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The global population increase leads to a high food demand, and to reach this target products such as pesticides
are needed to protect the crops. Research is focusing on the development of new products that can be less harmful
to the environment, and mathematical models are tools that can help to understand the mechanism of uptake
of pesticides and then guide in the product development phase. This paper applies a systematic methodology
to model the foliar uptake of pesticides, to take into account the uncertainties in the experimental data and
in the model structure. A comparison between different models is conducted, focusing on the identifiability
of model parameters through dynamic sensitivity profiles and correlation analysis. Lastly, data augmentation
studies are conducted to exploit the model for the design of experiments and to provide a practical support to
future experimental campaigns, paving the way for further application of model-based design of experiments

techniques in the context of foliar uptake.

1. Introduction

As the world’s population continues to grow and the planet’s re-
sources remain limited, ensuring sufficient food production becomes a
crucial challenge both in the present and for the coming decades. In
tackling this issue, the development of improved and safer biocides will
be essential to optimize crop yields and meet the increasing demand for
food. This brings forth the need for innovative solutions that align with
sustainable agricultural practices (Umetsu and Shirai, 2020).

Crop protection products such as herbicides and pesticides can be
delivered to the plants via different methods, with the spraying on the
foliage being one of the most relevant ones for field applications. The
process that bring the active ingredient (AI) from the mixing tank to the
biological target sites is determined by a series of inter-correlated pro-
cesses in the biodelivery chain. Having a quantitative understanding of
these processes and their effect on the product efficacy is fundamental
for developing innovative solutions, and mathematical models are tools
that can help researchers in this field and guide further experimental di-
rections. While essential for crop protection and beneficial for tackling
food demand needs, the use of pesticides raises concerns about environ-
mental impact, particularly in terms of soil and water contamination
(Aktar et al., 2009), as well as the impact on global ecosystems (Sharma
et al., 2019). This underscores the heightened importance of develop-
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ing tools and technologies that can contribute to the production of safer
pesticides for the surrounding environment.

Among all the processes identified in the biodelivery chain, the fo-
liar uptake of the Al (Franke, 1967), i.e. the process of absorption of the
Al through the leaves (Fernandez et al., 2021), is not completely under-
stood and influenced by several factors, while being a crucial step in the
path that leads the AI from the tank to the target sites, i.e. the biological
macromolecules essential for the physiological functions of pests, weeds,
and pathogens, that interact with the biocide (Zhang et al., 2025). There-
fore more effort both theoretical and experimental is needed to charac-
terize this phenomenon subject to high uncertainty in its description.

Several works can be found in literature tackling the question of how
to describe the foliar uptake process. The models available in the lit-
erature can be divided in three categories (Trapp, 2004): i) empirical
correlations, ii) compartmental models, and iii) diffusion-based models.
Examples of empirical correlations can be found in Briggs et al. (1987)
and Forster et al. (2004), however these models are unable to describe
the underlying mechanism. Compartmental models have been applied
to physiological systems for several decades (Rowland et al., 1973), with
specific applications also to foliar uptake, e.g. in the works by Bridges
and Farrington (1974); Satchivi et al. (2000) and Fantke et al. (2013).
Some works in literature (Schreiber, 2006) suggest that the process of
Al uptake through the cuticle, i.e. the outermost layer of leaves, can be
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\begin {align}\label {eq:generalmodel} \begin {cases} \dot {{\bm x}}(t) = \bm {f}(\bm {x}(t),\bm {u}(t),\bm {\theta }, t) \\ \hat {\bm {y}}(t) = \bm {g}(\bm {x}(t),\bm {u}(t),\bm {\theta }, t) \end {cases}\end {align}
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\begin {align}\label {eq:vartheta} \bm {V}_{\theta } = \bm {H}^{-1} .\end {align}
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\begin {align}\label {eq:corr_coef} r_{ij} = \frac {V_{\theta _{ij}}}{\sqrt {V_{\theta _{ii}} V_{\theta _{jj}} }} \quad \forall i,j = 1,\ldots , N_\theta \end {align}
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by diffusion. Starting from this consideration, diffusion-based mechanis-
tic models have been proposed in literature for the characterization of
foliar uptake, e.g. in Mercer (2007) and Tredenick et al. (2017). Other
models for plant uptake (Li, 2025) include, along with foliar uptake,
also the description of other processes such as root uptake and/or up-
take through the skin of fruits, however, the focus of this paper is solely
on the uptake through the leaves. To the best of our knowledge, there is
no work proposed in literature where a systematic approach is applied
for the development and statistical assessment of foliar uptake models.

The objective of this study is to obtain and statistically validate a pre-
dictive model to represent the phenomena occurring within the leaves in
a quantitative way. To model biological systems, uncertainty typically
arises in the experimental data and in the definition of a suitable struc-
ture of the model, i.e. in which phenomena should be included in the
mathematical formulation. Since the foliar uptake case study involves
biological systems, the large uncertainty in the experimental observa-
tions must be taken into consideration when assessing the reliability of
the mathematical models in a statistically sound approach.

This paper approaches the problem with a systematic modeling
framework presented in Section 2. Different models, described in
Section 3, are considered for the characterization of foliar uptake. The
results of their comparison are presented in Section 4, focusing on the
identifiability of model parameters and data augmentation studies con-
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ducted to exploit information from the models for the design of addi-
tional experiments. Section 5 summarizes the achievements of this study
and points the direction of future works.

