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Abstract 

This thesis explores how people perceive and make decisions with Artificial Intelligence 

(AI), using methods from psychology to map the perceptions and investigate the behaviours. 

Through eight studies, it provides empirical insights into the human perspective on AI. 

Chapter 2 (Studies 1 and 2) examines AI perception using three models: the Stereotype 

Content Model (SCM) (Fiske et al., 2002), the Mind Perception Dimensions (MPD) model (Gray 

et al., 2007), and the newly developed AI Stereotype Model (AISM). These models were 

evaluated across various AI agents, considering variations in design features, embodiment and 

intended purpose of use. The findings reveal that AI perception is not homogeneous; instead, 

distinct stereotypes emerge based on competence and experience—the two core dimensions of 

AISM. This model proved more effective than SCM and MPD in capturing AI perception. 

Chapter 3 (Studies 3 and 4) explores trust in AI based on three key determinants: 

performance, process, and purpose (Lee & See, 2004). Trust in AI was found to depend on how 

these factors were weighted, particularly in moral versus non-moral decisions. In moral 

decisions, trust was shaped by the AI’s moral stance (‘why’ it decides), whereas in non-moral 

decisions, trust was driven by the AI’s decision-making process (‘how’ it decides), with detailed 

explanations fostering greater trust. 

Chapter 4 (Studies 5–8) investigates how people respond to AI-generated versus human 

advice. Findings confirmed that people are more likely to trust AI than humans when decisions 

are perceived as objective (Studies 5 and 6). Studies 7 and 8 extended this research by examining 

AI’s role in validating subjective preferences-based decisions. Results indicate that people value 

validation similarly, whether from AI or human advisors. Collectively, these findings provide a 

nuanced understanding of AI perception, trust, and decision-making 
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Impact statement 

Artificial Intelligence (AI) is becoming an increasingly essential part of human life, with 

more sophisticated algorithms and more humanlike avatars and robots potentially becoming a 

common reality within the next 20 years—or even sooner. However, our understanding of how 

people perceive AI and make decisions with AI and how these perceptions and behaviours 

change over time remains relatively underdeveloped. The current work contributes to ongoing 

research which investigates and diligently chronicles the evolving human perspective on AI. 

Since most of the empirical data was collected in 2022 -2023, it provides a snapshot of what is 

coined ‘the human perspective on AI’ at that time. Additionally, it provides a framework for 

understanding and mapping human perception of AI over time and across the spectrum of AI 

agents, those currently available and those that are yet to be invented, and presents the first 

evidence of emerging AI stereotypes based on perceptions of competence and experience. It also 

underscores the need to continuously update our understanding of people’s perceptions and 

behaviours towards AI as both the underlying technology and people's experience with it evolve. 
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Chapter 1 Introduction 

People perceive other people and their behaviour on a daily basis. Thinking about other 

people’s minds, their thoughts, and feelings, and making inferences about their intentions occurs 

spontaneously to humans (Frith & Frith, 2001; Schurz et al., 2014; Van Overwalle, 2009) and is 

a fundamental way for humans to navigate the social world. Yet, today’s world is not populated 

only with humans but also non-human agents such as Artificial Intelligent (AI). AI such as 

virtual assistants, chatbots, avatars, smart devices and social robots are increasingly forming part 

of the human daily existence. In the future, such entities are expected to be further integrated and 

co-exist alongside humans in various sectors, including education and healthcare (Ayeni et al., 

2024; Kasula, 2024). More recently, interactive disembodied AI in the form of Large Language 

Models (LLMs) like ChatGPT, have risen to prominence. Only within the first week of its 

release, back in November 2022, ChatGPT received 1 million users (Sier, 2022). These 

interactive disembodied AI use natural language—a form of communication currency typically 

associated with human interactions—and demonstrate the ability to engage in a dialogue on 

almost any topic. 

AI is not only entering the social sphere but while doing so, it is also increasingly taking 

the role of an advisor in human decision making (Rahwan, Cebrian, Obradovich, Bongard, 

Bonnefon, Breazeal, Crandall, Christakis, Couzin, Jackson, et al., 2019). From AIs that prefilter 

online content (Adomavicius et al., 2013; Jesse & Jannach, 2021) to AIs that determine 

healthcare support eligibility (Ledford, 2019; Zack et al., 2024) and advise judges on the 

probability of reoffending (Angwin et al., 2022; Scantamburlo et al., 2018), AI plays a 

significant role in human decision making. People are expected—and will continue to be 
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expected—to navigate a world where human decision-making is both supported by and, at times, 

reshaped by AI (El Naqa et al., 2020; Kaggwa et al., 2024; Tewari & Pant, 2020). 

Studying how people perceive and make decisions with AI is relevant because of two key 

reasons. First, AI in different forms and functions integrates into both public spaces and private 

lives, and as people’s familiarity and experience with different AI agents increases, numerous 

questions can be asked regarding how humans perceive AI and respond to AI-generated outputs. 

Questions that, when addressed, can provide valuable insights into human psychology, inform 

the design and deployment of AI, and contribute empirical evidence to the ongoing discourse on 

the moral rules and legal canon surrounding the use and treatment of AI. Secondly, as people's 

familiarity and experience with AI grows, and as new AI agents are being developed and 

introduced to the public, perceptions and behaviours are expected to change. This dynamic 

nature—both of AI technology and human familiarity with it—dictates the need for ongoing 

research, making empirical evidence on human perception and behaviour inherently 

timestamped, tied to the specific point in time they are collected. 

This thesis explores how people perceive AI and trust it with their decisions, using 

methods from psychology to map the perceptions and investigate the behaviours. It takes a 

snapshot of the human perspective on AI with the timestamp as of 2022, as most of the empirical 

work was conducted between May and August 2022, employing various measurements to tap 

into both perception and behaviour towards AI. It comprises eight studies (Chapter 2 through 4). 

It starts with the mapping of human perception across various AI agents using theoretical models 

from social psychology and introduces a new data-driven model (Chapter 2). It then examines 

behaviour towards AI, specifically how people form evaluations for the trustworthiness of AI 

models (Chapter 3) and how they respond to AI-generated advice, particularly advice that 
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validates their decisions (Chapter 4). To provide additional context for the current work, an 

overview of key findings from the literature on how people perceive and trust technology, 

automation, and AI, is presented first in the rest of this chapter, along with a summary of relevant 

concepts. This is followed by the research questions explored in this thesis. 

Artificial Intelligence (AI): A Working Definition 

There is an inherent problem with AI. Despite its widespread use among the general 

public and within the AI research community, there is no single, universally agreed-upon 

definition for it. Since its inception as a term by John McCarthy in 1955, when writing a research 

proposal requesting funds for a summer research project on Artificial Intelligence in Dartmouth 

(McCarthy et al., 2006), AI has embraced the idea of simulating (i.e., imitating with the use of 

models) human intelligence, including scientific knowledge, common sense, and self-

improvement (Haenlein & Kaplan, 2019; McCarthy, 2022). 

However, throughout the years, AI has become synonymous with different things, often 

reflecting the most popular technology of the time. For example, today’s AI is most probably 

synonymous with Geoffrey Hinton’s neural networks, represented by tools like ChatGPT, or 

with smart devices like Alexa and Siri. However, not too long ago, AI was all about big data. 

And before that, AI was mostly associated with robots. At other points in time, AI was 

synonymous with chess-playing, while during the 1980s, the thing that was most associated with 

AI was expert systems. If anything, AI nowadays sounds more like a marketing term than a 

technology or a field of research.  

Here, AI refers to the various AI agents, e.g., agents that are built using the technology 

commonly known as artificial intelligence.  As such, throughout the rest of this thesis, the terms 

AI and AI agents (or ‘AIs’ for simplicity) will be used interchangeably unless otherwise 



10 

specified. AI agents are non – biological entities that can initiate their own behaviour and exhibit 

varying degrees of autonomy (e.g., ability to operate without a constant oversight), proactiveness 

(e.g., ability to display goal-oriented behaviour), reactivity (e.g., ability to act on their 

environment in a timely fashion) and social ability (e.g., ability to interact with other agents, 

including humans) (Wooldridge & Jennings, 1995). For a comprehensive definition of agent 

from an engineer’s perspective, see Franklin and Graesser (1996). 

How Humans Perceive AI 

 The earliest recorded attempt to understand how people perceive AI dates back to the 

early 1970s when Japanese robotics professor Masahiro Mori introduced a theory on people's 

emotional responses to embodied AI, particularly robots. This theory, later translated into 

English as the Uncanny Valley (UV) theory, describes how human affinity towards robots 

fluctuates based on their resemblance to humans (Mori, 1970; Mori et al., 2012). From them, AI 

served different functions by taking a variety of forms, from digitally operated robotic arms used 

in the car industry in the 1950s to digital computers entering the workspace and households in 

the early 1980s (Broadbent, 2017).The multidisciplinary fields of human-computer interaction 

(HCI) and human-robot interaction (HRI) , spanning computer science, engineering, psychology 

and cognitive science, also emerged to understand the factors that affect the interaction of 

humans with computer and robotic systems respectively (Goodrich & Schultz, 2008; Preece et 

al., 1994). Research in these fields has primarily concentrated on designing and evaluating 

systems (computers or robots) for use by or in collaboration with humans, with the ultimate goal 

to improve the computer interface, robot design and the interaction techniques more generally 

(MacKenzie, 2024). In psychology and cognitive neuroscience, research on human perception of 

AI surged following the explosion of social robotics design in the early 2000s. This growth was 
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largely driven by advancements in robotics and a growing interest in integrating robots into 

everyday life beyond factories and research labs (Mahdi et al., 2022). The study of 

anthropomorphism (attributing human like qualities to AI) is another area of research within 

social psychology and neuroscience where human perception of AI has been studied, although 

not always explicitly labelled as such. Over the years, AI in the literature of anthropomorphism 

has been described in various ways, including as a machine, a computer, or a robot that humans 

perceive ‘as if’ it were human, primarily due to design features that resemble human appearance 

or behaviour in some way. 

The section that follows starts with an overview of what has been learned about human 

perception of AI through psychological studies on social robots and research on 

anthropomorphism of AI as the review of these two literatures informed the research questions 

explored in this thesis. Also, since this thesis examined the existence of stereotypes in the 

perception of AI through perception frameworks from social psychology—specifically, the 

Stereotype Content Model (SCM) (Fiske et al., 2002) and the Mind Perception Dimensions 

(MPD) (Gray et al., 2007)—the section that follows also includes an overview of these two 

perceptual frameworks.  

Psychological Studies involving Social Robots 

While social robotics constitutes a significant focus within HRI research, there remains 

no clear consensus on what specific attributes or behaviours make a robot truly social (Henschel 

et al., 2021). A qualitative analysis of various definitions of social robots, spanning from 2009 to 

2015, revealed that social robots are typically understood as physically embodied agents with 

varying levels of autonomy. These robots engage in social interactions with humans, including 

communication, cooperation, and decision-making, with their behaviours being interpreted by 
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human observers as social according to prevailing norms and conventions (Sarrica et al., 2020). 

In studies where people’s perceptions of these robots were investigated (de Graaf et al., 2015; 

Dereshev et al., 2019), people highlighted the ability of a two-way reciprocal interaction as the 

main factor for a social robot to be perceived as social. These studies also revealed that people’s 

perceptions of social robots are influenced by their perceptions of other social actors (e.g., their 

friends). For instance, in a longitudinal home study, participants repeatedly compared the social 

robot with their friends, dwelling on the fact that the robot’s lack of social capabilities make it 

unlikely for it to become an actual ‘friend’(de Graaf et al., 2015). Studies also emphasise the 

novelty effect as a common pattern in social robots perception, where engagement is initially 

high but gradually declines as the novelty wears off over time (Leite et al., 2013; Tanaka et al., 

2015), whereas, on the contrary, the findings from other studies suggest that attitudes towards 

social robots tend to improve over time with repeated interactions and are influenced by pre-

existing attitudes (Stafford et al., 2014). 

Two relatively recent literature reviews (Baraka et al., 2020; Henschel et al., 2021) 

highlight the growing body of research in psychology that uses social robots as research tools. 

This is next to other well-known application areas for social robots, including industry (Shukla & 

Karki, 2016), healthcare and therapy (Cifuentes et al., 2020; Dawe et al., 2019; Pennisi et al., 

2016), education (Belpaeme et al., 2018), entertainment (Bruce et al., 2000; Chen et al., 2011) 

home (Srinivasa et al., 2010) and workplace environments (Drexler & Lapré, 2019), to search 

and rescue applications in hazardous locations (Kas & Johnson, 2020). 

The psychological studies that have used social robots have done so primarily to address 

questions related to cognitive neuroscience, seeking to understand how the brain support 

cognitive activities including perception (Bossi et al., 2020; Thellman & Ziemke, 2020; Wiese et 
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al., 2017) , attention (Cao et al., 2019; Chevalier et al., 2020; Kajopoulos et al., 2021), theory of 

mind (Banks, 2020; Bianco & Ognibene, 2019) , and decision making (Hsieh et al., 2020; 

Marchesi et al., 2020). By doing so, however, they have also provided insights into how humans 

perceive and behave towards AI in the form of social robots. Perhaps influenced by the 

humanlike appearance of the social robots commonly used in these studies—such as the 

humanoid social robots Pepper, Nao, and Robovie (for an extensive list and classification of 

social robots see Baraka et al. (2020)) these insights largely focus on how humanlike appearance 

or behaviour of the social robot influence the cognitive processes being examined in each study. 

These studies suggest that both the robot’s humanlike appearance and behaviour shape people’s 

assumptions about its capabilities and influence their interactions (Abubshait & Wiese, 2017; 

Cross et al., 2012; Goetz et al., 2003).  

For example, in a series of experiments, participants perceived more positively and 

collaborated more with a robot when its appearance matched the nature of the job (a more 

humanlike robot for a more social in nature job such as a dance instructor and a more 

machinelike robot in less social jobs such as a night security guard) (Goetz et al., 2003). Another 

study examining coordination through a joint-action task (playing a musical duet) with either a 

humanoid robot or an algorithm showed that perceived human-likeness in terms of both 

appearance and behaviour of the AI agent affected behavioural variability, which is a key 

sensorimotor signal of coordination. When the appearance of the AI agent matched its behaviour, 

coordination was increased. For example, participants exhibited lower variability in their 

performance when the humanoid robot made human like errors and when the algorithm made 

machine like errors (Ciardo et al., 2022). And, when manipulating both appearance of an agent 

(human vs robot) and behaviour (reliable vs random) during an eye gazing task, appearance was 
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found to impact attitudes towards the agent while behaviour had a stronger impact on 

performance (Abubshait & Wiese, 2017).  

Interestingly, at the brain level, the agent’s appearance (human vs Lego robot) was not 

found to influence the preferential engagement of the action observation network (AON) which 

was engaged more robustly to robot-like motion than natural human motion for both agents 

(Cross et al., 2012), while in another neuroimaging study, the right temporoparietal junction 

(rTPJ) was involved only when both an agent looked like and was believed to be human, 

suggesting that the rTPJ is biologically tuned to regulate the tendency to imitate an observed 

agent, but only when the agent both appears human and is believed to be human (Klapper et al., 

2014).  It should be mentioned that coupled with psychologists, social robotics engineers have 

also observed the impact of a robot's appearance and behaviour on people's perceptions, noting 

that more human-like robots can raise people’s expectations and thus risk falling into the 

Uncanny Valley (Duffy & Joue, 2004; Pandey & Gelin, 2018). To mitigate these effects, some 

engineers have thus chosen alternative morphologies, such as animal-like robots (Collins et al., 

2015). 

The impact of an AI's humanlike appearance and behaviour on perception of AI is not the 

only area where cognitive neuroscience research using social robots provides valuable insights. 

Studies have explored how a robot’s features beyond human-likeness influence perception and 

interaction, suggesting that other factors may be more effective in triggering human-like socio-

cognitive processes (Cross et al., 2016; Jastrzab et al., 2024; Liepelt & Brass, 2010; Stanley et 

al., 2007; Stenzel et al., 2012; Tsai & Brass, 2007). For instance, belief about an agent’s animate 

origins (e.g., believing that agent’s motion originated from human motion capture vs computer 

animation) was shown to modulate engagement of person perception and mentalizing networks, 
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while the level of human-likeness in the appearance of the agent (human vs robot) had less 

impact on social brain networks (Cross et al., 2016). Likewise, using a moving dot stimulus, 

Stanley et al. (2007) demonstrated that the perception of animacy was primarily influenced by 

knowledge of the origin of the dot's movement (whether participants were told that it was 

generated by a human or a computer), rather than by the motion properties themselves. And in a 

study where participants played rock-paper-scissors (RPS) games against human and AI agents 

with varying degrees of human-like appearance (a humanoid robot, a mechanoid robot, and a 

computer algorithm), the engagement of the mentalizing network increased as the robot's 

appearance became more human-like. However, perceived socialness of the agent—evaluated 

based on traits such as fun, sympathy, competitiveness, success, strategy, intelligence, and 

overall competitiveness—explained the differences in mentalizing network engagement more 

effectively than the agents' physical appearance alone (Jastrzab et al., 2024). Overall, these 

studies suggest that human-likeness alone may not fully explain which robots are perceived as 

more desirable social partners or predict how socially engaging people find them. Other features 

of the AI agent, such as knowledge cues (e.g., understanding the origin of its behaviour) or its 

level of socialness, and possibly other factors—since this is still an emerging research area—may 

play a more significant role in triggering human-like social-cognitive processes. 

Moreover, a number of psychological studies using social robots have explored mind 

attribution towards robots (Broadbent et al., 2013; Klapper et al., 2014; Laban et al., 2021; 

Özdem et al., 2017; Stafford et al., 2014; Wiese et al., 2012; Wykowska et al., 2014). Overall, 

these studies suggest that the degree of the AI’s human-likeness in appearance affect people’s 

mind attribution. For instance, people rated a robot with a face on its screen as more ‘minded’ 

compared with robots with no or a silver face (Broadbent et al., 2013). In another study 
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examining self-disclosure for psychological health to an embodied AI (a humanoid robot), a 

disembodied AI (Google Nest Mini), and a human, while participants reported no difference in 

perceived agency between the humanoid and disembodied AI, they attributed higher levels of 

experience to the humanoid robot (Laban et al., 2021). And politeness norms were triggered 

more often by a humanoid compared to a mechanical robot (Babel et al., 2022), suggesting that 

human-likeness triggers more intentionality ascription to AI. Research has also explored the 

influence of contextual factors on attributing mind to robots. Findings suggest that aspects such 

as a robot’s function (e.g., whether it is framed as having social or economic value), its 

behaviour (e.g., speech and nonverbal cues), and the way it is introduced (e.g., framing) can 

significantly impact attributing mind to robots (Wallkötter et al., 2020; Wang & Krumhuber, 

2018).  Also, observing someone interacting socially with a robot can enhance the adoption of an 

intentional stance. For instance, people who collaborated with a humanoid were more likely to 

ascribe intentions towards it after the interaction than people who did not collaborate with it 

(Abubshait et al., 2021). The attribution of intentional traits towards a robot was also higher after 

social compared with non-social priming. In the social priming condition, before evaluating 

different types of robots, participants were told that the robots represent types of agents that they 

will interact with in the coming decades(Spatola et al., 2021).  

Several neuroimaging studies using social robots have also examined the degree to which 

the social cognition brain regions - also known as the mentalizing network (Schurz et al., 2014)- 

which has evolved to interpret other people’s thoughts, intentions and actions is also engaged 

when processing the thoughts, intentions and actions of non-human social partners such as 

robots. Through a range of tasks, including economic games (Chaminade et al., 2012; Krach et 

al., 2008; Takahashi et al., 2014), attention cueing tasks (Özdem et al., 2017; Wiese et al., 2018) 
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and empathy tasks (Cross et al., 2019; Rosenthal-Von Der Pütten et al., 2014), these studies 

demonstrate that the mentalizing brain network is activated during human-robot interactions, 

albeit to a lesser degree than during human-human interactions. Brain regions that have been 

reported as less or not activated by robots include the temporoparietal junction (TPJ) 

(Hmamouche et al., 2020; Kelley et al., 2021; Rauchbauer et al., 2019; Wang & Quadflieg, 

2015), medial prefrontal cortex (MPFC) (Hmamouche et al., 2020), and dorsolateral prefrontal 

cortex (DPFC) (Rauchbauer et al., 2019).  

 In addition, the combined findings of two literature reviews (Lee & Harris, 2014; 

Vaitonytė et al., 2023) looking at studies reporting comparisons of brain processing of responses 

to human and to AI targets (both embodied; such as robots and disembodied; such as computer 

algorithms) suggest that, at a neural level, AI is not processed homogeneously. Embodied AI 

drives increased engagement in certain brain regions relative to humans, such as the precuneus 

and the ventromedial prefrontal cortex (VMPFC) while interactions with disembodied AI do not 

lead to increased activation of any social brain regions relative to human.  

Overall, the above literature demonstrates that human perception of AI is not 

homogeneous, providing evidence that variations in perception exist, influenced by different 

design features (such as form, motion, or socialness) or contextual differences (such as variations 

in knowledge cues, intended purposes, or the way the robot is presented). And these variations 

are, in turn, supported by distinct brain mechanisms. As researchers have similarly concluded a 

‘one size fits all machines’ type of cognition is unlikely (Cross & Ramsey, 2021). However, this 

raises the question: what differentiates AI agents in human perception, across design, 

embodiment, and contextual differences? This motivated the effort to map AI perception across 
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different AI agents and formed the basis of the first research question (RQ1) that this thesis aims 

to address. 

Next, the following section focuses on the literature regarding the psychological 

phenomenon of anthropomorphism of AI. This body of research has extensively explored the 

factors that influence the human tendency to attribute human-like qualities to AI and the effects 

of these attributions on the quality of human-AI interaction (HAI). We examine this literature as 

it is a key area of research within the broader field of AI perception. Additionally, we drew from 

this literature to further investigate and address RQ1. 

The Study of Anthropomorphism of AI 

Anthropomorphism is the psychological term used to refer to the human tendency to 

think about the mind or mental states—such as thoughts, feelings, intentions, and motivations—

of real or imagined non-human entities, including nonhuman animals, natural forces, religious 

deities, objects, and mechanical or electronic devices (Epley et al., 2007). This tendency is so 

strong that people even readily describe moving geometrical shapes as having intentions and 

feelings (Heider & Simmel, 1944) and is already present in young children (Manzi et al., 2020). 

This tendency makes sense as being human is what people know. In other words, when 

interacting with unfamiliar non-human entities, people may use their knowledge of themselves as 

a basis for understanding those entities (Epley et al., 2007). In addition, people are used to 

thinking about the mind of other people to explain and predict their actions (Fiske, 1991; Fiske & 

Taylor, 2020). As such, they may apply the same strategy to try to understand unexplainable 

actions of nonhuman entities. Also, anthropomorphism may provide a form of increased sense of 

belonging and imagined social connection when the perceiver is feeling socially isolated (Eyssel 

& Reich, 2013) . 
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The psychological phenomenon of anthropomorphism has attracted significant interest 

within AI research, particularly in examining how design features of the AI agent —such as 

humanlike appearance or behaviour—influence people's tendency to anthropomorphise AI with a 

focus on how this tendency, in turn, affects the overall HAI. Studies in this area have explored 

various aspects of the influence of anthropomorphism, including its effect on people’s trust 

(Eyssel et al.; Goudey & Bonnin, 2016),  attitudes ((Li & Sung, 2021; Liu et al., 2019; Wagner et 

al., 2019), acceptance (Yao et al., 2025), perceived threat (Yogeeswaran et al., 2016) and 

empathy (Riek et al., 2009) .  The design features of an AI agent that have been manipulated 

across the literature looking at anthropomorphism depend heavily on the specific context and the 

research question under examination. For instance, in the case of autonomous vehicles, 

researchers have manipulated human likeness by giving an identity, gender, or a human voice to 

the vehicle (Waytz et al., 2014). In the study of chatbots, other methods to increase perceived 

human likeness have been employed, such as incorporating a human-like face or increasing 

message interactivity (Go & Sundar, 2019). In the case of embodied AI, such as robots, various 

design features have been manipulated to resemble humans, including appearance and behaviour, 

with a particular emphasis on the effect of motion (e.g., eye, head, or body movement), as well 

as identity and presence (e.g., physically present vs. telepresence (Thellman et al., 2022).  

Most of the studies looking at anthropomorphism in robots report that the tendency to 

anthropomorphise increases with human like appearance (Abubshait & Wiese, 2017; Martini et 

al., 2016; Xu & Sar, 2018). For instance, when explicitly asked, participants self-reported 

anthropomorphising machines with human appearance more than other types of machines (Xu & 

Sar, 2018). And increased human like appearance of a robot has been found to be associated with 

increased activity in the mentalising network (Krach et al., 2008). Studies also report stronger 
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tendencies to anthropomorphise a robot when it exhibits human like behaviour such as i.e., gaze 

(Abubshait & Wiese, 2017) or exhibit unpredictable behaviour (Eyssel et al., 2011) and display 

emotion (Złotowski et al., 2014). For instance, when participants anticipated that they would 

interact with an unpredictable robot they made more anthropomorphic inferences about its 

behaviour (Eyssel et al., 2011). And when the humanoid robot NAO displayed emotion by 

making characteristic sounds, such as ‘Yippee’, and gestures, such as rising hands, his emotional 

display was found to make participants perceive the robot as more humanlike (Złotowski et al., 

2014). Furthermore, assigning an identity to a robot, such as describing the robot as an ingroup, 

as indicated by its name and a country of production, has been shown to increase the tendency to 

anthropomorphise it (Eyssel & Kuchenbrandt, 2012). And participants were more likely to 

anthropomorphise a robot when it is physically present rather than tele present (Kiesler et al., 

2008; Straub, 2016). 

In addition to design features of the robot, human factors—such as age and culture—have 

been shown to play a role in the tendency to anthropomorphise AI within the specific context of 

the interaction (Pak et al., 2014; Takahashi et al., 2016; Tan et al., 2018; Thellman et al., 2022). 

For instance, stronger tendencies were reported among Japanese than Western participants in an 

online survey where participants were asked to evaluate explicit mental capacities (e.g., capacity 

to feel hunger)  of robots (Takahashi et al., 2016). And the tendency to anthropomorphise robots 

has been shown to be stronger in children than adults (Okanda et al., 2021) and stronger to 

younger than older children(Manzi et al., 2020). 

A methodological challenge highlighted throughout the robot literature of 

anthropomorphism is that findings tend to vary depending on the type of measure used, such as i) 

self-report (verbal), ii) behavioural (non-verbal), or iii) and neural measures. Self-report 
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measures have been shown to be more likely to report a weaker tendency to anthropomorphise 

compared to behavioural data (Thellman et al., 2022). For instance, while participants described 

robots using mental state terms during an interview (behavioural measure), they later denied that 

robots possess various mental capacities when asked explicitly in a post-interview questionnaire  

(Fussell et al., 2008). And differences have been also found between self-report and neural 

measures. For instance, participants rated a robot appearing to be electrocuted as experiencing 

various levels of pain, yet no corresponding activation in the participants’ pain matrix was 

detected during the observation of the electrocution (Cross et al., 2019). We revisit this 

methodological challenge stemming from the differences in the types of measurements in the end 

of this chapter, as it represents one of the key challenges identified in the study of AI perception. 

Below, an overview of the most frequently used framework for measuring anthropomorphism 

and mind attribution in robots through self-report measures—the Mind Perception Dimensions 

(MPD) model—is provided. Our focus on self-report measures for capturing perception of 

different AI agents was motivated by the desire to address RQ1 through the collection of self-

reported data, at least as an initial step. 

The Mind Perception Dimensions (MPD) Model 

According to Gray et al. (2007), attributing mind consists of two dimensions: the capacity 

of agency (covering one or several of the following capacities: self-control, morality, memory, 

emotion recognition, planning, communication, and thought) and the capacity for experience 

(covering one or several of the following capacities: hunger, fear, pain, pleasure, rage, desire, 

personality, consciousness, pride, embarrassment, and joy). In the initial mind perception 

dimension study by Gray et al. (2007), researchers had a large sample of participants (N=2040) 

making pairwise comparisons on a 5-point scale of 13 characters on mental capacities (e.g., 



22 

capacity to feel pain) and on six personal judgments (e.g., ‘which character do you like more?’). 

The 13 characters consisted of seven living human forms (7-week-old fetus, 5-month-old infant, 

5-year-old girl, adult woman, adult man, man in a persistent vegetative state, and the respondent 

him- or herself), three nonhuman animals (frog, family dog, and wild chimpanzee), a dead 

woman, God, and a robot (the social robot Kismet). Their findings revealed that the entities 

examined could be arrayed into a two -dimensional space defined by the dimensions of agency 

and experience. The robot in this study was attributed some degree of agency but very low 

degree of experience. 

The MPD model has since influenced the operationalisations of anthropomorphism and 

mind attribution in AI research, particularly HRI research (Kühne & Peter, 2023). More 

specifically, depending on how researchers define and operationalise the concepts of agency and 

experience, studies have utilised all, some, or variations of the mental capacities examined  in the 

initial Gray et al. (2007) study (i.e., the capacity to think, the capacity to self-control, the 

capacity to feel pain, fear, pleasure etc.) as measurement items for assessing the extent to which 

participants tend to anthropomorphise AI. These studies examine how the extent to which 

participants attribute agency and experience to AI  influences human behaviour in a large array 

of tasks, including collaborating with  an AI agent - often humanoid or mechanical robots 

(Ferrari et al., 2016; Fraune, 2020; Fraune et al., 2020; Trovato & Eyssel, 2017), making 

decisions with assistance from a humanoid robot (Lefkeli et al., 2018), helping a robot (Tanibe et 

al., 2017), observing harming behaviour towards robots (Ward et al., 2013; Wieringa et al., 

2024), and attributing blame or responsibility to an AI agent which is often a robot or, 

sometimes,  a computer in competitive game settings (Kawai et al., 2023; Miyake et al., 2019). 
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Although MPD model’s widespread use for measuring people’s tendency to 

anthropomorphise and attribute mind to AI, the agency- experience distinction it introduces is far 

for ideal. First, there is considerable variation in how researchers separate and operationalise the 

concepts of agency and experience with no universal agreement on the definitions of agency or 

experience. The lack of consensus in defining the two fundamental concepts of this model 

inevitably leads to conceptual confusion and vagueness (Kühne & Peter, 2023).  It also makes 

the findings on the effect of anthropomorphism of AI across studies somewhat unclear, as the 

inconsistency introduced by varying definitions complicates the consolidation and comparison of 

results between studies.  

