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ABSTRACT 
Nucleophilic aromatic substitutions (SNAr) are key chemical transformations in pharmaceutical 
and agrochemical synthesis, yet their complex mechanisms (concerted or two-step) complicate 
kinetic model identification. Accurate kinetic models for SNAr are essential for scale-up, optimiza-
tion, and control of the reaction process, but conventional methods struggle with mechanism un-
certainty driven by substrates, nucleophiles, and reaction conditions, with data collection being 
difficult due to its source-intensive nature. We address this using DoE-SINDy, a data-driven frame-
work for generative modelling without complete theoretical understanding. A benchmark study on 
the SNAr reaction of 2,4-difluoronitrobenzene with morpholine in ethanol was conducted, incor-
porating parallel and consecutive side-product formation. Ground-truth kinetic models validated 
in prior studies were used to generate in-silico data under varying noise levels and sampling inter-
vals. DoE-SINDy successfully identified the true kinetic model with minimal runs, quantifying the 
impact of key design factors such as inlet concentrations, residence time, sample size and exper-
imental budget on model identification. 

Keywords: Modelling and Simulations, Reaction Engineering, System Identification, Machine Learning, Model 
Structure Generation, Design of Experiment 

1. INTRODUCTION
Nucleophilic aromatic substitution (SNAr) reactions

play a crucial role in synthesizing natural products, phar-
maceuticals, and agrochemicals. Accurate kinetic model 
identification is essential for optimizing SNAr reaction 
conditions, improving process efficiency, and enabling 
predictive control in manufacturing [1]. SNAr reactions 
can proceed via a classical two-step pathway or a con-
certed mechanism (cSNAr), with the preferred pathway 
influenced by substrate, nucleophile, leaving group, and 
environmental conditions such as solvation and fluid dy-
namics. These factors complicate kinetic identification, 
especially at process scales [2]. 

While quantum chemical methods like DFT offer de-
tailed mechanistic insights, they are computationally in-
tensive. Molecular descriptors provide a user-friendly al-
ternative but require broader datasets for generalization 
[3]. Integrating solvent, fluid dynamics, and operational 

factors is essential for process-scale simulations, which 
requires computational-experimental approaches [2]. 
Obtaining reliable experimental data is resource-inten-
sive, especially when integrating multiple effects [4]. 
Though recent innovations in continuous-flow platforms 
and experimental design have improved data collection 
efficiency [2,4–6], their reliance on predefined kinetic 
models limits the application to systems with incomplete 
mechanistic understanding. Recently, automated model-
building approaches, such as such as AI-DARWIN [7], 
PySR [8] and SINDy [9], have been developed to rapidly 
identify interpretable models with minimal data require-
ments and without requiring fully predefined model ex-
pressions. 

Motivated by these challenges, a systematic model 
identification framework named DoE-SINDy is employed 
in this paper to simultaneously generate mechanistic 
model structures and estimate model parameters from a 
small dataset [10], with the ultimate objective to provide 

https://doi.org/10.69997/sct.107548
mailto:f.galvanin@ucl.ac.uk


 

Lyu et al. / LAPSE:2025.0179 Syst Control Trans 4:179-185 (2025) 180  

a robust and accurate representations of concentration 
profiles in SNAr reactions.  

2. METHODOLOGY 

2.1 DoE-SINDy framework 
A dynamic model of a chemical reaction system can 

be formulated as a set of differential-algebraic equations 
(DAEs) as: 

�𝐟𝐟(𝐱̇𝐱, 𝐱𝐱,𝐮𝐮, 𝑡𝑡,𝜽𝜽) = 0
𝐱𝐱� = 𝐡𝐡(𝐮𝐮, 𝑡𝑡,𝜽𝜽)                       (1) 

where 𝐟𝐟 and 𝐡𝐡 are sets of model equations, 𝐱𝐱 is the ob-
servable state variable vector,  𝐮𝐮 ∈ U the control variable 
vector, t time and 𝜽𝜽 the parameter vector, and 𝐱𝐱� the pre-
dicted measurable state variables. This research focuses 
on simultaneously identifying the model structure 𝐟𝐟, and 
parameters 𝜽𝜽.   

 
Figure 1. Framework of DoE-SINDy for identifying the 
most suitable models from experimental data [10]. 

