum annealing to find the global optimum
of a problem, four important questions are: (1) How do the effects we
have observed in this chapter scale to larger system sizes? (2) How sen-
sitive are the effects of the catalyst to the specifics of the setting into
which they are introduced? (3) Are XX-terms that introduce the desired
couplings between problem states always guaranteed to exist in more
general settings? (4) Assuming such XX-terms do exist, how easily could
appropriate couplings be identified using accessible information?

The first two of these questions are what much of the rest of this the-
sis addresses. So far the numerical results that we have presented have
been illustrative examples for which we have kept to a relatively con-
sistent, small, system size and parameters that we expect to result in a
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comparatively milder exponential gap scaling – as discussed in Chapter
3. Chapter 7 explores both the scaling behaviour of the catalysts and
their sensitivity to parameter changes in Ĥp with a bi-partite graph –
i.e., in the setting where there is a single perturbative crossing. Chap-
ter 9 then considers how these catalysts scale with the introduction of
additional local optima resulting in additional perturbative crossings.

A rigorous investigation into the second two questions lies somewhat
outside of the scope of this work. We will however take a moment to
discuss them here – starting with the question of identifying appropriate
couplings, assuming they exist. We noted before that the stoquastic
catalyst was not likely to be a practical solution to removing perturbative
crossings since identifying appropriate XX-terms would likely require
more knowledge of the problem GS (encoding the global optimum) than
one would have access to. For the non-stoquastic catalysts however, it
may be possible to identify suitable couplings using knowledge of the
relevant local optima.

Crucially, if the only exponentially closing gaps in the annealing spec-
trum are the perturbative crossings, a polynomial-time annealing run
could be used to identify the relevant local optima. Consider the setting
presented in figure 3.3(c) as an example. An exponentially closing gap
appears between the instantaneous GS and 1ES as a result of a perturba-
tive crossing between the problem GS and 2ES. Tracing through the gap
spectrum, it is clear that an anneal for which the majority of state trans-
fer happens at the perturbative crossings is likely to return the problem
2ES. In theory then, a polynomial time annealing run can be used to find
precisely the local optimum responsible for the algorithmic bottleneck
to an adiabatic anneal.

The question then is: can appropriate XX-terms be identified if we know the
local optimum and corresponding state which we wish to target? In the Ising
formulation of the MWIS problem it is straightforward to identify low
energy states that have a Hamming distance two from a given local op-
timum by simply selecting two up spins to flip. This will result in a
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state corresponding to another independent set. It is possible that simi-
lar strategies could be identified for other problems. For instance, in the
max-clique problem, one may want to select a vertex that is connected
to as many vertices in the current clique as possible and introduce an
XX-coupling between this vertex and one already in the clique that it is
not connected to. (This is not as clear cut a route to a low energy state
as what we suggest for the MWIS problem; however it is also likely that
better approaches exist.) We also note that the MWIS problem is NP-
complete. Thus, if it is significantly harder to identify suitable couplings
in other problem settings, the problem could always be represented as
an MWIS problem to facilitate using the catalysts introduced here.

Recall, however, that it is not sufficient to couple the state correspond-
ing to the relevant local optimum to low energy states. The couplings
chosen must also couple the GS to states that are, overall, significantly
higher in energy – otherwise both problem states will receive a simi-
lar perturbation from the catalyst. In our problem setting, selecting a
coupling that avoids this is straightforward since none of the maximally
independent sets share vertices. If, however, the local optimum we wish
to target shares at least two vertices with the global optimum, then there
is a chance that an XX-term selected based only on knowledge of the lo-
cal optimum will also couple the GS to a low energy state. We suggest
that this should not pose too much of a problem since the two maximally
independent sets cannot share all their vertices and so, by introducing
enough XX-terms, we are guaranteed to end up with some suitable cou-
plings in the catalyst. Furthermore, as we saw in section 3.1, the size of
the gap minimum that forms as a result of a perturbative crossing be-
tween two problem states depends inversely on the Hamming distance
between them. This means that the more vertices the local and global
optimum share, the larger the associated spectral gap. Therefore, the
settings where the introduction of a catalyst will be most necessary are
those in which the selection of an unsuitable coupling is less likely.

In considering how appropriate couplings may be unidentified in prac-
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tice, we have also partially answered the question of whether or not ap-
propriate XX-couplings are guaranteed to exist. Certainly for the MWIS
graphs we are using, and the potential generalisation thereof in which
local optima can share vertices, it would seem that suitable (and identi-
fiable) couplings will always exist. We do not however presume to have
covered all possible subtleties in the preceding discussion. While we
leave a rigorous analysis of this topic for future work, we feel the dis-
cussion here gives some indication that catalysts of the form we examine
have the potential to be constructed using accessible information.

5.5 Summary

In this chapter we have motivated two potential forms of XX-catalyst for
the removal of perturbative crossings between low-energy local optima
– which are the perturbative crossings of primary concern for quantum
annealing. The first was a catalyst which enters with the same sign as
the driver and targets the lower excited state involved in the perturba-
tive crossing and the second was a catalyst that enters with the opposite
sign to the driver and targets the higher excited state. Studying these cat-
alysts numerically, we confirmed that both were indeed able to increase
the size of the gap minimum associated with a perturbative crossing.
Furthermore, examining the effect that the catalysts had on the evolu-
tion of the instantaneous eigenstates, we were able to confirm that this
gap enhancement was a result of the expected changes to the energies
of the perturbed problem states.

In our numerical investigations we observed some differences between
the effects of the two XX-catalysts, which we were able to account for
though analysis of the changing signs of the instantaneous GS vector
components in the non-stoquastic case – i.e., the case where the catalyst
entered with the opposite sign to the driver. Specifically, we found that
the appearance of negative GS vector components, which is an inher-
ently non-stoquastic phenomenon, limited the maximum gap enhance-
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ment that the catalyst was able to achieve compared to the stoquastic
case. Despite this, we believe that the non-stoquastic catalyst is the
more promising route due to the fact that it may be possible to iden-
tify the necessary XX-couplings for its implementation using accessible
information.

Before moving on, let us briefly comment on the extent to which the
concept of stoquasticity is relevant to our discussion. When motivating
our catalysts, the selection of what sign the couplings should be given
in relation to the driver related to the perturbations that we wanted to
introduce – rather than a need for the annealing Hamiltonian to be ei-
ther stoquastic or non-stoquastic. In this sense, the fact that one from
of catalyst results in a non-stoquastic H(s) and the other doesn’t is inci-
dental. On the other hand, we have already observed that the behaviour
of the catalyst introduced with the opposite sign to the driver (i.e., the
catalyst on which we will be focusing) is intrinsically tied to the non-
stoquasticity that it introduces.

Overall, the concept on non-stoquasticity will not play a major role in
our discussion moving forwards, becoming relevant only when we dis-
cuss certain effects relating to the signs of the GS vector components.
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Chapter 6

Alternative Couplings

The focus of this thesis is on the use of XX-couplings. However, in this
chapter, we will briefly examine the effect of the other possible 2-local
Pauli interactions – YY, ZZ, XY, XZ and YZ. We will begin, in section
6.1, by examining numerical results for the effect on the gap minimum
of the different couplings when introduced at different graph locations.
Then, in section 6.2, we employ the same kind of perturbative argument
made in section 5.1.2 to shed some light on our observations. We discuss
what these findings imply for the use of the different coupling choices
in alleviating the algorithmic bottleneck associated with a perturbative
crossing in section 9.3 before providing a brief summary of the key re-
sults in section 5.5.

6.1 Numerical results

The results presented in this section are for a tri-partite graph with
n0 = 4, n1 = 5 and n2 = 3 – such that we can create a setting where a
perturbative crossing forms between the problem states associated with
G0 and G1. The state associated with G2 does not participate in a pertur-
bative crossing with the former two states, effectively providing three
“dud” vertices in the graph. The un-normalised sub-graph weights are
W0 = 1.70, W1 = 1.35 and W2 = 1.00 and the un-normalised edge
penalty is Jzz = 35. This results in a comparatively mild avoided level
crossing between the instantaneous GS and 1ES – with regards to the
parameter tuning discussed in chapter 3.
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We present numerical results for the introduction of XX, YY, ZZ, XY, XZ
and YZ couplings. By the symmetries of the problem there are six po-
tential coupling locations. We can place a coupling between two vertices
within the same sub-graph or we can couple two vertices in different
sub-graphs. For each of these cases we examine the effect of introduc-
ing all possible couplings of the given type. (i.e., when looking at the
effect of introducing YY-couplings between G0 and G1, we couple every
vertex in G0 to every vertex in G1.)

For the case where the couplings are introduced within a sub-graph, the
catalyst Hamiltonians are given by

Ha,αβ
cat =

Jcat
αβ

2 ∑
i,j∈Ga

σα
i σ

β
j , (6.1)

where a denotes the sub-graph and α and β denote the type of coupling
– X, Y or Z. The result is that for the cases where both Pauli operators
are the same, each coupling has a magnitude of Jcat

αβ . In the cases where
the Pauli operators are different each edge included in the catalyst will
be coupled “both ways round” with a magnitude of Jcat

αβ /2. That is, the

coupling along each edge is given by (Jcat
αβ /2)(σα

i σ
β
j + σ

β
i σα

j ). The sum
in equation 6.1 goes over all the vertices in Ga such that the catalyst
contains all-to-all couplings within sub-graph Ga.

Where the couplings are between sub-graphs, the Hamiltonians can be
written as

Hab,αβ
cat = Jcat

αβ ∑
i∈Ga

∑
j∈Gb

σα
i σ

β
j , (6.2)

where we have introduced b to denote the second sub-graph. Here, each
coupling σα

i σ
β
j is introduced with a strength of Jcat

αβ . All σα
i operators act

on qubits in sub-graph Ga while all σ
β
j operators act on qubits in sub-

graph Gb. All available couplings between the sub-graphs are included
in the catalyst. Note that we have made a few changes to the notation
in this chapter in order to avoid confusion as our discussion progresses.
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We have introduced the superscript “cat” to the catalyst strength to dif-
ferentiate it from the problem ZZ-couplings when α = β = z. We have
also made the exchange Hc → Hcat to avoid confusion when we start
using c to index problem states.

There are 45 unique cases in total which we can summarise as follows:

• G0 ↔ G0 : XX, YY, ZZ, XY, XZ, YZ

• G1 ↔ G1 : XX, YY, ZZ, XY, XZ, YZ

• G2 ↔ G2 : XX, YY, ZZ, XY, XZ, YZ

• G0 ↔ G1 : XX, YY, ZZ, XY, YX, XZ, ZX, YZ, ZY

• G0 ↔ G2 : XX, YY, ZZ, XY, YX, XZ, ZX, YZ, ZY

• G1 ↔ G2 : XX, YY, ZZ, XY, YX, XZ, ZX, YZ, ZY.

We present results for the size of the gap minimum between the ground
and first excited state with varying catalyst strength, Jcat

αβ , for these 45
cases in figures 6.1 and 6.2. The results for G0 ↔ G0, G1 ↔ G1 and G2 ↔
G2 couplings are presented in Figures 6.1(a), (b) and (c) respectively and
the results for G0 ↔ G1, G0 ↔ G2 and G1 ↔ G2 couplings are presented
in Figures 6.2(a), (b) and (c). We will now make a few comments on our
numerical results before going into the theory behind these observations
in section 6.2.

First, we briefly note that the XX results are in line with the findings
from the previous chapter. If included within G0, the gap is enhanced
when Jcat

αβ is negative and, if included within G1, the gap is enhanced
for positive Jcat

αβ . The couplings have a limited effect when included
within G2. (Note the difference in axis scales.) We also see that the
XX-couplings have a limited effect when introduced between the sub-
graphs. This makes sense given the perturbative argument made in
section 5.1.2, as we will go on to discuss in the following section.

Turning now to the other couplings, let us start by considering the cou-
plings within the different sub-graphs. Looking at figure 6.1(a), we can
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Figure 6.1: Numerical results for the size of the minimum spectral gap, ∆Emin
01 (s), with

varying catalyst strength and different coupling choices. The results are for a problem
graph with with n0 = 4, n1 = 5, n2 = 3, W0 = 1.70,W1 = 1.35, W2 = 1.00 and Jzz = 35.
The plots in (a), (b) and (c) are for catalysts with all-to-all couplings within sub-graph
G0, G1 and G2 respectively. Results using different couplings are plotted in different
colours. We include an additional panel in (b) showing a zoomed-in view of the results
closer to zero gap.
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Figure 6.2: Same as in figure 6.1 but in this case the sub-plots show the results for
catalysts containing all to all couplings between vertices in G0 and G1 (a), G0 and G2
(b) and G1 and G2 (c).
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see that most of the coupling choices perform reasonably well when in-
troduced between vertices in G0. Intuitively, this makes sense given that
we can think of introducing couplings into G0 as effectively targeting
the problem GS. However, as we will see in the second half of this chap-
ter, this intuition is only backed up by our perturbative arguments in a
couple of cases. Looking at figure 6.1(c) we see that none of the coupling
choices perform well when introduced into G2. As for the couplings in
G0, this intuitively makes sense given that G2 is associated with a state
that does not participate in a perturbative crossing. In this case, we find
that this intuition is backed up by the theory. Finally, in figure 6.1(b),
we see that only two of the couplings perform well when introduced
into G1. These are XX, which we have already discussed, and ZZ. We
also find these results to be in line with the perturbative analysis in the
following section.

Turning our attention to Figure 6.2, which shows the results for the
inter-sub-graph couplings, we see that a number of the coupling choices
perform well – with many reaching the maximum possible gap enhance-
ment (∆E01) and seemingly plateauing. For all but the YZ couplings, we
find that we are able to make sense of performance of the different cou-
pling choices.

We believe that the erratic oscillations that can be seen for the very small-
est values of the gap sizes are a numerical artifact. However, we have
not properly investigated their origin since they have minimal impact
on the results.

6.2 Perturbative analysis

To understand the observations we have made for the different coupling
choices, we utilise the perturbative argument that we made in section
5.1.2. To do this, let us write down a more general version of equation
5.12 which was specifically associated the perturbative introduction of
XX-couplings to the driver perturbed problem states, |Ea(λ)⟩. We can
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write the perturbed energies associated with a general catalyst as

Ea(λ, µ) = Ea(λ) + µJcat
αβ ∑

(i,j)∈Ecat

2n−1

∑
b,c=0

f αβ,ij
bc ⟨Ea(λ)|Eb⟩ ⟨Ec|Ea(λ)⟩ , (6.3)

where f αβ,ij
bc = ⟨Eb|σα

i σ
β
j |Ec⟩ (with α and β = x, y, z) and Ecat denotes

the edges, or couplings, included in the catalyst Hamiltonian. Note that
we are now using a, b and c to denote problem states and not sub-
graphs. The fact that we now have two sums is because there is now the
possibility of two states being connected by more than one coupling. For
instance, |↑↑↓ . . .⟩ can become coupled to |↓↑↓ . . .⟩ by an XZ-coupling
acting on the first and second spins or the first and third spins.

We are of course interested in the perturbations to the two states asso-
ciated with a perturbative crossing. Let us assume that one is the per-
turbed GS, |E0(λ)⟩, associated with the global optimum and the other
is some other state |El(λ)⟩ associated with a local optimum. Let us also
refer to the set of problem states that dominate these two states as S0

and Sl. To remove the perturbative crossing we want to introduce neg-
ative perturbations to |E0(λ)⟩ and/or positive perturbations to |El(λ)⟩.
For the XX-catalyst, we determined that we could achieve this by se-
lecting XX-terms that coupled states within |E0(λ)⟩ to each other with
Jcat
αβ < 0 or selecting XX-terms that coupled states within |El(λ)⟩ to each

other with Jcat
αβ > 0. (For our graph structure this amounted to placing

XX-terms within the sub-graphs corresponding to the global and local
optima respectively.)

This result hinged on two main things. First, the fact that the matrix
elements, f xx,ij

bc , are all either zero or unity. And secondly, the dominant
vector components in |E0(λ)⟩ and |El(λ)⟩ were all positive – which we
demonstrated in Section 5.1.2. This second point of course holds re-
gardless of the catalyst we choose since it relates to the perturbations
from the driver. However, depending on the catalyst chosen, f αβ,ij

bc can
take different values. To aid our discussion, let us write out equation
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6.3 for E0(λ, µ) and El(λ, µ) explicitly. Using the fact that, in our set-
ting, ⟨Ea(λ)|Eb⟩ ⟨Ec|Ea(λ)⟩ = ⟨Eb(λ)|Eb⟩ ⟨Ec|Ea(λ)⟩, we can write these
energies as

E0(λ, µ) ≈ E0(λ)+µJcat
αβ ∑

a,b∈S0
b≥a

⟨E0(λ)|Ea⟩ ⟨Eb|E0(λ)⟩ ∑
(i,j)∈Ecat

( f αβ,ij
ab + f αβ,ij

ba )

(6.4)
and

El(λ, µ) ≈ El(λ)+µJcat
αβ ∑

a,b∈Sl
b≥a

⟨El(λ)|Ea⟩ ⟨Eb|El(λ)⟩ ∑
(i,j)∈Ecat

( f αβ,ij
ab + f αβ,ij

ba ).

(6.5)
Note the change in indices b → a and c → b since we are no longer
using a to denote the perturbed state.

To understand the effect of a particular choice of catalyst there are two
main components. First, there is the question of whether or not the
catalyst includes terms that result in couplings between states within
one or both of the two sets, S0 and Sl. This will dictate whether E0(λ)

and/or El(λ) receive any perturbations at all – at least according to
equations 6.4 and 6.5. (Recall, from our discussion in section 3.1, that
S0/l will contain E0/l as well as the problem states that are close in both
energy and Hamming distance to E0/l.) The second element is the values
that the non-zero matrix elements, f αβ,ij

ab and f αβ,ij
ba , associated with these

pairs of coupled states take.

To help with this discussion, we include two tables that cover the key
elements that we have highlighted. Table 6.1 outlines what coupling
choices result in internal couplings within sets S0 and Sl. To under-
stand these results, recall that flipping any number of spins in one of
the sub-graphs, Ga will result in states corresponding to any sub-set (in-
cluding the complete set) of vertices in Ga becoming coupled to states
corresponding to other sub-sets of Ga. Meanwhile states corresponding
to subsets of other sub-graphs, Gb will become coupled to states corre-
sponding to sets that include vertices from both Ga and Gb. From our
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understanding of the make-up of the sets, S0 and Sl, flipping spins in
G0 will result in internal couplings between states within S0 but not in
Sl while the reverse will be true if we flip spins in G1. Flipping spins in
G2 won’t result in internal couplings between states in either S0 or Sl.

XX YY ZZ XY YX XZ ZX YZ ZY
G0 ↔ G0 S0 S0 S0 & Sl S0 S0 S0 S0 S0 S0
G1 ↔ G1 Sl Sl S0 & Sl Sl Sl Sl Sl Sl Sl
G2 ↔ G2 - - S0 & Sl - - - - - -
G0 ↔ G1 - - S0 & Sl - - S0 Sl S0 Sl
G0 ↔ G2 - - S0 & Sl - - S0 - S0 -
G1 ↔ G2 - - S0 & Sl - - Sl - Sl -

Table 6.1: Table showing which graph coupling choices result in couplings between
states within S0 and/or Sl – as defined in section 6.2.

bi bj ai aj XX YY ZZ XY YX XZ ZX YZ ZY
↑↑ ↑↑ 0 0 1 0 0 0 0 0 0
↑↑ ↑↓ 0 0 0 0 0 1 0 i
↑↑ ↓↑ 0 0 0 0 0 1 0 i 0
↑↑ ↓↓ 1 −1 0 i −i 0 0 0 0
↑↓ ↑↑ 0 0 0 0 0 0 1 0 −i
↑↓ ↑↓ 0 0 −1 0 0 0 0 0 0
↑↓ ↓↑ 1 1 0 −i i 0 0 0 0
↑↓ ↓↓ 0 0 0 0 0 −1 0 −i 0
↓↑ ↑↑ 0 0 0 0 0 1 0 −i 0
↓↑ ↑↓ 1 1 0 i −i 0 0 0 0
↓↑ ↓↑ 0 0 −1 0 0 0 0 0 0
↓↑ ↓↓ 0 0 0 0 0 0 −1 0 −i
↓↓ ↑↑ 1 −1 0 −i i 0 0 0 0
↓↓ ↑↓ 0 0 0 0 0 −1 0 i 0
↓↓ ↓↑ 0 0 0 0 0 0 −1 0 i
↓↓ ↓↓ 0 0 1 0 0 0 0 0 0

Table 6.2: Table showing the values of different matrix elements f αβ,ij
ab = ⟨Ea|σα

i σ
β
j |Eb⟩

(α and β = x, y, z). The first and second columns show the orientations of the two
spins being acted on in |Ea⟩ and |Eb⟩ respectively, and columns 3 to 11 give the matrix
elements corresponding to the different coupling choices indicated at the top of the
columns.
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As such, we see in table 6.1, that XX-, YY- and XY-terms included be-
tween vertices in G0 result in couplings within S0 while including the
couplings between vertices in G1 results in couplings within S1. Placing
these couplings anywhere else results in no internal couplings. Whether
XZ- or YZ-couplings result in internal couplings within S0, Sl or nei-
ther depend on which sub-graph the X or Y coupling is placed in. ZZ-
couplings result in every state becoming coupled to itself. Therefore,
they result in internal couplings within both S0 and Sl regardless of
where they are placed.

From the arguments we have made, we expect minimal effect on the size
of the gap minimum when there are no internal couplings within either
S0 or Sl. This is the case for the following catalyst choices:

• G2 ↔ G2 : XX, YY, XY, XZ, YZ,

• G0 ↔ G1 : XX, YY, XY, YX,

• G0 ↔ G2 : XX, YY, XY, YX, ZX, ZY,

• G1 ↔ G2 : XX, YY, XY, YX, ZX, ZY.

Looking at Figures 6.1 and 6.2, we see that these catalysts do indeed
have a limited effect on the gap size for both positive and negative Jcat

αβ .
There are, however, other catalyst choices that result in comparatively
small gap enhancement despite the terms in the catalyst resulting in
perturbations entering the sums in equations 6.4 and 6.5. To differentiate
between these cases and the catalysts that do perform well, we must
consider the matrix elements, f αβ,ij

ab . These are presented in table 6.2.

Each of the catalysts that we examine consist of a sum of couplings
of one type (XX, XY, etc...) acting on different pairs of qubits. Table
6.2 displays the matrix elements, f αβ,ij

ab , associated with the individual
couplings as follows. The first two columns give the spin orientations
of the two qubits being acted on by the coupling term in the states |Eb⟩
and |Ea⟩ respectively – b displayed before a since |Eb⟩ is the state being
operated on. Columns 3 through 11 then give the value of f αβ,ij

ab for the
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different choices of α and β. From the way in which we have laid out
the table, there are some repeat entries since e.g. XZ and ZX are the
same coupling with the indices swapped. We have chosen to include all
the columns, despite the repeats, to make it easier to refer between the
tables and the numerical results in Figures 6.1 and 6.2.

As a note, for the XX-, YY- and XY-catalysts, each coupled pair of states
will be associated with only one of the terms in the catalyst – the term
which couples the two spins that |Ea⟩ and |Eb⟩ differ by. As such, there
is only one term, ( f αβ,ij

ab + f αβ,ij
ab ), per coupled pair of states. For the XZ-

and YZ-catalysts, each coupled pair of states is associated with many
different terms in the catalyst – any term where either the X or the Y
operator is acting on the spin which the two states differ by. For the
ZZ-catalysts, each state is coupled to itself by every term in the catalyst.

We will now go through the different coupling choices, referring to ta-
bles 6.1 and 6.2, to gain some insight into our numerical observations
from the previous section. Overall, we find that our perturbative anal-
ysis is able to elucidate the numerical results for most of the 45 cases
(listed towards the end of section 6.1). In many cases, we see effects
at larger |Jcat

αβ | that are not predicted by perturbation theory – which is
not surprising since the perturbations must be sufficiently small for this
approach to be valid.

6.2.1 ZZ

We will start by considering the different ZZ-catalysts. These catalysts
result in internal couplings within S0 and Sl regardless of where they
are placed since they couple each state to itself. f αβ,ij

aa = 1 for ZZ-terms
acting on spins that are aligned in |Ea⟩ and f αβ,ij

aa = −1 if the spins are
misaligned in |Ea⟩. This means, for a catalyst consisting of ZZ-terms
placed within G0, that the values of f αβ,ij

aa associated with couplings
within S0 are a mixture of ±1. This is because the ZZ-terms will be
acting on states associated with different subsets on G0. Meanwhile, the
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f αβ,ij
aa values associated with the couplings within Sl will all be positive

since the spins in G0 are all down for the states in this set.

Thus, we can expect that introducing this catalyst with a positive Jcat
αβ will

result in a positive perturbation to |El(λ)⟩. The effect that the catalyst
might have on |E0(λ)⟩ is less clear due to the mixture of values that
f αβ,ij
aa can take. One possible conclusion is that the catalyst has a limited

effect on |E0(λ)⟩ since the perturbations can cancel each other out. This
being the case, we might expect the catalyst introduced with Jcat

αβ > 0,
to enhance the size of the gap minimum by lifting |El(λ)⟩ away from
|E0(λ)⟩. Looking at Figure 6.1(a) we see that this is indeed the case.

The situation is reversed for ZZ-couplings placed within G1. That is,
the f αβ,ij

aa values associated with the internal couplings within Sl have
mixed values while those associated with the internal couplings within
S0 are all equal to +1. To remove the perurbative crossing we would
want to lower the energy of |E0(λ)⟩. And indeed we see that, in this
case, the gap size is enhanced when Jcat

αβ < 0 – see Figure 6.1(b). For ZZ-

couplings placed within G2, f αβ,ij
aa = 1 for all the states in both S0 and Sl.

As such, both |E0(λ)⟩ and |El(λ)⟩ will receive similar perturbations from
the catalyst so that we might expect minimal effect on the perturbative
crossing. This is reflected in the numerical results in Figure 6.1(c).

