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Selfish genetic elements, such as meiotic drive genes, disrupt Mendel’s law
of equal segregation by biasing their own transmission, often at a detriment
to the rest of the genome. Metabolic costs of the X-linked sex ratio (SR)
meiotic drive were investigated in stalk-eyed flies (Teleopsis dalmanni). The
experiments demonstrate that individuals with SR have reduced capacity
for ATP synthesis. The disruption in mitochondrial function leads to
compensation exhibited in increased basal metabolic rate and greater food
consumption across a range of diets. The range of metabolic costs of drive
was evident in males and females at a similar magnitude. The likely cause
lies in the accumulation of deleterious mutations within the series of large
inversions on the drive X chromosome, subject to low recombination and
weak natural selection. In females, the drive chromosome had a dominant
effect, with a single copy causing substantial metabolic compromise. There
was little evidence of male-specific metabolic costs, nor evidence of greater
effects of drive chromosomes on female metabolism. This suggests that
direct metabolic costs from meiotic drive on spermatogenesis and from
sexually antagonistic selection are relatively weak. Our results underscore
the broad physiological impacts that selfish genetic elements have on host
metabolism and fitness.

1. Introduction
Meiotic drivers are one of the most well-studied classes of selfish genetic
elements that break Mendel’s law of equal segregation [1]. They have been
identified on the autosomes and the sex chromosomes—the latter being more
easily documented owing to the resulting bias in the progeny sex ratio [2–4].
Meiotic drive occurs via the preferential segregation towards the egg nucleus
away from the polar bodies in females or through disabling non-carrier
gametes post-meiotically in males, in both cases facilitating a transmission
advantage to the drive allele [5]. The dysfunction or loss of sperm in male
meiotic drive typically results in a direct cost to fertility [4,6,7]. This fitness
reduction is particularly strong under conditions of sperm competition, both
in defensive and offensive roles [6,8].

A range of indirect organismal costs are associated with male meiotic
drive [1]. Loss of viability has been demonstrated in a range of species,
both in females homozygous and heterozygous for drive alleles, as well as
in drive-carrying males [9–12]. These costs are thought to originate from
the propensity of drivers to position within low-recombination chromoso-
mal inversions or other genomic regions subject to reduced recombination
[3], resulting in weak selection and the accumulation of a high deleterious
mutation load [13,14]. In addition, the spread of X-linked alleles depends on
sex-specific selection (in part due to hemizygosity, which uncovers reces-
sive alleles in males) and their asymmetric sexual transmission through the
generations [15–17]. This is predicted to lead to the enrichment of sexually
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antagonistic alleles on driving X chromosomes that benefit male over female fitness, with greater than additive loss to female
fitness in homozygotes [18].

The magnitude and direction of direct and indirect costs of meiotic drive have rarely been subjected to explicit empirical
investigation. A means to gauge these costs is to examine the effects on metabolism [19,20]. Metabolism and metabolic traits
are fundamental to life-history trait evolution, capturing the rate at which organisms transform and expend finite energy
into growth, maintenance and reproduction [21–23]. Furthermore, metabolism is a useful ‘intermediate phenotype’, positioned
between the level of the genotype and traditionally measured morphological and behavioural traits that contribute to fitness
[24,25]. Although the association of metabolic traits with fitness is inevitably complex, it can provide a clear indication of where
physiological processes are compromised by genetic variants, and are therefore likely to reduce fitness [26–30]. An advantage to
studying metabolic traits is that they can be assessed in an equivalent manner in both sexes, allowing the investigation of sexual
differences, which is key to the hypotheses investigated here.

