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A B S T R A C T

Efficient and accurate identification of kinetic models is critical for understanding chemical reaction mechanisms 
and enabling process optimisation and control. This study introduces DoE-SINDy, an enhanced framework that 
integrates design of experiments (DoE) with the Sparse Identification of Nonlinear Dynamics (SINDy) method
ology to improve the reliability and interpretability of identified models under constraints of noisy, sparse and 
small experimental datasets. Unlike existing approaches, DoE-SINDy employs experimental-level subsampling for 
model generation, which reduces the inclusion of biased trajectories and ensures the identified model is repre
sentative. The framework further incorporates parameter re-estimation, non-significant terms removal, and 
identifiability analysis to enhance model robustness, reduce complexity, and reject overly complex or uniden
tifiable models. Rigorous model evaluation and selection steps, guided by flexible stopping criteria, strike a 
balance between statistical accuracy and computational efficiency. The methodology is tested on a simulated 
batch-reaction case study. DoE-SINDy consistently outperforms original SINDy and ensemble-SINDy (ESINDy) in 
recovering ground-truth models and achieving convergence to optimal structures as the dataset grows.

1. Introduction

Digitalisation is revolutionising chemical engineering by enabling 
advanced technologies like digital twins, which provide real-time virtual 
representations of physical systems. These tools enhance monitoring, 
optimisation, and decision-making (Javaid et al., 2023), relying heavily 
on robust kinetic models to describe the behaviour of chemical and 
biochemical reaction systems under various operating conditions. Ac
curate models support improved control schemes, product quality, and 
production rates (Mclean and Mcauley, 2012). However, identifying 
such models remains challenging as it requires extensive and 
time-consuming experimentation and costly numerical analytical 
resources.

A key challenge in developing digital twins is the identification of the 
model structure, including determining the appropriate set of equations, 
and precise estimation of the model-specific parameters. This task is 
particularly complex for chemical and biochemical reaction systems. 
Numerous intermediates and by-products are very difficult to describe 
kinetically in detail. Additionally, limited variable observability, 
incomplete data and unavoidable experimental noise further exacerbate 
the challenge (Maria, 2004). These difficulties highlight the need for a 

systematic framework capable of efficiently identifying kinetic models 
using limited and noisy data while minimising experimental demands.

The processes investigated in this work are assumed to be repre
sented by mathematical expressions and associated parameters that well 
determine the relationship between state variables within the physical 
system and represent the dynamic behaviour of a process through 
deterministic models (Bard, 1974) typically formulated through a set of 
differential and algebraic equations (DAEs).

The reliability of a kinetic model is represented by both model ac
curacy and parameter precision. Model accuracy measures how well a 
model predicts system behaviour based on the data, while parameter 
precision reflects the uncertainty of the parameter estimates. An accu
rate model requires a model structure that accurately represent the 
system’s underlying kinetics and minimum parameter uncertainty.

Model structure confirmation must precede parameter estimation 
and validation, as an incorrect structure introduces bias and undermines 
reliability. Existing model structure identification approaches can be 
broadly classified into three main categories: 1) model selection; 2) 
model modification and 3) model generation.

In model selection approaches the most suitable model structure is 
identified from a set of candidate models using statistical metrics 
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obtained after data fitting. These candidate models may be derived from 
first principles or sourced from existing literature. Model selection is 
embedded in model-building approaches, as proposed by Asprey and 
Macchietto (2000), by employing a sequential process involving iden
tifiability analysis (Vanrolleghem et al., 1995; Miao et al., 2011; Dobre 
et al., 2012; Deussen and Galvanin, 2022; Binns et al., 2024; Sangoi 
et al., 2025), model-based design of experiments (MBDoE) for model 
discrimination (Bawa et al., 2023; Buzzi-Ferraris and Forzatti, 1983; 
Hunter and Reiner, 1965; Schaber et al., 2014; Schwaab et al., 2006; Sen 
et al., 2021), and MBDoE for improving parameter precision (Asprey 
et al., 2000; Franceschini and Macchietto, 2008; Galvanin et al., 2007; 
Gottu Mukkula and Paulen, 2019; López C. et al., 2015; Quaglio et al., 
2019; Schaber et al., 2014) to systematically select the most suitable 
model structure and ensure precise parameter estimation. 
Superstructure-based approaches (Edwards et al., 2000; Tsay et al., 
2017) formulate a superstructure comprising all potential component 
functions, each associated with a binary decision variable to selectively 
activate corresponding mode, thereby addressing the 
model-identification problem as a mixed-integer optimisation. 
Superstructure-based approaches allow reliable parameter estimation 
without requiring pre-selection of the optimal model structure. Artificial 
neural network (ANN)-based approaches bypass the need for extensive 
parameter fitting by training classifiers with in-silico data from candi
date models to directly identify optimal structures, as demonstrated by 
Quaglio et al. (2020b), and can be enhanced through MBDoE to improve 
classification accuracy and experimental efficiency (Sangoi et al., 2024).

When all candidates do not match the system observations or are 
poorly identifiable, model modification approaches can guide the 
refinement of existing structures or parameterisation according to spe
cific metrics. Ill-conditioning in system identification often arises when 
the model structure poorly matches the system or when the available 
data lacks sufficient informativeness. Regularisation methods are 
commonly used for addressing such challenges by introducing con
straints or penalties to attract the excessive degrees of freedom towards 
reasonable values (Tikhonov and Arsenin, 1977), such as ridge regres
sion, principal component regression (PCR), and Tikhonov regularisa
tion (Johansen, 1997; Sjöberg et al., 1993; Sjöberg and Ljung, 1992). 
Incremental modelling iteratively adjusts model complexity through 
diagnostic-driven refinement and experimental validation. Parameter 
subset selection (SsS) methods (Barz et al., 2013) integrated with 
experimental design, can be employed to incrementally fix poorly 
identifiable parameters. Meneghetti et al. (2014) proposed a method
ology to diagnose model equations or parameters responsible for the 
mismatch by comparing the correlation structures of historical and 
simulated datasets using principal component analysis (PCA), without 
requiring additional experiments. Quaglio et al. (2020a) developed an 
iterative model-building framework based on maximum likelihood 
inference to achieve an appropriate level of complexity indicated by the 
introduced model modification indexes (MMIs). Hybrid modelling, 
which combines first-principles equations with data-derived compo
nents, also addresses mismatches effectively (Molga and Cherbański, 
1999; Zhang et al., 2020; Narayanan et al., 2022; Schweidtmann et al., 
2024; Jul-Rasmussen et al., 2024; Chen and Ierapetritou, 2020).

Model generation approaches focus on identifying model structures 
from observed measurements, providing a foundation for subsequent 
parameter estimation, particularly in cases where prior structural 
knowledge is limited. These methods emphasise model explicability and 
interpretability, which are vital for building trust in physical and engi
neering sciences (Venkatasubramanian, 2019). Evolutionary algo
rithms, including genetic programming (GP), optimises model structures 
and parameters by mimicking natural selection, ensuring physical 
interpretability by incorporating domain-specific constraints and priors, 
such as elementary functions and transformations rooted in underlying 
physiochemical mechanisms (Chakraborty et al., 2021). Symbolic 
regression (SR), rooted in GP, builds interpretable models by optimizing 
mathematical expression trees that combine operands and operators 

(Angelis et al., 2023). Sparse regression techniques focus on deriving 
concise, interpretable models that balance accuracy and complexity. 
Sparse identification of nonlinear dynamics (SINDy) is a one of the main 
sparse-regression approaches that is capable of deriving ODE/PDE 
models with minimal prior knowledge of physical mechanisms (Brunton 
et al., 2016). Sparse Shooting S is a fast, cellwise robust regression 
method that excels in prediction problems with more predictor variables 
than observations and outliers (Bottmer et al., 2022).