Let us now consider the couplings placed between the sub-graphs. With
the ZZ-couplings placed between G0 and G1, the f αβ,ij

aa values associated
with internal couplings within both sets are a mixture of ±1. Corre-
spondingly, we see in Figure 6.2(a) that the catalyst has very little effect
on the gap size. When the couplings are placed between G0 and G2,
the f αβ,ij

aa values associated with internal couplings within S0 are again
a mixture of ±1. The matrix elements associated with the couplings
within Sl, however, will all be positive. Therefore, we expect Jcat

αβ > 0
to enhance the gap minimum for this catalyst. Looking at Figure 6.2(b)
we see that this is indeed the case. The situation is reversed when the
couplings are placed between G1 and G2 and, once again, we see the
expected results in Figure 6.2(c).
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Before moving on, we would like to briefly mention that diagonal cata-
lysts have been considered previously in the literature [68] through the
idea of biasing towards the solution state. In [68], the catalysts consisted
of local Z-fields such that biasing towards the solution state is a mat-
ter of orienting the Z-fields in the correct direction. With the catalysts
discussed here being sums of ZZ-couplings, the situation is a little dif-
ferent. The catalysts could potentially be thought of as biasing towards
states where the coupled spins are aligned or misaligned depending on
the sign of Jcat

zz . However, we found that thinking about whether or not
these ZZ-catalysts biased towards or away from the optimal solution
did not help elucidate their performance. For instance, biasing towards
states in which all the spins in one of the sub-graphs are aligned would
bias towards both the global and local optima – which does not help us
understand why a negative ZZ-catalyst performs well when introduced
into G1.

6.2.2 XZ

Now let us go through the XZ-catalysts, beginning with those where
the couplings are introduced within the sub-graphs. As with the XX-
catalyst, placing the XZ-terms within G0 will result in couplings within
S0 and not Sl while the opposite is true if we place the couplings within
G1. However, unlike for the XX-catalysts, the values of f αβ,ij

ab can be ±1
depending on the orientation of the spin acted on by σz. This helps
explain why XZ performs much worse than XX when placed in either
G0 or G1 even though similar couplings within S0 and Sl are introduced
– see Figures 6.1(a-b). XZ-terms within G2 do not result in couplings
within either S0 or Sl.

Turning our attention to the cases where the XZ-terms are placed be-
tween the sub-graphs, we see that there is significant gap enhancement
for any case where σx is acting on a spin in either G0 or G1 – i.e., any
case where couplings exist between states in either S0 or Sl. The reason
these placements work, while those internal to G0/1 don’t, is because the
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spin that σz is acting on will always be down for the states the couplings
form between such that f αβ,ij

ab is always equal to −1.

Thus, for the two cases where σx is acting on a spin in G0, we expect
Jcat
αβ > 0 to lower the energy of |E0(λ)⟩ while leaving |El(λ)⟩ unchanged

– thereby removing the perturbative crossing and enhancing the size
of the gap minimum. Conversely, when σx is acting on a spin in G1,
we expect Jcat

αβ < 0 to increase the size of the gap minimum since since
this will increase the energy of |El(λ)⟩ while leaving |El(λ)⟩ unchanged.
Looking at Figure 6.2, we see the numerical results are in line with these
predictions.

6.2.3 YY

The YY-catalysts result in the same couplings between states as the XX-
catalysts. However, for the cases where the XX-catalyst did have a sig-
nificant impact on the size of the gap minimum (i.e., couplings placed
either within G0 or G1) we see that the effect of the YY-catalyst is quite
different – see Figures 6.1(a) and (b). Looking at table 6.2 we see that
f αβ,ij
ab = −1 if the spins being acted on are aligned and 1 if the spins are

anti-aligned. As with the ZZ-couplings, this means that E0(λ) (if the
YY-terms are placed in G0) or El(λ) (if the YY-terms are placed in G1)
will receive a mixture of positive and negative perturbations form the
YY-catalyst.

Looking at Figure 6.1(b), we see that indeed there is very minimal gap
enhancement when the couplings are placed within G1. In the case
where they are placed in G0 however, we do still see some gap enhance-
ment – although the maximum enhancement here is only around 50%
of that when the XX-catalyst is used, and a higher catalyst strength is
needed to achieve it. It is possible that the explanation for this lies
in the details of how many and which of the f αβ,ij

ab values are positive
compared to negative. It is also worth nothing that the perturbative ap-
proach that we have taken to understanding the effects of these catalysts
won’t be capturing all of the physics. It will also become increasingly
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inaccurate as |Jcat
αβ | increases. In any case, a precise understanding of the

performance of the YY-catalyst lies outside the scope of this work.

6.2.4 XY and YZ

The XY- and YZ-catalyst differ from those we have discussed so far in
that the matrix elements, f αβ,ij

ab , are imaginary and have the property
f αβ,ij
ab = f αβ,ij

ba . Equations 6.4 and 6.5 thus imply that the catalyst does
not perturb the energies at all. However, looking at Figures 6.1 and 6.2
we see that this is not reflected in the numerical results – with many
of the catalysts associated with these couplings achieving the maximum
possible gap enhancement.

The pattern that we observe is that, for the coupling choices that re-
sult in internal couplings within S0 or Sl (see table 6.1), significant gap
enhancement is observed for the cases where σy is acting on a spin in
G0. These are the XY-, (YX-) and YZ- (ZY-) G0 ↔ G0 catalysts, the YZ-
G0 ↔ G1 catalyst and the YZ- G0 ↔ G2 catalyst. Something else to note
is that the results from these catalysts are insensitive to the sign of Jcat

αβ .

The fact that these catalysts perform well in many cases and are in-
sensitive to the sign with which the couplings are introduced, suggests
that they have potential for alleviating algorithmic bottlenecks in QA.
However, unlike for the other catalysts that were found to significantly
enhance the gap minimum, it is unclear to us where this enhancement is
coming from and so it is also unclear where and how they could be im-
plemented. These questions lie outside the scope of this work however
we believe this may be an avenue worth future exploration.

6.3 Discussion

For the cases where the matrix elements, f αβ,ij
ab , associated with the cata-

lyst were real, we have observed generally good agreement between the
theory and the numerical results – both with regards to what catalysts
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would result in gap enhancement and also what sign Jcat
αβ should take to

receive this gap enhancement. Firstly, any catalyst that did not result in
internal couplings within either S0 or Sl, and therefore was not expected
to result in a any perturbations to either |E0(λ)⟩ or |El(λ)⟩, had mini-
mal effect on the gap size. For the cases where internal couplings were
present, we were able differentiate fairly well between the cases where
the catalyst did have a significant effect and where it did not by consid-
ering whether the perturbations that entered equations 6.4 and 6.5 were
of a consistent sign or not.

For the catalysts that only resulted in couplings within one of the sets
(S0 or Sl), the catalyst was able to significantly enhance the gap mini-
mum when the perturbations had a consistent sign and were therefore
cumulative. The catalysts had a minimal effect when they resulted in
a mixture of positive and negative perturbations. The one exception to
this was the catalyst consisting of YY-couplings placed within G0. How-
ever, the gap enhancement in this case was still only around 50% of the
maximum gap enhancement possible while the catalysts with perturba-
tions of consistent signs achieved, or at least came very close to, this
maximum gap enhancement.

For the catalysts which resulted in internal couplings within both S0

and Sl, which were the ZZ-catalysts, a significant effect on the gap min-
imum was only seen when the perturbations to exactly one of the states,
|E0(λ)⟩ or |El(λ)⟩, had consistent signs. For the case where we found
that both states received consistent perturbations of the same sign there
was limited gap enhancement – which we took to be a result of both
states receiving a similar perturbation. There were no cases where one
state received only negative perturbations while the other received only
positive. For such a setting we might also expect the catalyst to have the
capacity to remove a perturbative crossing.

For the catalysts with imaginary matrix elements, which were the XY-
and ZY-catalysts, the theoretical predictions from equations 6.4 and 6.5
did not match up to our numerical results. While we have not been
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able to understand the effect of these catalysts in this brief study, we
suggested that they may be of interest for future work since (a) they re-
sulted in significant gap enhancement in multiple settings and (b) their
effect was insensitive to the sign with which the couplings were intro-
duced.

Let us now consider what the results in this section mean for how the
different couplings could be used more generally – rather than just for
a problem with the particular structure used here. The first take-away
is that most couplings performed well when placed between vertices in
G0. However, this may not be the most useful result since this may relate
to the fact that such catalysts resulted in couplings between states in S0

– see table 6.1. In a general MWIS problem, or indeed another problem
setting altogether, it is likely to be difficult (if not impossible) to identify
the suitable qubits to couple together to achieve this – since this would
require knowledge of the global optimum of the problem QA is trying
to solve.

The fact that the ZZ-, YZ-, and in particular the XZ-catalysts performed
well when placed between the sub-graphs (see Figure 6.2) may seem
to indicate that these couplings could be useful for random catalysts.
However, this may be misleading and more an artifact of our graph con-
struction. In each of these coupling locations, one of the operators is
still acting on one of the spins associated with either the global or local
optimum participating in the perturbative crossing. Though it is likely
to depend on the specific problem type and setting, we suggest that the
couplings within G2 may be a better indicator of what introducing cat-
alyst terms at random coupling locations may be able to achieve. This
is because a larger, more generic, problem may include many more ver-
tices that are not associated with the states responsible for a perturbative
crossing than our streamlined toy problems which are designed to have
these perturbative crossings for small system sizes.

In the previous chapter, we suggested that an XX-catalyst which re-
moved a perturbative crossing bottle-necking the quantum annealing
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algorithm could be constructed with knowledge of the state correspond-
ing to the local optimum, |El⟩, responsible for the perturbative cross-
ing. This would be achieved through identifying states that are close
in energy and Hamming distance to |El⟩ (i.e:, the states that make up
Sl) and introducing positive XX-terms that couple these states to each
other. In this section, the catalysts that performed well as a result of
coupling states within Sl together were the XZ-catalysts with the σx op-
erator placed within G1. The mechanism behind this is much the same
as for the XX-catalysts but with the states within Sl being coupled by
single spin flips – rather than two spins being flipped at once.

However, that the XZ-catalysts were able to achieve this gap enhance-
ment was contingent on the spins acted on by the σz operators hav-
ing the same orientations for the different states in Sl. It may well be
straightforward to identify couplings with this property depending on
the problem setting and if, for some hardware setting, these couplings
would be easier to implement and their locations more suited to the
hardware graph, these could provide an alternative to the XX-couplings
we will be discussing for most of this thesis. In some sense though,
the theoretical results (and their consistency with the numerical results)
highlight an inherent benefit of using XX-couplings in that the signs of
f αβ,ij
ab will always be consistent. As such, targeted coupling terms can be

selected solely based on what problem states they couple, without the
added complexity of the signs of f αβ,ij

ab .

6.4 Summary

In this chapter we have examined the effect of different 2-local cata-
lysts on the presence of a perturbative crossing. We tested the different
catalysts on an example tri-partite graph for which a single perturba-
tive crossing was present between the low energy states in the original
annealing spectrum. The catalysts considered consisted of couplings
of a single type (either XX, YY, ZZ, XY, XZ or YZ) and connected ei-
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ther all vertices within one sub-graph together or all vertices from one
sub-graph to all the vertices in another. Utilising the same theoretical
framework as we did in section 5.1.2, we were able to shed some light
on our numerical observations.

Outside of the cases where the catalysts contained imaginary compo-
nents (which were the XY and YZ catalysts), there was generally good
agreement between theory and numerics, lending validity to the ap-
proach that we have taken to understanding the effects of different cat-
alyst Hamiltonians. However, it is clear that this approach will need to
be extended if we want to use it to elucidate the behaviour of catalysts
with complex matrix elements.

We have drawn particular attention to an inherent benefit of using XX-
couplings when it comes to designing catalyst Hamiltonians which is
that the signs of the perturbations they introduce are consistent. We
also highlighted a number of other 2-local catalysts that performed well
with regards to enhancing the gap minimum. However, it was not as
clear if and how appropriate coupling locations could be identified in
general problem settings. Nevertheless, these results do suggest that
many different 2-local coupling choices may have the capacity for gap
enhancement when placed appropriately within a problem graph.
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Chapter 7

Effect of the catalyst on a single
perturbative crossing

In chapter 5, we identified a particular form of targeted XX-catalyst that
had the potential to enhance the gap minimum at a perturbative cross-
ing. We also suggested that constructing such a catalyst may be possible
using accessible knowledge about the problem. This chapter examines
the scaling behaviour of this form of catalyst as well as its sensitivity to
the properties of the perturbative crossing it is targeting. Our aim is to
understand how well this catalyst will alleviate the algorithmic bottle-
neck introduced by a single perturbative crossing rather than how well
the catalyst will perform in more general settings where there may be
many different competing local optima. As such, the graphs that we
examine in this section are bi-partite to produce spectra which contain a
single perturbative crossing. We explore the performance of the catalyst
when multiple local optima are involved in chapter 9.

We scale our graphs as described in section 3.3 and illustrated in fig-
ure 3.1(b). Something to note is that by scaling the graphs in this way
we are not growing the difference in sub-graph sizes (n1 = n0 + 1). By
the arguments made in chapter 3 this implies the difference between
the perturbations to the problem GS and 1ES does not proportionally
increase with system size. This does not mean that this way of scal-
ing our problem graphs is invalid with respect to producing a setting
that is hard for QA – as we have seen, the resultant gap scaling is ex-
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ponential with the system size. However, this point will be relevant to
our discussion. Another option for the graph scaling would have been
to keep the ratio of vertices contained in the two sub-graphs constant
such that the difference between the two sub-graph sizes grows linearly
with the system size. While do not perform a rigorous study using this
graph scaling, we will reference a few preliminary results introducing
the catalyst to this setting in our discussion.

The catalysts consist of XX-terms between vertices in G1 such that the
problem state corresponding to the local optimum becomes coupled to
other low energy states. We first, in section 7.1, examine the perfor-
mance of a catalyst containing all-to-all couplings within G1. This results
in the number of couplings included in the catalyst scaling quadratically
with the system size. Section 7.2 then examines the other extreme of in-
cluding just one XX-coupling in the catalyst. Finally, in section 7.3, we
consider the effectiveness of the catalyst when the number of couplings
included scales linearly with the problem size. In each case, we exam-
ine the effect of the catalyst on instances with parameters that result in
the comparatively stronger and weaker (although still exponential) gap
scaling – as discussed in chapter 3 and demonstrated in figure 3.4.

Overall, we find that if sufficient couplings are included the catalyst is
able to remove the perturbative crossing completely. However, if not
enough couplings are used, the effect of the catalyst is less stable – par-
ticularly when the original gap scaling is more severe. In most of these
cases, we saw that the catalyst was still able to reduce the impact of the
perturbative crossing but that additional effects were also observed.

7.1 All-to-all XX-couplings

The catalyst used in this section has the form

Ĥc = Jxx ∑
i,j∈G1, j>i

σ̂x
i σ̂x

j . (7.1)
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We do not scale the catalyst strengths by the number of couplings used
as we did for our results in chapter 5 – see equation 5.15. This normali-
sation of the catalyst strength was introduced to allow us to better com-
pare the catalysts containing all-to-all couplings and single couplings
in a way that allowed us to better understand the physics behind our
results. Here we are simply interested in how effective the catalyst is
in removing a perturbative crossing and how the coupling strengths re-
quired to achieve this scale with system size.

Note that all-to-all in this context refers to all possible couplings within
G1 – i.e., all the XX-terms that create the desired couplings between
problem states. The result is that the number of couplings is scaling
quadratically with the problem size. For this specific setting, the fraction
of possible pairs of qubits that end up XX-coupled is (n + 1)/4n which
tends to a quarter as n → ∞.

Other than some small system size effects, we find that the catalyst per-
forms similarly regardless of the severity of the gap scaling. This is in
contrast to the results using the catalyst with a single XX-coupling as
we will see in the following section. Overall, we find that the all-to-all
catalyst, introduced with Jxx within a suitable range, results in the max-
imum possible gap enhancement – in that the minimum gap between
the instantaneous GS and 1ES is the spectral gap at the end of the an-
neal, ∆E01. We also find that the value of Jxx needed to achieve this
enhancement decreases with the system size.

We begin this section by examining the results for the WGS setting.

7.1.1 Weak gap scaling regime

The magnitude of the gap minimum, ∆Emin
01 , as a funtion of problem

size is plotted in figure 7.1(a). The results with and without the catalyst
are plotted in purple and black respectively. We also include the energy
difference between the problem GS and 1ES, ∆E01, in grey to indicate
the maximum gap enhancement that can be achieved – however, this is
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Figure 7.1: Plots showing the scaling behaviour of a catalyst on a bipartite problem
with the parameters δW = 0.37 and Jzz = 37.5. The sub-graph sizes are scaled as
n0 = (n − 1)/2 and n1 = (n + 1)/2. The catalyst consists of all-to-all couplings within
G1 and is introduced with the opposite sign to the driver. Plot (a) shows the size of
the gap minimum in the catalyst free setting (black) and the size of the gap minimum
when the optimal catalyst strength is used (purple). We also include the size of the
spectral gap between the GS and 1ES at the end of the anneal (grey). Plot (b) shows
the |Jxx| values which maximise the gap minimum. The lines are a guide to the eye.

only visible for n < 10. For each system size, we performed a sweep
over a range of catalyst strengths to find the value of Jxx that optimised
the gap enhancement due to the catalyst. The resultant Jxx values are
presented in figure 7.1(b). Looking at figure 7.1(a), we see that, for n > 7,
the catalyst results in the maximum possible gap enhancement in that
∆Emin

01 = ∆E01. Furthermore, in figure 7.1(b), we see a decrease in the
catalyst strength required to achieve this optimal enhancement.

While the catalyst has achieved the maximum gap enhancement, the
reader may observe that the resultant scaling still appears exponential
– albeit with a significantly reduced exponent. That ∆E01 closes expo-
nentially with the problem size is a result of states corresponding to
sub-sets of G0. The weights of the two sub-graphs, W0 and W1, are far
enough apart that some sub-sets of G0 have larger weights than G1. As
a result, the problem states corresponding to these sub-sets have lower
energies than the state corresponding to the local optimum associated
with G1. Ending the anneal in one of these sub-sets is not a concern for
the algorithm since the global optimum can be found from here through
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Figure 7.2: Gap spectra corresponding to two 31-spin problem instances. The top row
(a-e) shows the results for a problem instance with δW = 0.37, Jzz = 37.5 and the
bottom row (f-j) shows the results for an instance with δW = 0.01, Jzz = 5.33. A
catalyst is introduced that consists of all couplings within G1. The catalyst strength,
|Jxx|, associated with each plot increases from left to right and its value is given above
the plots.

simple gradient-descent.

The preceding discussion implies that, rather than focusing only on
whether or not ∆Emin

01 is equal to ∆E01, we should be considering the
effect the catalyst has on the gap minimum associated with the pertur-
bative crossing. To discuss this, let us separate out the different gap
sizes we wish to refer to in our notation. We have been using sx to de-
note the location of the gap minimum associated with the perturbative
crossing. As such we can denote its size as ∆E01(sx) to differentiate it
from the minimum gap in the annealing spectrum, ∆Emin

01 . ∆Emin
01 can,

by definition, not exceed the spectral gap at the end of the anneal, ∆E01.
On the other hand, we find that the catalyst can bring ∆E01(sx) ≫ ∆E01.

This is illustrated in plots (a-e) in figure 7.2. These plots show the gap
spectrum of the n = 31 instance with the WGS parameters for five cata-
lyst strengths. An inset is included in plot (a) showing the details of the
spectrum at the very end of the anneal. In this setting, ∆E01 ≈ 0.006.

139



7. Effect of the catalyst on a single perturbative crossing

Prior to the introduction of the catalyst, ∆Emin
01 = ∆E01(sx = 0.99) is on

the order of 10−6. As Jxx is increased, ∆E01(sx) becomes significantly
larger than ∆E01. We see, in plot (e), that for Jxx = 0.015 its magni-
tude is on the order of 10−2. The magnitude of ∆E01(sx) can in fact
be increased further than this – with the maximum enhancement being
closer in magnitude to the spectral gap associated with the driver Hamil-
tonian, ∆E01(s = 0) = E1(s = 0)− E0(s = 0), which closes polynomially
with system size. While we have chosen to use ∆E01(sx) = ∆E01 as
our threshold for extracting the Jxx scaling presented in figure 7.1(b),
we note that the Jxx values needed to achieve higher levels of gap en-
hancement appear to experience a comparable drop-off in magnitude –
however we have not rigorously studied this scaling.

Let us now consider whether or not the catalyst is in fact removing the
perturbative crossing. We find that, while the catalyst significantly en-
hances ∆E01(sx), the catalyst never fully removes the presence of this
gap minimum in the spectrum – i.e., there always exists a local gap min-
imum in the spectrum that evolves smoothly with varying Jxx from the
location of the perturbative crossing in the catalyst free setting. How-
ever, associating this gap minimum with an avoided level crossing be-
comes increasingly nonsensical as we increase Jxx. Firstly, the theory
behind the formation of perturbative crossings (see section 3.1) implies
that such an AC can only form towards the end of the anneal. Looking
at figure 7.2(d) however, we can see that sx has been pushed towards
the centre of the anneal (sx ≈ 0.6). Increasing Jxx further, sx ends up
approaching s = 0.

As for whether the gap minimum can still be associated with an AC
(even if not the original perturbative crossing) – let us consider the size
of the gap minimum, ∆E01(sx), and also the evolution of the ground
state vector at sx. While the gap still reaches a minimum, the size of this
minimum is no longer small in comparison to the rest of the spectral
gaps. Another signature of an AC is a sharp exchange in the make-
up of the two instantaneous states between which the AC occurs. We
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Figure 7.3: Data for the evolution of the instantaneous GS vector for two 43-spin prob-
lem instances. The plots on the top row (a-c) correspond to an instance with δW = 0.37,
Jzz = 37.5 (WGS parameters) and the plots on the bottom row (d-e) to an instance
with δW = 0.01, Jzz = 5.33. The left hand plots, (a) and (d), show the catalyst free
results. Plots (b), (c), (e) and (f) show the results with a catalyst containing all-to-
all XX-couplings within G1. The catalysts strengths in each plot are as follows: (b)
Jxx = 0.00704, (c) Jxx = 0.01000, (e) Jxx = 0.00704, (f) Jxx = 0.0975. The insets in plots
(a) and (d) show a closer view of the evolution around the location of the perturbative
crossing in the catalyst free cases. The inset in (a) in centred on s = 0.9922088.
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present the smoothing out of the evolution of the instantaneous GS vec-
tor as further evidence for the removal of the AC present in the original
spectrum. Plots (a-c) in figure 7.3 show the evolution of the magni-
tudes of the instantaneous GS vector components for the 43-spin sys-
tem. We highlight, in blue, some of the key vector components present
in the GS after the AC to help illustrate the change in the GS evolu-
tion. Plot (a) shows the evolution prior to the introduction of the cata-
lyst. There a sharp exchange of vector components at s ≈ 0.9922 over
a range O(∆s) = 10−7. In (b) we show the evolution when the catalyst
is introduced with Jxx = 0.00704 – the catalyst strength that results in
∆E01(sx) = ∆E01. We see that a similar exchange in vector components
is still present but now it occurs towards the mid-point of the anneal
and happens over a range O(∆s) = 10−2. The rate of this exchange is
comparable to that which happens at the very end of the anneal as the
mixed GS localises into the problem GS. Finally, plot (c) shows the re-
sults when Jxx = 0.01000. Here we see a gradual increase in the presence
of the highlighted vector components over the course of the first half of
the anneal.

Finally, we comment on the scaling with system size of the value of the
catalyst strengths in figure 7.1(b). That the catalyst strength required for
the optimal gap enhancement decreases with system size is perhaps un-
surprising given that the number of couplings included in the catalyst
increases quadratically. In the perturbative argument we used to moti-
vate the catalyst (section 5.1.2) we saw that the XX-terms included had
a cumulative effect – such that we could decrease the catalyst strength
if we include more couplings. Recall also that the aim of the catalyst is
to reduce the negative perturbations to the problem state corresponding
to the local optimum such that it does not cross the perturbed ground
state. In the introduction to this chapter, we suggested that the differ-
ence between the perturbations to these states does not proportionally
increase with system size for the graph scaling used in this section. It
could be argued therefore that, in some sense, the demand on the cat-
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Figure 7.4: Plots showing the scaling behaviour of a catalyst on a bipartite problem
with the parameters δW = 0.01 and Jzz = 5.33. The sub-graph sizes are scaled as
n0 = (n − 1)/2 and n1 = (n + 1)/2. The catalyst consists of all-to-all couplings within
G1 and is introduced with the opposite sign to the driver. Plot (a) shows the size of
the gap minimum in the catalyst free setting (black) and the size of the gap minimum
when the optimal catalyst strength is used (purple). We also include the size of the
spectral gap between the GS and 1ES at the end of the anneal (grey). Plot (b) shows
the |Jxx| values which maximise the gap minimum.

alyst is not increasing with the system size. We will comment on this
further in our discussion at the end of this chapter.

We now consider the effect of the all-to-all catalyst Hamiltonian when
applied to the setting where the parameters result in the comparatively
stronger exponential gap scaling.

7.1.2 Strong gap scaling regime

As in the preceding section, we begin by presenting results for the
gap scaling with and without the catalyst in figure 7.4(a). The cata-
lyst strengths used are plotted in 7.4(b). We see very similar results to
those for the WGS regime with the catalyst resulting in the maximum
achievable gap enhancement for all but the very smallest system sizes
and the required values of Jxx decreasing with system size.

One difference is that the catalyst strengths in figure 7.4(b) are around
one order of magnitude larger than those in the WGS setting. This is
potentially an unimportant detail. It is however still worth pointing out
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that this mostly relates to where the state corresponding to the local op-
timum sits in the problem spectrum. Plots (f-j) in figure 7.2 show exam-
ple gap spectra for the SGS setting with five different catalyst strengths.
These are the equivalent plots to those for the WGS setting in (a-e).
Looking at the inset in (f) we see that the state corresponding to the lo-
cal optimum that crosses the ground state is the problem 1ES. This is not
the case for the WGS setting. There, as seen in figure 7.2, this is the 3ES.
This is a result of the weight separation between the two sub-graphs
being large enough that sub-sets of G0 have a larger weight than G1. In
the SGS plots (f-j) we see that, as the gap is enhanced by the catalyst,
a “lip” remains at the end of the anneal which becomes the smallest
gap in the spectrum. This “lip” is also present in the WGS case for the
3ES. Because it takes much larger catalyst strengths to fully remove this,
the extracted Jxx values end up much larger for the SGS setting. How-
ever, comparing the top and bottom rows of figure 7.2 we can see that
enhancement to ∆E01(sx) is similar in the WGS and SGS cases for the
same catalyst strengths.