In this study, three metabolic-related traits were measured to evaluate how meiotic drive directly in males and indirectly
through its genomic architecture (through associated chromosomal inversions) in both sexes leads to costs linked to down-
stream consequences for fitness. These are investigated in the Malaysian stalk-eyed fly, Teleopsis dalmanni, which carries an
X-linked meiotic drive system [11,31–35]. This species is known for its extreme sexual dimorphism, in which males have
greatly exaggerated eyespans that are subjected to strong female mate preferences [34,36]. Males that carry the meiotic drive X
chromosome, known as Sex-Ratio or SR, cause the dysfunction of Y-bearing sperm and sire female-only broods [5,8,37–39]. SR
meiotic drive appears to be broadly stable across natural populations at a frequency of around 20% [33,40]. It is also present in
the sister species Teleopsis whitei, which suggests a common origin estimated at around 4 million years ago, though sequence
evidence is lacking to support this hypothesis [40,41].

T. dalmanni drive males curiously do not suffer from reduced fertility despite the destruction of half of their gametes
[42]. They pass on the same number of sperm per ejaculate as wild-type males and have equal fertility when in competi-
tion with wild-type males [43,44], although an earlier study found some now contested evidence for a fertility difference
[35]. This can be explained by the adaptive enlargement of testes in drive males, which is evident in the primordia
of the adult fly testes upon eclosion from the pupal stage, accelerated growth rates during early adult development,
and increased size of testes in sexually mature flies [45]. This view is complicated by a recent experimental evolution
study that reported reduced SR frequency under multiple mating, which points to SR males faring poorly when subject
to high levels of mating competition [46]. A number of other traits associated with the meiotic drive X chromosome
are thought to be detrimental to fitness. Drive males have reduced eyespan under laboratory conditions and in the
field [11,31,34,42,47], smaller accessory glands [42]—though this is not well established [45]—and mate less frequently
than wild-type males [11]. Drive females do not have reduced eyespan [31,47] but have lower fecundity compared
to wild-type females [48]. Both sexes have reduced egg-to-adult viability when they carry the drive chromosome [11].
These phenotypes and fitness measures highlight the breadth of meiotic drive-induced costs, emphasizing the value to
investigate the underlying metabolic consequences of harbouring drive across both sexes.

Three diverse measures of metabolic function were assessed to examine the impact of meiotic drive on metabolic life history.
Mitochondrial function was measured by monitoring oxygen consumption in thoracic tissue using an O2k-Fluorespirometer
[49,50]. Whole-organism resting metabolic rate was assayed through CO2 production measurements using a MAVEn-FT
(Multiple Animal Versatile Energetics Flow-Through System, Sable Systems International, Las Vegas, NV). Finally, nutrient
acquisition under resting conditions was assessed through the consumption of different diets using a capillary feeder (CAFE)
assay [51]. The primary aim was to compare flies carrying drive and wild-type chromosomes, as well as between heterozygous
and homozygous females, to test the prediction of general deleterious effects associated with the drive X chromosome. The
hypothesis that dysfunction caused by meiotic drive during spermatogenesis leads to direct metabolic consequences was tested
by comparing the sexes, with the expectation that males would exhibit more pronounced effects. The hypothesis that there is an
accumulation of sexually antagonistic effects linked to drive was tested in the same way but with the reverse expectation that
female metabolism would be more strongly impacted.

2. Material and methods
(a) Experimental fly generation
The wild-type, standard (ST) stock was collected in 2005 from the Ulu Gombak Valley, Peninsular Malaysia [31,52]. Flies
with the XSR genotype were collected in 2012 from the same location [31]. Since 2021, they have been maintained by crossing
homozygous SR females (XSR/XSR) to wild-type males (XST/Y) to produce drive males (XSR/Y), who are then mated back to XSR/XSR

females to generate the next generation of homozygous SR stock females. Note that the breeding procedure for ST and SR stock
means that the autosomal and Y genetic content is regularly mixed and does not differ between flies used in these experiments.

