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Correlation effects mediated by disorders in one-dimensional channels
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We report nonlinear transport in one-dimensional quantum wires formed in a GaAs/AlGaAs heterostructure.
The two-terminal conductance characteristics were investigated under varying electron concentrations with
and without a large in-plane magnetic field of 10 T. One important observation was that the 0.7-like feature
was identified at higher-order subbands, specifically ∼1.6G0, ∼3.7G0, and ∼4.7G0. Additionally, our findings
reveal the emergence of two conductance states appearing below e2/h under large dc bias voltage, where these
states become more pronounced together with higher 0.7-like features, as electron concentration decreases,
highlighting the influence of strong correlation effects in their formation. The weak Zeeman splitting in the
ground state despite a large in-plane magnetic field of 10 T in low-density and weakly confined regime indicates
disordered-induced correlation effects dominating the mechanism.
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I. INTRODUCTION

One-dimensional (1D) systems have long served as a rich
platform for cultivating intricate quantum phenomena, fos-
tering the development of new physics for decades [1,2]. In
particular, semiconductor heterostructures featuring a high-
mobility two-dimensional electron gas (2DEG) located at the
heterostructure interface are utilized to construct a 1D quan-
tum wire through electrostatic confinement using split-gate
techniques [3]. By varying the gate voltage, electrons in the
2DEG beneath the split gates are gradually depleted, leading
to the formation of a 1D constriction. When the system is
cooled to low temperatures, electron transport in this nar-
row region enters the ballistic regime, resulting in quantized
conductance plateaus at NG0, where N is a positive integer
and G0 = 2e2/h is a universal constant (e is the electron
charge and h is the Planck’s constant) [4,5]. The emergence
of these plateaus occurs as the Fermi level crosses successive
spin-degenerate 1D subbands when the 1D constriction width
is controlled by the split gate voltage. A quasi-plateau often
forms around 0.7G0, which is referred to as the 0.7 anomaly
[6]. Although the exact origin of the 0.7 structure has not
yet been established, it is essentially regarded as a correlation
effect, although this effect has been produced in systems with
Kondo impurities [7].

Varying the number of electrons in the 1D channel is key in
tuning the degree of correlation effects or interaction between
the electrons. At a low electron density, n1D, the interaction
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energy (= e2n1D/ε) becomes prominent compared to the ki-
netic energy, which is typically of the order of the Fermi
energy (= π2h̄2n2

1D/8m∗), where ε is the dielectric constant of
the material, h̄ is the reduced Planck’s constant, and m∗ is the
effective mass of the electron. Under these conditions, elec-
trons in the ground state rearrange in a zigzag-like structure,
which splits into two rows of electrons upon further domi-
nance of Coulomb repulsions, known as the 1D Wigner lattice
[8]. The formation of such long-range ordered electron chains
becomes possible when the distance between two consecutive
electrons in a row, 1/n1D, called the Wigner-Seitz radius, is
larger than the Bohr radius of the material [8–13]. The forma-
tion of a zigzag structure and its transformation into a Wigner
lattice directly drives the emergence of fractional quantum
states in the absence of a magnetic field in GaAs-based sys-
tems [1,14,15]. The weakly confined 1D channel resulted in
various fractional states that were particularly pronounced at
1/2, 1/4, 1/6, and 2/5 (in units of e2/h) in the absence of a
magnetic field [15].

Although theoretical models predict that a small amount
of disorder in the channel could pin the Wigner lattice
[16–18], experimental observations of the Wigner lattice have
been essentially restricted to clean quantum wires [19–21].
This raises many open questions and challenges in experi-
ments, such as how the disorder affects the electron-electron
interactions and the stability of the Wigner lattice. A par-
ticular challenge is understanding how the reorganization
of electrons occurs because of the competition between
electron-electron interactions, variable confinement, the Zee-
man energy in the presence of a magnetic field, and the
disorder potential.

This article attempts to answer some of these questions by
means of conductance studies in moderately disordered 1D
quantum wires using dc source-drain bias spectroscopy. A
dc source-drain bias comparable to the subband spacing was
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FIG. 1. Differential conductance, G, as a function of symmetric
split gate voltage, Vsg, at various top gate voltages between Vtg = 0 V
(left) and Vtg = −0.95 V (right). The inset shows an optical micro-
scope image of a representative device. Note that the yellow blocks,
representing ohmic contacts, serving as source and drain, are drawn
over the optical image for clarity, and are not part of the actual optical
micrograph. Conductance traces recorded at Vtg = 0, –0.3, –0.5, and
–0.82 V are highlighted. The asterisk (*) indicates the resonance
peak near the pinch-off. The dotted lines guide the evolution of
conductance states in higher-order subbands as Vtg varies.

used to explore nonlinear transport, which allows for prob-
ing electron correlations across different energy states. The
experiments were performed under varying electron concen-
trations, both with and without an in-plane magnetic field. Our
results show the indication of correlation effects coupled with
impurity-induced influences. We also show that the system
has entered the 1D Wigner regime, i.e., a zigzag of electrons,
measured by nonlinear transport.