Sparse identification of nonlinear dynamical sys-
tems (SINDy) [9] is a sparse regression-based approach 
that derives nonlinear models  from a user-defined can-
didate term library and reaction profiles data. Assuming 
a process model is governed by a few key terms, SINDy 
ensures both accuracy and physical interpretability of the 
identified models. Building upon SINDy, Lyu & Galvanin 
proposed an iterative model identification framework 
named DoE-SINDy to address variability in model gener-
ation and enhance identifiability and reliability of identi-
fied models [10]. The procedure is articulated in steps il-
lustrated in Figure 1. 

In block (1), the DoE-SINDy framework begins with 
a preliminary design of experiments (DoE) using the min-
imum number of required runs to explore conditions un-
derlying physical constraints. Step (2) requires the col-
lection of time-varying state variable measurements, the 
numerical approximation of time derivatives and data 
splitting into training and testing subsets. In the model 
generation step (3), the SINDy algorithm, developed in 
[11,12], is called to build multiple candidate models from 
subsets of the training dataset. The resulting models are 
ranked by complexity, and the simplest candidates are 
selected (4). To improve parameter robustness, maxi-
mum likelihood estimation using the full training dataset 
is performed during the model calibration step (5), fol-
lowed by model refinement to eliminate non-significant 
terms that minimally impact reaction profiles, further 

reducing unnecessary complexity. A sensitivity-based 
practical parameter identifiability analysis is integrated 
before and after calibration to ensure that only identifia-
ble models are retained. Calibrated models then undergo 
model validation for statistical adequacy and check 
whether the models pass user-defined stopping criteria 
(6). If no model meets the stopping criteria, the frame-
work iteratively returns to step (1), generating new can-
didate models using expanded datasets. This iteration 
continues until at least one model meets the stopping cri-
teria or the experimental budget is exhausted. When the 
iteration stops, the output will be the statistically ac-
ceptable models or the models from the final iteration 
sorted in terms of Akaike Information Criterion (AIC).  

The framework for DoE-SINDy is established in Py-
thon. PySINDy (v1.7.5) is the primary package used for 
model generation and numerical approximation of time 
derivatives [11,12]. Additionally, scipy is employed for 
ODE integration, parameter estimation, and statistical 
evaluations, including 𝜒𝜒2 test, normality test and 𝑡𝑡 test.  

2.2 Assessment criteria for DoE-SINDy 
identified models 

The DoE-SINDy framework evaluates identified 
models using three main criteria. The first check is if the 
model is statistically acceptable. Goodness-of-fit test 
evaluates whether a model adequately represents exper-
imental data considering measurement noise. A two-
tailed 𝜒𝜒2 test assesses if residuals between predictions 
and measurements align with assumed noise distribution, 
detecting underfitting or overfitting cases [13]. However, 
since DoE-SINDy focuses on identifying promising model 
structures with limited data, precise parameter estimates 
are not guaranteed at this stage. A normality test, as a 
less strict alternative, checks if residuals follow a zero-
mean Gaussian distribution [14], allowing inclusion of 
models that may subsequently improve through refined 
parameter estimation and additional data. Four options 
for user-defined stopping criteria are possible:1) passing 
both tests (‘and’) 2) passing only 𝜒𝜒2 test (‘chi2’); 3) pass-
ing only normality test (‘normality’), or 4) passing either 
(‘or’). These are ranked from the most to the least strict, 
and determines when the iteration will stop, with models 
passing the chosen criterion labelled as “statistically ac-
ceptable”.  

To assess if the identified models successfully re-
cover the ground-truth model structures, the second and 
the third criteria check if the model is structurally prom-
ising, as defined in Equation (2), or matches the ground-
truth, as defined in Equation (3):  

𝓘𝓘(𝜽𝜽𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕) ⊂ 𝓘𝓘�𝜽𝜽��    (2) 