Let us turn to the crucial question we want to explore in this section: do
our results suggest that the catalyst is able to remove the perturbative
crossing present in this system when the initial gap scaling is more se-
vere? Plots (d-f) in figure 7.3 show how the evolution of the GS vector
changes with increasing Jxx for the 43-spin system – these are the same
sort of results that we present for the WGS setting in the plots above.
The results for the catalyst-free case, presented in plot (d), show a sharp
exchange at s ≈ 0.996. This exchange happens over too short a timescale
for us to observe; however it is certainly over a range of s less than
10−11. Plot (f) shows the results when the catalyst is introduced with
the strength at which ∆Emin

01 = ∆E01, which in this case is Jxx = 0.00975.
We see a similar smoothing out of the evolution of the highlighted vec-
tor components as we did for the WGS setting for a comparable catalyst
strength, indicative of the removal of the perturbative crossing. We also
include results for an intermediate catalyst strength which, for ease of
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comparison with the WGS setting, is chosen to be Jxx = 0.00704. We see
similar results to the WGS setting with the exchange in the GS vector
components still present, but occurring now over a range on the order
of 10−2.

Much like in the WGS setting, ∆E01(sx) can be enhanced to the point
where it is closer to the spectral gap between the ground and first ex-
cited state of the driver Hamiltonian – such that it is no longer small in
comparison to the other spectral gaps. We do note that, as a result of
how competitive we have made the local optimum in this setting, the
smallest gap in the spectrum, ∆Emin

01 = ∆E01, is comparatively small.
This however becomes less and less the case as we increase the problem
size; for n = 65 we find that ∆E01 is on the order of other spectral gaps.

Finally, we highlight one additional difference that we observe between
this setting and the WGS setting from the previous section which is the
effect of the catalyst on the very smallest systems. For n < 9 we observe
a closing of the gap minimum associated with the perturbative crossing
as well as the appearance, closing and re-opening of an additional gap
minimum in the spectrum. These closing gaps will be discussed further
in section 7.2.2 where we find that this phenomenon persists to larger
system sizes when only one XX-term is included in the catalyst.

With regards to the use of the all-to-all XX-catalyst examined in this sec-
tion, we have found that the proposed catalyst appears to remove the
perturbative crossing present in our toy system. We also found this suc-
cess to be stable to changes in the severity of the associated exponential
gap scaling and that the required catalyst strength decreased with the
system size. We will discuss what general conclusions can be drawn
from these findings at the end of this chapter.

7.2 Single XX-coupling

So far we have examined the effectiveness of the proposed catalyst for
removing a perturbative crossing when all appropriate XX-couplings
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were included. This amounted to a quadratic scaling in the number of
XX-terms with system size with the fraction of possible pairs of qubits
that end up XX-coupled tending to a quarter. To understand better if
such catalysts will be useful in practice, it will be important to consider
their performance when the number of couplings included in the cata-
lyst is varied. We have already discussed, in section 5.4, the problem of
identifying suitable couplings – which is one thing that may limit the
number of couplings that could be included in the catalyst. For a practi-
cal implementation, another consideration would be the connectivity of
the hardware.

In this section, we examine the impact of a catalyst that contains just one
XX-coupling such that it has the form

Ĥc = Jxxσ̂x
i σ̂x

j . (7.2)

The indices, i and j, correspond to vertices in G1. Considering this ex-
treme case, where only one XX-term term is introduced, provides some
insight into how the catalyst may perform when fewer couplings are
present. We also observe some interesting effects as a result of this sin-
gle coupling catalyst which we believe are worth exploring.

Overall, we find the effects of this catalyst to be less predictable than
what we saw in the previous section. These effects include some gap
enhancement, but also the appearance of additional gap minima in the
spectrum. Interestingly, we find that the catalyst continues to have a sig-
nificant effect on the annealing spectrum as the system size is increased
despite the fact that we are increasing neither the number of XX-terms
nor the catalyst strength, Jxx.

It is less clear if the effects we observe in this section will be beneficial
with regards to helping the system reach a high overlap with the final GS
for shorter annealing times. Certainly, the resultant spectra suggest that
the catalyst does not significantly reduce the annealing time needed for
adiabatic evolution. However, it is possible that the spectra may facilitate
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Figure 7.5: Plots showing the scaling behaviour of a catalyst on a bipartite problem
with the parameters δW = 0.37 and Jzz = 37.5. The sub-graph sizes are scaled as
n0 = (n − 1)/2 and n1 = (n + 1)/2. The catalyst consists of a single coupling within
G1 and is introduced with the opposite sign to the driver. Plot (a) shows the size of
the gap minimum in the catalyst free setting (black) and the size of the gap minimum
when the optimal catalyst strength is used (purple). We also include the size of the
spectral gap between the GS and 1ES at the end of the anneal (grey). Plot (b) shows
the |Jxx| value which maximises the gap minimum.

a faster route to the GS through a diabatic anneal. We will point out
where and how we believe this may be the case throughout this section;
the majority of our discussion on the potential for utilising these spectra
for DQA will however occur in the final section of this chapter.

As before, we examine the effect of the catalyst in the WGS and SGS
settings in turn. We will also compare the response of the instantaneous
GS evolution to the introduction of the catalyst to better understand the
differing effects that we see between the two regimes.

7.2.1 Weak gap scaling regime

We begin by looking at the same kind of scaling data that we presented
for the all-to-all catalyst. Figure 7.5(a) shows the catalyst free gap scaling
in black and the gap scaling with the catalyst in purple. The associated
Jxx values are plotted in figure 7.5(b). As before, the spectral gaps be-
tween the problem ground and first excited states are included in figure
7.5(a) in grey, indicating the maximum possible gap enhancement. For
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n < 20 the gap scaling data follows a similar pattern to what we saw
in the previous section for the very smallest system sizes – with the gap
enhancement from the catalyst tending towards the maximum possible
enhancement. However, for n > 20, we see that the gap minimum be-
gins to close more rapidly.

That there is a drop-off in the catalyst’s capacity to suppress the expo-
nential gap scaling is perhaps unsurprising given that the catalyst contri-
bution to the Hamiltonian is proportionally decreasing with the system
size. Interestingly though, looking at the annealing spectra themselves,
we find that the catalyst continues to significantly impact the spectrum
for catalyst strengths on the order of unity even for the very largest sys-
tems that we examined (n = 71). However, what we see for n > 20, is
the appearance of additional gap minima in the spectrum. In particular,
we see the formation of a double gap-minimum reminiscent of what was
found in [100]. Let us discuss the manifestation of this double minimum
in more detail.

Figure 7.6 shows example spectra at three different system sizes. Plots
(a-d) are for the 11-spin system, (e-j) correspond to the 21-spin system,
and (k-p) correspond to the 31-spin system. Each set of plots show the
annealing spectra for that system size at different values of Jxx to illus-
trate the evolution of the spectrum with catalyst strength. Looking at
the 11-spin system, we see that the behaviour reflects what we observed
in section 5.2.1. That is, we see an initial enhancement to the gap min-
imum before it begins to close again. As for the very smallest systems
when the all-to-all catalyst was used, this enhancement does not bring
∆Emin

01 = ∆E01.

Next, let us look at plots (k-p) corresponding to the 31-spin system. The
coloured arrows included on these plots indicate which gap minima
evolve smoothly into each other. As Jxx is increased from 0 to 1.45 (and
indeed beyond this point) we find that the gap minimum associated
with the perturbative crossing (indicated with a purple arrow) is en-
hanced by the catalyst as desired. Furthermore, this enhancement does
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Figure 7.6: Gap spectra corresponding to bipartite problem instances with the param-
eters δW = 0.37 and Jzz = 37.5. The plots are grouped into three sets. (a-d), (e-j) and
(k-p) show the results for an 11, 21 and 31-vertex instance respectively. A catalyst is
introduced that consists of a single coupling within G1. The catalyst strength, |Jxx|,
associated with each plot is given on the plots. Where it may be unclear, coloured
arrows are used to indicate gap minima that continuously evolve into one another as
the catalyst strength is increased.
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bring ∆Emin
01 > ∆E01 – see plot (p). However, from around Jxx = 1.10

we observe the appearance of a new gap minimum in the spectrum (in-
dicated with the turquoise arrow). Looking at plots (l-n), we see that
as Jxx is increased further, the size of this new gap minimum decreases
until eventually, at around Jxx = 1.23, the instantaneous 1ES effectively
“dips below” the GS creating a pair of avoided level crossings. Increas-
ing Jxx beyond this point, the two new ACs move further apart – see
plots (n-p). Eventually the AC at the lower s value begins to lift while
the gap minimum associated with the AC at the higher s value shrinks.
This behaviour is precisely what was is observed in [100]. We also note
that, considering the couplings between problem states introduced by
Ĥc and the evolution and signs of the GS vector components, this be-
haviour seems to stem from the same phenomenon. As such, we will
not linger on the theory behind the appearance of the two additional
ACs and instead refer the reader to [100].

Plots (e-j) in figure 7.6, corresponding to the 21-spin system, show the
intermediate behaviour. As for the 31-spin example we see that the gap
minimum associated with the perturbative crossing can be significantly
enhanced by the catalyst and we also see the appearance of the new gap
minimum. In this case however, only one small gap minimum with the
ground state is ever present.

Let us turn to the question of whether the single-coupling catalyst is
removing the perturbative crossing present in the original spectrum –
even if additional effects are present. We find that, as for the all-to-all
catalyst, ∆E01(sx) can be enhanced past the value of the spectral gap be-
tween the GS and 1ES at the end of the anneal. This goes hand in hand
with a similar “smoothing out” of the GS vector components to what
was observed in the previous section. In this sense it would seem that
the single coupling catalyst is still successfully removing the perturba-
tive crossing. However, unlike when all-to-all couplings within G1 were
used, we find that the value of Jxx needed to reach the same level of en-
hancement increases with the system size – this can be seen comparing
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the plots in figure 7.6. However, we cannot fully comment on this scal-
ing behaviour as we have only extracted the Jxx values associated with
the smallest spectral gap in the anneal, ∆Emin

01 , reaching its maximum
value – rather than ∆E01(sx).

The focus of this chapter is primarily to understand the effect that the
catalyst has on the annealing gap spectrum and the evolution of the
instantaneous GS vector – rather than what this might mean for the dy-
namics. For context however, and to guide us to the important features
of our findings, we have included some discussion throughout on what
the results imply for the dynamics of an anneal. As such, let us briefly
consider what conclusions can be drawn regarding the effect of the cata-
lyst on the anneal time needed to end the anneal with a high GS fidelity.
While we do not see the same gap enhancement as we did for the all-
to-all catalyst, the spectra that the catalyst produces appear amenable to
diabatic annealing – as proposed in [100]. Consider the spectrum pre-
sented in figure 7.6(p). If the anneal was run with a suitable annealing
time, we might expect the system to transition into the 1ES at the first of
the new gap minima (s ≈ 0.75) and then back into the GS at the second
(s ≈ 0.98). The possibility of this for larger systems will depend on how
the catalyst strength that results in the double AC scales in relation to
the catalyst strength that results in sufficient enhancement to ∆E01(sx).

7.2.2 Strong gap scaling regime

Once again, we start by considering how the gap scaling is affected by
the catalyst – the results for which are presented in figure 7.7(a). We
see that, while the catalyst does enhance the size of the gap minimum
for each of the system sizes plotted, the exponential scaling associated
with the closing of the gap minimum is largely unchanged. As with the
WGS setting, however, the catalyst is still having a significant impact on
the annealing gap spectra and GS evolution – even as the system size is
increased. However, this impact is quite different to what we observed
in the WGS setting.
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Figure 7.7: Plots showing the scaling behaviour of a catalyst on a bipartite problem
with the parameters δW = 0.01 and Jzz = 5.33. The sub-graph sizes are scaled as
n0 = (n − 1)/2 and n1 = (n + 1)/2. The catalyst consists of a single coupling within
G1 and is introduced with the opposite sign to the driver. Plot (a) shows the size of
the gap minimum in the catalyst free setting (black) and the size of the gap minimum
when the optimal catalyst strength is used (purple). We also include the size of the
spectral gap between the GS and 1ES at the end of the anneal (grey). Plot (b) shows
the |Jxx| value which maximises the gap minimum.

One key difference is that the catalyst does not appear to remove the
perturbative crossing in that we do not see a smoothing out of the ex-
change in the GS vector components, with sx being pushed earlier in
the anneal, and we do not see a significant enhancement to ∆E01(sx).
Furthermore, while we do observe the appearance of new gap minima
in the spectrum, they appear to have a different origin to those from the
previous section. We also observed these closing gaps for the smallest
SGS systems when the all-to-all catalyst was used. Here, we observe
them for the higher system sizes as well. We will now discuss these
closing gaps in more detail.

Much like in all the previous settings, the gap minimum associated with
the perturbative crossing is found to reach some maximum value with
increasing Jxx before eventually decreasing again – although in this case
this maximum does not differ substantially from its starting value. In
addition, we observe a closing of this gap minimum for a value of Jxx

less than that for which it reaches its maximum. We appear to be able to
make this gap arbitrarily small through increasingly fine tuning of the
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catalyst strength. This suppression to ∆E01(sx) was only observed here
and for the very smallest instances of the SGS setting in other contexts.
We also observe the appearance of a new gap minimum in the spectrum
for some value of Jxx larger than that for which ∆E01(sx) was observed
to go to zero. As with ∆E01(sx), we find that we can also bring this new
gap minimum arbitrarily close to zero. We will refer to the location of
this new gap minimum as sx’ such that its size is denoted with ∆E01(sx’).

We note that there is some difficulty in confirming whether or not these
gap minima can truly be made arbitrarily small. Certainly, the size of the
gap minima can be suppressed to zero to the numerical precision that
we are able to achieve. Potentially more compelling evidence is that we
do not observe any curvature in the variation of the gap minimum with
Jxx which would indicate a minimum being reached. Towards the end
of this section we will offer one further observation that suggests that
these gap minima do indeed go to zero. First though, let us return to
the effect of the catalyst on the annealing gap spectrum.

In figure 7.8 we present annealing spectra that illustrate the manifesta-
tion of this additional gap minimum in the spectrum for different system
sizes. Plots (a-c), (d-f) and (g-i) correspond to the 15-, 25- and 35-spin
systems respectively. The plots in the middle row show the spectrum
when the catalyst strength is selected such that ∆E01(sx’) = 0 as far as
our numerical precision allows. The top and bottom row plots show the
results when Jxx is 0.95 and 1.05 times this value respectively. For the
smaller systems, we find that the gap minimum which goes to zero is
the only new gap minimum that appears – as illustrated in plots (a-c).
As we increase our system size however, we observe the appearance of a
further gap minimum in the spectrum. This further gap minimum does
not share the behaviour of the first two in that we cannot arbitrarily
suppress its magnitude through our selection of Jxx.

We will not focus too much on the specifics of how the gap spectrum
evolves under changing Jxx as we do not feel that conclusions can be
drawn from these details that will help us understand how this catalyst
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Figure 7.8: Gap spectra corresponding to bipartite problem instances with the pa-
rameters δW = 0.01 and Jzz = 5.33 with the presence of a catalyst consisting of one
XX-coupling between two vertices in G1. Plots (a-c), (d-f) and (g-i) correspond to 11, 21
and 31-vertex instance respectively. The middle plots in each column show the results
when Jxx is chosen to minimise the gap minimum created by the catalyst. The plots
on the top and bottom rows show the results when the the catalyst strength is chosen
to be 0.95 and 1.05 of this value respectively.

may impact annealing spectra in more general settings. This is in part
due to the variation in the response of the spectrum to the catalyst with
varying system size and because, unlike for the effects from the catalyst
in the previous sections, we do not have a clear picture of the physics be-
hind the observations we have made here. However, we feel the closing
gap minima are an interesting phenomenon and so we will give some
attention to their formation. We reserve most of this discussion for the
following section where we compare the effect of the single coupling
catalyst in the two regimes. However, let us briefly highlight two key
points.

First, we find that these closing gaps occur for the value of Jxx for which
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sn coincides with the location of the respective gap minimum – where
sn is the point in the anneal at which some of the vector components
become negative. Second, as Jxx is increased past this value, we observe
what appears to be a discontinuous change in which vector components
cross zero. This discontinuous change suggests to us some kind of phase
transition, implying that there may indeed be a vanishing gap at this
point.

7.2.3 Comparing the two regimes

Unlike for the all-to-all catalyst examined in section 7.1, we have found
the effect of the single-coupling catalyst to be strongly dependent on
the severity of the exponential scaling associated with the perturbative
crossing present in the original annealing spectrum. In the WGS setting,
the single-coupling catalyst resulted in a similar lifting of the pertur-
bative crossing to what we saw for the all-to-all catalyst. That is, we
observed a smoothing out of the sharp exchange in the instantaneous
GS vector and an enhancement to the gap minimum at sx. We also saw
the formation of two new ACs as the 1ES effectively dipped below the
GS for a portion of the anneal. We attributed this behaviour to the same
mechanism discussed in [100]. In the SGS setting, we saw limited en-
hancement to ∆E01(sx) from the single-coupling catalyst and also that
this gap minimum could be brought arbitrarily close to zero by increas-
ingly fine tuning of Jxx. Furthermore, we observed the appearance of a
an additional gap minimum in the spectrum which could also be arbi-
trarily suppressed.

The physics behind these vanishing gaps is not entirely clear to us. How-
ever, we are able to make a few notes on some of the features associated
with their occurrence as well as the differences that we observe between
the SGS setting, where they do occur, and the WGS setting, where they
do not. To facilitate this, we include data for a 5-spin system with the
WGS and SGS parameters in figures 7.9 and 7.10 respectively. The 5-
spin system is a suitable choice to aid our discussion since the response
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of the smaller systems to the catalyst are the least involved. For the
WGS we do not see the appearance of the double AC and only one new
gap minimum appears in the SGS setting. However, the key features we
wish to highlight are already present.

Figure 7.9(a) shows the size of the gap minimum, ∆E01(sx), and its loca-
tion, sx, with varying Jxx in solid and dashed purple lines respectively.
We also include the s value at which the first negative GS vector com-
ponents are seen, sn, with a dashed grey line. Figures (b-f) show the
evolution of the instantaneous GS for different catalyst strengths – with
the vector components corresponding to the GS and 1ES highlighted in
blue and orange respectively. The location of the gap minimum, sx, is
indicated with a dashed purple line on each plot. We indicate the Jxx

values that these five plots correspond to on figure 7.9(a) with dotted
grey lines.

Figure 7.10(a) shows the same data as figure 7.9(a) but for the SGS set-
ting. Below this, in figure 7.9(b), we plot the size, ∆E01(sx’), and location,
sx’, of the the new gap minimum that forms in this setting. Note that
plots (a) and (b) in figure 7.9 correspond to exactly the same setting and
that our separating the results for the two gap minima into different
plots is only for readability of the data. The location of the sign change,
sn, is therefore the same in each plot. As for the WGS setting, we in-
clude plots showing the evolution of the instantaneous GS for different
catalyst strengths which are marked on plots (a) and (b) with dashed
grey lines.

We first turn our attention to the SGS results in figure 7.10. Looking
at plots (a) and (b) we observe the aforementioned closing of the two
gap minima for Jxx ≈ 0.35 and 1.90 respectively. As mentioned in the
preceding section, the closing gaps are seen to occur for the Jxx values
for which sn coincides with the location of the gap minima – sx and sx’.
Associating the closing gaps with their locations coinciding with sn does
nothing however to account for why we see in phenomenon here and not
in the WGS setting. Looking at the WGS results in figure 7.9(a), we see
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Figure 7.9: Numerical results for a problem instance with n0 = 2, n1 = 3, δW = 0.37
and Jzz = 37.5 (i.e., the parameters associated with the WGS) and a catalyst consisting
of a single XX-coupling between two vertices in G1. (a) shows, for increasing catalyst
strength, results for the gap size at the AC, ∆E01(sx) (solid purple), the location of
the minimum gap, sx (dashed purple), and the value of s for which either ⟨E0(s)|E0⟩
or ⟨E0(s)|E1⟩ becomes negative, sn (dashed grey). The evolution of the instantaneous
ground-state for different catalyst strengths is shown in (b-f). These plots have sx
marked with purple dashed lines. The catalyst strengths for which we show the evo-
lution are marked on (a) with vertical grey dashed lines.
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Figure 7.10: As for figure 7.9 but for the parameters associated with the SGS setting,
δW = 0.01, Jzz = 5.33. (b) shows the size ∆E01(sx’), and location sx’ of the new gap
minimum that forms in this setting and sx’ is marked on plots (c-j) with the same
lighter purple used in (b).
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that there is also a value of Jxx for which sn = sx. However, no closing
of the gap at the perturbative crossing is observed. To better understand
the differences in the behavior, let us compare how the evolution of the
GS vector changes with Jxx.

First note that, for all the settings and variations on the catalyst exam-
ined in this chapter, the GS vector component always takes the opposite
sign to the vector component associated with the state representing the
local optimum, for s > sn. (For the 5-spin systems the state representing
the local optimum is the 1ES.) This is unsurprising given the Hamming
distance between states and our discussion in section 5.3. Looking at fig-
ures 7.9(b-f), we see that it is consistently the vector component associ-
ated with the 1ES that becomes negative when the catalyst is introduced
to the WGS setting. In figures 7.10(c-j) however, we see that, in the SGS
setting, the component that becomes negative depends on Jxx. We find
that the relative signs between the vector components remain consistent
with varying catalyst strength (and with our discussion in section 5.3)
but that our choice of Jxx dictates the global signs. Given this fact, it
may be tempting to think that there is no physical change occurring.
However, as noted in section 4.1.1, when one of the vector components
changes sign, the overlap of the instantaneous GS with that problem
state will first go to zero before increasing again. As such, a change in
which vector components become negative will result in a measurable
difference in the evolution of a system following the ground state.

Let us now continue considering plots (f-h) in figure 7.10. In particu-
lar, let us make some observations on the rate of change of the vector
components. As Jxx is increased from zero, we see that there is a sharp-
ening of this rate of change around sx’ as sn approaches sx’. Then, as sn

passes sx’, which happens between plots (h) and (i), there appears to be
a discontinuous change in which vector components are crossing zero.
After this point, the change in the vector components around sx’ begins
to soften again. We observe similar behaviour around the value of Jxx at
which the gap minimum associated with the AC approaches zero – be-
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tween plots (c) and (d). This however is harder to see since the change is
always rapid enough to appear instantaneous for the range over which
we are plotting. We do not see this same sharpening of the change in
vector components around sn = sx in plots (b-f) in the WGS setting – see
figure 7.9.

As we have mentioned a few times previously, the rate of the change of
the instantaneous GS vector at a given point is intrinsically connected
with the spectral gap separating the GS from the 1ES at this point. In
some sense then these closing gaps are explained by the sharpening of
the rate of change in the GS vector associated with the change in their
signs that occurs when sn = sx, sx’. However, it does not explain the
physics behind this behaviour or why we have only observed it under
certain conditions. To recap, we have seen these closing gaps in the
SGS setting and when fewer couplings are included in the catalyst – i.e.,
for the single-coupling catalyst or the all-to-all catalyst on the smallest
system sizes. One comment we can make is that, from the preceding dis-
cussion, it seems clear that the closing gaps are intrinsically connected
to the appearance of negative vector components in the instantaneous
GS. We have seen that, and offered an explanation as to why, the ap-
pearance of negative vector components is suppressed when additional
XX-couplings are introduced. As such it makes sense that we do not see
these closing gaps when more couplings are included in the catalyst.

The question still remains though as to why these closing gaps should
only appear when the original gap scaling is more severe. We do not
have a concrete answer to this but one observation we can make is, in
the WGS setting, the AC has already become significantly smoothed
out for the values of Jxx at which sn = sx. This can be seen for the
5-spin example in figure 7.9(a) and (d). In contrast, the magnitudes of
| ⟨E0(s)|E0⟩ | and | ⟨E0(s)|E1⟩ | that are exchanged at the AC are largely
unchanged in the SGS setting for the Jxx value at which sn = sx. This is
at least partially explained by the fact that if the initial AC is weaker, we
can expect that a smaller change to the Hamiltonian is required to lift it.
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We find that, smoothly transitioning from the SGS to the WGS regime,
the Jxx values associated with the two closing gaps get closer together.
i.e., the range of Jxx, for which it is the set of vector components contain-
ing ⟨E0(s)|E0⟩ that crosses zero, shrinks as we move towards the WGS
setting. Eventually this region disappears entirely and we no longer see
the closing of the gap minima. We have not studied how this cut-off
scales with the system size.

7.3 Linearly scaling number of couplings

Section 7.1 examined the effect of the proposed catalyst when the num-
ber of XX-couplings introduced scaled quadratically with the system
size. We found that such a catalyst seemed able to fully remove the per-
turbative crossing present in the annealing spectrum and that its per-
formance was insensitive to changes in the severity of the gap scaling
associated with the AC. We noted however that implementing this many
couplings may not be feasible in practice. We then investigated the use
of a catalyst containing only one XX-coupling in section 7.2. Here, we
observed additional effects from the catalyst that differed depending
on the severity of the gap scaling. While some of the resultant spectra
appeared to facilitate faster routes to the GS, the results were less con-
sistent and, certainly in the SGS setting, the catalyst did not have the
intended effect of removing the AC. These results perhaps give an in-
dication of how we might expect the catalyst to perform if insufficient
couplings are introduced.

As the beginnings of an investigation into what would be a sufficient
number of couplings, we will now examine the effect the catalyst has
when the number of couplings included scales linearly with the system
size. Unlike for the all-to-all or single-coupling catalyst, there are many
different ways a for linear number of coupling terms to be introduced
into G1 and it is entirely possible the effects from the catalyst would
differ depending on the specific graph structure of the XX-couplings
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7. Effect of the catalyst on a single perturbative crossing

present. In this section we investigate only one potential form linearly
scaling catalyst. Without any other indicator for a suitable graph struc-
ture to use, we have simply chosen one that allows us to continue to
utilise the way in which we build our Hamiltonians to reduce the size
of the Hilbert space.

The catalyst used in this section has the form

Ĥc = Jxx ∑
i ̸=j,k ∈G1

(σ̂x
j σ̂x

i + σ̂x
k σ̂x

i ), (7.3)

where j and k are indices corresponding to two vertices in G1. That is,
two vertices in G1 are connected to every other vertex in G1 resulting in
a catalyst that contains 2(n1 − 2) = n − 3 couplings. The fraction of the
total number of couplings included in the catalyst decreases as 1/n.