SINDy and its numerous extensions have become prominent for 
sparse regression in scientific discovery, enhancing its feasibility across 
diverse scenarios. Generalisations like implicit-SINDy and SINDy-PI 
extend its applicability to systems with rational function nonlinearities 
(Mangan et al., 2016; Kaheman et al., 2020), stochastic SINDy addresses 
stochastic systems (Boninsegna et al., 2018), and OASIS framework 
extends SINDy for adaptive, automatic and accurate modelling during 
rapid dynamics changes (Bhadriraju et al., 2020). Enhancements such as 
SR3 improve computational efficiency and flexibility (Zheng et al., 
2019). Techniques like PINN-SR (Chen et al., 2021), WSINDy 
(Messenger and Bortz, 2021), Dropout-SINDy (Abdullah et al., 2022a), 
and SISC (Abdullah et al., 2022b) enhance noise robustness and scal
ability. Trapping SINDy constrains models within boundaries by inte
grating a global stability theorem (Kaptanoglu et al., 2021). 
Ensemble-SINDy merge multiple models to improve prediction accuracy 
and leverage active learning to reduce data demands (Fasel et al., 2022). 
Modified SINDy (Kaheman et al., 2022) and EKF-SINDy (Rosafalco et al., 
2024) enhance the noise robustness and computational efficiency by 
integrating automatic differentiation and noise quantification.

Despite their advancements, the three main model identification 
approaches face notable limitations, particularly in complex chemical 
and biochemical processes. Model selection and modification methods 
heavily rely on prior knowledge, such as explicit kinetic models or 
mechanistic structures, which are often unavailable. Model generation 
approaches, while more flexible by leveraging libraries of candidate 
functions, encounter challenges including high variability under 
different experimental conditions, lack of rigorous evaluation and se
lection stages, and potential generation of unidentifiable models or 
models lacking physical or mechanistic meaning.

Focussing on the limitations of the lack of identifiability analysis and 
insufficient model evaluation and aiming at increasing the success rate 
of the identification of ‘true’ model from small, sparse and noisy data, 
we propose the Design of Experiments Integrated Sparse Identification 
of Nonlinear Dynamics (DoE-SINDy) framework. This framework 
applied subsampling technique during model generation to increase the 
likelihood of identifying the ‘true’ model structure. By incorporating 
identifiability analysis, model calibration, validation and selection steps, 
DoE-SINDy ensures the reliability, robustness, and accuracy of the 
identified models, even from limited and noisy datasets.

The article is structured as follows. Section 2 introduces the meth
odology of DoE-SINDy, detailing its framework, including design of 
experiments, model generation, ranking, calibration, simplification, and 
validation steps, along with the criteria for assessing both the identified 
models and the overall performance of model identification approaches. 
Section 3 presents a case study, describing the generation of in-silico 
data and the implementation of DoE-SINDy for model identification. 
Section 4 discusses the results, focusing on a performance comparison of 
the models identified by SIDNy, ESINDy, and DoE-SINDy, as well as their 
success rates. Finally, Section 5 concludes the article by summarising 
key findings and proposing directions for future work.

2. Methodology

We assume that the dynamic behaviour of a process system is 
mathematically represented by a deterministic model (Bard, 1974; 
Quaglio et al., 2020a), typically formulated through a set of differential 
and algebraic equations (DAEs). These equations can be expressed 
generally as: 
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{

f(ẋ, x,u, t, θ) = 0x̂ = h(u, t, θ) (1) 

Here, f and h are respectively an Nf and Ny – dimensional vector of 
model equations, x is an Nx – dimensional vector of state variables, u ∈

U is an Nu – dimensional vector of control input variables, t is time and θ 
is an Nθ– dimensional vector of model parameters. The function h serves 
as a selection operator that determines which variables are measured 
from the system, while x̂ represents an Nx – dimensional vector of 
predictions for the measurable set of system state variables. In the 
context of model identification, the objective is to determine the func
tion f that describes the relationship between the state variables x, their 
time derivatives ẋ, system inputs u and other system quantities over 
time (t). This involves identifying both the model structure (the func
tional form of each equation) and the corresponding model-specific 
parameter set θ.

In this research, we aim to develop a systematic framework for 
simultaneously identifying both the model structure and parameters, 
ensuring reliability and interpretability. To achieve this, we propose an 
iterative model identification framework named Design of Experiments 
Integrated Sparse Identification of Nonlinear Dynamics (DoE-SINDy).

2.1. DoE-SINDy framework

DoE-SINDy systematically generates and selects the most suitable 
model for representing dynamic processes, which address variability of 
model generation in original SINDy, ensuring the identifiability and 
enhancing the reliability of the identified models. The structure and 
workflow of the proposed framework are illustrated in Fig. 1.

A key limitation of the original SINDy algorithm is that it discovers a 
model only once, working with a fixed dataset and assuming that the 
resulting structure will remain valid under any additional operating 
conditions. In practice, dynamic-process data collected under different 
experimental settings, such as varying initial concentrations in a reac
tion network, often produce markedly different trajectories. Therefore, 
the structure identified by SINDy can be highly sensitive to the specific 
data used for training and may fail to generalise when new experiments 
are performed. New data may even introduce or remove terms, leading 
to model instability and reduced predictive power. DoE-SINDy addresses 
this issue by adopting an iterative identification strategy: with each 
cycle the framework adds newly generated experiments to the training 
pool, regenerates candidate structures, and recalibrates parameters. 
This progressive refinement promotes structural consistency and 
robustness across a wide range of operating conditions, ultimately 
yielding models with improved generalisation and interpretability.

2.1.1. Step 1 and 2: design of experiments and data collection
Identifying dynamic models via DoE-SINDy requires multiple tra

jectories of time-series state variables. Thus, design of experiment (DoE) 
techniques, such as Latin hypercube sampling (LHS) (McKay et al., 
1979) and uniform sampling (Virtanen et al., 2020), are incorporated to 
design multiple sets of operating conditions providing as much infor
mation as possible while constrained within physical limits. The com
mon design factors in chemical and biochemical processes are 
temperature, pressure, initial concentration (batch systems) or feed 
specification (flow systems), residence time and sample size per 
experiment.

To ensure the minimum cost and time in experimentation, DoE- 
SINDy is initialised with a small dataset and incrementally expanded 

Fig. 1. DoE-SINDy framework for identifying the most suitable model(s) from experimental data. The DoE-SINDy framework begins with a preliminary design of 
experiments (DoE) to explore experimental conditions constrained by physical limits (step 1 in Fig. 1). In the second step, measurements of state variables are 
collected and used to numerically approximate their time derivatives, which are then split into training and validation subsets (step 2). Multiple candidate models are 
generated from subsets of the training dataset using original SINDy in step 3. In step 4, these candidates are then ranked first by complexity, measured by the number 
of non-zero coefficients, and within each complexity group, by the number of experiments used, prioritising simpler, well-supported models for preliminary selection. 
Model calibration follows, in step 5, incorporating parameter re-estimation using the full training set and refinement to remove non-significant terms. Identifiability 
analysis is conducted before and after calibration to retain only identifiable models. Validated models are then evaluated against the user-defined stopping criterion, 
either ‘and’, ‘chi2’, ‘normality’ or ‘or’ in step 6. If no model meets the criteria, the framework iteratively updates the experimental design and expands the dataset. 
Iteration continues until a model satisfies the criteria or the experimental budget is depleted. The final output consists of the most statistically acceptable model(s), 
ranked by the Akaike Information Criterion (AIC).
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until user-defined stopping criteria (defined in Section 2.1.5) or budget 
limitations are reached. Before starting DoE-SINDy, a fixed pool of de
signs is generated in advance using either LHS or uniform sampling, 
based on the predefined budget. In each iteration, one additional design 
is randomly selected from the remaining unused designs in this candi
date pool to collect additional data.