𝓘𝓘(𝜽𝜽𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕) = 𝓘𝓘�𝜽𝜽��                     (3) 

where 𝜽𝜽𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕  and 𝜽𝜽�  represent coefficient matrices of 
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ground-truth and identified models, respectively. Each 
matrix has dimensions corresponding to the number of 
equations by the size of candidate term library. A non-
zero entry in these matrices indicates the presence of a 
specific term in the model, with its value representing es-
timated parameters of that term. The notation ℐ(∙)  de-
notes the set of position indices of non-zero elements in 
the coefficient matrix of each identified model. For exam-
ple, if the true and identified coefficients matrix of the 
differential equation for component A are 𝜃𝜃𝑐𝑐𝐴𝐴

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =
[2 0 0 3 0 0] and 𝜃𝜃�cA = [2 0 0 3 1 0], the true and identified 
coefficient indices are ℐ�𝜃𝜃𝑐𝑐𝐴𝐴

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡� = {1, 4}  and ℐ�𝜃𝜃�𝑐𝑐𝐴𝐴� =
{1, 4, 5}. The model is structurally promising since {1, 4} ⊂
{1, 4, 5}, meaning that the identified structure contains all 
terms from the ground-truth model but with additional 
terms. It is structurally ground-truth if its structure ex-
actly matches the true underlying model, even if param-
eter uncertainty is still present. For example, a model with 
the coefficient matrix 𝜃𝜃�cA = [1.8 0 0 3.2 0 0]  is considered 
structurally ground-truth because all the model terms are 
correctly identified.  

2.3 Scenarios for DoE-SINDy identified 
models 

Based on the assessment criteria defined in Section 
2.2, labels are assigned to each identified model, as sum-
marized in Table 1. The most desirable scenario is ‘TTT,’ 
where the identified model is both statistically accepta-
ble and structurally ground-truth. Scenario ‘TTF’ is also 
acceptable, as the identified model contains all the 
ground-truth terms, with extra terms removable after ad-
ditional data collection and parameter re-estimation. In 
practice, ‘TFF’ models are selected for their statistical ad-
equacy when the ground-truth is unknown but may be 
eliminated through model discrimination techniques [15]. 
Scenarios ‘FTT’, ‘FTF’ and ‘FFF’ occur when no acceptable 
model is generated within the available experimental 
budget. In such cases, redefining the library of candidate 
terms or adjusting DoE-SINDy setting is recommended 

before conducting additional experiments.   

3. CASE STUDY AND IMPLEMENTATION 

3.1 In-silico data generation 
A benchmark case study evaluated the performance 

of DoE-SINDy in identifying the rate models for the nu-
cleophilic aromatic substitution (SNAr) of 2,4-difluoroni-
trobenzene 1 with morpholine in ethanol. The reaction 
produce a mixture of desired product ortho-substituted 
3 and side products para-substituted 4 and bis-adduct 5 
through parallel and consecutive elementary reaction 
steps as shown in Figure 2 [5,6].  

 
Figure 2. Assumed mechanism scheme for SNAr [5,6]. 

Data was generated through in-silico experiments 
simulating an automated continuous-flow reactor system 
with controlled linear flow ramps as in Hone et al. [5] and 
Agunloye et al. [6].  The residence time 𝜏𝜏 was manipu-
lated through volumetric flow rate changes within a 
fixed-length reactor. The range of the time axis is equal 
to the residence time of the experiment with the longest 
operation time among the set of experiments in the ramp. 
The three experimental design variables in this system 
are: 1) initial concentrations; 2) sample size of the con-
centration-time profile; 3) experimental budget. The mo-
lar balance equations for the system, based on the reac-
tion scheme are: 

𝑑𝑑𝑐𝑐1
𝑑𝑑𝑑𝑑

= −(𝑘𝑘1 + 𝑘𝑘2)𝑐𝑐1𝑐𝑐2 = 𝜃𝜃1𝑐𝑐1𝑐𝑐2                 

𝑑𝑑𝑐𝑐2
𝑑𝑑𝑑𝑑

= −(𝑘𝑘1 + 𝑘𝑘2)𝑐𝑐1𝑐𝑐2 − 𝑘𝑘3𝑐𝑐2𝑐𝑐3 − 𝑘𝑘4𝑐𝑐2𝑐𝑐4       

Table 1: Potential scenarios for the models identified by DoE-SINDy. 