2. Methodology

The general modeling framework considered in this study to obtain
a reliable predictive model for the characterization of foliar uptake is
presented in Fig. 1. The first step in the procedure is to formulate a set
of candidate models, which can be based on previous literature avail-
able, the understanding of the physico-chemical processes involved in
the system and preliminary experimental observations. The general for-
mulation of a dynamic model involving differential and algebraic equa-
tions is the following

{xm = f(x(0),u(r),6,1) o

J(®) = g(x(®), u(®),0,1)

where ¢ is the variable time, x(r) is a N,-dimensional vector of
system state variables, x(r) the vector of time derivatives, u(f) the
N,-dimensional vector of known system inputs, 6 the N,-dimensional
vector of model parameters, and y(f) the N,-dimensional vector of pre-
dicted system outputs.
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STEP
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C |
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Fig. 1. Framework considered to develop a predictive foliar uptake model.
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Once the candidate models are formulated, it is important to test the
identifiability of their parameters (step 2 in Fig. 1), i.e. if the model pa-
rameters can be uniquely identified from a given set of input and output
measurements. Identifiability methods can be distinguished between a-
priori and a-posteriori tests (Miao et al., 2011): a-priori methods consider
uniquely the structure of the model, while a-posteriori techniques start
from preliminary experimental data and include practical experimental
limitations.

The problem of model identifiability is expressed as

30, =36,) > 0, = 0,, 2

meaning that if the model predictions y are identical for some parameter
vectors 0, and 0,, then these vectors must be the same, i.e. 8, = 0,. If
the condition in Eq. (2) does not hold, then the model is not-uniquely
identifiable, i.e. there exist two distinct vectors 6, and 6, which give
the same model predictions.

If the model is not identifiable a-posteriori, before discarding it, other
questions are posed in the proposed scheme (step 3). The first question
is whether having additional experimental observations would be suf-
ficient to solve the identifiability issues. To answer this question, an in
silico study is conducted by simulating new experimental data and sub-
sequently evaluating the expected improvement in the statistical qual-
ity of the estimates to justify the need for additional data. Moreover,
it must be considered that in a real case application experiments will
also have to be conducted in practice, which is another important de-
cision block. If the outcome of these decision is still negative, model
re-parametrization methods can be considered to solve the identifiabil-
ity issues before removing a model from the set of candidate ones.

The modeling procedure then continues (step 4) with parameter es-
timation and statistical tests to assess both the quality of fitting and
the precision on parameter estimation. Given that the final objective is
to apply the model in practice, the next step is to propagate the un-
certainty from parameters to model predictions, to assess whether this
uncertainty is within an acceptable range. If the outcome of statisti-
cal tests and uncertainty propagation is not satisfactory, model-based
design of experiments (MBDoE) can be applied to optimally design ad-
ditional experiments, and the additional experimental evidence will be
used to re-estimate the model parameters (Franceschini and Macchietto,
2008). Finally, the modeling procedure is concluded (step 5) by validat-
ing the model on independent experimental observations.

The following subsections will present in detail the methodology em-
ployed for testing model identifiability and for the in silico data augmen-
tation study, which are the focus of the results presented in this paper.

2.1. Identifiability analysis

This paper focuses on the study of a-posteriori identifiability to assess
whether the parameters can be identified in a practical scenario with
real experimental data.

Practical identifiability tests considered in this study are based on
the analysis of local sensitivity and correlation matrix since they are less
expensive from the computational point of view compared to alterna-
tive methods such as Markov Chain Monte Carlo, and their application
has been validated in several works available in the literature (Wieland
et al., 2021).

2.1.1. Local sensitivity analysis

This analysis is local because it is performed around a nominal value
for parameters 6, which can be estimated from preliminary data. To
construct the dynamic sensitivity matrix, s;;(,) the sensitivity of the
ith response y; to the jth parameter 9]- at the kth sampling time 7, is
calculated as

a9;(1y.)
a9,

3

S,'j(tk) =
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So that the dynamic sensitivity matrix ' is obtained

s SNy (1)
s11(ty,,) RIAGYN)
SNyNX,,xNg = : : 4
sn, 1) R AGY
Lsn,10,,) SN,Np (N, ]

where N, is the number of sampling points and ¢ the N, ,-dimensional
vector of sampling times.

The dynamic sensitivity is evaluated over the whole time domain
and the profiles plotted. If two or more parameters give overlapping
profiles, this is an indication of practical non-identifiability, i.e. the cor-
responding parameters have the same effect on the system response and
are correlated.

2.1.2. Correlation matrix method

The correlation matrix approach is used to evaluate the identifiabil-
ity of parameters, which relies on the matrix of sensitivities .S computed
in Eq. (4). Given a preliminary estimate of the model parameters o, the
matrix S is combined with the variance-covariance matrix of the mea-
surements X, i.e. a diagonal matrix with the observed variance from
experimental replicates on the main diagonal, to calculate the Fisher
information matrix H (Walter and Pronzato, 1997) as

H=S"3'S+H (5)

where H is the preliminary information on the parameters, which
can be neglected if no prior information is available. The variance-
covariance of the estimates V, = { Vo, ) is approximated by the inverse
of the observed H in the form

V,=H\. (6)
The correlation matrix is then defined as R = {r;;}, where
Vo
i PR
rj = — Vi,j=1,..., Ny )
Vo, Ve

i 0)

A correlation between parameters higher than 0.99 is a sign of practi-
cal non-identifiability, approaching a singular Fisher information matrix
(Rodriguez-Fernandez et al., 2006). In this study, a conservative thresh-

old of 0.95 is chosen as critical correlation.
2.2. Data augmentation study

Two studies are performed to evaluate experimental conditions en-
abling statistically reliable model identification. These studies rely on
in silico generated data, where a noise factor is added to the model pre-
dictions to reliably reproduce real experimental data. The parameters in
the variance model are calibrated on the variance observed experimen-
tally. Both data augmentation procedures are presented in the following
subsections.

2.2.1. Single additional sample

The first data augmentation study is performed to assess the expected
improvement in the statistics of parameter estimation, data fitting, and
identifiability of model parameters deriving from the availability of ad-
ditional experimental data, depending on the experimental design ¢ ,
i.e. the set of conditions at which the new data are collected.

