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ABSTRACT 
Bayesian classification (BC) is a powerful supervised machine learning method for modelling the 
relationship between a set of continuous variables and a set of discrete variables that represent 
classes. BC has been successful in engineering and medical applications, including feasibility anal-
ysis and clinical diagnosis. Gaussian process (GP) models are widely used in BC methods to model 
the probability of assigning a class to an input point, typically through an indirect approach: a GP 
predicts a continuous function value based on Bayesian inference, which is then transformed into 
class probabilities using a nonlinear function like a sigmoid. The final class labels are assigned 
based on these probabilities. In this commonly used workflow, the uncertainty associated with the 
class prediction is usually evaluated as the uncertainty in the GP function values. A disadvantage 
of this approach is that it does not consider the uncertainty directly associated with the decision-
making. In this work, we propagate the uncertainty from the space of GP function values to the 
class probability space and use this to quantify the uncertainty directly associated with the deci-
sion-making process. Additionally, we employ the propagated uncertainty as the objective func-
tion in an active learning (AL) method to generate new informative data points for the GP classifier 
training. We compare the proposed AL method to existing state-of-the-art methods to evaluate 
its performance. 
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1. INTRODUCTION 
Probabilistic learning is key to developing autono-

mous systems that adapt and make reliable decisions 
without human intervention [1]. One of the popular prob-
abilistic learning approaches that has key applications in 
engineering and medical domains is Bayesian classifica-
tion (BC) [2].  

BC involves a probabilistic approach to the classifi-
cation problem. A classification problem is a supervised 
machine learning method used to build a functional rela-
tionship between a set of input variables and a set of 
classes or categories related to the input variables. Usu-
ally, the classes are labelled using discrete values such 
as 0, 1, 2 etc. BC has proven successful in applications 
such as medical diagnosis [3] and feasibility analysis [4], 
where the uncertainty of model predictions is critical. A 
popular choice of BC implementation involves BC with 

Gaussian processes (GPs) [5].  
In problems of BC with GPs, the posterior GP model, 

i.e. the model obtained after data fitting or learning 
through Bayesian inference [5], provides probability pre-
dictions corresponding to the class labels along with an 
associated uncertainty value. This uncertainty offers 
meaningful insights into the model and supports the de-
sign of learning strategies that utilize it. This field of in-
formed learning process to facilitate efficient training of 
a GP model with limited informative data is known as ac-
tive learning (AL) [6]. Therefore, the GP model’s ability to 
quantify uncertainty is closely linked to the learning ap-
proach employed in AL.  

Two approaches are commonly used for uncertainty 
quantification in BC with GPs: 1) aleatoric or intrinsic un-
certainty associated with the class prediction and 2) un-
certainty in the GP model predictions. In 1), the class con-
ditional probability values predicted by the GP model are 
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used for uncertainty quantification. For instance, ex-
tremely low or extremely high probabilities indicate low 
uncertainty in the outcome predicted by the model while 
probabilities near 0.5 indicate a presence of high uncer-
tainty. In 2), uncertainty in BC is quantified as the uncer-
tainty around the point estimates of the GP model pre-
dictions. The point estimates of the GP model predictions 
are further transformed into class probabilities for decid-
ing the class label prediction. Both approaches do not 
consider the uncertainty around the predicted class 
probabilities which are used in decision-making regard-
ing the class selection. This could lead to slow conver-
gence of the classifier learning process or could result in 
a classifier model that is not accurately reliable. In this 
work, we propagate the uncertainty from the predictions 
of the posterior GP model to the class probability predic-
tions using a linear error propagation rule. This propa-
gated uncertainty is proposed to quantify the uncertainty 
associated with the BC problem. Further, we employ the 
propagated uncertainty in an AL framework to generate 
informative datasets to train the classifier model. This 
proposed novel AL strategy is compared with the existing 
methods (methods based on the approaches 1 and 2 dis-
cussed above) to demonstrate its usefulness in the con-
text of AL. 

