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Abstract—Distributed reconfigurable intelligent surfaces (RIS-
s) provide rich macro-diversity coverage due to different locations
of the RISs, which is beneficial to combat coverage holes. How-
ever, the system performance relies on the effective coordination
of multiple RISs. In particular, distributed RIS-assisted power
allocation and the phase shifts of RISs should be jointly designed
under nonlinear scheduling constraints. Thus, the resource allo-
cation scheme for distributed RIS-assisted multiuser system is a
crucial challenge. To tackle these issues, joint power allocation,
phase shifts and communication scheduling design for distributed
RIS-assisted systems is investigated in this paper, where all
RISs simultaneously and cooperatively serve multiple users.
To overcome the formulated nonconvex optimization problem,
the original problem is decoupled into three subproblems and
solved in an iterative manner. Specifically, we first consider
the subproblem of power allocation, which can be solved via
maximizing the ergodic achievable rate. By applying the ergodic
rate, an approximate closed-form solution is formed for the power
allocation. Subsequently, the phase shifts are optimized using
the minimization-maximization optimization methods. Finally, a
communication scheduling scheme is presented to address the
scheduling variables. Numerical simulations are conducted to
demonstrate that the considered solution outperforms the existing
benchmark and achieves a near-optimal spectral efficiency.

Index Terms—Distributed reconfigurable intelligent surfaces
(RISs), power allocation, multiuser MIMO, phase shifts

I. INTRODUCTION

HE rapid growth of the Internet-of-Things (IoT) has

significantly increased the number of wireless devices.
This expansion has also spurred the development of various
smart applications, including automatic manufacturing, virtual
reality, smart homes, and smart cities [1]. These advancements
have introduced new challenges to support the low-latency
communication, ultra-high capacity and massive connectiv-
ity requirements [2]. However, this increasing demand for
ubiquitous connectivity and high data rates inevitably brings
challenges, particularly in the form of high-energy consump-
tion in next-generation wireless communication systems. To
support the huge amount of data traffic, a mass of base
stations (BSs) and mobile equipments will be required to be
deployed in existing network infrastructure. However, massive
antenna array architectures for BSs will significantly increase
the implementation complexity and the associate hardware [3].
Particularly, the deployment of massive antenna arrays requires
a significant number of radio frequency (RF) chains, which
can lead to increased energy consumption and higher hardware
costs.

To address above challenges, reconfigurable intelligent sur-
face (RIS)-assisted wireless communication has been exten-
sively studied as a cost-effective alternative [4]-[7]. RIS is
capable of achieving unprecedented high throughput of system
to against severe blockage scenarios [6]. Unlike conventional
active beamforming or relaying technologies, each reflecting
element of a RIS can dynamically adjust the direction of the re-
flected incident signals, thereby improving the communication
quality of the desired propagation paths [8]-[11]. Moreover,
due to the low hardware cost of the reflecting elements, RIS
can be easily deployed in various wireless network scenarios,
including, but not limited to, light communication [12], securi-
ty communication [13] and wireless powered communication
networks (WPCN) [14]. Notably, as highlighted in [9], the
use of RIS allows the number of receive/transmit antennas
required at the BS to be reduced to half of what is needed
in conventional resource allocation approaches without RIS,
significantly lowering hardware costs. To reap this benefit,
it is natural to study the resource allocation scheme in RIS-
assisted systems, which can greatly increase the service range
and satisfy the quality of service (QoS) requirement to realize
green communications.

There have been many reports regarding resource allocation
maximization problems in RIS-assisted networks [15]-[19].
In [15], a RIS-assisted WPCN was exploited, where the
optimal phase shifts were determined by using the iterative
optimization scheme. Similarly, in [17], the authors tackled
the joint power and spectrum allocation problem alongside RIS
reflecting element design to maximize the sum-rate capacity
in RIS-aided vehicle-to-everything (V2X) communication sys-
tems, employing a three-stage heuristic algorithm to find the
achievable solution. Moreover, in [20], a RIS-assisted symbi-
otic radio system was examined, where joint beam training and
power allocation optimization was applied to enhance the EE
of the system. Building on this, a mathematical framework
was proposed in [21] to jointly optimize the system’s sum
mean squared error, particularly addressing the non-line-of-
sight (NLOS) propagation challenges with RIS playing a
critical role.