The steps involved in this study are:

1. The experimental design vector ¢ is defined as {¢,, ..., ¢ Nyerw
N 0., is the number of sampling times under assessment in the design
space ®.

2. The N,,,, design variables #; are sampled using an equally spaced
sampling of the design space defined by upper and lower bounds on

the experimental sampling times.

}, where
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3. New experimental data are generated in silico from the model for
each of the N,,,, elements of the design vector ¢, and added to the

new
original dataset y, to obtain N,,, augmented datasets:

v =, + (w00, 1)+ g} Vi=1,...,N,, ®

where @, is the preliminary estimate of parameters, and the error
g € N(O, aiz) is obtained from a normal distribution with zero mean
and variance o-l.z. The variance is obtained from a heteroscedastic
model

ol =’ (9" ©

where parameters w and y are calibrated from the variance observed
in the original experimental dataset.

4. Perform parameter estimation for every N,,, augmented dataset
v;, and evaluate the statistics on the new estimates. The results are
the new estimate 6;, the covariance of the parameters Vj , the FIM
H;, the t-values of the parameters to, (see Eq. (10)) and the sum of

squared residuals, i.e. the )(iz statistics, forall i = 1, ..., N,
é/'
tg =———= Vj=1,..,Ny 10
Loy fy
2 0}

In Eq. (10), the value t(HT") is obtained from a Student’s distribution

with dim(y) — N, degrees of freedom and significance HT“ The t-values
of the parameters calculated as in Eq. (10) are compared to a t-reference
value t(a) given the significance level a.

This first data augmentation study is performed to understand under
which conditions, i.e. sampling time, an additional experiment should
be conducted so that the new data will carry more information in the
modeling process.

2.2.2. Multiple additional samples

The second data augmentation study is performed to verify how
many additional data are required to solve parameter identifiability is-
sues, i.e. to estimate the full set of model parameters precisely. The pro-
cedure for this second study is the following:

1. Select and fix the design space ® for experimental design variables
@ starting from the results of the previous study.

2. Select ny, sampling points, i.e. P, = {t), ... ,t,,w}, uniformly dis-
tributed in the design space ®.

3. Generate new data y,,,, in silico for each sampling point in Py

Vyew = (9, u,00,1,) + €, |t; € @, Vi=1...ng) 11)

where the noise term ¢; is modeled as in Eq. (9).
4. Add the new data y,,,,, to the original dataset available y, to obtain
the augmented dataset y .

VA=Wt Wiew (12)

5. Perform parameter estimation and evaluate the statistics, i.e. t-test
on the estimates.

6. Increase the number of sampling points and iterate the procedure
from point 2., until the maximum budget is reached.

The following section will present the case study on which the mod-
eling framework is applied. i.e. foliar uptake of pesticides, in particular
focusing on the models considered to describe the system behavior.

3. Foliar uptake models

In this paper different candidate models are compared for the de-
scription of pesticide uptake through the leaves. In particular the two
models included in this study are i) a diffusion-based model (Sangoi
et al., 2024a), and ii) a compartmental model (Sangoi et al., 2024b).
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Fig. 2. Graphical representation of the compartmental model for leaf uptake.
The pins indicate the observed states, the compartments represent the system
states and the arrows the transfer rates between the compartments (model pa-
rameters).

3.1. Compartmental model

The compartmental model included in this study to describe the fo-
liar uptake process is presented graphically in Fig. 2, where the pins
indicate the observed states in the system. The compartments included
in the model formulation are the following: droplet, store, leaf inter-
nal, and surface deposit. The droplet is formulated product deposited
on the leaf surface, the store compartment contains the active ingre-
dient (AI) crystallized on the surface and not available for uptake,
while the surface deposit is the sum of the two compartments, which
corresponds to the system state observed experimentally. As for the
leaf internal, a single compartment is considered because a more de-
tailed division in the different layers that constitute the leaf would
lead to a-priori non-identifiability issues when lacking of experimen-
tal observations of the different layers, as observed in a previous
study (Sangoi et al., 2024b). Moreover, this choice ensure consistency
with the diffusion-based model included in this study to have a fair
comparison.

In Fig. 2, the arrows indicate where the mass transfer between the
compartments takes place. Mass transfer between the droplet and store
compartments is associated to crystallization/solubility processes on the
leaf surface (Burkhardt et al., 2012), while the loss term from the droplet
takes into account the Al lost, i.e. not available for uptake, due to volatil-
ity and/or photo-instability (Bronzato et al., 2023).

The Al in solution in the droplet is available for uptake in the leaf in-
ternal compartment (k4 jeq ), and then the loss term k., ; ,,, takes into
account Al consumption inside the leaf due to metabolism or chemical-
instabilities which reduce the amount of AI available in the leaf with
time.

The mathematical expression of the compartmental model is re-
ported in Eq. (13). The dynamic model is a system of ODEs, which
describes the evolution in time of the Al mass in the different compart-
ments.

dm;
— = 2 kjm; = kym)) (13)
J#

In Eq. (13), m; is the mass of Al in compartment i, and k; 7 the transfer
rate of Al from compartment i to compartment j. The m;(r) values are
normalized with respect to m,,,; (t = 0), therefore transfer rates k;; are
expressed in units of min~'.

With respect to the generic formulation presented in Eq. (1), the vec-
tor of state variables is x := {m;}, and the vector of model parameters
is @ := {k;;}. The input in the system is the initial mass in the deposit,
u = {my,,(ty)}. The vector of observable outputs is y := {Mgepoirs Mear }s
Where mgqp050 = Mypoprer + Mygore- The experimental design vector is de-
fined by the sampling times ¢ = {¢,, ... N, b
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Fig. 3. Graphical representation of the diffusion-based model for leaf uptake:
system geometry and key parameters involved. The pins indicate the observed
states.