Secondly, the MPD model is not the only operationalisation of anthropomorphism that 

has been proposed and used in studies exploring anthropomorphism, particularly in HRI settings. 

Both unidimensional and multidimensional operationalisation have been proposed, yet with no 

clear consensus on this matter either. E.g., there is no clear consensus on whether 

anthropomorphism of AI is best understood through a unidimensional or multidimensional 

approach, and on which dimensions should be included in its conceptualisation (Kühne & Peter, 

2023). For instance, indicators such as ‘humanlike’ ‘lifelike,’ and ‘natural’ have been used  as 

unidimensional measure of anthropomorphism (Bartneck et al., 2009). Another frequently used 

operationalisation of anthropomorphism is rooted in the dual model of dehumanisation (Haslam 

& Loughnan, 2014; Haslam et al., 2008), which distinguishes two categories of mental capacities 

that may or may not be attributed to others: uniquely human characteristics, which set humans 

apart from other nonhuman animals (e.g., reason), and human nature characteristics, which are 

shared with other nonhuman animals (e.g., curiosity). Several studies use this distinction to 

measure anthropomorphism of robots (Eyssel et al., 2011; Ferrari et al., 2016; Salem et al., 
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2013). For instance, in a study where researchers investigated the effect of unpredictable 

behaviour by a robot on the tendency to anthropomorphise it, anthropomorphism was measured 

by having participants evaluating the extent to which traits of human uniqueness (i.e.., 

rationality, refinement, civility) and human nature (i.e., openness, warmth, emotionality) were 

attributed to the robot. And more recently, new multidimensional conceptualisations of 

anthropomorphism have been proposed  in an effort to distinguish perceptions related to shape 

and movement which are seen as precursors to anthropomorphism from perceptions that lead to 

attribution of personality and moral character to an AI agent which are seem as consequences of 

anthropomorphism(Kühne & Peter, 2023).   

Thirdly, although MPD model is often used to operationalise the human tendency to 

anthropomorphise robots, it should be treated as only a proxy that implicitly measures 

anthropomorphism as, the exact relationship between mind perception (also referred to as mind 

attribution in the literature) and anthropomorphism is not yet clear. In the case of robots, it has 

been suggested that anthropomorphism is a two-step process in which an individual first engages 

in higher-level reasoning to adopt a mentalistic or intentional stance toward the robot before 

lower-level attribution processes are activated (Wiese et al., 2017; Wykowska et al., 2014). 

However, as Thellman et al. (2022) note in their meta-analysis, this two-step process appears 

contradictory to observations from other studies, where people spontaneously attribute mental 

states to robots while they self-report that they do not believe that these entities possess a mind 

(Banks, 2020; Fussell et al., 2008). While whether anthropomorphism is a two-step process, with 

mind attribution involved or not, remains an open question that requires further research for 

more conclusive insights- and despite the fact that researchers often use the terms 

anthropomorphism and mind perception (or mind attribution) interchangeably - the current 
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understanding of the relationship between anthropomorphism and mind perception calls for 

caution in treating the MPD’s categorical process of attributing mind as a proxy measure rather 

than a direct indicator of the psychological phenomenon of anthropomorphism. 

Despite MPD model’s limitation in fully capturing anthropomorphism and the definition 

confusion surrounding agency and experience that abounds, it is a model that has been widely 

used in the literature. And setting aside for a moment the definitional confusion (which 

complicates the aggregation of results across studies), it has proven effective as a proxy for 

capturing anthropomorphism within the scope of each individual study. Also, it originates from a 

categorisation of a broad range of agents that are not all human or humanlike (from God to 

chimpanzee, baby, and a deceased person). In this regard, MPD model’s ability to capture human 

perception of diverse perceptual targets— which do not necessarily resemble humans or are 

human— has been tested and validated. Such a ‘non-human-centric’ (in terms of the range of 

perceptual targets examined) model could be especially useful for mapping perception across the 

wide variety of AI agents which are not all necessary designed to resemble the human (i.e., GPS 

application, drones). This motivated us to consider it as a potential candidate for addressing RQ1 

of this thesis. Next, we turned to social psychology in search of a person perception frameworks 

to address RQ1. 

The Stereotype Content Model (SCM) 

To map human perception of AI, it may be helpful to explore other attempts in the 

literature that have similarly attempted to map human perception. If such mapping exists and 

have been empirically validated, it could be worth assessing its applicability for AI perception. 

After all, in addressing RQ1, an approach would be to consider any framework that maps human 

perception of any perceptual target, as long as there is some theorising about that target’s share 
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space with the AI perceptual target. This is because, although in such a framework the perceptual 

target might be different (e.g., humans, animals, objects, or AIs), the perceiver remains always 

the same (human). This reasoning led us to explore social psychology, which has long studied 

how people perceive other humans. It’s worth noting here that we could have also turned to 

research on object or animal perception (e.g., how people perceive objects or non-human animals 

respectively) in search of such a framework. Object perception, in particular, has been proposed 

as a promising avenue to explore the shared space between social machines and objects(Cross & 

Ramsey, 2021). However, we chose to focus on person perception, which has received more 

extensive research attention than animal or object perception and has a well-validated person 

perception framework, the Stereotype Content Model (SCM). 

Based on the SCM, there are two things that people care about when they encounter other 

people, one is their perceived warmth (how friendly or threatening this person is) and the other is 

their perceived competence which describes their ability to follow through on their intentions 

(Cuddy et al., 2008; Fiske et al., 2007). Person perception can be therefore mapped onto a two – 

dimensional space defined by these two-core dimension. Warmth encompasses traits such as 

friendliness, good-naturedness, sincerity, and warmth, while competence includes traits such as 

competence, confidence, and skill. These dimensions originate from classic person perception 

theories based on which certain traits tend to separate into clusters (Asch, 1946; Rosenberg et al., 

1968) and were first validated using U.S. samples (Fiske et al., 2002). Subsequent research has 

then demonstrated their applicability across diverse cultural contexts, including European and 

East Asian countries such as Hong Kong, Japan, and South Korea, reinforcing their universality 

despite cultural differences (Cuddy et al., 2009). 
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SCM predicts how people form differentiated prejudices towards different societal groups 

based on the appraisal of their intentions for help or harm (warmth) and their capacity to enact 

those intentions (competence). It differentiates ingroups from outgroups into four clusters on the 

competence x warmth space (Figure 1), with each combination eliciting four distinct emotional 

response toward social groups: pride, envy, pity, and disgust. Ingroups and allies are perceived as 

high on both dimensions and receive pride and admiration, whereas outgroups fall into the other 

three quadrants where they are stereotyped as either competent or warmth, but not both, and 

elicit ambivalent emotions. For instance, groups stereotyped as competent but not warm (e.g., 

rich people) elicit envy and jealousy, groups stereotyped as warm but not competent (e.g., elderly 

people) elicit pity and sympathy while the most extreme outgroups, that are perceived as low on 

both competence and warmth (e.g., homeless people, drug addicts), elicit disgust and contempt 

(Fiske et al., 2007).  

Figure 1 

The Stereotype Content Model (SCM) 

 

Moreover, perceptions of warmth and competence have also be found to predict 

behavioural responses to groups (A. J. Cuddy et al., 2007). Groups that are perceived as high on 

both SCM dimensions receive both active and passive facilitation. In contrast, groups in the 
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mixed quadrants experience a combination of positive and negative behaviours: those eliciting 

envy face passive facilitation and active harm, while those evoking pity receive active facilitation 

and passive harm. Groups perceived as low in warmth and competence, and eliciting disgust, are 

subjected to both active and passive harm. 

It should be noted here that, similar to MDP, the SCM conceptual framework—like any 

other conceptual framework—is not without its limitations. When applied to the study of AI 

perception, it will therefore bring along inherent challenges. A widely debated issue in the 

literature is whether SCM adequately captures the perception of morality under the warmth 

dimension or if morality should be considered an independent dimension that plays a distinct role 

in person perception (Leach et al., 2015). The morality dimension encompasses traits such as 

honest and trustworthy whereas warmth includes characteristics indicative of human 

benevolence such as good-natured, friendly, warm, well-intended, helpful, and trustworthy. 

Thus, for some researchers, the warmth dimension is akin to the conceptualisation of morality, 

and is therefore referred to as the ‘moral’ dimension (Wojciszke, 2005). However, for other 

researchers, such broad conceptualisation of morality may obscure the distinct role of 

trustworthiness in judgments about others' morality. Indeed, out-group members can be seen as 

warm, friendly, and likeable without being seen as moral people who can be trusted (Leach et al., 

2007, 2008). Overall, there is a debate within the SCM literature regarding the importance of 

distinguishing perceptions of trustworthiness from perceptions of less obviously moral aspects of 

out-group benevolence, such as sociability. Additionally, the competence x morality framework 

has also been used to map person perception. For instance, Phalet and Poppe (1997) examined 

the role of competence and morality in stereotypes across- six eastern-European countries and 

found that stereotypes could be mapped on the competence x morality space revealing four 
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quadrants (e.g., moral and incompetent, moral and competent, immoral and incompetent, moral 

and competent). 

Despite the lack of agreement on the definition of the warmth dimension, the SCM is a 

well-validated framework for mapping person perception. As such, it could also be tested for its 

applicability in mapping AI perception. It is by definition a ‘human centric’ model since the 

perceptual targets that it maps are all humans. In this regard, it would be interesting to explore 

the extent to which this framework applies to AI as a perceptual target, shedding light on 

whether and to what degree people rely on ‘person dimensions’ to differentiate between various 

AI agents. This motivated us to consider SCM as another potential candidate for addressing RQ1 

of this thesis. 

Next, we shift our focus to the literature on the determinants of trust in AI, as the second part of 

this thesis examines how people make decisions with AI. The following section also introduces 

the second and third research questions explored in this thesis, RQ2 and RQ3 respectively. 

How Humans Trust Technology, Automation, and AI 

How humans trust technology has been widely discussed in the literatures of computer 

science, human–computer interaction, robotics, management, decision sciences, marketing, and 

psychology. Synthesising knowledge dispersed across the literature of various disciplines 

presents a significant challenge. This challenge is further exacerbated by two key issues: firstly, 

the varied ways in which acceptance and trust are operationalised in the literature, and secondly, 

the lack of consensus on what is understood by the term AI, when studies are looking 

specifically at the factors that drive trust in AI (Glikson & Woolley, 2020; Kelly et al., 2023). As 

highlighted by Kelly et al. (2023) in their systematic review of factors influencing trust in AI, 

this ambiguity around the term AI prevents us from ‘fully understanding if people accept real AI 
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or the idea of AI.’ To make things even more challenging in synthesising findings across 

literature, studies do not always provide their participants with a clear definition of AI, leaving 

room for different interpretations (Kelly et al., 2023). In an effort to provide additional context 

for the work presented in this thesis in terms of how people trust and make decisions with AI 

(Chapters 3 and 4), an overview of the most commonly used theoretical framework for studying 

trust in technology, along with an examination of trust trajectories in AI and the key factors that 

are frequently reported in studies as influencing trust in AI. 

The Technology Acceptance Model (TAM) 

Acceptance denotes a personal decision. However, when it comes to AI, the level of 

human agency in accepting AI can vary, as AI may operate subtly without people’s knowledge 

or awareness. For example, purchasing an Alexa device involves an understanding that some sort 

of AI technology is part of the product, which the user knowingly accepts. In contrast, during an 

online customer service interaction, an AI chatbot may present itself as a human agent or 

equally, it may leave it unclear to the user whether they are interacting with a human or a 

chatbot, leading the customer to believe they are conversing with a person rather than an AI. In 

the latter example, the presence of AI is subtle or opaque to the individual, making the 

acceptance of AI more of an involuntary action, or at least not as conscious and deliberate a 

choice as it is when buying an AI-powered voice assistant. 

The Technology Acceptance Model (TAM) or variations of it has been extensively used 

across disciplines as a framework for assessing whether and how people accept AI in their lives 

across different domains (Kelly et al., 2023). Although initially proposed to describe the factors 

that predict the intention to use any new technology (Davis, 1986; Davis, 1989), rather than AI 

specifically, it has since been applied to examine acceptance of AI in domains such as i.e., 
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healthcare, education and customer service. It is important to notice here that TAM predicts the 

intention of use rather than actual behaviour, although it postulates that intention ultimately 

drives actual behaviour  (Davis, 1986; Davis, 1989). Based on TAM, perceived usefulness (PU)- 

e.g., the degree to which people perceive a technology to be useful in their everyday lives- and 

perceived ease of use (PEOU) - e.g., the degree to which people perceive that the technology will 

be effortless to use- are the two fundamental predictors of people’s intentions or otherwise, 

willingness to use a new technology. Familiarity with the technology has also been found to 

influence PEOU, diminishing PEOU predictive power in technology adoption (Liu et al., 2016; 

Lunney et al., 2016). This may be because frequent use of a technology reduces the significance 

of ease of use, as familiarity compensates for any initial difficulty of use.  

To gain deeper insights into and predict more accurately the integration of AI into various 

domains of people’s lives, researchers have frequently built upon the TAM and extend it by 

incorporating additional variables. These include variables that attempt to operationalise 

individual factors such as trust, attitudes, knowledge, performance expectancy, and effort 

expectancy, as well as external factors like social norms and social influence. Especially, social 

norms and social influence has been found to positively predict intentions to use AI across 

various industries such as customer service (Gursoy et al., 2019) and healthcare (Lin et al., 2021) 

while their role in studying trust in AI among cohorts highly susceptible to the influence by their 

peers such as adolescents and young adults (Knoll et al., 2015) has been recommended (Kelly et 

al., 2023). 

Another often-used extension of TAM is the Unified Theory of Acceptance and Use of 

Technology (UTAUT) which on top of the variables mentioned above, also accounts for the 

moderating effects of factors such as gender, age, voluntariness of use, and prior experience 
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(Venkatesh et al., 2003). This model has been found to explain approximately 60–70 % of the 

variance in behavioural intentions to trust technology across cultures (Thomas et al., 2013; 

Venkatesh et al., 2003). 

Finally, to study the acceptance of AI- enabled products and services, whose advancements 

occur at a much rapid pace compared to other emerging technologies (Sohn & Kwon, 2020), a 

distinct framework called the AI Device Use Acceptance Model (AIDUA) has been introduced 

and applied to the study of AI in service delivery (Gursoy et al., 2019). Building upon the TAM 

framework and tested using data from potential consumers, the AIDUA model proposes that 

individuals undergo a three-stage process: primary appraisal, secondary appraisal, and the 

outcome stage. During the primary appraisal stage, consumers evaluate the AI based on factors 

such as social influence, hedonic motivation (e.g., the anticipated enjoyment or satisfaction 

derived from using the AI), and anthropomorphism. Following this, in the secondary appraisal 

stage, they consider the AI’s perceived performance expectancy and effort expectancy. The 

outcome of this deliberation shapes an emotional response towards the AI, which subsequently 

determines the outcome stage—where the consumer either expresses a willingness to adopt the 

AI or rejects its use. 

A common critique of studies employing one of the aforementioned TAM models to 

examine AI adoption is their reliance on measuring intentions rather than actual behaviours. 

Most studies use dependent variables such as willingness to use, intention, or acceptance, instead 

of observed behaviour. For instance, in a systematic literature review of 60 studies on AI 

acceptance across various domains, Kelly et al. (2023) found only seven measuring actual 

behaviour. This is not an inherent issue of the TAM model or the TAM- based themselves, as 

they measure intentions by design. However, problems may occur when intentions fail to 
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translate into behaviours, and conclusions about actual behaviour are drawn based solely on 

measured intentions. This reliance can be problematic as attitudes do not always match 

behaviours (Festinger, 1957; Gollwitzer & Sheeran, 2006). This critique of TAM in the study of 

acceptance and trust of AI motivated the experimental paradigms used in studies in Chapters 3 

and 4. In these studies, we chose to measure trust using both self-report and behavioural 

measures, knowing that findings across different types of measurement may vary as self-report 

intentions do not always translate to behaviours and vice versa.  

Trust Trajectories of AI 

There is a trajectory in the formation of interpersonal trust (Rempel et al., 1985). For 

example, people generally hesitate to trust a total stranger. Building trust between individuals 

often takes time and effort, and yet a single event can shatter that trust, requiring significant 

effort to restore it. Similarly, trust in AI can have a dynamic nature. It can start from very 

positive due to people exhibiting a positivity bias in trust of a novel AI system and then suddenly 

dissolve due to errors or unpredictability of the system (Dzindolet et al., 2003; Madhavan & 

Phillips, 2010). Similarly, the reverse order might also be true. Initial scepticism can shift to a 

positive perception following the first interaction, with this positivity growing over time, after 

repeated interactions and as the system maintains reliability and predictability.  

The AI trust trajectories proposed by Glikson and Woolley (2020) are based on an 

extensive meta-analysis of over 150 peer-reviewed empirical studies on human trust in AI across 

multiple disciplines, including computer science, human-computer interaction, human factors, 

information systems, robotics, management, marketing, and psychology. The findings indicate 

that human trust in AI follows three distinct trajectories which are determined by the form of the 

AI representation (e.g., robot, virtual, or embedded) and its level of machine intelligence (i.e., its 
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capabilities). For embodied AI such as robots, trust increases following direct interaction (Haring 

et al., 2016; Ullman & Malle, 2017). For example, participants who drove a partially 

autonomous car expressed greater trust in its capabilities compared to those without such 

experience (Waytz et al., 2014). And even a short interaction with a robotic pet was found to 

significantly improve attitude towards it (Bartneck et al., 2007). On the other hand, for virtual AI 

such as chatbots or avatars, e.g., representations in which the AI may or may not have a physical 

representation but has a distinguished identity, the trajectory suggested in most of the studies 

reviewed is the reverse to that of robotic AI. It stars with a demonstrated high trust which then 

declines usually due to reasons of declining reliability (De Visser et al., 2016) or mismatch 

between the AI agents’ human-like representation and their actual capabilities (Mimoun et al., 

2017). 

For example, in a field study, Mimoun et al. (2017) analysed data from virtual agents on 

commercial websites and saw a decline in use over time. They suggested this was due to a 

mismatch between the agents' human-like appearance and their actual capabilities, leading to 

user frustration and abandonment. The human-like appearance of AI can raise user expectations 

for high-level intelligence, which often doesn’t align with the technology's true capabilities. 

Embedded AI, e.g., AI without physical representation as is the case with algorithms embedded 

in different applications (such as i.e., a GPS or a search engine), follows the same trajectory as 

virtual AI. Similar to virtual AI, laboratory-based studies have shown that people generally 

display high initial trust in embedded AI when it functions as an algorithmic decision-making 

tool (Dietvorst et al., 2015; Manzey et al., 2012). However, this trust tends to diminish when the 

AI makes errors and then trust restoration is required. Lack of transparency of an embedded AI 
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(an Uber algorithm, in particular) has also been shown not only to reduce trust but also 

encourage Uber drivers to engage in attempts to game the system (Lee et al., 2015). 

Finally, for all three trajectories, there exists a minimum level of machine intelligence 

required for the AI to effectively perform the desired task within a specific context. This level 

establishes the lowest threshold of trust necessary for use  and influences the trust trajectories. 

For instance, as the level of machine intelligence increases, the minimum required trust also 

rises.  

An inherent limitation of the AI trust trajectories is that it is skewed towards the findings 

of the majority of studies reviewed. As the authors point out and illustrate with examples in their 

review, there have also been studies that observed reverse patterns in all three representations 

(e.g., going from high to low trust in robotic AI and starting from low trust that then is increased 

in virtual and embedded AI). Another limitation, again inherent to the trust trajectories, is that it 

is based on a snapshot taken in 2020 by looking at studies conducted during the period from 

1999 to 2019. However, since then, different, and more sophisticated AI has emerged (e.g., 

ChatGPT was released in 2022).  People’s experience and familiarity with AI has also gradually 

increased since 1999. This means that if we were to take a most updated snapshot now (year 

2025) we might have observed different trajectories depending on the findings of more recent 

studies. The above limitation underscores the dynamic nature of findings on trust in AI and 

emphasises the need to monitor trust trajectories over time. We further elaborate on this inherent 

challenge in the study of how people perceive and trust AI in the final section of this chapter. 

Factors that affect Trust in AI 

Trust is a subjective attitude that involves an individual’s willingness to accept 

vulnerability based on positive expectations of another’s behaviour (Chang et al., 2017; Glikson 
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& Woolley, 2020; Mayer, 1995). Trust, as such, inherently encompasses characteristics such as 

vulnerability, uncertainty, and risk, alongside the belief in a high probability of a favourable 

outcome. The latter is often rooted in positive perceptions about the other party’s competence, 

benevolence, and reliability (Zerilli et al., 2022). When applied to AI, trust represents an 

individual’s willingness to rely on the technology, grounded on the belief that it possesses 

attributes capable of effectively addressing their concerns (Chang et al., 2017). For example, 

trusting ‘a drive finder application to find a driver for getting with safety to one’s destination. 

Empirical research on trust in AI spans across different disciplines, in a time period of 

over 20 years, with AI having different forms and purposes of use. Consequently, synthesising 

evidence is a challenging task. Systematic meta- analyses (Burton et al., 2020; Glikson & 

Woolley, 2020; Jussupow et al., 2020; Kelly et al., 2023) identify factors such as transparency 

(the level to which the ‘inner logic’ or the operating rules of AI are apparent to the user), 

reliability (the level to which AI exhibits the same and expected behaviour over time ), task 

characteristics (the level to which  the task is perceived as technical and requiring data analysis),  

tangibility (the level of physical representation of the AI), and immediacy of behaviour (i.e., 

personalisation, responsiveness and adaptiveness of the AI) as crucial in developing cognitive 

trust, while anthropomorphism of AI has been shown to be key to developing emotional trust 

(Glikson & Woolley, 2020). Cognitive trust refers to the evaluation of characteristics of the 

trustee such as i.e., competence or reliance coupled with the evaluation of situational features 

whereas, emotional trust involves any affect elicited by the AI that can affect assessments of its 

trustworthiness (Komiak & Benbasat, 2006; Schoorman et al., 2007).  And in the case of 

advanced, sophisticated AI trust often necessitates a ‘leap of faith’  as it required trust in 
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processes that are neither directly observable nor easily comprehensible (Hoff & Bashir, 2015; 

Lee & See, 2004). 

To ease the above ‘leap of faith’ or eliminate the need for it altogether, much of the AI 

research community's focus in recent years has been on making AI transparent, as well as 

explainable and interpretable— terms that are often used interchangeably (Angelov et al., 2021). 

Indeed, from the identified factors influencing trust in AI, transparency can be challenging to 

define and even more challenging to achieve. Transparency also becomes problematic when AI 

such as e.g., Deep Neural Networks (DNNs) e.g., algorithms that are inspired by the way 

neurons process information in the brains, are ‘black boxes’ to the people affected by them and 

sometimes, even to the people developing and deploying them. This opacity is due to the 

complexity of the function or the model that these algorithms implement and the fact that these 

algorithms are trained using machine learning techniques, rather than being explicitly 

programmed (LeCun et al., 2015).  

DNNs are behind recent advances in AI such as image classification, language 

production, translation and navigation (LeCun et al., 2015; Russell & Norvig, 2021) while efforts 

to alleviate their opacity are typically discussed in terms of transparency, interpretability, and 

explainability. Although there is little agreement about what these key concepts mean, a key 

aspect in all the efforts to alleviate the opacity of ‘black box’ AI is the creation of various types 

of explanations about how the AI works or why a specific decision was made such that are 

understandable to human users, even when they have little technical knowledge (Fleisher, 2022) . 

Some of these efforts are post hoc explainable (XAI) methods. XAI methods are attempts to 

explain black box AI, such as e.g., DNNs, by building a second ‘explanation’ model that 

approximates the behaviour of initial black box model while being as simpler type of model, e.g., 
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one that is more understandable to humans than the original black box model. These methods are 

‘post hoc’ because the explanation model is used to explain the black box system after its use, 

without altering the original system. For instance, the Linear Interpretable Model-agnostic 

Explanations method, known as LIME, is a feature importance-based XAI method (Ribeiro et 

al., 2016).  

Based on Hoff and Bashir (2015) systematic review, a more holistic view of the factors 

that influence trust in automation reveals three layers of trust: dispositional, situational, and 

learned trust. Dispositional trust represents an individual’s tendency to trust automation, 

independent of context and system used. Factors that have been identified to influence 

dispositional trust include culture, age, gender, and personality. For instance, Merritt and Ilgen 

(2008) , using the Big Five personality traits, showed that extroverts exhibit a greater propensity 

to trust automation than introverts do. Situational trust depends on aspects of the external 

environment (i.e.., nature or framing of the task, the norms about the use of the system in the 

specific context), aspects of the automation (i.e., the system’s complexity) and internal, context-

dependent characteristics of the human (i.e., subject matter expertise, self-confidence, mood, and 

attentional capacity). For instance, the environment helps the evaluation of risks and benefits 

associated with using the automation as shown in a study where participants trusted route-

planning advice from a GPS less when the situational risk increased with the addition of more 

driving hazards in the experimental driving setting (Perkins et al., 2010). Finally, learned trust 

can be trust stemming from prior experience with a system or trust developed during the current 

interaction (e.g., dynamic learned trust).  

 Overall, the existing literature on the key factors influencing trust in technology, 

automation, and trust in AI, identifies a wide range of individual, contextual, and AI (or 
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automation)-specific factors. When it comes to AI (or automation)-specific factors, literature 

examining the features of the automation that influence trust that spans from the early nineties 

until recently, consistently identifies performance, purpose, and process as key determinants 

(Chiou & Lee, 2023; Hoff & Bashir, 2015; Lee & Moray, 1994; Lee & See, 2004; Perkins et al., 

2010; Schaefer et al., 2016). This motivated the second research question (RQ2) of this thesis, 

which explores how people evaluate AI, specifically disembodied AI in the form of AI models, 

based on three key trust determinants of trust: performance, process, and purpose, collectively 

referred to as the ‘3Ps’. 

Trust in AI - generated Advice 

A significant part of the existing literature on trust in AI focuses on trust in decision 

making environments where AI provides advice (Burton et al., 2020; Castelo et al., 2019; 

Dietvorst et al., 2015; Jussupow et al., 2020; Leib et al., 2024; Logg et al., 2019). This body of 

literature highlights two key insights. First, AI advice uptake is highly context dependent.  For 

instance, the perceived objectivity of a decision (Castelo et al., 2019), the level of human control 

on the advice output (Dietvorst et al., 2018)  or the extent to which individuals consider 

themselves experts (Logg et al., 2019), are some of the things that have been shown to influence 

AI advice uptake. Second, literature on AI advice uptake points to the need for more behavioural 

studies, as most findings to date rely on self-report measurements of willingness to rely to AI 

advice (Burton et al., 2020). It also underscores the need for field studies in specific decision 

contexts (medical, legal, financial) given the high contextuality of AI advice uptake and its 

prevalence in real-life decision-making settings. 

One aspect that has been overlooked in this literature is the validating effect of AI. 

Specifically, how people react to AI-generated advice that reinforces their decisions, especially 
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those related to their preferences.  This kind of validating advice is very common in online 

spaces, where AI-driven recommendations are tailored based on a user's previous choices. 

Similarly, social media platforms are widely recognised for reinforcing user preferences by 

filtering content based on browsing history, often contributing to polarisation (Evans & 

Kasirzadeh, 2021). The ability of AI to fulfil social functions during decision-making, such as 

provide validation, motivated the third research question (RQ3) addressed in this thesis which is 

explored in the studies under Chapter 4. 

Challenges in the Study of How Humans Perceive AI 

 Assessing individuals' perceptions and behaviours, whether in controlled environments or 

real-world contexts, has always been a challenging task, as every measurement approach has 

inherent limitations. In the study of how people perceive and trust AI, surveys have been used 

extensively, especially in the form of questionnaires that assess attitudes and willingness to trust 

AI in real or hypothetical scenarios. Beyond academic research, large-scale longitudinal surveys 

also capture public perception of AI through self-report attitudes and opinion surveys, like for 

example as The Nationally Representative Survey of Public Attitudes to Artificial Intelligence1  

in the UK and Stanford University's One Hundred Year Study on Artificial Intelligence (AI100) 2 

in the US. 

In some cases, instead of using self-report questionnaires, researchers employ 

behavioural measures (Castelo et al., 2019; Dietvorst et al., 2018; Kulms & Kopp, 2019; Leib et 

al., 2024; Logg et al., 2019). During these experiments, participants are required to complete 

specific tasks, while researchers measure and analyse data from their behaviour throughout the 

 
1 https://www.adalovelaceinstitute.org/our-work/library/  

 
2 https://ai100.stanford.edu/ 

 

https://www.adalovelaceinstitute.org/our-work/library/
https://ai100.stanford.edu/
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tasks. Using solely behavioural measures is not ideal either, as internal states do not always 

manifest in behaviours (Barrett et al., 2019). In addition, especially when behavioural measures 

are taken from people’s behaviour in lab setting, depending on the external validity of the 

findings, these findings do not always translate into real behaviours (Maner, 2016). To account 

for the limitation of self-report and behavioural measures, researchers rely on a combination of 

self-report questionnaires and behavioural tasks in the same experiment. It is not rare for these 

studies, however, to report a mismatch between subjective (e.g., self-report) and behavioural 

measures. For instance, in a study where the effect of anthropomorphism of trust in an AI agent 

was studied with both subjective and behavioural measures, anthropomorphism did not affect 

people’s behavioural trust, however,  anthropomorphism increased self-reported trust in the AI 

(Kulms & Kopp, 2019).   

Measuring physiological responses to AI has also been used in the study of decision 

making with AI (Oertel et al., 2020; Subramanian et al., 2016) . For instance, Choi et al. (2012) 

measured heart rate and electrodermal activity during decision making in a prisoner dilemma 

with an AI interaction partner. Physiological measurements provide the benefit of overcoming 

some of the limitations associated with self-reports and behavioural measurements. However, 

since they correspond to cognitive processes, they are proxy measures of the underlying 

cognitive mechanisms. For instance, pupillary dilation is commonly used as a proxy for attention 

(Duchowski et al., 2018) or arousal (Williams et al., 2019).  Neuroscientific measures help 

overcome some of the above limitations as they look at the underlying neural mechanisms. 

