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 a b s t r a c t

The global population increase leads to a high food demand, and to reach this target products such as pesticides 
are needed to protect the crops. Research is focusing on the development of new products that can be less harmful 
to the environment, and mathematical models are tools that can help to understand the mechanism of uptake 
of pesticides and then guide in the product development phase. This paper applies a systematic methodology 
to model the foliar uptake of pesticides, to take into account the uncertainties in the experimental data and 
in the model structure. A comparison between different models is conducted, focusing on the identifiability 
of model parameters through dynamic sensitivity profiles and correlation analysis. Lastly, data augmentation 
studies are conducted to exploit the model for the design of experiments and to provide a practical support to 
future experimental campaigns, paving the way for further application of model-based design of experiments 
techniques in the context of foliar uptake.

1.  Introduction

As the world’s population continues to grow and the planet’s re-
sources remain limited, ensuring sufficient food production becomes a 
crucial challenge both in the present and for the coming decades. In 
tackling this issue, the development of improved and safer biocides will 
be essential to optimize crop yields and meet the increasing demand for 
food. This brings forth the need for innovative solutions that align with 
sustainable agricultural practices (Umetsu and Shirai, 2020).

Crop protection products such as herbicides and pesticides can be 
delivered to the plants via different methods, with the spraying on the 
foliage being one of the most relevant ones for field applications. The 
process that bring the active ingredient (AI) from the mixing tank to the 
biological target sites is determined by a series of inter-correlated pro-
cesses in the biodelivery chain. Having a quantitative understanding of 
these processes and their effect on the product efficacy is fundamental 
for developing innovative solutions, and mathematical models are tools 
that can help researchers in this field and guide further experimental di-
rections. While essential for crop protection and beneficial for tackling 
food demand needs, the use of pesticides raises concerns about environ-
mental impact, particularly in terms of soil and water contamination 
(Aktar et al., 2009), as well as the impact on global ecosystems (Sharma 
et al., 2019). This underscores the heightened importance of develop-
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ing tools and technologies that can contribute to the production of safer 
pesticides for the surrounding environment.

Among all the processes identified in the biodelivery chain, the fo-
liar uptake of the AI (Franke, 1967), i.e. the process of absorption of the 
AI through the leaves (Fernández et al., 2021), is not completely under-
stood and influenced by several factors, while being a crucial step in the 
path that leads the AI from the tank to the target sites, i.e. the biological 
macromolecules essential for the physiological functions of pests, weeds, 
and pathogens, that interact with the biocide (Zhang et al., 2025). There-
fore more effort both theoretical and experimental is needed to charac-
terize this phenomenon subject to high uncertainty in its description.

Several works can be found in literature tackling the question of how 
to describe the foliar uptake process. The models available in the lit-
erature can be divided in three categories (Trapp, 2004): i) empirical 
correlations, ii) compartmental models, and iii) diffusion-based models. 
Examples of empirical correlations can be found in Briggs et al. (1987) 
and Forster et al. (2004), however these models are unable to describe 
the underlying mechanism. Compartmental models have been applied 
to physiological systems for several decades (Rowland et al., 1973), with 
specific applications also to foliar uptake, e.g. in the works by Bridges 
and Farrington (1974); Satchivi et al. (2000) and Fantke et al. (2013). 
Some works in literature (Schreiber, 2006) suggest that the process of 
AI uptake through the cuticle, i.e. the outermost layer of leaves, can be 
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\begin {align}\label {eq:generalmodel} \begin {cases} \dot {{\bm x}}(t) = \bm {f}(\bm {x}(t),\bm {u}(t),\bm {\theta }, t) \\ \hat {\bm {y}}(t) = \bm {g}(\bm {x}(t),\bm {u}(t),\bm {\theta }, t) \end {cases}\end {align}
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\begin {align}\label {eq:fim} \bm {H} = \bm {S}^T \bm {\Sigma }_y^{-1} \bm {S} + \bm {H}^0\end {align}
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\begin {align}\label {eq:vartheta} \bm {V}_{\theta } = \bm {H}^{-1} .\end {align}
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\begin {align}\label {eq:corr_coef} r_{ij} = \frac {V_{\theta _{ij}}}{\sqrt {V_{\theta _{ii}} V_{\theta _{jj}} }} \quad \forall i,j = 1,\ldots , N_\theta \end {align}
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\begin {align}\psi _i = \psi _o + \{\hat {\bm {y}}(\bm {x},\bm {u},\hat {\bm {\theta }}_0,t_i) + \bm {\varepsilon }_i\} \quad \forall i=1,\ldots ,N_{new} \label {Xeqn7-8}\end {align}
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by diffusion. Starting from this consideration, diffusion-based mechanis-
tic models have been proposed in literature for the characterization of 
foliar uptake, e.g. in Mercer (2007) and Tredenick et al. (2017). Other 
models for plant uptake (Li, 2025) include, along with foliar uptake, 
also the description of other processes such as root uptake and/or up-
take through the skin of fruits, however, the focus of this paper is solely 
on the uptake through the leaves. To the best of our knowledge, there is 
no work proposed in literature where a systematic approach is applied 
for the development and statistical assessment of foliar uptake models.

The objective of this study is to obtain and statistically validate a pre-
dictive model to represent the phenomena occurring within the leaves in 
a quantitative way. To model biological systems, uncertainty typically 
arises in the experimental data and in the definition of a suitable struc-
ture of the model, i.e. in which phenomena should be included in the 
mathematical formulation. Since the foliar uptake case study involves 
biological systems, the large uncertainty in the experimental observa-
tions must be taken into consideration when assessing the reliability of 
the mathematical models in a statistically sound approach.

This paper approaches the problem with a systematic modeling 
framework presented in Section 2. Different models, described in
Section 3, are considered for the characterization of foliar uptake. The 
results of their comparison are presented in Section 4, focusing on the 
identifiability of model parameters and data augmentation studies con-

ducted to exploit information from the models for the design of addi-
tional experiments. Section 5 summarizes the achievements of this study 
and points the direction of future works.

2.  Methodology

The general modeling framework considered in this study to obtain 
a reliable predictive model for the characterization of foliar uptake is 
presented in Fig. 1. The first step in the procedure is to formulate a set 
of candidate models, which can be based on previous literature avail-
able, the understanding of the physico-chemical processes involved in 
the system and preliminary experimental observations. The general for-
mulation of a dynamic model involving differential and algebraic equa-
tions is the following
{

𝒙̇(𝑡) = 𝒇 (𝒙(𝑡), 𝒖(𝑡),𝜽, 𝑡)
𝒚̂(𝑡) = 𝒈(𝒙(𝑡), 𝒖(𝑡),𝜽, 𝑡)

(1)

where 𝑡 is the variable time, 𝒙(𝑡) is a 𝑁𝑥-dimensional vector of 
system state variables, 𝒙̇(𝑡) the vector of time derivatives, 𝒖(𝑡) the
𝑁𝑢-dimensional vector of known system inputs, 𝜽 the 𝑁𝜃-dimensional 
vector of model parameters, and 𝒚̂(𝑡) the 𝑁𝑦-dimensional vector of pre-
dicted system outputs.

Fig. 1. Framework considered to develop a predictive foliar uptake model.
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Once the candidate models are formulated, it is important to test the 
identifiability of their parameters (step 2 in Fig. 1), i.e. if the model pa-
rameters can be uniquely identified from a given set of input and output 
measurements. Identifiability methods can be distinguished between a-
priori and a-posteriori tests (Miao et al., 2011): a-priori methods consider 
uniquely the structure of the model, while a-posteriori techniques start 
from preliminary experimental data and include practical experimental 
limitations.