Furthermore, the authors in [22] investigated an offset
learning based deep learning scheme in RIS-assisted commu-
nication, where a viable solution was considered to achieve
a good trade-off between the light-of-sight (LOS) and NLOS
channels. In [23], the achievable weight SE optimization of
the RIS-assisted cognitive radio network was investigated,
which allows the decoupling of the reflection coefficients and



transmit power the constraints. To improve SE and EE in nar-
rowband and broadband RIS-assisted systems, joint reflecting
element and hybrid beamforming designs were proposed in
[24], leveraging the angular sparsity of frequency-selective
channels. Considering the QoS requirements of users, the
transmit power control of the BS was studied with recom-
mendations on the RIS deployment [25]. In [26], a penalty-
based solution was developed to solve the power minimiza-
tion problem, where the perfect and imperfect CSI were
considered. To further provide low power consumption, au-
thors in [27] investigated the energy-efficient power allocation
scheme for heterogeneous small cell networks. Considering
the interference of multipath fading channels, the authors
in [28] developed a joint spectrum reuse, power allocation
and interference suppression design in RIS-assisted device-to-
device (D2D) communication, in which passive beamforming
using RIS was employed to suppress the severe interference
and enhance the desired communication coverage. Further-
more, by exploiting the full reflection properties of the RIS,
several power allocation iteration algorithms in a RIS-assisted
multiuser network were extensively studied, which include SE
maximization in [29], [30], deep reinforcement learning in
[31], and robust optimization in [32]. These solid contributions
suggested that power allocation can bring appreciable gains for
a RIS-assisted system.

However, the above works on resource allocation focus
mostly on single RIS-assisted systems. As RIS-assisted sys-
tems evolve, the coverage regions of cellular networks contin-
ue to extend to meet the high-throughput, high-connectivity
or various kinds of QoS demands, which will facilitate a
growing number of RISs to be integrated in micro/femto-
cellular networks. In particular, multiple RISs can provide
richer macro-diversity. By distributing RISs over a large area,
spatial diversity is enhanced, as the same information can be
transmitted from fully uncorrelated RIS nodes to the receiver.
This distributed setup effectively increases the likelihood of
reliable signal reception, especially in challenging propagation
environments. Therefore, multiple RISs (or distributed RISs)
cooperation relations are no longer negligible. To further
unlock the potential of cooperative RISs, distributed RISs
were investigated to establish the cooperative reflection of the
system, including perfect and imperfect timing synchroniza-
tion among the RISs [33], [34]. Furthermore, the authors in
[35] and [36] focused on multiple RIS-aided communication,
in which the statistical characterization of the channel was
derived by exploiting a Gamma or Log-Normal distribution.
However, existing research works on multiple RIS-assisted
networks neglect the communication scheduling among multi-
ple RISs. This is a weakness as future IoT should support the
connectivity of a massive number of energy-constrained termi-
nals. These observations demonstrate that distributed RISs are
very important in optimizing system performance, particularly
to provide more robustness to the effect of the shadowing
fading channel. However, increasing the physical size of the
RIS module presents practical challenges in certain scenarios.
This limitation arises due to space constraints and deployment
feasibility. To address these challenges, researchers have intro-
duced the concept of active RISs. Active RISs overcome the

performance bottleneck caused by the multiplicative fading
effect. They achieve this by incorporating active elements that
amplify the signal, improving overall system performance.
Unlike passive RIS, which only reflects signals, active RIS
integrates amplification circuits to both direct and amplify re-
flected signals. This makes active RIS a popular research topic
in wireless communications for enhancing system performance
[37].

Furthermore, distributed RIS offers a mobility degree of
freedom (DoF) to enhance the performance of wireless net-
works. However, each user may received signals from RISs at
different locations with various propagation paths. Moreover,
each RIS is subject to different and independent degree of
large-scale fading effects, which results in a further compli-
cation involving communication scheduling and power alloca-
tion. In addition, due to the introduction of the distributed RIS,
the power allocation is coupled together with communication
scheduling of the multiple RISs, which makes it impossible to
apply existing approaches directly. Therefore, research on dis-
tributed RIS-assisted systems for communication scheduling
and power allocation are lacking.

Despite the extensive research on RIS-assisted multiuser
systems, the joint design of communication scheduling and
power allocation for distributed RIS scenarios has not been ad-
dressed in the existing literature, to the best of our knowledge.
To bridge this gap, this paper incorporates communication
scheduling constraints into the power allocation design for
distributed RIS-assisted multiuser systems. The main contri-
butions of this work are summarized.

o We investigate the distributed RIS-assisted multiuser s-
cenario, taking into account practical limitations such as
reflection coefficients and link capacity at various RIS
locations. In such a system, multiple RISs are connected
to a CPU. This configuration not only helps cover dead
spots but also enhances spatial diversity by transmitting
the same information through fully uncorrelated channels
to the receiver.

¢ To enable distributed RIS-assisted multiuser systems, a
joint power allocation, phase shifts and communication
scheduling optimization scheme is proposed, in which an
approximate closed-form and computationally tractable
formula are provided to guarantee the achievable SE of
the system. Based on the proposed design criteria, explicit
cost functions are formulated to derive the solution, and
its convergence and computational complexity are also
analyzed.

o To address the non-convex optimization problem, a de-
coupling scheme is adopted, breaking the original max-
imization problem into three manageable subproblem-
s: power allocation, phase shifts, and communication
scheduling. In the power allocation design stage, a lin-
ear approximation using a series expansion is derived,
followed by the application of an iterative sequential
relaxation programming algorithm to solve the subprob-
lem. For the phase shifts of multiple RISs, optimization
is achieved through a combination of the minimization-
maximization approach and successive convex approxi-
mation. Finally, the communication scheduling subprob-



Fig. 1.