Although more costly to conduct than surveys or behavioural studies, they give insights into the 

brain regions associated with the processing of AI. (Greulich & Brendel, 2022; Tolgay et al., 

2019).  
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Recognising the challenge stemming from the limitations of one type of measurement 

employed and integrating multiple types of measurement to complement and contrast 

measurements of the same construct (e.g., by gathering behavioural and neural data) is a 

methodological approach that many studies already adopt, especially in the study of perception 

and behaviour towards robots (Blut et al., 2021; Thellman et al., 2022) . This approach will be 

crucial for future research in other areas of the psychological study of AI too. For example, 

combining behavioural and self-report data or behavioural and neural data is an approach that 

could also benefit the study of human behaviour in interaction with algorithmic AI which is 

currently mostly based on self-report measures and to a lesser degree behavioural measures 

(Glikson & Woolley, 2020). 

Current Work 

This thesis explores how people perceive and make decisions with AI. Since most of the 

empirical data was collected in 2022 -2023, it provides a snapshot of what is coined ‘the human 

perspective on AI’ at that time. It also makes an argument for the need to continuously update 

our understanding of these perceptions and behaviours as both the underlying technology and 

people's experience with it evolve. Below is an outline of the research questions, along with the 

corresponding chapter in which each is addressed. 

RQ1 (addressed in Chapter 2): What differentiates AI agents in human perception? Can human 

perception of AI be mapped across a wide range of AI agents, 

accounting for variations in design, embodiment, and contextual 

differences?  
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RQ2 (addressed in Chapter 3):  How do people evaluate AI models based on the three 

determinants of trust in automation (e.g., performance, process, 

and purpose)? 

RQ3 (addressed in Chapter 4): How do people respond to AI advice that validates them? Are 

they more, less, or equally likely to listen to AI validating them 

as to other people? 
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Chapter 2 Mapping AI Perception 

Introduction 

 

In the words of Stephen William Hawking, ‘The rise of AI will be either the best or the 

worst thing ever to happen to humanity. We do not know which.’ It is quite likely that some of 

today's stereotypes surrounding Artificial Intelligence (AI) resonate with feelings of uncertainty 

or even apprehension, particularly as science fiction and popular culture have extensively 

depicted AI overtaking humanity. To map human perception of AI, we  used two well-validated 

theoretical models from social psychology: i) the Stereotype Content Model (SCM), which offers 

a theoretical account of how people perceive other people (Fiske et al., 2002) and ii) the Mind 

Perception Dimensions (MPD) model, which maps how people attribute mind to entities (Gray et 

al., 2007).  

Building on classic person perception (Asch, 1946; Rosenberg et al., 1968), the SCM 

identifies two dimensions that play a fundamental role in how people perceive other people: 

warmth and competence (Fiske et al., 2007; Fiske et al., 2002). Warmth pertains to the appraisal 

of another person’s intentions, ranging from benevolent/helpful to malevolent/harmful. 

Competence, on the other hand, pertains to the appraisal of their ability to enact these intentions. 

Based on these two dimensions, the SCM identifies four stereotype categories. High 

competence/High warmth refers to people who are seen as highly competent and warm, such as 

ingroups or allies. High competence/Low warmth includes individuals who are perceived as 

competent but not particularly warm, such as rich people or businesspeople. Low 

competence/High warmth describes people who are seen as warm but lacking in competence, 

like the elderly or disabled. Finally, Low competence/Low warmth applies to individuals who 
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are elicit low appraisals of both competence and warmth, often being perceived as having 

minimal societal value, such as homeless people, welfare recipients, and drug addicts. 

Drawing from research in person perception, studies have investigated whether appraisals 

of warmth and competence extend to AI agents, finding that these traits are indeed attributed to 

AI agents as well (Di Dio et al., 2023; Kim & Im, 2023; Kulms & Kopp, 2018; Lee & Harris, 

2014; Pozharliev et al., 2023; Scheunemann et al., 2020; Xue et al., 2023). For instance, people 

characterise AI targets, such as computers, in terms of competence and warmth (Lee & Harris, 

2014), and they select digital avatar characters based on the perceived warmth of the avatar and 

how well it aligns with their personal need for warmth (Fong et al., 2023). Similarly, people 

perceived a smart voice assistant (SVA) as both competent and warm, with perceived warmth 

influenced by factors such as personalisation, responsiveness, humanness, and effective 

communication (Xue et al., 2023). People also assess the moral behaviour of AI based on the 

perception of low warmth, and as such often see AI as more inclined toward utilitarian decisions 

in scenarios like the trolley dilemma (Zhang et al., 2022).And a comparative evaluation between 

autonomous vehicles (AVs) and human drivers revealed that AVs were perceived as competent 

albeit less competent than human drivers. This perception of competence, in turn, led to AVs 

being ascribed less blame in instances of negative service outcomes (Pozharliev et al., 2023).  

On the other hand, based on the MPD theoretical model, attributing mind consists of two 

dimensions: the capacity of agency (covering one or several of the following capacities: self-

control, morality, memory, emotion recognition, planning, communication, and thought) and the 

capacity for experience (covering one or several of the following capacities: hunger, fear, pain, 

pleasure, rage, desire, personality, consciousness, pride, embarrassment, and joy).  Mind 

perception was shown to map onto the two-dimensional space of agency and experience, with 
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different entities, both human and non-human, occupying distinct areas. For instance, a baby and 

an animal were perceived as having low agentic but high experiential minds, god was attributed 

low experiential but high agentic mind, and a robot was (the social robot Kismet) was perceived 

as possessing moderate agentic but low experiential mind (Gray et al., 2007). 

Building on the role of agency and experience attributions in mind perception, studies 

investigating the factors influencing anthropomorphism of AI (i.e., the tendency to attribute 

humanlike qualities to AI agents such as a human like mind) provide evidence of varying 

attributions of agency and experience to AI agents (Gray & Wegner, 2012; Laban et al., 2021; 

Tanibe et al., 2017; Van Der Woerdt & Haselager, 2019; Ward et al., 2013). For instance, a 

humanlike embodied AI (e.g., a humanlike robot) was attributed more experience than a non-

humanlike embodied AI (e.g., a mechanical robot). However, both  were rated similarly in terms 

of agency (Gray & Wegner, 2012). In another study examining self-disclosure for psychological 

health to an embodied AI (a humanoid robot), a disembodied AI (Google Nest Mini), and a 

human, while participants reported no difference in perceived agency between the humanoid and 

disembodied AI, they attributed higher levels of experience to the humanoid robot (Laban et al., 

2021). And when a robot's failure seemed to result from a lack of effort rather than a lack of 

ability, human observers attributed significantly more agency to the robot (Van Der Woerdt & 

Haselager, 2019). 

Leveraging the evidence in the literature that people perceive AI agents in terms of 

competence, warmth, and varying levels of agency and experience, the current set of studies 

assesses the effectiveness of the SCM and MPD theoretical models in mapping AI perception. 

This analysis was conducted across a spectrum of AI agents, including AI agents with varying 

design features, intended uses or purposes and embodiment (including both embodied AI; with 
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physical form such as robots and disembodied AIs; without physical form such as computer 

algorithms). To the best of our knowledge, no previous attempts have been made to map AI 

perception across a wide range of AI agents using the aforementioned models. 

Overview of studies  

A preliminary, comprehensive list of AI agents was compiled, encompassing both 

commercially available AI agents and those used in research, with the latter sourced from 

academic articles. As the goal was to map perceptions of real-world AI - those that are either 

publicly available or in an experimental stage but recognisable to the public - ‘fictional 

movie/literature AIs,’ such as the iconic droids R2D2 and C-3PO, were excluded. Beyond this 

exclusion, the list covered a wide range of AI agents, including pet robots, androids, self-driving 

cars, drones, and avatars in online forums, as well as AI used in medical decision-making, news 

filtering on social media, recommendation systems like Spotify and Netflix, and voice-activated 

assistants such as Alexa and Siri (for the full list, see Appendix 1, Table 1). After curating this 

list, we distributed it to professionals in AI and data science, as well as master’s students in the 

Department of Engineering, for their review and feedback. Study 1 was then conducted to 

identify the most recognisable AI agents of the list e.g., the AI agents that most people were 

more familiar with. This allowed us to reduce the original list of 67 AI agents to 23, eliminating 

the potential confounding factor of familiarity while still preserving a diverse set of AI agents. 

Following Study 1, we proceeded with the main study, where a different group of participants 

evaluated the 23 most popular AIs across the dimensions of warmth, competence, agency, and 

experience. Cluster analyses were applied to identify groups within each of the two-dimensional 

spaces defined by the SCM and MPD theoretical models, respectively. 
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Study 1 

Participants 

50 UK participants (N= 50, age M= 37.6 years; 78% female) were recruited from Prolific 

subject pool and received standard compensation. Participants were paid based on an hourly rate 

(£7.50/hour) for the time spent in the study.  Since the purpose of the study was to generate 

information rather than test a hypothesis using inferential statistics, a rule of thumb (Baumol & 

Quandt, 1964) was used for deciding on the sample size of 50 participants. The exact materials 

and data for Study 1 are available in the Open Science Framework at https://osf.io/ex8us. 

Materials and Procedure  

Participants were tasked with completing an online questionnaire that sought their 

familiarity ratings for 67 distinct AI targets. To compile this comprehensive list, we initially 

curated various types of AI agents, encompassing a broad spectrum of technologies. The list 

consisted of i) embodied AIs, incorporating entities such as social robots, domestic robots, robots 

utilised in manufacturing, autonomous cleaning robots for household tasks, humanoids, androids, 

and pet robots (totaling 27), ii) AIs presented in digital form featuring human-like characteristics, 

including facial features, human-shaped structures, voice characteristics, or language similarities. 

Examples include avatars, chatbots, non-player characters (NPCs) in video games, and voice-

command-responsive personal assistants like Alexa or Siri (totaling 6), iii) AI manifested purely 

in algorithmic form, covering an array of functions such as movie recommendations, music 

composition, painting creation, poetry writing, essay writing and stock market pricing setting 

(totaling 34). Furthermore, the list included commercially available AI such as drones, sex robots 

as well as non-commercially available AI with extensive media attention including self-driving 

cars.  

https://osf.io/ex8us
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The study's objective was to identify the AI targets participants were most familiar with, 

aiming to mitigate the influence of familiarity that could act as a potential confounding factor in 

the main study, and to ensure participants were familiar with the AI they were rating. 

Participants were presented with descriptions of 67 different AI targets appearing on their 

screens sequentially in random order. They were then asked to indicate their level of familiarity 

after each target (‘How familiar are you with this type of AI?’) using a continuous scale ranging 

from 1 (Not at all familiar) to 7 (Extremely familiar). This approach allowed for assessing 

familiarity across the 67 AI targets. Three supplementary questions were also included to 

validate participants' awareness of these AIs and cross-check their familiarity ratings. These 

questions were: i)'Are you aware of AI like the above?' (Answer: Yes/No), ii) 'Have you ever 

encountered or used an AI like the above?' (Answer: Yes/No) and iii) 'Name as many AIs as you 

know that fit under this type of AI. (If you don't know of any, write 'N/A').' (Answer: Open- ended 

text). 

Finally, throughout the study, we deliberately refrained from delineating various types of 

AIs solely through commercially available examples. For instance, rather than inquiring about 

familiarity with a specific AI agent like ChatGPT or Alexa, we phrased the question in a broader 

context. For example, the question ‘How familiar are you with AI that generates substantial 

passages of text in various styles when given a few initial words or lines?’ was used to describe 

AI models like ChatGPT. Similarly, the description ‘AI that acts as a personal assistant, taking 

voice commands (e.g., searching the web, ordering products online, triggering events, or playing 

movies and music on request)’ was used for AI systems like Alexa. This approach aimed to 

prevent biasing participants' recognition to only the most prevalent or commercially accessible 

AIs. This method also enabled us to verify participants’ comprehension by requesting them to 
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list as many AIs as they knew that fell within the described type of AI rather than us referring to 

only a few examples. 

Results  

The results of the Study 1 are included in the Appendix 1 (Table 1) where the 67 AI 

targets appear in descending order based on their average familiarity rating. Following the Study 

1, we curated a new list comprising the 23 most familiar AI targets, e.g., the ones that 

participants in Study 1 gave higher familiarity ratings. This selection included AI agents with 

average familiarity ratings falling within the range of [2.50, 5.54], as evaluated on a continuous 

scale from 1 to 7, with percentile values q1= 2.94, q2=3.8, q3=4.57, and q4=5.54. 

Participants consistently answered affirmatively to both the first and second 

complementary questions for the 23 AI agents that demonstrated high familiarity scores [2.50, 

5.54], thereby validating the high familiarity attributed to each of these AIs. Furthermore, for 

these 23 AI agents, respondents commonly supplied multiple examples in response to the third 

complementary question, something that further allowed cross verifying familiarity ratings. The 

23 most popular AI agents were then used in the Study 2 (the 23 most popular AI agents used in 

Study 2 are included in Appendix1, Table 2). 

Study 2 

A new sample of participants evaluated the 23 AI targets using the SCM’s competence 

and warmth scales, along with MPD’s agency and experience scales. This evaluation sought to 

gauge how this new sample of participants perceived the 23 AI targets in terms of competence, 

warmth, agency, and experience related traits. 

Participants 
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We did not conduct a power analysis to determine the appropriate sample size since we 

did not run inferential statistics. Instead, we relied on prior research to inform our decision 

regarding the sample size for the main study. Following the approach of Sevillano and Fiske 

(2016), who examined the SCM model in animals, we chose to recruit 138 participants. This 

represents an increase in sample size compared to the initial study by Fiske et al. in 2002 (N=124 

in Study 1, long survey). Our rationale for this decision was to adopt a sample at least as large as 

the largest sample size among the two aforementioned SCM studies in the existing literature. As 

such, UK participants (N= 138, age M= 37.94 years, 63% female, 36% male and 1 participant 

preferred not to say) were recruited through the Prolific experimental subject pool for 

compensation (£9.00 per hour). From the total number of participants recruited (N=137), 12 were 

excluded for finishing the questionnaire in less than 10 mins, whereas 3 participants were timed 

out. That left us with a total sample size of N=123. Ethnicities were: 90% White, 2% Black, 2% 

Asian, 2% Mixed and 1% Unspecified. The exact materials and data for Study 1 are available in 

the Open Science Framework at https://osf.io/ex8us. 

Materials and Procedure 

In this study, the questionnaire featured the 23 AI targets obtained from the Study 1. 

Participants were tasked with rating these AIs using randomly presented questions related to 

SCM traits (Fiske et al., 2002) and questions linked to mind perception - traits (Gray et al., 

2007). 

  More specifically, the adjectives used in the questions asking about 

perceived warmth were warm, well-intentioned, friendly, trustworthy, good-natured, helpful. 

For competence: competent, intelligent, efficient, ingenious, skilful, knowledgeable. For agency: 

capacity to exercise self-control, planning, thinking, communicating with humans, having moral 

https://osf.io/ex8us


52 

character, capable of remembering and recognising human emotions and for experience: ability 

to feel basic psychological states such as hunger, thirst, joy, fear, and pain, being self-aware of 

things and having the ability to self-reflect and ability to experience emotional states. In all the 

questions, participants were asked to rate each one of the 23 AI targets on a scale from 0 (not at 

all) to 100 (extremely) according to how most people view them, similar to previous application 

of SCM on person and animal perception (Fiske et al., 2002; Sevillano and Fiske (2016)). A 

‘Does not apply’ option was also provided to accommodate situations where participants held the 

opinion that these traits might not be suitable to describe AI targets.  

Furthermore, participants were asked to assess the perceived human likeness of the 

evaluated AI targets (‘How much humanlike do you think most people find this AI?’) on a 

continuous scale from 0 (Not at all humanlike) to 100 (Extremely humanlike). The study 

protocol involved providing written instructions at the outset and debriefing participants upon 

completion of the study. To prevent participant fatigue and similar to previous SCM studies 

(Fiske et al., 2018; Fiske et al., 2002), the sample was divided, with participants randomly being 

allocated to one of two groups, rating half of the 23 AIs (11 and 12, respectively).  

Results 

Every participant had at least one instance where they selected a ‘Does not apply’ answer 

for one of the adjectives under each dimension (Table 1). No participant selected 'Does not 

apply' for all the adjectives under the same dimension, indicating that the dimensions were 

applicable for describing AI, although different adjectives were seen as not applicable for 

describing AI by different participants (e.g., not all participants considered the same adjectives as 

not applicable). Participants most frequently chose ‘Does not apply’ for adjectives under the 
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experience dimension, with 57% of the overall ratings falling into this classification. ‘Does not 

apply’ ratings were not included in our data analyses. 

The high reliability scores indicated by Cronbach’s alphas for warmth (α = .86, across 6 

relevant questions) and competence (α = .91, across 6 relevant questions), as well as for agency 

(α = .84, across 7 relevant questions) and experience (α = .80, across 5 relevant questions) 

suggest high levels of consistency in the ratings across relevant questions (see Table 1 for the list 

of questions used per dimension). We thus aggregated over the questions to compute the 

dimension composite scores by computing the mean ratings for competence, warmth, agency, 

and experience based on participant responses to each of the 23 AI targets. Using these means, 

the 23 AI targets were then plotted on a two-dimensional competence x warmth (SCM) space 

(see Figure 2) and on a two-dimensional agency x experience (MPD) space (see Figure 3).  

Table 1  

Scales used. For the Competence and Warmth, Agency and Experience Scales, the points of 

ellipsis were replaced by the words in brackets for each question. 

Construct Items 

Competence In terms of how most people view this AI: - How … do most people 

find this AI? 

[competent, intelligent, efficient, ingenious, knowledgeable, skilful] 

Warmth In terms of how most people view this AI: - How … do most people 

find this AI? 

[warm, well-intentioned, good-natured, trustworthy, friendly, helpful] 

Agency In terms of how most people view this AI: - How … do most people 

find this AI? 

[capable of exercising self-control, capable of planning, capable of 

thinking, capable of communicating, capable of moral character, 

capable of remembering, capable of recognising human emotions] 

 

Experience In terms of how most people view this AI: - How … do most people 

find this AI? 

[has a personality, capable of being aware of things, ability to self-

reflect, ability to experience emotional states, capable of feeling 

hungry/joy/fear/pain/desire] 
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Two separate cluster analyses were conducted to explore the structure of each one of the 

two-dimensional spaces (SCM, MPD). Specifically, following the approach outlined by Hair et 

al. (1998), we conducted hierarchical cluster analyses (Ward's method, which minimising within-

cluster variance) (Ward Jr, 1963) to identify the optimal number of clusters. Subsequently, we 

employed agglomeration statistics using typical decision rules (per Blashfield and Aldenderfer 

(1988)) to determine where the last large change occurred. In both SCM and MPD, this change 

occurred at the transition between clusters 2 and 3, leading to the adoption of a three-cluster 

solution for both (Figure 2 and Figure 3 for SCM and MPD respectively). Next, we conducted k-

means cluster analyses, utilising the parallel threshold method, to further delineated which type 

of AI fell into each cluster. Notably, the different AI targets formed cohesive clusters that 

remained consistent across less informative two or four-solution clustering attempts for both 

frameworks (Table 2 and Table 3 for SCM and MPD respectively).  

Table 2 

SCM Group Clusters in Four-, Three- and Two-Cluster Solutions. 

 

Table 3 



55 

 MPD Group Clusters in Four-, Three- and Two- Cluster Solutions. 

 

Mapping AI Perception using the SCM 

SCM characterises mixed stereotypes towards social groups as displaying low ratings on 

one dimension and high ratings on the other. Three distinct analyses were conducted to examine 

whether there were any clusters of the AI targets under examination demonstrating high scores 

on either competence or warmth while displaying low scores on the other dimension. Firstly, an 

Analysis of Variance (ANOVA) and post-hoc tests were conducted to compare the means across 

the three identified clusters. This analysis aimed to discern whether significant differences 

existed in the mean scores across these clusters. Secondly, within each cluster, matched pair t-

tests were conducted to directly compare competence and warmth scores. This approach allowed 

to investigate potential significant differences between these dimensions within the individual 

clusters. Thirdly, matched-pair t-tests were conducted at the level of individual AI targets within 

clusters. These tests provided a detailed examination of the competence and warmth scores for 

each AI target within the cluster, enabling to ascertain whether specific AIs exhibited notable 

differences between their mean competence and warmth scores. 
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 First, a comparison of the three cluster-means confirmed that clusters differed on each 

dimension (competence F2,20 = 17.851, p< .001, warmth F2, 20=19.571, p<.001). Subsequent post-

hoc analyses revealed that Cluster 3 exhibited the highest scores in competence (M = 65.38) 

relative to the other two clusters, with statistically significant differences in terms of competence 

(p< .05, 95% C.I = [3.88, 12.26] for the difference between Cluster 3 and Cluster 1, p< .001, 

95% C.I = [9.84, 24.29] for the difference between Cluster 3 and Cluster 2). Cluster 3 also 

exhibited the highest scores in warmth (M= 56.65) relative to the other two clusters (p<.001, 

95% C.I = [8.10, 19.14] for the difference between Cluster 3 and Cluster 1, p<.05, 95% C.I = 

[1.98, 15.25] for the difference between Cluster 3 and Cluster 2). Cluster 1, like Cluster 2, was 

also a cluster with the lowest warmth scores (M= 43.03), since the warmth scores of these two 

clusters (Cluster 2, M= 48.03 and Cluster1, M=43.03) were not found statistically significantly 

different (p= .142). However, when it comes to mean competence score, Cluster 1 scored 

moderately higher in competence (M= 59.14) than Cluster 2 (M= 48.32, p =.002) and lower 

compared to Cluster 3 (M=65.38, p= .041). As such, we refer to this cluster as ‘Moderate 

Competence – Low Warmth’ cluster. 

Figure 2 

SCM Three-Cluster Solution 
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Secondly, the matched-pair t-tests conducted within each cluster revealed noteworthy 

findings. In Cluster 1, the mean competence (M = 59.14) was significantly higher than the mean 

warmth (M = 43.03), t (9) = 7.02, p < .001. Similarly, in Cluster 3, the mean competence (M = 

65.38) was significantly higher than the mean warmth (M = 56.65), t (7) = 5.42, p < .001. 

Conversely, the matched-pair t-test indicated no statistically significant difference between the 

mean scores of warmth and competence in Cluster 2, t (4) = 0.16, p = .88, as shown in Table 4. 

Table 4 

Mean Competence and Mean Warmth for each AI cluster. Within each row, means differ (p<.05) 

if > or < is indicated. Within each column, means that do not share a subscript letter differ 

(p<0.001). Standard deviations appear in parenthesis. 

Cluster  Members Competence  Warmth 

1 10 59.14 (5.28) a > 43.03 (4.97) a 

2 5 48.32 (4.03) b = 48.03 (4.65) a 

3 8 65.38 (5.16) c > 56.65 (4.04) b 
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Cluster 1 contained ten members which, mentioned in order of distance from the cluster 

centre, were the following: ‘Self-driving cars’ (cluster’s centre),  ‘AI that recommends products 

or services to buy’, ‘AI that calculates credit scores for granting credit cards, loans, or 

mortgages’, ‘AI that categorises emails in the inbox and offers quick reply to options’, ‘Facial 

recognition AI used to identify potential suspects and conduct mass surveillance’, ‘AI that filters 

and organises the content and the news feeds of social media sites’, ‘Drones’, ‘AI that connects 

you to potential friends/ people you might know of’, ‘AI that recommends movies, shows and 

series’, ‘Robots used in manufacturing (e.g., digitally operated robotic arms).’ Cluster 1 had a 

statistically significantly higher mean score of competence (M= 59.14) than warmth (M= 

43.03)), t (9) =7.019 p<0.001 suggesting a prevailing perception of higher competence compared 

to warmth among its members. 

 Cluster 2, comprising five members, demonstrated the lowest scores in both warmth 

(M=48.32) and competence (M=48.03), akin to the group in the original person perception SCM 

study, known as the 'antipathy group.' (Fiske et al., 2018). The members within this cluster, listed 

in order of their distance from the cluster centre, were as follows: ‘AI that suggests potential 

dates for individuals’ (cluster’s centre), ‘Customer service chatbots that handle queries and 

provide information’, ‘Non-player characters (NPC) in video games’, ‘Avatars used across 

Internet forums, social media, and online communities’, ‘Avatars representing players in video 

games.’ 

Cluster 3, the cluster with the highest competence (M=65.38) and warmth (M= 56.65) 

contained eight members. These members, arranged by their proximity to the cluster centre from 

the closest to the farthest, were as follows: ‘Domestic robots’ (cluster’s centre), ‘AI that 

recommends music choices’, ‘Facial recognition AI for digital device access’, ‘AI that assists in 
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typing, reviewing spelling, grammar, and clarity’, ‘AI that facilitates ride matches and offers 

ridesharing’, ‘Autonomous vacuum cleaning robots’, ‘AI that serves as a voice-commanded 

personal assistant’, ‘AI that provides navigation services.’ Within this cluster, matched-pair t-

test revealed the mean score of warmth to be significantly lower than that of competence 

(M=8.739, t (7) =5.42, p<.001), suggesting a prevailing perception of higher competence 

compared to warmth among its members. 

 Finally, at the level of individual groups, e.g., within clusters, matched-pair t-tests were 

conducted to compare the mean competence and warmth scores for each AI target. Notably, 

mean competence and warmth scores differed statistically significantly for 20 AI targets out of 

the total 23 (see Table 5). The three AI targets for which the difference between the mean 

competence and warmth scores was not found to be statistically significant (at p<0.05) came 

from Clusters 1 and 2. 

Table 5 

Mean Paired Differences (Competence - Warmth) 
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In summary, the analysis conducted on clusters (using ANOVA and matched-pair t-tests) 

and individual groups within clusters (employing matched-pair t-tests) indicated that a three-

cluster solution was deemed the most appropriate. The analysis did not reveal any mixed 

stereotypes (e.g., AI targets scoring high on one dimension while low on the other), apart from 

the existence of Cluster 1, which included AIs that scored moderately in competence and high in 

warmth and, as such, it could be ‘marginally’ considered as a mixed cluster. The results indicate 

that the AI targets under review were not perceived homogeneously in terms of competence and 

warmth. Instead, they formed different clusters the two-dimensional space of SCM. 

Mapping AI Perception using the MPD Model 

Similar analyses to the ones described above when exploring the SCM's two-dimensional 

space defined by competence x warmth were also conducted to investigate the MPD two-

dimensional space defined by agency x experience. 

Figure 3 

Mind Perception Dimensions Three-Cluster Solution. 
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 First, comparison of the three cluster-means confirmed that clusters differed on each 

dimension (agency, F2,20 = 18.45, p <.001 and experience, F2, 20 = 40.42, p<.001). Post-hoc 

analyses further demonstrated that Cluster 3, which exhibited the highest scores in both agency 

(M= 43.40) and experience (M= 30.41) compared to the other clusters, significantly differed 

from the other two clusters. Cluster 3 showed significantly higher agency compared to Cluster 1 

(p< .001, 95% C.I = [7.04, 17.17]) and Cluster 2 (p=0.003, 95% C.I = [2.37, 11.27]), as well as 

significantly higher experience compared to Cluster 1 (p< .001, 95% C.I = [9.30, 16.80])) and 

Cluster 2 (p< .001, 95% C.I = [5.18, 11.77])). Cluster 2 showed significantly higher agency (p= 

.018, 95% C.I = [0.84, 9.74]) and experience (p= .006, 95% C.I = [1.27, 7.83]) compared to 

Cluster 1. 

Secondly, the matched-pair t-tests conducted within each cluster revealed noteworthy 

findings. Specifically, within Cluster 1, the mean agency (M=31.30) was significantly higher 

than the mean experience (M=17.36), t (5) =7.970, p<.001. Similarly, Cluster 2 also 

demonstrated a significant difference between mean agency (M=36.59) and experience (M= 
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21.93), t (10) = 10.692, p<.001, and in Cluster 3, the mean agency (M=43.40) was higher than 

the mean experience (M=30.41), t (5) =4.820, p=.005 (Table 6). 

Table 6 

Agency and Experience means for each AI cluster. Within each row, means differ (p<.05) if > or 

< is indicated. Within each column, means that do not share a subscript letter differ (p<.05). 

Standard deviations appear in parenthesis. 

Cluster  Members Agency  Experience 

1 6 31.30 (3.56) a > 17.36 (1.11) a 

2 11 36.59 (2.54) b > 21.93 (2.63) b 

3 6 43.40 (4.74) c > 30.41 (3.36) c 

 

Cluster 1, characterised by the lowest scores in both agency (M= 31.30) and experience (M= 

17.36), consisted of six members ranked by their distance from the cluster centre: ‘AI that 

calculates credit scores for credit cards, loans, or mortgages’ (cluster’s centre), ‘AI that 

categorises emails in the inbox and suggests quick reply to options’, ‘Robots utilised in 

manufacturing processes (e.g., digitally operated robotic arms)’, ‘AI which functions as a typing 

assistant for spell checks, grammar reviews, and error corrections’, ‘AI responsible for filtering 

and organising content on social media platforms’, ‘Drones.’ 

Cluster 2 consisted of 11 members and displayed moderate scores in both agency (M=36.59) 

and experience (M=21.93) compared to the other clusters. The AI targets within Cluster 2, 

ranked in terms of their distance from the cluster centre, included: ‘AI that recommends movies, 

shows, or series’ (cluster’s centre), ‘Chatbots used in customer service to answer queries and 

provide information’, ‘AI that recommends products or services for purchase’, ‘Facial 

recognition AI used in identifying potential suspects and conducting mass surveillance’, ‘AI that 

suggests people for potential dating’, ‘AI matching individuals searching for rides with potential 

drivers and offering ridesharing services’, ‘AI that connects users to potential friends or people 
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they might know’, ‘Facial recognition AI used to unlock digital devices’, ‘Avatars used in 

Internet forums, social media, and online communities’, ‘AI that suggests music for listening’, 

‘Autonomous robots performing vacuum cleaning in houses.’ 