The problem of model identifiability is expressed as

𝒚̂(𝜽1) = 𝒚̂(𝜽2) ⇒ 𝜽1 = 𝜽2, (2)

meaning that if the model predictions 𝒚̂ are identical for some parameter 
vectors 𝜽1 and 𝜽2, then these vectors must be the same, i.e. 𝜽1 = 𝜽2. If 
the condition in Eq. (2) does not hold, then the model is not-uniquely 
identifiable, i.e. there exist two distinct vectors 𝜽1 and 𝜽2 which give 
the same model predictions.

If the model is not identifiable a-posteriori, before discarding it, other 
questions are posed in the proposed scheme (step 3). The first question 
is whether having additional experimental observations would be suf-
ficient to solve the identifiability issues. To answer this question, an in 
silico study is conducted by simulating new experimental data and sub-
sequently evaluating the expected improvement in the statistical qual-
ity of the estimates to justify the need for additional data. Moreover, 
it must be considered that in a real case application experiments will 
also have to be conducted in practice, which is another important de-
cision block. If the outcome of these decision is still negative, model 
re-parametrization methods can be considered to solve the identifiabil-
ity issues before removing a model from the set of candidate ones.

The modeling procedure then continues (step 4) with parameter es-
timation and statistical tests to assess both the quality of fitting and 
the precision on parameter estimation. Given that the final objective is 
to apply the model in practice, the next step is to propagate the un-
certainty from parameters to model predictions, to assess whether this 
uncertainty is within an acceptable range. If the outcome of statisti-
cal tests and uncertainty propagation is not satisfactory, model-based 
design of experiments (MBDoE) can be applied to optimally design ad-
ditional experiments, and the additional experimental evidence will be 
used to re-estimate the model parameters (Franceschini and Macchietto, 
2008). Finally, the modeling procedure is concluded (step 5) by validat-
ing the model on independent experimental observations.

The following subsections will present in detail the methodology em-
ployed for testing model identifiability and for the in silico data augmen-
tation study, which are the focus of the results presented in this paper.

2.1.  Identifiability analysis

This paper focuses on the study of a-posteriori identifiability to assess 
whether the parameters can be identified in a practical scenario with 
real experimental data.

Practical identifiability tests considered in this study are based on 
the analysis of local sensitivity and correlation matrix since they are less 
expensive from the computational point of view compared to alterna-
tive methods such as Markov Chain Monte Carlo, and their application 
has been validated in several works available in the literature (Wieland 
et al., 2021).

2.1.1.  Local sensitivity analysis
This analysis is local because it is performed around a nominal value 

for parameters 𝜽̂, which can be estimated from preliminary data. To 
construct the dynamic sensitivity matrix, 𝑠𝑖𝑗 (𝑡𝑘) the sensitivity of the 
ith response 𝑦𝑖 to the 𝑗th parameter 𝜃̂𝑗 at the 𝑘th sampling time 𝑡𝑘 is 
calculated as

𝑠𝑖𝑗 (𝑡𝑘) =
𝜕𝑦̂𝑖(𝑡𝑘)
𝜕𝜃̂𝑗

(3)

So that the dynamic sensitivity matrix 𝑺 is obtained 
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(4)

where 𝑁𝑠𝑝 is the number of sampling points and 𝒕 the 𝑁𝑠𝑝-dimensional 
vector of sampling times.

The dynamic sensitivity is evaluated over the whole time domain 
and the profiles plotted. If two or more parameters give overlapping 
profiles, this is an indication of practical non-identifiability, i.e. the cor-
responding parameters have the same effect on the system response and 
are correlated.

2.1.2.  Correlation matrix method
The correlation matrix approach is used to evaluate the identifiabil-

ity of parameters, which relies on the matrix of sensitivities 𝑺 computed 
in Eq. (4). Given a preliminary estimate of the model parameters 𝜽̂, the 
matrix 𝑺 is combined with the variance-covariance matrix of the mea-
surements 𝚺𝑦, i.e. a diagonal matrix with the observed variance from 
experimental replicates on the main diagonal, to calculate the Fisher 
information matrix 𝑯 (Walter and Pronzato, 1997) as
𝑯 = 𝑺𝑇𝚺−1

𝑦 𝑺 +𝑯0 (5)

where 𝑯0 is the preliminary information on the parameters, which 
can be neglected if no prior information is available. The variance-
covariance of the estimates 𝑽𝜃 = {𝑉𝜃𝑖𝑗 } is approximated by the inverse 
of the observed 𝑯 in the form
𝑽𝜃 = 𝑯−1. (6)

The correlation matrix is then defined as 𝑹 = {𝑟𝑖𝑗}, where

𝑟𝑖𝑗 =
𝑉𝜃𝑖𝑗

√

𝑉𝜃𝑖𝑖𝑉𝜃𝑗𝑗
∀𝑖, 𝑗 = 1,… , 𝑁𝜃 (7)

A correlation between parameters higher than 0.99 is a sign of practi-
cal non-identifiability, approaching a singular Fisher information matrix 
(Rodriguez-Fernandez et al., 2006). In this study, a conservative thresh-
old of 0.95 is chosen as critical correlation.

2.2.  Data augmentation study

Two studies are performed to evaluate experimental conditions en-
abling statistically reliable model identification. These studies rely on 
in silico generated data, where a noise factor is added to the model pre-
dictions to reliably reproduce real experimental data. The parameters in 
the variance model are calibrated on the variance observed experimen-
tally. Both data augmentation procedures are presented in the following 
subsections.

2.2.1.  Single additional sample
The first data augmentation study is performed to assess the expected 

improvement in the statistics of parameter estimation, data fitting, and 
identifiability of model parameters deriving from the availability of ad-
ditional experimental data, depending on the experimental design 𝝋 , 
i.e. the set of conditions at which the new data are collected.

The steps involved in this study are:

1. The experimental design vector 𝝋 is defined as {𝑡1,… , 𝑡𝑁𝑛𝑒𝑤}, where 
𝑁𝑛𝑒𝑤 is the number of sampling times under assessment in the design 
space Φ.

2. The 𝑁𝑛𝑒𝑤 design variables 𝑡𝑖 are sampled using an equally spaced 
sampling of the design space defined by upper and lower bounds on 
the experimental sampling times.
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3. New experimental data are generated in silico from the model for 
each of the 𝑁𝑛𝑒𝑤 elements of the design vector 𝝋, and added to the 
original dataset 𝜓𝑜 to obtain 𝑁𝑛𝑒𝑤 augmented datasets:
𝜓𝑖 = 𝜓𝑜 + {𝒚̂(𝒙, 𝒖, 𝜽̂0, 𝑡𝑖) + 𝜺𝑖} ∀𝑖 = 1,… , 𝑁𝑛𝑒𝑤 (8)

where 𝜽̂0 is the preliminary estimate of parameters, and the error 
𝜺𝑖 ∈  (𝟎,𝝈2

𝑖 ) is obtained from a normal distribution with zero mean 
and variance 𝝈2

𝑖 . The variance is obtained from a heteroscedastic 
model

𝝈2
𝑖 = 𝜔2(𝒚̂2)𝛾∕2 (9)

where parameters 𝜔 and 𝛾 are calibrated from the variance observed 
in the original experimental dataset.