2. METHODOLOGY 

2.1 Bayesian binary classification with 
Gaussian processes 

Binary classification involves the problem of assign-
ing one of the two classes (0 or 1) to an input vector 𝐱𝐱  by 
predicting the probability 𝜙𝜙 of class 1 given 𝐱𝐱, 𝜙𝜙 =
𝑃𝑃(𝑐𝑐 = 1|𝐱𝐱). This probability can be modelled as 𝜙𝜙 =
𝑔𝑔�ℎ(𝐱𝐱)�, where ℎ(𝐱𝐱) is a latent function, which is a map-
ping from the inputs 𝐱𝐱 to continuous real values (latent 
function values) 𝑦𝑦, and 𝑔𝑔 is the sigmoid transformation 
defined as 𝑔𝑔(𝑦𝑦) = 1 1 + 𝑒𝑒−𝑦𝑦⁄ , which is a mapping from the 
latent function values 𝑦𝑦 to the unit interval [0,1]. In Bayes-
ian classification with Gaussian processes, a Gaussian 
process prior is placed over the latent function ℎ(𝐱𝐱).  

ℎ(𝐱𝐱)~𝒩𝒩�𝑚𝑚(𝐱𝐱), 𝑘𝑘(𝐱𝐱, 𝐱𝐱′)�   (1) 

As discussed in [5], here the latent function ℎ plays 
the role of a nuisance function, in the sense that we are 
not particularly interested in the values of ℎ, but rather in 
𝑔𝑔�ℎ(𝐱𝐱)�. We observe only the inputs 𝐗𝐗 and the class labels 
𝐜𝐜. Let 𝐗𝐗 = [𝐱𝐱1, … , 𝐱𝐱𝑛𝑛]⊺ are the inputs corresponding to 𝑛𝑛 
data points. A GP prior is a collection of random variables 
{𝐘𝐘(𝐱𝐱)|𝐱𝐱 ∈ 𝐗𝐗} indexed by the set 𝐗𝐗, where any finite set of 
𝐘𝐘 follows a joint multivariate Gaussian distribution. A GP 
prior is fully specified by its mean function 𝑚𝑚(𝐱𝐱) = E[𝐘𝐘(𝐱𝐱)] 
and its covariance function 𝑘𝑘(𝐱𝐱, 𝐱𝐱′) = E��𝐘𝐘(𝐱𝐱) −
𝑚𝑚(𝐱𝐱)��𝐘𝐘(𝐱𝐱′) −𝑚𝑚(𝐱𝐱′)��. For simplicity, we set the prior 

mean to zero, i.e., 𝑚𝑚(𝐱𝐱) = 0. For the covariance function, 
we employed the popular squared exponential covari-
ance function with automatic relevance determination 
(ARD) distance measure. For the mathematical expres-
sion of the squared exponential kernel function, the read-
ers are referred to [5]. We denote all the learned param-
eters of the covariance function that include the signal 
variance and the characteristic length scales by the hy-
perparameter vector 𝛉𝛉. With this specification of prior 
mean and the covariance function, the prior over the la-
tent function is jointly Gaussian. Let 𝑦𝑦i = ℎ(𝐱𝐱i) and 𝐲𝐲 =
[𝑦𝑦1, … , 𝑦𝑦n]⊺ denote the latent function values, then the 
prior takes the form: 

𝑝𝑝(𝐲𝐲|𝐗𝐗,𝛉𝛉) = 𝒩𝒩(𝟎𝟎,𝐊𝐊)    (2) 

where 𝐊𝐊 is the 𝑛𝑛 × 𝑛𝑛 covariance matrix with elements de-
fined by K𝑖𝑖𝑖𝑖 = 𝑘𝑘�𝐱𝐱𝑖𝑖 , 𝐱𝐱𝑗𝑗�, 𝑖𝑖, 𝑗𝑗 = 1, … ,𝑛𝑛. Corresponding to 
each input data point 𝐱𝐱𝑖𝑖, the probability of observing the 
class label 1 can be represented using a Bernoulli distri-
bution. That is, given 𝐱𝐱𝑖𝑖 and 𝑐𝑐𝑖𝑖, 𝑐̂𝑐𝑖𝑖 = 1 ∼
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 �𝑔𝑔�ℎ(𝐱𝐱𝒊𝒊)��, where 𝑔𝑔�ℎ(𝐱𝐱𝑖𝑖)� = 𝜙𝜙𝑖𝑖 is the predicted 
probability of obtaining a class 1. For 𝑛𝑛 independent data 
points, the likelihood 𝑝𝑝(𝐜𝐜|𝐲𝐲) can be derived from the prob-
ability mass function of the individual Bernoulli distribu-
tions as: 