Perfor-
mance 

Statistically 
acceptable 

Structurally 
promising 

Structurally 
Ground-truth Circumstance 

Best T T T Statistically acceptable and structurally 
ground-truth model identified 

Good T T F Statistically acceptable and structurally 
promising model identified 

Poor 
T F F Statistically acceptable but missing 

term(s) in the ground-truth model 
F T T Structurally ground-truth but poor fit 
F T F Structurally promising but poor fit 

Worst F F F Poor fit and missing terms(s) in the 
ground-truth model 
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     = 𝜃𝜃2𝑐𝑐1𝑐𝑐2 + 𝜃𝜃3𝑐𝑐2𝑐𝑐3 + 𝜃𝜃4𝑐𝑐2𝑐𝑐4                     (4) 
𝑑𝑑𝑐𝑐3
𝑑𝑑𝑑𝑑

= 𝑘𝑘1𝑐𝑐1𝑐𝑐2 − 𝑘𝑘3𝑐𝑐2𝑐𝑐3 = 𝜃𝜃5𝑐𝑐1𝑐𝑐2 + 𝜃𝜃6𝑐𝑐2𝑐𝑐3        

𝑑𝑑𝑐𝑐4
𝑑𝑑𝑑𝑑

= 𝑘𝑘2𝑐𝑐1𝑐𝑐2 − 𝑘𝑘4𝑐𝑐2𝑐𝑐4 = 𝜃𝜃7𝑐𝑐1𝑐𝑐2 + 𝜃𝜃8𝑐𝑐2𝑐𝑐4          

Experiments were conducted for 2.4 minutes at 
130°C, with ground-truth reaction rate constants were 
defined as 𝑘𝑘1, 𝑘𝑘2, 𝑘𝑘3, 𝑘𝑘4 = [1.21, 0.21, 0.0, 0.057]. Identifying 
dynamic models via DoE-SINDy requires multiple trajec-
tories of time-varying states variables. Thus, design of 
experiment technique, Latin Hypercube Sampling, is ap-
plied to design multiple sets of initial concentrations 
within the experimental design space (Table 2). Notably, 
the initial concentration of 𝑐𝑐2(0)  was defined as 𝑐𝑐2(0) =
𝑐𝑐1(0) ∙ 𝑐𝑐2

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(0).  

Table 2: Experimental design space for control variables, 
initial concentrations, employed in the case study [6]. 

Limits 𝒄𝒄𝟏𝟏(𝟎𝟎) (M) 𝒄𝒄𝟐𝟐
𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆(𝟎𝟎) 𝒄𝒄𝟑𝟑(𝟎𝟎) (M) 𝒄𝒄𝟒𝟒(𝟎𝟎) (M) 

Lower     
Upper     

In-silico data were generated by adding random 
normally distributed noise with zero mean and given 
standard deviation to the noise-free simulated values of 
state variables. Subsequently, the time derivatives of the 
noisy state variables (concentrations) were numerically 
approximated using Kalman derivative as the measure-
ment errors are assumed to follow a standard normal dis-
tributions [12].  

The performance of DoE-SINDy in identifying 

models achieving specific target scenarios was evalu-
ated using a metric, Target Scenario Achievement Rate 
(TSAR), which is defined as: 
TSAR = Number Of Datasets with Models Meeting the Target Scenario

Total Number Of Datasets
      
(5) 

The robustness of DoE-SINDy was tested across 
three different experimental budgets (10, 15, and 20 ex-
periments), three noise levels (𝜎𝜎 =  [0.1%, 1%, 10%]), ten 
sample sizes (8, 12, 16, 18, 20, 24, 30, 36, 48, 60), and 
50 sets of initial concentrations.  

3.2 Application of DoE-SINDy for model 
identification 

The DoE-SINDy implementation utilized the col-
lected measurements and their time derivatives for 
model identification. In the model generation step (3), the 
candidate term library is constructed with the following 
set of features: 𝒈𝒈(𝒄𝒄) = [𝑐𝑐1𝑐𝑐2, 𝑐𝑐1𝑐𝑐3, 𝑐𝑐1𝑐𝑐4, 𝑐𝑐2𝑐𝑐3, 𝑐𝑐2𝑐𝑐4, 𝑐𝑐3𝑐𝑐4]. The 
Stepwise Sparse Regressor (SSR) is employed to gener-
ate models from data. In step 4 of the proposed proce-
dure, the top three simplest models are selected for fur-
ther analysis. four different stopping criteria were evalu-
ated to assess their impact on model identification per-
formance.  