4. Perform parameter estimation for every 𝑁𝑛𝑒𝑤 augmented dataset 
𝜓𝑖, and evaluate the statistics on the new estimates. The results are 
the new estimate 𝜽𝑖, the covariance of the parameters 𝑽𝜽𝑖 , the FIM 
𝑯𝑖, the t-values of the parameters 𝒕𝜽𝑖  (see Eq. (10)) and the sum of 
squared residuals, i.e. the 𝜒2

𝑖  statistics, for all 𝑖 = 1,… , 𝑁𝑛𝑒𝑤.

𝑡𝜃𝑗 =
𝜃̂𝑗

𝑡( 1+𝛼2 )
√

𝑉𝜃𝑗𝑗
∀𝑗 = 1,… , 𝑁𝜃 (10)

In Eq. (10), the value 𝑡( 1+𝛼2 ) is obtained from a Student’s distribution 
with dim(𝜓) −𝑁𝜃 degrees of freedom and significance 1+𝛼2 . The t-values 
of the parameters calculated as in Eq. (10) are compared to a t-reference 
value 𝑡(𝛼) given the significance level 𝛼.

This first data augmentation study is performed to understand under 
which conditions, i.e. sampling time, an additional experiment should 
be conducted so that the new data will carry more information in the 
modeling process.

2.2.2.  Multiple additional samples
The second data augmentation study is performed to verify how 

many additional data are required to solve parameter identifiability is-
sues, i.e. to estimate the full set of model parameters precisely. The pro-
cedure for this second study is the following:

1. Select and fix the design space Φ for experimental design variables 
𝝋 starting from the results of the previous study.

2. Select 𝑛𝑠𝑝 sampling points, i.e. 𝝋𝑛𝑠𝑝 = {𝑡1,… , 𝑡𝑛𝑠𝑝}, uniformly dis-
tributed in the design space Φ.

3. Generate new data 𝜓𝑛𝑒𝑤 in silico for each sampling point in 𝝋𝑛𝑠𝑝 ,

𝜓𝑛𝑒𝑤 = {𝒚̂(𝒙, 𝒖, 𝜽̂0, 𝑡𝑖) + 𝜺𝑖 |𝑡𝑖 ∈ 𝝋𝑛𝑠𝑝 ∀𝑖 = 1,… , 𝑛𝑠𝑝} (11)

where the noise term 𝜺𝑖 is modeled as in Eq. (9).
4. Add the new data 𝜓𝑛𝑒𝑤 to the original dataset available 𝜓𝑜 to obtain 
the augmented dataset 𝜓𝐴.
𝜓𝐴 = 𝜓𝑜 + 𝜓𝑛𝑒𝑤 (12)

5. Perform parameter estimation and evaluate the statistics, i.e. t-test 
on the estimates.

6. Increase the number of sampling points and iterate the procedure 
from point 2., until the maximum budget is reached.

The following section will present the case study on which the mod-
eling framework is applied. i.e. foliar uptake of pesticides, in particular 
focusing on the models considered to describe the system behavior.

3.  Foliar uptake models

In this paper different candidate models are compared for the de-
scription of pesticide uptake through the leaves. In particular the two 
models included in this study are 𝑖) a diffusion-based model (Sangoi 
et al., 2024a), and 𝑖𝑖) a compartmental model (Sangoi et al., 2024b).

Fig. 2. Graphical representation of the compartmental model for leaf uptake. 
The pins indicate the observed states, the compartments represent the system 
states and the arrows the transfer rates between the compartments (model pa-
rameters).

3.1.  Compartmental model

The compartmental model included in this study to describe the fo-
liar uptake process is presented graphically in Fig. 2, where the pins 
indicate the observed states in the system. The compartments included 
in the model formulation are the following: droplet, store, leaf inter-
nal, and surface deposit. The droplet is formulated product deposited 
on the leaf surface, the store compartment contains the active ingre-
dient (AI) crystallized on the surface and not available for uptake, 
while the surface deposit is the sum of the two compartments, which 
corresponds to the system state observed experimentally. As for the 
leaf internal, a single compartment is considered because a more de-
tailed division in the different layers that constitute the leaf would 
lead to a-priori non-identifiability issues when lacking of experimen-
tal observations of the different layers, as observed in a previous 
study (Sangoi et al., 2024b). Moreover, this choice ensure consistency 
with the diffusion-based model included in this study to have a fair
comparison.

In Fig. 2, the arrows indicate where the mass transfer between the 
compartments takes place. Mass transfer between the droplet and store 
compartments is associated to crystallization/solubility processes on the 
leaf surface (Burkhardt et al., 2012), while the loss term from the droplet 
takes into account the AI lost, i.e. not available for uptake, due to volatil-
ity and/or photo-instability (Bronzato et al., 2023).

The AI in solution in the droplet is available for uptake in the leaf in-
ternal compartment (𝑘𝑑𝑟𝑜𝑝,𝑙𝑒𝑎𝑓 ), and then the loss term 𝑘𝑙𝑒𝑎𝑓 ,𝑙𝑜𝑠𝑠 takes into 
account AI consumption inside the leaf due to metabolism or chemical-
instabilities which reduce the amount of AI available in the leaf with 
time.

The mathematical expression of the compartmental model is re-
ported in Eq. (13). The dynamic model is a system of ODEs, which 
describes the evolution in time of the AI mass in the different compart-
ments.

𝑑𝑚𝑖
𝑑𝑡

=
∑

𝑗≠𝑖
(𝑘𝑗𝑖𝑚𝑗 − 𝑘𝑖𝑗𝑚𝑖) (13)

In Eq. (13), 𝑚𝑖 is the mass of AI in compartment 𝑖, and 𝑘𝑖𝑗 the transfer 
rate of AI from compartment 𝑖 to compartment 𝑗. The 𝑚𝑖(𝑡) values are 
normalized with respect to 𝑚𝑑𝑒𝑝𝑜𝑠𝑖𝑡(𝑡 = 0), therefore transfer rates 𝑘𝑖𝑗 are 
expressed in units of min−1.

With respect to the generic formulation presented in Eq. (1), the vec-
tor of state variables is 𝒙 ∶= {𝑚𝑖}, and the vector of model parameters 
is 𝜽 ∶= {𝑘𝑖𝑗}. The input in the system is the initial mass in the deposit, 
𝒖 = {𝑚𝑑𝑒𝑝(𝑡0)}. The vector of observable outputs is 𝒚 ∶= {𝑚𝑑𝑒𝑝𝑜𝑠𝑖𝑡, 𝑚𝑙𝑒𝑎𝑓 }, 
where 𝑚𝑑𝑒𝑝𝑜𝑠𝑖𝑡 = 𝑚𝑑𝑟𝑜𝑝𝑙𝑒𝑡 + 𝑚𝑠𝑡𝑜𝑟𝑒. The experimental design vector is de-
fined by the sampling times 𝝋 = {𝑡1,… , 𝑡𝑁𝑠𝑝}.
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Fig. 3. Graphical representation of the diffusion-based model for leaf uptake: 
system geometry and key parameters involved. The pins indicate the observed 
states.