 Finally, at the level of individual groups within clusters, matched-pair t-tests were 

conducted to compare agency and experience scores for each AI target. The analysis revealed 

significant differences between agency and experience scores for all 23 types of AI (Table 7). 

Across these 23 AI categories, all were consistently perceived as significantly more agentic than 

experienced. 

Cluster 3, which demonstrated the highest mean agency (M= 43.40) and experience 

(M=30.41) scores, comprised six members, listed in ascending order of their proximity to the 

cluster centre: ‘Domestic robots’ (cluster’s centre), ‘Self-driving cars’, ‘Non-player characters in 

video games’, ‘AI that provides navigation services’, ‘Avatars used in video games to represent 

different players’, ‘AI that serves as a voice-commanded personal assistant.’ 

Table 7 

Mean Paired Differences (Agency - Experience) 
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In summary, the analyses performed on clusters, both through ANOVA and matched-pair 

t-tests, as well as individual groups within clusters using matched-pair t-tests, supported selecting 

a three-cluster solution as the most suitable. The analysis did not reveal any mixed stereotypes 

(e.g., AI targets scoring high on one dimension while low on the other). Notably, in the case of 

the MPD theoretical model, the solution aligned along a diagonal within our sample, which 

essentially shows that agency and experience are correlated. This indicates that, according to the 

MPD model, AI perception is unidirectional: if people perceive an agent as high (or low) in 

agency, it is also perceived as high (or low) in experience, and vice versa.  

Competence and Experience: The Two Predictors of Human likeness 

A linear regression was run on the human likeness output variable. Upon confirming that 

the assumptions for linear regression were met, the analysis was run, and a significant model was 

obtained: F4,18 = 21.052, p<.001. Notably, after examining the Coefficients (see Table 8), it was 

observed that competence negatively and experience positively predicted human likeness.  

Table 8 

Coefficients of Regression Model with Dependent variable: Human likeness 

 Unstandardised 

Coefficients 

beta 

Coefficient 

Standard 

Error 

t p 

(Constant) -13.639 11.286 -1.208 .243 

Competence -.489 .189 -2.595 .018 

Warmth .357 .233 1.543 .140 

Agency .526 .327 1.607 .125 

Experience 1.355 .318 4.258 <.001 

 

 Building on the finding that competence and experience significantly predicted the 

perceived human likeness of AI, we examined the two-dimensional space defined by these 

dimensions. We refer to this model as the AI Stereotype Model (AISM). Determination of the 

optimal number of clusters was established through agglomeration statistics. Notably, the most 
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substantial change occurred between clusters 2 and 3, leading to the adoption of a three-cluster 

solution as shown in Figure 4.  

 Next, to explore whether different types of AIs will prove high on either competence or 

experience but low on the other, three analyses were performed. These three analyses were 

similar to the ones performed for investigating both SCM and MPD two-dimensional spaces. 

Figure 4 

AI Stereotype Model Three-Cluster Solution. 

 

 

 First, there were differences in the means of the three clusters across each dimension 

(competence: F2,20 = 12.43, p < .001, experience: F2, 20= 29.106, p<.001). Subsequent post-hoc 

analyses revealed that the cluster exhibiting the highest mean competence compared to the 

others, Cluster 1 (M= 66.90), significantly differ from Cluster 2 (p<.001, 95% C.I = [6.75, 

20.67]) but moderately from Cluster 3 with no statistical significance (p=.060, 95% C.I = [-2.93, 

15.43]) whereas mean competence  scores of Cluster 2 and 3 didn’t differ statistically 
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significantly (p=.109, 95% C.I = [-13.44, 1.15]). Regarding experience, the post-hoc analyses 

demonstrated that the cluster with the highest experience relative to the other clusters, Cluster 3 

(M= 30.74), statistically significantly differed from both Cluster 1 (p< .001, 95% C.I = [6.06, 

14.27]) and Cluster 2 (p<.001, 95% C.I = [6.99,14.61]). Mean experience scores Cluster 1 and 2 

didn’t differ statistically significantly (p=.896, 95% C.I = [-2.99, 4.28]). 

  Secondly, matched-pair t- tests revealed that within Cluster 1, competence (M=66.90) 

was significantly higher than experience (M=20.58), t (6) =23.26, p< .001. Similarly, within 

Cluster 2, competence (M= 53.18) was significantly higher than experience (M=19.94), t (9) = 

13.58, p< .001, as well as within Cluster 3, competence (M=59.33) was significantly higher than 

experience (M= 30.74), t (5) = 8.66, p <.001. (see Table 9). 

Table 9 

Mean Competence and Mean Experience means for each AI cluster. Within each row, means 

differ (p<.05) if > or < is indicated. Within each column, means that do not share a subscript 

letter differ (p<.05). Standard deviations appear in parenthesis. 

Cluster Members Competence  Experience 

1 7 66.90 (4.79) a > 20.58 (2.75) a 

2 10 53.18 (5.24) b > 19.94 (3.10) a 

3 6 59.33 (6.92) a, b > 30.74 (2.77) b 

 

Cluster 1 is a mixed cluster, boasting high competence score (M= 66.90) and  low experience 

score (M= 20.58)  and comprising seven members which are the following, ordered by their 

proximity to the cluster centre: ‘Facial recognition AI used to identify potential suspects and 

conduct mass surveillance’(cluster’s centre), ‘Facial recognition AI used to open digital 

devices’, ‘AI that acts as a typing assistant that reviews spelling, grammar, clarity, and corrects 

mistakes’, ‘AI that matches people searching for a ride with potential drivers and also offers 

ridesharing services’, ‘Robots used in manufacturing (e.g., digitally operated robotic arms)’, ‘AI 
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that recommends music to listen to’, ‘AI that provides navigation services (e.g., how to go from 

point A to B, suggesting alternative itineraries etc.).’ 

 Cluster 2, encompassed ten members arranged in order of distance from the cluster 

centre: ‘AI that recommends products or services to buy’ (cluster’s centre), ‘AI that recommends 

people to go on a date with’, ‘AI that recommends movies, shows or series’, ‘Drones’, ‘AI that 

connects you to potential friends/people you might know of’, ‘AI that filters and organises the 

content and the news feeds of social media sites’, ‘AI that calculates credit scores for granting 

credit cards, loans or mortgages’,  ‘AI that categorises emails in your inbox and offers quick 

reply options’, ‘Chatbots used in customer service to answer questions & provide information’, 

‘Avatars used in Internet forums, social media and other online communities.’ This cluster 

includes AI targets that scored both low in competence (M=53.18) and experience (M= 19.94). 

 Cluster 3, comprised six members arranged in order of proximity to the cluster centre, 

ranging from the closest to the farthest distance: ‘Domestic robots’ (cluster’s centre), 

‘Autonomous robots that do vacuum cleaning in houses’, ‘Self-driving cars’, ‘Avatars used in 

video games to represent different players’, ‘AI that serves as a voice-commanded personal 

assistant’, ‘Non-player characters (NPC) in video games.’ This cluster is another mixed cluster 

that includes AI targets that scored moderately in competence (M=59.33) while at the same time 

they exhibited high experience score (M= 30.74). 

 Finally, at the level of individual groups, e.g., within clusters, matched – pair t-tests 

compared competence and experience scores for each type of AI. Competence and experience 

scores differed significantly for all 23 types of AI. All these 23 types of AI were perceived to be 

significantly more competent than experienced. 

Table 10 
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Mean Paired Differences (Agency - Experience) 

 

In summary, the analysis conducted on clusters (using Analysis of Variance and 

matched-pair t-tests) and individual groups within clusters (employing matched-pair t-tests) 

indicated that a three-cluster solution was deemed the most appropriate for the competence x 

experience space. Among these identified clusters, two clusters (Cluster 1 and Cluster 3), which 

comprises the majority of AI targets (13 members in total), displayed characteristics of mixed 

clusters. 

Discussion 

AI's integration into daily life is steadily growing. Yet, how people differentiate between 

AI agents remains relatively limited. The current set of studies attempted to map human 

perception of AI across a wide range of AI agents, using well-validated person and mind-

perception theoretical models from social psychology as well as a novel, data-driven model 

derived from the other two. The findings revealed that AI is not perceived homogeneously, with 

certain stereotypes emerging. Specifically, AI agents formed distinct clusters within each model 

suggesting the emergence of shared stereotype among those within the same cluster. 
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When mapping AI perception using each one of the three models examine, mixed (or 

ambivalent) clusters (e.g., groups of cognitive targets scoring high in one dimension while low in 

the other) formed from multivalent perceptions, did not emerge in the application of SCM. They 

did not emerge in the application of the MPD model either. Finding mixed clusters is essential 

because their existence challenges the idea of a univalent and unidirectional perception of AI 

which also appears to be highly unlikely based on existing empirical evidence. For example, 

based on its design features, a robot has been shown that can be simultaneously perceived as 

highly agentic but very low in experience (Gray & Wegner, 2012) and chatbots can be  seen as 

highly competent but not so warm or friendly (Kim & Im, 2023). 

In person perception, the discovery of mixed clusters showed that such ambivalence 

exists in prejudice towards different social groups (A. J. C. Cuddy et al., 2007) while the 

application of SCM in animal perception demonstrated that ambivalence also characterised the 

way people see animals e.g., separating them into low warmth/high competence (predators), high 

warmth/high competence (companions), high warmth/low competence (prey), low- warmth/low 

competence (pest). However, not finding mixed clusters in either the SCM or the MPD model for 

AI targets suggests neither model properly captured the ambivalence in AI perception at the time 

the mapping was performed. The novel AISM model introduced here, derived from the other 

two, identified some mixed clusters. This suggests that it may offer a more effective framework 

for mapping AI perception, at least at the time the mapping was conducted using the AI agents 

available then. Further replications of the current set of studies with diverse samples and over 

time could seek to further assess and validate the AISM model’s applicability in mapping AI 

perception over time. 
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Also, the regression analysis of human likeness on the SCM and MPD models’ 

dimensions (e.g., competence, warmth, agency, and experience) revealed noteworthy findings; 

perception of competence of an AI agent negatively predicted human likeness while perception 

of experience positively predicted human likeness. In other words, the results obtained in the 

current set of studies suggest that the less competent an AI is seen and the more it is perceived as 

capable of experiencing things, the more likely people are to view it as humanlike. 

Implications and Directions for Future Research  

The way various AI agents were positioned within each of the two-dimensional spaces of 

the SCM, MPD, and AISM reveals distinct patterns of AI perception across each model’s 

dimensions. However, as AI agents become more integrated into daily life and people gain more 

experience with them, repeating the same study at different time points may show the same AI 

agents to occupy the two-dimensional spaces differently. Experience and familiarity with AI are 

likely to influence perceptions and conducting the study over multiple periods could help 

document how AI perception changes over time. Additionally, it would allow for updating 

insights on AI perception with the mapping of new AI agents that will be invented and reach the 

public. 

Moreover, there is a methodological benefit from the mapping of AI across a range of 

different agents. It gives a ‘forest’ rather than a ‘tree’ view of AI perception, from which past 

findings can be framed and new research questions can emerge. For example, what factors drive 

AI agents that do not share morphological similarities (e.g., embodiment) or purposes of use to 

cluster together? Take for instance Cluster 3 in the AISM solution (Figure 4), which includes AIs 

that scored higher than those in the other two clusters in terms of experience. What might be 

driving high ratings of experience among these AIs? It might be that all of them are designed in a 
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way that resembles humans or simulate human-like behaviour, inevitably fostering the 

impression of experience, despite not actually having this capability. Future research should look 

at gaining a deeper understanding of the underlying factors that drive shared perceptions of 

competence or experience across AI agents sharing the same clusters.  

Also, the aim of the current set of studies was to map AI perception and as such does not 

examine the factors driving those perceptions, nor does it distinguish between perceptions based 

on an accurate understanding of the AI’s capabilities and those shaped by misperceptions. 

Particularly about misperceptions, however, it does bring to the surface the question of the extent 

to which an AI agent’s perceived competence or experience are subject to misperception. For 

instance, AI in the form of Large Language Models (LLMs) has the potential to simulate human 

consciousness to the extent that people may struggle to distinguish them from humans (Bender et 

al., 2021) leading to potential misperception of its abilities, especially its ability to experience 

things. Conducting further research to understand and address public misperceptions around 

specific AI agents is important for fostering effective interaction, building public trust, and 

promoting acceptance of AI. It also plays a crucial role in shaping policy regulations and guiding 

moral considerations related to AI. For instance, public misperceptions can significantly 

influence policy decisions and regulatory frameworks. If people misunderstand an AI agents’ 

capabilities and limitations, they may advocate for either overly restrictive regulations or 

insufficient safeguards, potentially hindering the responsible development and deployment of AI 

technologies. Similarly, in the case of self-driving cars, if people form misperceptions of 

competence or overestimate the agency of self-driving cars, they may inappropriately attribute 

moral responsibility to these systems, leading to ethical dilemmas. Identifying where an AI agent 
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is positioned in the two-dimensional space of competence x experience, will help assess any 

misperceptions that may arise. 

Finally, the findings have implications for AI systems design, potentially confirming 

what AI engineers have already figured out by test and error. If the goal is to make AI be 

perceived more humanlike, introducing a degree of imperfection, or/and incorporating cues that 

suggest the AI’s ability to simulate mental states seem to be keyways for achieving it. 

Limitations  

The current set of studies has limitations. First, every participant had at least one instance 

where they selected a ‘Does not apply’ answer for at least one of the adjectives used under each 

of dimensions (Table 1). Although no participant selected ‘Does not apply’ for all the adjectives 

under the same dimension, different adjectives were seen as not applicable for describing AI by 

different participants (e.g., not all participants considered the same adjectives as not applicable). 

This does not affect the validity of the findings as the ‘Does not apply’ ratings were not included 

in the data analysis; it nevertheless cautions about the appropriateness of some of the adjectives 

used. Future studies should seek to critically assess the subset of adjectives within each of the 

four dimensions to ensure their suitability for AI. Here we chose to use the exact adjectives used 

in the SCM and MPD studies. Future studies could seek to ask different questions to better 

operationalise each one of the four dimensions. For instance, the ability to learn is something that 

could be asked nowadays about AI as most people are likely to view Large Language Models 

(LLMs) as able to learn. 

Secondly, the current set of studies deliberately presented different AI agents using high-

level descriptions, avoiding the use of well-known commercial examples. For example, we 

aimed to evaluate perceptions of ‘an AI that acts as a personal assistant taking voice commands’ 
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rather than mentioning or explicitly asking people about e.g., ‘Alexa’ or ‘Siri’. This approach 

was chosen to minimise potential confounding factors arising from biased perception towards 

specific AI agents under the boarder category. An alternative approach could have involved 

presenting participants with multiple examples of AI agents falling into the same broader 

category to account for variations in perception within the range of a given category. In this 

approach for instance, in the case of AI that recommends movies, people would be asked about 

their perceptions of a variety of commercially available movie recommender systems (e.g., 

Netflix, Apple tv etc.)  or in the case of social robots, they would be asked about a variety of 

social robots (e.g., Pepper, Nao, Paro, Aibo, ElliQ etc.) provided that the public knows about 

them. Future studies could attempt such variation in the experimental design. Additionally, 

alternative ways for presenting AI agents—such as with the use of images, videos, or direct 

interactions—should be explored. 

Finally, it is advisable in self-report measures to ask multiple (usually two or three) 

questions to capture people's responses on the construct of interest, in order to account for 

potential errors arising from misunderstandings of the question. We used one question to assess 

human likeness: ‘How much humanlike do you think most people find this AI?’ (on a scale from 0 

to 100). Ideally, we would have included at least one additional question using a synonymous or 

a word close in meaning to ‘humanlike’ to validate whether the responses to the two would be 

correlated (e.g., providing a Cronbach’s alpha of more than 0.6). A possible alternative question 

could have been, ‘How much do you think most people would perceive this AI as resembling 

humans?’. Future studies should include alternative questions to inquiry self-report perceptions 

of human likeness, as long as they can identify different ways to phrase the same question 
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without duplicating those already asked under the dimensions of experience, agency, warmth, 

and competence. 

Conclusion 

Three theoretical models were employed to map how humans perceive AI. The findings 

underscore that AI is not perceived homogeneously and reveal stereotype formation in AI 

perception. Future iterations of the studies in different points in time could reveal potential changes 

in the patterns observed as further integration of AI in human life and increased familiarity and 

experience with AI are likely to impact perceptions. Additionally, future iterations will enable the 

mapping of perceptions across new AI agents, as the technology continues to evolve and new, 

more sophisticated, and humanlike AI agents are expected to reach the public. 
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Chapter 3 The 3Ps of Trust in AI (Performance, Process and Purpose) 

Introduction 

Artificial Intelligence agents (AI agents) can be any system that perceives and acts on its 

environment to maximise its chance of achieving its goals (Poole et al., 1998). From Large 

Language Models (LLMs) like ChatGPT, the friendly voices of Alexa and Siri that guide us 

through our tasks, and efficient chatbots streamlining customer service to the lifelike avatars 

fostering connections in virtual communities, diverse AI agents are seamlessly integrating into 

our lives. We witness their proliferation and gradual integration into the social fabric where they 

evolve into novel interaction entities. At the same time, ongoing advancements in generative AI 

(Zhao et al., 2023), Human-Computer Interaction (HCI) (Helander, 2014) and Human-Robot 

Interaction (HRI) (Goodrich & Schultz, 2008) aim to enhance both the capabilities of these 

agents and the quality of the interactions people have with them, striving to make these 

interactions feel as intuitive and natural as human-to-human interactions do, if not more so. 

Human-to-human interactions can be intricate, as they involve people making inferences 

about other peoples’ thoughts, feelings, goals and intentions (Fiske, 1998; Frith & Frith, 2006). 

While many interactions with AI agents require inferring their mental states, like for instance 

when playing chess against a computer, AI agents do not possess mental states. Still, they are 

agents  - entities endowed with the ability to gather, process information, make decisions, and 

dynamically engage with their environment, including humans and other AI agents, to 

accomplish shared objectives with varying degrees of autonomy (Russell & Norvig, 2016). As 

such, interactions with AI necessitate understanding features such as i.e., the goals instilled in the 

AI agent being interacted with.  
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How do people evaluate AI? We began by reviewing the literature on trust in automation 

to identify key features of automated systems that influence human evaluations, particularly 

evaluations of trustworthiness of the automation. We focused on the factors that influence trust, 

given its well-established role in decision-making involving human (Bonaccio & Dalal, 2006; 

Brynjolfsson et al., 2019; Haran & Shalvi, 2020a; Laban & Araujo, 2020; Rahwan, Cebrian, 

Obradovich, Bongard, Bonnefon, Breazeal, Crandall, Christakis, Couzin, & Jackson, 2019; 

Sniezek & Van Swol, 2001) and AI advisors (Brynjolfsson et al., 2019; Laban & Araujo, 2020; 

Rahwan, Cebrian, Obradovich, Bongard, Bonnefon, Breazeal, Crandall, Christakis, Couzin, & 

Jackson, 2019). Next, we turned to two more recent bodies of literature that focus on the factors 

influencing trust in AI and trust in HRIs. These literatures separately and collectively underscore 

three enduring features crucial in shaping evaluations of trustworthiness: performance, purpose, 

and process. In the rest of the chapter, we refer to these three features as key determinants of 

trust in AI or just ‘3Ps’ for ease of reference. 

Trust in Automation, AI, and Robots 

In the context of trust in automation, literature examining the features of the automation 

that influence trust identifies performance, purpose, and process as key determinants (Chiou & 

Lee, 2023; Hoff & Bashir, 2015; Lee & Moray, 1994; Lee & See, 2004; Perkins et al., 2010; 

Schaefer et al., 2016). Performance refers to the current or historical operation of the automation 

Lee and See (2004). It includes traits such as reliability, predictability, and ability to achieve the 

specific goals the automation was designed to achieve. It can be considered as describing the 

‘what’ the automation does. Process refers to the automation’s algorithms and the degree to 

which these algorithms are appropriate for the situation they are designed. It includes traits such 

as transparency, interpretability and explainability and can be considered as describing the ‘how’ 
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the automation operates. Purpose refers to the degree to which the automation is being used 

within the realm of its designers’ intentions. It can be considered as describing the ‘why’ the 

automation was developed.  Parallels can be drawn between trust in automation and trust in 

interpersonal relationships when considering the 3Ps. Just as trust between individuals is built 

upon factors like competence, integrity, or benevolence trust in automation hinges respectively 

on the performance, process, or purpose of the automation (Mayer et al., 1995).  

A more recent meta-analysis on the antecedents of trust in AI also draw the spotlight on 

features of the AI agent, along with human-related and contextual antecedents of trust (Kaplan et 

al., 2023). Among the 67 studies examined, AI performance emerges as a noteworthy predictor 

of trust, showing a substantially large effect size (d=1.47). Also, an AI whose process is 

transparent was found to be more trustworthy compared to 'black-box' AI (d=0.24), and AI’s 

behaviour was shown to significantly impacts trust (d=0.81) with, good-intentioned, honest, and 

rule-abiding AI perceived as more trustworthy than its deceptive, mal-intentioned counterpart. 

In addition, two sequential and comparative meta-analyses (Hancock et al., 2011; 

Hancock et al., 2021) investigating the empirical evidence on the determinants of trust in HRI 

revealed that attributes associated with the robot itself exert a more substantial influence on trust 

compared to attributes related to the human or the contextual aspects of the interaction. 

Interestingly, within the realm of robot attributes shaping trust, two aspects emerge prominently: 

The robot's personality and its communication style. As outlined by the authors, the concept of 

robot personality emerged as particularly influential, demonstrating a significant correlation with 

trust. It encompasses attributes such as positive facial expressions, empathy, likability, and 

sociability. However, since robots embody AI, their facial expressions and empathetic traits can 

be viewed as reflections of their underlying purpose, indirectly highlighting again the importance 
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of cues that signal purpose, akin to the findings in both literatures concerning trust in automation 

and trust in AI. Similarly, while not explicitly detailed in the examined meta-analyses, one could 

interpret the term 'communication style' as encompassing aspects of performance and process 

(the remainder two of the 3Ps). Notably, varying degrees of the robot’s reliability and 

predictability of actions (traits related to performance), as well as the explainability or 

interpretability of its behaviour (traits related to process), were found to lead to different 

communication styles.  

Overall, the above bodies of literature separately and collectively underscore the lasting 

importance of the 3Ps in shaping how people form evaluations, particularly those related to the 

trustworthiness of AI. 

Research Question  

Since the 3Ps (performance, process, and purpose) are fundamental in trust evaluations of 

automated systems, how do people evaluate AI models based on these trust determinants? This is 

the research question we sought to address here. This research question was further divided into 

the following three hypotheses (h1, h2, h3): reliance on an AI model’s output will vary 

depending on evaluations of its performance, process, and purpose (h1), attitudes towards an AI 

model will vary depending on evaluations of its performance, process, and purpose (h2), trust in 

an AI model will vary depending on evaluations of its performance, process, and purpose (h3). 

The three hypotheses differentiated types of trust measurement. Reliance on AI advice (h1) was 

measured through a behavioural task, while attitudes towards AI (h2) and trust in AI (h3) were 

assessed using self-report measures. This distinction aimed to compare and complement findings 

from different measurement types. These hypotheses were addressed in two studies (Studies 1 

and 2). 
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The Judge Advisor System (JAS) Paradigm 

The Judge Advisor System (JAS) paradigm was used for measuring the extent to which 

participants followed AI advice in both Study 1 and Study 2. Based on the JAS paradigm 

participants make an initial decision under uncertainty and then they receive advice, by one or 

multiple advisors, before they are given the opportunity to make a final, possibly revised, 

decision (Sniezek & Buckley, 1995),. The JAS paradigm has been frequently used in advice 

uptake literature as a measure of the extent to which judges rely on advice from one or more 

human advisors (Haran & Shalvi, 2020b; Yaniv, 2004a, 2004b; Yaniv & Choshen-Hillel, 2012; 

Yaniv & Kleinberger, 2000). Unlike self-report measures, which typically involve asking 

participants about their actions in hypothetical scenarios, the JAS paradigm enables the direct 

observation of participants' behaviour.  

Following the methodology of the JAS paradigm, reliance on advice from an AI was 

operationalised using the Weight of Advice (WoA). WoA is a ratio that compares the distance of 

the final estimate from the initial estimate to the distance of the advice from the initial estimate. 

WoA typically spans from 0 to 1 and has been previously used in several studies in the context of 

advice uptake (Harvey & Fischer, 1997; Yaniv, 2004b) as well as algorithmic advice uptake 

(Logg et al., 2019). A WoA of 0 occurs when participants ignore the advice and stick to their 

initial estimate. Conversely, a WoA of 1 occurs when participants update their final decision to 

match the advice given. Also, for numerical estimates, WoA of 0.50 occurs when participants 

average the advice given and their initial estimate. Indeed, if the goal is to maximise accuracy, 

previous research has shown that, for an individual seeking advice from a randomly selected 

person, it is recommended to average their own judgment with the advice received, resulting in a 

WoA of 0.50 (Dawes & Corrigan, 1974; Einhorn & Hogarth, 1975). However, people tend to 
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update their judgment only by 0.30-0.35 on average when considering advice, leading to 

decreased accuracy (Liberman et al., 2012; Soll & Larrick, 2009). 

Study 1 

Methods 

Participants 

UK participants were recruited through the Prolific experimental subject pool for 

compensation. Participants were paid based on an hourly rate (£9/hour) for the time spent in the 

study. The sample size was determined a priori with a goal of obtaining 0.95 power to detect a 

medium effect size of f2= 0.17 taken from previous research that uses the JAS paradigm to 

measure algorithmic advice uptake at the standard 0.05 alpha error probability. Power analysis 

was conducted using statistical software program R, package ‘pwd’, function ‘pwr. f2.test’ which 

is suitable for general linear models. It suggested a minimum sample size of 106 participants. In 

total, 134 participants were recruited to accommodate potential exclusions due to failures in 

attentional checks and completions in less than the minimum duration of 15 mins (accepted 

minimum duration was set to be the one-third of the estimated total duration of the study, which 

was found to be around 45 mins, based on the completion times gathered during a pilot run of the 

study). Two attentional checks were included in the study with the aim of removing participants 

who would fail both checks. Three out of the 134 participants failed both attentional checks. 

Additionally, one additional participant was excluded based on their response to the question 

regarding the overall study experience, suggesting they may have inferred the manipulation 

being employed. This resulted in a final sample of 130 participants, averaged 35-44 years of age, 

82% female, 17% male, 1% non-binary and 1% preferred not to say of ethnicities: 86% White, 

6% Black, 3% Asian, 2% Mixed and 2% Other Ethnicity. Finally, prior to the study, that, data 
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entries with WoA that is larger than 2 or less than -1 will be excluded. From our initial sample of 

130 participants, there were 8 participants whose average WoA was above 2 and thus were 

excluded while there was no participant with an average WoA less than -1. Therefore, the final 

total sample size in Study 1was 122 participants. The exact materials and data for Study 1 are 

available in the Open Science Framework at https://osf.io/xtd4e 

Materials and Procedure 

The experiment and data collection were carried out using the Qualtrics survey platform. 

Upon accepting the task on Prolific, participants were directed to Qualtrics where they read the 

instructions and gave their consent to participate in the study. They were then presented with 

eight question blocks, each corresponding to one of the eight AI models (from now on referred to 

as AIs for simplicity) under evaluation, presented in a random order.  

Participants were tasked with evaluating the eight competing AIs following the same 

structured process per AI. First, they read a paragraph describing the AI’s performance (low vs 

high), purpose (good vs bad) and process (an explanation of its algorithm which was either 

complex/more technical or simple/less technical). Subsequently, they had to perform two visual 

recognition decision tasks. In each one, they viewed an image for a brief display time (2 sec) and 

were asked to estimate how many objects were depicted. After that, participants were presented 

with the AI's estimate. Finally, they were asked to provide their final, possibly revised estimate 

based on the AI’s estimate. Essentially, participants needed to decide whether to revise their initial 

estimate to align with the AI's estimate based on how much they trusted it. Additionally, they 

indicated their confidence level in their final estimate on a continuous scale ranging from 0 to 100.  

Following the evaluation phase, participants were directed to a separate screen to express 

their attitude toward the AI they had evaluated. They indicated on a continuous scale from 0 to 

https://osf.io/xtd4e
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100 how much they would like to see the AI utilised in real-life situations by responding to the 

question, ‘Imagine a real-life scenario where this AI was applicable and available for use. How 

much would you like to see it being used?’. Additionally, participants rated their level of trust in 

the AI by answering, ‘Imagine a real-life scenario where this AI was applicable and available for 

use. How much would you trust it to make the decisions it’s designed to make?’ also on a 

continuous scale from 0 to 1003.  At the conclusion of the study, participants were requested to 

provide their demographic information and were presented with details about an online raffle. This 

raffle served as an incentive for participants to provide accurate estimate as each correct estimation 

they provided would earn them a virtual ticket for a £20 raffle. The more tickets they accumulated, 

the higher their chances of winning the £20 raffle. The above procedure is visually represented in 

Figure 5. 

Figure 5 

Experimental Procedure in Study 1 

 

 
3 In Study 1, we used a continuous scale but with a lower limit of 1 and an upper limit of 7 instead of 0 and 100. We 

adjusted this scale to range from 0 to 100 in Study 2, based on participants' feedback that a continuous scale from 0 

to 100 scale made more intuitive sense than a continuous scale from 1 to 7. To ensure consistency across the studies, 

when analysing the data from Study 1 we rescaled the answers to reflect a 0 to 100 continuous scale for all reported 

results. 
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 Study 1 employed a 2 (performance: high vs low) x 2 (purpose: good vs bad) x 2 

(process: simple vs complex) within-subject variables design, resulting in 8 conditions (e.g., 

blocks of questions) which every participant went through in random order. Reliance on AI 

advice was measured by calculated the WoA in each one of the two visual recognition tasks per 

AI. Because in each condition participants did two visual recognition tasks, the overall WoA per 

condition and participant was determined as the mean of the two individual WoA values.  

Also, to ensure that the estimate from each of the eight AIs was not a confounding factor, 

we employed a control mechanism. This involved programming the AI advice to be generated by 

adding a randomly generated number, denoted as N, to the participant's initial answer. This 

number N ranged from +5 to +9 or from -5 to -9. This approach aligns with strategies utilised by 

other researchers  to control the AI output across conditions (Hou & Jung, 2021).  