II. EXPERIMENTAL METHODS

The devices used in this work were fabricated on a
GaAs/AlGaAs heterostructure grown using molecular beam
epitaxy. The 2DEG was formed at a depth of up to 90 nm
beneath the surface, with a low-temperature mobility of 2.7 ×
106 cm2/Vs and an electron density of 1.8 × 1011 cm−2. A
pair of split gates, each with a length of 0.8 µm and a width
of 0.5 µm, and a top gate of the length of 1 µm separated by
a 0.3-µm-thick insulating layer of cross-linked poly (methyl
methacrylate), PMMA, were patterned by a standard litho-
graphic technique, see inset of Fig. 1 [15,21,22]. Two-terminal
differential conductance, G = dI/dVsd, measurements were
carried out using a lock-in amplifier by applying an excitation
voltage of 10 µV at 73 Hz in a cryogen-free dilution refriger-
ator at a base temperature of 45 mK.

Conductance measurements were performed on 1D quan-
tum wires by applying identical voltages to both split gates,
creating a symmetric confinement potential. Differential con-
ductance was recorded for different electron densities in the
1D channel controlled by the top gate voltage Vtg. Measure-
ments in the nonlinear regime were carried out by applying a
dc bias voltage between the source and drain |Vsd| � 3 mV, in
addition to the ac excitation of 10 µV. For this, the Vsd was first
set to –3 mV, and the differential conductance was recorded
while sweeping the split gates. This process was then repeated

for each subsequent Vsd in 0.1 mV increments up to 3 mV.
The experiments were conducted at zero magnetic field and
with an in-plane magnetic field B‖ = 10 T, perpendicular to
the transport direction and for four different top gate voltages:
0, –0.3 V, –0.5 V, and –0.82 V.

III. EXPERIMENTAL RESULTS

Figure 1 shows the conductance characteristics of a 1D
quantum wire under a symmetric confinement potential and
at varying top gate voltages. The inset depicts an optical
microscope image of a representative device similar to the
one used in this study, which has a pair of split gates and
a top gate. At Vtg = 0 V, although regular quantized conduc-
tance plateaus were observed, the effect of impurity scattering
was prominently noticed. The conductance trace exhibits a
sharp peak, a resonance effect because of a localized impurity,
just before the pinch-off, followed by plateaus that deviate
slightly from the quantized value of NG0, where N is an
integer and G0 = 2e2/h. The plateau associated with the first
subband (∼0.9G0) shows irregularities characterized by reso-
nance peaks and dips, potentially connected with the localized
impurity in the channel. A similar feature is also present at
∼3G0. Moreover, the 0.7 anomaly, which occurs at ∼0.6G0,
is observed. One prominent observation was that the 0.7-like
features, i.e., ∼1.6G0, ∼3.7G0, and ∼4.7G0 are identified in
higher-order subbands.

As the electron density decreases with the application of a
negative top gate voltage, the resonance in the first plateau at
∼0.9G0 weakens and eventually disappears, along with the
saturation at G0 near Vtg = −0.5 V (Vsg ∼ −0.8 V). At this
moderate confinement potential, the 0.7 anomaly has gradu-
ally shifted to higher conductance values, strengthened and
saturated around 0.8G0. Moreover, plateaus observed at frac-
tional values (∼1.6G0, ∼3.7G0, and ∼4.7G0) in higher-order
subbands shift to higher conductance values under decreasing
electron density and merge with integer conductance plateaus
(see the dotted lines, Fig. 1). Furthermore, new conductance
states emerge in the third subband as Vtg varies between −0.3
and −0.5 V.

A reduction in carrier density leads to an increase in
the conductance of the peaky structure observed just before
pinch-off, reaching a maximum at 0.5G0 (Vsg ∼ −0.5 V). Ad-
ditionally, as the top gate is made more negative (< –0.6 V),
a complex crossing of energy levels is observed similar to
what was reported previously [15,21]. It has been suggested
that this is the regime where the ground state and the first
excited state intersect caused by the presence of symmetric
and antisymmetric states. This leads to a new ground state
represented by 4e2/h and the emergence of the zigzag ar-
rangement of electrons, essentially resulting in the formation
of a 1D Wigner lattice [15,19–21].