Overall, the results closely resemble those for the all-to-all coupling cat-
alyst, with the catalyst seemingly being able to remove the perturbative
crossing and the required catalyst strength decreasing with system size.

7.3.1 Weak gap scaling regime

Figure 7.11 shows the same scaling data we have presented for each of
the catalyst and parameter setting combinations we have examined so
far – with the data colour coded as before. Looking at the results for the
gap scaling, we see that the catalyst with a linearly increasing number
of couplings is able to enhance the gap such that ∆Emin

01 = ∆E01 – seem-
ingly performing as well as the all-to-all catalyst. We also observe that,
as for the all-to-all catalyst, the Jxx values required for this enhancement
decrease with the system size. Interestingly, we find these values do not
differ significantly from those needed when the number of couplings
included in the catalyst was scaling quadratically with the system size.

We noted, in section 7.1, that we would want the catalyst to be able to
enhance ∆E01(sx) beyond ∆E01 to avoid transitions out of the ground
state for a polynomial-time anneal. We find that the catalyst containing
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7.3. Linearly scaling number of couplings

Figure 7.11: Plots showing the scaling behaviour of a catalyst on a bipartite problem
with the parameters δW = 0.37 and Jzz = 37.5. The sub-graph sizes are scaled as
n0 = (n − 1)/2 and n1 = (n + 1)/2. The catalyst consists of a n − 3 couplings within
G1 introduced with the opposite sign to the driver. Plot (a) shows the size of the gap
minimum in the catalyst free setting (black) and the size of the gap minimum when
the optimal catalyst strength is used (purple). We also include the size of the spectral
gap between the GS and 1ES at the end of the anneal (grey). Plot (b) shows the |Jxx|
value which maximises the gap minimum.

a linear number of couplings is indeed able to achieve this for catalyst
strengths on the same order as those needed to achieve ∆Emin

01 = ∆E01.
In addition to the gap enhancement, we observe a similar smoothing
out of the exchange in the GS vector components to what we saw for the
all-to-all catalyst, indicative of the catalyst successfully removing the
perturbative crossing.

Now, let us examine the performance of this catalyst in the SGS setting.

7.3.2 Strong gap scaling regime

The scaling results associated with the introduction of the catalyst to the
SGS setting are presented in figure 7.12. We see similar results to what
we saw for the all-to-all catalyst, with the smallest spectral gap, ∆Emin

01 ,
approaching the maximum possible enhancement, ∆E01, as the system
size is increased. We also see, in 7.12(b), a decrease with system size
in the catalyst strength needed to achieve this enhancement and, as for
the WGS setting, that these Jxx values are not dissimilar to those needed
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7. Effect of the catalyst on a single perturbative crossing

Figure 7.12: Plots showing the scaling behaviour of a catalyst on a bipartite problem
with the parameters δW = 0.01 and Jzz = 5.33. The sub-graph sizes are scaled as
n0 = (n − 1)/2 and n1 = (n + 1)/2. The catalyst consists of a n − 3 couplings within
G1 introduced with the opposite sign to the driver. Plot (a) shows the size of the gap
minimum in the catalyst free setting (black) and the size of the gap minimum when
the optimal catalyst strength is used (purple). We also include the size of the spectral
gap between the GS and 1ES at the end of the anneal (grey). Plot (b) shows the |Jxx|
value which maximises the gap minimum.

when the all-to-all catalyst was used.

Investigating the individual annealing spectra themselves we find that,
for the larger system sizes examined, we begin to see the manifestation
of the behaviour that we observed when introducing the single-coupling
catalyst to the WGS setting. That is, the catalyst results in the appear-
ance of a new gap minimum in the spectrum that eventually leads to
two new ACs forming between the GS and 1ES. As such, we may expect
the optimal gap enhancement from the catalyst to drop off for the larger
system sizes – however this will depend on how the catalyst strength
needed to bring ∆E01(sx) = ∆E01 compares to the scaling of the value of
Jxx that results in the new gap minimum dropping below ∆E01. We also
noted, in section 7.2.2, that this new double AC may not present a par-
ticular problem with regards to ending the anneal in the GS with high
fidelity since it could potentially be traversed diabatically. This being
the case, the scaling behaviour specifically of ∆E01(sx) in the presence of
the catalyst, rather than that of ∆Emin

01 , will be what dictates the success
of the catalyst in removing the run-time bottleneck associated with the
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perturbative crossing.

7.4 Discussion

We have found that the more couplings that are included in the catalyst,
the more stable that its effects on the annealing spectrum are to changes
in the severity of the initial gap scaling. For the all-to-all catalyst, we
observed a similar effect on the annealing spectrum in both the WGS
and SGS settings with the catalyst appearing to fully remove the per-
turbative crossing for all system sizes that we examined. On the other
hand, the effects of the single coupling catalyst on the annealing spectra
were strikingly different between the two regimes. In the WGS setting,
the catalyst was found to remove the perturbative crossing and replace
it with two new ACs between the GS and 1ES. In the SGS setting, how-
ever, the catalyst was unable to remove the perturbative crossing. Fur-
thermore, it introduced new gap minima and resulted in some of the
gap minima going to zero for certain values of Jxx. When the number
of couplings in the catalyst was scaled linearly with the system size, the
effect of the catalyst was relatively similar to when all-to-all couplings
were included. However we began to see the appearance of a new gap
minimum in the SGS setting for the larger systems that we looked at.

The additional effects that we observed (i.e., anything that was not the
intended smoothing out of the perturbative crossing) tended to manifest
when the gap scaling in the catalyst free annealing spectrum was more
severe. They also appeared to be intrinsically tied to the presence of neg-
ative vector components. In section 5.3, we found that including more
XX-couplings in the catalyst suppressed the presence of these negative
vector components. This may explain why including more couplings in
the catalyst resulted in greater stability to these aditional effects. Recall,
however, that our suggestion for the reason behind this suppression, was
that the additional XX-couplings effectively introduced frustration into
equation 5.16. It is possible to select couplings such that limited frustra-
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7. Effect of the catalyst on a single perturbative crossing

Figure 7.13: Gap spectra corresponding to a problem instance with G0 = 12, G1 = 18,
δW = 0.01 and Jzz = 5.33. A catalyst is introduced that consists of all couplings within
G1. The catalyst strength, |Jxx|, associated with each plot is given above the plots.
Coloured arrows are used to indicate gap minima that continuously evolve into one
another as the catalyst strength is increased.

tion is introduced, as is specifically aimed for in [100], so this may not
always hold true. Certainly though, introducing more couplings will
increase the possibility of frustration in equation 5.16.

We briefly mention, at this point, a few limited results we have obtained
when introducing the catalyst to the setting where we maintain a con-
stant ratio between the two sub-graphs, G0 and G1. That is, the sub-
graph sizes are scaled as n0 = 2n/5 and n1 = 3n/5. Scaling the graph
this way results in more severe gap scaling for both the WGS and SGS
parameter settings. Furthermore, because we are increasing n1 − n0,
we can expect a corresponding increase in the difference between the
driver perturbations to the problem states corresponding to the global
and local optima – potentially placing a greater demand on the catalyst.
When the WGS parameters were used, the all-to-all catalyst had a simi-
lar effect to what was observed for our original graph scaling – with the
catalyst seemingly removing the perturbative crossing for system sizes
up to n = 45 which was the largest system size examined. Furthermore,
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we see a similar decrease with system size in the Jxx values required to
achieve this. When the SGS parameters were used, however, we once
again observed the appearance of additional gap minima minima in the
spectrum – example spectra illustrating this are shown in figure 7.13 for
the n = 30 system. This, again, suggests to us that the more severe the
initial gap scaling, the more likely we are to see the appearance of new
gap minima in the spectrum.

The motivation behind the catalyst was to enhance the size of the gap
minimum by removing the perturbative crossing present in an anneal-
ing spectrum – thereby allowing the evolution to remain adiabatic for
shorter anneal times. However, it is worth mentioning that some of the
gap minima that appear as a result of the catalyst seem as though they
may help the anneal reach the final GS with high fidelity – or at least not
prove a hindrance. Consider the gap spectra in figures 7.6(o-p). Here
the catalyst was able to remove the perturbative crossing but also re-
sulted in the appearance of two new ACs between the GS and 1ES. If
transitions were to occur at these ACs, and limited amplitude exchange
occurred during the rest of the anneal, we would expect the system to
end in the GS with high fidelity.

Similar comments can be made for the resultant spectra when the all-
to-all catalyst was introduced to the SGS setting with the altered graph
scaling – i.e., n0 = 2n/5 and n1 = 3n/5. Looking at figure 7.13, we can
see that the evolution of the spectrum under increasing catalyst strength
is very different to what we have seen in the settings discussed so far.
However, the spectra once again appear amenable to a diabatic anneal
for a range of Jxx values.

In this sense, the appearance of the new ACs do not significantly affect
the capacity for the anneal to find the global optimum – with a few
caveats. With regards to what we observed in section 7.2.1, the double
AC that forms only exists for a certain range of Jxx. For Jxx just below
this range, there exists a single small gap minimum between the GS and
1ES. And, if Jxx is increased beyond this point, we see the lifting of one of
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7. Effect of the catalyst on a single perturbative crossing

these ACs such that, again, we are left with just one small gap minimum.
How this Jxx range relates to the Jxx value needed to sufficiently lift the
original perturbative crossing will dictate whether a suitable spectrum
for a diabatic anneal can be produced. Another point is that transitions
out of the ground state mean that spectral gaps beyond ∆E01(s) must be
considered. We might also expect some more complicated dynamics to
impact the anneal in the open system setting.

Let us now turn our attention to the closing gap minima that we ob-
served when the single-coupling catalyst was introduced to the SGS
setting. It is not clear to us if the effects observed here could be ex-
ploited in some way. Looking at figure 7.8(b), which corresponds to the
11-spin SGS system, we see that the catalyst has produced a spectrum
that appears amenable to diabatic annealing. That is, the system could
transition into the 1ES at the new gap minimum created by the cata-
lyst, and then back into the GS at the perturbative crossing. However,
the additional gap minima that appear for the larger systems result in
spectra that appear less amenable to diabatic annealing. Nevertheless,
in chapter 9, we explore the potential of the single-coupling catalyst to
create diabatic paths in settings with multiple perturbative crossings.
The manifestation of the single, tunable additional gap minimum in the
spectrum also makes the small system sizes of this toy model an ideal
test-bed for diabatic annealing protocols. We will be utilising this sys-
tem, in chapter 8, to investigate the robustness of diabatic annealing to
changes in the annealing parameters.

By exploiting the symmetries in our systems, we have been able to re-
duce the size of the Hilbert space, allowing us to access larger system
sizes in our simulations. However, we are still looking at very small
systems with regards to the kind of scales one might hope quantum
annealing to eventually be applied to. One could optimistically say
that our results suggest that a catalyst of this form, containing a lin-
ear number of couplings, is sufficient to remove the bottleneck associ-
ated with a perturbative crossing – with or without the appearance of
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the double AC. However, we cannot rule out the possibility of the clos-
ings gaps, observed in section 7.2.2, manifesting for larger system sizes
when the number of couplings included in the catalyst scales linearly or
even quadratically with the system size. A better understanding of the
physics behind these closing gaps will help elucidate this question.

That the Jxx values necessary to remove the perturbative crossings were
found to decrease with system size seems to us a promising result as
it suggests the required coupling strengths won’t blow up for bigger
problem instances. Note that we still saw this decrease in Jxx when we
switched to the graph scaling for which n1 − n0 increased with the sys-
tem size. That being said, we only investigated the all-to-all catalyst in
this setting, for which the number of XX-couplings scales quadratically
with the system size.

7.5 Summary

In this chapter we have explored the effect of the proposed catalyst on
annealing instances constructed to contain a single perturbative cross-
ing. Our aim was to understand how the capacity of the catalyst to re-
move this perturbative crossing scaled with the problem size as well as
how this capacity was affected by the number of couplings included in
the catalyst and the severity of the exponential gap scaling of the AC. We
first investigated the effects of the catalyst when all possible appropri-
ate XX-couplings were included in the catalyst (i.e., all-to-all couplings
within G1) such that the number of couplings scaled quadratically with
the system size. We then examined the other extreme of only including
a single coupling in the catalyst. Finally, we examined the performance
of the catalyst when the number of couplings included scaled linearly
with the system size. In each case, we obtained results for two differ-
ent parameter settings which affected the exponent of the closing gap
minimum present in the original annealing spectrum.

Overall our results suggest that the less severe the initial gap scaling,
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and the more couplings that are included in the catalyst, the more likely
the catalyst is to remove the AC without any additional effects. And
the more severe the initial gap scaling, and the fewer couplings that we
include in the catalyst, the more likely we are to see additional closing
gaps of some kind. The data we have obtained so far indicates that
a linearly scaling number of couplings may be sufficient to remove a
perturbative crossing without the creation of any new gap minima and
may be able to do so with a catalyst strength that decreases with system
size. However, as we have discussed, confirming this for general and
larger systems will require further investigation.

Something we have not addressed in this chapter is how suitable val-
ues for Jxx could be identified in practice and how precise these values
would need to be. Such considerations will be crucial for the implemen-
tation of catalysts of this nature in more general settings. One potential
route to begin investigating this could be to further develop the theoret-
ical framework introduced in section 5.1.2. This, however, we leave for
future work.
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Chapter 8

Robustness of diabatic
annealing

In this chapter, we utilise one of the settings from the preceding chap-
ter to study the robustness of diabatic quantum annealing (DQA). The
setting we will be making use of is that from section 7.2.2, in which the
catalyst-free gap-scaling was more severe and our catalyst consisted of
a single XX-coupling. (We will recap the specifics of the problem setting
and catalyst at the start of section 8.1.) Here we found that the catalyst
did not remove the single perturbative crossing present in the original
annealing spectrum but instead introduced additional gap minima, the
size of which depended on the strength with which the catalyst was
introduced, Jxx.

For n ≲ 30, the catalyst resulted in the formation of just one additional
gap minimum between the instantaneous ground and first excited states.
Examples of the resultant spectra for two different system sizes can be
seen in figures 7.8(b) and (e). The spectra appear amenable to DQA in
that a path to the final GS exists which involves the system transitioning
into the 1ES at the new gap minimum created by the catalyst, and then
back into the GS at the perturbative crossing.

For n ≳ 30, we observe the appearance of two additional gap minima as
a result of the catalyst – as seen in figure 7.8(h). Whether or not the re-
sultant spectra associated with these larger systems offer any advantage
over the catalyst-free spectra is an open question that we do not address
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in this work. Certainly though, the straightforward diabatic path out-
lined above is no longer present. Our focus in this chapter, however, is
not to examine the performance of the single XX-catalyst in this specific
setting. Rather, we want to leverage the simplicity of the diabatic path
present for the smaller system sizes, and that fact that we can easily tune
the size of the new gap minimum with Jxx, as a tool to study DQA.

In section 2.3, we outlined a number of examples from the literature in
which the possibility of DQA was discussed. In particular, an important
consideration that has been raised is that there may be more stringent
demands on the annealing time chosen for DQA to maintain its ad-
vantage (where it has one) over adiabatic annealing [104, 105]. This is
because, in DQA, the final GS overlap is a result of a complex interplay
of transitions which depend on the speed at which the anneal is run –
compared to adiabatic annealing in which one understands that longer
run-times will yield equivalent or better results.

For the most part, the discussion around DQA has been with regards
to settings where it is facilitated in some way by the original anneal-
ing spectrum as dictated by the driver and the problem Hamiltonian
[19, 87, 101, 102, 104]. More recently though, there have been proposals
for manipulating the annealing spectrum to facilitate DQA. Such a possi-
bility was discussed in [100] in relation to the introduction of a catalyst
Hamiltonian and in [106] with inhomogeneous driving. And indeed we
have seen hints of the possibility of diabatic paths being created in our
work as well.

In all these cases, there are one or more parameters that are associated
with the manipulation of the annealing spectrum. As such, it will be
important to understand the robustness to changes in these parameters
of any GS fidelity enhancement that can be obtained – as well as the
interplay between the precision needed in these parameters and the an-
nealing time. It is this that we will be investigating using our toy system,
in which the manipulation of the spectrum consists of a single tunable
gap minimum, controlled by a single Jxx value.
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We begin this chapter with a numerical study in section 8.1, starting by
more fully characterising the response of the annealing spectrum to the
introduction of the catalyst in this setting. This will serve as a recap to
the setting we will be using for this investigation as well as introducing
some quantities that will be needed during our analysis and discussion.
We will then, in sections 8.1.1 and 8.1.2, examine results for the closed
system dynamics.

To do this, we must first pick an energy scale for our Hamiltonians.
Reflective of the energies used in D-Wave Hardware [109], we choose to
give our Hamiltonians the units GHz. More specifically, we set

σ̂x =

(
0 1GHz

1GHz 0

)
(8.1)

and

σ̂z =

(
1GHz 0

0 −1GHz

)
. (8.2)

Substituting σ̂x into equation 1.2 gives us our driver. Substituting σ̂z into
equation 3.8, along with the problem specific parameters (normalised to
the driver as described in section 3.4 and appendix A), gives us our
problem Hamiltonian. Finally, our catalyst Hamiltonian is defined by
substituting σ̂x into equation 5.2 along with a value for Jxx. The total
Hamiltonian is then given by equation 5.1.

We first, in section 8.1.1, confirm that the system is indeed able to follow
the diabatic path that we have described and that this allows a near unity
GS fidelity to be obtained for significantly shorter anneal-times than in
the catalyst free case. We then, in section 8.1.2, examine the sensitivity of
this fidelity enhancement to changes in ta and Jxx and observe a trade-
off between the precision needed in the two parameters – with greater
precision in one resulting in greater robustness to imprecision in the
other.

In section 8.2 we use a Landau-Zener (LZ) model to shed some light on
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the physics behind these results – allowing us to understand what these
findings imply for other settings in which the spectrum is manipulated
to facilitate DQA. We discuss these implications in section 8.3. The LZ
analysis was done jointly with Ivan Shalashilin.

8.1 Numerical results

Let us start by recapping the problem setting from the previous chapter
that we will be using and characterising the behaviour of the spectrum
in response to varying Jxx.

As for all the problem settings examined in the previous chapter, this
was a scalable bipartite graph with the sub-graph sizes n0 = (n − 1)/2
and n1 = (n + 1)/2. The setting for which we observed the additional,
tunable gap minimum was the SGS-setting for which the parameters
are W0 = 1.01, W1 = 1.00 and Jzz = 5.33. The additional gap minimum
was produced by a catalyst Hamiltonian that consisted of a single XX-
coupling introduced between two vertices in G1 with a positive catalyst
strength, Jxx. For plots that show the manifestation of this additional
gap minimum, we refer the reader to figures 7.8(a-c).

This new gap minimum seemed, from our numerical results, to go to
zero for some critical value of Jxx which varied with system size. We
will refer to this value as J∗xx. Figure 8.1 shows how these J∗xx values scale
with system size – as obtained through numerical sweeps of Jxx. We see
that J∗xx decreases with system size; we have however not been able to
discern any particular scaling behaviour. This is perhaps unsurprising
since, as noted in section 7.2.2 and at the start of this chapter, additional
effects on the spectrum start to creep in for system sizes approaching
n = 30.

Decreasing or increasing Jxx away from J∗xx results in an increase in the
size of the new gap minimum produced by the catalyst. We define the
quantity ∆Jxx = (Jxx − J∗xx)/J∗xx and plot the dependence of ∆E01(sx’) on
∆Jxx (where sx’ is the location of the new gap minimum) for different
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Figure 8.1: Plot showing the numerically obtained catalyst strength, J∗xx, that minimises
the gap minimum introduced by the single-coupling XX-catalyst when introduced to
problem settings with n0 = (n − 1)/2, n1 = (n + 1)/2, W0 = 1.01, W1 = 1.00 and
Jzz = 5.33. The units are defined as discussed in paragraph 8 of chapter 8.

system sizes in figure 8.2(a). An approximately linear dependence on
|∆Jxx| is observed with the rate of increase differing slightly depending
on whether ∆Jxx is positive or negative. This difference becomes more
pronounced for larger system sizes. Note that this linear dependence
breaks down for sufficiently large |∆Jxx|.

In figure 8.2(b) we plot the second derivative of the ground (blue) and
first excited state (orange) energies with varying ∆Jxx for the 9-spin sys-
tem. These second derivatives will become relevant during our Landau-
Zener analysis of the dynamics in section 8.2. For now, we simply note
that the second derivative of the energy appears to diverge for ∆Jxx = 0,
further suggestive of some kind of critical point.

Let us now examine the closed system annealing dynamics.

8.1.1 Final GS fidelity enhancement

We will begin by looking at the dynamics when the catalyst is intro-
duced with Jxx = J∗xx. Our aim in this section is to confirm that the pro-
posed diabatic path does indeed allow the system to reach the final GS
for faster anneal times. Throughout this and the following section, we
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Figure 8.2: Numerical data corresponding to bipartite annealing instances with n0 =
(n − 1)/2, n1 = (n + 1)/2, W0 = 1.01, W1 = 1.00 and Jzz = 5.33. The plots show
different spectral properties varying with ∆Jxx. Plot (a) shows how the size of the new
gap minimum varies for system sizes ranging from 5 to 17 in steps of 2. Plot (b) shows
the magnitude of the second derivative of the ground (blue) and first excited state
(orange) energies at the gap minimum for the 9-spin system. The units are defined as
discussed in paragraph 8 of chapter 8.

supplement our discussion with numerical results for the 9-spin system.
Similar results were also obtained for the other system sizes examined –
n = 5, 7, 11, 13, 15 and 17.

Figure 8.3(a) shows the final GS (blue) and 1ES (orange) fidelities with
increasing anneal time for the 9-spin system. The results without the
catalyst are shown in dotted lines and with the catalyst in solid lines.
Without the catalyst, we see that the final GS fidelity is negligible for all
the anneal times plotted and that the system ends in the 1ES. Looking
at Figures 8.3(b) and (d), which show gap spectrum and dynamics for
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a ta = 2µs anneal, we see that this is a result of the expected transition
into the 1ES at the location of the gap minimum.

We were not able to reach the adiabatic limit in our simulations and
so were unable to directly extract the ta values needed to reach a high
final GS fidelity in the catalyst free case. A full understanding of the
performance of this catalyst with regards to its effect on the time scaling
lies outside the scope of this chapter. However, to give us some kind
of comparison, we can obtain an estimate for the time needed to reach
the adiabatic limit by performing a linear fit to the fidelities obtained for
shorter annealing times.

For the 9-spin system, for which we present our example data, the size
of the gap minimum associated with the perturbative crossing is small
enough that even for a 1ms anneal the final GS fidelity is < 10−8. Con-
sidering, instead, the 5-spin system, we are able to estimate the adiabatic
limit to be on the order of 10ms. The fit was performed to results ob-
tained for ta = 10, 50, 100, 200, 300, 400 and 500µs and had an average
squared error of 27µs. The data corresponding to this fit is presented in
figure 8.4.

Returning to figure 8.3(a) we see that, by introducing the catalyst with
J∗xx for the 9-spin system, the anneal is able to approach a final GS fi-
delity of unity for ta on the order of 1µs. Given that the time needed
to reach a near unity overlap in the 5-spin system was estimated to be
10ms, this suggests an improvement over the catalyst free case of at
least four orders of magnitude – though given the exponentially closing
gap minimum, as shown with the lighter purple in figure 3.4(d), the
improvement is likely much greater than this.

Looking at figures 8.3(c) and (e), we can see that this reduction in the
necessary run-time is indeed a result of the system transitioning to the
1ES at the new gap minimum created by the catalyst, and then back into
the GS at the perturbative crossing.
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Figure 8.3: Numerical results corresponding to the 9-spin problem instance with n0 =
4, n1 = 5, W0 = 1.01, W1 = 1.00, Jzz = 5.33 and a catalyst containing a single XX-
coupling within G1. The units are defined as discussed in paragraph 8 of chapter 8.
Plot (a) shows how the final GS and 1ES fidelities vary with the total annealing time, ta,
in blue and orange respectively. The results without a catalyst are shown with dotted
lines and the results with the catalyst introduced with Jxx = J∗xx are shown with solid
lines. Plots (b) and (c) show the gap spectrum for the 9-vertex instance without and
with a catalyst respectively. Plots (d) and (e) show the corresponding dynamics for a
ta = 2µs anneal with the state of the system represented in terms of its overlap with
the instantaneous ground and first excited states in blue and orange respectively.
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Figure 8.4: Plot showing the time needed to reach different final GS fidelities for the
catalyst-free 5-spin problem instance with n0 = 2, n1 = 3, W0 = 1.01, W1 = 1.00
and Jzz = 5.33. The crosses show the seven numerically sampled data points. A least
squares polynomial fit was then obtained. The Hamiltonians are introduced with an
energy scale of GHz as defined in paragraph 8 of chapter 8.

8.1.2 Robustness of enhancement

We have established, in the preceding section, that the system is able to
follow the proposed diabatic path and that this facilitates an enhance-
ment to the final GS fidelity. We will now explore the robustness of this
enhancement to changes in the annealing time, ta, and to deviations in
the catalyst strength, ∆Jxx, which changes the size of the first gap mini-
mum involved in the diabatic path.

A colour plot is presented in figure 8.5(a) showing the final GS fidelity
for the 9-spin system with varying ∆Jxx and ta. We first note that we
observe a GS fidelity close to unity for a range of ta and ∆Jxx values.
Notably (as can also be seen from figure 8.3 discussed in the previous
section), the final GS fidelity remains unity as ta is increased if ∆Jxx = 0.
However, for finite |∆Jxx|, we observe a drop-off in fidelity with increas-
ing ta.

To see this more clearly, we plot the final GS fidelity against ta for dif-
ferent values of ∆Jxx in figure 8.5(b). The slices of figure 8.5(a) that the
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8. Robustness of diabatic annealing

Figure 8.5: Numerical results for the final GS fidelity with varying ta and ∆Jxx for
the 9-spin system discussed in section 8.1. Figure (a) shows a grid plot and Figures
(b) and (c) show the slices of this grid indicated with dashed white lines. (b) shows
the final GS fidelity with increasing anneal time, ta, for different values of ∆Jxx. The
coloured curves show the numerical results and the grey shaded areas and dashed
curves show the Landau-Zener predictions – obtained as described in Section 8.2. (c)
shows the results for the final GS fidelity with varying ∆Jxx for different values of ta.
The Hamiltonians are introduced with an energy scale of GHz as defined in paragraph
8 of chapter 8.
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curves in this plot correspond to are indicated with white dashed lines.
We find that this decrease in fidelity is well fit by an exponential decay,
with the decay rate increasing with |∆Jxx|. That there is a drop-off in
fidelity for very short anneal times for all ∆Jxx is a result of the dynam-
ics being too fast for the system to follow the instantaneous states such
that the system becomes distributed over the state space. In the limit of
ta = 0, where the system has no time to evolve at all, the system ends in
the equal superposition state and so the final GS fidelity would be 1/2n.