Experimental ST males (XST/Y) and homozygous ST females (XST/XST) were collected on egglays (petri dishes with a damp
cotton pad and pureed sweetcorn as food) from cages housing XST/XST females and XST/Y males. The egglays were incubated at
25°C, and the emerging flies were collected. The same procedure was followed to collect SR males (XSR/Y) and heterozygous
females (XSR/XST) from cages housing XSR/XSR females and XST/Y males and to collect homozygous SR females (XSR/XSR) from
cages housing XSR/XSR females and XSR/Y males. We used standardized procedures in our collection and testing of individuals
for the experiments, but inevitably there is variation as the different genotypes were generated in separate crosses. A range of
corrections were applied in the statistical analyses to control for such variation (see below).
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The number of adult flies in the parental cages was equivalent in the three crosses to ensure that approximately similar
densities of eggs were laid, limiting variation in larval density. There were inevitable differences between the ‘social environ-
ment’ in the production of offspring as genotypes differed, and in particular, in the production of SR homozygotes, as drive
male parents only produce female offspring. However, we have no evidence that the sex ratio among competing larvae
influences adult phenotype (unpublished data). Age was measured from eclosion, with an inaccuracy of 1−3 days as flies were
not collected every day. Adult flies were collected and held in single-sex containers. All experimental flies were virgins and
sexually mature when used in experiments [53,54].

(b) Measuring mitochondrial function through high-resolution respirometry
Flies used in the experiment were aged approximately 50−60 days post-eclosion. The preparation of T. dalmanni thoracic tissue
for mitochondrial function analysis was adapted from published methods [50,55]. Whole thoraces were dissected in 1.5 ml
ice-cold MiR05 respirometry buffer (0.5 mM EGTA, 3 mM MgCl2.6H2O, 60 mM lactobionic Acid, 20 mM taurine, 10 mM
KH2PO4, 20 mM HEPES, 110 mM D-sucrose and 1 g l−1 BSA, pH 7.1). The muscle fibres were lightly homogenized in 150 μl of
MiR05, of which 50 μl were added in a calibrated O2k-Fluorespirometer (Oroboros Instruments, Innsbruck, Austria) with 2 ml
MiR05. The remaining homogenate was frozen and kept for subsequent protein content analysis using a QuantiPro BCA Assay
Kit (Sigma-Aldrich).

Pyruvate (10 mM) and malate (2 mM) (Complex I substrates) were then added to the Oroboros sample chamber, and the
LEAK state was recorded after 15−20 minutes. ADP (5 mM) was added to reach the OXPHOS state. Cytochrome c (10 mM)
was added to assess mitochondrial membrane integrity, and samples with >20% increased O2 consumption were discarded.
Glutamate (10 mM), succinate (10 mM) and glycerophosphate (10 mM) were added sequentially, recording O2 fluxes at each
state. Maximum uncoupled respiration was determined using 0.5 μM FFCP. Respiration was inhibited by adding rotenone (0.5
μM), followed by malonic acid (5 mM), and antimycin A (2.5 μM), estimating the residual oxygen consumption (ROX). ROX
was set as the baseline (O2 consumption = 0), and other states were compared to ROX-corrected states. Finally, Complex IV
activity was measured using ascorbate (2 mM) and TMPD (0.5 mM), followed by inhibition with sodium azide (100 mM).

Following Oroboros runs, both respiratory control ratio (RCR) and Complex I-linked efficiency were calculated. The RCR
was calculated by dividing the oxygen consumption when ADP was added by the LEAK state (State 3/State 4). RCR is a
complex function that reflects changes in many aspects of oxidative phosphorylation. High RCR values indicate an elevated
capacity for substrate oxidation, low proton leak and high respiratory capacity available to phosphorylate ADP to ATP [49,56].
The activity of respiratory Complex I was calculated as the percentage decrease upon the addition of the inhibitor rotenone
in the uncoupled state. Complex I is a crucial component of the electron transport chain, pumping protons into the inter-mem-
brane space that largely re-enter through the ATP synthase [49].

Each Oroboros instrument is equipped with two chambers, and two instruments were available for this experiment, enabling
the simultaneous testing of four genotypes. Due to this logistical limitation, only wild-type and drive males, as well as
homozygous wild-type and homozygous drive females, were included in this study. Heterozygous females were not tested in
this experiment.