𝑝𝑝(𝐜𝐜|𝐲𝐲) = ∏ �𝑔𝑔�ℎ(𝐱𝐱𝑖𝑖)��
𝑐𝑐𝑖𝑖𝑛𝑛

𝑖𝑖=1 �1 − 𝑔𝑔�ℎ(𝐱𝐱𝑖𝑖)��
1−𝑐𝑐𝑖𝑖

 (3) 

The posterior distribution over the latent function 
values 𝑝𝑝(𝐲𝐲|𝐗𝐗, 𝐜𝐜,𝛉𝛉) can be computed from the prior and the 
likelihood using the Bayesian rule: 

𝑝𝑝(𝐲𝐲|𝐗𝐗, 𝐜𝐜,𝛉𝛉) = 𝑝𝑝�𝐲𝐲�𝐗𝐗,𝛉𝛉�
𝑝𝑝�𝐜𝐜�𝐗𝐗,𝛉𝛉� 𝑝𝑝(𝐜𝐜|𝐲𝐲)   (4) 

where 𝑝𝑝(𝐜𝐜|𝐗𝐗,𝛉𝛉) = ∫ 𝑝𝑝(𝐜𝐜|𝐲𝐲) 𝑝𝑝(𝐲𝐲|𝐗𝐗,𝛉𝛉)𝑑𝑑𝐲𝐲 is the marginal likeli-
hood. The evaluation of the posterior allows to make pre-
dictions ℎ(𝐱𝐱∗) for a new test point 𝐱𝐱∗. However, the com-
putation of the posterior distribution in Equation (4) is an-
alytically intractable due to the non-Gaussian likelihood 
in Equation (3), which makes the evaluation of the inte-
gral on the right-hand side of the marginal likelihood im-
possible [5]. Owing to this, the training of the GP model 
(which involves maximizing the marginal likelihood) as 
well as the inference problem (making predictions based 
on the sample data, by using the learned hyperparame-
ters) are evaluated using variational inference methods 
[7]. We employed evidence lower bound (ELBO) [7] as 
the variational inference loss function for GP model train-
ing. 

2.2 Uncertainty in the inference 
Common practices to quantify the uncertainty in the 

inference of BC with GP model involve either estimating 
the uncertainty as the variance over the latent function 
values or estimating it as the variance of the predicted 
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classification outcomes. For any new input point 𝐱𝐱∗, the 
variance over the latent function values can be computed 
as:  

𝜎𝜎𝑦𝑦2(𝐱𝐱∗) = 𝑘𝑘(𝐱𝐱∗,𝐱𝐱∗) − 𝑘𝑘∗⊺𝐊𝐊−1𝑘𝑘∗   (5) 

where 𝑘𝑘∗ = [𝑘𝑘(𝐱𝐱1, 𝐱𝐱∗), … , 𝑘𝑘(𝐱𝐱𝑛𝑛 , 𝐱𝐱∗)]⊺. With the assumption 
that the predicted distribution of class labels is the same 
as the true distribution, the uncertainty of the classifica-
tion outcome for any new input data point 𝐱𝐱∗ can be com-
puted as the random variance of the Bernoulli distribution 
corresponding to predicting a class 1 with a probability 
𝜙𝜙∗. This variance can be computed as: 

𝜎𝜎𝑐𝑐̂2(𝐱𝐱∗) = 𝜙𝜙∗(1 −𝜙𝜙∗)    (6) 

2.3 The propagated uncertainty 
In this work, we quantify the uncertainty around 

point estimates of the class probability predictions by 
propagating the uncertainty over the latent function val-
ues to the predicted probability values using the linear 
error propagation rule. The propagated uncertainty is 
computed as: 

𝜎𝜎𝜙𝜙2(𝐱𝐱∗) = �𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝐱𝐱∗

×  𝜎𝜎𝑦𝑦(𝐱𝐱∗)�
2

= � 𝑒𝑒𝑦𝑦

(1+𝑒𝑒𝑦𝑦)2�
2

× 𝜎𝜎𝑦𝑦2�
𝐱𝐱∗

 (7) 

The uncertainty propagation is visually depicted in Figure 
1. 

 

 

Figure 1. Uncertainty propagation to probability space. 