A distributed RIS-assisted multiuser system.

lem is divided into two scalar continuously differentiable
functions, which are solved sequentially to ensure a
practical solution.

o Numerical results are conducted to verify the feasibility
and robustness of the proposed scheme. Moreover, the
convergence of the developed iterative algorithm for
joint power allocation, phase shifts and communication
scheduling optimization is also validated. With various
practical setups, the achievable performance of the pro-
posed algorithm against exsiting heuristically designed
benchmarks are validated, and new insights on distributed
RIS-assisted multiuser systems are also drawn.

The rest of the paper is organized as follows. In Section II,
the system model and the problem formulation are described,
in which multiple RISs incorporated into the multiuser system.
In Section III, the joint distributed RIS-assisted phase shifts
and power allocation optimization problem are considered,
and then the SRM-based alternating optimization algorithm is
introduced. Numerical results for evaluating the performance
of the proposed scheme are provided in Section IV. Finally,
conclusions are drawn in Section V.

II. PROBLEM FORMULATION

As illustrated in Fig. 1, a BS equipped with n antennas
communicates with single-antenna destination users, where
all K users are served simultaneously by the RISs using the
same time-frequency resource. In the distributed RIS-assisted
multiuser system, full synchronization is maintained to ensure
efficient operation. Additionally, each RIS is connected to
a CPU via reliable, high-speed wireless links. The CPU is
responsible for centralized tasks, including three-dimensional
beamforming design, scheduling, and power allocation.

A. RIS-assisted Channel Modeling

To simplify the notation, m-th RIS is written as RIS(m).
Then, we consider a Rayleigh fading environment such that the
small-scale fading channels between the BS-RIS(m) and the
user-RIS(m) are denoted by Hy,, = BimisPimzy s Bemi] €
C™! and g, = [Gum1s Gim2s s Gomt]T € CIXL, respec-
tively. To account for correlation among transmit antenna ele-
ments, we adopt a separable (or Kronecker) correlation model,

as proposed in [38], for analytical tractability. Consequently,
the channel matrix can be expressed as:

H, = H,,R?, (1)

where Hy,, € C"*! contains i.i.d. circularly-symmetric com-
plex Gaussian random variables, with zero mean and unit
variance. The term R € C!*! represents the non-singular
transmit correlation matrix, defined as R = E[H;LmHk,m]-
It is assumed that all users experience the same transmit
correlation for simplicity and analytical tractability. Further-
more, the channel vector betweenlthe user and the m-th
RIS is expressed as g.,, = &R € C*!. Let ¢y, =
[Bkm1s Phom2s s Demi] T is the phase shifts introduced by the
m-th RIS and the i-th reflecting coefficient of the RIS(m) is
expressed as @i = Brmi€’“ with B € [0,1] and wy ;i
accounts for the reflecting amplitude and phase rotation of
the RIS(m), respectively. Thus, the cascaded BS-RIS(m)-user
channel u; ,, is represented as

im = B ndiag{gemHim = G Vim, @

where Vy,, = diag{g;,, }Hin is the cascaded channel at the
k-th UE and only depends on the downlink CSI.

B. Data Transmission

We assume that the small-scale fading channel is considered
to be the direct BS-user k link, which is denoted as h;. By
utilizing transmit beamforming of the BS W, € C"*", the
transmit signal can be written as s = W,flxk, where x; =
[X7.ks es Xiks ---Xn ] 18 the transmit signal of the k-th user with
average unit power, i.e., E[|x;|?] = 1. x; should satisfy power
constraint E[||W||?] = pi. Thus, combining the multiple RISs
with the cascaded channel model in (2), the received pilot
signal of k-th user from M RIS is expressed as

M
Vi = Dk (h,? +>° ¢,vak,m> Sk + 3)
m=1
where hj, € C"*! represents the direct link between the BS
and user; n; ~ CN(0,0?) denotes the noise at the k-th user.
To facilitate the multiple RISs design, the wake-up com-
munication scheduling approach is developed, which has been
widely used in wireless communication [39], [40]. Define the
indicator variables St and 3y, represent the activity status
of the direct and m-th reflected links, respectively. Specifically,
the direct channel serves the user if ;o = 1, otherwise,
Sk,o = 0. Similarly, if Sy, = 1, the m-th reflected channel
migrates the signal to the user, while no signal is transmitted if
St,m = 0. Based on these definitions, the following scheduling
constraints can be established

Qo <1, o €1{0,1}, (6)

Sk,m <1, C\\Shm S {0, 1},m =1,.. M 7

where the indicator & could represent whether the active RIS
components are in wake-up or sleep mode for a given user
or service. When & = 1, the RIS is actively reflecting and
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amplifying the signal for the intended user. When & = 0,

the RIS is in sleep mode or not actively participating in the
signal’s propagation.