Data Analysis Strategy 

Data were analysed using R statistical software (https://www.r-project.org/). Participants' 

WoA, Attitude towards the AI and Trust in the AI were analysed using three ANOVAs, each 

with three within-subjects factor variables: performance (high vs. low), purpose (good vs. bad), 

and process (complex vs. simple). Degrees of freedom for all within-subjects factor variables 

were corrected for sphericity violations using the Greenhouse-Geisser correction. To further 

investigate whether there is a different effect of process on WoA for each performance level, we 

calculated the simple main effect of process across the performance factor variable using 

‘emmeans’. We controlled for multiple testing in this analysis by adjusting the six p-values using 

the Bonferroni-Holm adjustment.   

Results 

Manipulation checks 

https://www.r-project.org/
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To check whether the three manipulations introduced (e.g., high/low performance, 

good/bad purpose, and simple/complex process) were successful, relevant manipulation check 

questions were included. Specifically, to test the manipulation of performance (high vs low), we 

asked participants ‘Based on the description you've just read, how would you rate the 

performance of this AI (on a scale of 0 –100)?’ To test the manipulation of purpose, we asked, 

‘Do you think this AI's purpose is morally good or bad (on a scale of 0 – 100)?’ with 0 being 

morally bad and 100 being morally good. Finally, to test the manipulation of process, we asked, 

‘How easy/difficult did you find it to understand how this AI works (on a scale of 0 – 100)?’ with 

0 being ‘Very difficult, I'm puzzled’ and 100 being ‘Very easy, it's clear to me how it works’. 

The relevant t-tests performed between the mean performance scores of AIs described as high vs 

low performing, t (519) = 39.88, p<.001, the mean scores of AIs described as having a good vs 

bad purpose, t (519) = 16.47, p <.001, and the mean level of difficulty in understanding the  

process  of an AI described in a complex (more technical) vs a simple (less technical) way, t 

(519) = 16.96, p<.001, were all statistically significant (p<.001), suggesting that all three 

manipulations in place were successful. 

Data Preparation 

Typically, we anticipate a WoA value to fall within the range of 0 to 1, yet the WoA 

metric is subject to certain constraints (Gino & Moore, 2007). One such limitation is the 

potential for final estimates to fall outside the range between advice and initial estimate. While 

this occurrence has been rare in prior research (Gino, 2008; Harvey & Fischer, 1997), as a 

precautionary measure, we preregistered that we would adjust participants' WoA to 0 or 1 if their 

final estimate deviated from the range between advice and initial estimate. This adjustment 

adhered to the customary practice observed in the literature (Hou & Jung, 2021; Logg et al., 
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2019), whereby a WoA below 0 (but above -1) is replaced with 0, and a WoA exceeding 1 (but 

less than 2) is replaced with 1. We made two replacements of WoA below 0 with but above -1 

with 0. No WoA value exceeded 2. 

WoA 

The ANOVA revealed a significant main effect for performance, F (1, 121) = 99.37, η2= 

0.10, p < .001, indicating that on average participants' WoA increases with the AI’s performance 

(Figure 6). There was also a significant main effect for process, F (1, 121) = 6.68, η2= 0.003, p < 

.05 suggesting that more complex (e.g., more technical) descriptions of the AI's algorithms led to 

higher WoA from participants (Figure 7), whereas the main effect of purpose was not found 

statistically significant, F (1, 121) = 2.10, η2= .001, p = .15.  

The main effects of process and performance were qualified by a significant performance 

X process interaction, F (1, 121) = 4.12, η² =.003, p <. 05. There was also a significant process X 

purpose interaction effect, F (1, 121) = 10.12, η2= 0.01 p < .01. The remaining of the interactions 

purpose X performance interaction, F (1, 121) = 0.12, η² <.001, p =. 729, and purpose X 

performance X process, F (1, 104) = 1.47, η² <.001, p =. 023 were not statistically significant. 

Figure 6 

Reliance on Advice (WoA): Main Effect of Performance (Study 1) 

 

** 
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Figure 7 

Reliance on Advice (WoA): Main Effect of Process (Study 1) 

 

Note. Error bars represent 95% confidence intervals, * p< 0.01, ** p< 0.001 

Figure 8 

Reliance on Advice (WoA):  Process * Performance (Study 1)  

 

Note. Error bars represent 95% confidence intervals, * p< 0.05, ** p< 0.001, *** p< 0.0001, ns: non-
significant 
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Looking closer at the process X performance interaction (Figure 8), a simple effect 

analysis showed that when the AI was described as low performing, there was a significant 

difference in WoA between AIs with complex vs simple explanations (t (121) = 3.05, p < .01) 

such that, for AIs described as having low performance, participants on average gave more 

weight to the AI’s advice when it was accompanied with a complex (more technical) rather than 

a simpler (less technical) explanation of its process. This is an interesting finding since, perhaps 

contrary to what one might expect, it suggests that when the AI is low performing, reliance on AI 

increases with more complex (more technical) explanations. We further discuss this finding and 

provide plausible interpretations in the Discussion section. 

When the AI was described as high performing, the complexity in the explanation of its 

algorithmic process (complex vs. simple) had no significant effect on WoA (t (121) = 0.04, p = 

0.966). We also examined the simple effect of process on performance and found that, when the 

description of the process was complex, the average WoA was statistically significantly higher 

for AIs described as high vs low performing (t (121) =5.85, p<.0001). Likewise, when the 

description of the process was simple, again the average WoA was statistically significantly 

higher for AIs described as high vs low performing t (121) = 9.98, p <.0001. Both above results 

show that WoA increased with performance regardless of the level of complexity in the 

explanation of the process. 

Figure 9 

Reliance on Advice (WoA):  Process * Purpose (Study 1) 
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Note. Error bars represent 95% confidence intervals, * p =.0, ** p< 0.001, ns: non-significant 

 

Finally, looking closer at the process X purpose interaction (Figure 9), a simple effect 

analysis showed that when the AI was described as serving a good purpose, there was a 

significant difference in WoA between AIs with complex vs simple explanations (t (121) = 3.96  

p < .001) such that, for AIs that described as having good purpose, participants on average gave 

more weight to the AI’s advice when it was accompanied with a complex (more technical) rather 

than a simpler (less technical, high-level) explanation. This is again an interesting finding as it 

goes against the intuition that simple explanations are always preferred to complex and suggests 

that when AI is considered as serving a good purpose, reliance on AI increases with more 

complex (more technical) explanations. We further discuss this finding and provide plausible 

interpretations in the Discussion section.  

When the AI was described as serving a bad purpose, the complexity in the explanation 

of its algorithmic process (complex vs. simple) had no significant effect on WoA (t (121) = -
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0.92, p = 0.718). Finally, we also examined the simple effect of process on purpose and found 

that, when the description of the process was complex (more technical), the purpose of the AI 

(good vs bad) had no statistically significant effect (t (121) = -1.37, p = 0.518). However, when 

the description of the process was simple, purpose mattered such that the average WoA of AI 

with purpose: bad was found to be statistically significantly higher than the that of AI with 

purpose: good (t (121) = 3.284, p =.01), a puzzling finding as normally we would expect people 

to prefer AIs with good purpose. 

Attitudes toward AI 

  When it comes to the self-report measure of attitudes towards AI, there was a significant 

main effect for performance, F (1, 129) = 143.19, η2= 0.17, p < .001, showing that participants' 

attitudes on average became more positive with the AI’s performance. Additionally, there was a 

significant main effect for purpose, F (1, 129) = 48.40, η2= 0.7 p < .001, showing that, on 

average, more positive attitude was reported towards good-purposed than bad-purposed AIs. The 

main effects of performance and purpose were qualified by a significant performance X purpose 

interaction (F (1, 129) = 5.11, η2= 0.02, p =0.03). A follow -up simple effects analysis performed 

for the performance X purpose interaction showed that when the performance was low, attitudes 

towards AI were more positive for AIs described as having a good rather than a bad purpose (t 

(129) = -5.54, p < .001) and when the performance was high, attitudes towards AI were more 

positive for AIs described as having a good rather than a bad purpose (t (129) = -6.69, p < .001). 

Also, there was a significant performance X process interaction, F (1, 129) = 13.55, η2= 

0.04 p <.001. A follow -up simple effects analysis performed for the performance X process 

interaction showed that when the performance was low, attitude towards AI were more positive 

for AIs with complex rather than simple explanations (t (129) =2.79, p= 0.01) whereas when the 
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performance was high, attitude towards AI were more positive for AIs with simple rather than 

complex explanations (t (129) = -1.954, p= 0.05).  The remaining interactions e.g., purpose X 

process (F (1, 129) = 0.69, η2< 0.01, p =0.41) and purpose X process X performance (F (1, 129) 

= 2.49, η2< 0.01, p =0.12) were not significant.  

Trust in AI 

When it comes to the self-report measure of Trust in AI, the only effect that was 

significant was the main effect for performance, F (1, 129) = 236.15, η2= 0.40, p < .001, showing 

that participants' trust on average increased with the AI’s performance, from M= 38.0, SD= 2.27 

when the AI was described as low performing to M=75.2, SD= 1.19. The main effect of purpose 

(F (1, 129) = 0.76, η2<.001, p = .384) and the main effect of process (F (1, 129) = 2.05, η2< 

0.001, p =.155) were not significant. Also, no interaction effect was found significant (e.g., 

purpose X performance, F (1, 129) = 2.75, η2<.001, p = .100, purpose X process, F (1, 129) = 

0.67, η2<.001, p = .413, performance X process, F (1, 129) = 4.00, η2=.001, p = .047 purpose X 

performance X process, F (1, 129) = 6.54, η2 =003, p = .012). 

Study 2 

In Study 2, we replicated the experimental design of Study 1 with one key difference: the 

decision task. While Study 1 involved a visual recognition task without moral implications, 

Study 2 required participants to complete a resource allocation task, which by nature carries 

moral considerations. 

Methods  

Participants 

UK participants were recruited through the Prolific experimental subject pool for 

compensation. Participants were paid based on an hourly rate (£9/hour) for the time spent in the 
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study. As in Study 1, the sample size was determined a priori with a goal of obtaining 0.95 

power to detect a medium effect size of f2= 0.17 taken from previous research that uses the JAS 

paradigm to measure algorithmic advice uptake, at the standard 0.05 alpha error probability. 

Power analysis was conducted using statistical software program R, package ‘pwd’, function 

‘pwr. f2.test’ which is suitable for general linear models. It suggested a minimum sample size of 

106 participants. We recruited in total, 120 participants, e.g., 14 more than the suggested 

minimum sample size, to accommodate potential exclusions due to failures in attentional checks 

and completions in less than the minimum duration. No participant had to be excluded due to 

failure of attentional checks or any other reason. This resulted in a final sample of 120 

participants, averaged 25-34 years of age, 61% female, 38% male and 1% not to say. Study 2's 

sample comprised the following ethnicities: 84% White, 5% Black, 4% Asian, 3% Mixed, and 

4% Other. Out of the final sample of 120 participants, 15 individuals were excluded because 

their average WoA exceeded 2, thus falling outside the predetermined range of -1 to 2. 

Therefore, the total sample size used for the WoA data analysis in Study 2 was 105 participants. 

The exact materials and data for Study 2 are available in the Open Science Framework at 

https://osf.io/quy2m. 

Materials and Procedure 

Similar to Study 1, participants were given a cover story asking them to evaluate how 

well each of eight competing AIs performed. To assess each AI's performance, participants were 

presented with eight scenarios in which they acted as decision-makers with limited resources, 

tasked with finding the best way to allocate these resources to individuals in need. Rather than 

photographs of individuals, geometrical shapes were used to depict people in order to mitigate 

potential biases associated with visible characteristics such as gender, race, or age, which could 

https://osf.io/quy2m


92 

influence impressions and decisions (Gilovich et al., 2002; Martín & Valiña, 2023; Tversky et 

al., 1982). As such, six criteria pertaining to the shape—including the number of sides, colour, 

opacity, symmetry, patterns, and size—were used to reflect aspects of a person's circumstances 

affecting their financial needs. For example, shapes with more sides, warmer hues, greater 

symmetry, or more intricate patterns indicated higher levels of need. Prior to allocating points, 

participants were given an explanation of the six criteria and their meaning, and they were also 

informed that the shapes represented real individual in need of the resources and that the 50 

points maximum that they would be allocating to the shapes represented monetary payments for 

these individuals. The procedure employed in Study 2 is visually represented in Figure 10. 

Figure 10 

Experimental Procedure in Study 2 

 

For the eight competing AIs, participants were informed that the advice came from 

machine learning algorithms designed to make allocation decisions based on six criteria. 

Performance was explained as the number of criteria an AI used: more criteria meant higher 
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performance. A low-performing AI used one or two criteria, while a high-performing AI used 

five or six. Purpose was operationalised as generosity, with some AIs designed with the purpose 

of helping individuals in need of the resources by recommending favourable allocations while 

other AI were designed to be less helpful by consistently advising for less favourable allocations. 

For instance, a highly generous AI was consistently allocating the maximum points possible 

(e.g., from 47 to 50 out of 50 points). Conversely, a low-generosity AI was depicted as allocating 

fewer than 8 out of 50 points. Process was defined as explanation of the way the AI reached its 

advice in each scenario and it was either a high-level or a more technical explanation, with 

technical terminology used to reflect the two distinct levels (simple vs. complex). Study 2 did not 

include a raffle, as we wanted participants to be driven by moral considerations attached to the 

task at hand rather than being incentivised by winning a raffle. 

Study 2 employed a 2 (performance: high vs low) x 2 (purpose: high vs low) x 2 

(process: simple vs complex) within-subject variables design, resulting in 8 conditions which 

every participant went through in random order. Reliance on AI advice was measured by 

calculated the WoA. Finally, similar to Study 1, a control mechanism was employed to ensure 

the AI estimate did not act as a confound factor. As such, all low-generosity AI were 

programmed to suggest allocations that randomly ranged from 6 to 8 points, while the generous 

AI’s allocations ranged from 47 to 50 points.  

Data Analysis Strategy 

Data were analysed using R statistical software (https://www.r-project.org/). The data 

analysis strategy for analysing the three dependent variables: WoA, Attitudes towards AI and 

Trust in AI was the same as in Study 1 (refer to the Data Analysis Strategy section under Study 

1).  

https://www.r-project.org/
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Results 

Manipulation checks 

To check whether the three manipulations introduced (e.g., high/low performance, 

high/low purpose, and simple/complex process) were successful, relevant manipulation check 

questions were included. Specifically, to test the manipulation of performance (high vs low), we 

asked participants ‘How competent do you find this AI to be? (on a scale of 0 –100)?’ with 0 

being extremely competent and 100 being extremely competent. To test the manipulation of 

purpose (operationalised as generosity), we asked, ‘How generous do you find this AI to be? (on 

a scale of 0 –100)?’ with 0 being extremely ungenerous and 100 being extremely generous, and 

to test the manipulation of process, we asked, ‘How easy/difficult did you find it to understand 

how this AI works?’ with 0 being ‘Very difficult, I’m puzzled’ and 100 ‘Very easy, it’s clear to 

me how it works’. The relevant t-tests performed between the mean competence scores of AIs 

described as high vs low performing, t (479) = 17.75, p<.001, the mean generosity scores of AIs 

described as high vs low in generosity, t (479) = 26.23, p <.001, and the mean level of difficulty 

in understanding the  process  of an AI described in a complex (more technical) vs a simple (less 

technical) way, t (479) = 4.87, p<.001, were all statistically significant (p<.001), suggesting that 

all three manipulations in place were successful. 

WoA 

The ANOVA revealed a significant main effect for purpose, F (1, 104) = 96.92, η² = 

0.12, p < .001 indicating that less generous AIs resulted in higher weight of advice (WoA) 

(Figure 11). This is an interesting finding as it goes against the intuition that AI suggesting 

higher allocations (e.g., high in generosity) would be preferred to AI suggesting lower 

allocations (e.g., low in generosity). We further discuss this finding and plausible interpretations 
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in the Discussion section. There was also a significant main effect for performance, F (1, 104) = 

11.11, η² = 0.01, p = .001, showing that lower-performing AIs led to higher WoA (Figure 12). 

The main effect of process was not statistically significant, F (1, 104) = 0.01, η² < .001, p = .937.  

The main effects of purpose and performance were qualified by a significant purpose X 

performance interaction, F (1, 104) = 11.44, η² = 0.01, p = .001. The remaining interactions were 

not found statistically significant: purpose X process, F (1, 104) = 0.02, η² <.001, p =. 884, 

performance X process F (1, 104) = 1.45, η² =.002, p =. 231, and purpose X performance X 

process, F (1, 104) = 1.02, η² = .001, p =. 315). 

Figure 11 

Reliance on Advice (WoA): Main Effect of Purpose (operationalised as generosity) (Study 2) 

  

Note. Error bars represent 95% confidence intervals, ** p< 0.001 

 

 

 

 

  

** 
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Figure 12 

Reliance on Advice (WoA): Main Effect of Performance (Study 2) 

 

Note. Error bars represent 95% confidence intervals, ** p< 0.001, *** p< 0.0001 

 

Figure 13 

Reliance on Advice (WoA):  Generosity * Performance (Study 2) 

 

 
Note. Error bars represent 95% confidence intervals, ** p< 0.001, *** p< 0.0001, ns: non-significant 
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Finally, looking closer at the purpose X performance interaction (Figure 13), a simple 

effects analysis showed that when the AI was described as low in generosity, there was a 

significant difference in WoA between high- vs low-performing AIs (t (104) = -3.46, p < .001) 

such that, participants placed more weight on its advice when the AI was described as low in 

performance rather than high. This was a puzzling finding as normally we expect people to 

prefer high to low performing AI. When the AI was described as high in generosity, its 

performance (high vs low) had no significant effect on WoA (t (104) = 0.03, p = 0.977). Finally, 

the simple effects analysis of performance on purpose showed that when the AI performance was 

high, the average WoA of AIs low in generosity was statistically higher than that those high in 

generosity, t (104) = - 7.51, p <.0001. Likewise, when the AI performance was low, again the 

average WoA of AIs low in generosity was statistically higher than that those high in generosity, 

t (104) = - 7.94, p <.0001. This suggested that participants trusted more the AI that was described 

as less generous, a finding that we further discuss in the Discussion section. 

Attitudes towards AI 

When it comes to the self-report measure of Attitudes towards AI, there was a significant 

main effect for performance, F (1, 119) = 176.82, η2= 0.2, p < .001, showing that participants' 

reported attitudes were more positive for high performing (M= 58.6, SD= 1.70) compared to low 

performing AI (M= 33.6, SD= 1.94). Additionally, there was a significant main effect for 

process, F (1, 119) = 49.98, η2= 0.03 p < .001, indicating that participants' attitudes on average 

were more positive when the AI’s process was described in a simple (less technical) rather than a 

complex way (more technical). The purpose X process interaction was also significant, F (1, 

119) = 49.28, η2= 0.04, p < .001. A simple effects analysis showed that for AIs high in 

generosity, people on average reported more positive attitudes towards AI with simple (M= 
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55.90, SD= 1.94) rather than complex (M= 37.50, SD= 2.04) explanation (t (119) =-9.90, p< 

0.0001) whereas for AIs low in generosity, the reported attitudes towards AIs with complex 

explanations (M= 46.30, SD= 2.03)  did not differ significantly from those with simple 

explanations (M= 44.70, SD= 1.93), (t (119) =-9.90, p=0.371). The remaining interactions of 

purpose X performance (F (1, 119) = 0.30, η² <.001, p =. 584), performance X process (F (1, 

119) = 0.001, η² <.001, p =. 955) and purpose X performance X process (F (1, 119) = 0.25, η² 

<.001 1, p =. 620) were not significant. 

Trust in AI 

The pattern of results for the self-report measure of Trust in AI were similar to the 

patterns of results for Attitudes towards AI. E.g., there was a significant main effect for 

performance, F (1, 119) = 196.94, η2= 0.2, p < .001, showing that participants' trust on average 

increased with the AI’s performance. Additionally, there was a significant main effect for 

process, F (1, 119) = 47.51, η2= .03, p < .001, indicating that participants' trust on average was 

higher when the AI’s process was described in a simple (less technical) rather than a complex 

way (more technical). The purpose X process interaction was also significant, F (1, 119) = 

53.71, η2= .05, p < .001. A simple effects analysis showed that for AIs high in generosity, people 

on average reported greater trust in AI with simple rather than complex explanation (t (119) 

10.31, p< 0.0001) whereas for AIs low in generosity, the reported attitudes towards AIs with 

complex explanations did not differ significantly from those with simple explanations (t (119) = 

1.41, p=0.160). The remaining interactions of purpose X performance (F (1, 119) = 0.13, η² 

<.001, p =. 714), performance X process (F (1, 119) = 0.07, η² <.001, p =. 785) and purpose X 

performance X process (F (1, 119) = 0.82, η² <.001 1, p =. 368) were not significant. 
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Discussion  

Guided by the key determinants of trust in automation (Lee & See, 2004), we examined 

how information about an AI's performance, purpose, and process affects people’s evaluations. 

This was done through two studies where we measured the weight participants placed on an AI 

model’s output when making estimates in two tasks—a visual recognition task (Study 1) and a 

resource allocation task (Study 2).  We conducted two studies (Study 1 and Study 2), varying 

only the nature of the decision tasks participants performed. E.g., in both studies, the decision 

tasks involved making numerical estimates; however, in Study 1, the estimates carried no moral 

implications for the participants (participants were asked to estimate the number of humans and 

objects in pictures), whereas in Study 2, the decision task involved numerical estimates carrying 

moral considerations, as participants were asked to estimate how to best allocate limited 

resources to people in need. Overall, the combined results of Study 1 and Study 2 suggested that 

people evaluate all three determinants of trust in automation (performance, process, and purpose) 

when evaluating AI models, however they weight each determinant differently depending on the 

moral nature of the decision. 

Specifically, Study 1 (visual estimation task) revealed that participants' evaluation of the 

AI model’s process explanation interacted with the evaluation of performance. E.g., when the AI 

was evaluated as low performing, participants gave higher WoA when the AI model’s process 

explanation was detailed and technical rather than simple and high-level. However, when the AI 

was evaluated as high performing, the detail and technicality in the explanation no longer served 

as a heuristic (Figure 8). This finding holds a practical implication for explainable AI. It suggests 

that in the case of decisions that carry no moral considerations and when people evaluate an AI 

model as low performing (or still underperforming), they use the complexity of its explanation as 
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a heuristic, valuing more the advice that comes from an AI model with a more detailed and 

technical explanation rather a simple high-level one. 

 Moreover, in Study 1 (visual estimation task) the evaluation of the AI model’s process 

explanation interacted with the evaluation of its purpose. When participants evaluated the AI 

model as overall serving a good purpose, they gave higher WoA when the explanation for its 

process was detailed and technical rather than simple and high-level. However, when participants 

evaluated the model as overall serving nefarious purposes, complexity no longer served as a 

heuristic (Figure 9). This finding holds another practical implication for explainable AI. It 

suggests that in the case of decisions without moral considerations and when people evaluate an 

AI model’s purpose as good, they use the complexity of its explanation as a heuristic, valuing 

more the advice that comes from an AI model with a more detailed and technical explanation 

rather a simple high-level one. 

Behavioural patterns, however, were different in Study 2, which was an exact replication 

of Study 1 with only one difference: the moral nature of the decision task at hand. This change of 

task (from one that did not carry moral considerations to one that did) resulted in a different 

weighting of the evaluations of an AI model’s performance, process, and purpose. Complexity in 

the AI model’s process explanation no longer served as a heuristic; complexity in the explanation 

of the AI model’s process was not associated with greater reliance on its output as was the case 

with the task in Study 1. Instead, the AI model's purpose (operationalised as generosity) - 

became the new heuristic. Specifically, when the AI model was evaluated as low in generosity 

(e.g., when it was advising for lower resource allocations), its advice was followed more than 

when it was evaluated as high in generosity (e.g., when it was advising for higher resource 

allocations) regardless of whether its performance was rated as high or low (Figure 13). This 
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finding suggests that the importance placed on the explainability of an AI model’s process 

depends on the moral nature of the decision. In decisions with more salient moral considerations, 

people prioritise their evaluations of the AI model’s purpose over the explainability of its 

process. In such decisions, teleological explanations (‘Why did the AI make this decision?’) are 

more likely to increase trust in the AI model’s output than mechanical explanations (‘How does 

the AI work?’). We further discuss this in the ‘Practical Implications and Directions for Future 

Research’ section below. 

What underlying mechanisms might explain the findings? First, the results from Study 1 

seem to align with the psychological phenomenon of the disfluency effect (Alter et al., 2007). 

According to the disfluency effect, presenting information in a way that makes it more 

challenging to process can lead individuals to engage in deeper cognitive processing. This deeper 

processing has been shown to impact judgment and decision-making (Alter & Oppenheimer, 

2009), enhance information retention (Diemand-Yauman et al., 2011), and improve learning 

(Bjork & Bjork, 2011). In the case of AI, by introducing a certain degree of cognitive difficulty 

or disfluency in the explanation of how the AI model works, through a more detailed and 

technical explanation, individuals may be prompted to engage more deeply with its explanation. 

As a result of this deeper processing, they may be willing to place more trust in the AI model’s 

output, perceiving the time spent engaging with its explanation as a proxy for the quality of its 

algorithmic outcome.  

Equally, the preference on more detailed and technical explanations may reflect a 

manifestation of the well documented phenomenon of the illusion of competence which is often 

created through the use of scientific terminology. Indeed, the phenomenon of the illusion of 

competence have been studied in psychology since the late seventies. Studies, such as those by 
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Naftulin et al. (1973), have shown that the use of complex, scientific jargon can create an illusion 

of competence, although a more recent study by Oppenheimer (2006) found that while scientific 

jargon can affect perceived intelligence, overly complex language can sometimes reduce this 

perception. In the case of AI, it’s possible that the use of technical details in the explanation of 

the model’s process is creating a similar illusion of competence, leading participants to view AI 

as more competent and as such more trustworthy.  

Finally, an interesting finding from Study 2 was that when the AI model was evaluated as 

low in generosity (e.g., when it was advising for lower resource allocations), its advice was 

followed more than when it was evaluated as high in generosity (e.g., when it was advising for 

higher resource allocations). One potential explanation could be that participants may have 

approached the AI model exhibiting generosity with scepticism. For example, participants may 

have expected the AI model to be impartial and, therefore, more rather than less conservative in 

the resource allocation. Participants might have wondered, ‘Why is an AI model being 

generous?’ and ultimately deemed it untrustworthy since its behaviour did not conform to their 

pre-existing beliefs. Future studies should seek to replicate and further explore the underlying 

psychological factors behind these observed behaviours. Pre-existing beliefs and expectations 

influencing the evaluation of AI would align with research with embodied AI such as robots, 

which has shown that when a robot appearance or behaviour resembles the human, but its 

capabilities fall behind it creates negative evaluations (De Graaf et al., 2017; Duffy & Joue, 

2004; Pandey & Gelin, 2018) .  

Limitations 

 Findings from Study 1 and Study 2 come with limitations. First of all, they come with 

small effect sizes - η² less or equal to 0.01, with an  η²  of 0.01 being considered as small effect 
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size (Cohen, 2009). While this is undoubtedly a limitation for deriving substantial practical 

implications, there is a discernible pattern in the experimental data of Studies 1 and 2 that should 

not be overlooked because of its small effect size. The data revealed an emerging pattern in how 

AI models are evaluated, suggesting a dynamic interplay between the 3Ps and the nature of the 

decision. This interplay warrants further exploration in future research, particularly research that 

seeks to put this interplay to test in real-life settings and across different decision environments, 

such as financial, medical, and legal decision-making contexts where the use of AI models has 

become prevalent. Secondly, another limitation of both studies is the fact that it remains open for 

investigation whether findings will resonate equally across different demographics. 

Characteristics such as digital literacy and familiarity with technical terminology, or other 

demographic differences such as i.e., generational differences could influence observed 

behaviours.   

Thirdly, the current set of studies revealed behaviours rather than relying solely on self-

report measures. In this regard, it contributes to a deeper understanding of how people trust AI 

based on their actions, rather than just what they say. As behavioural insights on trust in AI are 

currently underexplored compared to survey-based insights (Glikson & Woolley, 2020), this 

study contributes to a more nuanced understanding of trust in AI by uncovering behavioural 

patterns. However, further studies are needed to uncover the underlying mechanisms behind the 

observed behaviours. While some plausible mechanisms were discussed here, future research 

should aim to explore what drives these behaviours. 

Finally, in both studies, cues about an AI's performance, process, and purpose were 

conveyed through written text. Future research should explore the impact of different mediums, 

such as images or sound, in communicating information about the 3Ps, and investigate how these 
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mediums affect evaluations of AI models. For instance, what would the pattern of results be if 

the information was presented with images rather than written descriptions? (i.e., through the use 

of graphs, especially for conveying information about the AI’s performance or for explaining its 

process). Or what if an AI model could convey information about its performance, process, and 

purpose through its ‘own’ voice? Voice is a key design feature that has currently captured the 

attention of the AI research community, particularly in the development of Large Language 

Models equipped with voice (i.e., FunAudionLLM, mini-Omni), as it represents the next step 

toward enabling real-time conversational interactions with LLMs. Psychological research can 

provide insights into how auditory, human like cues influence users' perceptions and evaluations 

of AI models. 

Practical Implications and Directions for Future Research 

The current set of studies highlights the need for AI researchers, designers and deployers 

alike to adapt explanations of AI models to the decision context, particularly taking into 

consideration the moral considerations of the decisions at hand. In decision contexts where the 

moral stakes of decisions are prominent or high, people are likely to prioritise information more 

about the ‘why’ rather than the ‘how’ of an AI model. The focus of the ‘why’ rather than the 

‘how’ is often referred to as teleological explanation and refers to explaining things in terms of 

their purpose or reason behind rather than the mechanism or internal processes by which they 

happen(Dennett, 1989). In the context of AI, this kind of explanation is often described as goal-

based or purpose-driven (Miller, 2019). It answers the question: ‘Why did the AI make this 

decision’ as opposed to ‘How does the AI work?’. For example, a teleological explanation for an 

AI model helping radiologists diagnose and treat a skin disease could be ‘The AI recommends 

this treatment because it's associated with a higher survival rate for patients with similar 



105 

medical histories’ as opposed to a more mechanistic explanation of ‘The AI uses a neural 

network trained on a dataset of 1 million patient records, analysing factors like age, medical 

history, and genetic data to predict which treatment is most likely to succeed’. Future research 

should look at combining mechanistic and teleological explanations -the latter often appearing to 

be missing in today’s AI models’ explanations- to tailor transparency to a decision’s moral 

dimension. This is particularly important in cases such as i.e., medical decision making or 

autonomous vehicles where the moral stakes of the decisions are high.  