2.4 Simulation study 
A simulation study was designed to compare the 

performance of the three AL methods: Method 1 using 
𝜎𝜎𝑐𝑐̂2(𝐱𝐱∗) as the objective function (Equation (6)); Method 2 
using 𝜎𝜎𝑦𝑦2(𝐱𝐱∗) as the objective function (Equation (5)) and 
Method 3 using the proposed propagated uncertainty, 

𝜎𝜎𝜙𝜙2(𝐱𝐱∗) as the AL objective function (Equation 7). In all the 
three cases, the design of new experiments using the AL 
method involved seeking conditions where the corre-
sponding objective function value is a maximum. 
The steps involved in the simulation study are summa-
rised in Figure 2. As explained in Figure 2, a classification 
dataset was first selected as the case study. The second 
step involved training of a selected classifier model on 
the full dataset selected in the first step. This trained 
model was assumed as the “True model” in the simulation 
study. Next, a limited number of preliminary experiments 
were designed using design of experiments (DoE) meth-
ods and the corresponding class labels were obtained by 
the simulation of the true model. The preliminary labelled 
dataset was used to train the GP model which is the test 
model to compare the AL methods. The GP model was 
subsequently trained using experiments designed 
through one of the AL methods. 

It is often difficult to evaluate the performance of a 
classification model based on a single criterion. While ac-
curacy is the simplest criterion, it could be misleading in 
case of imbalanced class problems. In addition, accuracy 
is a score based on the final class decision and not based 
on the statistical quality of model fitting. Therefore, in this 
work, the performance of the trained GP model was as-
sessed using four different classification metrics: i) accu-
racy (%), ii) balanced accuracy (%), iii) ROC-AUC score, 
and iv) cross-entropy loss. The ROC-AUC score provides 
an aggregate performance measure of the classifier 
model across all possible threshold values on the pre-
dicted probabilities, which are ultimately used to decide 
class labels. The cross-entropy loss is a score that ac-
counts for the statistical quality of the model fitting, eval-
uated with the expectation if the predicted class distri-
bution is the same as the true class distribution (which is 
inferred from the sample data). A brief description of 
these metrics is provided in Table 1.  

In the description of the accuracy and the balanced 
accuracy metrics, the variables 𝑇𝑇𝑇𝑇,𝑇𝑇𝑇𝑇,𝐹𝐹𝐹𝐹 and 𝐹𝐹𝐹𝐹 re-
spectively indicate the number of true positive, true neg-
ative, false positive and false negative datapoints in the 
binary classification result. True positive are the data-
points that have been labelled as positive by the model 
(predicted label, 𝑐̂𝑐 = 1) and they are actually positive (ob-
served label, 𝑐𝑐 = 1), while false positive are the data-
points that have been labelled as positive by the model, 
but they are actually negative. The same logic applies to 
the definitions of true negative and false negative data-
points. The values of the metrics accuracy and balanced 
accuracy range between 0 and 100. The higher the val-
ues of these metrics, the better the performance of the 
classifier model. The ROC-AUC score is defined as the 
area under the receiver operating characteristic (ROC) 
curve [8]. The ROC-AUC score ranges from 0 to 1, with a 
value of 1 indicating perfect classification. The values 
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closer to 1 indicate better classification performance. The 
cross-entropy loss is defined as the negative log-likeli-
hood of the classifier given the true class labels. A lower 
cross-entropy loss value indicates better model perfor-
mance. 

Table 1: Classification metrics used for performance 
evaluation. 

Metrics Description 
Accuracy (%) 𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹 × 100 

Balanced  
accuracy (%) 

1
2 �

𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 +

𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹� × 100 

ROC-AUC 
score 

Area under the ROC curve 

Cross-entropy 
loss −

1
𝑛𝑛�

[𝑐𝑐𝑖𝑖 log𝜙𝜙𝑖𝑖 + (1 − 𝑐𝑐𝑖𝑖) log(1 − 𝜙𝜙𝑖𝑖)]
𝑛𝑛

𝑖𝑖=1

 

 

3. CASE STUDY 
A classification dataset was selected from our re-

cently published work on antisolvent precipitation of ibu-
profen particles in a continuous flow precipitator [4]. The 
classification dataset published in this work consisted of 
three input variables, which are provided in Table 2. As 
explained in [4], the dataset was formed from the flow 
precipitation experiments carried out by varying the in-
puts provided in Table 2. The experiments resulted in 
three categories of outcome, which were labelled as: i) 
class 0 – infeasible experiments, which caused fouling in 
the flow channels and hindered the particle size meas-
urements, ii) class 1 – partially feasible experiments that 
caused deposition of fine particles in the flow channels, 
but produced particle size measurements, and iii) class 2  
– fully feasible experiments with no fouling issues. In this 
work, this multiclass classification dataset was converted 
to a binary classification problem by treating experiments 
with class label 1 also as infeasible experiments with label 
0. Naturally, the class label 1 was then used to denote all 

the feasible experiments. The binary classification da-
taset formed in this way from the original multiclass clas-
sification dataset reported in [4] was trained on an SVM 
model with rbf kernel function. The trained SVM model 
was assumed as the true model. 