C. Problem Formulation

Considering CPU computational load for the high-
performance of system, we assume that the direct channel Ay
is blocked, and CPU is performed to awaken multiple RISs
for providing the reflected links. Assuming that each user
has knowledge of only the channel statistics, rather than the
instantaneous channel gain, the received signal y; at the k-th
user consists of the superposition of the direct signal and the
reflected signal, which can be written as

M
Vi = Sko¥ko + (1 — Sko) Z SkmYkm (8)
m=1
where the direct signal yi o, the reflected signal yy, are
denoted by (4), (5) at the top of this page, pro and pym
denote the transmission power of direct and m-th reflected
channel for the k-th user, uy,, = qbgmvk’m, Aps,,» Aps,, are
the desired signal from direct channel and reflected channels,
respectively. Agy, ., Agy,, are the self-interference signal from
direct channel and reflected channels, respectively. I 0,
I, xm pertains to interference of direct signal and reflected
signal from the i-th user and the k-th user, respectively. 7ix o
and 7y, represent the additive white Gaussian noise for the
direct channel and the m-th reflected channel of the k-th user,
respectively. When Sy o = 1, the direct channel is activated to
transmit the signal via the BS-user link. On the other hand, if
Srm = 1, the reflected channels are awakened to transmit the
signal with the BS-RIS-user channel.

Based on the above definitions, we assume that the direct
and reflected channels are considered independent. When the
direct channel is activated to transmit the signal via the BS-
user link, the instantaneous signal-to-interference-plus-noise
ratio (SINR) for the k-th user can be expressed as
2
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Thus, the corresponding ergodic downlink achievable rate
of the k-th user is given by

R0 = E{logy (1 4+ vk,0)} (10)

where E{-} represents the expectation taken with respect to
the small-scale channel fading. However, obtaining a closed-
form expression for Ry o is challenging due to the complexity
of deriving its probability distribution. To overcome this diffi-
culty, an approximation result is proposed, as outlined in the
following theorem.

Theorem 1. [40] For any i, j > 1, if the distribution variance
of positive random variables A and B is small, the following
approximation result holds

iA N E {iA}

By applying Theorem 1, a lower bound for the ergodic rate
(10) with (0 = 1 can be derived as
E {'ADSk,O 2}

E {|ASIk,0|2 + Zg; |]IH/<,0|2} + 03

Rio =1logy [ 1+

(12)

On the other hand, if the m-th RIS are awakened to transmit
the signal with the BS-RIS-user channel, the instantaneous
SINR at the k-th user can be expressed as

[Aos., [

2
+ Z%% |I[i—)k,m

Vi = (13)

’ASIM 24 o2 .

Similarly, by applying Theorem 1, the ergodic downlink
achievable rate of k-th user with (;,, = 1 can be written as

'}
2 K 2 )
E |ASII(,M| + Z |]Ii~>k,m‘ + o5
i=1
[

E{|Aps.,

Rim =log, | 1+

(14)

For the considered system, we aim to jointly design the
transmit power, communication scheduling and phase shifts
of multiple RISs to maximize the integrated throughput of
the system. This optimization is subject to the transmit power
constraint of the BS and the communication scheduling re-
quirements of both the direct and reflected elements. To ensure
fairness and provide users with a comparable quality of service



(QoS), our objective is to maximize the minimum ergodic rate
lower bound among users by simultaneously optimizing the
transmit power, communication scheduling, and phase shifts.
However, it is evident that the max-min fairness approach may
not fully meet the minimum QoS requirements for all users. To
address this issue, if the QoS requirements remain unmet after
solving the initial optimization problem, users with specific
metrics, such as the weakest channel gain, will be excluded.
The optimization is then repeated with the remaining users,
allocating more resources to them [41]. This iterative approach
is defined by the following problem.

PO : max
=0 Phm>Pm>s
{GmIX,
(15a)
s.t. ¢k,m,i e F, (15b)
K M
0 S Z Zpk,m é Pma)u (150)
k=1 m=0
(6),(7) (15d)

where (15b) prescribes the format of the RIS phase shift
matrix, e.g., F = {Gxmi|Pemi = Bemi€’ ™, Wm,i € [0,2m)},
(15¢) represents the transmit power constraints that no more
than the maximum value P, .

Note that directly addressing the problem (15) presents sig-
nificant challenges. These difficulties arise primarily from the
self-interference term constraint and the complexity involved
in deriving its probability distribution. To overcome these
obstacles, we reformulate the objective function (15a) using
the approach outlined in the following proposition.