Thus, the starting number of experiments and the upper limit of the 
number of experiments is another important argument for design of 
experiments. In DoE, the minimum number of experiments is often 
chosen based on the model to be calibrated. For instance, when fitting a 
linear model with interactions, a common starting point is to set the 
minimum number of experiments to twice the number of factors (Hone 
et al., 2019). The maximum number of experiments to be conducted can 
depend on the experimental budget.

The state measurements x1, …, xNv collected from the experiments 
e1, …, eNexp sampled at time step tei

1 , …, tei
Nm 

are organised into the data 
matrix x with dimensions 

(
Nexp⋅Nm

)
× Nv, 

x =

⎡

⎢
⎢
⎣

x1(te1
1 ) ⋯ xn(te1

1 )

⋮ ⋱ ⋮
x1

(
teNexp
Nm

)
⋯ xn

(
teNexp
Nm

)

⎤

⎥
⎥
⎦ (2) 

The derivatives of the state variables along these trajectories are 
numerically approximated. The choice of numerical differentiation 
method plays a critical role in the accuracy and reliability of the iden
tified model, particularly when dealing with sparse or noisy data. The 
Python package derivative is employed to compute numerical de
rivatives from time-series data. This package provides a robust suite of 
differentiation methods tailored for various noise levels and data char
acteristics, including symmetric finite difference, Savitzky-Golay de
rivatives, spectral derivatives, spline derivatives of arbitrary order, total 
variation derivatives, Kalman derivatives, and kernel-based derivatives 
(Ahnert and Abel, 2007; Chartrand, 2011; Kaptanoglu et al., 2022; Silva 
et al., 2020; Tibshirani and Taylor, 2011). The resulting numerical de
rivatives are organised into a derivative matrix ẋ, which has the same 
dimensions as the data matrix x: 

ẋ =

⎡

⎢
⎢
⎣ ẋ1(te1

1 )⋯ẋn(te1
1 )⋮⋱⋮ẋ1

(
teNexp
Nm

)
⋯ẋn

(
teNexp
Nm

)

⎤

⎥
⎥
⎥
⎦

(3) 

Each element in matrix ẋ represents the derivative of a corre
sponding state variable from the data matrix x, collected at a specific 
experimental time point.

Then, the collected data, including both the measurements and the 
numerically approximated derivatives, are divided into training and 
validation sets. The training dataset is used to generate candidate 
models and calibrate their parameters. A key feature of our framework is 
that model validation is performed on the entire accumulated dataset, 
not just on a reserved validation subset. In each iteration, the newly 
acquired experimental data are mandatorily included in the training set, 
while a predefined ratio of experiments is randomly picked from the 
existing dataset to form the rest of the training set. The remaining data 
are used only for validation. After model generation and calibration 
using the training dataset, the candidate models are evaluated on the full 
set of accumulated data. This allows for explicit assessment of the 
model’s interpolation capabilities (on the training dataset) and 
extrapolation capabilities (on previously unseen data), ensuring that 
the identified model is both accurate and generalisable across a wide 
range of operating conditions.

2.1.2. Step 3: model generation
SINDy derives a set of ODEs f(x) by identifying a combination of 

terms from a user-defined candidate term library g(x) =
[
g1(x), g2(x),

…, gγ(x)
]

associated with coefficients Ξ =
[
ξ1, ξ2, …, ξγ

]
. This com

bination enforces the relationship between matrices x and ẋ, formulated 
as Eq. (4). 

ẋ = f(x) ≈
∑γ

j=1
gj(x)ξj (4) 

To ensure both accuracy and extrapolation capability, the model 
discovery task is reformulated as an optimisation problem aiming at 
minimising the number of nonzero elements in the sparse coefficient 
matrix Ξ. The package developed for SINDy algorithm, PySINDy v1.7.5, 
is called for identifying single model in model generation section of DoE- 
SINDy (Kaptanoglu et al., 2022; Silva et al., 2020).

Fig. 2 illustrates and compares the schematic of generating a single 
model using SINDy, ESINDy and DoE-SINDy with different data- 
handling strategies. A model is generated using the entire training 
dataset without any subsampling (resampled without replacement) or 
bootstrapping (resampled with replacement) in SINDy (Brunton et al., 
2016), as shown in Fig. 2a. ESINDy (Fasel et al., 2022) bootstraps 
(subsampled with replacement) data from every time-series trajectory, 
generating multiple ensemble SINDy models from different boot
strapped datasets, as illustrated in Fig. 2b These ensemble models are 
then aggregated by bagging (taking the mean of the identified co
efficients) or bragging (taking the median of the identified coefficients). 
However, rather than subsampling point-wise data from every trajec
tory, DoE-SINDy subsamples entire experimental trajectories from the 
set of all conducted experiments and generates ensemble models from 
different subsets of experiments.

This design of experimental-level data subsampling in DoE-SINDy is 
tailored for chemical and biochemical kinetic studies, where experi
mental equipment often imposes constraints on sampling frequency. 
Derivatives are numerically approximated from the time series points 
(Section 2.1.1), so any change in the sampling grid directly affects their 
accuracy. For the subsampling method, more uncertainty is added due to 
the widened time step. The bootstrapping method estimates the missing 
values by interpolation, which is highly uncertain for sparse, nonlinear 
or rapidly changing trajectories. Thus, either point-wise subsampling or 
bootstrapping scheme therefore bias the subsequent sparse regression. 
DoE-SINDy therefore keeps every time point and instead retains com
plete trajectories and resamples at the level of whole experiments, pre
serving both temporal resolution and derivative fidelity.

Using design of experimental-level data subsampling instead of 
random point data subsampling prevents runs that unknowingly violate 
physical laws from distorting the model-identification process. We 
define an unknown physical constraint as any physical law or operating 
assumption that the regression step does not explicitly enforce. For 
example, temperature is high enough to activate a different reaction 
pathway. If a particular run violates such a rule, the data from that 
experiment no longer obeys the same kinetics and can distort structure 
identification. To guard against this, DoE-SINDy fits an ensemble of 
models, each built from a different random subset of complete experi
ments while preserving every time point within each retained run. The 
resulting candidates are subsequently calibrated and validated on the 
entire dataset. Any kinetic relationship that relies on a run violating an 
unseen constraint fails to appear consistently across the ensemble and is 
automatically discarded, leaving only the model that is both numerically 
sound and physically consistent.

As described in Section 2.1.1, the iterative approach in DoE-SINDy 
progressively incorporates additional experiments, up to the maximum 
number of experiments available. Within each iteration, subsets of ex
periments are generated by considering all possible combinations of 
experimental indices, starting from the minimum number defined for 
the initial iteration. This number increases incrementally up to the total 
number of experiments available. To ensure computational efficiency 
and diverse exploration of the experimental design space, either all 
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subsets or a specified number of subsets are selected randomly. These 
subsets are then fed into SINDy for model generation. Thus, during the 
model generation step, multiple models are created within a single 
iteration by leveraging all training dataset available up to that stage.