3.2. Diffusion-based model

A second model considered in this study is a diffusion-based model.
The geometry of the system and the physical phenomena included in
its mathematical formulation are presented graphically in Fig. 3. Previ-
ous studies in the literature (Schreiber, 2006) suggest that the transport
mechanism of pesticides through the cuticle, i.e. the external layer in
the leaf structure protecting the cellular tissue from the external envi-
ronment, can be assumed as diffusion. Although, separating the cuti-
cle from the rest of the leaf is extremely complex and time consuming,
therefore measuring the uptake in the cuticle and leaf tissue separately
is not an activity typically performed in routine biokinetic experimental
procedures of foliar uptake of Als. Since the purpose of this project is
to validate a model that can be combined with the in vitro and in vivo
experimental campaigns for the development of new biocides, in this
diffusion-based model it is assumed that the leaf internal is a homoge-
neous structure where equivalent diffusion takes place, in the same way
that only a single leaf internal compartment is included in the compart-
mental model presented in Section 3.1.

The system geometry is then divided in two regions, as depicted in
Fig. 3: the deposit on the surface and the leaf internal. The physical phe-
nomena included in the model are: equilibrium at the interface between
deposit and leaf, diffusion of AI through the leaf, loss from the deposit
due to volatility and chemical instability of Al, and consumption of Al
in the leaf due to metabolism.

The following equations are included in the general mathematical
formulation developed to describe the dynamics of Al uptake from the
deposit to the leaf internal region.

Mep(1) = Cep() + Vigey(1) (14)
AViep(1)
2 = Keap S Vaep) (15)
subject to
1 ifv, >V .,
fVaep) = { e 16)
0 if Vyep < Vipin
dcd f(Vd ) dVd
dlep = 7 = dtel’ Cuep = KiossCaep a7
ep
Clear(0,1)
KDL - leaf (18)
Cdep(t)
0Cieqp(2,1) 0%Cloqp(z.1)
eaat = Deq ;‘;2 - Kmelcleaf (z,0) — Ktmn_y (19)
1 Lieas
Cleaf,tot(l) = / Cleaf(zv Hdz (20)
Lleaf z=0
Miear ) = Creat 1o - Vieas 1)
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In the equations reported above, the state variables are the mass
of Al in the deposit m,,,, the concentration of Al in the deposit Cy,,,
the concentration of Al inside the leaf discretized in space C,,/(z,1),
the total concentration of Al inside the leaf C,, ,, the mass of Al in-
side the leaf m,,,,. The parameters in the model are the evaporation
rate K,,,,, the accounting for losses from the deposit K, the parti-
tion coefficient for Al between deposit and leaf K, the diffusion co-
efficient inside the leaf D,,, the metabolism rate K,,,, the transloca-
tion to other parts of the leaf/plant K,,,,,. With respect to the generic
formulation presented in Eq. (1), the vector of state variables is x :=
{Maeps Caeps Micars> Crears Creas o }» @nd the vector of model parameters is
0 1= {K,pap Kiosss Kpr> Degs Kiners Kirans }- The input in the system is the
initial mass in the deposit, u = {m,,,(t;)}. The vector of observable out-
putsis y := {mg,,, my,,}. The experimental design vector is defined by
the sampling times ¢ = {¢,, ... ANy, 1.

With respect to the compartmental model, the main change is in
how the physics of uptake is described. Instead of mass transfer with
asymptotic equilibration as described by the k;; parameters of the com-
partmental model, we now consider instantaneous partitioning at the
deposit-leaf interface and diffusion through the leaf, i.e., Ky, and D,,.
Similarly to the compartmental model, also for the diffusion model the
state variables are normalized with respect to the initial amount of Al
in the deposit.

Egs. (14)-(17) describe the dynamics in the deposit on the leaf sur-
face. Eq. (18) relates the concentration of Al in the deposit to the con-
centration in the leaf at the interface, assuming equilibrium conditions
at all times within a boundary layer at the interface between leaf and
droplet. In Eq. (18), C,,/(0,?) indicates the concentration of Al at the
interface on the leaf side at time ¢. Eqs. (19)—(21) describe the dynamics
in the leaf tissue. The leaf internal region is modeled as a homogeneous
structure where diffusion and metabolic consumption take place uni-
formly throughout the spatial domain.

4. Results and discussion

The analyses on the compartmental and diffusion-based models pre-
sented in Section 3 are conducted starting from experimental data of
foliar uptake provided by Syngenta. The same procedure and analyses
are conducted on two different datasets, named as TR-1 (treatment 1)
and TR-2 (treatment 2). The experimental data represent biokinetic ex-
periments of foliar uptake, where the formulated active ingredient (AI)
is sprayed on the leaves in a controlled lab environment. Two quanti-
ties are measured for each sampling time: the amount of AI left on the
leaf surface (i.e. deposit), and the amount of Al inside the leaf (i.e. leaf
extract). The two measurements at time +* are obtained in the follow-
ing way: firstly, * minutes after the product is sprayed on the leaves,
these are washed with a solvent to recover the Al on their surface. Sec-
ondly, the leaves are macerated and washed with another solvent to
recover the Al inside the leaf. The collected samples are analyzed with
HPLC to quantify the mass of Al recovered. Since these experiments are
destructive for the leaf, experimental replicates must be obtained from
different leaves. For each dataset 8 sampling times from the application
of the product on the leaf are considered, ranging from O to 360 min.
Datasets TR-1 and TR-2 are shown in Fig. 4 through the data points and
the 95% confidence intervals in the experimental replicates. The two
dataset differ for the treatment depending if the leaves are subject to
the solar radiation or not, while the combination of Al, formulation and
crop are the same for the two treatments considered here.