Proposition 1. Consider the ergodic rate Ry in (12) and Ry,
in (14), which can be written as follows

%Qopk,ovk )
b

(16)
oWy + of

Rk,O = 10g2 (1 +

507T¢Amp mXkem

Ry =1 4 , 17
¢ 082 ( 60Xk m¢kakm r%) ( )

where Wio = apio + 3y Pu,0s Wiom = Qi + Dzt Pum
are the interference power for the direct and reflected channels
of the k-th user, respectively; « is a constant equal to 1 — /4,

E{ el } = /25 and E{figall} = |/ 2zt

Proof: For the BS-RIS-user channel, we assume that
channels of different RISs are independent. By exploiting the
linear property of expectation, we have

E{|Ag, | +Z| |
k

J# (18)

2 - 2
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We assume the fact that given E {|an|} ~
N (0, BoXkmPrm) » |[km|| has Rayleigh  distribution;

K M
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where (a) is from the fact that E {||a.|} = \/W and

a = 1 — 7/4. On the other hand, we investigate the second
term

(19)
B {Jnll})’ }

X K it |
S Lo P Y =B S | i
Jj#k j#k ||u]mH
K -
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|”/ [
By substituting (19) and (20) into (14), and defining Wy, =
Pk + Z/‘ 21 Pjms the proof of (17) is completed. Meanwhile,

for the BS-user channel, the proof procedure of (16) is also
Qg VKT

deduced by assuming the fact that given E {||izk||} =4/
Thus, the proof is completed.

where (a) is from the that are independent random

variables and E {

III. PROPOSED ALTERNATING OPTIMIZATION APPROACH

As mentioned above, multiple variables in resolving prob-
lem P0 to be optimized jointly, which lead to intractable to
achieve the feasible solution, especially for high dimensional
matrix and non-convex constraints. Based on this, a sum
rate maximization (SRM) algorithm is employed, in which
the phase shifts of multiple RISs, power allocation and the
communication scheduling are optimized in an alternating
fashion as follows.

A. Power Allocation Optimization

To promote fairness and ensure that all users experience a
comparable quality of service (QoS), it is crucial to optimize
the transmission power with the objective of maximizing the
minimum ergodic rate lower bound among users. Thus, we
optimize the transmit powers given the RISs’ locations, and
rewrite the problem PO as

M
P1.1: maxmin SI@ORk,O + (1 - %k,O) Z %k,mRk,m
Pi.m k m—1

(21a)



s.t. ZZpkm_ a (21b)
k=1 m=0
(16), (17). (21c)

Given that maximizing log(1 + z) is equivalent to maxi-
mizing log(z), the function (21c) is therefore reformulated as

follows
% &k,0Pk,0
Rio = log, | 25000 22
ko = 1082 (kak,o +1 22)
E'lgk,mpk,m
Ry = logy <194ka+1 (23)

and €k0 _ Qk Uk 79km _ ﬂUXm,Zk(ZSm,k'
Since the ob]ectlve functions in (22) and (23) are still a
difficult to solve problem (21), we propose a reformulation

based on the following proposition.

m

Proposition 2. Let a, b be the minimum value of

1085 (&0Px.0) + it () and log, (Z \Ykmﬂkmpkm> T () the

optimization problem P1.1 can be expressed as the following
equivalent optimization problem.

P1.2: max %k,oa + (1 — %k,O)b (24a)
Pim
s.t. (21b), (24b)
Xk,O§O7Xk,m§07Vk:{1a2a"' 7K}3 (24C)
EoWio +1 < e X0 (24d)
M
Z %k,m('l?k, m Wk, m + 1) S e_Xk'r> (24‘6)
m=1
Xi0
logz (Skopro) + 157 = @ (241)
M X
1 SemDm kro>p. 24
08, (n; SemPs pk,m> T i) > (249)
Proof: By introducing auxiliary variables as e~ X0 =
M
&oWio + 1 and e = 3 Sy u(OemWim + 1), thus, the
m=1
problem P1.2 is reformulated as
M
: o
max min {logg (Z \sk,mﬁk,mpk,m> &k.0Pk.0
Xioms Xkm m=1
Sk,0(Xko = Xiom) + Xiom
: : : : 25
+ n(2) (252)
s.t. (21b) (25b)
Xk,O S 07*Xvk,m S O7Vk = {172a e 7K}a (25C)
GroWio + 1 < emXho, (25d)
M
gk,m(ﬂk, ka,m + 1) S eiXk'h (256)
m=1

To simplify the optimization process, we drop the
additive term log,(w/4) from (22) and (23), since it is
a constant and does not affect the optimization result.
To solve the max-min problem P1.1, we introduce
another auxiliary variable as Sypa + (1 — Q)b =

Sk,0 (Xk,0 = Xigm) +Xigm

ming (IOgQ (2,1151:1 sk,mﬂk,mpk,m) §koPko + n(2)
By substituting Syoa + (1 — Syo)b in (25a), PL.1 is
reformulated as the problem (24), thereby completing the
proof. [ ]
In this reformulated problem, the objective function be-
comes affine, while constraints (24b) and (24c) form convex
sets. It is worth noting that the term Znﬂle SkmVkmPr, 15 @
concave function of p; ,, and sum of concave functions remains
concave. Moreover, the logarithm of a concave function is also
concave, ensuring that (24f) and (24g) constitute convex sets
as well. To handle the non-convex constraints (24d) and (24e),
we introduce Lemma 1, which replaces these constraints with
convex alternatives, enabling effective optimization.