These results tell us that if Jxx is selected with perfect precision, such
that the new gap minimum created by the catalyst is minimised, the
enhancement to the final GS fidelity is robust to changes in the total
anneal time – given that ta is sufficiently long for negligible amplitude
to leak into other eigenstates. However, as we increase ∆Jxx, i.e., increase
the size of the gap minimum created by the catalyst, a greater demand
is placed on the value chosen for ta. If ta is too large, the fidelity will
have decayed significantly from its maximum value and if ta is too small
we will be in the regime where the dynamics are too fast which will also
reduce the fidelity. As such, we can say that the less precision we have
in Jxx, the more precision we need in our selection of ta.

We briefly note that, for the 5-spin system, oscillations in the final GS
fidelity with increasing ta were observed. These oscillations have lit-
tle impact on the fidelity in comparison to the decays and are also not
present for the larger system sizes. We therefore do not take the time to
discuss them here. We suspect, however, that these oscillations are the
result of the same interference discussed in [117].

We can also consider how the precision in ta affects robustness to im-
precision in Jxx. Looking at ta = 6µs in figure 8.5(b), we can see that by
choosing an unfavourable anneal time, the final GS fidelity has a strong
dependence on ∆Jxx – with its value ranging from unity to zero depend-
ing on the catalyst strength chosen. Whereas for ta ≈ 0.5µs, the fidelity
does not drop below 0.7 for the largest ∆Jxx. As such, we can say that
the greater our precision in choosing a favourable anneal time, the more
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8. Robustness of diabatic annealing

robust the final GS fidelity becomes to imprecision in Jxx.

To see this more clearly we plot the final GS fidelity with varying ∆Jxx

for three different values of ta in figure 8.5(c). The slices of figure 8.5(a)
that these curves correspond to are again indicated with white dashed
lines – with the exception of the ta = 10µs curve which lies outside the
range of figure 8.5(a). For ta = 3, 5 and 10µs, a fidelity of unity is ob-
tained for ∆Jxx = 0. The full width half maxima (FWHM) of the curves
decreases as ta is increased, indicating a greater demand on the preci-
sion needed in Jxx. While the curves continue to increase in width for
shorter anneal times, the peaks begin to decrease, reflecting the system
delocalising across the state space as a result of the dynamics being too
fast.

8.2 Landau-Zener transitions

In the previous section we observed a trade-off between the precision
needed in the anneal time, ta, and the catalyst strength, Jxx, in order to
preserve the enhancement to the final GS fidelity that could be achieved
through the creation of the diabatic path. Let us now discuss the physics
behind our numerical results. We begin by making some observations
on the dynamics of the individual anneals to allow us to build a quali-
tative picture of the mechanisms behind our results. These observations
will also serve as assumptions when, in the second part of this section,
we use a Landau-Zener (LZ) model to lend more rigour to this descrip-
tion. The predictions from the LZ-model are in excellent agreement with
the numerically obtained fidelities.

The first observation we make is that, so long as we restrict ourselves
to sufficiently long anneal times (for a given system size), no amplitude
exchange happens outside of the locations of the two gap minima. As
such, if we restrict ourselves to this regime, we only need to consider
the dynamics at the location of the perturbative crossing and the tun-
able gap minimum created by the catalyst. In addition to this, we need
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8.2. Landau-Zener transitions

only concern ourselves with the subspace spanned by the instantaneous
ground and first excited states.

Next, we note that size of the gap minima at the perturbative crossings
are such that the amplitude is fully exchanged at this point – i.e., any
amplitude in the first excited state will be transferred to the ground state
and vice versa. For this to not be the case, we would need to increase the
annealing time by several orders of magnitude – as indicated by the
large anneal times needed to reach the adiabatic limit.

Putting these two observations together, we can expect the final GS fi-
delity to be precisely the amplitude transferred to the first excited state
at the tunable gap minimum created by the catalyst. Thus, when this
gap approaches zero, (i.e., we have a small enough |∆Jxx|), we can ex-
pect the fidelity to be unity for a range of annealing times – since all the
amplitude will be transferred out of the ground state. However, as we
increase the gap size by increasing |∆Jxx|, the same run-times will result
in less amplitude being transferred to the 1ES, and hence a lower final
GS fidelity – as observed in Figure 8.5(c). Correspondingly, keeping ∆Jxx

the same and increasing the run-time will result in a lower fidelity – as
seen in Figure 8.5(b).

Let us now make this description more quantitative by using the
Landau-Zener (LZ) formula to obtain an expression for the diabatic tran-
sition rate at the new gap-minimum created by the catalyst. From the
preceding observations, we can assume that the system is completely
in the ground state prior to this gap minimum and that we can restrict
ourselves to the subspace spanned by |E0(s)⟩ and |E1(s)⟩ – treating the
system as a two level system. The LZ formula for the probability of a
diabatic transition is

PD = exp

(
−2π

C2

| d
dt (Ea − Eb)|

)
, (8.3)

where C is the off-diagonal element coupling the states of the two-level
system and Ea,b are two linear crossing energy levels between which a
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Figure 8.6: Cartoon of an avoided level crossing, illustrating the key components that
enter the Landau-Zener formula.

finite gap emerges due to level repulsion. Substituting in t = s × ta, we
can rewrite this expression as

PD = exp
(
−2π

C2

|A − B| ta

)
. (8.4)

where A = dEa/ds and B = dEb/ds. A cartoon illustrating this is pre-
sented in Figure 8.6. We have argued that the final GS fidelity will be
equal to PD and so we expect the decay rate of this fidelity with ta to be

Γ = 2π
C2

|A − B| . (8.5)

The following derivation, as well as the numerical extraction of second
order derivatives (which will become relevant shortly), was performed
by Ivan Shalashilin. To obtain expressions for A, B and C we introduce
the 2-level Hamiltonian resulting from the following expansion around
the location of the gap minimum, sx’, which we use to first order:

H2-level(s) = Ē(sx’)I +

(
A(s − sx’) C

C B(s − sx’)

)
+O(s2). (8.6)

Here, sx’ denotes the location of the gap minimum, I is the identity
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8.2. Landau-Zener transitions

matrix and Ē(s) is the average energy of the instantaneous ground and
first excited state, 1

2(E0(s) + E1(s)).

The only effect of the Ē(sx’)I term is to introduce a global phase to the
time-dependent unitary. Since this does not affect the dynamics of the
system, we may discard it in our analysis. Subtracting Ē(sx’)I from
equation 8.6, we obtain

H̄2-level(s) =

(
A(s − sx’) C

C B(s − sx’)

)
+O(s2)

where the energy levels are now centred on zero. This will simplify the
following calculations. We can further simplify things by centering the
gap minimum on zero with the change of variables X = s− sx’ such that
we now have

H̄2-level(X) =

(
AX C
C BX

)
+O(X2). (8.7)

The energies of the two eigenstates of this Hamiltonian are

E2-level
0,1 (X) =

(A + B)X ±
√
(A − B)2X2 + 4C2

2
. (8.8)

By taking X → ±∞, we find that the energies are linear in this limit and
that their gradients are A and B – as desired. C can be read off Equation
8.7 as the off-diagonal element.

Setting X = 0 in Equation 8.8 we get:

E2-level
0,1 (X = 0) = ±C,

C = E2-level
1 = −E2-level

0 =
1
2
× ∆E2-level

01 , (8.9)

where we have dropped the X = 0 for readability. Differentiating equa-
tion 8.8 twice, with respect to X, and then setting X = 0 one obtains
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dE2-level
0,1

dX

∣∣∣∣
X=0

=
1
2
(A + B) (8.10)

and
d2E2-level

0,1

dX2

∣∣∣∣
X=0

= ± (A − B)2

4C
. (8.11)

Using Equations 8.10 and 8.11, we can obtain the following expressions
for A and B:

A = E2-level
0,1

′ +

√
1
2

∆E2-level
01 × |E2-level

0,1
′′| (8.12)

B = E2-level
0,1

′ −
√

1
2

∆E2-level
01 × |E2-level

0,1
′′|, (8.13)

where we have switched to the prime derivative notation and, as in
Equation 8.9, we have dropped the X = 0 for readability.

Substituting Equations 8.9-8.13 into Equation 8.5 one finds:

Γ =
π√

2

(∆E2-level
01 )2√

∆E2-level
01 × |E2-level

0,1
′′|

. (8.14)

The 2-level energies and their derivatives can then be equated with the
corresponding numerical results for the full Hamiltonian at the location
of the gap minimum. i.e., ∆E2-level

01 = ∆E01(sx’) and E2-level
0,1

′′ = E′′
0,1(sx’).

We can now write the final decay rate as

Γ =
π√

2
∆E01(sx’)

2√
∆E01(sx’)× |E′′

0,1(sx’)|
. (8.15)

The values for ∆E01(sx’) can be trivially extracted from the numerical
data and the second derivatives, E′′

0,1(sx’), are computed by finite differ-
ences. That is, we calculate the the second derivatives as

E′′
0,1(sx’) =

E0,1(sx’ + ∆s)− 2E0,1(sx’) + E0,1(sx’ − ∆s)
2(∆s)2 , (8.16)
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where the ∆s values used are on the order of 10−2.

For these second derivatives, we have a choice of using either E′′
0 (sx’)

or E′′
1 (sx’) when substituting into equation 8.15. Equation 8.11 suggests

that the two values will have the same magnitude however this will only
be true for an actual 2-level system. Figure 8.2(b) shows the numerically
obtained values for |E′′

0 (sx’)| and |E′′
1 (sx’)| with varying ∆Jxx for the 9-

spin system. We see that the values obtained for E′′
0 (sx’) are larger in

magnitude than those for E′′
1 (sx’). As such, using the values associated

with the GS will result in a smaller prediction for the decay rate.

The LZ predictions for the decay rates corresponding to the 9-spin sys-
tem are compared to the numerical results in Figure 8.5(b). We show
the area enclosed by the decay predictions obtained using either E′′

0 (sx’)

or E′′
1 (sx’) in grey. The decay rates obtained by averaging the two re-

sults are shown in dashed grey curves. We see that there is excellent
agreement between these decays and the numerical results. That the
numerical results don’t follow the LZ predictions for ta < 0.5µs is be-
cause the assumption that no amplitude exchange happens away from
the two gap minima no longer holds.

8.3 Discussion

So far, we have studied the closed system dynamics associated with
small instances of a toy model in which a single-coupling XX-catalyst
created an additional, tunable, gap minimum in the spectrum. We then
used an LZ-model shed some light on the physics behind our results.

We numerically determined that if Jxx is selected such that the new gap
minimum is suppressed to near zero, the final GS fidelity is robust to
changes in the anneal time. That is, so long as the anneal is run slowly
enough that the system does not delocalise across the state space, a GS
fidelity of unity is obtained. If we move away from this value of Jxx,
such that the gap minimum is larger, we see an exponential decrease in
the final GS fidelity with ta – with the decay rate increasing with |∆Jxx|.
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8. Robustness of diabatic annealing

Thus, as we decrease our precision in Jxx, we increase the demand on
the precision in ta that is needed to maintain the enhancement to the
final GS fidelity. Similarly, by selecting an appropriate anneal time, the
effect that imprecision in Jxx has on the final GS fidelity can be min-
imised. However, as we increase our anneal time away from this point,
we reduce the robustness of the final GS fidelity to imprecision in Jxx.
These results indicate a trade-off between the precision needed in the
choice of anneal time, ta, and catalyst strength, Jxx.

We attributed this trade-off to the fact that, when Jxx = J∗xx, the gap
minimum created by the catalyst is small enough that all the amplitude
is transferred to the 1ES at this point for a range of ta, such that it
is all returned to the GS at the perturbative crossing. However, when
∆Jxx ̸= 0, the gap becomes larger and a sufficiently short anneal time
must be chosen to ensure that the amplitude transferred to the 1ES is
close to unity – but not so short that the dynamics are too fast for the
system to follow them at all. As such, we expect these findings to apply
to other settings where there is some parameter that controls the gap
size at a point where we want a diabatic transition to occur. With this in
mind, let us discuss what our findings may imply for DQA strategies in
general.

8.3.1 Implications for DQA

Let us consider what, in practice, might lead to deviations from the
optimal values of Jxx (or other parameters that may be used to alter
the spectrum, e.g. driver fields) and ta. Firstly, we may have a lack of
knowledge of what the optimal parameters actually are. For the cata-
lyst examined in [100], the author proposes a method for obtaining an
estimate for a range in which an appropriate Jxx value can be found –
an appropriate Jxx value being one that results in a double AC between
the instantaneous GS and 1ES such that a diabatic anneal is possible. In
this setting, selecting a Jxx value that is too low will result in there being
only a single gap minimum between the GS and 1ES. Selecting too large
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a Jxx value will result in an enhancement to gap size at one of the two
ACs – i.e., a similar scenario to what we observe here. It is suggested
in [100] that QA could be run a polynomial number of times for evenly
spaced Jxx values within this range. Understanding the viability of this
strategy will require the introduction of the selection of annealing time
into the discussion since this will impact the precision needed in Jxx.

In [106], the diabatic path is created by reducing the driver field on a
single target qubit to produce the new gap minimum. Here, the value
of the parameter that minimises the gap is known to be zero and so
there is no uncertainty in the optimal value that will make the final GS
fidelity robust to changes in ta. However, even if we can expect to know
the optimal value of these parameters, there will also be hardware lim-
itations to achievable precision. In D-Wave quantum annealers, which
consist of superconducting flux qubits, the precision of the local fields
and coupling strengths is limited by, among other things, quantisation
errors, flux noise and the fact that the qubits will not be manufactured
to be perfectly identical. This can result in errors on the order of 0.01 to
the field and coupling strengths.

As an example of what this would mean, Figure 8.5(c) tells us, for our 9-
spin example system, that such a deviation in Jxx would not reduce the
final GS fidelity to below 0.8 so long as ta ≤ 10µs. What a given hard-
ware precision would mean for a specific system or diabatic annealing
strategy would need to be considered on a case by case basis based on
the sensitivity of the spectrum to changes in the parameters used to alter
it.

There is also a further issue that would need to be considered. As noted,
in order for the desired diabatic path to be followed, the annealing time
must be sufficiently large to avoid the system transitioning between un-
wanted energy levels. As such the spectral gaps away from the minima
that we want diabatic transitions to occur at also play a key role in the
precision required in annealing parameter selection. Depending on their
scaling, there is a possibility that the increase in ta required to prevent
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Figure 8.7: Gap spectrum of an annealing instance with parameters n0 = 2, n1 =
n2 = 3,W0 = 1.010, W1 = 1.005, W2 = 1.000 and Jzz = 5.33. The units are defined as
discussed in paragraph 8 of chapter 8. A catalyst is introduced which contains a single
XX-coupling between two vertices in G1 and another between two vertices in G2. Each
of these couplings is introduced with Jxx = 1.125. The arrows indicate the different
paths the system could take, as discussed in section 8.3.

the system from delocalising across state space is such that intractable
demands are placed on the parameters used to manipulate the anneal-
ing spectrum – even if this gap scaling is sub-exponential. It is also
possible that usable parameter ranges will not exist for larger system
sizes.

The setting we have chosen for our investigation is, intentionally, very
simple. In practice, however, manipulations to the annealing spectrum
may be such that the diabatic path created involves many transitions be-
tween energy levels. Some such examples can be found in [100]. We will
also see, in chapter 9 of this dissertation, examples where an extension
of the kind of XX-catalyst used in this chapter produces more complex
diabatic paths that involve multiple instantaneous states. We present a
single example here in figure 8.7 – though we will leave the details of
the formation of this spectrum for the following chapter. Looking at the
spectrum in figure 8.7 we see there are two small gaps towards the end
of the spectrum, which are also present in the catalyst free case, and two
gap minima around s = 0.74 which are created by the catalyst.
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As with the examples studied in this chapter, the gaps at the ACs at
the end of the spectrum are small enough that, unless very long anneal
times are chosen, there will be a complete exchange in amplitude at
these points. The two new gap minima at s ≈ 0.74 both increase as Jxx

is decreased or increased away from some “critical” value. We therefore
expect the effect of imprecision in the catalyst strength to be much the
same as our findings here – but with the effects compounding at each
gap minimum since any amplitude not transferred to the next energy
level will not be returned to the GS. This is illustrated in figure 8.7 with
coloured arrows.

There are of course many other potential spectra that could be utilised
for DQA and numerous potential avenues that may result in techniques
for creating such spectra. There will, therefore, likely be many other con-
siderations that will need to be made when implementing such strate-
gies – even when restricting ourselves to the closed system setting. How-
ever, for any parameterised change to the annealing spectrum that aims
to create new gap minima for a diabatic path, the issues we have high-
lighted here will be relevant.

8.3.2 Implications for the single-coupling XX-catalyst

So far, we have discussed what we consider to be some general conclu-
sions that can be drawn from this study and what they imply for the
successful implementation of strategies where the annealing spectrum
is manipulated to facilitate DQA. And indeed this was the intended
focus of this investigation. We will however now make some limited
comments on the scaling behaviour we have observed for our system in
particular. While it seems likely that the behaviour we have seen here
will not extend to larger system sizes, we feel this discussion is still
useful as an example setting.

Let us consider how the precision needed in Jxx and ta scales with sys-
tem size. We characterise the precision needed in ta by the decay rate
of the fidelities and the precision needed in Jxx with the FWHM of the
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Figure 8.8: Plot (a) shows the decay rate of the final GS fidelity against system size
when |∆Jxx| = 0.05 in blue and when |∆Jxx| = 0.10 in orange. Results for positive
and negative ∆Jxx are plotted with dots and crosses respectively. Plot (b) shows the
system size scaling of the ∆Jxx FWHM of the final GS fidelity for three different anneal
times – 3, 5 and 10µs. The values in this figure are obtained from the numerical data
associated with the problem instances with parameters n0 = (n− 1)/2, n1 = (n+ 1)/2,
W0 = 1.01, W1 = 1.00 and Jzz = 5.33. The Hamiltonians are introduced with an energy
scale of GHz as defined in paragraph 8 of chapter 8.

curves shown in Figure 8.5(c). Figure 8.8(a) shows the fidelity decay
rates when ∆Jxx = ±0.05 and ±0.10. The results for positive ∆Jxx values
are plotted with solid dots and the results for negative ∆Jxx with crosses.
For the positive values we observe a clear decrease in the decay rate with
increasing system size – indicating that less precision is needed for the
larger systems. For the negative ∆Jxx values, shown with crosses, there
is also some reduction in the decay rate. The values quickly plateau,
however. In Figure 8.8(b) we see that the FWHM increases with the
system size for the three anneal times plotted – also indicating that less
precision is needed as the system size increases.

This reduction in the required precision can be attributed to a decrease
in the rate at which the size of the gap minimum created by the catalyst
increases with ∆Jxx – as seen in 8.2(a). Recall that it is the increase in this
gap size that places higher demands on the selection of the annealing
time since ta must be short enough for the system to transition into
the 1ES at the gap minimum. As such, a decrease in the sensitivity of
∆E01(sx’) on ∆Jxx will lower the demand on the precision needed in both
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Jxx and ta. We also note that the increase in the discrepancy between
positive and negative ∆Jxx results we see in 8.2(a) is explained by a
corresponding increase in discrepancy in the dependence of ∆E01(sx’)

on ∆Jxx.

That the required precision in the ta and Jxx appears to decrease with
system size would seem to be a positive result for the performance of
the catalyst we have used in this chapter. However, even outside of
the additional behaviour that takes shape for the larger systems, the
situation is not so simple. That the rate of gap increase with |∆Jxx|
becomes smaller for larger system sizes goes hand in hand with the
fact that the spectral gaps generally decrease with increasing system
size. This means that larger anneal times will be needed to prevent
amplitude leaking between the instantaneous states away from the two
gap minima. As discussed in the preceding section, and as can be seen
explicitly for this system in figure 8.2(b), an increase in ta results in an
increase to the precision needed in Jxx. Understanding how the required
precision in Jxx scales in practice would require us to more carefully
study the interplay between the general gap behaviour in the spectrum
and the data presented in Figure 8.2(b).

8.4 Summary

In this chapter, we have performed a numerical and analytical study on
the robustness of GS fidelity enhancement through diabatic quantum
annealing. Specifically, we have examined robustness of this enhance-
ment to changes in a parameter controlling the annealing spectrum –
in our toy model, the strength with which a catalyst Hamiltonian is in-
troduced – and the time for which the anneal is run. Our numerical
simulations revealed a trade-off between the precision needed in these
two parameters, with greater precision in one resulting in greater ro-
bustness to imprecision in the other. We were able to understand this
trade-off through the theory of Landau-Zener transitions. Through this
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understanding, we determined that this finding would also apply to
other settings in which the spectrum was being similarly manipulated
to facilitate DQA.

In the preceding sections, we have highlighted some of the key implica-
tions of our results for the viability of DQA and discussed some of the
considerations that we believe will be vital in developing such strategies
moving forward. In particular, we have highlighted the importance of
introducing the selection of annealing time into the discussion of the
precision needed in any parameters being used to modify the annealing
spectrum. We have also highlighted a potential issue of usable param-
eter ranges disappearing for larger system sizes if the scaling of the
annealing time required to remain in the desired low energy subspace
is too severe – even if this time scaling is sub-exponential.

The findings in this chapter do not, by themselves, give any indication
as to whether DQA facilitated through manipulation of the annealing
spectrum will be a viable route to improving GS fidelity in quantum an-
nealing. Rather, we hope that they will help guide future investigations
into such strategies.
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Chapter 9

Removal of multiple perturbative
crossings

This chapter explores the use of a multi-part catalyst to target multiple
perturbative crossings.

In chapter 7, we examined the performance of a targeted XX-catalyst
(as motivated in chapter 5) on annealing instances where the spectrum
contained a single perturbative crossing. Overall, our results suggested
that the catalyst may be able to alleviate the annealing time bottleneck
associated with this perturbative crossing. For most of the cases we
considered, this was through gap enhancement facilitating adiabaticity
for shorter annealing times – which was in line with the motivation
behind the catalyst.

In some cases, though, the effect of the catalyst on the annealing spec-
trum was more involved, with additional gap minima forming between
the instantaneous ground- and first excited-states. The occurrence of
these gap minima appeared to relate to additional non-stoquastic effects
that could be suppressed by the introduction of more couplings to the
catalyst Hamiltonian. While these new gap minima limit the capacity
for adiabatic annealing, we observed that, for suitably chosen catalyst
strengths, some of the resultant spectra appeared amendable to diabatic
annealing meaning that a faster time to solution could potentially still
be achieved in these cases.

In this chapter, we aim to address how these findings translate to cases
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where there are multiple perturbative crossings involving the GS in the
original annealing spectrum. While we are also interested in exploiting
potential diabatic paths through the spectrum, let us start by consider-
ing a catalyst consisting of sufficient couplings to remove a perturbative
crossing without producing any new gap minima in the spectrum. This
reflects the theoretical motivation behind the catalysts and will thus bet-
ter aid our discussion. In chapter 5 we saw hints that such a catalyst
would result in less gap enhancement when multiple perturbative cross-
ings were present since the perturbative crossing being removed was ef-
fectively being replaced by another. (We will recap, with an example,
what exactly we mean by this at the start of section 9.1.)

The question then naturally arises: can we simply add another compo-
nent to the catalyst targeting the next perturbative crossing? Motivated
by this idea, we extend the XX-catalysts from equation 5.2 to include
multiple components which can target different perturbative crossings.
We can write a general catalyst of this form as

Hc = ∑
a

J(a)
xx ∑

(i,j)∈S(a)
edges

σi
xσ

j
x, (9.1)

where each set of edges, S(a)
edges, enters with its own catalyst strength, J(a)

xx .
The hope here is that such a catalyst could remove all the perturbative
crossings with the GS such that the gap enhancement is comparable to
what we observed when only a single perturbative crossing was present.
We will explore this in section 9.1 of this chapter.

We are, however, also interested in whether or not catalysts containing
fewer couplings may be able to produce spectra amenable to DQA in set-
tings with multiple perturbative crossings. The formation of these spec-
tra was not something we predicted when introducing the motivation
behind these catalysts in chapter 5 and so it is less obvious how these
effects might extend to such settings. Recall that the diabatic annealing
spectra that we highlighted in chapter 7 formed in two distinct ways.
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When the initial gap scaling was less severe, the single-coupling catalyst
was able to enhance the gap minimum associated with the perturbative
crossing but also resulted in the formation of a correlated double AC
between the GS and 1ES – see figures 7.6(k-p). We noted that the double
AC that formed appeared to relate to the findings in [100]. We therefore
choose to focus on the other case where we observed the formation of a
diabatic path, which we describe in the next paragraph.

When the single coupling-catalyst was introduced into the setting where
the initial gap scaling was more severe, we saw a negligible effect on the
gap minimum associated with the perturbative crossing. For the smaller
system sizes examined, the catalyst resulted in the formation of a single
additional gap minimum in the spectrum such that a diabatic path to
the GS was created – see figures 7.8(a-c). It is currently not clear if this
effect will prove useful in the larger systems since we start to see the
appearance of a further gap minimum for the larger system sizes that
we examined – see figures 7.8(g-i). However, given that the formation
of these spectra appear to be a novel effect, we wanted to investigate
how it would translate to settings where there was more than one local
optimum bottlenecking the algorithm.