2.1.3. Step 4: model ranking and preliminary selection
In step 4 models generated in each iteration are ranked and pre

liminarily selected based on two key criteria: simplicity and general
isation. Simplicity is assessed by the model’s complexity, quantified as 
the number of non-zero elements in the sparse coefficient matrix Ξ. 
Within each complexity group, models are further ranked by the number 
of experiments used in their derivation. This secondary criterion pri
oritises models supported by a broader range of experimental evidence, 
which is quantified by the number of experiments used for identifica
tion. Thus, it ensures their reliability on broader feasible operational 
regions and reduces the risk of overfitting.

In the preliminary selection step, models from the top-ranked 
complexity groups are selected, with a predefined number of models 
extracted from each group. By focusing on the most promising candi
dates—those that simultaneously exhibit simplicity and general
isation—this step conserves computational resources for the subsequent 
model calibration and reduction stages.

2.1.4. Model calibration and reduction (Block 5 in Fig. 1)
Regularisation methods such as LASSO and STLSQ are applied in 

model generation by shrinking small coefficients to zero, thereby con
trolling model complexity. They do not, however, test whether the 
retained parameters are uniquely identifiable. We therefore perform a 
separate identifiability analysis to ensure that the final model contains 
only parameters that can be precisely estimated.

Sensitivity-based practical identifiability analysis is implemented in 
DoE-SINDy framework before and after parameter re-estimation and 
non-significant terms removal to verify identifiability of the candidate 
models. The process begins by extracting the nonzero elements from the 
coefficient matrix Ξ to formulate a set of model parameters θ = [θ1, θ2,

…, θη]. For example, if the approximated coefficient matrix is Ξ =
[

1 0 0 2
0 3 0 5

]

, the candidate parameter vector is θ = [1, 2, 3, 5]. 

Identifiability ensures that model parameters θ can be uniquely deter
mined from the system input u(t) and the observations x(t) (Miao et al., 
2011). The sensitivity matrix Q quantifies how variations in parameters 
θ influence the predicted trajectories of the model. Higher absolute 
values of its coefficients indicate greater parameter identifiability. In 
dynamic models, the sensitivity matrix varies with time, necessitating 
the use of a matrix of dynamic sensitivities Q. Each element of Q cor
responds to an instantaneous sensitivity matrix at a specific sampling 
point tei

m of an experiment ei. The n, pth element of Q is calculated below 
as local first-order sensitivities of responses xn to the parameters θp, 
typically approximated via the finite difference method: 

[
q
(
tei
m
)]

np =

[
x̂
(
tei
m
)]

n

(
θp + εθp

)
−
[
x̂
(
tei
m
)]

n

(
θp − εθp

)

2εθp
(5) 

where ε is a small perturbation imposed on parameters.
Fisher-information analysis is used here to diagnose local practical 

identifiability, i.e. whether at least one trajectory of the available data 
allows the unique estimation of every parameter (Waldron et al., 2019). 
For experiment ei, the FIM profile Hθ is calculated as: 

[Hθ]kl ≅ Hθ,initial +
∑Nm

j=1

1
σ2

ij

[
q
(

tei
j

)]

nk

[
q
(

tei
j

)]

nl
(6) 

Hθ,initial =
1
12

(θub − θlb)
2I (7) 

If the Hθ is full-rank, the model is practically identifiable; if Hθ is 
singular or ill-conditioned, the model is practically unidentifiable with 

Fig. 2. Schematic of Eq. (4) in (a) SINDy (Brunton et al., 2016), (b) ESINDy 
(Fasel et al., 2022) and (c) DoE-SINDy. In (b) and (c), the colour bars indicate 
data usage: darker areas represent data used for model generation, while lighter 
areas represent unused data. In (b), the shading gradient reflects the density 
distribution of the bootstrapped samples over the points. In (c), the lighter 
segments correspond to entire experiments that are excluded from model 
generation via Eq. (4).
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current data, even though it may be structurally identifiable in principle 
(Miao et al., 2011; Silvey, 1975). Only identifiable models are deemed 
suitable and structurally promising to subsequently target an improve
ment in parameter estimation.

In reaction systems with shared kinetic terms across multiple rate 
equations, such as those arising from reactions with identical stoichio
metric coefficients, it is expected that these terms share the same kinetic 
parameter. However, sparse regression approaches, such as SINDy, lack 
mechanistic insights to link these terms, leading to the identification of 
independent coefficients to each term for the same physical contribu
tion, and resulting in parameter redundancy. For example, a shared term 
representing a reaction rate appears with same value but opposite signs 
in the rate equations of a reactant and a product, reflecting stoichio
metric relationships. If a model parameter is redundant, then it is not 
locally identifiable (Catchpole and Morgan, 1997) and the correspond
ing FIM matrix Hθ detecting identifiability will be singular due to 
parameter redundancy.

Despite the limitation of parameter redundancy, such models should 
be retained because their structure is correct. Implementing repar
ameterisation techniques, such as parameter combinations, can solve 
this problem once the model structure is confirmed. To retain such 
models, pairwise comparison of the sensitivity profiles of any two co
efficients is performed; if their profiles overlap completely (or are 
opposite) and do not overlap with the zero axis, the coefficients are 
recognised as paired and should be combined into a single parameter, as 
shown in Eq. (8). 

sk =
∑Nm

j=1

[
q
(

tei
j

)]

nk
(8) 

sl =
∑Nm

j=1

[
q
(

tei
j

)]

nl 

check if sk = sl or sk = − sl and sk ∕= 0, sl ∕= 0 

In terms of the sensitivity profile Q, only the row corresponding to 
one representative coefficient from each pair is retained. This adjust
ment ensures that the FIM matrix Hθ does not become singular due to 
this issue, preventing such models being detected as unidentifiable and 
rejected.

Because both the original and modified versions of SINDy ignore 
measurement-noise statistics when fitting coefficients (Wei, 2022), the 
initial parameter values can be biased, and the selected structure can 
even be misidentified. To correct this bias, every model that passes the 
first identifiability check undergoes parameter re-estimation using the 
full training dataset via minimises the sum of weighted squared re
siduals, weighted by the inverse of the variance (Mandel, 1964): 

θ̂ = argmin
∑Nv

n=1

∑Nexp

i=1

∑Nm

j=1

(
x
(

tei
j

)
− x
(

tei
j , θ̂

)

σ

)2

(9) 

Here, the standard deviation σ is assumed to be constant. This opti
misation problem is solved using the Nelder-Mead method, imple
mented via the Python package scipy.optimize.minimize (Gao and Han, 
2012; Virtanen et al., 2020). Thus, parameter re-estimation increases the 
accuracy of the model on a broader feasible region by calibrating pa
rameters with more data and ensures robustness to the noise by 
weighting residuals to their variance. Fig. 3(a) and (b) compare the 
predictions of an example model against the observations of a trajectory 
before and after parameter re-estimation, showing significant im
provements in fitting.