Lemma 1. By employing SRM, constraints (24d) and (24g)
are replaced with the following convex constraints.
e_XkO(X%O—'Xiz)a

EoWio + 1< e 50 — (26)

NE

%k,m(ﬁk,mwk,m + 1) S €

)

_Xk(,tr) _ e_Xk,r (Xkr _Igt))

3
Il
—

27)

Proof: Since the direct path and RIS-assisted reflection
paths are independent, the constraints (24d) and (24e) of
Lemma 1 can be proved separately. For the direct path case
(26), it is important to note that e~**¢ is a convex function
of Xy 0. As a result, the first-order Taylor expansion of e~ Xro
at any point provides a global lower bound for this function.
Consequently, we replace the right-hand side of (24d) with the
Taylor expansion evaluated around the point X; . Similarly,
for the RIS-assisted reflection paths case, the same principle
is applied to (27), establishing the corresponding result. H

Building on this, and using the insights from Proposition 2
and Lemma 1, a convex approximation of the problem P1.2
at the ¢-th iteration can be reformulated as follows

P1.3: max %]Qoa + (1 - sk)o)b, (28a)
PromrXk,05,Xkm
s.d. (24b), (24¢), (24f), (249) (28b)

EoWio +1<e” X — o (X"’O - X/%) ’
(28¢)

Shom (VemWim + 1) (28d)

M=

3
Il
_

< ekaa?) S o (Xk,r _ IET)) )

The values of )_(,Efg, )_(,E? are computed using the Taylor
expansion, where they are initialized as the optimal values
obtained from solving P1.3 in the (¢ — 1) th iteration. This
iterative process is repeated until convergence is achieved. The
steps of the proposed iterative algorithm for solving the power
allocation subproblem are outlined in Algorithm 1.

B. Phase shifts of multiple RISs optimization

The design of phase shifts in multiple RISs is crucial
in determining the performance of the multiple RIS-assisted



Algorithm 1 Power Allocation for Solving P1.3
Require: py,, dpm 1 <m< M, 1<k< K
1: Initialization: X} = —In(32 &, (Wi +1), t = 1,
e=10"3
2: Repeat

3. Update: {p; ,,, Xr,0, Xi,m} by solving the problem P1.3
4 Update: {p{’i "} = {p{")}

5 Update: X(tH) X,Eg

6:  Update: X,Etﬂ) X,Et,i

7. Next iteration:

8 t—t+1

9: Until: ‘ i Ifiti;:;?rikﬁtil) <e

communication. Note that the achievable rate Ry g is irrelevant
to phase shift design, and therefore can be ignored. Thus, we
formulate the phase shifts of RIS sub-problem by maximizing
the estimated composite channel gain, which is equivalent to
the following maximization problem:

K M 2
Z (hk + Z ¢;€ka,m>

max (29a)
Phmy =L M k=1 m=1

St Qrmi = Bemi€® ™, i =1,...,1 (29b)

wimi € (0,27]. (29¢)

The above mentioned problem (29) is a complicated non-
convex problem since K (b + M ¢T Vin)® is a
non-concave function with respect to ¢y, [42]. To address
this non-convex optimézation problem, we define Y,, 2

(hk + Zfr\l/[:l ¢Zka7,n) , so that the objective function (29a)
can be rewritten as
2

M
e+ GonVim

m=1

M H M
(h{ + Z ¢1{mvk,m> < Z kak,m>
m=1 m=1 30
" "o, (30)
(Z ¢1?,nd,m> <Z ¢1¥1ka"1 + Hth2 +
m=1 m=1

M
2Re {h,{ (Z ¢vak7,,,> } .
m=1

The first term in (30) can be further expressed as
M H oy
(Z (ﬁ],{mvk,m> <Z ¢]zjmvk,m> -
m=1 m=1
M I M I I
Z Z Hvk,m,i||2|¢m,i|2 + Z Z Z (¢£ivk,m7iv£m7i¢171,i) )

m=1 i=1 m=1 i=1 i#q
(31

and ¢, =

Ty =

where Vk,m = [vk,m,h Viem,2s -+ vk,m,I]T
[¢k,m,17 ¢k.m,27 ceey (bk,m,l]T-

It follows that (31) has no phase information because of
the definition of ¢y,,; such that |e/**i|> = 1. Furthermore,

there exist the cross terms in the second term of (31), which
can be negligible with QRe{hk(ZM ZII VO Vimi)} >>
Zm 1 Zz 1 Zz;éq( m,i Vi,m lvkm l¢ml) To Slmphfy the pI'Ob-
lem, we disregard the first term in (30) since it does not
affect the optimization process. The remaining terms are
independent of the phase shifts, allowing us to reformulate the
maximization problem for the total channel gain as follows

I SLA D op ol ey | SpEe

m=1 i=1

max
D, m=1,..