The results of the analyses are presented with this structure: i) pa-
rameter estimation, data fitting and statistical tests (Section 4.1), ii)
model identifiability tests (Section 4.2), iii) data augmentation study
(Section 4.3). The models have been implemented in python, using the
following packages to conduct the study: pandas for data manipulation
(McKinney et al., 2010), numpy for linear algebra routines (Harris et al.,
2020), and scipy for scientific computing (Virtanen et al., 2020), i.e. for
parameter optimization and for calculating t- and y2- statistics.
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Fig. 4. Fitting of experimental data with the compartmental model (solid line) and diffusion-based model (dashed line). Results for (a) dataset TR-1 and (b) dataset
TR-2. Green squares refer to measurements of the deposit on the leaf surface, orange circles to measurement in the leaf tissue.

Table 1
Parameter estimates and 95 % confidence intervals for the compartmental
and diffusion-based models obtained for the datasets TR-1 and TR-2.

Model Dataset Parameter Estimate +95% C.I. Units
Compartmental TR-1 K drop.store 0.01938 + 0.01593 1/min
Compartmental TR-1 K store.drop 0.00363 + 0.00195 1/min
Compartmental TR-1 Kropear 0.05004 + 0.01390 1/min
Compartmental TR-1 droploss 0.01246 + 0.00779 1/min
Compartmental TR-1 Kieaf toss 0.00382 + 0.00072 1/min
Compartmental TR-2 K grop,store 0.01863 + 0.01456 1/min
Compartmental TR-2 K tore.drop 0.00497 +0.00312 1/min
Compartmental TR-2 Karopiear 0.04578 +0.01819 1/min
Compartmental TR-2 Kdropioss 0.00455 +0.01112 1/min
Compartmental TR-2 Kieaf toss 0.00483 +0.00176 1/min
Diffusion-based TR-1 D, 8.012e-13 +6.508e-13 m?%/s
Diffusion-based  TR-1 Ky, 1.109e+01 +4.618e+00 -

Diffusion-based TR-1 Koot 3.252 e-02
Diffusion-based TR-1 Kioss 2.609 e-02

+4.122e-02 1/s
+1.011e-01 1/s

Diffusion-based  TR-2 D, 4.481 e-13
Diffusion-based TR-2 Kpr 1.125e+01
Diffusion-based  TR-2 K pmer 2.852 e-02
Diffusion-based  TR-2 Kioss 3.562 e—02

+4.631e-13 m?/s
+6.458e+00 —

+ 3.814 e-02 1/s
+7.958e-02 1/s

4.1. Parameter estimation, data fitting and statistical tests

The parameter estimation results (Table 1) are given in terms of
estimated values and 95% confidence intervals obtained after a log-
likelihood parameter estimation has been carried out, for both the
datasets TR-1 and TR-2. For the diffusion-based model the estimated
parameters are Kp;, D,,, K, and K, assuming the other param-
eters negligible by setting their value to 0. In particular, for the spe-
cific foliar treatment considered in this study, translocation (parameter
K, ans) to other parts of the plant was not observed experimentally, and
K, is neglected to keep consistency between the compartmental and
diffusion-based model. Should these processes be observed, an indepen-
dent measure of their characteristic parameters can be included in the
model as extra loss terms. For both models it is noted that the estimated
values of the corresponding model parameters do not change signifi-
cantly between TR-1 and TR-2, especially when considering the para-
metric uncertainty. A difference is noted in the compartmental model
for the parameter ky,,, ,s;> Where the absence of UV radiation in TR-2
leads to a lower value of this parameter, however this difference is still
within the 95 % confidence intervals. Conversely, for the diffusion-based

Table 2
Quality of data fitting assessed comparing the sum of squared residuals
(SSR) to the y2-reference values at 0.05 and 0.95 significance.

Dataset ~ Model SSR Xos o5 Test result
TR-1 Compartmental 6.558 4.575 19.675 Passed
TR-1 Diffusion-based 12.835 5.226 21.023 Passed
TR-2 Compartmental 11.343  4.575 19.675  Passed
TR-2 Diffusion-based 16.603 5.226 21.023 Passed

model the estimate of K, is higher with TR-2 than with TR-1, but these
values have an uncertainty region larger than the estimate itself, which
do not allow to draw sensible conclusions at this stage.

It must be highlighted that the uncertainty on the estimates is large,
in particular for parameters K,,,, and K, in the diffusion based model.

The predicted profiles after parameter estimation with the compart-
mental and diffusion-based models are shown in Fig. 4, along with the
experimental data used to calibrate the model parameters. The error
bars show the 95 % uncertainty region in the experimental data. It is
observed that both models capture well the Al uptake profiles observed
experimentally, as also confirmed by the parity plots in Fig. 5 which
compare experimental data with model predictions.

4.1.1. Statistical tests

The data fitting results are reported in Table 2. The sum of squared
residuals (SSR) shows that the compartmental model has a better fit-
ting than the diffusion model, since the SSR values obtained with the
compartmental model are lower with both datasets. The table reports
also the results of the y2-test performed to evaluate the quality of data
fitting. The results of the statistical test show that both models provide
an adequate fitting of the data since the SSR is between ;(3_05 and ;((%_95
both when calibrated on dataset TR-1 and TR-2.

