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Interactions between homeostatic plasticity and
statistical learning: A role for inhibition

Elisa Galliano’ and Tara Keck?

Statistical learning, sensory-driven unsupervised learning of
repeating patterns, must coexist with ongoing homeostatic
plasticity that is responsible for the necessary balance of ac-
tivity in the brain; however, the mechanisms that facilitate these
interactions are not clear. While models of both statistical
learning, a form of associative plasticity, and homeostatic
plasticity have primarily focused on excitatory cells and their
synaptic changes, inhibition may play a key role in facilitating
the balance between homeostatic plasticity and statistical
learning. Here, we review the inhibitory synaptic, cellular, and
network mechanisms underlying homeostatic and associative
plasticity in rodents and propose a model in which localized
inhibition, provided by diverse interneuron types, supports both
statistical learning and homeostatic plasticity, as well as the
interactions between them.
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Homeostatic plasticity ensures neural activity remains
within a functional range over extended periods of time,
a requirement of all circuits which is perhaps even more
critical in sensory areas, where environmental stimuli
constantly change across large orders of magnitude [1].
Without homeostatic compensatory mechanisms, sys-
tems become inherently unstable, resulting in either
runaway activity or a quiescent circuit [2]. These
essential homeostatic mechanisms must also act in
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conjunction with forms of associative and Hebbian
plasticity that underlie learning, memory formation, and
functional reorganization after changes in the sensory
periphery. The combination of these plasticity mecha-
nisms allows for flexibility in the circuit to encode novel
experiences (associative plasticity) while avoiding
extreme activity levels (homeostatic plasticity). One
important form of associative learning is statistical
learning—sensory-driven, unsupervised learning of sta-
tistical patterns of sensory inputs—which, by definition,
relies on repeated presentations of the same stimuli.
Consequently, it is likely slower than reinforcement or
one-shot learning, suggesting there may be a conver-
gence of timescales between statistical learning and the
learning-induced homeostatic plasticity that it must
coexist with. However, how statistical learning and ho-
meostatic plasticity integrate to enable changes to the
system while maintaining activity balance without hin-
dering one another is not fully clear.

Experiments and models of both statistical learning and
homeostatic plasticity in adult rodents have traditionally
emphasized changes at excitatory synapses, particularly
through mechanisms like synaptic scaling, and Hebbian
long-term potentiation (LUI'P) and long-term depression
(LTD) [1,3,4]. However, methodological advances in
genetically targeting specific inhibitory interneuron
subtypes for activity manipulation and plasticity read-
outs have enabled novel experiments revealing their role
in these forms of plasticity. Focusing on the rodent brain,
here we review inhibitory plasticity mechanisms that are
thought to support homeostasis, as well as associative
and statistical learning, and propose that differential
inhibitory plasticity processes may help mediate
their interactions.

Inhibitory plasticity mechanisms:
homeostasis

Plasticity of inhibitory interneurons and inhibitory syn-
apses has been shown to play a crucial, yet often
underemphasized, role in homeostatic plasticity [5—7].
Traditionally induced by transient loss or over-
representation of inputs (eg. via surgical, chemical, or
mechanical manipulation of the peripheral sensor;
environmental enrichment; or the pharmacological or
chemogenetic manipulation of local circuits) and stud-
ied as part of maintaining the critical balance between
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excitation and inhibition at the subcellular, cellular, and
network levels [5,8], inhibitory plasticity can occur in
a wide variety of ways.

At the level of synapses, the strength and number of
inhibitory synapses onto excitatory neurons can undergo
homeostatic changes in response to changes in sensory
input via synaptic scaling-like mechanisms or Hebbian
mechanisms such as shifting the LTP/LTD threshold for
plasticity induction [4,9—12]. Either of these mecha-
nisms could result in altered levels of inhibition onto
these principal cells. Additionally, the excitatory and
inhibitory synapses onto inhibitory neurons themselves
can change as a result of changes to sensory input
[13—15], which could also alter inhibitory cell activity
due to increases or decreases in synaptic drive.
Network-level activity is influenced by these changes in
activity levels of individual inhibitory neurons or in the
number of inhibitory neurons in olfactory and hippo-
campal circuits via adult neurogenesis [14,16—18].
Previous studies have shown that inhibitory neurons
regulate small, local cortical networks through inhibition
stabilization, where strong reciprocal
excitatory—inhibitory  connections help maintain
balanced activity levels and provide a fast-acting form of
homeostatic regulation [19—21].