4. RESULTS  
This section compares DoE-SINDy example models 

for the SNAr reaction rate, evaluating the TSAR for 
achieving 'TTT' and 'TTF' scenarios using four stopping 

 
Figure 3: Simulations for example ‘TTT’ scenario models tested as good fit or overfitting based on the 𝜒𝜒2 test, 
under varying initial conditions and noise levels (𝜎𝜎=0.01 and 0.1, sample size=24, budget=20 experiments). 
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criteria ('and', 'chi2', 'normality', 'or') under varying exper-
imental designs and data conditions.  

4.1 Identified SNAr reaction rate models 
Figure 3 shows simulated reaction profiles for mod-

els achieving the 'TTT' scenario under varying noise lev-
els. When 𝜎𝜎 = 0.01, the profiles of the good-fit and over-
fitting models overlap, indicating similar prediction per-
formance. At 𝜎𝜎 = 0.1 , no good-fit models are identified 
but the overfitting model aligns perfectly with the obser-
vations. These graphical results suggest that both good-
fit and overfitting models perform well in representing the 
dynamic system when the ‘TTT’ scenario is achieved. 

Scenario ‘TTT’ is the most desirable outcome, where 
the identified models are statistically acceptable and 
aligned with the ground-truth. DoE-SINDy successfully 
identifies ‘TTT’ models with at least 7 experiments.  

We examine three ‘TTT’ models identified using data 
with a sample size of 24 and an experimental budget of 
20 noise levels of 𝜎𝜎=0.1%, 1% and 10%. As shown in Table 
3, the estimated parameter values (𝜃𝜃�𝑖𝑖) are generally con-
sistent with reference values (𝜃𝜃𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟), and close to the ref-
erence at higher noise levels (𝜎𝜎=1% and 10%). Figure 3 
shows that these models reflect the system dynamics 
well, even when some parameters deviate slightly from 
the reference. Parameter 𝜃𝜃3  and 𝜃𝜃6  consistently yield 
zero estimates, indicating that Step 3 is inactivated in the 
reaction network, consistent with the assumed reaction 
mechanism as shown in Figure 2 [5,6].  

Although the models represent the system well, 
they might be statistically inadequate due to overfitting 
as indicated by the 𝜒𝜒2  test. Furthermore, small 𝑡𝑡  values 
for all parameters suggest significant uncertainty in the 
estimates, pointing to the need for more informative data 
to improve parameter precision.  

4.2 TSAR comparison across stopping criteria 
The comparison of TSAR values across stopping cri-

teria provides critical insights into DoE-SINDy’s effective-
ness in identifying suitable models for the SNAr reaction 
system. Higher TSAR indicates better performance in 
achieving specific scenarios. 

Figure 4(a) shows that the strictness of stopping cri-
teria significantly affects model identification. For the 

'TTT' scenario, the ‘normality’ criterion achieves the high-
est average TSAR (over 20%), whereas ‘chi2’ achieves 
less than 5%, and ‘and’ nearly zero. This highlights ‘nor-
mality’ as the most effective criterion for identifying 
structurally and statistically adequate models. For the 
'TTF' scenario, relaxing criteria from ‘and’ to ‘or’ improves 
TSAR from around 10% to 55%, with ‘normality’ and ‘or’ 
performing similarly. Less stringent criteria enable better 
identification of statistically adequate models, balancing 
efficiency and reliability. 

The box plots reveal high dispersion in TSAR across 
datasets, reflecting the sensitivity of DoE-SINDy to data 
quality and experimental design. This underscores the 
importance of high-quality data and well-designed ex-
periments for reliable model identification. 

 
Figure 4: (a) TSAR distribution for ‘TTT’ and ‘TTF’ 
scenarios under different stopping criteria across various 
data conditions; (b) Scenario distribution based on the 𝜒𝜒2 
test using ‘chi2’ or ‘normality’ stopping criteria.  