3.2.  Diffusion-based model

A second model considered in this study is a diffusion-based model. 
The geometry of the system and the physical phenomena included in 
its mathematical formulation are presented graphically in Fig. 3. Previ-
ous studies in the literature (Schreiber, 2006) suggest that the transport 
mechanism of pesticides through the cuticle, i.e. the external layer in 
the leaf structure protecting the cellular tissue from the external envi-
ronment, can be assumed as diffusion. Although, separating the cuti-
cle from the rest of the leaf is extremely complex and time consuming, 
therefore measuring the uptake in the cuticle and leaf tissue separately 
is not an activity typically performed in routine biokinetic experimental 
procedures of foliar uptake of AIs. Since the purpose of this project is 
to validate a model that can be combined with the in vitro and in vivo 
experimental campaigns for the development of new biocides, in this 
diffusion-based model it is assumed that the leaf internal is a homoge-
neous structure where equivalent diffusion takes place, in the same way 
that only a single leaf internal compartment is included in the compart-
mental model presented in Section 3.1.

The system geometry is then divided in two regions, as depicted in 
Fig. 3: the deposit on the surface and the leaf internal. The physical phe-
nomena included in the model are: equilibrium at the interface between 
deposit and leaf, diffusion of AI through the leaf, loss from the deposit 
due to volatility and chemical instability of AI, and consumption of AI 
in the leaf due to metabolism.

The following equations are included in the general mathematical 
formulation developed to describe the dynamics of AI uptake from the 
deposit to the leaf internal region.
𝑚𝑑𝑒𝑝(𝑡) = 𝐶𝑑𝑒𝑝(𝑡) ⋅ 𝑉𝑑𝑒𝑝(𝑡) (14)

𝑑𝑉𝑑𝑒𝑝(𝑡)
𝑑𝑡

= −𝐾𝑒𝑣𝑎𝑝 ⋅ 𝑓 (𝑉𝑑𝑒𝑝) (15)

subject to

𝑓 (𝑉𝑑𝑒𝑝) =

{

1 if 𝑉𝑑𝑒𝑝 > 𝑉𝑚𝑖𝑛,
0 if 𝑉𝑑𝑒𝑝 ≤ 𝑉𝑚𝑖𝑛.

(16)

𝑑𝐶𝑑𝑒𝑝
𝑑𝑡

= −
𝑓 (𝑉𝑑𝑒𝑝)
𝑉𝑑𝑒𝑝

𝑑𝑉𝑑𝑒𝑝
𝑑𝑡

𝐶𝑑𝑒𝑝 −𝐾𝑙𝑜𝑠𝑠𝐶𝑑𝑒𝑝 (17)

𝐾𝐷𝐿 =
𝐶𝑙𝑒𝑎𝑓 (0, 𝑡)
𝐶𝑑𝑒𝑝(𝑡)

(18)

𝜕𝐶𝑙𝑒𝑎𝑓 (𝑧, 𝑡)
𝜕𝑡

= 𝐷𝑒𝑞
𝜕2𝐶𝑙𝑒𝑎𝑓 (𝑧, 𝑡)

𝜕𝑧2
−𝐾𝑚𝑒𝑡𝐶𝑙𝑒𝑎𝑓 (𝑧, 𝑡) −𝐾𝑡𝑟𝑎𝑛𝑠 (19)

𝐶𝑙𝑒𝑎𝑓 ,𝑡𝑜𝑡(𝑡) =
1

𝐿𝑙𝑒𝑎𝑓 ∫

𝐿𝑙𝑒𝑎𝑓

𝑧=0
𝐶𝑙𝑒𝑎𝑓 (𝑧, 𝑡)𝑑𝑧 (20)

𝑚𝑙𝑒𝑎𝑓 (𝑡) = 𝐶𝑙𝑒𝑎𝑓 ,𝑡𝑜𝑡(𝑡) ⋅ 𝑉𝑙𝑒𝑎𝑓 (21)

In the equations reported above, the state variables are the mass 
of AI in the deposit 𝑚𝑑𝑒𝑝, the concentration of AI in the deposit 𝐶𝑑𝑒𝑝, 
the concentration of AI inside the leaf discretized in space 𝐶𝑙𝑒𝑎𝑓 (𝑧, 𝑡), 
the total concentration of AI inside the leaf 𝐶𝑙𝑒𝑎𝑓 ,𝑡𝑜𝑡, the mass of AI in-
side the leaf 𝑚𝑙𝑒𝑎𝑓 . The parameters in the model are the evaporation 
rate 𝐾𝑒𝑣𝑎𝑝, the accounting for losses from the deposit 𝐾𝑙𝑜𝑠𝑠, the parti-
tion coefficient for AI between deposit and leaf 𝐾𝐷𝐿, the diffusion co-
efficient inside the leaf 𝐷𝑒𝑞 , the metabolism rate 𝐾𝑚𝑒𝑡, the transloca-
tion to other parts of the leaf/plant 𝐾𝑡𝑟𝑎𝑛𝑠. With respect to the generic 
formulation presented in Eq. (1), the vector of state variables is 𝒙 ∶=
{𝑚𝑑𝑒𝑝, 𝐶𝑑𝑒𝑝, 𝑚𝑙𝑒𝑎𝑓 , 𝐶𝑙𝑒𝑎𝑓 , 𝐶𝑙𝑒𝑎𝑓 ,𝑡𝑜𝑡}, and the vector of model parameters is 
𝜽 ∶= {𝐾𝑒𝑣𝑎𝑝, 𝐾𝑙𝑜𝑠𝑠, 𝐾𝐷𝐿, 𝐷𝑒𝑞 , 𝐾𝑚𝑒𝑡, 𝐾𝑡𝑟𝑎𝑛𝑠}. The input in the system is the 
initial mass in the deposit, 𝒖 = {𝑚𝑑𝑒𝑝(𝑡0)}. The vector of observable out-
puts is 𝒚 ∶= {𝑚𝑑𝑒𝑝, 𝑚𝑙𝑒𝑎𝑓 }. The experimental design vector is defined by 
the sampling times 𝝋 = {𝑡1,… , 𝑡𝑁𝑠𝑝}.

With respect to the compartmental model, the main change is in 
how the physics of uptake is described. Instead of mass transfer with 
asymptotic equilibration as described by the 𝑘𝑖𝑗 parameters of the com-
partmental model, we now consider instantaneous partitioning at the 
deposit-leaf interface and diffusion through the leaf, i.e., 𝐾𝐷𝐿 and 𝐷𝑒𝑞 . 
Similarly to the compartmental model, also for the diffusion model the 
state variables are normalized with respect to the initial amount of AI 
in the deposit.

Eqs. (14)–(17) describe the dynamics in the deposit on the leaf sur-
face. Eq. (18) relates the concentration of AI in the deposit to the con-
centration in the leaf at the interface, assuming equilibrium conditions 
at all times within a boundary layer at the interface between leaf and 
droplet. In Eq. (18), 𝐶𝑙𝑒𝑎𝑓 (0, 𝑡) indicates the concentration of AI at the 
interface on the leaf side at time 𝑡. Eqs. (19)–(21) describe the dynamics 
in the leaf tissue. The leaf internal region is modeled as a homogeneous 
structure where diffusion and metabolic consumption take place uni-
formly throughout the spatial domain.