(c) Measuring whole-organism metabolic rate
Whole fly resting metabolic rate was measured using a MAVEn-FT (Multiple Animal Versatile Energetics Flow-Through
System; Sable Systems International, USA). Individual flies (41–72 days post-eclosion) were weighed and then placed into
metabolic chambers coupled to an external CO₂ analyser (LICOR 850; LI-COR, USA). Fly activity was measured via the presence
of three infrared beams below each chamber, recording movement every time the beams were broken. The chambers (length:
3 cm, diameter: 1.3 cm) were large enough so that flies could move around but small enough that they could not undertake
behaviours such as flying or foraging. The CO2 concentration in each chamber was measured during airflow for 120 seconds at
a flow rate of 30 ml min−1. The system monitored 16 individual chambers consecutively, with three or four measurements for
each chamber, over a 3-hour cycle.

The multiplexed configuration included 15 chambers containing flies and one chamber left empty as a control to confirm
that there was no interference from extraneous variables. Eight separate trials were conducted, each involving a different set of
15 individuals. Three individuals of the five genotypes were tested in each trial: two male genotypes, XSTY and XSRY, and three
female genotypes, XSTXST, XSRXST and XSRXSR. At the beginning of a trial, all individuals were lightly anaesthetized with 5 ppm of
CO₂, weighed (mg) and then allowed to wake and acclimate for 30 minutes before being placed inside the MAVEn-FT system.

(d) Measuring dietary consumption
Food consumption was measured using a CAFE assay [51] adapted for use in stalk-eyed flies. Experimental individuals (20–25
days post-eclosion) were placed individually in vials (20 ml) containing a base layer (6 ml) of 0.8% agar to provide a source
of hydration with no caloric content. The top of the tube was secured with a sponge bung penetrated by a pipette tip cut
to fit a capillary tube. Flies remained in their agar vials overnight. The following morning, a 20 μl glass capillary filled with
the allocated dietary treatment was inserted into each individual vial (electronic supplementary material, figure S1). Dietary
treatments used in this experiment were a mix of microbiology yeast extract and sugar, but all with a final concentration of 32.5
g l−1. The three diet treatments used were high protein (1 : 1 yeast : sugar), low protein (1 : 2 yeast : sugar) and sugar alone (10%
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solution). Blank controls (empty vials containing a liquid capillary but with no fly) were used as controls to estimate the volume
of liquid lost through evaporation alone.

All vials were placed in an incubator (PHCI-MLR-352H Climate Chamber) at 25°C and 90% humidity to maintain moisture
in the vials and minimize capillary liquid evaporation. The liquid meniscus at the top of the capillaries was marked, and the
decline over known time periods due to consumption and evaporation was recorded. The physical distance between these
marks was measured using digital callipers to obtain the volume of liquid consumed (μl) from the 20 μl capillary. Consumption
was measured, and food was replaced after 20, 40 and 60 h, resulting in the total consumption (calculated as the sum across the
3 days).

The five genotypes were tested, two male and three female, as listed in measuring whole-organism metabolic rate section
above. The thorax of ice-anaesthetized flies was measured upon completion of the experiment using an Infinity Capture video
microscope attached to a computer equipped with NIH image software (FIJI - IMAGEJ, v. 2.1.0/1.53 c). The thorax was measured
from the prothorax anterior tip along the midline to the joint in between the thorax and metathoracic legs [57].

(e) Statistical analyses
All statistical analyses were carried out using R Studio (v. 2023.12.0). We used linear models using either the ‘lm’ or ‘lmer’
function in R, depending on whether the models had random effects. Statistical models are reported in full in the electronic
supplementary material (SI Models).

(i) Mitochondrial function

Oxygen consumption data were normalized by protein content within the Oroboros software (DatLab v7.8). Sex and genotype
were accounted for in all models as fixed effects. Interactions between variables were tested, and the model was reduced by
removing interaction terms that were not significant. The response variables RCR and Complex I function are reported in the
text, while others are reported in the electronic supplementary material (SI Models, §5).