Moreover, it is noteworthy that when participants self-reported their attitudes and level of 

trust in the AI models, they expressed more positive attitudes and greater willingness to trust a 

high-performing over a low-performing model, a benevolent over a malevolent model, and an AI 

model with a simple rather than a complex explanation of its process. However, having a 

behavioural task in both studies allowed capturing people’s behaviour alongside with these self-

report measures. This proved to be insightful as it revealed that, in reality, and contrary to what 

people self- report when explicitly asked, it is not only high performance, or simple explanations 

or instilling a good moral character in an AI model that matters. The behavioural data painted a 

different picture; performance, process and purpose all play a role in how people evaluate AI 

models, with the moral nature of the decision at hand shaping which of these determinants takes 

precedence. This is a valuable finding from a methodological view, as it underlines the need for 

behavioural data in the study of decision making with AI.  

Finally, the current set of studies revealed a positive reception of complexity in an AI 

model’s explanation under specific conditions. E.g., when the decision task had no moral 

considerations, reliance on the AI model’s output increased with the complexity in the 

explanation of its process when its performance was rated as low, or its purpose considered good 
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(Study 1). However, this finding needs to be further explored in future research that will seek to 

determine the optimal level of technical detail in an AI model explanation as moving away from 

‘black box’ AI is crucial for the AI community, however, too much complexity can equally 

overwhelm users, leading to negative experiences. This finding is also likely to be influenced by 

individual characteristics such as familiarity with AI models or level of experience with AI 

outputs in a specific decision context, which are worth exploring in future studies that will seek 

to contribute to a more nuanced understanding of how people evaluate AI models. 

Conclusion 

We explored how people form evaluations of AI models’ outputs using the three 

determinants of trust in automation (performance, process, and purpose) and by using two 

different decision tasks that varied in terms of moral considerations (a visual estimation task and 

a resource allocation task). Results suggest that people factor in all three determinants 

(performance, process, and purpose) when evaluating an AI model’s outputs with the nature of 

the decision task changing the importance put to each. The findings contribute to efforts towards 

a nuanced understanding of how people form evaluations of disembodied AI such as AI models.  
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Chapter 4 Decision Making with AI 

Introduction 

In this chapter, we explore how people interact with AI-generated outputs, particularly 

focusing on recommendations and advice. As AI increasingly influences daily life—offering 

guidance on entertainment options (Jesse & Jannach, 2021), informing health decisions 

(Obermeyer et al., 2019), shaping tastes and preferences (Yeomans et al., 2019), and even 

affecting romantic partner choices (Dellaert et al., 2020), understanding how people engage with 

AI outputs such as advice or recommendation is more relevant and intriguing than ever. If people 

do listen to them or at least listen to them more than they do to humans, then these outputs hold 

the potential to change people’s lives. In addition, examining how people interact with AI 

outputs such as recommendations and advice not only enriches our understanding of the human 

perspective on AI, but also builds upon earlier insights into how people perceive (Chapter 2) and 

evaluate AI (Chapter 3) by shedding light on differences between self-report beliefs and actual 

behaviours toward AI outputs. 

What We Know So Far About How People Respond to AI Advice?  

 Reactions to AI advice can vary widely, ranging from appreciation to aversion or 

indifference. Previous research has predominantly examined how people respond to AI-

generated advice in comparison to advice from humans. This body of work suggests three 

possible outcomes: People may prefer AI advice more than human advice, a phenomenon termed 

as algorithmic appreciation (Logg et al., 2019). Equally, people may prefer AI advice less than 

human advice, something often termed in the relevant literature as algorithm aversion (Burton et 

al., 2020). Or, they may be indifferent to the source of advice, showing no preference for one 

over the other (Leib et al., 2024).  
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Two relatively recent comprehensive reviews on algorithmic aversion (Burton et al., 

2020; Jussupow et al., 2020)  highlight the plurality of factors at play as the main reason why 

people sometimes may be averse while other times appreciative towards AI advice. Specifically, 

they highlight factors having to do with the nature of the decision task (i.e., how subjective or 

objective people perceive the decision task at hand to be), the characteristics of the decision-

makers (i.e., their level of familiarity or previous experiences with AI advisory systems), the 

unique aspects of each decision-making environment (i.e., the saliency of moral considerations 

in some decision-making environments more than others, such as is the case in medical decision 

contexts or legal decision contexts), as well as the complex interactions among the above factors. 

Empirical evidence suggesting algorithmic appreciation comes from a series of 

experiments where, for numerical decision tasks (i.e., estimating a person's weight), participants 

relied more on advice labelled as coming from an algorithm than identical advice labelled as 

coming from humans (Logg et al., 2019). The same series of studies also showed that experts 

discounted algorithmic advice more than non-experts, although advice discounting was less 

when the advice was labelled as coming from an algorithm than when labelled as coming from a 

human. Discounting of advice by experts is consistent with existing literature on egocentric 

advice discounting (Yaniv & Kleinberger, 2000) as well as overconfidence (Johnson & Fowler, 

2011; Moore & Healy, 2008; Moore et al., 2015; Russo & Schoemaker, 1992), which have both 

repeatedly shown that experts are more likely to discount advice compared to non-experts. The 

above studies showed that humans do the same with AI; when they consider themselves experts, 

they discount advice from AI as they do from humans, albeit to a lesser degree.  

Furthermore, a series of studies by Castelo et al. (2019) highlights the role of the nature 

of the decision task, as participants reported greater willingness to rely on advice from an AI 
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advisor than a human advisor for decisions they perceived as more objective in nature (such as 

predicting a student’s performance) than subjective (such as selecting a movie to watch). Also, 

for more subjective decisions such as decisions related to personal preferences, as is the case 

with books, movies, or jokes, participants were also more likely to seek advice from friends over 

recommender systems (Yeomans et al., 2019). 

On the other hand, empirical evidence suggesting algorithmic aversion comes from a 

series of experiments by Dietvorst et al. (2015) where, after seeing an algorithm err, participant 

relied on humans for forecasting student performance, even when doing so resulted in 

suboptimal forecasts. Nevertheless, allowing participants to slightly modify the output of an 

algorithm made them more tolerant of errors and more likely to choose an algorithm for 

subsequent forecasts (Dietvorst et al., 2018). And demonstrating an AI advisor’s ability to learn 

was shown to offset negative effects of familiarity and previous negative experience with its 

errors (Berger et al., 2020). Also, people report being averse to AI making decisions in moral 

domains where human lives are at stake, such as medical settings, parole sentences, military 

decision-making and self-driving cars (Bigman & Gray, 2018). And they can equally be averse 

to AI offering advice in these decision domains. For instance in medical decision-making, when 

recommendations came from an algorithm in a study by Longoni et al. (2019), people tended to 

trust it less than a human doctor's recommendations. And in the domain of employee selection 

and hiring decisions, where there also exist ethical considerations, Diab et al. (2011) found that 

participants thought of human interviewers’ advice as being more useful, professional, fair, 

personal, flexible, and precise than AI advice. 

Coupled with empirical evidence on both algorithmic appreciation and aversion, there is 

also evidence showing that people treat advice similarly, regardless of whether it comes from a 
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human or an AI agent. Empirical evidence suggesting that transparency about the AI source of 

advice does not influence people's subsequent uptake comes from a series of studies by Leib et 

al. (2024). In these studies, participants were exposed to advice generated by both a natural 

language processing algorithm (GPT-J algorithm) and a human equivalent. The findings showed 

that dishonesty-promoting advice increased dishonest behaviour, while honesty-promoting 

advice did not enhance honesty, and that pattern of results was the same regardless of whether 

the advice came from a human or an AI source. 

Alongside the above empirical evidence which in their majority come from lab-based 

studies, we also observe, in our everyday lives, that people are increasingly turning to AI for 

guidance. This is also evidenced by the widespread popularity of AIs such as Alexa (Chalhoub & 

Flechais, 2020) or advanced Large Language Models (LLMs) (Radford et al., 2019) that can 

offer voiced or written advice. These AIs offer their expertise on a broad spectrum of topics, 

provided the user formulates the appropriate prompt. Moreover, seeing that AI advice comes 

with no or low cost, people may nowadays choose AI advice for its affordability and 

accessibility (an example of this is the AI-enabled financial app Wealthify.com which has a 

substantial customer base in the UK), even when expert human advice is available. 

 It is also well-supported that people follow social norms when making decisions 

(Bicchieri, 2016; Köbis et al., 2022; Schultz et al., 2018). Social norm theory categorises these 

norms into two types: proscriptive norms, which indicate what people believe they ought to be 

doing, and descriptive norms, which outline what people are actually doing. Empirical studies  

(Bobek et al., 2013; Cialdini et al., 1991) show that people are often more influenced by their 

perceptions of what others are doing or think they are doing – descriptive norms – rather than 

norms that refer to what they ought to be doing - proscriptive norms. When it comes to social 

https://www.wealthify.com/
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norms and AI advice, the hypothesis can go both ways; if people perceive AI advice as a better 

representation of collective beliefs and behaviours—since they are based on algorithms trained 

on vast amounts of human beliefs and behaviours—they may view such advice as a stronger 

indicator of what other people are doing compared to human advice coming from one or a few 

other people (i.e., human consensus advice). If this is the case, and based on social norms theory, 

we might expect people to be more likely to follow AI advice than human advice. However, the 

opposite might hold true too; people might see human advice as carrying a stronger cue for social 

norms, given that it originates from humans rather than algorithms. Consequently, they may be 

more likely to follow human advice than AI advice to align with social norms. As noted by Leib 

et al. (2024), the hypothesis could go either way, highlighting the need for further behavioural 

studies to clarify how individuals behave in response to AI advice.  

Overall, the existing literature indicates that there is no consistent response to advice 

based solely on the identity of the advisor, whether it comes from an AI or a human. There is no 

clear trend of appreciation for AI-generated advice, aversion toward it, or significance placed on 

the transparency regarding the AI source. Instead, trust in advice, which includes both cognitive 

trust (based on a rational assessment of the AI, its advice and situational factors) and emotional 

trust (influenced by emotions or mood) appears to be heavily content-dependent (Glikson & 

Woolley, 2020). 

Research Question and Overview of Studies 

 Given the context-dependent nature of AI advice uptake and, rather than taking a 

definitive stance (algorithmic appreciation, aversion, indifference), we decided to perform our 

own exploration of people’s reaction to AI advice starting by focusing on one key factor 

identified in the existing literature: the perceived objectivity of the decision at hand (Studies 1 
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and 2). Previous studies suggest that the more objective a decision is perceived to be, the more 

likely people are to prefer AI over human advice(Castelo et al., 2019; Logg et al., 2019). We 

sought to examine this within our own experimental settings, adopting the same design as 

Castelo et al. (2019) in their Study 1 but incorporating an updated set of decision tasks. This 

approach allowed us to both replicate and extend the original study. Additionally, recognising 

the influence of social norms, we conducted two additional studies where we measured AI 

advice uptake in preference-based decisions where AI advice was compared to advice coming 

from other people (Studies 3 and 4). These studies examined advice uptake when validating 

advice was labelled as coming from an AI versus other people in preference-based decisions. We 

focused on advice that validates people's preferences, as this type of advice is common in AI as 

recommendations and advice are based on individuals' past behaviours, as these are reflected in 

their data. We therefore sought to address the following research question: How do people 

respond to AI advice that validates them? Are they more, less, or equally likely to listen to AI 

validating them as to other people? 

Study 1 

 The aim of this study was to create a list of everyday decisions, categorised based on how 

subjective or objective people perceive them to be. This approach follows the example of 

previous research, which classified decisions according to their perceived level of subjectivity 

(Castelo et al., 2019). A total of 50 participants were asked to evaluate 49 decision tasks based 

on how subjective or objective they perceived them to be. The curated list of objective and 

subjective decisions of Study 1 was then used in Study 2. 

Methods 

Participants 
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UK participants, averaged 25-34 years of age, 64% female, 36% male, were recruited 

through the Prolific experimental subject pool for compensation. Since the purpose of the study 

was to generate information rather than test a hypothesis using inferential statistics, 

a rule of thumb (Baumol & Quandt, 1964) was used for deciding on the sample size of 50 

participants. Participants were paid based on an hourly rate (£7.50/hour) for the time spent in the 

study. The exact materials and data for Study 1 are available in the Open Science Framework at 

https://osf.io/exbpt. 

Materials and Procedure    

At the start of the study, participants answered a set of demographic questions, and an 

attentional check question designed to remind them to read the questions carefully. If they 

answered the attentional check question incorrectly, though they were not disqualified from 

continuing, they were reminded to carefully read the questions before answering. Then, they 

rated each of 49 decision tasks on how subjective versus objective they found it to be, using a 

continuous scale from 0 (‘Very Objective’) to 100 (‘Very Subjective’), and reported their level 

of confidence with their rating on a scale from 0 (‘Not at all’) to 100 (‘Extremely’). The 49 

decision tasks were randomly presented and before they started appearing, participants received 

the following brief explanation of the difference between subjective and objective decisions: 

 ‘In broad terms, think of a SUBJECTIVE decision as one that is heavily influenced by one's 

personal feelings, perspectives, and interests and as such one to which, in principle, there is no 

right or wrong answer. On the contrary, an OBJECTIVE decision is usually viewed as relying 

solely on facts, data, and analysis and as such one to which, in principle, there is one verifiable 

and right answer.’ 

Results and Discussion 

https://osf.io/exbpt
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The average rating for each decision task was determined using the following approach: 

If the mean rating was above 50 (the mid-point of the scale), a subjectivity score of 𝑥 out of 50 

was assigned. For instance, a task with a mean rating of 80 received a subjectivity score of 30 out 

of 50. Conversely, if the mean rating was below 50, an objectivity score of 𝑦 out of 50 was 

assigned. For example, a task with a mean rating of 10 received an objectivity score of 40 out of 

50. Additionally, the confidence ratings given by participants for each decision task, using a 

continuous scale from 0 (‘Not at all confident’) to 100 (‘Extremely confident’) were averaged. 

The group of subjective decision tasks exhibited a higher confidence score (M=82.06) compared 

to the confidence score (M=72.70) of the group of objective decision tasks, t (47) = -6.74, d = -

0.194, p<0.001. This suggested that participants felt more confident when grouping a decision as 

subjective than objective. 

The list of decision tasks with their corresponding subjectivity ratings are included in 

Table 11. Interestingly, two decision tasks—'How much to save for retirement’ and ‘Which 

retirement plan to invest in’—had different subjectivity scores despite their similar meanings. 

The first got a subjective score of 53.96 (e.g., >50), while the second was rated as objective 

(score =44.02, e.g., <50). This discrepancy is likely to be a product of the framing effect 

(Tversky & Kahneman, 1981). E.g., ‘choosing a retirement plan to invest in’ might be perceived 

as involving more careful benefits vs costs considerations, while ‘deciding how much to save for 

retirement’ may be perceived as a decision made more on the basis of personal preferences. The 

framing effect is something that has also received attention in the realms of AI advice uptake. 

For instance, merely using the term ‘expert system’ instead of ‘computer’ to describe algorithmic 

advice was found to significantly increased trust in its recommendations compared to human 

advice (Hou & Jung, 2021). 
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Tables 11 

 List of Decision Tasks grouped by their Perceived Subjectivity (Study 1). Decision tasks are 

listed in decreasing order of perceived subjectivity 

 Decision 

Task 

Subjectivity 

Rating 

Decision 

Task 

Score 

Average 

Confidence 

per 

Decision 

Task 

Decision 

Task 

Category 

Which song to listen to 90.809    90.80 40.80 90.60 Subjective 

What movie to watch 88.24 38.24 85.38 Subjective 

What to wear on a night out 87.04 37.04 87.96 Subjective 

Who to go out on a date with 86.20 36.20 86.08 Subjective 

Which book to buy 83.72 33.72 86.32 Subjective 

What to cook for dinner 83.36 33.36 84.44 Subjective 

Which restaurant to go to 83.30 33.30 84.66 Subjective 

What to get a friend on their birthday 82.18 32.18 85.04 Subjective 

Which joke to use in a zoom call at work 80.32 30.32 84.88 Subjective 

Where to go on holiday 77.64 27.64 84.38 Subjective 

Which career to follow 76.28 26.28 81.00 Subjective 

Making decisions with regards to the planning of a birthday party 76.06 26.06 81.42 Subjective 

Whether to end a relationship 75.12 25.12 85.42 Subjective 

Predicting someone’s personality 74.64 24.64 77.92 Subjective 

Deciding who to vote for 68.74 18.74 76.38 Subjective 

Which job to apply for 68.62 18.62 77.16 Subjective 

Which neighbourhood to move to 66.18 16.18 84.20 Subjective 

Which job offer to accept 64.04 14.04 76.94 Subjective 

Solving ethical problem 61.84 11.84 72.20 Subjective 

Making political decisions 58.76 8.76 76.38 Subjective 

Scheduling one's week 57.44 7.44 79.42 Subjective 

How much to save for retirement 53.96 3.96 77.12 Subjective 

How to plan your monthly budget 49.80 0.20 75.48 Objective 

Predicting parole violation 48.32 1.68 69.74 Objective 

Predicting recidivism 48.22 1.78 71.90 Objective 

Predicting a student's performance 47.32 2.68 74.02 Objective 

Which credit card to apply for 46.20 3.80 72.08 Objective 

Deciding who should be given a fellowship 45.62 4.38 62.10 Objective 

Which retirement plan to invest in 44.02 5.98 75.36 Objective 

Decide which stocks to buy 43.96 6.04 68.26 Objective 

Predicting an employee's performance 43.34 6.66 70.88 Objective 

Administering justice and rehabilitation 42.44 7.56 66.72 Objective 

Predicting an election 41.78 8.22 64.14 Objective 

Predicting a stock price 41.68 8.32 63.18 Objective 

Hiring a new employee 41.30 8.70 77.16 Objective 

Deciding on the performance of an employee 36.96 13.04 78.12 Objective 

Firing an employee 35.76 14.24 72.50 Objective 

Deciding on the strategic plan for a company 33.10 16.90 70.82 Objective 

Performing fact checking on news feeds to decide what qualifies as fake news 32.54 17.46 75.00 Objective 

Deciding the bonus payment of an employee 32.20 17.80 74.26 Objective 

Which credit card to apply for 31.82 18.18 77.00 Objective 

Which medical treatment to undergo 31.22 18.78 75.44 Objective 

Deciding on a treatment of a disease 29.00 21.00 75.20 Objective 

Deciding on the sentence in a legal case 28.72 21.28 71.58 Objective 

Predicting the weather 27.10 22.90 75.92 Objective 

Deciding whether a customer qualifies for a specific insurance plan 22.12 27.88 75.98 Objective 

Piloting a plane safely to protect its passengers 21.28 28.72 75.30 Objective 

Deciding on the shortest route between two points on a map 20.34 29.66 84.62 Objective 

Diagnosing a disease 15.80 34.20 70.20 Objective 
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Study 2 

In Study 2, a new group of participants was asked to indicate their willingness to rely on 

advice coming from an AI algorithm versus a human (or a well-qualified human) in 14 decision-

making scenarios than varied in terms of their perceived subjectivity. The decision scenarios 

were taken from Study 1.  The purpose of Study 2 was to investigate whether people are willing 

to rely on AI rather than humans (or well-qualified humans) more for objective than subjective 

decisions since prior research has indicated that trust in AI advice increase with the perceived 

objectivity of a decision (Castelo et al., 2019; Logg et al., 2019).  

Methods 

Participants 

430 UK participants, averaged 25-34 years of age, 78% female, 20% male, and 2 % non-

binary, were recruited through the Prolific experimental subject pool for compensation. 

Participants were paid based on an hourly rate (£7.50 /hour) for the time spent in the study. The 

sample size was determined a priori with a goal of obtaining 0.80 power to detect a medium 

effect size of d= 0.35 (e.g., f= 0.17) taken from previous research (see Logg et al. 2019, study 6) 

at the standard 0.05 alpha error probability. The software program G*Power was used to conduct 

an a-priori power analysis. The suggested minimum sample size was 337 participants and a total 

of 430 participants were recruited to account for potential exclusions due to failures in attentional 

checks and completions outside the window of accepted durations. The exact materials and data 

for Study 1 are available in the Open Science Framework at https://osf.io/tjgvd . 

Materials and Procedure 

Participants began the experiment by answering demographic questions, and an 

attentional check question designed to remind them to read the questions carefully. Before 

https://osf.io/tjgvd
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proceeding with the remainder of the questions, they were provided with the following brief 

definition of an AI algorithm: 

‘A brief note before you start:  

         In the rest of the survey, you will see Artificial Intelligence algorithm (AI algorithm) 

being mentioned quite often. In broad terms, you can think of an Artificial Intelligence 

algorithm (AI algorithm) as a set of rules given to a computer program to enable it to learn 

on its own by finding useful patterns in the data and coming up with a process to make a 

decision. These AI algorithms are nowadays applied in various fields such as finance, 

marketing, business analytics, agriculture, healthcare, etc. (source: EDUCAB, Artificial 

Intelligence tutorial)’. 

Participants were then asked to put themselves in the shoes of the decision maker in 14 

hypothetical decision scenarios, seven subjective and seven objective decision scenarios, selected 

from Study 1 among the top 10 most highly subjective and the top 10 most highly objective 

decisions, respectively (see Table 12 for the list of the 14 decision scenarios used in Study 2). In 

each decision scenario, they were asked the following question: ‘In the above decision scenario, 

when you make your decision, you can get advice from an AI algorithm or a human. Would you 

rely more on advice from an AI algorithm or a (well-qualified) human?’ using a continuous scale 

from 0 (‘Rely more heavily on a (well-qualified) human’) to 100 (‘Rely more heavily on an AI 

algorithm.’ The decisions scenarios were counterbalanced. 

The study employed a 2x2 mixed design, examining the factors of subjectivity of the 

decision (subjective vs. objective) and advisor (human vs. well-qualified human). Subjectivity 

served as a within-subjects factor, while expertise of the human advisor was a between-subjects 

factor. The dependent variable was the participants' reported willingness to rely more on advice 

from an AI algorithm than a human, the latter being labelled for half of the participants as advice 
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coming from a ‘human’ and for the other half as advice coming from ‘a well-qualified human’ 

(expertise was a between-subjects variable). 

Data Analysis Strategy 

Data were analysed using R statistical software (https://www.r-project.org/). First, data 

were averaged across objective and subjective decisions per participant. This resulted in two 

values per participant: one representing the average proportion where the participant favoured 

one advisor over the other in the objective decisions, and another representing the average 

proportion where the participant favoured one advisor over the other in the subjective decisions. 

A mixed ANOVA was employed for the analysis, with the subjectivity of the decision 

(subjective vs. objective) as a within-subjects factor variable, and human expertise (human vs 

well-qualified human) as a between-subjects factor. We also calculated the simple main effect of 

perceived subjectivity across the human vs well -qualified human factor variable using 

‘emmeans’. We controlled for multiple testing in this analysis by adjusting the six p-values using 

the Bonferroni-Holm adjustment.  In all the statistical inference tests, a p-value of less than 

0.01was used as the threshold for statistical significance in any reported results, following the 

precedent established in similar studies (Castelo et al., 2019). 

Tables 12 

List of the 14 decision scenarios used in Study 2  

Decision Scenarios Category 

Imagine that you are thinking of a career change, and you have come up with 

three alternative career options. You need to decide which one to choose. 

 

Subjective 

Imagine you are a medical patient and you have received test results for treating 

tendonitis in your forearm. You need to decide between three alternative 

treatments. 

 

Objective 

Imagine you are a judge in a legal case. To decide on the sentence, you need to 

predict the offender's risk of reoffending and factor that in your final decision. 

 

Objective 

Imagine that you want to know what the weather will be like tomorrow so that 

you can decide what to wear. 

Objective 

https://www.r-project.org/
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Imagine that you are in a city you have never been before, and you want to get to 

the nearest train station. 

 

Objective 

Imagine that you have invited friends over to your place for dinner and you want 

to prepare a playlist of songs to listen to. You need to decide what's the best songs 

to include in your playlist. 

 

Subjective 

Imagine you find three books online that look interesting. You need to decide 

which book to buy. 

 

Subjective 

Imagine that you want to buy new clothes for a night out. You search online and 

you find three different outfits that you like and that cost approximately the same. 

You need to decide which one to buy. 

 

Subjective 

Imagine you are thinking of going out for dinner. You search online and you end 

up with a couple of restaurants that look appealing and need to decide which one 

to go to. 

 

Subjective 

Imagine you are looking for a private health insurance plan. You search online 

and you find three appealing options with similar premium cost. You need to 

decide which one to apply for. 

 

Objective 

Imagine that you are thinking of going away on holiday for a few days. After 

some initial research, you come up with a couple of places that are worth visiting 

and need to decide which one to choose as your next holiday destination. 

 

Subjective 

Imagine you are facilitating a zoom meeting at work, and you are thinking of 

possible jokes to use for breaking the ice at the start of the meeting. You need to 

decide which joke to include. 

 

Subjective 

Imagine you are thinking of getting a new credit card. You go on to your bank's 

website and you find three credit cards that look appealing. You need to decide 

which you would like to apply for. 

 

Objective 

Imagine you are the HR manager of a company, and you need to decide how to 

allocate the annual bonus payment to selective employees. 

Objective 

 

Results 

Manipulation checks  

Although the 14 decision scenarios in Study 2 were taken from Study 1, where they were 

rated on their perceived subjectivity by a different sample of participants, we also tested the 

subjectivity manipulation with Study 2's participants. At the end of the study, participants rated 

each of the 14 decisions on a scale from 0 ('Very Objective') to 100 ('Very Subjective') after 

receiving a brief description of subjective versus objective decisions, identical to the one used in 



120 

Study 1. We tested the manipulation by performing a t-test to determine if there was a significant 

difference between the means of subjective and objective decisions. The t-test revealed a 

significant difference, indicating the manipulation was successful (t (858) = -34.89, d= -2.38, 

p<.001). 

Reliance on AI Advice  

The ANOVA revealed a significant main effect of perceived subjectivity, F (1, 428) = 

404.10, η2= 0.30, p <.001 (Figure 14), suggesting that for decisions that are perceived as more 

objective than subjective, participants were more willing to rely on advice from an AI algorithm 

than humans (see Table 13 for means and standard deviations).  

Figure 14 

Main Effect of Perceived Subjectivity on Willingness to Rely on AI Advice (Study 2) 
 

 

 
Error bars represent 95% confidence intervals, ** p< 0.001 

There was also a significant subjectivity X human expertise interaction, F (1,428) = 8.17, 

η2= 0.01 p < .01. A simple effect analysis showed that for objective decisions, the difference 

between reliance on a human (M = 55.8, SD =1.01) and a well-qualified human (M = 50.7, SD = 

1.01) was significant (t (428) = - 3.54, p<.001). For subjective decisions, there was no significant 

** 
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difference (t (428) = 0.37, p=0.7) When advice from an AI was pitched against advice from a 

human, the difference in reliance between objective decisions (M = 55.8, SD =1.01) and 

subjective decisions (M = 33.3, SD =1.05) was significant (t (428) = 16.24, p<.001) and, when 

advice from an AI was pitched against advice from a well-qualified human, the difference in 

reliance between objective decisions (M = 50.7, SD =1.01) and subjective decisions (M = 33.9, 

SD =1.05) was also significant (t (428) = 12.19, p<.001) (Figure 15). 

Figure 15 

Willingness to rely more on an AI vs a human advisor: Perceived Subjectivity * Expertise of 

Human Advisor (Study 2) 

 

 

 
Error bars represent 95% confidence intervals, ** p< 0.001; ns: not statistically significant 

Table 13 

Willingness to rely more on an AI algorithm vs a human advisor: Means and Standard 

Deviations (Study 2) 

 
Willingness to Rely on Advice from an AI algorithm vs (well-qualified) human 

 

1 Type of Decision: Objective, advisor: human 55.8 (1.05) 

2 Type of Decision: Objective, advisor: well-qualified human 50.7 (1.05) 

3 Type of Decision: Subjective, advisor: human 33.3 (1.05) 

** 

ns 
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4 Type of Decision: Subjective, advisor: well-qualified human 33.9 (1.05) 

 

Discussion 

Study 2 revealed that willingness to rely more on advice from an AI algorithm than a 

human increase with perceived objectivity of the decision at hand. The results also indicated that 

for objective decisions, the human expertise plays a significant role; people are less willing to 

follow AI advice when alternative human advice comes from someone they regard as an expert, 

compared to when it comes from a layperson. These findings align with previous research on the 

role of task subjectivity (Castelo et al., 2019) and the perceived human expertise (Logg et al., 

2019) on AI advice uptake. In the subsequent two studies, Study 3, and Study 4, we concentrated 

solely on subjective, preference-related decisions.  

Study 3 

Study 3 sought to examine how people behave in interaction with AI output that comes in 

the form of recommendation on a preference-related topic, such as when choosing one’s 

preferred coffee, and when presented alongside human recommendation. Both types of 

recommendations (from an AI algorithm and from other people with similar coffee preferences) 

were shown to participants simultaneously. Study 3 employed the judge–advisor system (JAS) 

paradigm (Sniezek & Buckley, 1995), a paradigm commonly used to measure reliance on advice 

by computing how much participants revise their initial choice in response to external advice 

(Haran & Shalvi, 2020b; Yaniv, 2004a, 2004b; Yaniv & Choshen-Hillel, 2012; Yaniv & 

Kleinberger, 2000). This paradigm allows us to determine whether a final choice is influenced by 

advice, as it also captures the initial choice e.g., the choice before receiving advice. 

Methods 

Participants 
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 UK participants averaged 18-24 years of age, 86% female, 14% male, were recruited 

through the UCL Psychology Subject Pool (SONA). Participants received 0.5 course credit and a 

coffee bag randomly selected from their actual choices to incentivise them throughout the study. 