4.  Results and discussion

The analyses on the compartmental and diffusion-based models pre-
sented in Section 3 are conducted starting from experimental data of 
foliar uptake provided by Syngenta. The same procedure and analyses 
are conducted on two different datasets, named as TR-1 (treatment 1) 
and TR-2 (treatment 2). The experimental data represent biokinetic ex-
periments of foliar uptake, where the formulated active ingredient (AI) 
is sprayed on the leaves in a controlled lab environment. Two quanti-
ties are measured for each sampling time: the amount of AI left on the 
leaf surface (i.e. deposit), and the amount of AI inside the leaf (i.e. leaf 
extract). The two measurements at time 𝑡∗ are obtained in the follow-
ing way: firstly, 𝑡∗ minutes after the product is sprayed on the leaves, 
these are washed with a solvent to recover the AI on their surface. Sec-
ondly, the leaves are macerated and washed with another solvent to 
recover the AI inside the leaf. The collected samples are analyzed with 
HPLC to quantify the mass of AI recovered. Since these experiments are 
destructive for the leaf, experimental replicates must be obtained from 
different leaves. For each dataset 8 sampling times from the application 
of the product on the leaf are considered, ranging from 0 to 360min. 
Datasets TR-1 and TR-2 are shown in Fig. 4 through the data points and 
the 95% confidence intervals in the experimental replicates. The two 
dataset differ for the treatment depending if the leaves are subject to 
the solar radiation or not, while the combination of AI, formulation and 
crop are the same for the two treatments considered here.

The results of the analyses are presented with this structure: i) pa-
rameter estimation, data fitting and statistical tests (Section 4.1), ii) 
model identifiability tests (Section 4.2), iii) data augmentation study 
(Section 4.3). The models have been implemented in python, using the 
following packages to conduct the study: pandas for data manipulation 
(McKinney et al., 2010), numpy for linear algebra routines (Harris et al., 
2020), and scipy for scientific computing (Virtanen et al., 2020), i.e. for 
parameter optimization and for calculating t- and 𝜒2- statistics.
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Fig. 4. Fitting of experimental data with the compartmental model (solid line) and diffusion-based model (dashed line). Results for (a) dataset TR-1 and (b) dataset 
TR-2. Green squares refer to measurements of the deposit on the leaf surface, orange circles to measurement in the leaf tissue.

Table 1 
Parameter estimates and 95% confidence intervals for the compartmental 
and diffusion-based models obtained for the datasets TR-1 and TR-2.
    Model  Dataset  Parameter  Estimate ± 95% C.I.  Units  
  Compartmental  TR-1 𝑘𝑑𝑟𝑜𝑝,𝑠𝑡𝑜𝑟𝑒  0.01938 ± 0.01593  1/min 
  Compartmental  TR-1 𝑘𝑠𝑡𝑜𝑟𝑒,𝑑𝑟𝑜𝑝  0.00363 ± 0.00195  1/min 
  Compartmental  TR-1 𝑘𝑑𝑟𝑜𝑝,𝑙𝑒𝑎𝑓  0.05004 ± 0.01390  1/min 
  Compartmental  TR-1 𝑘𝑑𝑟𝑜𝑝,𝑙𝑜𝑠𝑠  0.01246 ± 0.00779  1/min 
  Compartmental  TR-1 𝑘𝑙𝑒𝑎𝑓 ,𝑙𝑜𝑠𝑠  0.00382 ± 0.00072  1/min 
  Compartmental  TR-2 𝑘𝑑𝑟𝑜𝑝,𝑠𝑡𝑜𝑟𝑒  0.01863 ± 0.01456  1/min 
  Compartmental  TR-2 𝑘𝑠𝑡𝑜𝑟𝑒,𝑑𝑟𝑜𝑝  0.00497 ± 0.00312  1/min 
  Compartmental  TR-2 𝑘𝑑𝑟𝑜𝑝,𝑙𝑒𝑎𝑓  0.04578 ± 0.01819  1/min 
  Compartmental  TR-2 𝑘𝑑𝑟𝑜𝑝,𝑙𝑜𝑠𝑠  0.00455 ± 0.01112  1/min 
  Compartmental  TR-2 𝑘𝑙𝑒𝑎𝑓 ,𝑙𝑜𝑠𝑠  0.00483 ± 0.00176  1/min 
  Diffusion-based  TR-1 𝐷𝑒𝑞  8.012 e−13 ± 6.508 e−13  m2/s  
  Diffusion-based  TR-1 𝐾𝐷𝐿  1.109 e+01 ± 4.618 e+00 −  
  Diffusion-based  TR-1 𝑘𝑚𝑒𝑡  3.252 e−02 ± 4.122 e−02  1/s  
  Diffusion-based  TR-1 𝑘𝑙𝑜𝑠𝑠  2.609 e−02 ± 1.011 e−01  1/s  
  Diffusion-based  TR-2 𝐷𝑒𝑞  4.481 e−13 ± 4.631 e−13  m2/s  
  Diffusion-based  TR-2 𝐾𝐷𝐿  1.125 e+01 ± 6.458 e+00 −  
  Diffusion-based  TR-2 𝑘𝑚𝑒𝑡  2.852 e−02 ± 3.814 e-02  1/s  
  Diffusion-based  TR-2 𝑘𝑙𝑜𝑠𝑠  3.562 e−02 ± 7.958 e−02  1/s  

4.1.  Parameter estimation, data fitting and statistical tests

The parameter estimation results (Table 1) are given in terms of 
estimated values and 95% confidence intervals obtained after a log-
likelihood parameter estimation has been carried out, for both the 
datasets TR-1 and TR-2. For the diffusion-based model the estimated 
parameters are 𝐾𝐷𝐿, 𝐷𝑒𝑞 , 𝐾𝑚𝑒𝑡 and 𝐾𝑙𝑜𝑠𝑠, assuming the other param-
eters negligible by setting their value to 0. In particular, for the spe-
cific foliar treatment considered in this study, translocation (parameter 
𝐾𝑡𝑟𝑎𝑛𝑠) to other parts of the plant was not observed experimentally, and 
𝐾𝑒𝑣𝑎𝑝 is neglected to keep consistency between the compartmental and 
diffusion-based model. Should these processes be observed, an indepen-
dent measure of their characteristic parameters can be included in the 
model as extra loss terms. For both models it is noted that the estimated 
values of the corresponding model parameters do not change signifi-
cantly between TR-1 and TR-2, especially when considering the para-
metric uncertainty. A difference is noted in the compartmental model 
for the parameter 𝑘𝑑𝑟𝑜𝑝,𝑙𝑜𝑠𝑠, where the absence of UV radiation in TR-2 
leads to a lower value of this parameter, however this difference is still 
within the 95% confidence intervals. Conversely, for the diffusion-based 

Table 2 
Quality of data fitting assessed comparing the sum of squared residuals 
(SSR) to the 𝜒2-reference values at 0.05 and 0.95 significance.
    Dataset  Model  SSR 𝜒2

0.05 𝜒2
0.95  Test result 

  TR-1  Compartmental  6.558  4.575  19.675  Passed  
  TR-1  Diffusion-based  12.835  5.226  21.023  Passed  
  TR-2  Compartmental  11.343  4.575  19.675  Passed  
  TR-2  Diffusion-based  16.603  5.226  21.023  Passed  

model the estimate of 𝐾𝑙𝑜𝑠𝑠 is higher with TR-2 than with TR-1, but these 
values have an uncertainty region larger than the estimate itself, which 
do not allow to draw sensible conclusions at this stage.

It must be highlighted that the uncertainty on the estimates is large, 
in particular for parameters 𝐾𝑚𝑒𝑡 and 𝐾𝑙𝑜𝑠𝑠 in the diffusion based model.

The predicted profiles after parameter estimation with the compart-
mental and diffusion-based models are shown in Fig. 4, along with the 
experimental data used to calibrate the model parameters. The error 
bars show the 95% uncertainty region in the experimental data. It is 
observed that both models capture well the AI uptake profiles observed 
experimentally, as also confirmed by the parity plots in Fig. 5 which 
compare experimental data with model predictions.