The statistical quality of the estimates is evaluated by means of a t-
test, which results are shown in Fig. 6. The compartmental model results
(Fig. 6a) depict that the parameter k,,, / 5,5, TEPresenting a consumption
term inside the leaf, is estimated with a good confidence from both TR-
1 and TR-2 datasets, being the t-values higher than the reference 7,,;.
For ky,p 100 the estimate is satisfactory only when the dataset TR-2 is
used, while the t-values of all the other parameters are clearly lower
than the reference. In particular, the loss term from the droplet kg, 1555
is the most critical parameter to estimate, as underlined by the least
confidence in the estimate.
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Fig. 5. Parity plots showing the comparison between the experimental data and model predictions for the datasets (a) TR-1 and (b) TR-2. Legend: blue circle -
compartmental model, surface deposit; yellow cross - compartmental model, leaf internal; green star - diffusion model, surface deposit; red triangle - diffusion model,

leaf internal.
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Fig. 6. Bar chart with the values of the t-test statistics obtained on datasets TR-1 and TR-2 for (a) the compartmental model and (b) the diffusion-based model

parameters.

The t-test results obtained with the diffusion-based model are shown
in Fig. 6b. In this case, parameter K,,,,, that describes the AI consump-
tion inside the leaf, and K;,,,, which represents the loss from the deposit,
are both poorly estimated, especially the latter which is the most criti-
cal to estimate also for the diffusion-based model. This result goes along
with the large variances observed in Table 1. On the other hand, the es-
timate of the partition coefficient Ky, is statistically significant at least
with dataset TR-1, while the t-values obtained for D,, are lower than
the reference value, therefore its estimate has low confidence from the
statistical point of view.

4.2. Model identifiability

To answer the question whether the results on the estimates could
be improved by designing new and more informative experiments, the
framework presented in the methodology, Section 2 (Fig. 1), is followed.
The first analysis conducted is to assess the identifiability of the model
parameters by analyzing the dynamic sensitivity profiles, which indi-

cate the impact of the parameters on the output variables in time, then
followed by the correlation analysis between the parameters.

4.2.1. Local sensitivity profiles

Results from the sensitivity analysis are shown in Fig. 7 for the com-
partmental model and Fig. 8 for the diffusion model. This is a local anal-
ysis performed around the preliminary estimate of the parameters, and
for both models the results are reported starting from the estimate ob-
tained with TR-1 and TR-2. It is observed that the profiles obtained for
a given model with the two datasets are similar in their features, so only
the profiles for TR-1 will be commented for the sake of conciseness. The
profiles for TR-2 are reported in Appendix A in the supplementary mate-
rial. The values of sensitivity have been normalized for each parameter
in the range between -1.0 and + 1.0 to show which output measurement
has the higher impact for a given parameter.

For the compartmental model it emerges that parameters k., ore
and kg, 4,0, are mostly linked to the measurement on the deposit
(Fig. 7a), kipay105s depends uniquely on the leaf extract measure-
ment (Fig. 7b), while both outputs are sensitive to the remaining two
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Fig.7. Sensitivity profiles for the compartmental model parameters. (a) Output:
deposit, dataset TR-1; (b) output: leaf extract, dataset TR-1.

parameters K o, jear 80d Kyppp 1055+ It must also be highlighted that the
loss due to Al consumption in the leaf (k;,, f ;,5,) has the peak of sensitiv-
ity between 3 and 6 h since the deposition of the droplet on the leaves,
while impact on the measured outputs of the parameters kg, sores
Karopieay @A Kgpop 1055 18 stronger in the short time from the deposition
(within 1 h), when the initial uptake dynamics takes place.

The sensitivity profiles obtained with the diffusion model are re-
ported in Fig. 8. Also in this case it is observed that the metabolic rate
is mostly linked to the leaf extract output (Fig. 8b), and that its effect
peaks between 3 and 6 h after the deposition of the formulation on the
leaves, similarly to what has been observed with k., j,, in the com-
partmental model. The dependence of K, , on the leaf measurement is
very similar to the metabolism rate K,,,,, being the two profiles almost
overlapping, but a difference between the two parameters is observed in
the deposit (Fig. 8a), which should allow decoupling the effect of these
two parameters. The other two parameters K, and D,, impact both
outputs equally at the beginning, and their peak is observed in the first
hour from the deposition of the droplets. However, after two hours from
the deposition the effect of D,, rapidly drops to zero, while the equilib-
rium at the interface K, still holds a significative role in the system
dynamics.
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Fig. 8. Sensitivity profiles for the diffusion-based model parameters. (a) Output:
deposit, dataset TR-1; (b) output: leaf extract, dataset TR-1.

4.2.2. Parameter correlation analysis

Practical identifiability issues did not clearly emerge from the dy-
namic sensitivity profiles, and to confirm this observation, practical
identifiability is further tested by studying the correlation between
model parameters, following the methodology presented in Section 2.
The results of this analysis are reported in Fig. 9 by means of correlation
matrices, respectively for compartmental model (Fig. 9a, b) and diffu-
sion model (Fig. 9¢c, d). Similar results are obtained when conducting
the analysis starting with different sets of preliminary data, i.e. TR-1
and TR-2, for a given model among the candidates.

For the compartmental model, the matrix in Fig. 9a and b show a
block diagonal trend where ki, ,,, is slightly correlated to k., o555
while the other three parameters k.., sores Kstore.drop @04 Kgropjear are
moderately inter-correlated. However, the maximum correlation index
observed between pairs of parameters in the compartmental model is
0.91 (for ky,p store a0 k gy 10q £ ), Which is below the conservative thresh-
old of 0.95 defined in the methodology. Therefore, the analysis tells that
practical identifiability is not an issue for the compartmental model pa-
rameters, whose estimates could then be improved by providing addi-
tional data from properly designed foliar uptake experiments.