From the problem (32), the i-th reflecting coefficient in the
m-th RIS can be determined by maximizing the approximate
version of the total channel gain given by

Im (55,5 b >> R

Re(Y iy i vim,i)

To reduce the hardware complexity and overhead cost, we
consider to quantify the phase shifts of the RIS elements. Let
Whom,i £ Zorm; and B be the quantization bits, the quantized
phase Wy ,; can be derived as follows

wk(‘sm‘i> x4,

where § = 5—3 indicates the resolution of phase shifts. Algo-
rithm 2 summarizes the phase shifts optimization processing.

Gmi ~ tan ™t <

W,mi = round ( 34

Algorithm 2 Phase shifts of RIS design
Require: 5, =1, 1 <k< K

1: Initialization:hy , Vim

2: repeat
3:  Update the variable wy,,;, by solving the problem (33)
4:  Update iy,,,; by solving (34)
5
6

: until convergence
. Output: @yt =1,2,..,1

C. Communication Scheduling Optimization

To optimize the communication scheduling, the integer
communication scheduling constraints (6) are relaxed into a
form of continuous constraints as follows
(352)
(35b)

Sko < 1,
%k,m S 17

0< Qo <1,
Oggk,mg 1.

For any given transmit power and phase shifts of multiple
RISs, the communication scheduling subproblem is

2&,0Dk,0 )
P3: max St lo A4S ) 4
St,05 \Ykmz{ k0 1082 <£ka,0+1

Eﬁk mPk,m
4 s 5
(ﬁk,ka,m + 1> } (36a)

(36b)

(1—S%o0) Z Stmlog,

m=1

s.t., (35a), (35b).

It is conceivable that the objective function (36a) is a scalar
continuously differentiable function. Therefore, by successive-
ly updating Sy and Sy, it is not difficult to obtain a



locally optimal solution. It follows that the transmit power,
phase shifts of multiple RISs and communication scheduling
can be optimized by the alternate optimization. However, the
relaxation of the binary constraints (6) and (7) into continuous
constraints (35a) and (35b) is indeed an approximation that
may lead to solutions that are not feasible for the original
problem Fy. To tackle this issue, an additional step is intro-
duced to map the continuous values back to binary values
after solving the relaxed problem. This can be done using a
thresholding method, where values closer to 1 are set to 1,
and values closer to 0 are set to 0. This post-processing step
would ensure that the final solution is feasible for the original
problem F.

D. Complexity Analysis

This subsection presents a detailed complexity analysis,
comparing the proposed algorithm with the exhaustive search
method to highlight their computational efficiency and prac-
ticality. The exhaustive search method evaluates all possible
combinations of phase shifts, power allocation, and communi-
cation scheduling. Each RIS consists of s reflecting elements,
and the complexity of this approach grows exponentially with
the number of elements. The total computational complexity is
expressed as O (25 Lo, (2K M L? + KLM? + KML)), where
I;ter 1s the number of iterations and 2° accounts for the iter-
ations required to update the dual variables during the search
process. As described above, the complexity of the exhaustive
search method primarily arises from two sources: computing
Algorithm 1 in the first step and linearly determining the phase
shifts of multiple RISs in the second step. Consequently, the
overall complexity is given by O(2° Lo, (2K M L?+ K LM™+
KML)). In contrast, the proposed algorithm strikes a better
balance between computational complexity and system perfor-
mance. This improvement is validated through the numerical
results presented in the next section.

IV. NUMERICAL SIMULATION

In this section, we present numerical results to assess the
effectiveness and robustness of the proposed distributed RIS-
assisted algorithm in terms of the SE of the considered system.
Unless stated otherwise, the simulation parameters used for
evaluation are outlined as follows. The number of scattering
clusters and the propagation paths are set as N, = 8 and
N; = 10, respectively. We also consider the variance of path
gain for each cluster as Jf, ; = 0.1,V4, 1. All simulation results
are based on Monte Carlo simulation, which are averaged
over 5000 times. The Rayleigh fading channel is considered
as a general channel to be generated with large-scale channel
fading parameters [43]. To ensure a fair comparison, two types
of benchmarks are provided as follows.

1) Zero-forcing with per-antenna power constraint (ZF-
PPC): The ZF-PPC approach focuses on the power allocation
problem of maximizing the SE by employing ZF precoding
under per-antenna power constraint [44]. Considering that the
optimization problem of ZF-PPC is a convex optimization
problem, the iterative strategy is employed to implement ZF-
PAC. It should be noted that the solution of the ZF-PPC
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Fig. 2. Convergence behavior of our proposed algorithm.

approach would be unable to meet the power setting due to
only single-antenna power constraint. Based on this, the power
constraint is scaled down equivalently, for a fair comparison.

2) Adaptive Power Allocation Schemes (APAS): The APAS
approach with adaptive power allocation is used as an optimal
baseline in the simulation result. The performance of the
APAS will be plotted to verify the impact of effective power
allocation..