Table 2: Input variables in classification dataset. 

Input Bound 
Antisolvent flow rate (ml/min)  –  
Antisolvent to solvent flow rate ratio (-)  –  
Additive concentration (wt%)  –  

 

4. RESULTS AND DISCUSSION 
In the simulation study, eight preliminary experi-

ments were first designed using Sobol sampling method 
applied to the inputs and their bounds shown in Table 2. 
Class labels for the preliminary experiments were gener-
ated using the true model simulations. The GP model was 
then trained on the preliminary dataset. Then, twenty-
two new experiments were designed one at a time using 
a specific AL method. To compare the three AL methods, 
the simulation study included three separate runs, each 
starting with the same DoE experiments but using differ-
ent AL methods for the subsequent experiment designs. 
The results of the simulation study are summarised in 
Figure 3. In panel (a), the figure provides the scatter plots 
of marginal histograms of the input condition and the 
class labels. In each marginal histogram plot, the scatter 
plot represents the joint distribution of the specific input 
variable and the class labels. The horizontal histogram 
represents the class distribution, and the vertical histo-
gram represents the distribution of the specific input var-
iable. In Figure 3 (a), the histograms of Method 2 suggest 
that the method resulted in an imbalanced classification 
dataset, with most of the experiments concentrated in 
the extreme regions (extremely high and extremely low 
values of the input variables). Upon reviewing the dataset 
generated in Method 2, a possible explanation is that the  

 
Figure 2: Steps involved in the simulation study to compare the different active learning methods. 
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extreme regions were not explored in the initial experi-
ments designed using Sobol sampling. This would have 

 
 

 
Figure 3: Comparison of the AL methods: (a) in terms of experimental design results and (b) in terms of the 
performance assessed using the classification metrics. 
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led to a higher variance at the extreme points, prompting 
Method 2 to focus on these regions. Figure 3 (a) also in-
dicates that compared to Method 2, the other methods 
resulted in a more balanced classification, with Method 1 
producing the best results. Moreover, we observe that in 
Methods 1 and 3, the experiments are more evenly dis-
tributed, and hence more explorative. 

 
Figure 4. Simulations of the classifier models generated 
using the AL methods vs. the true model behaviour. 

In Figure 3(b), the performance of classifier models 
developed using the three AL methods is evaluated using 
classification metrics averaged over five-fold cross-vali-
dation. While Method 2 shows higher classification accu-
racy, this is misleading due to the highly imbalanced da-
taset generated by this method. Balanced accuracy, 
which accounts for minority class contributions, shows 
how Method 3 performed best, scoring 70% compared to 
48% for Method 1 and 50% for Method 2. Class ratios in 
Figure 3(b) and marginal distributions in Figure 3(a) re-
veal that Method 2 sampled many infeasible points, 
which were correctly classified but added limited learning 
value. This is evident from the poor decision boundary of 
Method 2 compared to the true model in Figure 4. Overall, 
Method 3 outperforms all the others by achieving the 
highest ROC-AUC score (0.96 compared to 0.91 for 
Method 2 and 0.69 for Method 1), good class balance 
(better than Method 2, but worse than Method 1), de-
creasing cross-entropy loss, and gradual reduction in the 
propagated uncertainty over the AL iterations. Its final 
classifier closely aligns with the true model, as shown in 
the simulation profiles of Figure 4.  

5. CONCLUSION 
We proposed a new method to quantify uncertainty 

in Bayesian classification. The proposed method focuses 
on propagating uncertainty from GP model predictions to 
the space of class probabilities. In a simulation study for 

binary classification, the method outperformed existing 
techniques in designing experiments that effectively train 
classifier models. Further studies will be needed to ex-
tend the applicability of the method to multiclass classi-
fication problems, and to validate its performance based 
on actual physical data. 
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