(ii) Whole-organism metabolic rate

MAVEn data files were processed using Sable Systems software (ExpeData v.1.7), which extracted the 30 second window
(within the 2-minute reading) with the lowest CO2 production and corresponding activity values of individual flies. Weight,
sex, activity level, age of fly and genotype were accounted for in all linear regression models. Interactions between variables
were tested, and the model was reduced by removing interaction terms that were not significant. Three or four measurements
were made from the same individual. To account for this, individual sample ID was added as a random effect. Variations
between flies in weight, activity and age were added as covariates in all analyses. Weight and activity both had positive effects
on CO2 production, whereas age did not. Marginal means are reported in the text where differences were observed.

SR is on the X chromosome, and this results in five genotypes; three for females (XSTXST, XSRXST and XSRXSR) and two for males
(XSTY and XSRY). Given the differences in genotype numbers between the sexes, a two-step analysis was used to properly assess
the effect of all genotypes on a given trait. In the first, the five genotypes were reduced to two genotype categories, ST or SR,
for each sex. Heterozygous females and SR homozygous females were pooled in the female SR category (i.e. carrying a drive
chromosome). Here, we examined the effect of genotype (SR/ST) and sex, plus their interactive effect on metabolic rate. The
second analysis was aimed to dissect dominance among the female genotypes, which compared the effect of the three female
genotypes on metabolic rate. A further analysis is given in the electronic supplementary material, treating all five genotypes as
separate experimental units (SI Models, §3d). The results justified the pooling of drive-carrying females.

(iii) Dietary consumption using the capillary feeder assay

Prior to the analysis of the data, the mean food loss due to evaporation (blank vials with no fly) was subtracted from the
consumption of individual flies. The data were log-transformed to meet statistical model assumptions of normality. The full
models included consumption values as a response variable, with thorax (as a proxy for body size), sex, treatment (diet type)
and genotype as fixed factors. Interactions between variables were tested, and the model was reduced by removing interaction
terms that were not significant. The random effect of ‘box’ was also included to control for any batch differences across
experimental runs. Genotype was assessed using the two methods outlined in the whole-organism metabolic rate section.

3. Results
(a) Mitochondrial function is genotype-dependent
Genotype affected mitochondrial activity as measured by the RCR (F1,23 = 6.394, p = 0.019), where ST individuals had higher
RCR (42.540 ± 5.669) than SR individuals (24.375 ± 4.201; figure 1A). There was no difference across the sexes (F1,23 = 0.151, p =
0.702) and no interaction between genotype and sex (F1, 22 = 0.995, p = 0.329).

In addition, ST individuals displayed a higher Complex I contribution to respiration (33.902 ± 2.815) than SR individuals
(22.762 ± 3.180; F1,23 = 6.741, p = 0.016; figure 1B). Again, there was no difference across the sexes (F1,23 = 0.512, p = 0.482) and no
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interaction between genotype and sex (F1,22 = 0.115, p = 0.738). All other respiratory states of the electron transport system did
not vary between SR and ST individuals (p > 0.05, electronic supplementary material, SI Models §5).

(b) Whole-organism metabolic rate is sex- and genotype-dependent
In our first analysis, genotype was found to alter respiration (F1,91.79 = 12.424, p > 0.001), with a higher level of CO2 production
in individuals carrying SR chromosomes (2.05 × 10−4 ± 1.16 × 10−5) compared to those with only ST chromosomes (1.60 × 10−4 ±
1.31 × 10−5; figure 2). Respiration also differed between the sexes (F1,112.52 = 8.669, p = 0.004), with males (1.96 × 10−4 ± 1.16 × 10−5)
having greater respiration than females (1.69 × 10−4 ± 1.13 × 10−5; figure 2). There was no interaction between genotype and sex
(F1,113.59 = 0.102, p = 0.750).