The coffee blend was shipped to the UK address they provided. The sample size was determined 

a priori with a goal of obtaining 0.80 power to detect a medium effect size of f2= 0.15 (Cohen, 

1988) at the standard 0.05 alpha error probability. The suggested minimum sample size was 98, 

and 110 participants were recruited to account for potential exclusions due to failures in 

attentional checks and completions outside the window of accepted durations. E.g., participants 

that took more than 1 hour to finish the study were automatically excluded (3 were excluded) 

leading to a sample size of 107 participants in total. The study was preregistered on 

AsPredicted.org (https://aspredicted.org/see_one.php).  

Materials and Procedure 

The study was conducted online using the Gorilla survey platform. After consenting, 

participants completed two parts. In Part 1, they completed a coffee quiz to produce their coffee 

profile. Then, in Part 2, they chose their favourite coffee blends in 15 trials, with the number of 

available choices per trial varying randomly between 6 and 11. In each trial, they made an initial 

choice and then they were directed to a second screen where they were presented with two 

recommendations: one coming from an AI algorithm that used their coffee profile as an input to 

match them with a coffee recommendation, and another one coming from other similar people, 

e.g., people with similar coffee quiz results. 

After seeing both recommendations, participants were asked to make a final choice. All 

participants completed both parts of the study. Finally, participants reported their age and gender 
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and were also asked to provide an UK address for the shipment of the bonus coffee bag. A 

graphical representation of the study’s procedure is included in Figure 16.  

Figure 16 

Graphical Representation of Procedure followed in Study 3 

                          

 
  

Each participant completed 15 trials. In each trial participants were presented with 

different choice sets varying from 6 to 11 coffee varieties. While we aimed for more than 15 

trials per participant to obtain participant’s choice patterns, average duration from the pilot run of 

the study indicated that 15 trials were enough for keeping the study within a manageable 

duration (e.g., for keeping the study’s duration within max 40 mins). Moreover, the advice 

labelled as coming from an ‘AI algorithm’ and ‘other similar people’ was programmed so that 

the likelihood of them differing from the participant’s initial choice and the likelihood of them 

differing from each other followed predefined probabilities- e.g., Scenario 1: Participant choice = 

AI recommendation = Human recommendation (likelihood of appearing 5%), Scenario 2: 

Participant choice = AI recommendation (10%), Scenario 3: Participant choice = Human 

recommendation (likelihood of appearing 10%), Scenario 4: Participant choice ≠ AI 

recommendation ≠ Human recommendation (likelihood of appearing 75%), Scenario 5: 

 

Coffee Quiz 
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Participant choice ≠ ( AI recommendation = Human recommendation) (likelihood of appearing 

5%). Also, the names and descriptions of the coffee varieties used in the study were fabricated to 

prevent any familiarity with existing brands that could potentially introduced a confounding 

factor, and they were unique to each trial. 

The design employed was a 2 (AI recommendation: Matches vs Does not Matches 

participant’s initial choice) X 2 (human recommendation: Matches vs Does not Matches 

participant’s initial choice) within-subject variables design. The dependent variable was the 

‘Choice Update’ (Yes/No), a dichotomous categorical variable. 

Data Analysis Strategy  

Data were analysed using IBM SPSS Statistics (Version 29) predictive analytics 

software. To analyse repeated measurements with a categorical dependent variable a Generalized 

Estimating Equations (GEE) logistic regression model was used. Upon confirming that the 

assumptions for a GEE model were met, the GEE model was used to fit the data.  

Results 

AI advice had a statistically significant effect on final choice. The human advice and the 

AI advice X human advice interaction were not significant (see Table 15 for the Wald Chi 

Square tests of model effects). The post-hoc test comparing choice update between AI advice - 

validates and AI advice - does not validate revealed that the odds of updating one’s initial choice 

dropped by 0.41points, when the recommendation from the AI algorithm validated participants 

(e.g., matched the participant’s initial choice), e.g., a 41% decrease in the probability of choice 

update (X2 (1,107) =28.717, p<.001). These results show that when AI advice was validating 

participants’ initial decisions, the likelihood of changing those decisions was reduced and 
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suggest that the advice had a validation effect on participant’s final choices when it was coming 

from AI but not from humans. Human advice did not have a validation effect (p=0.49). 

Table 14 

Test of Model Effects on Choice Update (Study 3) 
 Wald Chi-Square df p 

AI_validates  13.864 1 <.001 

human_validates  3.884 1 .049 

AI_validates participant * human_validates 0.644 1 .422 

age 7.633 1 .006 

gender 0.062 1 .803 

To further test that there was indeed no validation effect when the human validated 

participants (p = 0.49) e.g., to test that there was indeed no statistically significant difference 

between human recommendation -validates and human recommendation - does not validate, a 

Bayesian inference test for binomial proportions was used.  The test examined whether the data 

follows the null distribution model Beta (2,2), which assumes an equal probability of choice 

updating (50/50) under the ‘human_validates: yes’ and ‘human_validates: no’ conditions, or an 

alternative distribution model Beta (5, 2) whereby there is a higher probability of choice update 

in the ‘human_validates: yes’ condition. The estimated Bayes factor was 3.040, which exceeds 1. 

This provides additional evidence for the null hypothesis, as it suggests that the observed data is 

approximately 3 times more likely under the null model than under the alternative hypothesis.  

Participant’s Definition of the AI Algorithm. In this study, we chose not to provide 

participants with a description of AI. This approach was intended to capture participants’ natural 

responses to the term ‘AI algorithm’ and to conduct a thematic analysis on their interpretations. 
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As such, an open-ended question at the end of the study was included: ‘How would you define 

the AI algorithm used in the study? Please feel free to give a definition in your own words.’ 

Participants’ responses were coded using ATLAS.ti Mac (version 23.2.1) (https://atlasti.com ) 

and categorised into four broad themes, as presented in Table 15 below. 

Table 15 

Participants’ definitions of an AI Algorithm (Study 3) 

 

Discussion 

Overall, in Study 3 we compared AI and human advice for a decision very much based 

on personal preferences, such as choosing one’s preferred coffee. Our results showed that when 

it comes to receiving advice on coffee preferences, AI is more effective validating people’s 

decisions that other people. In Study 4, we explored more this finding by broadening the range of 

preference-related decisions under evaluation from one to twelve covering a variety of 

preferences. 

  AI Algorithm defined as a ... Example 

Category 1 43 % system/ computer/ tool/program/ 

procedure 

‘It is a programme that outputs information 

according to the data that it is given.’ 

Category 2 20 % mathematical relationship/ 

formula/equation 

‘A mathematical equation used to make 

predictions.’ 

Category 3 18 % calculations/ sequence of 

steps/set of instructions 

‘A process where calculations are made 

through previous data and information to produce a 

rule or a set path.’ 

Category 4 17% other (specific to the 

experiment) 

‘It used a blend of my previous choices on trials and 

my preferences which I had input at the very 

beginning’ 

https://atlasti.com/
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Study 4 

Study 4 sought to further examine how people behave in interaction with AI advice 

compared to human advice on preference-related topics. Like Study 3, it employed the judge–

advisor system (JAS) paradigm (Sniezek & Buckley, 1995) which measures whether 

participants' initial opinions were swayed or validated after advice (see Study 3 for more details 

on JAS).  

To complement Study 3 and account for individual differences in participants' AI 

knowledge, an AI literacy index was also introduced in Study 4. This index comprised 12 

multiple-choice questions, each with three options and one correct answer, designed to assess 

fundamental AI knowledge and its various applications. For example, questions included: ‘What 

is an AI algorithm?’ with answer choices (a) ‘a set of hardware components that enable 

computer programs to run,’ (b) ‘a set of instructions that can be implemented to perform a 

specific task,’ and (c) ‘a specific type of coding language.’ Other questions asked were of the 

following type: ‘When someone selects a show recommended by Netflix, are they engaging with 

AI?’ with answer choices ‘Yes,’ ‘No,’ and ‘I am not sure.’ (A complete list of the questions 

forming the AI literacy index is provided in the Appendix 2, Table 16). The AI literacy index 

scores ranged from 0 (no correct answers) to 1 (all 12 questions correct). 

Methods 

Participants 

130 UK participants averaged 25-34 years of age, 68% female, 32% male were recruited 

through the Prolific experimental subject pool for compensation. Participants were paid based on 

an hourly rate (£9.00 /hour) for the time spent in the study. The sample size was determined a 

priori with a goal of obtaining 0.95 power to detect a medium effect size of d= 0.35 (e.g., f= 
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0.17) at the standard 0.05 alpha error probability. The software program G*Power was used to 

conduct an a-priori power analysis. The suggested minimum sample size was 116, and 130 

participants were recruited to account for potential exclusions due to failures in attentional 

checks and completions outside the window of accepted durations. E.g., one participant who 

completed the study in less than 10 minutes was excluded leading to a sample size of 129 

participants in total . The exact materials and data for Study 4 are available in the Open Science 

Framework at  https://osf.io/hvy6g.  

Materials And Procedure 

The study was conducted online using the Qualtrics survey platform. Upon accepting the 

task on Prolific, participants were directed to Qualtrics where they read the instructions and gave 

their consent to participate in the study. Participants were tasked with evaluating 12 quizzes, 

each following a structured process. Initially, they encountered a title page that introduced the 

topic of the quiz (e.g., ‘A Quiz to Help Uncover Your Art Preferences’). The quiz topics were 

subjective, focusing on personal preferences, and spanned various subjects such as art, sleep, 

meditation styles, stress and anxiety management, lifestyle choices, and communication styles. 

Next, participants were required to record their perceived preferences related to the quiz 

topic before proceeding to fill out the quiz. After completing the quiz, they received insights 

labelled either as derived from an AI model's analysis of 5,000 responses from participants with 

similar demographics and quiz results, or as being what most similar people prefer based on the 

analysis of 5,000 responses from participants with similar demographics and quiz results. 

Although the insights were fundamentally the same (originating from the responses of 5,000 

participants similar demographics and quiz results), the presentation differed, being either the 

output of an AI model or what most similar people prefer. Finally, participants were asked to 

https://osf.io/hvy6g
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provide their final opinion regarding their preferences, which could have been revised based on 

the insights received. They also indicated their confidence level in their final opinion on a 

continuous scale ranging from 0 to 100. A graphical representation of the study’s procedure is 

included in Figure 17.  

Figure 17 

Graphical Representation of Procedure followed in Study 4 

 

  

The 12 quizzes used throughout the study were created using the ‘ChatGPT3’ open-

source NLP algorithm (OpenAI,2024). The prompt used to inquire ChatGPT3 per quiz was the 

following: ‘Can you provide a quiz to discover one's [e.g., learning] preferences with eight 

questions where participants select one correct answer per question, and the results are based on 

the sum of scores? The insights from the AI model validated participant’s initial preferences in 

25% of the cases and in 25% of the cases they didn’t. Similarly, the human consensus information 

validated participant’s initial preferences in 25% of the cases and in the rest 25% of the cases they 
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didn’t. The above four scenarios (e.g., AI validates/AI invalidates/human validates/ human 

invalidates) were counterbalanced to account for order effect. 

The design employed was a 2 (source of advice: AI vs human consensus) x 2 (validation: 

yes vs no) within-subject variables design, with 12 repeated measurements per participant. The 

dependent variable was the response to the question, ‘After reviewing the advice, does that make 

you want to: a. Change your initial opinion, b. Stick to your choice even more strongly or c. 

Neither. the advice does not affect me.’ As such, the dependent variable was polytomous and 

categorical, with three possible responses: ‘Change my initial choice’ (coded as 1), ‘Stick to my 

choice even more strongly’ (coded as 2), or ‘Neither. the advice does not affect me’ (coded as 3).  

Data Analysis Strategy  

Data were analysed using IBM SPSS Statistics (Version 29) predictive analytics 

software. To analyse repeated measurements with a categorical dependent variable a Generalized 

Estimating Equations (GEE) logistic regression model was used. Upon confirming that the 

assumptions for a GEE model were met, the GEE model was used to fit the data.  

Results 

Validation had a statistically significant effect on participant’s final choice. The source of 

advice (e.g., ‘who’ validated them) had no statistically significant effect nor did the source of 

advice X validation interaction (see Table 16 for the Wald Chi Square tests of model effects).  

More specifically, the post-hoc test comparing choice update between validation- yes and 

validation- no revealed that the relative probability of changing one’s opinion about their 

preferences versus not changing decreased by 0.32 points when the advice validated participants 

(e.g., the advice matched participant’s initial opinion about their preferences), a 32% decrease in 

the probability of choice update (X2(1,129) =119.819, p <.001). These results show that when 
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advice was validating individuals' initial decisions, the likelihood of changing those decisions 

was reduced, regardless of whether that advice was labelled as coming from an AI or human 

advisor.  

Table 16 

Test of Model Effects on Choice Update (Study 4) 

 Wald Chi-Square df p 

source of advice 0.279 1 .598 

validation 119.839 1 <.001 

source of advice * validation 0.008 1 .928 

AI literacy index 2.104 1 .147 

age 0.057 1 .811 

gender 10.318 1 .001 

    

To further test that there was indeed no difference between the AI and the human 

condition, a Bayesian inference test for binomial proportions was used.  The test examined 

whether the data follows the null distribution model Beta (2,2), which assumes an equal 

probability of choice updating (50/50) under the AI and human conditions, or an alternative 

distribution model Beta (5, 2) whereby there is a higher probability of choice update in the AI 

condition. The estimated Bayes factor was 1.597, which exceeds 1. This provides additional 

evidence for the null hypothesis, as it suggests that the observed data is approximately 1.6 times 

more likely under the null model than under the alternative hypothesis. Study 4 expanded on 

Study 3 by examining a broader range of preference-related decision tasks, encompassing 

preferences across various topics. The findings of Study 4 suggest that AI was just as effective 

validating people’s decisions as were other people.  



133 

Discussion 

 AI is increasingly taking on the role of an advisor (Rahwan, Cebrian, Obradovich, 

Bongard, Bonnefon, Breazeal, Crandall, Christakis, Couzin, Jackson, et al., 2019). However, its 

power to influence people’s behaviour for good or bad rests on whether people follow its advice; 

at least as much, if not more, than they do with advice from other people. We started looking at 

what influences AI advice uptake by replicating and expanding on existing studies that have 

explored the role of the perceived objectivity of the decision at hand (Study 1& 2). Our results 

indicated that people’s willingness to rely more on advice from AI compared to humans 

increases with the perceived objectivity of the decision at hand and that, for objective decisions, 

the expertise of the alternative human advisor plays a significant role. For objective decisions, 

people were less willing to follow AI advice when alternative human advice came from someone 

they regard as an expert, compared to when it comes from a layperson. These findings are 

consistent with previous research which also provides evidence that perceived objectivity and 

human expertise affect reliance on an AI advisor(Castelo et al., 2019; Logg et al., 2019). 

In Study 3, we examined advice uptake in preference-based decisions, driven by the 

growing prevalence of AI offering abundant advice in areas such as food, travel, music, movies, 

career choices, and even romantic partnerships. We first examined people's behavioural 

responses to coffee recommendations generated by an AI algorithm and presented alongside 

human recommendations (Study 3). We found that people were less likely to change their coffee 

choices when these choices were validated by an AI algorithm (e.g., when the AI algorithm 

recommendations matched participant’s initial choices). That was not the case when other people 

validated participant’s initial choices. This finding suggested that AI was more effective 

validating people than other people. To further test this finding, in Study 4, we expanded the 
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range of preference-based decisions under examination from one (e.g., coffee preference) to 

twelve covering a large array of preferences (from sleep preferences to art preferences and 

preferred ways to deal with stress etc.). We found AI to be just as effective validating people’s 

preference-based decisions as were other people. We further discuss these findings below. 

First, an interesting observation emerges from the critical examination of the combined 

findings from Studies 2 to 4. Study 2 relied on participants' self-reported intentions rather than 

actual behaviours, whereas the latter two studies (Studies 3 and 4) measured behaviour in 

relevant decision tasks by using the JAS paradigm. By juxtaposing the findings, we see that 

while self-reports suggested people would be less likely to rely on AI than humans for advice in 

subjective decisions (Study 2), behavioural data painted a different picture. People listened to AI 

that validated them but not to humans that validated them when selecting their favourite coffee 

(Study 3), and AI was as effective validated people’s preference- based decisions as were other 

people (Study 4). This highlights that self-reported intentions do not always translate into actual 

behaviour and underscores the need for further research that captures behavioural data to better 

understand how people trust AI. The behavioural data collected will complement—and 

potentially challenge—data on people's reported attitudes toward AI by revealing potential 

discrepancies between stated attitudes and actual behaviours. Furthermore, behaviour data, 

gathered either in lab or real-life settings, could then be used to inform interventions designed to 

encourage or discourage AI advice uptake in specific contexts such as e.g., financial, medical, or 

educational contexts and among different cohorts (e.g., young children and adolescents).  

Findings that vary depending on the type of measure used (self-report, behavioural or 

neural), is a known challenge in research looking at how people perceive AI where 

complimenting and juxtaposing measurements of the same construct (i.e., behavioural and neural 
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data) is often used (Blut et al., 2021; Thellman et al., 2022). For instance, in a study where the 

effect of anthropomorphism on trust in a computer (2D) vs a virtual (3D) agent was studied with 

both subjective and behavioural measures, anthropomorphism did not affect people’s 

behavioural trust, however,  anthropomorphism increased self-reported trust in the each AI agent 

(Kulms & Kopp, 2019).  

Secondly, Study 2 highlighted the contextuality of AI advice uptake, indicating that 

factors such as the type of decision (objective vs. subjective) and the expertise of the alternative 

human advisor significantly influence the willingness to trust AI. This suggests that findings may 

vary considerably depending on decision-specific, contextual factors and warns against 

generalising results across decision contexts. Especially in cases where contextual factors have 

been shown to be easily malleable as is the case with perceived subjectivity of a decision. 

Indeed, perceived task objectivity was shown to be malleable. For example, framing a task as 

benefiting from quantitative analysis rather than intuition increases its perceived objectivity and 

that led to subsequent increase in AI advice uptake (Castelo et al., 2019). 

Thirdly, in Study 3 participants listened to AI that validated them but not to humans that 

validated them whereas Study 4 indicated that AI is as effective validating people’s decisions as 

are other people in a wider array of preference-based decisions. These findings suggests that AI 

can provide similar social functions, such as validation, during decision making as other people, 

which in turn, carries ethical implications for the design of advisory AI and recommender 

systems. Recommender systems in particular, are typically designed with a specific objective 

function, such as e.g., maximising profit, and are trained on large amounts of users’ data (Alm & 

Sheffrin, 2017). Ethical implications arise from that, however, as recommender systems come 

with biases inherent in the data they are trained on and objective functions that can (perhaps) 



136 

unintentionally alter people’s preferences in an effort to maximise their objective function 

(Abdollahpouri et al., 2020; Adomavicius et al., 2013; Agan et al., 2023; Chaney et al., 2018; 

Jesse & Jannach, 2021; Kramer et al., 2014; Merrill & Oremus, 2021). Indeed, there have been 

cases where recommender systems, especially those trained using reinforcement learning, engage 

in what researchers call 'user tampering,' where they polarise users to increase success with 

subsequent recommendations that align with this induced polarisation (Evans & Kasirzadeh, 

2021). And natural language processing (NLP) models have been shown to have the ability to 

detect and strategically use deception as a beneficial tactic in negotiation tasks (Lewis et al., 

2017).  The above, when considered alongside the finding that AI can effectively provide social 

validation during decision-making, at least as effective as other people, underscores the need for 

responsible designing of AI advisory and recommender systems. 

Furthermore, AI being as effective in validating people’s preference -related decisions as 

other people (Study 4) appears to contradict previous research indicating that people generally 

treat AI and human advice similarly, although they tend to discount AI advice to a lesser extent 

than human advice– a phenomenon that the researchers termed as algorithmic appreciation (Logg 

et al., 2019). However, a closer examination of the differences between the studies reveals that 

there is no true contradiction. In the aforementioned studies, the identical advice—labelled as 

coming either from an AI algorithm or a human—was always an average of estimates from past 

participants, which did not necessarily match the participant’s initial estimate. E.g., the impact of 

advice that matches the participant’s initial estimate (e.g., validation effect) was not something 

that researchers chose to investigate and as such manipulate. This is however different to what 

was done here. This highlights how sensitive the findings on AI advice uptake are to contextual 

differences and serves as a caution to carefully consider variations in experimental designs when 



137 

comparing findings across studies or equally when attempting to generalise lab-based results to 

real-world settings.  

Finally, the finding that AI being as effective in validating people as other people (Study 

4) invites careful testing of future behavioural interventions that may seek to increase advice 

uptake on the basis of the identity of the advisor. For example, based on our results, it seems 

unlikely that health-related interventions offering advice on issues such as sleep preferences, 

eating habits, or exercise routines would benefit from either concealing the fact that the advice 

comes from an AI model or emphasising the presence of a human behind it. 

Limitations and Directions for Future Research 

 The studies under this chapter have several limitations. Firstly, using a coffee preference 

task in Study 3 may not have been ideal, as people often hold strong views about their coffee 

preferences. Perceiving oneself expert has consistently been shown to lead to greater discounting 

of advice (Johnson & Fowler, 2011; Moore & Healy, 2008; Moore et al., 2015; Russo & 

Schoemaker, 1992). Study 4 accounted for this by including a broader range of subjective 

decisions across different preference domains. However, future studies could examine advice 

coming from AI vs human advisor, while also varying the level of uncertainty associated with 

the decision at hand. In situations where people feel less confident about their decisions, they 

might be more likely to seek advice that presents alternatives rather than validates them. In these 

cases, it will be interesting to explore whether advice in the form of alternatives options coming 

from an AI model are valued more, less, or equally as those offered by humans.  

Moreover, exploring preference- based decisions that involve trade-offs—such as 

balancing food preferences with health considerations or travel choices with climate change 

concerns—could influence how people view the source of validating advice. It’s possible that, in 
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trade-off scenarios, people may place more value on social advice rather than from an AI model, 

even if the AI is trained on human data. This could be because the label ‘human’ may carry a 

stronger association with social norms than the label ‘AI’. Further research is needed to clarify 

whether AI can fulfil the same social functions as humans in preference- related decisions 

involving trade-offs. 

Furthermore, in the current set of studies the spotlight was drawn on preference-related 

decisions. Future research should explore other decision-making contexts where i.e., the 

decisions are more objective and consequential in nature such as medical, legal, or financial 

decisions. Previous studies have noted a stated aversion to AI advice in moral contexts (Bigman 

& Gray, 2018). It will be interesting to explore whether AI fulfils the social function of 

validation in the same way humans do when making decisions involving moral considerations. 

For these decisions, people may feel more reassurance from human validation confirming that 

their decisions are reasonable or acceptable. Equally, human validation might be more highly 

valued in these contexts, as it allows sharing of responsibility with other people. 

Another limitation is that in Studies 3 and 4, which employed behavioural measures, both 

AI and human advice were based on answers from relevant quizzes. For instance, in Study 4 the 

AI advice was framed as coming from ‘an AI trained on 5,000 quiz responses ‘and the human 

advice was framed as coming from ‘5,000 people who completed the same quiz’ Thus, the quiz 

was integral to both sources of advice, serving as input data for each. However, the effectiveness 

of a quiz as a foundation for advice may be questionable. If participants viewed the quiz as an 

inadequate tool for revealing their preferences, this perception could have influenced their 

responses in the study, although it would have similarly affected the comparison of interest (AI 

vs human validation). Future studies aiming to replicate the current set of studies should do so in 
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more ecologically valid settings, where AI advice either comes from an actual AI advisory model 

or the AI advisor in these studies is presented as having the capabilities of most of today’s 

multimodal AI models that are trained on far more, both in quantity and variety, data than 5,000 

quiz responses. In this case, we might expect people to perceive AI as a more capable advisor 

than a human (even an expert) or a group of people.  

Furthermore, participants were informed about the high-level process by which AI advice 

was generated in both Study 3 and 4. However, they were not made aware of the specific 

incentive structure of the advisors. Individuals may behave differently when they know that a 

human or AI advisor stands to benefit from their actions. This scenario is common in many 

recommender systems that operate with an objective function, such as maximising profits. 

Recent research has indicated that although individuals take into account the payoffs for 

machines, they place greater importance on the payoffs for humans (von Schenk et al., 2023). 

Future studies could therefore expand the current findings by also looking at the effect of 

communicating information about the incentive function of the AI advisor when contrasting it 

with human advice (that may or may not stand to benefit). 

Finally, the responses of younger cohorts (e.g., young children and adolescents) to AI 

advice should be examined as these cohorts are expected to be more familiar with AI tools while 

they are highly susceptible to social influence by their peers (Knoll et al., 2015). Also, we do not 

know whether people will continue to perceive advice from AI in the same way over time, as AI 

becomes more sophisticated and integrated into human decision-making, and as people gain 

more experience interacting with AI outputs. Investigating AI advice uptake over time will 

require longitudinal studies, which, although more challenging to conduct, will provide valuable 

insights into how perception and use of AI advice evolves. 
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Conclusion 

AI has the potential to transform people's lives. As people continue to interact with AI 

outputs that have the form of advice, gaining a better understanding of how people respond to AI 

advice is necessary for designing and implementing more effective and responsible AI advisory 

and recommender systems. Ultimately, this will help ensure that AI fulfils its potential in 

transforming people's lives by helping them make better decisions. In four studies we 

investigated how humans respond to AI advice capturing attitudes and behaviour and while 

comparing AI to alternative human advice. The studies reveal that findings on AI advice uptake 

are highly susceptible to contextual factors (e.g., nature of the decision), and the type of 

measurement (e.g., self-report, behavioural). When it comes to AI that offers validation, our 

findings suggest that AI can fulfil this social function as effectively as other people, if not more. 

People are just as likely to listen to AI that validates their decisions as to other people who 

provide validation. This, however, can be problematic especially in online spaces, where AI is 

often designed as a mirror which, trained on people’s individual and collective data, can only 

reflect those data back to them and as such is more likely to validate them than not. The findings 

contribute to efforts towards managing AI advice and recommender systems responsibly. 

 

 



141 

Chapter 5: Discussion of Empirical Evidence 

 This thesis set out to explore how people perceive and make decisions with AI, using 

methods from psychology to map the perceptions and investigate the behaviours. Through a 

series of eight studies, it investigated the human perspective on AI, offering empirical insights. 

Studies 1 and 2 in Chapter 2 investigated AI perception using two conceptual frameworks 

from social psychology, the Stereotype Content Model (SCM) (Fiske et al., 2002) and the Mind 

Perception Dimensions (MPD) model (Gray et al., 2007), and a novel, data-driven model, 

derived from the other two, the AI Stereotype Model (AISM). These models were assessed in 

terms of how well they could map perception across a diverse range of AI agents, considering 

variations in design features (such as form, movement, and social interaction), embodiment (both 

physical and virtual), and intended purpose of use. The findings indicated that AI perception is 

not homogeneous; instead, distinct stereotypes emerge based on perceptions of competence and 

experience—the two key dimensions of AISM. Also, this model proved to be more effective than 

the other two models (MDP and SCM) in mapping AI perception. 

Studies 3 and 4 in Chapter 3 examined how people form evaluations about the 

trustworthiness of AI models based on the three determinants of trust in automation - 

performance, process, and purpose (Lee & See, 2004). The findings suggested that trust in AI 

models is influenced by evaluations of its performance, process and purpose with different 

weight placed on each determinant of trust depending on the moral nature of the decision. 

 In decisions with moral considerations, the AI’s moral stance (the ‘why’ behind its decisions) 

was found to drive trust. In non-moral decisions, trust was driven by the AI’s process (the ‘how’ 

it decides), with detailed explanations being trusted more.  
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Studies 5–8 in Chapter 4 explored how people respond to AI-generated advice compared 

to human advice. Consistent with previous research, the findings suggested that willingness to 

trust AI more than a human advisor increased with the perceived objectivity of the decision 

(Studies 4 and 5). Studies 6 and 7 expanded existed research by taking a closer look at advice 

that validates people in subjective decisions, such as personal preferences. The findings indicated 

that people treat advice that validates them the same, regardless of whether it is AI or other 

people that validates them.  

In the rest of this chapter, we discuss the emergence of AI stereotypes, building on the 

initial evidence for their existence presented in Chapter 1. Key theoretical insights and practical 

implications drawn from the collective work presented in this thesis are discussed next. Finally, 

we conclude with future directions for research.  

The Emergence of AI Stereotypes 

Based on the AISM (Chapter 2), the following four stereotypes are starting to emerge in 

the two-dimensional space of competence x experience (Figure 18). The low competence / high 

experience cluster which will (currently this cluster is empty, as seen in Chapter 2) potentially 

include AI agents that will be perceived as lacking high competence but be rated high in 

experiential traits relative to other AI agents. We coin this category as the ‘humanlike AI’ cluster 

because, as seen in Chapter 2, perceived human likeness of AI decreased with perceived 

competence and increased with perceived experience. Next is the high competence / high 

experience AI cluster which will potentially (currently this cluster is empty, as seen in Chapter 2) 

include AI that will be perceived as high both in competence and experience relative to other 

AIs. We coin this category as the ‘high competent humanlike AI’ as it will comprise AI that will 

be seen as surpassing the ‘humanlike AI’ cluster in competence while still being rated high in 
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experience relative to other AI agents. Artificial General Intelligence (AGI), defined as AI 

capable of surpassing human in practically every task (Pennachin & Goertzel, 2007) and 

currently a topic of interest within the AI research community, is likely to fall into this cluster, 

when and if realised and introduced to the public. 

Figure 18 

The AI Stereotypes Model (AISM) 

 

In the lower part of the two-dimensional space, AI perceived as low in experience is 

positioned. This is where all of today's AI was found to cluster, as seen in Chapter 2. We term 

the AI as 'machine-like AI’, since the perception of experience, which as seen in Chapter 2 plays 

a significant role in perceived human likeness, is either very low or non-existent. Within the 

'machine-like AI' clusters, the level of competence further differentiates AI into ‘machine like 

AI’ and ‘high competence machinelike AI’. We refer to the ‘lowest of the low' AI as mere 

‘machinelike AI’ as it is AI that is perceived as low in both competence and experience relative 

to the AI in the other clusters, and as such regarded as mere machinery. 
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  The work under this thesis provides first evidence for the emergence of the above AI 

stereotypes. Interesting paths to take this first evidence further is to replicate the mapping of AI 

perception in different points in time, with different samples and different AI agents.  Given the 

current pace of technological advancements, new AI agents are expected to reach the public. And 

perhaps in 20 years from now more sophisticated algorithms or more human-like robots and 

avatars will have already become part of the human experience. Repeating the mapping of AI 

perception will give us insights into how humans perceive AI and how this perception evolves 

over time. Perhaps, it will also show us member in the stereotype clusters that are currently 

empty; something that will certainly carry many other interesting questions with it. 