The correlation matrix of the diffusion model parameters in Fig. 9c
and d suggests that parameters K,,,, and K, could potentially have
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Fig. 9. Correlation matrix for the model parameters: (a) compartmental model, dataset TR-1; (b) compartmental model, dataset TR-2; (c) diffusion-based model,

dataset TR-1; (a) diffusion-based model, dataset TR-2.

identifiability problems since the observed correlation index between
the two parameters is —0.98, exceeding the conservative threshold of
0.95. The parameters D,, and K, have a correlation of —0.77 and
—0.89 in the two cases, noting that the difference is due to the local
nature of the analysis, conducted around the local estimate of the pa-
rameters. In any case, for these two parameters signs of identifiability
issues did not emerge, also when looking at their correlation with K,,,,,
and/or K-

4.3. Data augmentation

Following the procedure presented in the methodological frame-
work, the last analysis presented in this paper is the data augmentation
study. The two different data augmentation strategies described in the
methodology Section 2.2 are presented:

e Strategy 1 - single additional sample.
Study conducted to assess the expected improvement in parameter
estimation identifiability depending on the experimental design ¢,
i.e. sampling time in this case.

o Strategy 2 - multiple additional samples.
Analysis to verify how many additional data are required to solve
parameter identifiability issues.

Results from the two different augmentation strategies are reported
in the following subsections.

4.3.1. First augmented data study

The first analysis considers the effect of adding one additional ex-
perimental data to the 8 data points in the original dataset to assess the
expected improvement in the statistics of parameter estimation, data fit-
ting and identifiability of model parameters. In this study, the impact
of the different location in time for the additional sample is evaluated.
The noise factor added to the simulated measurement is generated with
a heteroscedastic model calibrated on the noise observed in the original
dataset, to replicate the data variability of the real experiments. This
study is conducted on both available datasets TR-1 and TR-2, and the
heteroscedastic model is calibrated independently for each case.

Results are shown in Fig. 10 for the compartmental model and TR-1
and Fig. 11 for the diffusion model and TR-1. The results obtained with
dataset TR-2 are available in the supplementary material - Appendix B.
For each combination of model and dataset the following plots are re-
ported: (a) the whole set of additional experimental data simulated, and
the profiles with respect to the sampling time of the additional data point
of (b) log,y(det(FIM)), (c) the t-value statistics for the parameters, (d)
the standard deviation of the estimates, (e) the SSR with the y? refer-
ence values. Dashed lines in the plots indicate the initial values obtained
with the original dataset before adding the new simulated data point.

The profiles of the determinant of the FIM depict oscillations around
the initial value for the compartmental model. This can be due to the
high variability in experimental noise added to the new data, which is
included in the calculation of FIM in the term X, as per Eq. (5), and
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Fig. 10. Data augmentation results for the compartmental model, dataset TR-1. (a) Simulated data with the experimental error, (b) det(FIM) - log,, scale calculated
as in Eq. (5), (c) t-values, (d) standard deviation in the estimates, (e) SSR after data fitting. Dashed lines show the values obtained with the original dataset.

since the dataset dimensionality is small, just a single additional data
point can have a significant impact. A similar oscillatory behaviour is
observed also for the diffusion-based model.

The SSR increases for the compartmental model with the new data
point, but it remains within the statistically significant region ( X&os -
;(395) in Fig. 10e. For the diffusion model, Fig. 11e, the quality of fitting

10

remains good from the statistical point of view and the SSR is slightly
lower with the additional data point for most of the sampling times.
The quality of the estimates obtained with the new data is shown
with the plots of t-test statistics and of the standard deviation of the
estimates. These two profiles are related because the lower the para-
metric uncertainty, the higher the t-value, for a given estimate of the
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Fig. 11. Data augmentation results for the diffusion-based model, dataset TR-1. (a) Simulated data with the experimental error, (b) det(FIM) - log,, scale calculated
as in Eq. (5), (c) t-values, (d) standard deviation in the estimates, (e) SSR after data fitting. Dashed lines show the values obtained with the original dataset.

parameter, as per Eq. (10). For the compartmental model, adding a data
point collected in the first 30 min can significantly improve the qual-
ity of the estimates, as shown in Fig. 10c, especially for the parameters
Karopieass Karopstore 304 K gy0p 1055, Which were characterized by the lowest
t-values. The early location in time of the most informative sample for
these parameters is in agreement with the sensitivity profiles presented
in Fig. 7.
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The results obtained with the diffusion-based model are also in agree-
ment with the sensitivity study shown in Fig. 8. For parameter Kp;,
which was already estimated with good confidence, a general improve-
ment in the quality of the estimate is observed with the additional ex-
perimental evidence. By analyzing the t-value for D,,, a general im-
provement is observed as it approaches the reference t-value, suggesting
that with some additional data it could be possible to further refine its
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estimate. For parameters K,,,, and K,,,,, which resulted to be strongly
correlated from the previous analysis, the most informative samples are
collected in the first 60 min as observed from the t-values in Fig. 11c,
i.e. when the difference in their effect on the system dynamics is the
maximum, however the quality of their estimate is still far from being
statistically satisfactory.

4.3.2. Second augmented data study

The questions arising from the first data augmentation study in
Section 4.3.1 are then: if more budget is potentially available to collect
new samples from the same type of experiments, would it be possible
to obtain a good estimation for these parameters? And if so, how many
experiments would be required?

To answer these questions, the second data augmentation study de-
scribed in the methodology (Section 2.2) is performed. This analysis is
conducted only for the diffusion-based model since it is the only model
with strongly correlated parameters. It is assumed to collect the new
data in the time interval between 10 and 350 min, and to have a budget
that goes up from 0 to 60 new data points equally spaced in this time
frame.

Fig. 12 shows the results of the analysis for both datasets TR-1 and
TR-2. For each case two plots are shown: i) one reporting the estimated
values 6 and the respective standard deviation both normalized to the
initial value of estimate, and ii) the t-value profiles plotted against the
number of additional experimental points.
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Table 3

Correlation between the most critical parameter pairs in the data augmen-
tation study. Initial value of correlation index (Init.), and correlation values
observed with 10 to 60 additional samples.