We continue to utilise the graph structure introduced in chapter 3 for
this investigation, allowing us to easily control the number of local op-
tima that have perturbative crossings with the ground state. This chapter
is structured as follows. First, in section 9.1, we examine the effective-
ness of the catalyst given in equation 9.1 at removing multiple pertur-
bative crossings. Then, in section 9.2, we explore the capacity of the
catalyst to create diabatic paths through a spectrum. In both cases, we
will start by going through an example where two perturbative cross-
ings are present in the original annealing spectrum. Then we will look
at the same kind of scaling results as we did in chapter 7 but where
we are scaling up a tri-partite graph – as shown in figure 9.1. We will
then examine the effect of the catalyst when we increase the number of
local optima that have perturbative crossings with the ground state by
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9. Removal of multiple perturbative crossings

Figure 9.1: In (a) we show how the sub-graph sizes scale for the tri-partite instances
examined in sections 9.1.1 and 9.2.1. In (b) we illustrate the n-partite graph construc-
tions used in sections 9.1.2 and 9.2.2

introducing additional sub-graphs to the problem – this is illustrated in
figure 9.1(b). The specifics of the parameter choices will be discussed in
the relevant sections.

The results in this chapter, and in particular those for the creation of di-
abatic paths, are rather preliminary. Overall, however, they suggest that
the proposed catalyst has the capacity to remove the annealing time bot-
tleneck associated with multiple perturbative crossings. We discuss this
in section 9.3 and also comment on how the different components of the
catalyst could potentially be introduced recursively based on informa-
tion obtained from successive annealing runs. We will then highlight
what we believe to be the key take-aways in section 9.4.

9.1 Gap enhancement

We begin this section by looking at a single tri-partite example with 11
spins and consider whether or not the catalyst given in equation 9.1 is
able to remove the two perturbative crossings that form in the annealing
spectrum. The graph sizes associated with this example are n0 = 3,
n1 = 4 and n2 = 4 such that both the perturbed states associated with
the two local optima cross the perturbed ground state – as illustrated in
the cartoon inset in figure 9.2(a).
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9.1. Gap enhancement

Our interest in this section is specifically on whether the catalyst can be
extended to target multiple perturbative crossings – rather than testing
the limits of the settings in which it has the capacity to do so. As such,
we choose the graph weights and edge penalty to be W0 = 1.6, W1 = 1.3,
W2 = 1.0 and Jzz = 35 which results in relatively weak ACs. Note,
however, that if we scale this graph up as illustrated in figure 9.1 the
scaling of the gap minimum remains exponential.

Data for the end portion of the anneal of this 11-spin example in the
catalyst free setting is presented in figure 9.2(a). The top plot shows the
gap spectrum and the bottom plot shows the evolution of the instanta-
neous GS vector – with its overlap with the problem ground, first and
third excited states highlighted in blue, orange and green respectively.
For this example, the state that corresponds to the local optimum asso-
ciated with sub-graph G2 is the problem 3ES. The overlaps with other
states are shown in grey. Looking at the gap spectrum we see a small
gap minimum between the instantaneous GS and 1ES indicative of an
AC. At the same value of s, we see an exchange in the problem state
overlaps, with the presence of |E1⟩ decreasing and the instantaneous
GS becoming dominated by |E0⟩ – reflective of a perturbative crossing
between these states.

To avoid confusion, let us comment briefly on the fact that some of the
state overlaps shown in grey have a greater presence in the GS that the
highlighted “key” states. This is because, having moved to the Dicke
representation as discussed in section 4.2, the states being plotted en-
compass all symmetrically equivalent states – such that these overlaps
can be thought of as the sum of their contributions.

Let us now consider introducing an XX-catalyst which targets the state
responsible for the perturbative crossing identified in figure 9.2(a) –
which is the problem 1ES, |E1⟩. The expected effect of such a catalyst
is illustrated in the cartoon inset in figure 9.2(b). i.e., the perturbed 1ES
no longer crosses the perturbed GS, a secondary perturbative crossing
still remains however. This is reflected in the numerical results. Figure
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9. Removal of multiple perturbative crossings

9.2(b) shows the gap spectrum and instantaneous GS evolution when a
catalyst containing all-to-all XX-couplings within G1 is introduced with
J(1)xx = 0.31 – which was the value that maximised the gap enhancement
as obtained through a numerical sweep.

Looking at the gap spectrum we see that, while the catalyst has en-
hanced the size of the minimum gap, a distinct gap minimum still re-
mains between the instantaneous ground and first excited state. Tracing
through the gap spectrum, we see that a transition at this gap mini-
mum no longer leads to the problem 1ES but to the problem 3ES. The
3ES is the state with which we now expect there to be a perturbative
crossing. Looking at the evolution of the instantaneous GS we see that
|E1⟩ no longer has a significant presence prior to the location of the gap
minimum whereas the presence of |E3⟩ has increased – again indicating
that the previous perturbative crossing (between |E0⟩ and |E1⟩) has been
replaced by another, albeit milder, perturbative crossing (between |E0⟩
and |E3⟩).

Finally, figure 9.2(c) shows the results when a second component is in-
troduced to the catalyst that targets |E3⟩. Again, we perform a sweep
and select the catalyst strength that maximises the gap enhancement –
which we found to be J(2)xx = 0.12. For clarity, the final catalyst being
used is

Hc = 0.31 ∑
i∈G1

∑
j>i∈G1

σi
xσ

j
x + 0.12 ∑

i∈G2

∑
j>i∈G2

σi
xσ

j
x. (9.2)

Once again, the cartoon inset illustrates the intended effect of the cata-
lyst, with the remaining perturbative crossing removed.

Looking at the gap spectrum, we see that the size of the minimum gap in
the spectrum has been significantly enhanced over the catalyst free case,
as well as the case where the catalyst only targets one of the perturbative
crossings. In fact, the smallest gap between the instantaneous GS and
1ES is now much closer in magnitude to the spectral gap at the end of
the anneal, E01 = E1 − E0. Turning our attention to the evolution of the
instantaneous GS, we see that the presence of |E3⟩ has been suppressed
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9.1. Gap enhancement

Figure 9.2: Plots showing the effect of a 2-component catalyst on the annealing spec-
trum corresponding to a tripartite problem graph with the parameters n0 = 3, n1 = 4,
n2 = 4, W0 = 1.6, W1 = 1.3, W2 = 1.0 and Jxx = 35. Gap spectra are presented in the
top row and plots showing the evolution of the instantaneous GS vector are presented
on the bottom row. The cartoons in the top row illustrate the expected perturbative
crossing structure. The overlaps with problem GS, 1ES and 3ES are highlighted in
blue, orange and green respectively. (a) shows the catalyst-free case. (b) shows the
results when a catalyst containing all-to-all XX-couplings within G1 is introduced with
J(1)xx = 0.31. (c) shows the results when we also include an additional component to the
catalyst consisting of all-to-all couplings within G2 with J(2)xx = 0.12.

over what we saw in figure 9.2(b) and that there is a smoother evolution
towards |E0⟩.

Now that we have seen an example of a piece-wise catalyst targeting
more than one perturbative crossing, let us examine the performance
of such a catalyst when we increase the system size and the number of
perturbative crossings.
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9. Removal of multiple perturbative crossings

9.1.1 Catalyst scaling with two perturbative crossings

We now examine the same sort of scaling behaviour as we did in chap-
ter 7 but for the case where we have two perturbative crossings being
removed. In chapter 7, we saw that the catalyst was able to remove a
perturbative crossing (without the appearance of additional gap min-
ima) both when all-to-all XX-couplings were included within the rele-
vant sub-graph and when the number of XX-couplings included in the
catalyst scaled linearly with the system size. This was the case regard-
less of the severity of the gap scaling in the catalyst free case – at least
within the parameter ranges we have investigated.

We are interested in understanding if the scaling behaviour is as
favourable when the catalyst is removing two perturbative crossings.
Rather than re-investigate all of the above cases for the tri-partite set-
ting, we have chosen to examine just one example setting. We have
opted to use the all-to-all catalyst as this reduces the computational com-
plexity of the numerical diagonalisation in comparison to other catalyst
choices since it preserves the symmetries we use to reduce the size of
the Hilbert space. Reducing the computation complexity is especially
crucial when we introduce additional local optima since the more sub-
graphs we split our problem into, the larger the reduced-size Hilbert
space (as discussed in section 4.2) will be. The problem parameters
used are the same as those associated with the example depicted in fig-
ure 9.2 which are W0 = 1.6, W1 = 1.3, W2 = 1.0 and Jzz = 35. We have,
however, checked a few example systems with parameters that result in
smaller gap minima in the catalyst free case and will also mention these
briefly at the end of the section.

Our results for the parameter settings and catalyst choice outlined above
are presented in figure 9.3. The left hand plot shows the gap scaling
behaviour and the right hand plot shows the catalyst strengths used.
The graph is scaled as shown in figure 9.1(a) such that G1 and G2 always
contain one vertex more than G0. The scaling of the minimum spectral
gap prior to the introduction of the catalyst is shown in figure 9.3(a) in
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Figure 9.3: Plots showing numerical results for the problem instances scaled as shown
in figure 9.1(a) with the problem parameters W0 = 1.6, W1 = 1.3, W2 = 1.0 and
Jzz = 35. Plot (a) shows the scaling of the gap minimum without the presence of a
catalyst in black. The gap scaling when a two-component catalyst is used is plotted in
purple. The darker purple shows the results when the optimised parameters for each
system size, as shown in plot (b), are used. The results shown in the lighter purple
use the optimal parameters for the n = 23 system. In orange, we plot the results when
only one component of the catalyst is included – i.e., the values plotted for J(1)xx in (b)
are used and J(2)xx is set to zero. Finally, we plot the spectral gap at the end of the
anneal for each system size in grey. The majority of the grey points are obscured by
the purple points.

black and we can see that the gap scaling is exponential as expected.

We now introduce a catalyst of the form given in equation 9.1 with two
sets of couplings. S(1)

edges and S(2)
edges consist of all-to-all couplings within

G1 and G2 respectively. We first perform parameter sweeps in a grid for
systems up to n = 23 spins to obtain the optimal J(1)/(2)xx values. These
are presented in figure 9.3(b). The resultant gap minima are presented
in figure 9.3(a) in the darker purple. As with the bipartite systems, we
see that (a) the gap enhancement from the catalyst quickly tends to the
maximum possible gap enhancement as the system size increases and
(b) the catalyst strengths decrease with system size.

As for the corresponding bipartite setting, in section 7.1.1, we see that
this maximum gap enhancement results in a scaling that still appears to
be exponential, albeit with a significantly weaker exponent. Considering
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9. Removal of multiple perturbative crossings

the same factors as we did in the bipartite case, we conclude that (a)
this scaling does not bottleneck the algorithm since it is associated with
problem states corresponding to sub-sets of the global optimum and (b)
the perturbative crossings have been fully removed by the catalyst for
system sizes ≥ 20. We will not repeat this discussion here but refer the
reader to paragraphs 2-5 in section 7.1.1.

We can make sense of the fact that J(1)xx > J(2)xx by considering the prop-
erties of the two perturbative crossings that the corresponding compo-
nents of the catalyst are targeting. Both perturbative crossings are be-
tween the problem GS and an excited state associated with one of the
local optima. The unperturbed energy of the excited state responsible
for the crossing that J(2)xx is targeting is larger than that of the excited
state that J(1)xx is associated with. From the construction of the problem
graph, the driver perturbation to these problem states will be compa-
rable. We therefore expect, from the arguments made in chapter 3, the
crossing with which J(2)xx is associated to be comparatively weaker. As
a result, we would expect a smaller perturbation from the catalyst to be
able to remove this perturbative crossing. Since S(1)

edges and S(2)
edges contain

the same number of edges, we can expect the required J(2)xx to be smaller
than J(1)xx .

As we increase the size of our problem instances, the two dimensional
optimal parameter sweeps become quickly intractable. Our initial plan
was to perform a fit to the optimal Jxx values we obtained for system
sizes up to n = 23 and use this to estimate the values needed for the
larger system sizes. In practice though, we found that simply using the
Jxx values obtained for the n = 23 spin instance gave better results with
regards to gap enhancement. Assuming that the Jxx scaling behaviour
observed in figure 9.3(b) persists, however, we would expect smaller
values of J(1)xx and J(2)xx to achieve the same enhancement to the minimum
spectral gap. The gap scaling results for 26 ≤ n ≤ 44, using the Jxx

parameters obtained for n = 23, are plotted with the lighter purple in
figure 9.3(a). We see that the catalyst continues to achieve the maximum
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gap enhancement for these larger system sizes as well.

We also show, in figure 9.3(a), the gap-scaling results when just the first
component of the catalyst is included – this is plotted in orange for sys-
tem sizes up to n = 23. In this case, we expect the stronger perturbative
crossing to have been removed while the weaker one remains. And in-
deed we see that, while there is some gap enhancement, the scaling is
not as significantly altered as when both components of the catalyst are
included. Looking at the individual gap spectra, we see similar results
to what we observed for the example in figure 9.2(b) – with the exchange
in the problem state coefficients sharpening as the system size increases.

As we noted at the start of this section, we have not obtained corre-
sponding results when parameters closer to those of the SGS-setting
from chapter 7 are used. However, we have tested a few example in-
stances and found that the two-part catalyst does appear to remove both
perturbative crossings in these instances as well.

Now, let us examine the effect of the catalyst as the number of pertur-
bative crossings is increased above two.

9.1.2 Two or more perturbative crossings

The problem instances examined in this section are on N-partite graphs
where the sub-graph associated with the global optimum has two ver-
tices while the other sub-graphs (corresponding to the different local
optima) all have three vertices – as illustrated in figure 9.1(b). We assign
G0 a total weight of 1.3 and G1 a weight of 1.0. Each additional sub-
graph that we include is assigned a weight 0.01 smaller than that of the
previous sub-graph such that the final weights are W0 = 1.3, W1 = 1.0,
W2 = 0.99, W3 = 0.98 etc. We take Jzz = 35 as in the previous sec-
tion. The reason we have assigned the sub-graphs associated with the
local optima similar weights, rather than spacing the weights of the sub-
graphs equally between the highest and lowest weighted sub-graph, is
so that introducing additional local optima does not result in the prob-

205



9. Removal of multiple perturbative crossings

lem 1ES energy being pushing increasingly close to the GS energy.

Note that we do not expect an exponential closing of the minimum spec-
tral gap in the catalyst-free setting when we use the graph scaling illus-
trated in figure 9.1(b). This is because the exponential scaling typically
associated with a perturbative crossing is a result of an increase in Ham-
ming distance between the two problem states which are involved in the
perturbative crossing (as discussed in section 3.1). While this is gener-
ally expected to increase with system size, here the Hamming distance
between any of the local optima and the global optimum is always five.
This expected lack of exponential scaling is reflected in the numerical
results.

We have examined systems with between three and six sub-graphs
meaning that the largest system we consider here has n = 17 spins. The
resultant annealing spectra then have between two and five perturbative
crossings. We can still use the Hilbert space reductions from section 4.2.
However, because we are increasing the number of sub-graphs rather
than their sizes, the size of Hilbert space still scales exponentially with
the system size. This severely limits the system sizes for which we are
able to obtain the annealing spectra.

For each of the systems, the number of components we include in the
catalyst Hamiltonian (as given in equation 9.1) will equal the number of
perturbative crossings, meaning we need to select as many Jxx values.
Performing parameter sweeps to identify the optimal values becomes
quickly intractable since, not only is the Hilbert space scaling exponen-
tially, but the dimension of the search space is also increasing. The
parameters we used were obtained as follows. We first performed a pa-
rameter sweep for the tripartite instance to obtain the optimal J(1)xx and
J(2)xx values needed for the catalyst in this setting. We then kept the value
obtained for J(1)xx for the 4-partite system and performed a 2-dimensional
sweep to select values for J(2)xx and J(3)xx . We then kept this value of J(2)xx for
the next system and optimised the other two parameters and so on. The
resultant parameter sets used are shown in figure 9.4. That each suc-
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Figure 9.4: Numerical results for the problem instances scaled as shown in figure
9.1(b) with the problem parameters W0 = 1.30, W1 = 1.00, W2 = 0.99, W3 = 0.98... and
Jzz = 35. Plot (a) shows the minimum spectral gap with and without the presence of a
catalyst in purple and black respectively. The spectral gap at the end of the anneal for
each system size is plotted in grey. Plot (b) shows the Jxx values associated with the
catalyst at each system size.

cessive Jxx value is lower than the last (i.e., J(1)xx > J(2)xx > J(3)xx ...) can be
explained in much the same way as the Jxx magnitudes in the previous
section.

Figure 9.4(a) shows the sizes of the minimum spectral gap, ∆Emin
01 , with

and without the presence of the catalyst in purple and black respec-
tively. As always, we include the spectral gap at the end of the anneal,
∆E01, in grey. For all the system sizes examined, we see that the gap is
enhanced by the catalyst – although not to the maximum possible value.
This is perhaps unsurprising since this maximum enhancement was also
not reached for the smallest bi- and tripartite systems. We related this
to the number of couplings included in the catalyst being insufficient
to suppress additional effects from the non-stoquastic catalyst that re-
sulted in non-monotonic gap enhancement. While the total number of
couplings being included in the catalyst increases as we add more sub-
graphs to the problem, the number of couplings that we expect to effect
each particular perturbed problem state is always three.
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It is hard to draw any concrete conclusions regarding how the perfor-
mance of the catalyst scales with the number of perturbative crossings.
We do observe what appears to be a slight decrease in the performance
of the catalyst in that ∆E01 − ∆Emin

01 in the presence of the catalyst grows
in relation to ∆E01 − ∆Emin

01 in the catalyst free case. However, this may
simply be a result of the Jxx values becoming increasingly removed
from the optimal values. To understand the actual scaling behaviour
we would need to perform a full optimisation of the parameters, either
through running extremely computationally-intensive sweeps or by em-
ploying some kind of search algorithm.

9.2 Diabatic path

Let us now investigate how the effects of the catalyst that we saw in
section 7.2.2 extend to settings with multiple local optima. To recap,
when we introduced the single-coupling XX-catalyst to the SGS-setting
from chapter 7, we saw a limited impact on the size of the gap min-
imum associated with the perturbative crossing and instead observed
the appearance of new gap minima in the spectrum. We noted the cre-
ation of a diabatic path through the spectrum in that the system could
transition into the 1ES at a gap minimum created by the catalyst and
then back down into the GS at the perturbative crossing. As the system
size increased, we observed the appearance of a further gap minimum
in the spectrum as a result of the catalyst, disrupting this diabatic path.
Nevertheless, we feel this is an interesting effect that is worth exploring
for settings with more than one perturbative crossing.

For the investigation carried out in the first half of this chapter, the mo-
tivation behind introducing a catalyst component for each perturbative
crossing was clear – if a catalyst targeting one local optimum could re-
move a single perturbative crossing, introducing a piece-wise catalyst to
remove multiple perturbative crossings was a natural next step. How-
ever, as we noted in the introduction to this chapter, it is less clear if the
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findings in section 7.2.2 will translate to anything useful with the cata-
lysts extended in the same way. Since we are not clear on the mechanism
behind the formation of the gap minimum that created the diabatic path,
we did not necessarily have any reason to believe that introducing ad-
ditional components to the catalyst would create further gap minima
– and, if they did, that the new gap minima would create a spectrum
amenable to DQA. What we have, nevertheless, found in this section
is that this form of catalyst can in fact produce such a diabatic path
through the spectrum.

Let us go through an example with two perturbative crossings to illus-
trate this. Figure 9.5 shows numerical results for the gap spectra cor-
responding to annealing instances of a problem with G0 = 2, G1 = 3,
G2 = 3, W0 = 1.02, W1 = 1.01, W2 = 1.00 and Jzz = 5. (We also include
results for the evolution of the instantaneous GS. We will not however
be discussing these results until the end of the chapter.) This instance
has the same perturbative crossing structure as the instance associated
with figure 9.2 in the catalyst-free case. That is, the perturbed states
associated with the two local optima cross the perturbed ground state
as shown in the cartoon inset in figure 9.2(a). Here, the problem states
associated with the two local optima are the first and second excited
states.

Figure 9.5(a) shows the results in the catalyst-free case where we see
that indeed there is a small spectral gap at around s = 0.95 which cor-
responds to the perturbative crossing between the problem GS and 1ES.
Figure 9.5(b) then shows the result of introducing a single XX-coupling
chosen to target this perturbative crossing – i.e., an XX-coupling within
G1. As in section 7.2.2, we see that the original small spectral gap re-
mains but now there is a new gap minimum in the spectrum. However,
in this case, this new gap minimum does not result in a diabatic path
to the GS. Assuming the annealing time chosen is insufficient to avoid
a transition at the new gap minimum created by the catalyst, we might
expect the system to end in the problem 2ES with high fidelity. Finally,
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Figure 9.5: Plots showing the effect of a 2-component catalyst on the annealing corre-
sponding to a tripartite problem graph with the parameters n0 = 2, n1 = 3, n2 = 3,
W0 = 1.2, W1 = 1.1, W2 = 1.0 and Jxx = 5. Gap spectra are presented in the top
row and plots showing the evolution of the instantaneous GS vector are presented on
the bottom row. The overlaps with problem GS, 1ES and 2ES are highlighted in blue,
orange and green respectively. (a) shows the catalyst free case. (b) shows the results
when a catalyst containing a single XX-coupling within G1 with J(1)xx = 2.14 is intro-
duced. (c) shows the results when we also include an additional component to the
catalyst consisting of a single coupling within G2 with the same catalyst strength.

figure 9.5(c) shows the result of including a second XX-coupling that
targets the other perturbative crossing – i.e., an XX-coupling within G2.
Now we see that, if the system were to transition between the instanta-
neous states at the locations of the gap minima, it would enter the 1ES,
then the 2ES, before transitioning back into the 1ES and then the GS.

To confirm that this hypothetical path through the spectrum can indeed
be exploited diabatically, we simulate the closed system dynamics. As
described in chapter 8, we assign the operators σ̂x and σ̂y the units GHZ,
emulating the energy scaled of the D-Wave devices. Figure 9.6(a) shows
the overlap of the system with the instantaneous GS, 1ES and 2ES over
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Figure 9.6: Plots showing results for the closed system dynamics corresponding to
the setting with the gap spectrum depicted in figure 9.5 (c). The Hamiltonians are
introduced with an energy scale of GHz (as defined in paragraph 8 of chapter 8) and
the annealing time is chosen to be ta = 1µs. Plots (a) and (b) show the evolution
in terms of the system’s overlap with the instantaneous states and problem states
respectively – with the overlap with the ground, first, and second excited state plotted
in blue, orange and green respectively.

the course of a 1µs anneal. We see that the expected transitions do
indeed take place and that the system ends having a high overlap with
the GS.

We will now go on to look at results for larger system sizes, scaling our
graphs in the same two ways as in the previous sections, illustrated in
figure 9.1. When we were examining the capacity of the catalyst to re-
move multiple perturbative crossings, we were able to use the size of
the minimum gap to characterise the success of the catalyst which also
meant we could use it as the parameter which we were optimising to
select our Jxx values. Here, however, we are not trying to maximise the
gap enhancement but rather create the best diabatic path through the
spectrum. As such, the gap size is no longer a useful metric. Instead
we will be looking at the enhancement to the final GS fidelity in order
to select our Jxx values. This is of course much more computationally
intensive since it requires us to simulate the closed system dynamics
rather than just diagonalising the instantaneous Hamiltonians. Further-
more, introducing only a single coupling within each relevant sub-graph
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(rather than all-to-all couplings) disrupts the symmetry that allows us
to reduce the size of the Hilbert space. As a result, the Hilbert space for
a given system size is larger in this setting.

Fortunately, after performing sweeps for the smallest system sizes, we
found that the optimal J(a)

xx values associated with each of the couplings
were approximately equal. As such, we chose to sweep over one global
Jxx value for the larger systems – greatly reducing the computational
demands on the parameter sweeps. Considering the resultant spectra,
we have since realised that the optimisation of Jxx could be done purely
through consideration of the gap spectrum – without the need for dy-
namic simulations. The optimal spectrum for a diabatic anneal, as we
discuss in chapter 8, is one in which the spectral gaps at points where
we want a transition to occur are minimised. In this setting, these are
the gaps that allow the system to cascade up to the highest excited state
associated with the local optima so that it can transition back to the GS
through the perturbative crossings. Since all these gaps are minimised
around the same Jxx value, we could optimise Jxx through the minimisa-
tion of the gap minimum introduced by the catalyst between the instan-
taneous GS and 1ES. This would likely allow us to access larger systems
sizes than we have been able to so far. This, however, we leave for future
work.

When examining the capacity for the catalyst to remove multiple per-
turbative crossings, we were able to make some comments regarding
the change in anneal time needed for a single anneal to return the GS
with high fidelity by using the gap sizes as a proxy for the expected
dynamics. That is, since adiabatic annealing requires ta ∝ 1/[∆Emin

01 ]2,
we can compare the gap sizes, before and after the introduction of the
catalyst, in order to understand the effect on the time scaling. When
we are considering diabatic annealing however, the gap size is no longer
a direct indicator of the annealing time required for a high GS overlap
at the end of the anneal. Primarily, our focus in this section will be to
see if these diabatic paths can still be created when more perturbative
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crossings are present – rather than trying to understand the scaling be-
haviour. We will however still make some comments on this where we
can.

Let us begin by examining the formation of the diabatic path as we
increase the system size of the tripartite example.

9.2.1 Catalyst scaling with two perturbative crossings

First, let us recap what we observed in section 7.2.2 as we increased the
system size of the setting with a single perturbative crossing. For the
smallest system sizes, a single new gap minimum formed that could be
brought arbitrarily close to zero by increasingly fine tuning of Jxx. From
around n = 25, however, a secondary additional gap minimum begins to
form. By n = 35, there is a clear manifestation of two new gap minima
as a result of the catalyst. Spectra illustrating these three cases can be
found in figure 7.8. As for the smaller bipartite instances, introducing
the catalyst to the 8-spin tripartite example from the previous section
created a diabatic path that the system could follow to the ground state
– see figures 9.5 and 9.6. We now scale up this example, as illustrated
in figure 9.1(a), keeping the same problem parameters, i.e., W0 = 1.02,
W1 = 1.01, W2 = 1.00 and Jzz = 5.