After parameter re-estimation, each calibrated model undergoes a 
non-significant-term removal step. The goal is to delete terms that 
contribute negligibly to the dynamics, thereby simplifying the structure 
without sacrificing predictive accuracy and ultimately improving reli
ability, interpretability, and generalisation. Each term in the model, 

defined as a candidate function multiplied by its estimated parameter, is 
evaluated for its contribution over time. The time-varying contributions 
of each term are computed using the predicted trajectories, and the total 
contribution of each term is aggregated across all time points. Terms 
with contributions below a predefined threshold ζ are deemed non- 
significant and removed by setting their corresponding parameters in 
the coefficient matrix Ξ to zero, as expressed in Eq. (10)

if

⃒
⃒
⃒
⃒
⃒

∑Nexp

i=1

∑Nm

j=1
gp

(
x, tei

j

)
ξ̂np

⃒
⃒
⃒
⃒
⃒
≤ ζ, then ξ̂np = 0 (10) 

As demonstrated in Fig. 3(b) and (c), the model maintains accurate 
fitting performance after removing terms with negligible contributions. 
This procedure ensures that the final model retains only essential com
ponents for accurately describing the system dynamics. Simplifying the 
model enhances interpretability and reduces computational complexity 
while capturing key system behaviours.

Finally, a second identifiability check is conducted on the refined 
models. The removal of non-significant terms may alter the model 
structure, necessitating re-evaluation to ensure that the parameters of 
the simplified model remain identifiable.

2.1.5. Step 6: model validation and selection
Calibrated models undergo validation to evaluate whether the 

identified models are statistically accurate enough to represent the 
system’s dynamics.

A common goodness-of-fit test, two-tailed χ2 test, detects the model 
accuracy by comparing the residual distribution against the hypothetical 
distribution of noise. From the assumption of the Gaussian distribution 
of the noise, the χ2 test is conducted as Eq. (11) and (12) (Draper and 
Smith, 1998): 

χ2 = 2 ×
∑Nv

n=1

∑Nexp

i=1

∑Nm

j=1

(
x
(

tei
j

)
− x
(

tei
j , θ̂

)

σ

)2

(11) 

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

χ2 < χ2
ref

(
1 − α

2

)

Failed for overfitting

χ2
ref

(
1 − α

2

)

< χ2 < χ2
ref

(
1 + α

2

)

Passed

χ2 > χ2
ref

(
1 + α

2

)

Failed for underfitting

(12) 

Failed for overfitting indicates that the model has an excessive 
number of parameters relative to the dataset, or the predictions are too 
close to the observations resulting in excessively low values for the χ2 

statistics. Underfitting indicates that the model structure fails to 
adequately describe the system. Conversely, a successful test confirms 
that the model adequately captures the dynamics while adhering to the 
Gaussian noise assumption.

For small dataset, passing χ2 test could be challenging due to 
imprecise parameter estimates. As an alternative, a normality test is used 
to evaluate whether residuals follow a zero-mean Gaussian distribution 
(D’Agostino and Stephens, 1986). This less strict test allows the inclu
sion of models that may fail the χ2 test due to parametric uncertainty.

If the goodness-of-fit test fails, the model is considered unsuitable. 
Four options for user-defined stopping criteria—passing both tests 
(‘and’), passing only χ2 test (‘chi2’), passing only normality test 
(‘normality’), or passing either (‘or’) —ranked from most to least strict, 
determine when the iteration of the DoE-SINDy procedure stops, with 
models passing the chosen criterion considered statistically acceptable. 
When all models in the current iteration fail to meet the stopping cri
terion, the framework generates new candidate models by expanding 
the dataset and iteratively refining the model library. This process 
continues until either a model satisfies the stopping criterion, or the 
experimental budget is fully utilised.
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Fig. 3. Example of a generated model before and after parameter re-estimation and non-significant terms removal under conditions Nsamples = 30, σ = 10%, stopping 
criterion=’normality’, and experimental budget=15.

W. Lyu and F. Galvanin                                                                                                                                                                                                                       Computers and Chemical Engineering 202 (2025) 109265 

7 



Regardless of whether any model meets the user-defined criterion, 
models are ranked by the Akaike Information Criterion (AIC) (Akaike, 
1974) in ascending order to balance simplicity and accuracy. If one or 
more models satisfy the criterion, only those passing models are ranked. 
Otherwise, if no model meets the criterion and the experimental budget 
is exhausted, the models from the final iteration are ranked instead.

2.2. Assessment criteria for models identified by DoE-SINDy

The performance of models identified using the DoE-SINDy frame
work is assessed based on three primary criteria, statistically acceptable, 
structurally promising and structurally ground-truth.

The two structure-based criteria, structurally promising and struc
turally ground-truth, are applied only in-silico case studies, where the 
ground-truth model used to generate synthetic data is known. These 
criteria are used to evaluate whether DoE-SINDy can successfully 
recover the correct model structure. Regarding real experiments, where 
the true model is unknown, only the statistically acceptable criterion can 
be used for model evaluation. 

• Statistically acceptable: A model is considered statistically accept
able if it passes a goodness-of-fit test, which evaluates whether the 
model sufficiently represents experimental data while accounting for 
measurement noise.

• Structurally promising: A model is structurally promising if it in
cludes all terms from the ground-truth model but also contains 
additional terms. This is mathematically defined in Eq. (13): 

I (θtrue
)⊂I (θ̂) (13) 

I (θtrue
) = I (θ̂) (14) 

• Structurally ground-truth: A model is structurally ground-truth if its 
structure exactly matches that of the ground-truth model, even if 
parameter estimates differ, as is shown in Eq. (14).

Here, θtrue and θ̂ denote the coefficient matrices of the ground-truth and 
identified models, respectively. The dimension of each matrix corre
sponds to the number of equations and the size of the candidate term 
library. Nonzero entries in these matrices indicate the inclusion of spe
cific terms in the model, with their values representing the estimated 
parameters. The function I (⋅) extracts the position indices of nonzero 
entries in the coefficient matrix as a set, so that the matches of the 
models are checked by comparing their set of position indices.

For instance, if the ground-truth coefficient matrix for a component 
A is θtrue

cA
= [2 0 0 3 0 0] and the identified coefficient matrix is θ̂cA =

[2 0 0 3 1 0], the position indices sets are I

(
θtrue

cA

)
= {1, 4} and 

I (θ̂cA ) = {1, 4, 5}. In this case, the model is structurally promising 
because {1, 4}⊂{1, 4, 5}, indicating that all ground-truth terms are 
included, albeit with additional terms. If the coefficient matrix of the 
identified model is θ̂cA = [1.8 0 0 3.2 0 0], I (θ̂cA ) = {1, 4} =

I

(
θtrue

cA

)
. Thus, this model is considered structurally ground-truth as it 

contains all ground-truth terms and no additional terms.
Based on the criteria defined for assessing model performance, 

identified models are assigned labels summarised in Table 1. The most 
desirable outcome is the "TTT" scenario, where the model is both sta
tistically acceptable and structurally matches the ground-truth. The 
"TTF" scenario is also acceptable, as the identified model contains all 
ground-truth terms, and additional terms can be refined through further 
experiments and parameter re-estimation.

In cases where the ground-truth model is unknown, models classified 
as "TFF" are selected based on their statistical adequacy. However, such 
models may later be rejected after model discrimination (Asprey and 

Macchietto, 2000). Scenarios such as "FTT," "FTF," and "FFF" arise when 
no acceptable models are identified within the available experimental 
budget. In these cases, adjustments to the candidate term library or 
modifications to the DoE-SINDy framework settings are recommended 
before conducting further experiments.

2.3. Evaluation of DoE-SINDy

A metric, Target Scenario Achievement Rate (TSAR), is introduced 
to evaluate the performance of DoE-SINDy in identifying models that 
achieve specific target scenarios. TSAR is calculated as the percentage of 
tests that successfully produce models meeting the target scenario, 
relative to the total number of tests analysed for the impact of these 
factors, as expressed in Eq. (12): 

TSAR =
Number of Tests with Models Meeting the Target Scenario

Total Number of Tests
(15) 

This metric is used to assess the impact of experimental design fac
tors (e.g., initial concentrations, sample size, and experimental budget) 
and data conditions (e.g., noise level) on model identification outcomes.