It may be noted that plateaus are not finely defined as a
result of the longer 1D wire (0.8 µm). The impurity effects
on quantization in 1D quantum channels have been exten-
sively documented [23,24]. It was reported that ionized donors
may introduce random potential with long-range fluctuations
that could smear out conductance plateaus in longer quantum
wires (> 0.5 µm). The isolated peak was reported to form just
before the pinch-off as a result of resonant tunneling through
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FIG. 2. Conductance characteristics for dc source-drain bias spectroscopy. Differential conductance, G, as a function of source-drain
bias voltage Vsd for different split-gate voltages at zero magnetic field and (a1) Vtg = 0 V, (b1) Vtg = −0.3 V, (c1) Vtg = −0.5 V, and (d1)
Vtg = −0.82 V. Corresponding data at B‖ = 10 T for different Vtg are presented in (e1), (f1), (g1), and (h1), respectively. The data shown here
were derived from G vs Vsg (at different |Vsd| � 3 mV) using the method of interpolation. The magnified views of each plot are shown on the
right of each plot and labeled as a2, b2.....h2. The magnified plots highlight selected conductance traces with different colors to illustrate the
evolution trend under moderate dc source-drain bias. For each top-gate setting, the conductance traces corresponding to identical Vsg values
are shown using the same colors for B = 0 T and B‖ = 10 T.

the quasibound state of the impurity, that also affected the first
plateau as a result of resonant scattering from the impurity
[25,26]. We notice a few similarities between our impurity
driven features, as in Fig. 1, and the work in Refs. [25,26].

Figure 2 shows the evolution of the conductance charac-
teristics under varying dc source-drain bias for various top
gate voltages at B = 0 T and B‖ = 10 T. In this measurement,
the bunching of traces, for example, at zero source-drain bias,
signifies plateaus observed in conductance measurements. At
Vtg = 0 V and at B = 0 T [Fig. 2(a1)], the conductance value
at the resonance peak (shown in Fig. 1 as *), that occurs near
the pinch-off, essentially increases under rising |Vsd|, evolving
as a semicircle for |Vsd| � 1 mV, and eventually merges to the
0.7 anomaly that forms in the nonlinear regime for 1 mV �
|Vsd| � 2 mV. It may be noted that because of the presence of
disorders, the plateau, especially the 2e2/h, is not aligned with
the expected value despite removing the series resistance. It
has been shown that Luttinger liquid caused by the correlation
effects could reduce the conductance quantization to less than
2e2/h [27]. The half-integer plateaus (1/2 × NG0) emerge in
the higher-order subbands (N � 2) for 0.5 mV � |Vsd| �
1.5 mV, represented as a bunching of traces (the evolution
of plateaus with Vsd may be visualized in Fig. 4). As the
magnitude of the dc bias increases, the chemical potentials of
the source and drain shift in opposite directions relative to the
equilibrium Fermi level. Half-integer conductance plateaus
appear when one of the chemical potentials (either source or
drain) exceeds a subband energy level, while the other remains
within the subband range [28,29]. Furthermore, the plateau
at ∼1.6G0 (at Vsd = 0 V) divides into two plateaus at finite
source-drain bias, which settle at ∼1.8G0. This trend is similar
to what the integer plateaus generally display when applying
a varying source-drain bias, indicating that the 1.6G0 exhibits
a true 1D subband feature [29].

We noticed that zero-bias anomaly (ZBA) originated from
sub-G0 values and appeared in higher subbands. Also, we
noted that the bunching of traces close to G0 crosses each
other at zero source-drain bias. The magnified view is shown
in Fig. 2(a2). We noticed the ZBA peak was absent until
close to 0.5G0, afterward it evolves, shown in the red trace
accompanied by asymmetrically placed neighboring peaks at
finite source-drain bias (FB). The complex crossing of satellite
and ZBA peaks is indicated by colored traces (blue, green,
magenta, orange), showing resonance of competing impurity
and 1D states.

As the top gate voltage is made more negative, the plateaus
are significantly affected under varying dc source bias volt-
age. At Vtg = −0.3 V and at B = 0 T, the usual semicircle
impurity-driven state is observable at Vsd � 0 V, followed by
a 0.7 feature [Fig. 2(b1)]. The ZBA peak is also present in this
case, although it starts appearing at a value lower than 0.5G0