For each system size, we first perform a parameter sweep to identify the
Jxx value that results in the optimal diabatic path. As discussed in the
previous section, we search for this optimal Jxx by simulating the closed
system dynamics and selecting the value that maximises the final GS
overlap. To do this, we want to select a long enough annealing time to
ensure that minimal state transfer happens away from the perturbative
crossings and the small gaps created by the catalyst. We began with
ta = 2µs and used ta = 4µs for the largest systems as the spectral gaps
became generally smaller. In practice, what we did was to perform the
sweep and if the final GS overlap did not surpass 0.95 for any Jxx we
would increase the annealing time. (Recall that here we are not trying
to optimise the annealing time but rather use the final GS overlap as
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Figure 9.7: Plots showing numerical results for the problem instances scaled as shown
in figure 9.1(a) with the problem parameters W0 = 1.02, W1 = 1.01, W2 = 1.00 and
Jzz = 5. The Hamiltonians are introduced with an energy scale of GHz as defined in
paragraph 8 of chapter 8. A catalyst is introduced which contains a single coupling
within G1 and another within G2. Both of these couplings are introduced with the same
catalyst strength, Jxx, which varies between system sizes. Plot (a) shows the scaling of
the annealing time, ta, needed to reach a GS fidelity of 0.9 and plot (b) shows the Jxx
values.

an indicator for the formation of a particular structure in the spectrum.)
The Jxx values obtained this way are plotted in figure 9.7(b).

The resultant annealing spectra associated with the 11-, 17-, and 23-spin
systems are presented in figure 9.8. In each case, we see that a diabatic
path, similar to what we observed for the 8-spin system, has formed
between the instantaneous ground, first and second excited states. We
do not, for these system sizes, observe the appearance of any further
gap minima in the spectra. It is likely, however, that we have simply not
gone up to large enough system sizes. The additional gap minimum in
the bipartite setting only began to take shape for system sizes of around
n = 25 which we have not been able to reach here.

In figure 9.8(a), we plot the annealing time, ta, needed to reach a final
GS overlap of 0.9 when the catalyst is introduced with the optimised Jxx

values plotted in figure 9.8(b). These results show a clear exponential
scaling in ta for the system sizes which we have examined. Looking at
the dynamics of individual anneals, we found that amplitude was being
lost to the higher excited states over the portion of the anneal where
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9.2. Diabatic path

Figure 9.8: Gap spectra showing the optimised diabatic path, as created by a catalyst,
for three different system sizes. Each instance is a tripartite graph with W0 = 1.2,
W1 = 1.1, W2 = 1.0 and Jxx = 5. The sub-graph sizes in each case are n0 = (n − 2)/3
and n1 = n2 = (n + 1)/3. The catalyst in each case contains two couplings – one
between two vertices in G1 and another between two vertices in G2. The coupling
strengths used in each case are (a) Jxx = 1.095, (a) Jxx = 1.080 and (a) Jxx = 1.090.

the diabatic path had been created – with the majority of the amplitude
being lost while the system predominantly occupied the instantaneous
2ES. There is only a very small amount of amplitude transferred between
the instantaneous ground, first and second excited states away from the
gap minima that make up the diabatic path and a total exchange in
amplitude at these points. i.e., the diabatic path is being followed by
the portion of the system that remains in the desired sub-space. The
bottleneck is therefore the closing of the gap separating this sub-space
from the rest of the energy spectrum. An example corresponding to the
11-spin system is shown in figure 9.9.

While the scaling has remained exponential, we can deduce that there
has still been a reduction to the annealing time of several orders of
magnitude. We are not able to simulate annealing times (for even the
smallest system size examined here) that approach the adiabatic limit.
However, taking the same approach as we did in chapter 8, we can es-
timate that it would take on the order of 104µs to approach this limit
for the catalyst-free 14-spin system for instance. The catalyst brings the
required annealing time below 1µs.
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9. Removal of multiple perturbative crossings

Figure 9.9: Closed system dynamics of an anneal of duration ta = 0.12µs for an an-
nealing instance with G0 = 3, G1 = 4, G2 = 4, W0 = 1.02, W1 = 1.01, W2 = 1.00 and
Jzz = 5. The Hamiltonians are introduced with an energy scale of GHz as defined in
paragraph 8 of chapter 8.

9.2.2 Two or more perturbative crossings

We end this chapter by briefly examining the formation of the diabatic
paths when further perturbative crossings are introduced. The prob-
lem instances used in this section have the structure illustrated in figure
9.1(b). The lowest weighted sub-graph is given a weight Wa = 1.00 and
the largest weighted sub-graph a weight of W0 = 1.02. The remain-
ing sub-graph weights are evenly spaced between these two and we set
Jzz = 5. (Note that the 8-spin system in this section is therefore equiva-
lent to that of the previous section.)

We perform the Jxx parameter sweeps as we did in the previous section,
using closed system dynamics to optimise one global catalyst strength
for each problem instance. As we have already discussed, introducing
additional sub-graphs expands the Hilbert space much more rapidly
than increasing the size of the sub-graphs. As a result, we were only
able to perform these sweeps for two additional systems – the 11-spin
system with three perturbative crossings and the 14-spin system with
four perturbative crossings.

We find that in both cases, the catalyst can produce spectra that result

216



9.3. Discussion

Figure 9.10: Gap spectrum corresponding to a setting with the parameters G0 = 2,
G1 = 3, G2 = 3, G3 = 3, G4 = 3, W0 = 1.020, W1 = 1.015, W2 = 1.010, W3 = 1.005,
W4 = 1.00 and Jzz = 5. A catalyst has been introduced that includes a coupling within
each of the sub-graphs Ga, a = 1, 2, 3, 4. The catalyst is introduced with a catalyst
strength Jxx = 0.842.

in near unity overlap for annealing times ta < 1µs. Looking at the an-
nealing spectra, we confirm that this is indeed a result of the formation
of a diabatic path that involves a number of excited states equal to the
number of perturbative crossings. The spectrum for the 14-spin instance
is shown in figure 9.10. The Jxx values to produce these spectra are on
the same order of magnitude as those from the previous section.

9.3 Discussion

In this chapter we have explored the use of multi-component targeted
catalysts in settings where there are multiple perturbative crossings that
bottleneck the annealing algorithm.

We first considered a setting similar to one in which the catalyst re-
moved a single perturbative crossing (section 7.1) but where two pertur-
bative crossings were present. In this case, the catalyst had two sepa-
rate components that targeted the two local optima responsible for the
perturbative crossings. We observed similar behaviour to that seen in
the single perturbative-crossing case, with the catalyst being able to re-
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9. Removal of multiple perturbative crossings

move both perturbative crossings and the catalyst strengths required to
achieve this decreasing with the system size.

We then expanded the problem graph structure to introduce additional
perturbative crossings, including a further set of couplings in the cata-
lyst to target each of the new local optima. We examined the effect of
this catalyst on systems with up to five perturbative crossings. In each
case the system was able to enhance the size of the minimum spectral
gap but was not able to fully remove the presence of an AC between the
instantaneous ground- and first excited-states. It is worth noting that,
since we have not fully optimised the Jxx values here, it is likely that we
are not seeing the maximum gap enhancement that could be achieved
with a catalyst of this structure. However, even if this were not the case,
these results are perhaps unsurprising since we also saw that the cata-
lyst was not able to fully remove the presence of an AC in the smallest
bi- and tripartite cases either.

Apart from the numerical indications that the gap enhancement would
tend to the maximum possible value if we were to increase the sub-graph
sizes for any of the n-partite systems, we also have theoretically moti-
vated reasons to believe this would be the case. In section 5.3, we con-
cluded that the reason the gap enhancement from the catalyst reached a
maximum, rather than monotonically increasing, was related to certain
vector components becoming negative as a result of the introduction
of the non-stoquastic catalyst. We argued that the appearance of these
negative vector components would be suppressed by the inclusion of
additional XX-couplings through effectively introducing frustration into
equation 5.16. We confirmed numerically that additional couplings did
indeed suppress the presence of the negative vector components. As
we increase the system size, more potential couplings become available,
such that we can expect the catalyst to be more successful at enhanc-
ing the gap minimum. There is no immediate reason to believe that this
logic would not also apply in the setting where we are using a multi-part
catalyst to remove multiple perturbative crossings.
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The problem parameters for the example settings we have used for this
investigation bear closer resemblance to those associated with the WGS
setting from chapter 7. When we were considering settings with just one
perturbative crossing, the performance of the all-to-all catalyst (which
we have used here) was largely unaffected by the severity of the gap
scaling. We may hope that we would see a similar consistency in per-
formance when multiple perturbative crossings are being targeted – and
indeed this appeared to be the case from the preliminary investigations
which we made into these settings. However, a logical next step in this
investigation may be to properly examine the performance of the cat-
alyst in a setting where the problem parameters result in perturbative
crossings with a more severe associated gap scaling.

In section 9.2 of this chapter we examined a setting similar to that in
which the catalyst did not remove the perturbative crossing (section
7.2.2) but instead created a diabatic path to the ground state. The num-
ber of system sizes which we were able to simulate here was limited by
the fact that a catalyst containing only a single coupling per sub-graph
does not totally preserve the symmetry present prior to the introduction
of the catalyst. As a result, the Hilbert space associated with a given
system size in this setting is significantly larger than for the same sys-
tem size in the previously discussed setting. We were therefore not able
to answer the all of the questions that we were hoping to in this inves-
tigation. However, we can still make some comments on the results we
did obtain.

The main question we wanted to address was: how would the results
which we saw in the single perturbative crossing case extend to a setting
where we introduced a catalyst intended to target multiple perturbative
crossings? Since we do not have a complete physical picture explaining
the appearance of the additional gap minimum we observed in chapter
7, it was unclear what we should expect to see. What we found was
that, for the small system sizes which we have been able to simulate,
the catalyst was able to produce a diabatic path through the annealing
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spectrum that included an additional energy level for each perturbative
crossing that the catalyst targeted.

In the bipartite case we saw that the diabatic path started to break down
as a result of the appearance of an additional gap minimum that began
to take shape for n > 25. It seemed likely that something similar would
be observed in a setting with multiple perturbative crossings but, again,
it was unclear how this would manifest. Unfortunately we were not able
to access system the sizes for which we expected these additional effects
to arise. A natural next step would be to take advantage of the fact that
minimising the new gap minimum appearing between the ground and
first excited state seemed to also minimise the other new gap minima
that formed the diabatic path. Hence we could use diagonalisation over
a small portion of the anneal to optimise Jxx rather than simulating the
closed system dynamics.

Over the course of this dissertation, where we have identified potential
for a catalyst to reduce the demands on the annealing time, we have
considered if and how suitable couplings could be identified in practice.
In the case with a single perturbative crossing, we noted that an anneal
which ran too quickly to remain in the ground-state, but not so fast
that the the system became totally de-localised across the state space,
was likely to return the state responsible for the perturbative crossing
with high fidelity. In the final section of chapter 5, we discussed how
knowledge of this state could be used to select appropriate couplings
that effectively targeted the associated perturbative crossing – certainly
for the MWIS problem and possibly for others as well.

Let us consider what this would look like for a setting with multiple
perturbative crossings that involve the problem GS. Assuming the an-
neal can be run at a speed for which the majority of amplitude exchange
happens at the perturbative crossings, we would expect a catalyst free
annealing run to return, with high fidelity, the state responsible for the
perturbative crossing that manifests as an AC between the instantaneous
GS and 1ES. The identification of this state allows for the selection of
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couplings that target this first perturbative crossing – such that a cata-
lyst can be introduced to remove it. We then expect to be left with a
different perturbative crossing manifesting as an AC with the instanta-
neous GS such that the annealing spectrum effectively leads to the next
problem state that would want to identify. In this way, we can imagine
recursively identifying and removing the various perturbative crossings
present.

Interestingly, while the resultant gap spectra look quite different at each
step, the same kind of recursive process could be envisioned for the
settings in which we produced the diabatic paths. That is, we find that
the spectrum at each step leads us to the next state for which we would
want to select targeted XX-couplings in order to construct the diabatic
path that eventually leads back to the GS.

Going hand in hand with this is the more general comment that, despite
the resultant spectra being so different, the actual dynamics between
the two cases are not dissimilar. Let us return to the dynamics of the
example setting presented in figure 9.6 in which the system is following
a diabatic path through the spectrum. Figure 9.6(a) shows the system
transitioning through the instantaneous 1ES, into the 2ES, then back into
the 1ES before reaching the GS again. Looking at figure 9.6(b) however,
which shows the overlap of the system with the problem ground, first
and second excited states, we see that system is smoothly evolving to-
wards the problem GS in much the same way as it would in the setting
where adiabatic annealing has been facilitated by the removal of the
perturbative crossings.

This is perhaps unsurprising since diabatic transitions are generally not
indicative of a sharp change in the properties of the system but rather it
is the properties of the instantaneous eigenstates that are being exchanged.
And indeed, the trajectory of the system, observed in figure 9.6(b), is re-
flected in the make-up of the instantaneous eigenstates that the system
transitions between. Looking specifically at the evolution of the instan-
taneous GS for this example, which is presented in figure 9.5(c), we see
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9. Removal of multiple perturbative crossings

that there is a large problem GS contribution prior to the occurrence of
the first gap minimum. In some ways then the effect of the catalyst can
be thought of, in both cases, as helping the system end in the GS by
guiding the instantaneous GS towards the problem GS. For the settings
examined in section 9.2 there is also a rapid re-ordering of the energy
levels that happens towards the end of the anneal – as the problem GS
amplitude passes up through the instantaneous excited states then back
to the instantaneous GS.

9.4 Summary

Overall, the results in this section suggest that the catalysts motivated
in chapter 5 can be extended to target multiple perturbative crossings
in the same annealing spectrum. Our first indication for this is the fact
that the scaling behaviour when two perturbative crossings are present
is largely reflective of the single perturbative crossing case examined in
chapter 7. Furthermore, when additional perturbative crossings were
introduced to the annealing spectrum, we continued to see the same
qualitative effect from the extended catalyst Hamiltonians – both in the
setting where the catalyst resulted in significant gap enhancement (sec-
tion 9.1) and the setting where a diabatic annealing path was produced
(section 9.2). This, combined with the theoretically motivated arguments
presented in section 9.3, lead us to be optimistic with regard to the use
of this form of catalyst in more general settings.

We also, in the preceding section, offered a brief description of how a
suitable catalyst could be recursively constructed in practice – based off
states returned by previous annealing runs. We will expand on this idea
of an algorithmic approach to catalyst construction in section 10.2.3 of
our discussion chapter.
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Chapter 10

Discussion

In this thesis, we have explored the use of catalyst Hamiltonians for the
removal of perturbative crossings in quantum annealing. Motivated by
results in the literature which suggest that the effect a catalyst has on
the annealing spectrum is highly dependent upon the specifics of the
problem Hamiltonian, we have taken a targeted approach in which we
have sought to incorporate accessible, problem specific, information into
the catalyst construction.

Using perturbation theory, we took two analytical approaches to under-
standing how the effect of different XX-terms relates to the couplings
they introduce between the eigenstates of the problem Hamiltonian. We
used these findings to motivate the following two options for remov-
ing a perturbative crossing between two problem states, |Ea⟩ and |Eb⟩
(b > a), associated with two local optima of the problem:

Either

• Introduce XX-terms with the same sign as the driver that introduce
couplings between |Ea⟩ and low energy states that are close in
Hamming distance to |Ea⟩.

Or

• introduce XX-terms with the opposite sign to the driver that intro-
duce couplings between |Eb⟩ and low energy states that are close
in Hamming distance to |Eb⟩.

The first of these approaches results in a total Hamiltonian that is sto-
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quastic for the entirety of the anneal. In the second case, the total Hamil-
tonian is non-stoquastic for s ̸= 0, 1 (where s is the annealing parameter,
t/ta).

Over the course of this dissertation, we explored these ideas numeri-
cally. To facilitate our numerical investigations, we introduced struc-
tured MWIS instances that allowed us to controllably produce spectra
with different perturbative crossing structures and tune the severity of
the associated exponential gap scaling. By utilising symmetries present
in these systems to reduce the size of the Hilbert space, we were able to
obtain data for systems with up to 73 spins. This exploration was the
primary focus of this dissertation and we will spend the majority of this
final chapter discussing what our main findings were in this area, their
implications, and possible avenues for further research.

Outside of this, we found that the theoretical framework we introduced
to understand the effect of different XX-coupling choices may be a use-
ful tool for catalyst design more generally. Extending the analysis to
general 2-local coupling choices, we found that there was good agree-
ment between the theoretical predictions and the numerical results for
all the non-complex catalyst choices. Let us briefly discuss these results
before returning to the main focus of this work.

10.1 A perturbative framework for catalyst de-

sign

In chapter 6 we examined the effect of general 2-local catalysts (XX, YY,
ZZ, XY, XZ and YZ) on an example graph containing a single pertur-
bative crossing, considering the performance of different placements of
the various coupling choices. We found that 2-local terms of any almost
type were able to enhance the minimum spectral gap if their placement
was such that they “targeted” the problem GS – i.e., they introduced
couplings between the GS and other low-energy states. While the con-
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10.1. A perturbative framework for catalyst design

sistency of this is appealing, it may not be a particularly useful result
as far as motivating routes for catalyst design, since being able to target
the GS presupposes that we already have the solution to our problem.

2-local catalysts that targeted the excited state involved in the perturba-
tive crossing were less consistently helpful. We were able to determine
that this related to the different phases that were introduced if Z or Y
operators formed part of the couplings. These phases resulted in per-
turbations of different signs effectively cancelling each other out. Where
such couplings were able to significantly enhance the gap minimum, this
could be understood by considering precisely how the different signs
entered the different relevant perturbations. However, it was difficult to
draw any helpful conclusions for more general settings.

This perhaps highlights a particular benefit of using XX-couplings when
designing targeted catalysts: it is easier to predict the sign with which
the couplings will introduce perturbations to the desired states. Fur-
thermore, we feel that the observed agreement between the theory and
simulation is an important result in and of itself since it offers further
validity to this approach to catalyst design. The only coupling choices
for which our theoretical analysis did not agree with the numerical re-
sults were those which included a single Y operator and thus had imag-
inary components. Understanding where this discrepancy comes from
and how the analysis could be extended to mitigate this is a potential
avenue for future work.

While XX catalysts would appear to be the most promising choice from
what we have investigated, we have far from exhausted all the potential
forms a catalyst could take. For instance, a catalyst could consist of a
mixture of different coupling types and/or higher order interactions.
For this latter case, the perturbative analysis could be easily extended to
describe the effect of different n-body terms.

Let us now move on to the main focus on this dissertation, which is the
use of targeted XX-catalysts.

225



10. Discussion

10.2 Targeted XX-catalysts

The only perturbative crossings that bottleneck adiabatic quantum an-
nealing are those that involve the problem GS. As such, it is on the re-
moval of these types of crossing that we have focused our attention. We
showed, in section 5.1, that one option for removing such a perturbative
crossing is a catalyst that effectively targets the GS through the inclu-
sion of XX-terms, sharing the same sign as the driver, that introduce
couplings between the GS and other low energy states. Introducing
such catalysts to a selection of example settings in section 5.2.1, we con-
firmed that they were indeed able to enhance the gap minimum over the
catalyst-free case. Examining the evolution of the instantaneous states
in section 5.2.2, we confirmed that this gap enhancement was a result of
the intended effect on the perturbed problem states. We found that this
gap enhancement could be achieved with varying numbers of couplings
being included in the catalyst, so long as the strength with which the
catalyst was introduced was sufficiently large.

The other catalyst proposed (in section 5.1) was one that targeted the ex-
cited state responsible for the perturbative crossing through the inclusion
of XX-terms, with the opposite sign to the driver, which introduced cou-
plings between this excited and other low-energy states. In this case, the
situation was a little more complicated, with the same gap enhancement
only achieved if there were no other perturbative crossings present in
the annealing spectrum. Otherwise, a small gap-minimum correspond-
ing to a different perturbative crossing would remain.

Furthermore, unlike when we were targeting the GS, the maximum gap
enhancement that could be reached depended on the number of cou-
plings included in the catalyst, with more couplings allowing for greater
gap enhancement. We attributed this difference in behaviour to addi-
tional complexities associated with the non-stoquastic nature of the total
Hamiltonian when the XX-couplings were introduced with the opposite
sign to the driver. Specifically, in section 5.3, we extended our theoreti-
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cal analysis from section 5.1 and were able to relate these differences to
changes in the signs of the instantaneous GS vector components. (These
can only be negative in the non-stoquastic setting.) We found, numeri-
cally and analytically, that the appearance of these negative vector com-
ponents could be generally suppressed by including more XX couplings
in the catalyst.

Finally, to further confirm the importance of the coupling placement,
we also looked at the effect of introducing XX-terms that were targeting
a local optimum not responsible for a perturbative crossing with the
ground state. As expected, we found that this had little effect on the
size of the gap minimum between the instantaneous ground and first
excited state.

10.2.1 Catalyst performance

Despite the additional complications present in the non-stoquastic set-
ting, we chose to focus our investigation on catalysts that target the
excited-state, rather than the ground-state. While a catalyst targeting the
GS may more reliably be able to enhance the minimum spectral gap, its
construction would require more information of the GS that we would
likely have access to. On the other hand, constructing a catalyst utilising
information of the local optima in which the algorithm is likely to be-
come trapped is a much more feasible route to catalyst design. We will
discuss this further in section 10.2.3.

Numerically investigating the performance of the catalyst with increas-
ing system size, in chapter 7 we continued to find that the maximum
gap enhancement the catalyst could achieve depended on the number
of couplings included in the catalyst. We also found that it was de-
pendent on the severity of the gap scaling associated with the pertur-
bative crossing in the catalyst-free case, with greater gap enhancement
being possible for cases where the initial exponential scaling was less
severe. For the scalable instances on which we focused our investigation
in chapter 7, a catalyst containing a linearly scaling number of couplings
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was sufficient to remove a perturbative crossing regardless of the sever-
ity of the gap scaling. Furthermore, we found that the required catalyst
strength decreased with system size.

In the extreme case where only a single coupling was included in the cat-
alyst, the response of the annealing spectrum to the catalyst was much
more involved and also differed significantly depending on the severity
of the initial gap scaling. Not only was less gap enhancement observed,
but we also saw the appearance of additional gap minima in the spec-
trum. Once again, these additional effects were associated with sign
changes in the instantaneous GS vector components. We will discuss
their manifestations and the consequences thereof in section 10.2.2.

The question of whether or not a linearly increasing number of XX-
terms in the catalyst will be sufficient to remove a perturbative crossing
in more general settings requires further investigation. Firstly, while
Hilbert-space reductions have allowed us to access larger system sizes
than we would have been able to otherwise, we have no guarantee that
what we are seeing is reflective of the large-system limit. (Note that,
due to this catalyst disrupting the symmetries in the system, we were
only able to obtain results for system sizes up to n = 31 spins.) If we
consider the effects of the single-coupling catalyst in the WGS setting,
the additional gap minima only began to manifest at around n = 20. As
such, we cannot rule out the possibility of the closings gaps, observed for
the single-coupling catalyst, manifesting for larger system sizes when
the number of couplings included in the catalyst scales linearly or even
quadratically with the system size.

Furthermore, even if the observed behaviour persists to arbitrarily large
systems, we have by no means considered the performance of the cata-
lyst under general parameter settings. It is always possible to alter the
parameters to further heighten the severity of the gap scaling which,
as we have seen, can introduce unwanted additional effects from the
catalyst. Not only this, but there are of course many different ways in
which we could choose to scale the graph structure. Indeed, in our brief
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look at an alternative graph scaling, which naturally resulted in a more
severe gap scaling in the catalyst-free setting, we saw the appearance
of additional gap minima even when a quadratically scaling number of
couplings was used. It is potentially relevant, however, that the new gap
minima that formed in this setting did seem to facilitate a diabatic path
to the ground state. As such, the catalyst could still be considered to be
removing the bottleneck associated with the perturbative crossing. We
will return to this point in section 10.2.2.

We suspect that an understanding of the number of catalyst terms
needed to remove a perturbative crossing in different settings may lie
in extending the theoretical work from section 5.1.2, considering more
rigorously the conditions that need to be met to remove a perturba-
tive crossing and how these relate its properties. Combining such find-
ings with an investigation into the typical properties of the perturbative
crossings which we might expect to manifest for a given problem type
will help us understand what demands we can expect to be placed on
the catalyst.

Finally, in section 9.1 we explored the capacity of these catalysts to re-
move multiple perturbative crossings from the annealing spectrum, with
separate sets of XX-terms targeting the different local optima responsi-
ble for the different perturbative crossings. We found that constructing
a catalyst in this way was indeed able to address multiple perturbative
crossings as intended. Obtaining clear scaling results was more difficult
here. This is because introducing more perturbative crossings required
us to break up the problem into more sub-graphs which limits the ex-
tent to which we can reduce the size of the Hilbert space. Nevertheless,
our numerical results, combined with our theoretical understanding of
the catalyst, led us to believe that catalysts constructed in this way are
likely to have the capacity to fully remove all the perturbative crossings
present in the annealing spectrum, provided sufficient XX-terms are in-
cluded.
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10.2.2 New gap minima

In chapter 5 we noted that the appearance of negative GS vector com-
ponents, owing to the non-stoquasticity of the catalyst, limited the max-
imum gap enhancement that could be achieved. As we began looking
at larger systems and settings with more severe exponential gap scaling
in chapter 7, we identified instances for which the presence of negative
vector components resulted in significantly more involved effects on the
annealing spectra from the catalyst. In particular, we observed the in-
troduction of additional gap minima to the spectrum which manifested
in a number of different ways.

While the appearance of new gap minima is of course a hindrance for
adiabatic QA, we noted that some of the resultant spectra appeared
amenable to diabatic annealing. For instance, when we introduced the
single-coupling catalyst to the WGS setting, we observed a response
from the spectrum reminiscent of that observed in [100]. That is, we
saw the appearance of a correlated double AC between the ground and
first excited state in addition to a lifting of the gap minimum associated
with the perturbative crossing. Since the system can transition into the
1ES at the first of the two ACs before transitioning back into the GS
at the second, these gap minima likely do not pose a bottleneck to the
algorithm.

The catalyst resulted in annealing spectra with a similar structure when
introduced to settings associated with our alternative graph scaling – see
figure 7.13. In this case, all possible relevant couplings were included
in the catalyst. The fact that this was the only manifestation of new gap
minima in the spectrum when multiple-coupling catalysts were used,
and the result appeared to facilitate a diabatic anneal, seems to us a
promising result. However, a better understanding of the formation of
these gap minima is still required for us to understand if we can rely on
their manifesting in a way that facilitates DQA.