3. Case study and implementation

We evaluate the performance of DoE-SINDy in recovering an 
assumed ground-truth kinetic model of a batch reaction system from in- 
silico data, using SINDy and ESINDy as benchmarks within the case 
study.

3.1. Generation of in-silico data

The considered chemical system is a three-component reacting 
mixture (A, B, C) reacted in an ideal mixed and isothermal batch reactor, 
following a series mechanism involving two reactions: 

A →
r1 B B →

r2 C (16) 

where r1 and r2 represents the reaction rates in units of 
[
mol m− 3s− 1]. 

The reaction rate model consists of three ordinary differential equations 

Table 1 
Potential scenarios for the models identified by DoE-SINDy.

Performance Statistically 
acceptable

Structurally 
promising

Structurally 
ground-truth

Circumstance

Best T T T Statistically 
acceptable and 
structurally 
ground-truth 
model identified

Good T T F Statistically 
acceptable and 
structurally 
promising model 
identified

Poor T F F Statistically 
acceptable but 
missing term(s) 
in the ground- 
truth model

F T T Structurally 
ground-truth but 
poor fit

F T F Structurally 
promising but 
poor fit

Worst F F F Poor fit and 
missing terms(s) 
in the ground- 
truth model
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representing concentration changes over time, with second-order ki
netics for A and first-order for B. 

dĊA = − k1C2
A = θ1C2

AdĊB = k1C2
A − k2CB = θ2C2

A +θ3CBdĊC = k2CB = θ4CB

(17) 

The dataset was generated through in-silico experiments, which is 
the same simulated case study used in Quaglio et al. (2020b). Experi
ments were conducted at 667 K, with rate constant k1 =5 ×

10− 4
[
mol− 1m3s− 1

]
and k2 = 7.8 × 10− 3 [s− 1]. Each experimental run 

lasted 350 s, and the measurements were recorded every 10 s, starting at 
50 s and continuing through 350 s. For obtaining multiple trajectories of 
time-series concentrations for model identification, the initial concen
tration of the component A is manipulated within the range from 40 to 
250 [mol m− 3]. The initial concentrations for component B and C are 0, 
as they are products of reaction 1 and 2. The maximum experimental 
budget is 15. Thus, 15 sets of initial concentrations are designed using 
Latin Hypercube Sampling to ensure exploration of the experimentally 
feasible region of operating conditions. Noise-free simulated data is 
generated by solving Eq. (17) with given initial concentrations via scipy. 
integrate.solve_ivp (Virtanen et al., 2020). In-silico measurements were 
generated by adding to the noise-free data the measurement noise, here 
characterised by a Gaussian distribution with zero mean and constant 
variance, assuming that the standard deviation is 10 % of the maximum 
values of concentrations when the initial concentrations of A is specified 
at 165 [mol m− 3]. Thus, the standard deviations of the noise are 
approximately [1.759, 6.899, 11.973][mol m− 3]. Kalman derivatives 
were implemented for numerically approximating the time derivatives 
of noise-added sampling points of the concentrations along the trajec
tory (Kaptanoglu et al., 2022). Because this study uses synthetic data, 
independent Gaussian noise with known variance is added. In real ex
periments, measurement errors can be heteroscedastic, non-Gaussian, 
auto-correlated, or affected by outliers. These situations will require a 
preprocessing stage on the raw data, such as variance-model estimation, 
robust filtering, and outlier rejection, before applying DoE-SINDy.

3.2. Model identification using DoE-SINDy

Model identification was performed with simulated state variables, 
including the concentrations of components A, B, and C, as well as their 
time derivatives. The initial iteration included six experiments, with up 
to 15 experiments conducted if no statistically acceptable model was 
identified. In each iteration, one new experiment was added, and the 
expanded dataset was randomly divided into training (80 %) and vali
dation (20 %) sets, rounding up the training set size to the nearest 
integer if necessary.

The candidate term library for model generation comprised features: 
g(C) =

[
CA, CB, CC, C2

A, C2
B, C2

C
]
. DoE-SINDy and SINDy both employed 

the sequentially thresholded least squares (STLSQ) algorithm for model 
generation, as implemented in PySINDy (v1.7.5) (Boninsegna et al., 
2018; Kaptanoglu et al., 2022), using identical settings, including a 
threshold of 10− 4, matching the minimum parameter magnitude. In 
terms of ESINDy, we utilised a two-step ensemble method for model 
generation, also embedded in PySINDy (v1.7.5). Initially, ESINDy 
created a library ensemble to generate 1000 candidate models and 
calculated the inclusion probabilities of the library terms. Terms with 
inclusion probabilities below a predefined threshold, of 50 % were 
excluded. Next, the method employed the standard bagging ESINDy 
with STLSQ on the reduced library to generate another set of 1000 
candidate models, taking the median of the identified coefficients to 
ensure robustness.

In step 4, for all three methods, models were ranked and prelimi
narily selected based on simplicity, with the top three simplest models 
retained for further evaluation. In model validation and selection step, 
the impact of four distinct stopping criteria, ‘and’, ‘chi2’, ‘normality’ and 
‘or’, on model identification performance was assessed.

All computations were carried out under an Intel(R) Xeon(R) Gold 
6140 CPU (36 cores, 2.30 GHz) running Red Hat Enterprise Linux 7.9, 
with 5 GB RAM available per job, under Python 3.9.

4. Results and discussion

This section presents an evaluation and comparison of the perfor
mance of original SINDy, ESINDy and DoE-SINDy in identifying kinetic 
models for a simulated batch reaction system. The analysis focuses on 
the accuracy of the identified models from the perspective of statistical 
accuracy and structural correctness, and effectiveness of original SINDy, 
ESINDy and DoE-SINDy in recovering the ground-truth model from the 
same noisy and small dataset. The results highlight the advantages of 
DoE-SINDy in delivering robust and simple models with fewer 
experiments.

4.1. Performance comparison of models identified by SINDy, ESINDy, 
and DoE-SINDy

The identification process begins with an initial dataset comprising 6 
experiments, and the total experimental budget allows for up to 15 ex
periments. In each iteration, SINDy, ESINDy and DoE-SINDy are 
employed to identify a kinetic model from the same dataset. This iter
ative process continues until the predefined stopping criterion, ‘chi2’, is 
met. Table 2 summarises the iterative model identification process using 
these three approaches.

The row with the title Nexp represents the total number of experi
ments used in each iteration. For all three approaches, the same dataset 
is used when Nexp is identical. This table indicates the performance of the 
model identified in each iteration, using the labels defined in Table 1, 
which represents the statistical adequacy and structural correctness. As 
shown in Table 2, only DoE-SINDy successfully identified the model 
labelled ‘TTT’ among these three approaches, with a structure that 
matches the ground-truth and χ2 test passed.

In terms of Table 3, despite slight differences between estimated 
parameters ̂θ from the reference θi,ref , from its statistical adequacy point 
of view, the identified model fits the observations relatively well. The t 
values of the parameter estimates are significantly smaller than the 
reference, indicating substantial uncertainty in the parameter estimates. 
This uncertainty can be attributed primarily to parameter redundancy, 
which, in that the paired parameters should be combined, leads to 
unidentifiability. A secondary factor is the lack of sufficiently informa
tive experimental data, which limits the ability to precisely estimate the 
parameters. This result highlights the need to integrate MBDoE into the 
framework to enhance parameter precision.