4.1.1.  Statistical tests
The data fitting results are reported in Table 2. The sum of squared 

residuals (SSR) shows that the compartmental model has a better fit-
ting than the diffusion model, since the SSR values obtained with the 
compartmental model are lower with both datasets. The table reports 
also the results of the 𝜒2-test performed to evaluate the quality of data 
fitting. The results of the statistical test show that both models provide 
an adequate fitting of the data since the SSR is between 𝜒2

0.05 and 𝜒2
0.95

both when calibrated on dataset TR-1 and TR-2.
The statistical quality of the estimates is evaluated by means of a t-

test, which results are shown in Fig. 6. The compartmental model results 
(Fig. 6a) depict that the parameter 𝑘𝑙𝑒𝑎𝑓 ,𝑙𝑜𝑠𝑠, representing a consumption 
term inside the leaf, is estimated with a good confidence from both TR-
1 and TR-2 datasets, being the t-values higher than the reference 𝑡𝑟𝑒𝑓 . 
For 𝑘𝑑𝑟𝑜𝑝,𝑙𝑒𝑎𝑓  the estimate is satisfactory only when the dataset TR-2 is 
used, while the t-values of all the other parameters are clearly lower 
than the reference. In particular, the loss term from the droplet 𝑘𝑑𝑟𝑜𝑝,𝑙𝑜𝑠𝑠
is the most critical parameter to estimate, as underlined by the least 
confidence in the estimate.
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Fig. 5. Parity plots showing the comparison between the experimental data and model predictions for the datasets (a) TR-1 and (b) TR-2. Legend: blue circle - 
compartmental model, surface deposit; yellow cross - compartmental model, leaf internal; green star - diffusion model, surface deposit; red triangle - diffusion model, 
leaf internal.

Fig. 6. Bar chart with the values of the t-test statistics obtained on datasets TR-1 and TR-2 for (a) the compartmental model and (b) the diffusion-based model 
parameters.

The t-test results obtained with the diffusion-based model are shown 
in Fig. 6b. In this case, parameter 𝐾𝑚𝑒𝑡, that describes the AI consump-
tion inside the leaf, and 𝐾𝑙𝑜𝑠𝑠, which represents the loss from the deposit, 
are both poorly estimated, especially the latter which is the most criti-
cal to estimate also for the diffusion-based model. This result goes along 
with the large variances observed in Table 1. On the other hand, the es-
timate of the partition coefficient 𝐾𝐷𝐿 is statistically significant at least 
with dataset TR-1, while the t-values obtained for 𝐷𝑒𝑞 are lower than 
the reference value, therefore its estimate has low confidence from the 
statistical point of view.

4.2.  Model identifiability

To answer the question whether the results on the estimates could 
be improved by designing new and more informative experiments, the 
framework presented in the methodology, Section 2 (Fig. 1), is followed. 
The first analysis conducted is to assess the identifiability of the model 
parameters by analyzing the dynamic sensitivity profiles, which indi-

cate the impact of the parameters on the output variables in time, then 
followed by the correlation analysis between the parameters.

4.2.1.  Local sensitivity profiles
Results from the sensitivity analysis are shown in Fig. 7 for the com-

partmental model and Fig. 8 for the diffusion model. This is a local anal-
ysis performed around the preliminary estimate of the parameters, and 
for both models the results are reported starting from the estimate ob-
tained with TR-1 and TR-2. It is observed that the profiles obtained for 
a given model with the two datasets are similar in their features, so only 
the profiles for TR-1 will be commented for the sake of conciseness. The 
profiles for TR-2 are reported in Appendix A in the supplementary mate-
rial. The values of sensitivity have been normalized for each parameter 
in the range between -1.0 and +1.0 to show which output measurement 
has the higher impact for a given parameter.

For the compartmental model it emerges that parameters 𝑘𝑑𝑟𝑜𝑝,𝑠𝑡𝑜𝑟𝑒
and 𝑘𝑠𝑡𝑜𝑟𝑒,𝑑𝑟𝑜𝑝 are mostly linked to the measurement on the deposit 
(Fig. 7a), 𝑘𝑙𝑒𝑎𝑓 ,𝑙𝑜𝑠𝑠 depends uniquely on the leaf extract measure-
ment (Fig. 7b), while both outputs are sensitive to the remaining two
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Fig. 7. Sensitivity profiles for the compartmental model parameters. (a) Output: 
deposit, dataset TR-1; (b) output: leaf extract, dataset TR-1.

parameters 𝑘𝑑𝑟𝑜𝑝,𝑙𝑒𝑎𝑓  and 𝑘𝑑𝑟𝑜𝑝,𝑙𝑜𝑠𝑠. It must also be highlighted that the 
loss due to AI consumption in the leaf (𝑘𝑙𝑒𝑎𝑓 ,𝑙𝑜𝑠𝑠) has the peak of sensitiv-
ity between 3 and 6h since the deposition of the droplet on the leaves, 
while impact on the measured outputs of the parameters 𝑘𝑑𝑟𝑜𝑝,𝑠𝑡𝑜𝑟𝑒, 
𝑘𝑑𝑟𝑜𝑝,𝑙𝑒𝑎𝑓  and 𝑘𝑑𝑟𝑜𝑝,𝑙𝑜𝑠𝑠 is stronger in the short time from the deposition 
(within 1h), when the initial uptake dynamics takes place.

The sensitivity profiles obtained with the diffusion model are re-
ported in Fig. 8. Also in this case it is observed that the metabolic rate 
is mostly linked to the leaf extract output (Fig. 8b), and that its effect 
peaks between 3 and 6h after the deposition of the formulation on the 
leaves, similarly to what has been observed with 𝑘𝑙𝑒𝑎𝑓 ,𝑙𝑜𝑠𝑠 in the com-
partmental model. The dependence of 𝐾𝑙𝑜𝑠𝑠 on the leaf measurement is 
very similar to the metabolism rate 𝐾𝑚𝑒𝑡, being the two profiles almost 
overlapping, but a difference between the two parameters is observed in 
the deposit (Fig. 8a), which should allow decoupling the effect of these 
two parameters. The other two parameters 𝐾𝐷𝐿 and 𝐷𝑒𝑞 impact both 
outputs equally at the beginning, and their peak is observed in the first 
hour from the deposition of the droplets. However, after two hours from 
the deposition the effect of 𝐷𝑒𝑞 rapidly drops to zero, while the equilib-
rium at the interface 𝐾𝐷𝐿 still holds a significative role in the system 
dynamics.

Fig. 8. Sensitivity profiles for the diffusion-based model parameters. (a) Output: 
deposit, dataset TR-1; (b) output: leaf extract, dataset TR-1.

4.2.2.  Parameter correlation analysis
Practical identifiability issues did not clearly emerge from the dy-

namic sensitivity profiles, and to confirm this observation, practical 
identifiability is further tested by studying the correlation between 
model parameters, following the methodology presented in Section 2. 
The results of this analysis are reported in Fig. 9 by means of correlation 
matrices, respectively for compartmental model (Fig. 9a, b) and diffu-
sion model (Fig. 9c, d). Similar results are obtained when conducting 
the analysis starting with different sets of preliminary data, i.e. TR-1 
and TR-2, for a given model among the candidates.