A nonsynaptic mechanism that may underlie changes in
activity levels in inhibitory neurons themselves is the
modulation of intrinsic excitability, which is well suited
to rapidly change activity levels [22]. Changes in
excitability in inhibitory neurons has been shown to
occur as a homeostatic response to decreased input in
somatosensory [23], auditory [24], visual [25], and ol-
factory [26] cortical and subcortical areas. Because of its
speed of implementation, sensitivity to changes in
inputs including neuromodulatory inputs [27,28], and
effectiveness in adjusting the output of the entire
neuron, plasticity of intrinsic excitability can be highly
effective at controlling homeostatic inhibition and
disinhibition in individual inhibitory neurons and
therefore also in the network.

Moreover, there are a number of different inhibitory
subtypes, including (but not limited to) parvalbumin
(PV), somatostatin (SOM), vasoactive intestinal pep-
tide (VIP)—, calretinin- (CR), and calbindin- (CB)
positive neurons, as well as dual releasers of GABA and
monoamines or neuromodulators [29,30]. Different
inhibitory subtypes are known to target other inhibitory
subtypes, which can facilitate disinhibitory activity, as
well as different parts of the dendritic tree, the soma, or
the axon initial segment (AIS) of principal cells
[31—34]. Given that homeostatic regulation can occur at
the AIS [26,35], within dendrites [13,36], at cells [37],
and in small networks [19], activity changes in inhib-
itory subtypes targeting any of these spatial scales could
facilitate homeostatic plasticity. Because of their

different postsynaptic targets, activity changes in
different subtypes would have drastically different ef-
fects on overall activity, depending on the nature of
their connections.

Inhibitory plasticity mechanisms: learning
and associative plasticity

Inhibition is also proposed to play an important role in
plasticity induction associated with learning. In both
human [38] and animal models [39], inhibition has been
proposed to gate learning, with a reduction in inhibition
levels being associated with increased levels of learning
and associative plasticity at excitatory synapses. Similar
observations have been made for homeostatic plasticity
occurring following the loss of peripheral input, with
a reduction of inhibitory levels preceding excitatory
synaptic plasticity proposed to be associated with fast
compensation and functional remapping [6,40]. These
permissive homeostatic changes in inhibition include
reduced excitatory input onto inhibitory neurons
[40,41], decreased turnover of adult-born inhibitory
neurons [42], and reduced inhibitory inputs onto exci-
tatory neurons [40,43,44], all of which lower inhibitory
synaptic drive onto excitatory neurons. While histori-
cally there have been fewer studies mechanistically
linking inhibitory plasticity with behavioral-level asso-
ciative learning, more recent work has started to strongly
link changes in plasticity in inhibitory cells with disin-
hibition of principal neurons and the overall network
[45—48]. Supporting this idea, it has been widely
demonstrated that following sensory changes and
learning induction, inhibitory plasticity precedes exci-
tatory plasticity, with inhibitory changes acting on
a faster time course [25,49].

The consistency of these results across different plas-
ticity induction paradigms suggests that this may be
a general principle. Therefore, reducing inhibition,
whether homeostatically or not, through changes to
inhibitory synapses and neurons may also facilitate sta-
tistical learning, though this remains untested.
Furthermore, different inhibitory subtypes have been
shown to have unique plasticity profiles and play
different roles in circuit computation and reinforcement
learning [50—52]; however, the specificity of their
plasticity in statistical learning remains unexplored.