From the perspective of its graphical fit, the DoE-SINDy model 
matches the observations so well that the residuals are within the 
standard deviation of noise and follow a nearly Gaussian distribution. 
Thus, the model identified by DoE-SINDy is suitable for representing this 
system from both statistical and graphical point of view.

However, SINDy ended up with finding an ‘FFF’ model and ESINDy 
finding an ‘FTF’ model. The model structure of the SINDy identified 
model is very complex, and it does not contain the terms that are present 
in the ground-truth model, and the predictions are significantly deviate 
from the observations as shown in Fig. 4(a), indicating that the original 
SINDy performs poorly when the data is sparse and noisy. ESINDy works 
better than SINDy as it contains the ground-truth terms, but additional 
terms cause deviations in the profiles for component B and C as shown in 
Fig. 4(b). The results indicate that, although ESINDy performs better 
than SINDy, its performance is still insufficient to identify a suitable 
model for this system, especially when the data is noisy, sparse and 
limited.

Additionally, DoE-SINDy identified ‘TTT’ model in the 6th iteration 
with only 11 experiments. A structural promising model (‘FTF’) was 
identified using 8 experiments in the 3rd iteration, with model 
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complexity decreasing until the ground-truth model structure (‘FTT’) 
was reached in the 4th iteration. Example concentration profiles and 
corresponding equations of these ‘FTF’ and ‘FTT’ models are displayed 
in the Supplementary Figure 1 and Supplementary Table 1. Once the 
ground-truth model structure is identified, the identified structure re
mains at a low complexity level even when additional runs are used. In 
terms of statistically adequacy, DoE-SINDy successfully identified a 
model with ground-truth model structure and accurate fitting perfor
mance (model labelled ‘TTT’). The performance of the SINDy models 
fluctuations over iterations. An ‘FFF’ model is identified in the 1st, 5th 
and 10th iterations; while a ‘FTF’ model is identified in the other iter
ations, with no evident trend of convergence. In terms of ESINDy, the 
models identified over iterations are consistently with promising struc
tures, but the models are always much more complex than the ground- 
truth. DoE-SINDy has a higher likelihood of identifying a suitable model 
compared with the other two methods.

The comparison in Fig. 5 illustrates that DoE-SINDy identifies the 
ground-truth model more quickly (i.e. with a lower number of experi
mental runs) than the other two methods. Additionally, as the data size 
increases, the complexity of the models identified by DoE-SINDy 
incrementally decreases, eventually stabilising. This convergence sug
gests that the optimal and simplest governing model has likely been 
found. In contrast, neither SINDy nor ESINDy exhibit this trend. The 
number of parameters fluctuates irregularly and does not converge to a 
specific value. Even if the models identified by these methods meet the 
stopping criterion, such as goodness-of-fit test, we cannot confidently 
conclude that they represent the simplest and most suitable model for 
the system.

Notably, in the first iteration, the model identified by DoE-SINDy is 
not identifiable and is therefore rejected. Additionally, a complex model 
is more likely to include unidentifiable parameters. By integrating 
identifiability analysis increase the likelihood of rejecting complex 
models. In comparison, SINDy and ESINDy do not include an identifi
ability analysis step. Thus, SINDy and ESINDy is likely to identify a 
unidentifiable model, which renders them unreliable for accurately 
representing the system.

4.2. Success rate comparison for SINDy, ESINDy, and DoE-SINDy

We assessed the performance of original SINDy, ESINDy, and DoE- 
SINDy for recovering the ground-truth model under four different 
stopping criteria: ‘and’, ‘chi2’, ‘normality’ and ‘or’. The model 

identification was iteratively conducted using identical 50 tests under a 
fixed experimental budget of 15 experiments, sampling size of 30 points 
with sampling interval of 10 s, and a standard deviation of 10 % of the 
maximum values of concentrations when the initial concentrations A is 
specified at 165

[
mol m− 3]. Each approach’s performance is quantified 

in terms of TSAR defined in Section 2.3, distinguishing between models 
meeting different success levels (‘TTT’, ‘TTF’, ‘TFF’, ‘FTT’, ‘FTF’ and 
‘FFF’) based on statistical and structural adequacy defined in Section 
2.2. Table 1. The TSAR (%) of original SINDy, ESINDy, and DoE-SINDy 
under four different stopping criteria is summarised in Table 4.

Original SINDy and ESINDy consistently failed to recover the 
ground-truth model across all tests and stopping criteria, as indicated by 
a TSAR of 0 % for ‘TTT’ and ‘FTT’. Also, no statistically accurate model 
identified (TSAR of 0 % for ‘TTT’, ‘TTF’ and ‘TFF’). Most identified 
models fell into the ‘FTF’ category (94 % for SINDy, 98 % for ESINDy), 
suggesting these models are structurally promising but fail goodness-of- 
fit tests because extra terms and inaccurate parameters introduce 
deviations.

DoE-SINDy significantly outperformed the other two approaches, 
successfully identifying ‘TTT’ models under all stopping criteria. Per
formance depended on the criterion: the ‘or’ criterion achieved the 
highest TSAR for ‘TTT’ models (26 %), followed by the ‘normality’ cri
terion (22 %) and ‘chi2’ criterion (18 %). While the ‘and’ criterion 
resulted in the lowest (12 %). This indicates that the TSAR for ‘TTT’ 
models is inversely proportional to the restrictiveness of the stopping 
criteria—less restrictive criteria yield higher probabilities of identifying 
‘TTT’ models. A similar trend was observed for ‘TTF’ models. Thus, 
criteria such as ‘normality’ and ‘or’ are more effective in identifying 
structurally accurate or promising models within a given dataset.

In practice, however, the ground-truth model structure is unknown, 
and statistical adequacy remains the primary criterion for model eval
uation. The ‘TFF’ models introduces potential errors when applying 
these models in other feasible regions. When analysing statistically 
adequate models (‘TXX’), the combined proportion of ‘TTT’ and ‘TTF’ 
under normality and or is approximately 70 %, whereas stricter criteria 
such as ‘and’ and ‘chi2’ achieve a higher combined proportion of 85 %, 
indicating greater reliability.

Nevertheless, stricter criteria exclude nearly 40 % of structurally 
promising or ground-truth models because of statistical inadequacy. 
Moreover, 38 % (‘and’) and 56 % (‘chi2’) of tests result in no identified 
suitable model when the experimental budget is exhausted. This in
dicates that convergence to a specific model structure becomes harder 
when stricter criteria are applied.

Table 5 provides the average computational times for SINDy, 
ESINDy, and DoE-SINDy under the four stopping criteria. The results 
indicate that DoE-SINDy has far higher computational cost compared to 
SINDy and ESINDy due to its iterative, weighted least squares parameter 
re-estimation. Specifically, when using stricter stopping criteria (‘and’ 
and ‘chi2’), DoE-SINDy required over four times the runtime of the less 
strict criteria (‘normality’ and ‘or’). This disparity is attributed to the 
larger number of iterations needed to satisfy stricter criteria. As addi
tional experiments are incorporated, the number of candidate models 
also grows, slowing the process further.

In practice, stricter criteria ensure higher model reliability but come 

Table 2 
Model scenarios identified by original SINDy, ESINDy and DoE-SINDy across iterative experiment additions (Nsamples = 30, σ = 10%, stopping criterion=’chi2’, 
budget=15 experiments).