A. Convergence Analysis

The convergence behavior of the considered RIS-assisted
scheme 1is investigated, where jointly the communication
scheduling, the phase shifts of multiple RISs, and power
allocation are optimized to maximize system SE. As shown
in Fig. 2, it seems that the proposed distributed RIS-assisted
algorithm converges in less than 5 iterations under the small
transmit power P, = 5 dBm case, while for a large transmit
power Pp.x = 25 dBm, only 8 iterations are required for
reaching convergence. It is remarkable that when the number
of iterations is larger than 10 times, the differences of SE value
is slowly minor, which can almost be neglected. Therefore, the
system throughput obtained by the different transmit power
converges quickly, and, in general, only a small number of
iterations is needed for ensuring the convergence. According
to simulations, it is also noted that the SE value of the system
increases as the power P,y increases.

B. Comparison of Different RISs

To further illustrate the performance of the proposed
method, Fig. 3 shows the relationship between the achievable
SE of the considered distributed RIS-assisted scheme and the
number of multiple RISs. More specifically, as the number
of RISs increases from 10 to 90, the achievable SE of
the system approaches the Shannon limit. This improvement
occurs because the addition of multiple RISs enhances the SE
of the distributed RIS-assisted multiuser system, indicating
that deploying multiple RISs can significantly boost system
throughput. These observations verify the correctness of the
proposed method.
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Another notable observation is that the power consumption
of the distributed RIS-assisted scheme decreases as the num-
ber of RIS reflecting elements increases. This trend occurs
because a larger number of reflecting elements improves the
achievable SE of the system through the proposed phase-shift
control mechanism for multiple RISs. Moreover, it is evident
that deploying more RISs results in substantial performance
gains, highlighting the potential of the distributed RIS-assisted
multiuser system as an effective solution to enhance overall
system performance.

C. Comparison of Different Schemes

We evaluate the desired SE performance of the considered
distributed RIS-assisted scheme. We set the number of users
K = {10,25} and antennas N = {25, 49}. Figs. 4 and 5 show
the achievable SE versus the total power constraint. It is noted
that the APAS approach can achieve comparable performance
to the proposed distributed RIS-assisted scheme, when the total
power is close to Py ax = 8 dBm and K = 10, N = 25. This
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Fig. 5. The ergodic downlink achievable rate versus transmit power: K’ = 25,
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Fig. 6. The achievable sum rate versus the number of users K: v = 3.

is because the achievable SE is degraded in the detrimental
region, but the APAS approach cannot control the transmit
power. Comparing ZF-PPC and APAS in Figs. 4 and 5, we
can notice that the achievable SE can be further enhanced with
power allocation proposed in Algorithm 1, which indicates that
the distributed RIS-assisted scheme can be further improved
to achieve high sum rate.

It can be intuitively concluded that achieving the desired
performance for the ZF-PPC and APAS schemes comes at
the cost of extremely high computational complexity. Further-
more, by comparing these figures from Figs. 4 and 5, we can
observe that the considered distributed RIS-assisted scheme
outperforms other baseline schemes in the large number of
users cases. This is because the path loss between the BS
and the user become more and more serious in a complicated
environment, while multiple RISs can effectively compensate
for this drawback, thereby improving the system throughput.

D. Comparison of Different Users

Finally, we investigate the relationship between the number
of users K and the number of antennas N for the proposed
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Fig. 7. The achievable sum rate versus the number of users K: v =

technique. In this setting, both K and N are increased while
maintaining a fixed ratio v = % Figs. 6 and 7 show the

achievable SE of the system with v = 1 and v = %,

respectively. Specifically, Fig. 6 depicts the ;chievable SE as
a function of the number of users. As the number of users
increases, the system’s throughput improves due to the benefits
of SE-oriented power allocation, which efficiently distributes
resources to enhance performance. Building on the above
analysis, we conclude that the joint design of power allocation,
phase shifts of multiple RISs, and communication scheduling
offers valuable insights for practical systems operating in rich
macro-diversity cellular scenarios.

V. CONCLUSION

In this paper, we investigated distributed RIS-assisted mul-
tiuser systems, where multiple RISs are utilized to enhance
signal transmission between the BS and users. To minimize
the total power consumption of such systems, we formulated
an optimization problem aimed at maximizing the ergodic
achievable rate by jointly optimizing the phase shifts of multi-
ple RISs, power allocation, and communication scheduling. To
address this challenging problem, we first tackled the subprob-
lem of power allocation, which was solved using the SRM-
based iterative algorithm. Next, a minimization-maximization
approach was employed to derive an approximate closed-form
solution for the phase shifts of multiple RISs. Subsequently,
effective iterative optimization techniques were applied to re-
fine the communication scheduling. Simulation results demon-
strated that the proposed distributed RIS-assisted algorithm
significantly improves the total achievable SE compared to
existing benchmark methods, highlighting its effectiveness and
potential in enhancing system performance.
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