Parameters Data Init. 10s. 20s. 30s. 40 s. 50s. 60 s.

D,-Kp, ~TR1 -0.77 -0.78 -0.72 -0.75 -0.87 -0.76 -0.72
D,-Kp, ~ TR2 -089 -0.88 -0.85 -0.88 -093 -0.85 -0.87
K,.—-K,, TR1 -098 -0.98 -099 -0.99 -0.99 -0.99 -0.99
K, — Kips TR-2 -0.97 -098 -099 -0.99 -098 -0.99 -0.98

It is interesting to observe that the uncertainty on all the four pa-
rameters D,,, Kp;, K., and K, drops significantly with the first 10
additional data points, and then keeps decreasing until 30 additional
samples. After that point, the uncertainty keeps decreasing further, as
shown by the increase in the t-values, but with a lower rate of improve-
ment. The profiles of K,,,, and K, are of particular interest, being the
two parameters strongly correlated. The t-value of K,,,, reaches the t-
reference threshold after 20 additional samples are collected, both with
dataset TR-1 and TR-2. Conversely, the initial uncertainty in K, varies
significantly between TR-1 and TR-2, and this limits the capability in
uncertainty reduction in the hypothetical scenario of pseudo-unlimited
budget. As a consequence, its t-value after 30 additional samples is sat-
isfactory for the case TR-2 but not for the case TR-1. Furthermore, as
shown in Table 3 the strong correlation between K,,,, and K, is still
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Fig. 12. Second data augmentation study: profiles of parameter estimates (solid lines) and standard deviations (dashed lines) normalized to the initial estimate, and
profiles of the t-values against the number of additional samples with reference t-value (black dashed line). Datasets: (a), (b) TR-1; and (c), (d) TR-2.
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present even with the new experimental information. These results con-
firm that K, is the most critical parameter to be estimated in the
diffusion-based model if only this specific type of biokinetic experimen-
tal data is available.

This study can provide directions to the experimenters around what
they should mostly look at before consuming experimental resources,
which is the added value of combining computational research with the
experimental work in this application. Still, this is a hypothetical study
under the assumption of almost unlimited budget, but then considera-
tions must be take into account on the actual experimental budget and
practical feasibility of collecting that many samples in a short time pe-
riod, not to mention that correlation issues are still present even in this
theoretical scenario.

This analysis demonstrates that a number between 20 and 30 ad-
ditional sampling points are needed to obtain statistically significant
estimates for parameters K,,,, and K,,,,, if the data are collected from
this type of bio-kinetic experiments, and the correlation issues will still
be present afterwards. If parameters can be decoupled, a good estimate
could potentially be reached with a much lower number of samples,
considering that collecting these many samples would be extremely ex-
pensive and time consuming, if not impractical. The modelers and exper-
imentalists should then work together to evaluate other potential solu-
tions, such as i) collecting data from different experiments that can allow
an independent estimation of one of the two parameters, ii) correlate the
problematic parameters to other physical and chemical properties of the
crop-Al-formulation system, iii) reformulate the diffusion-based model.
In terms of future directions, the possibility of using less but very precise
samples will also be explored, combining it with a parametric study on
the variance model for measurement errors.

5. Conclusions

This paper presented the application of a systematic modeling frame-
work to understand and characterize the process of foliar uptake of pes-
ticides. Different models have been considered, namely compartmental
and diffusion-based models, and compared within the proposed model-
ing approach.

The study aims to develop a model that can be used in practice, to-
gether with the experimental observations, to extract more information
about the system defined by crop-active ingredient-product formulation
and potentially predict the expected uptake for new systems. To achieve
this goal it is crucial to include practical considerations during all the
steps of the modeling procedure, first of all ensure that model parame-
ters are identifiable.

The analyses conducted in this paper focus on the concept of a-
posteriori identifiability, which has been tested via dynamic sensitivity
profiles and by studying the correlation between the parameters. An ap-
proach based on in silico data augmentation studies has been introduced
in the modelling framework to study possible solutions to practical iden-
tifiability issues by collecting additional samples, while assessing the
expected improvement in the estimates.

The parameters of the compartmental model are practically identi-
fiable, even though some of them (i.€. Kyy(p o5 A0 Ky s10re) @re char-
acterized by a large uncertainty in the preliminary estimate. The data
augmentation study has demonstrated that their statistical quality can
easily be improved by adding a few data points collected at the most
informative sampling times.

In the diffusion-based model, the estimates of diffusion coefficient
in the leaf, D,,, and partition coefficient at the interface droplet-leaf,
Kp;, can be improved with a limited number of additional samples,
while the metabolic rate of AI consumption in the leaf, K,,,,, and the
loss rate from the deposit K, are strongly correlated and an impractical
number of additional samples, between 20 and 30, would be required to
pass the statistical tests. To address this issue, a co-operation between
modelers and experimentalists is advised to evaluate potential solutions,
such as i) collecting data from different experiments that can allow an
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independent estimation of one of the two parameters, ii) correlate the
problematic parameters to other physical and chemical properties of the
crop-Al-formulation system, iii) reformulate the diffusion-based model.

This study paves the way to further developments in the applica-
tion of model-based design of experiments in a biological context char-
acterized by high uncertainty in the experimental observations and in
the model parameters. Further developments of the study will cover
the uncertainty propagation from the model parameters to the predic-
tions, coupled with the data augmentation study presented here. An-
other aspect that will be covered in future studies will be the impact
of uncertainty in the initial conditions, i.e. the amount of Al initially
present in the deposit, on model identification and how it would affect
the model predictions. Finally, the application of model-based design of
experiments (MBDoE) in foliar uptake experiments is also part of future
works, considering the possibility of targeting uncertainty in model pa-
rameters, inputs, and model predicitons, to validate the application of
these techniques in a novel context.
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