and continues to 0.75G0. The ZBA peak is accompanied by
FB peaks within |Vsd| � 1 mV. We noticed the crossing
of traces at G0, although less pronounced than compared to
Vtg = 0 V; a gap has occurred in the bunching of traces [seen
as forming a ring, enclosed between traces cyan and green,
Fig. 2(b2)]. The 1.6G0 feature is still present, although rela-
tively weakened compared to Vtg = 0 V. At Vtg = −0.5 V, the
usual semicircle impurity state is still observable, followed
by a 0.7 feature, accompanied by the ZBA and FB peaks
[Fig. 2(c1)]. The FB peaks are strongly present, as may be
noticed in the plot, and are distinct compared to the impurity-
driven semicircle feature that merges with the 0.7 feature
under increasing source-drain bias. The crossing of traces that
occurred at Vtg = 0 and –0.3 V, has significantly reduced,
forming a distinct gap [between traces blue and magenta,
Fig. 2(c2)]. The 1.6G0 feature at Vsd = 0 V has disappeared
at this top gate voltage, presumably merged with 2G0. At
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FIG. 3. Conductance characteristics for dc source-drain bias spectroscopy. Differential conductance G as a function of split-gate voltage
Vsg for source-drain bias voltage Vsd at zero magnetic field and (a) Vtg = 0 V, (b) Vtg = −0.3 V, (c) Vtg = −0.5 V, and (d) Vtg = −0.82 V.
Corresponding data at B‖ = 10 T for different Vtg are presented in (e), (f), (g), and (h), respectively. For clarity, the conductance traces have
been shifted along the x axis by a difference of 0.01 V between each trace along the x axis relative to the trace for Vsd = 0 V, with shifts to the
left for negative Vsd and to the right for positive Vsd. The leftmost trace corresponds to Vsd = –3 mV and the rightmost to Vsd = 3 mV, with each
successive trace incremented by 0.1 mV from left to right.

Vtg = −0.82 V, the semicircle effect close to the pinch-off is
not visible [Fig. 2(d1,d2)]. The ZBA peak is also missing,
though FB peaks are prominently present, which, along with
the resonating states, creates a crossing of traces close to G0.
Higher subbands were not resolved at this top gate voltage.

At B‖ = 10 T and at Vtg = 0 V [Fig. 2(e1)], the Zeeman
energy lifts the spin degeneracy of the 1D subbands, resulting
in the spin-polarized bands quantized at 1/2 × NG0 for Vsd �
0 V. This spin polarization is prominently visible in the higher
subbands, as depicted in the contour plots for clarity [Fig. 4].
The zero field, 1.6G0 feature appearing at Vsd � 0 V, has
merged with the 1.5G0. The 1.8G0 features appearing at FB,
emerging from the 1.6G0 at zero magnetic field, show interest-
ing evolution at B‖ = 10 T. They have now settled at 1.75G0

and the bunching of traces is now robust than at B = 0 T,
indicating they are spin-polarized states. The quarter plateaus
at FB in higher bands (1.75G0, 2.75G0) were also resolved
[Figs. 2(e1) and 2(f1)]. The resonance peak near the pinch-off
has split into two, which indicates that the impurity state is
of magnetic origin [30]. This occurs as two semicircles in the
plot. The complex bunching of traces has also split distinc-
tively into two, one aligns with 0.5G0 and the other ∼0.7G0 at
Vsd = 0 V [Fig. 2(e1)]. For Vtg = −0.5 V, where the resonance
between the states had already reduced at B = 0 T, now at
B‖ = 10 T, has completely weakened [Fig. 2(g2)], resulting
in a structure close to 0.7G0 at Vsd = 0 V. At Vtg = −0.82 V,
no semicircle trend close to pinch-off was observed, while
bunching of traces above and below the 0.5G0 was noticed
[Fig. 2(h1,h2)]. The crossing of traces or resonance at G0 has

smeared out. For all top gate voltages, the ZBA peak and the
resonance peaks that were prominent at zero magnetic field,
disappeared. It may be noted that despite a strong B‖ = 10 T,
the bunching of traces or plateau close to the spin-polarized
0.5G0 state was not observed for negative top gate voltages. It
may be worth mentioning that the semicircle-shaped impurity-
driven effects observed close to pinching off at Vsd � 0 V, as
in Figs. 2(a1)–2(d1), resemble the typical in-plane magnetic
field introduced effects [31] [see Figs. 2(e1)–2(h1)], perhaps
indicating the impurities in the channel are magnetic in nature.