We also observed the formation of a diabatic path in the smaller SGS in-
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stances when a single-term catalyst was used. In this case, the enhance-
ment to the gap minimum associated with the perturbative crossing was
minimal. Instead a new gap minimum appeared in addition to the still
present perturbative crossing. Interestingly, we appeared to be able to
set this new gap minimum arbitrarily close to zero through increasingly
fine tuning of Jxx. While we were able to link this closing gap to changes
in the signs of the GS vector components, it is not clear to us what the
physical mechanism behind their appearance is. Over the course of the
project, we took a number of approaches to better understand this be-
haviour. These included finite-size-scaling analysis and searching for an
emergent symmetry which could have resulted in a vanishing gap be-
tween two states in different subspaces. As of yet, however, the exact
physics behind the manifestation of this gap minimum is still unclear to
us.

While the introduction of this single additional gap minimum created
a diabatic path, we found that this breaks down for larger system sizes
as a further gap minimum begins to manifest. Nevertheless, given that
this was an unexpected and, to our knowledge, novel means of manip-
ulating the spectrum, we were interested in understanding a potential
extension to this effect. Specifically, we wanted to see how this effect
would manifest if were were to introduce a catalyst targeting multiple
perturbative crossings – as we did for the case where the catalyst did
remove the perturbative crossings. Doing this (in section 9.2), we found
that a complex diabatic path through the spectrum was produced which
the system could follow to reach a high problem-GS fidelity for signif-
icantly shorter annealing times than in the catalyst free case. Without
a more thorough theoretical understanding of how these spectra form,
however, it is not clear if this these effects will prove useful outside of
our toy models.

What we can say, however, is that the smaller SGS instances, with a
single-term catalyst, may be a useful tool in studying DQA owing to a
simple diabatic path with a tunable gap minimum. Furthermore, these
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spectra manifest for systems as small as n = 5 and would only require a
single XX-coupler to implement. As such, should XX-couplers become
available, these systems may provide a suitable test-bed for experimen-
tal, as well as numerical, investigations of DQA.

To conclude this section, we note that while there are indeed cases in
which the appearance of additional gap minima facilitate DQA, any
attempts to utilise these more complex effects from the catalyst will re-
quire much more care and consideration than simple gap enhancement.
In chapter 8 of this thesis, we did in fact perform a numerical study on
the robustness of DQA using the aforementioned small instances of the
SGS setting. In that study, we observed a trade-off between the preci-
sion in Jxx and the annealing time, ta, that is needed to find the GS with
high fidelity. By applying the theory of LZ-transitions we determined
that similar trade-offs are likely to be observed for any setting in which
there are some parameters that control the gap size at points where we
want diabatic transitions to occur.

10.2.3 An algorithmic approach

Throughout this dissertation, we have discussed the idea of being able
to construct an appropriate catalyst based on accessible problem informa-
tion obtained from local optima that the algorithm is likely to become
trapped in. More specifically, if we assume that the only exponentially
closing gaps in the annealing spectrum are those associated with the
perturbative crossings, then a polynomial-time anneal is likely to return
the eigenstate of Hp associated with the perturbative crossing respon-
sible for the gap minimum between the instantaneous ground and first
excited states. One would then want to select XX-terms that create cou-
plings between this excited state and other low energy states and intro-
duce them with the opposite sign to the driver.

Assuming this can be done successfully, we will either be left with a
clear route to the ground state or, perhaps, the presence of further per-
turbative crossings which could be removed with the same procedure.
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10.2. Targeted XX-catalysts

That is, QA could be run with the inclusion of the constructed cata-
lyst such that the next relevant eigenstate of Hp can be obtained. This
then allows for the construction of an updated catalyst Hamiltonian that
includes couplings that target this newly identified excited state. In the-
ory, this process could be repeated until no more perturbative crossings
remain such that a polynomial-time anneal is able to obtain the GS with
high fidelity.

There are a number of open questions that would need to be addressed
in order to understand if and how such an algorithmic approach could
be viable – some of which we have discussed already in the final sec-
tion of chapter 5. First, there must be a way of selecting appropriate
XX-couplings. For the MWIS problem this is straightforward. One sim-
ply wants to couple vertices within the relevant local optimum to each
other – thereby coupling the corresponding excited state to states cor-
responding to other independent sets. For other problem types, one
would either want to determine some similar rule-set for XX-term se-
lection, or one could simply perform some kind of a search for suitable
XX-couplings. Generally, it is not difficult to determine the quality of a
potential solution given the problem’s cost function. Furthermore there
are only a quadratically scaling number of potential XX-placements.
Thus, it may be possible to evaluate the cost function associated with
the optimisation problem on each potential solution associated with the
n(n − 1)/2 states that we could couple the relevant excited state to.

There are then some somewhat more involved questions. For instance:
is it likely, by selecting XX-terms based solely on the states to which
they couple the relevant excited state, that we will avoid introduc-
ing couplings that alter the perturbations to the problem states in less
favourable ways? For instance, will we avoid also coupling the GS to a
comparable number of low energy states, such that the presence of the
perturbative crossing is likely to be unchanged? Another open ques-
tion that we have already discussed is: how many XX-terms must be
included in the catalyst? This then leads to the related question of: is
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it guaranteed, or at least likely, that there is a sufficient number of suit-
able XX-placements to reach this target? While we have offered some
tentative answers to some of these questions throughout this work, a far
more rigorous understanding is still required.

There is then also the question of how the appearance of additional
gap minima, which we observed in some cases, would impact the al-
gorithmic construction of the catalyst. From the point of view of the
proposed procedure, we are not interested in (and in fact we would not
have knowledge of) the path which the system has taken to the final
state it ends up in. In many cases, the appearance of additional gap
minima created a diabatic path that led to the same state that remov-
ing the targeted AC would have led the system to. In such cases, the
proposed algorithm may be largely unaffected. However, as we have
already noted, introducing diabaticity comes with its own set of com-
plications that would need to be taken into account. Furthermore, given
that we have seen additional gap minima manifest in a number of differ-
ent ways, it is likely that our investigations have not accounted for all the
subtleties that would need to be considered. All in all, a clearer picture
of how and when these additional effects manifest is still required.

Something we have addressed minimally in this work is the question of
catalyst strength selection. With regards to the settings in which the cat-
alyst simply enhanced the size of the minimum gap, we found that the
catalyst strength required to maximise this gap enhancement decreased
with system size. Assuming this scaling persists, this suggests that we
will not have to contend with impractically large catalyst strengths be-
ing required for larger problems. Beyond this, we have also observed
that the gap enhancement is relatively insensitive to the precise value
of the catalyst strength when sufficient couplings are included in the
catalyst. We have taken only a preliminary look at this but so far, for
the larger systems, we have found that simply introducing the catalyst
terms with the same magnitude as the driver fields yields optimal re-
sults. It is therefore possible that a careful selection of Jxx values need
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not be part of the algorithmic procedure for catalyst construction.

The presence of closing gaps complicates this somewhat since the dia-
batic paths that we observed were only present for particular ranges of
Jxx. Once again, a better characterisation of how they form is required.
Specifically, an understanding is needed of how the usable range of Jxx

changes with system size and how this relates to other relevant energy
scales of Jxx – for instance, the catalyst strength required to remove
the original perturbative crossing and/or the implementable coupling
strengths on the hardware. There is also the question of how an appro-
priate annealing time would be selected. In the adiabatic case a longer
annealing time will always lead to a better GS fidelity. As such, one can
simply select the longest time that is compatible with other constraints
– e.g. the coherence time of the hardware. When it comes to DQA, how-
ever, we found that longer anneal times may place greater demands on
the precision needed in Jxx.

Finally, there are considerations that relate to implementation on ac-
tual hardware. The first, obvious, point to make is that, as of yet, XX-
couplings have not been properly implemented on annealing hardware.
However, assuming that such couplings will at some point be accessi-
ble, there are also the limitations of graph connectivity to consider. In
order for the proposed catalysts to be implementable, there must be a
sufficient number of appropriate XX-coupling placements that are im-
plementable on a given hardware graph.

10.3 Conclusion

All of the questions we have posed in this chapter are likely to be com-
plicated problems to solve in their own right. If these issues could be
tackled, however, the implication would be a quantum annealing algo-
rithm where the number of calls to the annealer scales linearly with the
number of local optima, and where the length of each annealing run
is polynomial in the problem size. Many difficult problems will have
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an exponential number of local optima meaning that this would by no
means be a polynomial time algorithm for NP-hard problems. However,
it would reduce the demand on hardware coherence times and could po-
tentially help achieve a quantitative speed-up over classical algorithms.

As it stands, we have introduced a potential route to mitigating a key
bottleneck of the quantum annealing algorithm. Crucially, while we
have used specific instances of the MWIS problem to facilitate our inves-
tigation, the physics behind the proposed catalysts hinges on structure
in the problem Hamiltonian that is relevant to any problem setting. As
such, we expect the conclusions reached in this thesis to be applicable
to the quantum annealing of general Ising Hamiltonians.
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Appendix A

Normalisation factor derivation

Here, we derive the normalisation factor, F, introduced in section 3.4.
The aim behind this normalisation factor is to ensure a constant energy
scale for a given system size and also to maintain a consistent relation-
ship between the energy scales of the driver and the problem Hamiltoni-
ans with increasing system size. We begin with the following expression.

F =
E2n−1(0)− E0(0)

E2n−1 − E0
. (A.1)

The energies in the numerator of equation A.1 are the highest excited
state and the ground state of the driver Hamiltonian,

Ĥd = −
n

∑
i=1

σ̂x
i . (A.2)

Working in the X-basis, it is clear that the GS of this Hamiltonian is
the state with all spins pointed up and that the highest excited state is
the state with all spins pointed down. The energies of these states are
straightforwardly

E0(0) = ⟨E0(0)|Hd|E0(0)⟩ = −n,

and
E2n−1(0) = ⟨E2n−1(0)|Hd|E2n−1(0)⟩ = n,
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such that

E2n−1(0)− E0(0) = 2n = 2
k−1

∑
a=0

na, (A.3)

where na are the sizes of the different sub-graphs that make up the
problem.

Now let us move on to the energies in the denominator of equation A.1.
These are the highest excited state and the ground state of the problem
Hamiltonian. For the problems we are considering, Hp can be written

Ĥp =
k−1

∑
a=0


Jzz ∑

b ̸=a
nb︸ ︷︷ ︸

di∀i ∈ Ga

−2
Wa

na︸︷︷︸
wi∀i ∈ Ga

 ∑
i∈Ga

σ̂z
i + Jzz ∑

i∈Ga

∑
b>a

∑
j∈Gb

σ̂z
i σ̂z

j

 .

(A.4)
To recap the notation we are using: We have k sub-graphs. Each sub-
graph, Ga (0 ≤ a < k), contains na vertices and has a total weight of Wa

assigned to it which is split evenly between the vertices. Jzz is an edge
penalty that is introduced between vertices in different sub-graphs.

As already discussed in section 3.4, the weights and edge penalty are
chosen so that the GS of this Hamiltonian is the state with all spins
pointed down (in the Z-basis) other than those in G0 – which are pointed
up. Using this knowledge, let us obtain an expression for E0. To do this,
let us first split off the a = 0 term from the outermost sum in equation
A.4 to obtain

⟨E0|
[(

Jzz ∑
b>0

nb − 2
W0

n0

)
∑

i∈G0

σ̂z
i + Jzz ∑

i∈G0

∑
b>0

∑
j∈Gb

σ̂z
i σ̂z

j

]
|E0⟩

=

(
Jzz ∑

b>0
nb − 2

W0

n0

)
n0 − Jzzn0 ∑

b>0
nb = −2W0, (A.5)

where we have used fact that all the spins in G0 are pointed up and are
misaligned with the spins in all the other sub-graphs Gb, b > 0.
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Now let us consider the other terms. For a > 0, we can write each term
in the outer sum of equation A.4 as

⟨E0|
[(

Jzz ∑
b ̸=a

nb − 2
Wa

na

)
∑

i∈Ga

σ̂z
i + Jzz ∑

i∈Ga

∑
b>a

∑
j∈Gb

σ̂z
i σ̂z

j

]
|E0⟩

= −
(

Jzz ∑
b ̸=a

nb − 2
Wa

na

)
na + Jzzna ∑

b>a
nb = 2Wa − Jzzna ∑

b<a
nb, (A.6)

where we have used the fact that all the spins in Ga (a ̸= 0) are pointed
down and aligned with all spins in Gb (b ̸= 0). Putting together equa-
tions A.5 and A.6 we can write the final energy as

E0 = ⟨E0|Hp|E0⟩ =
k−1

∑
a=1

(
2Wa − Jzzna ∑

b<a
nb

)
− 2W0. (A.7)

Now we need to obtain an expression for En2−1. From the discussion
in section 3.2, we know that the highest excited state will be that with
all the spins in every sub-graph pointed up. The energy associated with
this state is

E2n−1 = ⟨E2n−1|Hp|E2n−1⟩ =

⟨E2n−1|
k−1

∑
a=0

[(
Jzz ∑

b ̸=a
nb − 2

Wa

na

)
∑

i∈Ga

σ̂z
i + Jzz ∑

i∈Ga

∑
b>a

∑
j∈Gb

σ̂z
i σ̂z

j

]
|E2n−1⟩

=
k−1

∑
a=0

[(
Jzz ∑

b ̸=a
nb − 2

Wa

na

)
na + Jzzna ∑

b>a
nb

]

=
k−1

∑
a=0

[
−2Wa + Jzzna

(
∑
b<a

nb + 2 ∑
b>a

nb

)]
. (A.8)

Putting equations and together, we obtain the denominator in equation
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A.1 as

E2n−1 − E0 =
k−1

∑
a=0

[
−2Wa + Jzzna

(
∑

0≤b<a
nb + 2 ∑

b>a
nb

)]

+
k−1

∑
a=1

[
−2Wa + Jzzna ∑

b<a
nb

]
+ 2W0

= 2Jzzna ∑
b>0

nb +
k−1

∑
a=1

[
−4Wa + 2Jzzna ∑

b ̸=a
nb

]
. (A.9)

Re-indexing the first sum we can incorporate it into the second, such
that our final expression is

E2n−1 − E0 =
k−1

∑
a=1

[
2Jzznan0 + 2Jzzna ∑

b ̸=a
nb − 4Wa

]
. (A.10)

Finally, we can put the numerator, from equation A.3, and the denom-
inator, from equation A.10, together to obtain the final normalisation
factor:

F =

k−1
∑

a=0
na

k−1
∑

a=1

[
Jzznan0 + Jzzna ∑

b ̸=a
nb − 2Wa

] . (A.11)
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Appendix B

Normalised parameters

The problem parameters quoted throughout the main body of this dis-
sertation are the un-normalised weights (Wa and wi) and edge penalities
(Jzz). Here we quote the associated normalised parameters as calculated
as outlined in section 3.4 and appendix A.

We do not list the full Hamiltonian parameters that would be obtained
substituting the normalised weights and edge penalty into equation 3.9.
However, we briefly note that the local fields, hi

z, are all on the order
of unity – i.e., comparable to the driver field strengths. The coupling
strength that enters the Hamiltonian is equivalent to the normalised
edge penalty, J′zz.

B.1 Chapter 3

Figure 3.3:

W0 = 1.04, W1 = 1.02, W2 = 1.00 and Jzz = 2.

n0, n1, n2 w′
i, i ∈ G0 w′

i, i ∈ G1 w′
i, i ∈ G2 J′zz

3, 2, 2 0.04047 0.05954 0.05837 0.2335
3, 4, 2 0.03121 0.02296 0.04502 0.1801
3, 2, 4 0.03121 0.04592 0.02251 0.1801

Figure 3.4:

W0 = 1.01, W1 = 1.00 and Jzz = 5.33.
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n0, n1 w′
i, i ∈ G0 w′

i, i ∈ G1 J′zz

3, 2 0.02717 0.04035 0.4301
37, 36 0.0001404 0.0001428 0.02741
2, 3 0.04075 0.02690 0.4301
8, 9 0.002804 0.002467 0.1184

W0 = 1.37, W1 = 1.00 and Jzz = 37.5.

n0, n1 w′
i, i ∈ G0 w′

i, i ∈ G1 J′zz

2, 3 0.007645 0.003720 0.4185
34, 35 3.115 × 10−5 2.209 × 10−5 0.02899

B.2 Chapter 5

Figure 5.2:

W0 = 1.70, W1 = 1.35, W2 = 1.00 and Jzz = 35.

n0, n1, n2 w′
i, i ∈ G0 w′

i, i ∈ G1 w′
i, i ∈ G2 J′zz

3, 4, 2 0.002809 0.001673 0.002479 0.1735

Figures 5.3, 5.5 and 5.6:

W0 = 1.70, W1 = 1.35, W2 = 1.00 and Jzz = 35.

n0, n1, n2 w′
i, i ∈ G0 w′

i, i ∈ G1 w′
i, i ∈ G2 J′zz

2, 3, 4 0.004214 0.002231 0.001239 0.1735

Figure 5.7:

W0 = 1.37, W1 = 1.00 and Jzz = 37.5.

n0, n1 w′
i, i ∈ G0 w′

i, i ∈ G1 J′zz

3, 4 0.003560 0.001949 0.2923

242



B.3. Chapter 6

Figure 5.8:

W0 = 1.37, W1 = 1.00 and Jzz = 37.5.

n0, n1 w′
i, i ∈ G0 w′

i, i ∈ G1 J′zz

4, 5 0.002058 0.001202 0.2253

B.3 Chapter 6

Figures 6.1 and 6.2:

W0 = 1.70, W1 = 1.35, W2 = 1.00 and Jzz = 35.

n0, n1, n2 w′
i, i ∈ G0 w′

i, i ∈ G1 w′
i, i ∈ G2 J′zz

4, 5, 3 0.001552 0.0009862 0.001218 0.1278

B.4 Chapter 7

Figures 7.1, 7.2, 7.3, 7.5, 7.6, 7.9 and 7.11:

W0 = 1.37, W1 = 1.00 and Jzz = 37.5.

n0, n1 w′
i, i ∈ G0 w′

i, i ∈ G1 J′zz

2, 3 0.007645 0.003720 0.4185
5, 6 0.001341 0.0008155 0.1835

10, 11 0.0003488 0.0002315 0.09548
15, 16 0.0001573 0.0001077 0.06459
21, 22 8.096 × 10−5 5.641 × 10−5 0.04654

Figures 7.2, 7.3, 7.4, 7.7, 7.8, 7.10 and 7.12:

W0 = 1.01, W1 = 1.00 and Jzz = 5.33.
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n0, n1 w′
i, i ∈ G0 w′

i, i ∈ G1 J′zz

2, 3 0.04075 0.02690 0.4301
7, 8 0.003638 0.003151 0.1344

12, 13 0.001267 0.001158 0.08022
15, 16 0.0008165 0.0007579 0.06463
17, 18 0.0006379 0.0005965 0.05722
21, 22 0.0004201 0.000397 0.04656

Figure 7.13:

W0 = 1.01, W1 = 1.00 and Jzz = 5.33.

n0, n1 w′
i, i ∈ G0 w′

i, i ∈ G1 J′zz

12, 18 0.001098 0.0007245 0.06950

B.5 Chapter 8

Figures 8.1, 8.2, 8.3, 8.4 and 8.5:

W0 = 1.01, W1 = 1.00 and Jzz = 5.33.

n0, n1 w′
i, i ∈ G0 w′

i, i ∈ G1 J′zz

2, 3 0.04075 0.02690 0.4301
4, 5 0.01076 0.008523 0.2271

12, 13 0.001267 0.001158 0.08022

Figure 8.7:

W0 = 1.010, W1 = 1.005, W2 = 1.000 and Jzz = 5.33.

n0, n1, n2 w′
i, i ∈ G0 w′

i, i ∈ G1 w′
i, i ∈ G2 J′zz

2, 3, 3 0.01838 0.01219 0.01213 0.1940

B.6 Chapter 9

Figures 9.2 and 9.3:
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B.6. Chapter 9

W0 = 1.6, W1 = 1.3, W2 = 1.0 and Jzz = 35.

n0, n1, n2 w′
i, i ∈ G0 w′

i, i ∈ G1 w′
i, i ∈ G2 J′zz

3, 4, 4 0.002099 0.001279 0.0009838 0.1377
14, 15, 15 0.0001114 8.447 × 10−5 6.498 × 10−5 0.03411

Figure 9.4:

W0 = 1.3, Wa>0 = 1 − 0.01(a − 1) and Jzz = 35.

n0 = 2 and na>0 = 3.

k = total number of sub-graphs.

k w′
i, i ∈ G0 w′

i, i ∈ G1 w′
i, i ∈ G2 w′

i, i ∈ G3 w′
i, i ∈ G4 w′

i, i ∈ G5 J′zz

3 0.001705 0.0009835 0.0009737 - - - 0.1377
4 0.001107 0.0006384 0.0006320 0.0006256 - - 0.08938
5 0.0008174 0.0004716 0.0004669 0.0004622 0.0004575 - 0.06602
6 0.0006476 0.0003736 0.0003699 0.0003661 0.0003624 0.0003587 0.05231

Figures 9.5, 9.6, 9.7 and 9.8:

W0 = 1.02, W1 = 1.01, W2 = 1.00 and Jzz = 5.

n0, n1, n2 w′
i, i ∈ G0 w′

i, i ∈ G1 w′
i, i ∈ G2 J′zz

2, 3, 3 0.01981 0.01308 0.01295 0.1942
3, 4, 4 0.009445 0.007014 0.006945 0.1389
5, 6, 6 0.003628 0.002993 0.002964 0.0889
7, 8, 8 0.001909 0.001654 0.001637 0.0655

Figure 9.10:

W0 = 1.020, W1 = 1.015, W2 = 1.010, W3 = 1.005, W4 = 1.000 and
Jzz = 5.

n0 = 2, n1 = 3, n2 = 3, n3 = 3 and n4 = 3
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k w′
i, i ∈ G0 w′

i, i ∈ G1 w′
i, i ∈ G2 w′

i, i ∈ G3 w′
i, i ∈ G4 J′zz

5 0.009249 0.0061361 0.0061058 0.00607560 0.006045 0.09068
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Appendix C

Perturbative corrections to the
problem states

Here we list the first three perturbative corrections to the low energy,
non-degenerate problem states associated with the local optima:

E(1)
i = ⟨Ei|Hd|Ei⟩ = 0,

|E(1)
i ⟩ = ∑

j ̸=i

⟨Ej|Hd|Ei⟩
(Ei − Ej)

|Ej⟩ ,

E(2)
i = ∑

j ̸=i

| ⟨Ej|Hd|Ei⟩ |2

(Ei − Ej)
,

|E(2)
i ⟩ = ∑

j ̸=i
∑
k ̸=i

⟨Ek|Hd|Ej⟩ ⟨Ej|Hd|Ei⟩
(Ei − Ek)(Ei − Ej)

|Ek⟩ −
1
2 ∑

j ̸=i

⟨Ej|Hd|Ei⟩
(Ei − Ej)

|Ei⟩ ,

E(3)
i = ∑

k ̸=i
∑
j ̸=i

⟨Ei|Hd|Ek⟩ ⟨Ek|Hd|Ej⟩ ⟨Ej|Hd|Ei⟩
(Ei − Ej)(Ei − Ek)

,
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C. Perturbative corrections to the problem states

|E(3)
i ⟩ = ∑

l ̸=i
∑
k ̸=i

∑
j ̸=i

⟨El|Hd|Ek⟩ ⟨Ek|Hd|Ej⟩ ⟨Ej|Hd|Ei⟩
(Ei − Ej)(Ei − Ek)(Ei − El)

|El⟩

− ∑
k ̸=i

∑
j ̸=i

⟨Ek|Hd|Ej⟩ | ⟨Ej|Hd|Ei⟩ |2

(Ei − Ej)(Ei − Ek)2 |Ek⟩

− ∑
k ̸=i

∑
j ̸=i

⟨Ei|Hd|Ek⟩ ⟨Ek|Hd|Ej⟩ ⟨Ej|Hd|Ei⟩
(Ei − Ej)(Ei − Ek)2 |Ei⟩ .

Except for in the first order energy correction, where we have explicitly
included the only term in the correction despite it vanishing, we have
omitted any terms that equal zero or that we have found to be cancelled
by terms from higher order corrections.
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[9] A. Witt, C. Körber, A. Kirstädter, and T. Luu, Tactile network
resource allocation enabled by quantum annealing based on ilp modeling,
2022. https://arxiv.org/abs/2212.07854.

[10] T. Otsuka, A. Li, H. Takesue, K. Inaba, K. Aihara,
and M. Hasegawa, High-speed resource allocation algo-
rithm using a coherent ising machine for noma systems, 2022.
https://arxiv.org/abs/2212.01578.

[11] J. F. A. Sales and R. A. P. Araos, Adiabatic quantum computing im-
pact on transport optimization in the last-mile scenario, Front. Comput.
Sci., 15 (2023), doi:10.3389/fcomp.2023.1294564.

[12] C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazi-
rani, Strengths and weaknesses of quantum computing,
SIAM Journal on Computing, 26 (1997), pp. 1510–1523,
doi:10.1137/s0097539796300933.

[13] D. S. Abrams and S. Lloyd, Nonlinear quantum mechanics implies
polynomial-time solution for NP-complete and # P problems, Phys. Rev.
Lett., 81 (1998), pp. 3992–3995, doi:10.1103/physrevlett.81.3992.

[14] T. F. Rønnow, Z. Wang, J. Job, S. Boixo, S. V. Isakov, D. Wecker,
J. M. Martinis, D. A. Lidar, and M. Troyer, Defining and
detecting quantum speedup, Science, 345 (2014), pp. 420–424,
doi:10.1126/science.1252319.

[15] R. Au-Yeung, N. Chancellor, and P. Halffmann, NP-hard
but no longer hard to solve? using quantum computing to tackle

250

http://dx.doi.org/10.1371/journal.pone.0274632
http://dx.doi.org/10.3389/fcomp.2023.1294564
http://dx.doi.org/10.1137/s0097539796300933
http://dx.doi.org/10.1103/physrevlett.81.3992
http://dx.doi.org/10.1126/science.1252319


Bibliography

optimization problems, Front. Quantum Sci. Technol., 2 (2023),
doi:10.3389/frqst.2023.1128576.

[16] J. Preskill, Quantum computing in the nisq era and beyond, Quan-
tum, 2 (2018), p. 79, doi:10.22331/q-2018-08-06-79.

[17] P. W. Shor, Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer, SIAM Journal on Comput-
ing, 26 (1997), pp. 1484–1509, doi:10.1137/s0097539795293172.

[18] L. K. Grover, A fast quantum mechanical algorithm for database
search, in ACM symposium on Theory of Computing, 1996.

[19] R. D. Somma, D. Nagaj, and M. Kieferová, Quantum
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