For the compartmental model, the matrix in Fig. 9a and b show a 
block diagonal trend where 𝑘𝑙𝑒𝑎𝑓 ,𝑙𝑜𝑠𝑠 is slightly correlated to 𝑘𝑑𝑟𝑜𝑝,𝑙𝑜𝑠𝑠, 
while the other three parameters 𝑘𝑑𝑟𝑜𝑝,𝑠𝑡𝑜𝑟𝑒, 𝑘𝑠𝑡𝑜𝑟𝑒,𝑑𝑟𝑜𝑝 and 𝑘𝑑𝑟𝑜𝑝,𝑙𝑒𝑎𝑓  are 
moderately inter-correlated. However, the maximum correlation index 
observed between pairs of parameters in the compartmental model is 
0.91 (for 𝑘𝑑𝑟𝑜𝑝,𝑠𝑡𝑜𝑟𝑒 and 𝑘𝑑𝑟𝑜𝑝,𝑙𝑒𝑎𝑓 ), which is below the conservative thresh-
old of 0.95 defined in the methodology. Therefore, the analysis tells that 
practical identifiability is not an issue for the compartmental model pa-
rameters, whose estimates could then be improved by providing addi-
tional data from properly designed foliar uptake experiments.

The correlation matrix of the diffusion model parameters in Fig. 9c 
and d suggests that parameters 𝐾𝑚𝑒𝑡 and 𝐾𝑙𝑜𝑠𝑠 could potentially have 
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Fig. 9. Correlation matrix for the model parameters: (a) compartmental model, dataset TR-1; (b) compartmental model, dataset TR-2; (c) diffusion-based model, 
dataset TR-1; (a) diffusion-based model, dataset TR-2.

identifiability problems since the observed correlation index between 
the two parameters is −0.98, exceeding the conservative threshold of 
0.95. The parameters 𝐷𝑒𝑞 and 𝐾𝐷𝐿 have a correlation of −0.77 and 
−0.89 in the two cases, noting that the difference is due to the local 
nature of the analysis, conducted around the local estimate of the pa-
rameters. In any case, for these two parameters signs of identifiability 
issues did not emerge, also when looking at their correlation with 𝐾𝑚𝑒𝑡
and/or 𝐾𝑙𝑜𝑠𝑠.

4.3.  Data augmentation

Following the procedure presented in the methodological frame-
work, the last analysis presented in this paper is the data augmentation 
study. The two different data augmentation strategies described in the 
methodology Section 2.2 are presented:

• Strategy 1 - single additional sample.
Study conducted to assess the expected improvement in parameter 
estimation identifiability depending on the experimental design 𝝋, 
i.e. sampling time in this case.

• Strategy 2 - multiple additional samples.
Analysis to verify how many additional data are required to solve 
parameter identifiability issues.

Results from the two different augmentation strategies are reported 
in the following subsections.

4.3.1.  First augmented data study
The first analysis considers the effect of adding one additional ex-

perimental data to the 8 data points in the original dataset to assess the 
expected improvement in the statistics of parameter estimation, data fit-
ting and identifiability of model parameters. In this study, the impact 
of the different location in time for the additional sample is evaluated. 
The noise factor added to the simulated measurement is generated with 
a heteroscedastic model calibrated on the noise observed in the original 
dataset, to replicate the data variability of the real experiments. This 
study is conducted on both available datasets TR-1 and TR-2, and the 
heteroscedastic model is calibrated independently for each case.

Results are shown in Fig. 10 for the compartmental model and TR-1 
and Fig. 11 for the diffusion model and TR-1. The results obtained with 
dataset TR-2 are available in the supplementary material - Appendix B. 
For each combination of model and dataset the following plots are re-
ported: (a) the whole set of additional experimental data simulated, and 
the profiles with respect to the sampling time of the additional data point 
of (b) log10(det(𝐹𝐼𝑀)), (c) the t-value statistics for the parameters, (d) 
the standard deviation of the estimates, (e) the SSR with the 𝜒2 refer-
ence values. Dashed lines in the plots indicate the initial values obtained 
with the original dataset before adding the new simulated data point.

The profiles of the determinant of the FIM depict oscillations around 
the initial value for the compartmental model. This can be due to the 
high variability in experimental noise added to the new data, which is 
included in the calculation of FIM in the term 𝚺𝑦 as per Eq. (5), and 
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Fig. 10. Data augmentation results for the compartmental model, dataset TR-1. (a) Simulated data with the experimental error, (b) det(FIM) - log10 scale calculated 
as in Eq. (5), (c) t-values, (d) standard deviation in the estimates, (e) SSR after data fitting. Dashed lines show the values obtained with the original dataset.

since the dataset dimensionality is small, just a single additional data 
point can have a significant impact. A similar oscillatory behaviour is 
observed also for the diffusion-based model.

The SSR increases for the compartmental model with the new data 
point, but it remains within the statistically significant region (𝜒2

0.05 −
𝜒2
0.95) in Fig. 10e. For the diffusion model, Fig. 11e, the quality of fitting 

remains good from the statistical point of view and the SSR is slightly 
lower with the additional data point for most of the sampling times.

The quality of the estimates obtained with the new data is shown 
with the plots of t-test statistics and of the standard deviation of the 
estimates. These two profiles are related because the lower the para-
metric uncertainty, the higher the t-value, for a given estimate of the
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Fig. 11. Data augmentation results for the diffusion-based model, dataset TR-1. (a) Simulated data with the experimental error, (b) det(FIM) - log10 scale calculated 
as in Eq. (5), (c) t-values, (d) standard deviation in the estimates, (e) SSR after data fitting. Dashed lines show the values obtained with the original dataset.

parameter, as per Eq. (10). For the compartmental model, adding a data 
point collected in the first 30min can significantly improve the qual-
ity of the estimates, as shown in Fig. 10c, especially for the parameters 
𝑘𝑑𝑟𝑜𝑝,𝑙𝑒𝑎𝑓 , 𝑘𝑑𝑟𝑜𝑝,𝑠𝑡𝑜𝑟𝑒 and 𝑘𝑑𝑟𝑜𝑝,𝑙𝑜𝑠𝑠, which were characterized by the lowest 
t-values. The early location in time of the most informative sample for 
these parameters is in agreement with the sensitivity profiles presented 
in Fig. 7.

The results obtained with the diffusion-based model are also in agree-
ment with the sensitivity study shown in Fig. 8. For parameter 𝐾𝐷𝐿, 
which was already estimated with good confidence, a general improve-
ment in the quality of the estimate is observed with the additional ex-
perimental evidence. By analyzing the t-value for 𝐷𝑒𝑞 , a general im-
provement is observed as it approaches the reference t-value, suggesting 
that with some additional data it could be possible to further refine its
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estimate. For parameters 𝐾𝑚𝑒𝑡 and 𝐾𝑙𝑜𝑠𝑠, which resulted to be strongly 
correlated from the previous analysis, the most informative samples are 
collected in the first 60min as observed from the t-values in Fig. 11c, 
i.e. when the difference in their effect on the system dynamics is the 
maximum, however the quality of their estimate is still far from being 
statistically satisfactory.

4.3.2.  Second augmented data study
The questions arising from the first data augmentation study in

Section 4.3.1 are then: if more budget is potentially available to collect 
new samples from the same type of experiments, would it be possible 
to obtain a good estimation for these parameters? And if so, how many 
experiments would be required?

To answer these questions, the second data augmentation study de-
scribed in the methodology (Section 2.2) is performed. This analysis is 
conducted only for the diffusion-based model since it is the only model 
with strongly correlated parameters. It is assumed to collect the new 
data in the time interval between 10 and 350min, and to have a budget 
that goes up from 0 to 60 new data points equally spaced in this time 
frame.