To investigate the effect of large source-drain bias on
conductance characteristics, we will consider the results of
conductance as a function of split-gate voltage for varying
source-drain bias, and mainly focus on the effect for 1 mV �
|Vsd| � 3 mV, as shown in Fig. 3 for both B = 0 T and B‖ =
10 T. At Vtg = 0 V, Fig. 3(a), as the source-drain bias increases
negatively toward –3 mV, two conductance structures below
0.5G0 were resolved, roughly indexed at 0.4G0 (4/5e2/h) and
0.2G0 (2/5e2/h). On the application of gradually increas-
ing positive Vsd to 3 mV, only one structure approximately
at 0.2G0 (2/5e2/h) is resolved. With B‖ = 10 T, Fig. 3(e),
the dual conductance structures toward Vsd = −3 mV, and a
single structure towards Vsd = 3 mV persist, although their
magnitude has slightly reduced. At Vtg = −0.3 V and B = 0 T
[Fig. 3(b)], a plateau ∼0.25G0 appears at Vsd � –1 mV,
which remains persistent on increasing Vsd negatively to –
3 mV. Moreover, a second plateau around 0.4G0 arises with
a subtle interbound state (at ∼0.3G0) for –3 mV � Vsd �
–2 mV. At positive dc bias voltage, plateaus at ∼0.1G0 and
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∼0.2G0 appear for Vsd � 1 mV and Vsd � 2 mV, respectively.
At B‖ = 10 T, Vtg = −0.3 V [Fig. 3(f)], for the negative dc
bias voltage, a plateau at ∼0.16G0 arises for Vsd � −1 mV. A
faint signature of the 0.25G0 (1/2e2/h) state is noticeable for
Vsd < −2.5 mV. Further, the 0.5G0 state is present at Vsd �
−2 mV, which monotonically reduces to lower conductance
values under more negative biasing and finally saturates at
∼0.25–0.3G0 for Vsd < –2.5 mV. On the other hand, with pos-
itive dc bias voltages, plateaus occur at ∼0.08G0 (1/6e2/h)
and 0.2G0(2/5e2/h) for 1 mV � Vsd � 3 mV and 2 mV
� Vsd � 3 mV, respectively.

A further decrease in the top gate voltage, Vtg = −0.5 V,
Fig. 3(c), at B = 0 T, yields a resonance peak at ∼0.3G0

for –2 mV � Vsd � −1 mV. For –3 mV � Vsd � –2 mV,
the resonance peak reduces to lower conductance values, and
the plateau at ∼0.3G0 becomes distinguishable along with
intervening states for –3 mV � Vsd � –2.5 mV, resonating
between 0.3 and 0.25G0. In contrast, with a positive bias volt-
age for Vsd > 1 mV, a prominent plateau occurs at ∼0.16G0.
At B‖ = 10 T, Fig. 3(g), and under negative biasing, a ∼0.2G0

state appears for –1.5 mV � Vsd � −1 mV, which trans-
forms into states with conductance of ∼0.16G0 (1/3e2/h) and
∼0.3G0 (3/5e2/h) for –3 mV � Vsd � –1.5 mV. However,
positive biasing displays plateaus at ∼0.16G0 (1/3e2/h) for
Vsd � 1.5 mV. At a very large top gate voltage, Vtg = −0.82 V,
Figs. 3(d) and 3(h), a state ∼0.4–0.5G0 is stable for –3 mV
� Vsd < −1.5 mV at B = 0 T, with a subtle 0.33G0 state also
occurring at –3 mV � Vsd < −2.5 mV. Under positive bias,
stable 0.22G0 and 0.33G0 states occur for Vsd > 1.7 mV. With
B‖ = 10 T, 0.25G0 (1/2e2/h) and 0.33G0 (∼3/5e2/h) states
are observed for –3 mV � Vsd � –2 mV and 0.2–0.25G0

(∼1/2e2/h) state for Vsd > 2 mV.
For discussion purposes, we restrict ourselves to two con-

ductance structures appearing at large dc bias (|Vsd| � 2 mV)
around 0.2G0 and 0.4G0 for Vtg = −0.5 V [Fig. 3(c)]. These
features are more pronounced for negative Vsd compared to
positive Vsd. Previously, such dual conductance structures ap-
pearing close to 0.25G0 and 0.5G0 were reported [1,15,19–
21]. The plateau at 0.25G0 is known to arise from the lift-
ing of both momentum and spin degeneracy under large dc
bias [32]. The additional plateau at 0.5G0 has been con-
sidered a result of the formation of two separate electron
rows under enhanced Coulomb interactions, leading to a
Wigner lattice structure in one-dimensional channels [20,21].
The observed shift in the dual conductance plateaus in our
results may be caused by correlation effects and perhaps
disorders, that do not destroy these structures but modify
them by shifting to lower conductance values resembling
fractional states (in units of e2/h) 2/5 and 4/5. Determining
whether they are the actual fractional states necessitates a
thorough investigation, which is outside the scope of this
article. It is important to note that the signature of Wigner
crystallization is not present in the linear transport regime.
At a high bias voltage, the carrier distribution shifts out of
equilibrium and populates higher 1D subbands. This redis-
tribution enhances both the inter- and intraband interactions
and increases the correlation effects with increasing bias
voltage. In addition, screening decreases owing to the deple-
tion of low-energy electrons, leading to stronger Coulomb
interactions. These conditions may promote the occurrence

of correlated phases, such as Wigner crystallization, which
could be suppressed or less pronounced in the linear transport
regime.