Iteration 1 2 3 4 5 6 7 8 9 10

Nexp 6 7 8 9 10 11 12 13 14 15
Original SINDy FFF FTF FTF FTF FFF FTF FTF FTF FTF FFF
ESINDy FTF FTF FTF FTF FTF FTF FTF FTF FTF FTF
DoE-SINDy -i FFF FTF FTT FTT TTTii - – – –

i. No identifiable model found.
ii. Model identification process stops at the 6th iteration as the model that meets the stopping criteria is identified.

Table 3 
Estimated coefficients (θ̂) and corresponding t-values of models achieving the 
‘TTT’ scenario under the stopping criterion ‘chi2’. The training dataset has a 
noise level of σ = 10%, sample size of 30 per experiment with a sampling in
terval of 10 s, and a total experimental budget of 15 experiments.

θi,ref
(
mol m− 3) θ̂i

(
mol m− 3) t

(
tref(95%) = 1.97)

θ1 − 5.00 × 10− 4 − 4.51 × 10− 4 8.47 × 10− 7

θ2 − 7.80 × 10− 3 − 8.18 × 10− 3 1.18 × 10− 5

θ3 5.00 × 10− 4 4.94 × 10− 4 8.33 × 10− 7

θ4 7.80 × 10− 3 8.48 × 10− 3 1.23 × 10− 5
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Fig. 4. Predicted concentration profiles of the models identified by (a) original SINDy, (b) ESINDy, and (c) DoE-SINDy, compared with measurements (σ = 10%, 30 
samples per experiment, 10 s interval). Identified equations are displayed beside each plot. The ground-truth equations are given in Eq. (17): dĊA = − 0.0005C2

A, dĊB 

= − 0.0078CB + 0.0005C2
A, dĊC = 0.0078CB.

W. Lyu and F. Galvanin                                                                                                                                                                                                                       Computers and Chemical Engineering 202 (2025) 109265 

11 



at a computational cost. Less strict criteria reduce the number of ex
periments and runtime. Even though less strict criteria may yield a less 
reliable model (such as ‘TTF’ or ‘TFF’), they still provide a useful first 
approximation when time and budget is limited.

Of the four criteria, ‘normality’ is particularly promising, as it strikes 
a balance between identifying a high proportion of ‘TTT’ models, 
achieving a good combined proportion of ‘TTT’ and ‘TTF’, and main
taining reasonable identification speed.

5. Conclusion and future work

We propose DoE-SINDy, a design of experiments-integrated SINDy, 
for identifying kinetic model structures. DoE-SINDy outperforms exist
ing methods by effectively addressing the challenges of limited 

experimental budgets, small datasets, and noise through an iterative 
framework integrating identifiability analysis, parameter re-estimation, 
structure simplification, and rigorous validation steps, ensuring statis
tically accurate, interpretable, and generalisable models with reduced 
complexity and accelerated convergence.

Three model generation approaches have been compared in this 
study: original SINDy, ESINDy and the proposed DoE-SINDy. Among the 
three approaches, DoE-SINDy is the only method capable of reliably 
identifying the ground-truth model (’TTT’) within the constraints of 
limited experimental budget and small dataset sizes. The iterative 
framework provides a clear converging trend, reducing model 
complexity and achieving convergence to the optimal model structure as 
the experimental dataset grows, which highlights DoE-SINDy’s ability to 
address the high variability issue in identified structures caused by using 
different training sets in existing methods. DoE-SINDy enhances 
robustness to noise by integrating experimental-level subsampling 
technique in the model generation step, reducing the inclusion of biased 
experiments that lead to overly complex models and ensuring a more 
representative and interpretable model structure. The integration of 
parameter re-estimation enhances the noise robustness and accuracy of 
the model on a broader region compared to the one obtained from 
generation step, as it is calibrated with full training set. The step for the 
removal of non-significant terms furtherly reduces model complexity, 
which ensures the generalisation of the identified model. The integra
tion of a first identifiability analysis step in DoE-SINDy allows to reject 
unidentifiable and overly complex models before the computationally 
intensive parameter re-estimation step, accelerating the convergence 
process. A second identifiability check ensures model reliability after 
parameter re-estimation and non-significant model removal. By 
employing flexible optional stopping criteria, such as ‘normality’, DoE- 
SINDy balances computational efficiency with the success rate of iden
tifying ground-truth models, addressing statistical accuracy without 
inflating runtime or costs. DoE-SINDy incorporates rigorous evaluation 
and AIC-based selection steps, balancing the statistical accuracy and 
model complexity of the finally confirmed model.

Despite the promising performance of the DoE-SINDy framework on 
identifying model structures, several challenges warrant further 
investigation: 

• Parameter redundancy. Some coefficients that describe the same 
kinetic contribution remain separate, leading to redundancy and 
local unidentifiability. Future work will incorporate a rigorous pro
cedure to detect these coefficients and re-parameterise the model 
accordingly.

• Uncertainty in parameter estimates. High uncertainty arises from 
both redundancy and limited information in the current data. In 
addition to the new re-parameterisation module, we will adopt 
model-based design of experiments for parameter precision (MBDoE- 
PP) to systematically design highly informative experiments and 
improve parameter precision efficiently.

• Reducing runtime. The computational cost of DoE-SINDy remains 
high due to the iterative nature of the approach and the integration 
of weighted regression. This can be mitigated by adopting more 
efficient parameter estimation algorithms, reducing the frequency of 
optimisation runs, or improving the speed of the optimisation pro
cess itself.

• Structural uncertainty and model discrimination. A model may 
fit statistically yet be structurally wrong. Beyond model complexity, 
additional metrics are needed to evaluate the structural adequacy of 
models. To address this, future work could incorporate MBDoE for 
model discrimination, which enables the exploration of conditions 
that better differentiate the performance of candidate models, 
enhancing the feasibility and reliability of the identified structures. 
Ideally, this approach should further reduce the number of experi
ments demanded.

Fig. 5. Change in the number of parameters of the model identified by SINDy, 
ESINDy and the model ranked 1 identified by DoE-SINDy with iterative 
experiment additions.

Table 4 
TSAR (%) of original SINDy, ESINDy and DoE-SINDy under four different 
stopping criteria.

Approach Stopping Criteria TTT TTF TFF FTT FTF FFF

Original SINDy and 0 0 0 0 94 6
chi2 0 0 0 0 94 6
normality 0 0 0 0 94 6
or 0 0 0 0 94 6

ESINDy and 0 0 0 0 98 2
chi2 0 0 0 0 98 2
normality 0 0 0 0 98 2
or 0 0 0 0 98 2

DoE-SINDy and 12 20 6 8 30 24
chi2 18 30 8 8 26 10
normality 22 42 32 0 4 0
or 26 42 28 0 4 0

Table 5 
Average runtime required by SINDy, ESINDy and DoE-SINDy to reach conver
gence under the stopping criteria ‘and’, ‘chi2’, ‘normality’ and ‘or’.

Stopping Criteria and chi2 normality or

SINDy [min] 0.18 0.18 0.18 0.18
ESINDy [min] 1.37 1.32 1.33 1.32
DoE-SINDy [h] 2.39 2.09 0.52 0.50
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• Real-world application. The present study assumes Gaussian, 
constant-variance noise. In future work we will (a) add an automated 
module for noise filtering and outlier rejection to preprocess raw 
experimental measurements, and (b) develop a noise-var
iance–model identification step that provides data-dependent 
weights for parameter re-estimation, thereby extending DoE-SINDy 
to noisier, heteroscedastic, and non-Gaussian datasets.
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