Methodologically, the emergence of AI stereotypes underscores that some AI (and 

certainly most of the AI available back in July 2022 when we performed the first mapping) might 

be more likely to share perceptual similarities with machines. As such, they may be more 

effectively studied through that lens. Or equally, it points to the fact that the current focus of 

research in comparing responses to human targets - particularly brain responses; for a detailed 

overview of studies comparing brain processing of responses to human and to AI targets see 

Harris (2024) - might be obscuring other research questions that could be asked, when not 

comparing with the human perceptual target but instead making comparisons across different AI 

perceptual targets. 

Key Theoretical Insights 

The first key theoretical insight is the need to map AI perception across its diversity.  As 

seen in Chapter 2, AI is not a homogenous perceived target. Mapping AI perception across the 

diverse range of AI agents can however help reveal differences and identify potential similarities 

in the way people perceive them that go beyond design or contextual aspects. This approach can 
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give rise to new research questions, such as i.e., why is certain AI perceived similarly in terms of 

traits of experience and competence? what causes AIs with different embodiment and/or purpose 

of use to be grouped within the same perceptual category? Adopting a vertical approach in the 

mapping of AI perception—spanning across different AI agents rather than focusing on just 

one— can give rise to such questions. In addition, it helps avoid the tendency to focus 

exclusively on a single type of AI agent when studying AI perception. It also enables the 

mapping of new AI agents as it requires updating to reflect the perception of new AI agents that 

are being invented and integrated into people’s lives.  

The second key theoretical insight is the need to update the mapping in order to capture 

shifts in perception. Research findings need to be updated to keep pace with the technological 

advancements as new and more sophisticated AI agents are nowadays reaching the public and as 

people’s increased familiarity with AI is likely to affect their perceptions and behaviours. For 

instance, the studies under Chapter 2 which explored stereotype formation in AI were conducted 

in July 2022, prior to the surge in public interest in large language models like ChatGPT-3 and 

ChatGPT- 4 in late 2022 and early 2023. As a result, ChatGPT was not even ranked among the 

top 23 AIs that people were familiar with in July 2022. If these studies were repeated today, 

ChatGPT would have likely been ranked as one of the AIs that people are very familiar with. 

This underscores the shifting landscape of AI perception. If anything, these shifts should 

encourage researchers to exercise caution when sharing their findings. Including a timestamp 

with research results could be particularly valuable for future comparisons. It also points to the 

need for longitudinal studies. While more difficult to conduct, longitudinal studies will track 

changes in perception as new AI agents reach the public and as the level of integration of the 

existing ones and people’s familiarity with them increases. 
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How people perceive and make decisions with AI is expected to change over time, not 

only due to the invention and integration of new AI agents into human society and the growing 

familiarity with AI, which will likely influence these perceptions and behaviours, but also 

because of the potential developmental impact of interacting with AI from an early age. For 

instance, today’s schoolkids or adolescents have a completely different experience with AI 

having started interacting with AI agents much earlier in life than previous generations, and next 

generations are expected to be even more apt with AI. These generational differences can 

however shape stereotypes around AI (Chapter 2) and can have an impact on how people trust 

and decide with AI (Chapters 3 and 4). This is the third key theoretical insight. Perception and 

behaviours towards AI need to start being studied across different cohorts, including more 

studies looking at younger generations. These studies could reveal how early interaction with AI 

influences stereotype formation and may uncover distinct behaviours toward AI outputs such as 

recommendations and advice. 

Practical Recommendations 

When it comes to practical recommendations, recognising the diversity in AI perception 

(Chapter 2) can inform more nuanced AI design. For example, perception of human likeness was 

found to be shaped by perception of imperfection (perceived human likeness decreased with 

perceived competence) and perception of experience (perceived human likeness increased with 

perceived experience). These insights can guide AI development to better align with human 

expectations—if making AI more human-like is contextually appropriate, ethical, and beneficial. 

And recognising that trustworthiness evaluations are influenced by the combined assessments of 

an AI’s purpose, performance, and process, depending on the moral nature of the decision 

(Chapter 3), provides valuable insights into the types of explanations—such as teleological 
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(purpose-driven) and mechanical (process-driven)—required to make AI explainable, with a 

balance tailored to the moral context of the decision. 

Recognising the diversity in AI perception (Chapter 2) can also guide the development of 

targeted legal frameworks for AI. Governing AI is not an easy task and the best approach to 

doing so remains a topic of ongoing debate  (Clarke, 2019; Zaidan & Ibrahim, 2024). A primary 

challenge involves the fact that there is no such thing as ‘one AI’, given the vast diversity of AI 

agents and the different contexts they can be applied (Smuha, 2021). The mapping of AI 

perception provides evidence that further reinforces the above observation about the need for 

targeted regulation of AI. What is more, it invites for the exploration of the behavioural and 

emotional reactions towards the four AI stereotypes (Figure 18) which are likely to be different 

for each group, leading to different considerations about moral responsibilities and protections 

towards AI. For instance, it is unlikely all AI agents to engage with moral, societal, and 

philosophical question based on how people see them. Perhaps, the ones that are seen as more 

human like than others (upper part of Figure 18) will be the ones that will invite considerations 

for expanding the scope of moral responsibilities and protections typically reserved for humans 

to include AI. 

Moreover, any attempt to regulate AI should ideally be informed by work similar to the 

work undertaken in this thesis e.g., work aiming at understanding how humans perceive and 

make decisions with AI. This approach will ensure that AI systems are aligned with societal 

values and needs in ways that are trustworthy, legitimate, and beneficial for humans. 

Nevertheless, Chapter 4 highlights a key challenge in this type of work: people’s stated opinions 

may not always align with their behaviours in specific contexts (e.g., discrepancies observed 

between self-report and behavioural data). To address this, a practical recommendation from 
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Chapter 4 is to complement survey-based research with behavioural data. Taking this 

recommendation a step further, and by drawing from psychology research on social robots where 

neuroscientific measures have been extensively applied (Henschel et al., 2020),  a further 

recommendation would be to combine different types of measurements, including more neural 

data . Combining self-report and behavioural data with neural data, although the latter are more 

difficult and costly, will provide insights into the nuances of perception and behaviour, nuances 

that behavioural and self-report data alone cannot capture. Also, neural data will shed light to the 

underlying brain mechanism supporting perception and behaviours. In addition, given the strong 

influence of contextual factors on trust in AI (as seen in Chapters 3 and 4), a further 

recommendation is to investigate phenomena like trust in AI and AI advice uptake in the specific 

real life decision domains (e.g., financial, medical, legal) by complementing lab studies with 

field studies conducted in real-world decision-making contexts. 

Finally, Chapter 4 highlighted that AI is as effective validating people’s decisions as 

other people. However, this poses a risk, as AI provides validation with a scale, ease, and 

consistency that humans cannot match. Indeed, AI’s validation effect has already raised concerns 

about keeping people in their own ‘opinion bubbles’, polarising beliefs and voting behaviours 

(O'neil, 2017). Concerns have also been raised in terms of AI’s validation effect posing a threat 

to the freedom of thought, especially when the way AI ‘filters’ reality obscure alternative 

perspectives and choices (Vallor, 2024). While people may generally understand that AI relies 

on vast datasets of past behaviours, they may not realise that its ‘reflection’ lacks the diverse 

opinions and choices it fails to present. This highlights the need to educate people about AI’s 

validation effect. Public awareness campaigns, such as documentaries, public debates, and 

updates to school curricula, could help address this issue. These initiatives should emphasise that 
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while AI is a powerful tool, it should not dictate what individuals think, prefer, or do, but rather 

be used critically. AI primarily reflects existing knowledge, much like a parrot echoing familiar 

ideas (Bender et al., 2021) and while this is not inherently negative, it is crucial for people to 

recognise its limitations and actively seek diverse perspectives to challenge their ideas and foster 

critical thinking. 

Future Directions 

 First, this thesis can be expanded in two ways: content and temporal scope. A content-

scope expansion involves replicating studies with methodological improvements to address 

limitations and testing the hypotheses posed in this thesis through new experimental approaches. 

For example, future research that seeks to explore the effect of the 3Ps (Chapter 3) could 

examine interactions with real-world AI, such as large language models (LLMs), manipulating 

factors like error rates (e.g., performance), moral character instilled in the AI (e.g., purpose), and 

explanation provided (e.g., process). This would enhance ecological validity by integrating real-

world AI into experimental settings. A temporal-scope expansion would involve mapping AI 

perception along the identified dimensions of competence x experience (Chapter 2) over time 

and with diverse samples, and monitoring changes in perception of AI, as people become more 

experienced with AI and the technology evolves. 

Secondly, coupled with how people perceive and make decisions with AI, future research 

should also aim to investigate how interactions with AI reshape human cognition. Increasing 

reliance on AI tools like Google, Wikipedia, and LLMs such as ChatGPT may be altering 

information encoding, retrieval, and processing. For example, studies have shown that access to 

Google changes memory patterns, with people recalling how to find information rather than the 

information itself (Sparrow et al., 2011). Similarly, reliance on AI for cognitive tasks has been 
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shown to affect perceived knowledge (Fisher & Oppenheimer, 2021) while the danger of  

‘illusions of understanding ‘in scientific knowledge generation has also been highlighted 

(Messeri & Crockett, 2024). Memory, metacognition, and knowledge formation are just parts of 

the broader cognitive picture. AI’s impact on learning, thinking, and problem-solving remains 

underexplored. Systematic behavioural and neurological research is needed to assess the impact 

of repeated interactions with AI on cognition. Starting now will also allow us to track changes in 

cognitive functioning due to repeated interactions with AI and the human brain’s adaptation to 

AI over time. 

Finally, future research, coupled with validating the emergence of AI stereotypes using 

diverse samples, should also seek to understand how the brain differentiates between different AI 

agents based on the dimensions of competence and experience and over time, treating the 

findings under Chapter 2 as behavioural data to further investigate using neuroimaging 

techniques. Neuroimaging techniques, like fMRI or fNIRS may seek to explore the neural 

regions that correlate with the dimensions of competence and experience of the AISM (Figure 

18), giving us insights on what allows the brain to differentiate AI agents. Brain imaging 

technique fNIRS in particular, which similarly to fMRI tracks the blood oxygen level dependent 

response, could be a more suitable technique for studying human perception of artificial entities 

in dynamic and interactive settings due to its portability (Henschel et al., 2020). 

Future research may also seek to expand existing literature on how the brain 

differentiates between AI and humans, seeking to understand the neural correlates of AI 

presence. An interesting approach would be to see what the brain imaging studies will reveal 

when the AI becomes the main topic of interest treating the human target as the baseline in the 

comparisons. So far, what is known about how the brain processes AI agents is heavily based on 
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studies that compare AI to human target (Harris, 2024; Vaitonytė et al., 2023) And in these 

studies, AI has served as the non-human baseline. Perhaps new existing research questions will 

emerge when the AI is not compared to human targets or if compared it serves as the main topic 

of interest and human becomes the control condition (Harris, 2024) . This line of research will 

ultimately shed light to how the human brain differentiates between humans and AI, enabling us 

to determine whether AI falls within the scope of moral responsibilities and protections typically 

reserved for humans. 

Conclusion 

AI is becoming an increasingly integral part of human life, with more sophisticated 

algorithms and more humanlike avatars and robots potentially becoming a common reality 

within the next 20 years—or even sooner. However, our understanding of how people perceive 

AI and how the brain processes it and adapts to it remains relatively limited. It is the author's 

genuine aspiration this thesis to contribute to a series of ongoing research, including longitudinal 

studies and comprehensive programs, which will diligently chronicle the evolving human 

perspective on AI, capturing its changes over time. Ultimately, with endeavours as such in place, 

we will be able to, one day, narrate the psychological story of humanity's relationship with its 

most remarkable creation. Not through anecdotes, sensational media, or pop culture and fictional 

portrayals—though the author of this thesis holds great affection for some of the latter—but by 

capturing the human experience with AI as it truly is; as it unfolds in the perceptions, behaviours, 

and is supported by the underlying brain mechanisms of humans across different points in time 

and generations.  
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Appendices 

Appendix 1 

Table 1 

The 67 Different AI targets Included In Study 1 (Chapter 2). Familiarity ratings of the 23 Most 

Popular AIs are indicated in Bold font. 

 

 
no. AI target How familiar are 

you with this type 

of AI? 

(On a scale from 1 

to 7) 

Are you aware of 

AI like the above? 

(% of 'yes' answers) 

Have you ever 

encountered or 

used an AI like the 

above? 

(% of 'yes' 

answers) 

1 AI that provides navigation 

services 5.54 98% 100% 

2 Chatbots used in customer service 

to answer noncomplex questions 

and provide information 

5.42 100% 100% 

3 Facial recognition AI used to open 

digital devices 
5.28 98% 88% 

4 AI that recommends movies, 

shows or series 
5.04 94% 92% 

5 AI that acts as a typing assistant 

that reviews spelling, grammar and 

corrects mistakes 

4.88 94% 88% 

6 AI that acts as a personal assistant 

taking voice commands (e.g., 

searches for Web information, 

orders products online, triggers 

events or plays movies and music 

when you ask it to) 

4.62 90% 82% 

7 AI that recommends music and 

artists to listen to 
4.52 92% 90% 

8 AI that connects you to potential 

friends/people you might know of 
4.38 84% 82% 

9 Avatars used in video games to 

represent different players 
4.18 92% 72% 

10 AI that recommends products or 

services to buy 
3.98 80% 78% 

11 AI that categorises emails in your 

inbox and offers quick - reply to 

options 

3.94 78% 76% 

12 Non-player characters (NPC) in 

video games. NPCs act as if they 

were controlled by human players 

but in reality, their behaviour is 

determined by artificial 

intelligence algorithms 

3.8 76% 66% 

13 AI that filter and organises the 

content on the news feed of social 

media sites 

3.72 78% 78% 
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14 Drones 3.52 98% 50% 

15 Autonomous robots that do 

vacuum cleaning in houses 
3.38 92% 38% 

16 AI that calculates credit scores for 

granting credit cards, loans, or 

mortgages 

3.3 76% 64% 

17 AI that matches people searching 

for a ride with potential drivers 

and also offers ridesharing services 

3.04 78% 46% 

18 Self-driving cars 2.84 96% 12% 

19 AI that recommends people to go 

on a date with 
2.76 72% 32% 

20 Facial recognition AI used to 

identify potential suspects and 

conduct mass surveillance, which 

includes monitoring and tracking 

people 

2.74 72% 26% 

21 Avatars used in Internet forums, 

social media, and other online 

communities 

2.66 64% 44% 

22 Robots used in manufacturing 

(e.g., digitally operated robotic 

arms) 

2.54 82% 14% 

23 Domestic robots 5.54 98% 100% 

24 AI that generates substantial 

passages of text in many different 

styles when prompted with a few 

initial words or lines 

2.38 38% 24% 

25 AI that creates paintings by being 

trained on thousands of paintings 

of different styles and aesthetics 

2.38 40% 30% 

26 AI used to predict someone's 

personality based on their data 
2.38 48% 30% 

27 Non-humanoid robots (= Robots 

that are not designed after the 

human body) 

2.32 64% 14% 

28 Pet-like robots developed for play 2.3 46% 26% 

29 Robots developed for military 

purposes 
2.2 58% 6% 

30 AI used in medical diagnosis and 

treatment of diseases (i.e., in 

dermatology where AI algorithms 

are used to identify and propose 

treatments for skin lesions) 

2.16 52% 18% 

31 AI used in recruitment to screen 

candidates and identify the most 

qualified applicants 

2.1 46% 18% 

32 Teleoperated robots (=Robots that 

are operated remotely by a person, 

over the internet) used in harsh 

environments such as space or the 

sea 

2.04 52% 6% 

33 AI that provides financial advice 

(e.g., investment advice) or 

services (such as e.g., pension 

2.04 34% 18% 
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management or cash management 

services etc.) 

34 AI that generates photorealistic 

faces of people who never actually 

existed. These images are created 

by cleverly mixing features from 

large databases of actual faces 

1.96 50% 20% 

35 Healthcare robots made to assist 

with health management (e.g., 

monitoring blood pressure, 

detecting falls, and providing 

wellbeing advice) 

1.94 42% 14% 

36 AI that provides travel agent 

services (e.g., suggests holiday 

offers, hotels, books ticket and 

stays, organises car hires) 

1.88 18% 14% 

37 AI that automates low-value, 

repetitive back-office processes 

(such as i.e., the administration of 

benefits or the scheduling of 

interviews in an HR department) 

1.88 20% 16% 

38 AI used in video games to get 

feedback from a player’s moves 

and techniques, and creates the 

landscape according to that 

1.84 22% 16% 

39 Robots used in robot-assisted 

surgery 
1.74 56% 6% 

40 AI used in education to produce 

personalised training based on 

students’ learning pace and needs 

1.72 22% 6% 

41 Robots used as guides in public 

places such as shopping malls and 

museums 

1.72 26% 6% 

42 AI that composes music in a 

variety of music genres 
1.7 22% 14% 

43 Humanoid robots (= Robots that 

are designed after the full-human 

body). They are often referred to 

as anthropomorphic robots 

1.7 64% 0% 

44 Teleoperated robots (=Robots that 

are operated remotely by a person, 

over the internet) used for distant 

communication between people in 

business teleconferencing 

1.7 18% 16% 

45 AI used to predict performance 

(e.g., college students’ 

performance, employees' 

performance, baseball players' 

performance) 

1.66 18% 6% 

46 Educational robots specifically 

designed to interact with children 

during their educational activities 

(i.e., robots that provide health 

education to children) 

1.66 16% 12% 
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47 AI used in predictive policing to 

calculate where crimes are more 

likely to occur based on historical 

crime data 

1.62 34% 10% 

48 AI that provides personal styling 

services (e.g., discovers clothing 

for you and offers styling advice) 

1.56 28% 6% 

49 AI used in healthcare systems to 

predict health risk levels in the 

population and allocate resources 

accordingly 

1.54 16% 6% 

50 Androids (= Robots that strongly 

resemble the human outer 

appearance and are covered with 

flesh-or skin - like materials). 

When they possess male physical 

features, they are called androids 

whereas when they possess female 

physical features they are referred 

as gynoids 

1.5 38% 2% 

51 Healthcare robots made to assist 

with physical tasks (e.g., walking, 

fetching 

and carrying, and bathing) 

1.48 26% 2% 

52 Sex robots 1.46 46% 0% 

53 Geminoids (= Robots built to look 

exactly like an existing person, but 

their behaviour is controlled by a 

human who teleoperates them) 

1.4 32% 2% 

54 Social robots (= Robots that are 

designed explicitly to interact with 

humans socially) 

1.36 10% 4% 

55 Facial recognition AI used in 

schools or university campuses to 

take attendance, permit access to 

facilities and monitor student 

behaviour, attention, and other 

emotional characteristics 

1.36 18% 2% 

56 Pet-like robots developed for 

therapy 
1.36 16% 4% 

57 Chatbots that deliver the 

onboarding process for new hires 

(e.g., walk new hires through the 

company’s processes, answer 

questions) 

1.32 6% 4% 

58 Chatbots that provide legal 

services (e.g., drafting and 

submitting parking ticket claims, 

providing notary services, making 

tax appeals) 

1.28 12% 2% 

59 Healthcare robots for older people 

(= Robots used to help meet the 

healthcare needs of older people) 

1.28 16% 2% 

60 Companion robots in retirement 

homes 
1.28 16% 2% 
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61 Healthcare robots made to assist 

with psychological issues (e.g., 

used in mental help therapy) 

1.28 10% 4% 

62 Telenoids (= Teleoperated robots 

with minimal human 

characteristics, usually ageless and 

genderless, but designed to have a 

head, torso, and short limbs) 

1.26 16% 4% 

63 AI that determines which job 

candidates will be successful based 

on analysis of video data (e.g., 

speech patterns, tone of voice, 

facial movements, and other 

indicators) 

1.24 10% 4% 

64 AI that helps you go through 

mental therapy 
1.2 6% 2% 

65 AI used in criminal justice to 

inform criminal sentencing 

decisions (i.e., parole decisions by 

predicting the risk of a defendant 

reoffending) 

1.16 4% 0% 

66 Teleoperated robots (=Robots that 

are operated remotely by a person, 

over the internet) used in 

telemedicine for specialist doctors 

to visit patients remotely in a 

hospital or at home 

1.14 8% 2% 

67 Robots for children with autism 1.08 4% 2% 
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Table 2 

The 23 Most Familiar AI Targets   Arranged In Descending Order of Familiarity (Study 1, 

Chapter 2) 
 

no. AI target How 

familiar 

are you 

with this 

type of 

AI? 

(On a scale 

from 1 to 

7) 

Are you 

aware of 

AI like 

the 

above? 

(% of 

'yes' 

answers) 

Have you 

ever 

encountered 

or used an 

AI like the 

above? (% 

of 'yes' 

answers) 

Examples given by participants (N=50)  

1 AI that provides 

navigation services 5.54 98% 100% 

‘Google maps’, ‘Apple maps’, ‘Sat Navs in cars’, 

‘Strava’, ‘Map my run’, ‘TomTom’, ‘Waze- petrol 

stations and café nearby’, ‘Komoot’. 

2 Chatbots used in 

customer service to 

answer 

noncomplex 

questions and 

provide 

information 

5.42 100% 100% 

'All customer service online chats on retail stores, utility 

companies, banks etc.', 'Amazon help chat, ‘Most 

marketing websites, Virgin, Amazon, Lego, Curry’s', 

'Facebook chat bots', 'Twitter chat bots', 'Pretty much 

every single retailer has something like this: Amazon, 

Microsoft, Apple, Adobe'. 

3 Facial recognition 

AI used to open 

digital devices 

5.28 98% 88% 

‘Apple face ID’, ‘Microsoft Face recognition’, ‘Samsung 

Galaxy face recognition’, ‘banking app unlock’. 

4 AI that 

recommends 

movies, shows or 

series 

5.04 94% 92% 

‘Netflix’, ‘Amazon Prime’, ‘Apple TV’, ‘Disney+’, ‘BBC 

iPlayer’, ‘pretty much any recommendation on any 

streaming service’. 

5 AI that acts as a 

typing assistant that 

reviews spelling, 

grammar and 

corrects mistakes 

4.88 94% 88% 

‘Grammarly’, ‘Microsoft Word’,’ Apple Autocorrect’, 

‘Microsoft office spell checker, sand pell checkers in 

other software’,’ Android keyboards e.g., SwiftKey, 

Gboard’. 

 

6 AI that acts as a 

personal assistant 

taking voice 

commands (e.g., 

searches for Web 

information, orders 

products online, 

triggers events or 

plays movies and 

music when you 

ask it to) 

4.62 90% 82% 

‘Alexa’, ‘Google Assistant’, ‘Siri’, ‘Google Home’, 

‘Cortana’, ‘Amazon Echo’, ‘I use this feature on my 

Samsung phone a lot. Talk to text’. 

7 AI that 

recommends music 

and artists to listen 

to 

4.52 92% 90% 

‘Amazon music’, ‘Spotify’, ‘YouTube Music’, ‘Deezer’, 

‘Tidal’, ‘Apple Music’.’ Shazam’ 

8 AI that connects 

you to potential 

friends/people you 

might know of 

4.38 84% 82% 

‘Facebook’, ‘Instagram’, ‘Snapchat’, ‘Twitter’. 



170 

9 Avatars used in 

video games to 

represent different 

players 

4.18 92% 72% 

‘Xbox games’, ‘Bots in shooter games like Pubg and 

CAll of duty’, ‘I would have to list every online video 

game I've ever played. For some examples that are at the 

top of my head: Diablo, Phantasy Star Online, Elden 

Ring, Monster Hunter Rise, Dark Souls.’ 

10 AI that 

recommends 

products or 

services to buy 
3.98 80% 78% 

‘Amazon, eBay and other online shopping sites’, ‘on 

supermarket websites, people who bought this also 

bought this’,’ suggested products on eBay, amazon prime, 

ads on social media’, ‘Things such as the Tesco 

Clubcard, M&S Sparks and Boots Advantage Card, they 

often tailor rewards and offers to you spending habit’. 

11 AI that categorises 

emails in your 

inbox and offers 

quick - reply to 

options 

3.94 78% 76% 

‘Gmail algorithm’, ‘My work inbox’,’ Outlook’, ‘Android 

mail’, ‘Out of office automatic response’, ‘yahoo mail’. 

12 Non-player 

characters (NPC) in 

video games. NPCs 

act as if they were 

controlled by 

human players but 

in reality, their 

behaviour is 

determined by 

artificial 

intelligence 

algorithms 

3.8 76% 66% 

‘NPcs in various games, the sims, runescape’,’ I've 

experienced them in games such as FFXIV’, ‘In games 

such as Grand Theft Auto, The Sims, Animal Crossing 

etc.’, ‘Dragon's Dogma, Diablo, Vampire The 

Masquerade Bloodlines, basically I would have to name 

every video game.’ 

13 AI that filter and 

organises the 

content on the 

news feed of social 

media sites 

3.72 78% 78% 

‘Twitter feed’, ‘Reddit "popular" feed’, ‘Facebook’, 

‘Instagram’, ‘YouTube’, ‘Algorithms on social media 

(Instagram and TikTok) that determine what comes up in 

your suggested posts/videos, Facebook newsfeed and 

'people you may know' section’, ‘suggested posts on 

Instagram, news feed providing subjects you have shown 

interest in or have talked about.’ 

14 Drones 

3.52 98% 50% 

‘Amazon delivery drones’, ‘Drones flown by individuals 

usually for photography/videography reasons’, ‘Delivery 

drones’, ‘surveillance drones’, ‘military drones’, 

‘bombing drones’,’ Used by hobbyist but also for 

commercials uses such as photography’, security, police 

investigations. 

15 Autonomous robots 

that do vacuum 

cleaning in houses 

3.38 92% 38% 

‘A vacuum cleaner that travels around the room in its 

own’, ‘Roomba’, ‘Vroom bot’, ‘eufy robot vacuum’. 

16 AI that calculates 

credit scores for 

granting credit 

cards, loans, or 

mortgages 

3.3 76% 64% 

‘Banking, credit card, mortgage, hire purchase 

applications’, ‘Experian’, ‘Clearscore’, ‘Money 

supermarket’, ‘credit karma’, ‘Money Supermarket 

Credit Club’. 

17 AI that matches 

people searching 

for a ride with 

potential drivers 

and also offers 

ridesharing 

services 

3.04 78% 46% 

‘Uber’,’ bolt’, ‘unicab’,’ Lyft’, ‘Swift’,’ bla bla car’, 

‘rideshare’. 
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18 Self-driving cars 2.84 96% 12% ‘Tesla’, ‘Google car’, ‘Heathrow Pods’,’ Audi TT assist’. 

19 AI that 

recommends 

people to go on a 

date with 

2.76 72% 32% 

‘Bumble’, ‘Hinge’, ‘Tinder’, ‘Plenty of Fish’,’ 

eHarmony’,’ Facebook dating’, ‘Grindr’, ‘Match’, 

‘OKcupid’. 

20 Facial recognition 

AI used to identify 

potential suspects 

and conduct mass 

surveillance, which 

includes 

monitoring and 

tracking people 

2.74 72% 26% 

‘CCTV’, ‘Passport control’, ‘Airport security’,’ 

Government street and public transport cameras, 

passport control at airports, facial recognition on mobile 

phones.’ 

21 Avatars used in 

Internet forums, 

social media, and 

other online 

communities 

2.66 64% 44% 

‘Facebook avatar’, ‘Snapchat bitmoji’, ‘twitter bots’, 

‘Xbox 360’,’I’ve seen and used avatars on Facebook and 

on iPhone’, ‘chatbot for customer services’, ‘iPhone 

avatars’, ‘online games avatars’ 

22 Robots used in 

manufacturing 

(e.g., digitally 

operated robotic 

arms) 

2.54 82% 14% 

‘Car manufacturing companies, Jaguar Land Rover’, 

‘Used in vehicle and train manufacture, seen them on tv 

within programmes such as 'inside the factory', ‘robots 

used in manufacturing such as on a car production line’, 

‘I’ve seen videos from inside car factories’. 

23 Domestic robots 

5.54 98% 100% 

‘‘Carpet sweeper’, ‘Cleaning robots’, ‘Grass cutters 

hoovers’, ‘Hoover and lawnmowers’, ‘Vacuuming 

robots’, ‘iRobot Roomba’, ‘I have visited a restaurant 

where the meals are served by robots. 
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Appendix 2 

Table 1 

List of the 15 questions used to assess AI literacy (Study 4, Chapter 4) 

Question  Available multiple-choice options  

What is an AI algorithm? 

 

- a set of hardware components that enable computer programs 

to run 

- a set of instructions that can be implemented to perform a 

specific task 

- a specific type of coding language 

 

Two important data sets for an AI 

algorithm include: 

- Prototype and Launch 

- Training and Test 

- Weighted and Unweighted 

What is the difference between machine 

learning (ML) and artificial intelligence 

(AI)? 

- ML is a subset of AI 

- AI is a subset of ML 

- There is no difference 

Smart speakers, like Alexa, use AI 

technology 

- True 

- False 

- Not sure 

The way AI learns is by consuming large 

amounts of data 

- True 

- False 

- Not sure 

When someone selects a show 

recommended by Netflix, they are 

engaging with AI 

- True 

- False 

- Not sure 

When someone unlocks their smartphone 

using face recognition, they are using AI. 

- True 

- False 

- Not sure 
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AI technology is versatile, and a single AI 

program can perform many tasks, such as 

autocompleting sentences, controlling 

robots, etc. 

- True 

- False 

- Not sure 

AI can accurately identify common objects 

in an image at the level of an adult human 

- True 

- False 

- Not sure 

When someone uses an app like Facebook 

to tag a photo, they are engaging with AI 

technology 

- True 

- False 

- Not sure 