It may be noted from Fig. 3, left panel plots for B = 0 T,
that the two conductance structures appearing at the large
negative source-drain bias, gradually move closer to each
other, i.e., the conductance gap between them reduces on
reducing carrier density as the top gate is made more negative.
This may be noticed from Fig. 3(c), Vtg = −0.5 V, where the
two conductance structures have come close enough to form
hybrid states, resulting in resonance between the intervening
states. When the density is further reduced, at Vtg = −0.82 V,
the two states may have merged to form a degenerate single
state. This discussion may also be applied to B‖ = 10 T plots.
However, the magnetic field induces noticeable shifts in the
conductance values of these dual states [33].

We noted the dual fractional-like states emerge at higher
source-drain bias for decreasing carrier density in the 1D
channel. On the other hand, the higher-order derivatives of
the 0.7 structure, at zero source-drain bias, also become pro-
nounced when the carrier density is reduced. This indicates
enhanced correlation effects including exchange interactions
arising by the reduced number of electrons in the channel.
However, the asymmetry in the intensity of these features and
quantitative differences in their appearance for negative and
positive biases may arise because of multiple reasons such as
asymmetry in the channel, inhomogeneity in the background
potential, and nonlinearity assisted by disorders in longer
and wider quantum wires [34–36]. It was suggested that the
conductance asymmetry could be related to the asymmetric
effect of an applied electric field and its distribution within
the quantum system, and their coupling to the Fermi liquid
outside the 1D wire [37].

Figure 4 shows the contour plots of the transconductance
dG/dVsg as a function of Vsd and Vsg for Vtg = 0 V and –
0.3 V both for B = 0 T and B‖ = 10 T. In the linear regime
(Vsd � 0 V), up to four 1D subbands are identified. Under
increasing dc bias, the chemical potentials of the source and
drain shift in opposite directions relative to the equilibrium
Fermi level. When the applied bias exceeds the subband spac-
ing, this results in the appearance of half-integer conductance
plateaus. The Vsd values at the crossing points of the diamonds
reflect the energy spacings between the subsequent subbands.
The 0.7 structure and its derivatives in higher subbands are
visible for Vtg = 0 V. It becomes more prominent as the top
gate voltage decreases [e.g., Fig. 1], suggesting the enhanced
interactions between electrons. The spin-polarized subbands
are resolved at B‖ = 10 T, mostly in higher-order subbands.

In order to further understand the conductance character-
istics quantitatively, we estimated the subband spacings and
electron density of the 1D wire. The energy spacings between
the consecutive subbands, EN+1 − EN = e(|V +

sd | + |V −
sd |)/2,

were calculated from the Vsd values corresponding to crossing
points of the diamonds observed in the contour plots of the dc
source-drain bias measurements [see Fig. 4], where |V +

sd | and
|V −

sd | are the values at the positive and negative Vsd, respec-
tively. Here, N denotes the subband index (� 1). Furthermore,
knowing the pinch-off voltage for the symmetric split-gates
configuration, the variation of electron density in the 2DEG
n2D for different applied top gate voltage was estimated
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FIG. 4. Contour plots of the transconductance, dG/dVsg, as a
function of Vsd and Vsg for (a) Vtg = 0 V and (b) Vtg = −0.3 V at
zero magnetic field. Corresponding plots for B‖ = 10 T are shown
in (c) and (d), respectively. All plateaus at Vsd � 0 V across the plot
have been indexed in units of 2e2/h, labeled on the right y axis for
each plot. A few half-integer states are indexed within the plot for
clarity.

using the relation n2D = (ε/2πeD)VP, where ε (= 12.9) is the
dielectric constant of GaAs, e is the electron charge, D (=
0.5 µm) is the distance between the split gates, and VP is the
pinch-off voltage [38]. For simplicity, assuming a square well
confinement in the transverse direction, the width of the 1D
channel W is then approximated as λ2D/2 when only the first
subband is occupied. Here, λ2D = (2π/n2D)1/2 is the Fermi
wavelength of the 2DEG. The electron density of the 1D wire,
n1D = n2DW , is therefore estimated.