A potential role for inhibition in
homeostasis and statistical learning

While inhibitory homeostatic plasticity is well studied at
the molecular and cellular level, little is known about
how inhibition mechanistically supports statistical
learning. Thus, we venture to extrapolate from the
existing literature and propose a deliberately speculative
hypothesis on how statistical learning, inhibition, and
homeostasis may intersect. One possibility is that
different inhibitory subtypes mediate homeostatic
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Schematic representation of the working hypothesis that localized inhibitory plasticity, mediated by diverse plasticity mechanisms, may enable the
synergistic coexistence of associative plasticity and statistical learning with maintaining network homeostasis. The indicated examples of neuronal
subtypes are found in the cortex and hippocampus, but a similar circuit design—albeit with different cell names and makers—applies broadly across the
brain. AIS, axon initial segment; VIP, vasoactive intestinal peptide; CR, calretinin; SOM: somatostatin; PV, parvalbumin; LTP/LTD, long-term potentiation/

long-term depression.

plasticity and statistical learning respectively (Figure 1),
which would support these two complementary forms of
plasticity occurring in tandem, while minimizing con-
flict. For example in the cortex, cell- and network-level
homeostatic balance could be regulated through
changes to interneurons, such as PV cells, that typically
target the excitatory cells’ soma [32]. PV cells have been
shown to increase their selectivity to match that of
excitatory pyramidal cells during visual reinforcement
learning [50], with PV—pyramidal cell coupling poten-
tially having a stabilizing effect on network activity.
Similar changes in other brain areas could also entrain
soma-targeting interneurons to strengthen coupling
with excitatory cells during learning-related increases in
activity, which could in theory help balance network
activity via inhibitory—excitatory reciprocal interactions.
Additionally, a subset of PV cells, z.e. corticohippocampal
chandelier cells and cerebellar basket cells, are known to
target the AIS of pyramidal/Purkinje cells, which affects
the action potential threshold and as a result, cell and
network activity [53]. Changing inhibition levels onto
the AIS would provide another PV-specific way in which
cellular and network activity can be homeostatically
regulated [54]. Complementing PV plasticity, a reduc-
tion of inhibition from interneurons targeting the

dendrites of excitatory neurons, for example, bulbar
granule cells and cortical SOM cells [32,55], could be
achieved either directly or indirectly through increased
inhibitory drive from VIP cells onto SOM cells [56].
This reduction could gate the associative or Hebbian
synaptic plasticity that is proposed to underlie statistical
learning, similar to what has been observed for other
forms of learning and plasticity [40,50].

We propose this spatial compartmentalization of regu-
lation of excitatory cells by different inhibitory subtypes
may facilitate complementary statistical learning and
homeostatic plasticity, with dendrite-targeting inhib-
itory neurons gating excitatory plasticity in local com-
partments, as has been observed in learning and
functional reorganization [39,40,43,44], and PV-like
inhibitory neurons homeostatically regulating activity
levels at the soma or AIS, affecting cellular and network
activity [52,54]. While these two forms of plasticity are
unlikely to be strictly restricted to these spatial com-
partments, this framework may generally provide
a mechanism by which these forms of plasticity coexist.
Furthermore, these homeostatic changes in inhibition
are unlikely to be operating in isolation and likely occur
in tandem with other homeostatic mechanisms in
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excitatory neurons, such as intrinsic excitability modu-
lation, synaptic scaling, and shifting the threshold for
LTP/LTD induction. These mechanisms have been
discussed elsewhere and have been shown to globally
regulate synaptic strength while allowing for localized
associative or Hebbian plasticity that are thought to
underlie learning [1,3].

While relatively few experimental studies have exam-
ined the role of inhibition in statistical learning, many
associative learning and statistical learning models do
contain inhibitory layers [57,58]. Furthermore, numer-
ous models have demonstrated that inhibition stabili-
zation is a key feature in the cortex, with recurrent
networks of excitatory and inhibitory cells showing
strong coupling that creates stable activity levels inde-
pendent of the level of sensory stimulation [20,59,60].
To date, models of statistical learning or homeostasis
have not typically incorporated spatially compartmen-
talized inhibitory inputs that would be associated with
particular inhibitory subtypes. A model of statistical
learning that includes localized inhibition, along with
homeostatic compensatory components including direct
modulation of intrinsic excitability, could be a critical
first step for testing the role of inhibitory subtypes in
statistical learning, homeostasis, and the interactions
between the two.
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