The distribution patterns observed in Figure 4(b) 
demonstrate the goodness-of-fit of the models catego-
rised in each scenario. Notably, for the ‘FTT’ scenario un-
der both the ‘chi2’ and ‘normality’ criterion, most models 
correctly identify the ground-truth structure but are ex-
cluded as overfitting. These models, with parameter re-
estimation, are highly likely to achieve ‘TTT’. Using ‘nor-
mality’ as the stopping criterion is more likely to retain 
such models compared to using ‘chi2’, explaining higher 
TSAR values of ‘normality’ shown in Figure 4(a). Its relia-
bility is supported by Figure 3, where overfitting models 
passing the normality test align with experimental data 
under varying noise levels and experimental conditions.  

Table 3: Estimated coefficients (𝜽𝜽� ) and corresponding 𝑡𝑡 -values of models achieving ‘TTT’ scenario (sample 
size=24, budget=20). Results are presented for three noise levels (𝜎𝜎 = 0.1%, 1% 𝑎𝑎𝑎𝑎𝑎𝑎 10%). 

 𝜽𝜽𝒊𝒊,𝒓𝒓𝒓𝒓𝒓𝒓 (𝐌𝐌−𝟏𝟏𝐦𝐦𝐦𝐦𝐦𝐦−𝟏𝟏) 𝜽𝜽�𝒊𝒊,𝝈𝝈=𝟎𝟎.𝟏𝟏% t 𝒕𝒕𝒓𝒓𝒓𝒓𝒓𝒓(𝟗𝟗𝟗𝟗%) = 𝟏𝟏.𝟗𝟗𝟗𝟗) 𝜽𝜽�𝒊𝒊,𝝈𝝈=𝟏𝟏% t (𝒕𝒕𝒓𝒓𝒓𝒓𝒓𝒓(𝟗𝟗𝟗𝟗%) = 𝟏𝟏.𝟗𝟗𝟗𝟗) 𝜽𝜽�𝒊𝒊,𝝈𝝈=𝟏𝟏𝟏𝟏% t (𝒕𝒕𝒓𝒓𝒓𝒓𝒓𝒓(𝟗𝟗𝟗𝟗%) = 𝟏𝟏.𝟗𝟗𝟗𝟗) 
𝜽𝜽𝟏𝟏 −1.42 −1.42 2.06 × 10−3 −1.41 2.05 × 10−3 −1.43 2.08 × 10−3 
𝜽𝜽𝟐𝟐 −1.42 −1.42 2.06 × 10−3 −1.42 2.06 × 10−3 −1.43 2.07 × 10−3 
𝜽𝜽𝟑𝟑 0.00 0.00 - 0.00 - 0.00 - 
𝜽𝜽𝟒𝟒 −0.057 −0.056 1.07 × 10−4 −0.071 1.29 × 10−4 −0.064 1.23 × 10−4 
𝜽𝜽𝟓𝟓 1.21 1.21 1.75 × 10−3 1.20 1.73 × 10−3 1.21 1.76 × 10−3 
𝜽𝜽𝟔𝟔 0.00 0.00 - 0.00 - 0.00 - 
𝜽𝜽𝟕𝟕 0.21 0.21 3.09 × 10−4 0.21 3.10 × 10−4 0.21 3.11 × 10−4 
𝜽𝜽𝟖𝟖 −0.057 −0.057 1.13 × 10−4 −0.055 1.26 × 10−4 −0.057 1.22 × 10−4 
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5. CONCLUSION 
This study demonstrates the effectiveness of DoE-

SINDy in identifying kinetic models for SNAr reaction, 
successfully reconstructing statistically acceptable and 
structurally ground-truth models with as few as 7 exper-
iments. Adopting the ‘normality’ stopping criterion allows 
to achieve the highest TSAR for identifying promising 
‘TTT’ models, while stricter criteria, such as ‘chi2’ and 
‘and’, tend to reject structurally accurate models due to 
overfitting.   

However, the performance of DoE-SINDy varies un-
der different experimental designs and data conditions. 
Further investigations into the impact of experimental de-
sign variables are necessary to optimize model identifi-
cation and reduce experimental demands. The significant 
uncertainty in estimated parameters highlights the need 
for integrating techniques as model-based design of ex-
periments (MBDoE) in the framework to improve param-
eter precision [16].Finally, as the ground-truth model is 
typically unknown in practice, further model discrimina-
tion is required to identify the most accurate representa-
tion of the system.  
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