Figure 5 shows the obtained 1D parameters for different
top gate voltages at B = 0 T and B‖ = 10 T. The energy spac-
ing between the subband N (�1) and ground state (N = 1), EN

– E1, deviates from the straight line behavior [Fig. 5(a)], a fea-
ture of the parabolic confinement (equally spaced subbands).
Higher-order subbands are closely spaced compared to lower-
order subbands, revealing that the confinement potential is not
a perfect parabola. Applying a more negative Vtg and a mag-
netic field further reduces the subband spacings. Nonetheless,
the confinement potential parameter, r0 = (2e2/εm∗ω2)1/3,
is roughly estimated, where m∗ is the effective mass of

FIG. 5. Evolution of 1D parameters calculated for different top
gate voltages. (a) Energy spacing between the subband N and the
ground state (N = 1) at B = 0 and B‖ = 10 T obtained from the dc
source-drain bias data. (b) Wigner-Seitz radius rs, and the confine-
ment parameter r0 estimated at B = 0 T.

electrons in GaAs and ω (= (E2-E1)/h̄) is the frequency of the
confinement potential (parabolic) [8,9]. Figure 5(b) shows the
variation of Wigner-Seitz radius rs (=1/n1D) and parameter r0

in units of Bohr radius aB, for B = 0 T. The rs � 1 suggests a
possible formation of a Wigner lattice in the 1D channel. As
r0 ≈ 4rs, the formation of two parallel electron rows (r0 > rs)
from the zigzag structure (r0 ≈ rs) is plausible. It is worth
noting that Wigner crystallization in higher-dimensional sys-
tems requires much larger rs values (∼37aB in two dimensions
[39] and ∼100aB in three dimensions [40]), as the increased
phase space allows electrons to minimize mutual repulsion
more effectively, thereby reducing correlation effects. In con-
trast, the more confined geometry in 1D enhances Coulomb
interactions and can allow crystallization at much lower rs

[8–13]. Using quantum Monte Carlo simulation, Mehta et al.
[9] demonstrated a transition from a linear to zigzag config-
uration in 1D as Wigner radius varies from ∼1aB to ∼4aB

under different electron densities. Based on the estimated
n1D in our result, the interaction energy of the electrons is
stronger (∝ n1D) compared to the kinetic energy (Fermi en-
ergy ∝ n2

1D) in the ground state. The observed features, such
as the dual conductance structures at large dc bias, result from
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electron-electron interactions, which strengthen at a more
negative top gate voltage.

IV. DISCUSSION

The observation of the 0.7 anomaly in the conductance of
1D quantum wires has been proposed to arise from various
mechanisms, low-density intrinsic spin polarization, Kondo
physics caused by localized impurities, or a combination of
both, the Wigner lattice, etc. [41,42]. The 0.7 anomaly gen-
erally develops into a 0.5 feature on the application of an
in-plane magnetic field, suggesting a ferromagnetic ordering
caused by aligned spins [6]. It was reported that in the 2DEG,
at low densities, the exchange interaction drives electrons
spin to align in one direction [43]. Berggren, Yakimenko, and
Wang [44,45] calculated that in a 1D channel, as a result of
exchange and correlation effects, a spin gap is created, leaving
the system to populate parallel spin-down states to lower its
energy. This is a case of intrinsic spin polarization without
any magnetic field. Similarly, Reilly [46] suggested through a
phenomenological model that a spin gap is formed in the 1D
system as a function of 1D carrier density. It was indicated
that the spin gap increases with EF, implying the appearance
of higher order 0.7 structures, as seen in the present work.

It was also reported that anomalous features developed at
the crossing of the 1D subbands threshold because of Zeeman
energy in the presence of a high in-plane magnetic field.
These anomalous conductance features were developing sim-
ilarly to the way the 0.7 anomaly was gradually developing
into the 0.5G0 feature on increasing the in-plane magnetic
field [47,48]. These so-called “0.7 analog” were attributed
to exchange and Coulomb interactions arising from the low-
density regime [41,49]. This is an important indication that
exchange and correlation effects may still show dominance in
1D systems despite the presence of the substantial Zeeman
Effect.

In the present work, we have identified the presence of the
0.7-like anomaly at higher subbands, namely 1.6G0, 3.7G0,
and 4.7G0, and they were found to merge with the integer
plateaus on lowering the carrier density in the 1D channel.
They may have appeared because of the possibility of ex-
change and correlation effects at higher subbands [44,45],
based on the calculation utilizing the Kohn-Sham (KS) local
spin-density approach (LSDA). It is argued that at low density
in the 1D channel, near the pinch-off, both spin-up and spin-
down states are present, as the split gate voltage is relaxed,
so the ground state starts getting populated, because of the
exchange correlation, the spin-down subband gets populated
first resulting in the 0.7 feature. The remaining electrons
populate the next subband as the Fermi level is moved up
using the split gate voltage. As the Fermi level enters the
second subband, when it crosses a subband threshold energy,
the spin splitting could be pronounced owing to the exchange
potential, resulting in the observation of additional spin-split
states at higher subbands, namely 1.6G0, 3.7G0, and 4.7G0.