Fig. 12 shows the results of the analysis for both datasets TR-1 and 
TR-2. For each case two plots are shown: i) one reporting the estimated 
values 𝜽̂ and the respective standard deviation both normalized to the 
initial value of estimate, and ii) the t-value profiles plotted against the 
number of additional experimental points.

Table 3 
Correlation between the most critical parameter pairs in the data augmen-
tation study. Initial value of correlation index (Init.), and correlation values 
observed with 10 to 60 additional samples.
    Parameters  Data  Init.  10 s.  20 s.  30 s.  40 s.  50 s.  60 s.  
 𝐷𝑒𝑞 −𝐾𝐷𝐿  TR-1 −0.77 −0.78 −0.72 −0.75 −0.87 −0.76 −0.72 
 𝐷𝑒𝑞 −𝐾𝐷𝐿  TR-2 −0.89 −0.88 −0.85 −0.88 −0.93 −0.85 −0.87 
 𝐾𝑚𝑒𝑡 −𝐾𝑙𝑜𝑠𝑠  TR-1 −0.98 −0.98 −0.99 −0.99 −0.99 −0.99 −0.99 
 𝐾𝑚𝑒𝑡 −𝐾𝑙𝑜𝑠𝑠  TR-2 −0.97 −0.98 −0.99 −0.99 −0.98 −0.99 −0.98 

It is interesting to observe that the uncertainty on all the four pa-
rameters 𝐷𝑒𝑞 , 𝐾𝐷𝐿, 𝐾𝑚𝑒𝑡 and 𝐾𝑙𝑜𝑠𝑠 drops significantly with the first 10 
additional data points, and then keeps decreasing until 30 additional 
samples. After that point, the uncertainty keeps decreasing further, as 
shown by the increase in the t-values, but with a lower rate of improve-
ment. The profiles of 𝐾𝑚𝑒𝑡 and 𝐾𝑙𝑜𝑠𝑠 are of particular interest, being the 
two parameters strongly correlated. The t-value of 𝐾𝑚𝑒𝑡 reaches the t-
reference threshold after 20 additional samples are collected, both with 
dataset TR-1 and TR-2. Conversely, the initial uncertainty in 𝐾𝑙𝑜𝑠𝑠 varies 
significantly between TR-1 and TR-2, and this limits the capability in 
uncertainty reduction in the hypothetical scenario of pseudo-unlimited 
budget. As a consequence, its t-value after 30 additional samples is sat-
isfactory for the case TR-2 but not for the case TR-1. Furthermore, as 
shown in Table 3 the strong correlation between 𝐾𝑚𝑒𝑡 and 𝐾𝑙𝑜𝑠𝑠 is still 

Fig. 12. Second data augmentation study: profiles of parameter estimates (solid lines) and standard deviations (dashed lines) normalized to the initial estimate, and 
profiles of the t-values against the number of additional samples with reference t-value (black dashed line). Datasets: (a), (b) TR-1; and (c), (d) TR-2.
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present even with the new experimental information. These results con-
firm that 𝐾𝑙𝑜𝑠𝑠 is the most critical parameter to be estimated in the 
diffusion-based model if only this specific type of biokinetic experimen-
tal data is available.

This study can provide directions to the experimenters around what 
they should mostly look at before consuming experimental resources, 
which is the added value of combining computational research with the 
experimental work in this application. Still, this is a hypothetical study 
under the assumption of almost unlimited budget, but then considera-
tions must be take into account on the actual experimental budget and 
practical feasibility of collecting that many samples in a short time pe-
riod, not to mention that correlation issues are still present even in this 
theoretical scenario.

This analysis demonstrates that a number between 20 and 30 ad-
ditional sampling points are needed to obtain statistically significant 
estimates for parameters 𝐾𝑚𝑒𝑡 and 𝐾𝑙𝑜𝑠𝑠, if the data are collected from 
this type of bio-kinetic experiments, and the correlation issues will still 
be present afterwards. If parameters can be decoupled, a good estimate 
could potentially be reached with a much lower number of samples, 
considering that collecting these many samples would be extremely ex-
pensive and time consuming, if not impractical. The modelers and exper-
imentalists should then work together to evaluate other potential solu-
tions, such as i) collecting data from different experiments that can allow 
an independent estimation of one of the two parameters, ii) correlate the 
problematic parameters to other physical and chemical properties of the 
crop-AI-formulation system, iii) reformulate the diffusion-based model. 
In terms of future directions, the possibility of using less but very precise 
samples will also be explored, combining it with a parametric study on 
the variance model for measurement errors.

5.  Conclusions

This paper presented the application of a systematic modeling frame-
work to understand and characterize the process of foliar uptake of pes-
ticides. Different models have been considered, namely compartmental 
and diffusion-based models, and compared within the proposed model-
ing approach.

The study aims to develop a model that can be used in practice, to-
gether with the experimental observations, to extract more information 
about the system defined by crop-active ingredient-product formulation 
and potentially predict the expected uptake for new systems. To achieve 
this goal it is crucial to include practical considerations during all the 
steps of the modeling procedure, first of all ensure that model parame-
ters are identifiable.

The analyses conducted in this paper focus on the concept of a-
posteriori identifiability, which has been tested via dynamic sensitivity 
profiles and by studying the correlation between the parameters. An ap-
proach based on in silico data augmentation studies has been introduced 
in the modelling framework to study possible solutions to practical iden-
tifiability issues by collecting additional samples, while assessing the 
expected improvement in the estimates.

The parameters of the compartmental model are practically identi-
fiable, even though some of them (i.e. 𝑘𝑑𝑟𝑜𝑝,𝑙𝑜𝑠𝑠 and 𝑘𝑑𝑟𝑜𝑝,𝑠𝑡𝑜𝑟𝑒) are char-
acterized by a large uncertainty in the preliminary estimate. The data 
augmentation study has demonstrated that their statistical quality can 
easily be improved by adding a few data points collected at the most 
informative sampling times.

In the diffusion-based model, the estimates of diffusion coefficient 
in the leaf, 𝐷𝑒𝑞 , and partition coefficient at the interface droplet-leaf, 
𝐾𝐷𝐿, can be improved with a limited number of additional samples, 
while the metabolic rate of AI consumption in the leaf, 𝐾𝑚𝑒𝑡, and the 
loss rate from the deposit 𝐾𝑙𝑜𝑠𝑠 are strongly correlated and an impractical 
number of additional samples, between 20 and 30, would be required to 
pass the statistical tests. To address this issue, a co-operation between 
modelers and experimentalists is advised to evaluate potential solutions, 
such as i) collecting data from different experiments that can allow an 

independent estimation of one of the two parameters, ii) correlate the 
problematic parameters to other physical and chemical properties of the 
crop-AI-formulation system, iii) reformulate the diffusion-based model.

This study paves the way to further developments in the applica-
tion of model-based design of experiments in a biological context char-
acterized by high uncertainty in the experimental observations and in 
the model parameters. Further developments of the study will cover 
the uncertainty propagation from the model parameters to the predic-
tions, coupled with the data augmentation study presented here. An-
other aspect that will be covered in future studies will be the impact 
of uncertainty in the initial conditions, i.e. the amount of AI initially 
present in the deposit, on model identification and how it would affect 
the model predictions. Finally, the application of model-based design of 
experiments (MBDoE) in foliar uptake experiments is also part of future 
works, considering the possibility of targeting uncertainty in model pa-
rameters, inputs, and model predicitons, to validate the application of 
these techniques in a novel context.
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