The longer quantum wires (2 µm) were reported to exhibit
enhanced spin splitting with the 0.7 structure being close to
the 0.5G0, although resonating, and signatures of higher order
0.7 structures or derivatives in the second subband at 1.7G0;
the effects were attributed to many-body physics within the

1D channel [50]. In another report, similar 0.7 derivatives in
the first and second subbands were reported in 0.31 µm long
quantum wires, and the effect was attributed to the disorders
from the donor layer at a distance of 15 nm from the 2DEG
[51]. In the present work, despite the donor layer being 40 nm
apart from the 2DEG, the disorder effects from the donor layer
and inhomogeneity in the background potentials may not be
ignored, as they depend on various parameters, such as the
cooldown process, the rate at which gate voltages are swept,
the associated electric field, etc.

In our results with in-plane magnetic field at B‖ = 10 T,
we did observe the spin-polarized conductance plateaus for
different negative top gate voltages, in higher subbands, how-
ever, in the ground state, the spin-polarized state was not
found at 0.5G0. It is known that the g factor within the 1D
channel and across its different subbands vary significantly
[6]. The g factor also appears to vary with the carrier density.
Calculations of the exchange potential in a square confining
potential have shown that the effective g factor decreases
when the 1D confining potential weakens and the 2D limit is
approached [52,53]. At a lower electron density (negative top
gate voltage), and in the lowest subband, the exchange energy
can become significant when an aligned spin subband has
formed despite the presence of Zeeman energy. Moreover, the
correlation energy and impurity effects might also inhibit the
complete transmission through the lower spin subband. Thus,
weakly defined spin-split features were noticed in the ground
state compounded by resonance features from the bound states
in the channel.

We noticed ZBA peaks across several subbands in our
samples. Along with ZBA, satellite peaks around Vsd = ±
1 mV were also seen, similar to the one reported by Sfigakis
et al. [7], attributed to resonance states from the impurities in
the channel [7,54]. We argue that the impurity states present in
our system influence the transmission through the channel. On
applying a finite source-drain bias, the transmission through
the channel is modified when the impurity states and 1D
subbands align, resulting in resonant states. It may be noted
that clean 1D systems were reported to show ZBAs with and
without satellite peaks, implying ZBA is intrinsic to 1D wires.
The reduced ZBA peak, as in our case, could be attributed
to low electron density, electric field distribution, impurity
effects, and so on [51,54,55]. There are conflicting reports on
whether the ZBA peak is caused by Kondo physics [31] or
non-Kondo [56]. Sfigakis et al. [7] performed measurements
on a 1D quantum wire and showed that both the Kondo and
non-Kondo 0.7-related effects give rise to the ZBA peak. On
the application of an in-plane magnetic field, the ZBA peaks
disappeared in our case, contrary to reports where the ZBA
divides into two [31]. Wen et al. reported for a disordered
1D quantum wire, the ZBA peak was suppressed similar to
our case [51]. However, when they moved away from the
disordered state, the split in the ZBA was revived, unlike in
our case as the ZBA had suppressed for the entire confinement
regime. We suspect the suppression of ZBA in our case could
be derived from low-density and strong correlation effects,
including exchange, and of course, the impurity effects cannot
be ruled out. It was also suggested that the suppression of ZBA
may arise because of the underlying g-factor anisotropy of the
1D quantum wire [57].
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V. CONCLUSIONS

In conclusion, we presented the results of transport
measurements in a longer quantum wire, where the disorder-
induced correlation effects were investigated. We observed
the 0.7 conductance anomaly in the ground state and its sib-
lings at higher subbands, most likely because of an exchange
correlation in the system. A detailed source-drain bias spec-
troscopy at zero and 10 T in-plane magnetic field identified
two conductance states at large dc bias. These states become
more pronounced with the appearance of higher derivatives of
the 0.7 structure at zero field under reducing electron density,
indicating the influence of strong correlation effects on their
formation. The observed quantitative changes in conductance
plateaus and essentially qualitative similar features in both
positive and negative dc biases suggest that impurities play
a significant role in mediating interactions between electrons.
Also, strong signatures of dual conductance states, resembling

the fractional states at 0.2G0 and 0.4G0, at large dc bias
suggest that the 1D channel hosts a Wigner lattice in the
low-density regime.
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