In the analysis above (as described in the methods), female SR homozygous and heterozygous genotypes were pooled as
both genotypes carried drive. This was followed by a female-specific analysis, where it was found that respiration differed
among the three genotypes (F2,71.35 = 6.897, p = 0.002; electronic supplementary material, figure S1). SR homozygous females
showed the same level of respiration as heterozygotes (Tukey’s HSD: t = −0.070, p = 0.998, d.f. = 66.8). Both SR homozygotes
(t = 3.337, p = 0.004, d.f. = 71.7) and heterozygotes (t = 3.199, p = 0.006, d.f. = 56.8) had elevated respiration compared to ST
homozygotes. In addition, there was no difference in the cross-sex comparison of all individuals with drive chromosomes (SR
males, female heterozygotes and female SR homozygotes; all t ≤ 0.264, p ≥ 0.1232).

(c) Dietary consumption using the capillary feeder assay is diet- and genotype-dependent
Pooling SR heterozygotes and homozygotes, genotype-altered food consumption (F1,224.96 = 7.966, p = 0.005), as individuals
carrying SR chromosomes (7.559 ± 0.513) consumed a greater total amount of food than individuals with only ST chromosomes

Figure 1. (A) Respiratory control ratio (RCR) and (B) percentage of Complex I contribution to respiration in females (left) and males (right) for ST (blue) and SR (pink)
genotypes. Females with the SR genotype were SR homozygotes. The central line in each box represents the median, the box indicates the interquartile range and the
whiskers represent the 95% CI.
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(4.855 ± 0.520). There was no effect of sex on food consumption (F1,223.68 = 3.377, p = 0.067). Consumption varied with diet
(F2,224.01 = 21.401, p < 0.001), with more of the high protein diet consumed than the low protein diet (t = 2.747, p = 0.018, d.f. =
225), which in turn was consumed more than the sugar diet (t = 3.784, p < 0.001, d.f. = 224; figure 3). There was no interaction
between diet and genotype (F2,222 = 0.264, p = 0.768) or between genotype and sex (F1,223.53 = 0.033, p = 0.855).

Limiting the analysis to females (as in the whole-organism metabolic rate section), consumption differed among the three
genotypes (F2,137.22 = 3.726, p = 0.027; electronic supplementary material, figure S2). Post hoc comparisons showed that hetero-
zygotes consumed more than ST homozygotes (t = −2.648, p = 0.024, d.f. = 138), but other comparisons were not significant.
Consumption again varied with diet (F2,136.97 = 10.900, p < 0.001). The high protein diet was consumed more than the sugar diet
(t = 4.665, p < 0.001, d.f. = 137). There was no difference between the consumption of high protein and low protein diets (t = 2.359,
p = 0.051, d.f. = 137) or low protein and sugar diets (t = 2.324, p = 0.056, d.f. = 137), though both comparisons were borderline

Figure 2. CO₂ (µl min−1) produced as a measure of metabolic rate in females (left) and males (right) for ST individuals (blue) and SR individuals (pink). Basal metabolic
rate is plotted as residuals after accounting for body size, activity and age variation. Heterozygotes and SR homozygous females are pooled. The central line in each box
represents the median, the box indicates the interquartile range and the whiskers represent the 95% CI.

Figure 3. Total consumption (μl) of liquid diet over the 60-hour experiment (plotted as residuals after correcting for body size) of sugar (left), low protein (middle) and
high protein (right) by females (top) and males (bottom). Genotypes are ST (blue) and SR (pink). Heterozygotes and SR homozygous females are pooled. The central
line in each box represents the median, the box indicates the interquartile range and the whiskers represent the 95% CI.
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significant. There, again, was no interaction between diet and genotype (F4,132.99 = 0.267, p = 0.899). In addition, there was no
difference in consumption for the cross-sex comparisons (all t ≤ 1.643, p ≥ 0.231) of all individuals with drive chromosomes (SR
males, female heterozygotes and female SR homozygotes).

4. Discussion
The X-linked SR meiotic drive system in stalk-eyed flies has distinct metabolic consequences. We provide evidence that drive
flies suffer mitochondrial dysfunction, and this dysfunction is compensated via an increase in basal respiration rate. SR flies also
consume more food per unit of time across a range of diets, indicating further compensatory mechanisms to counteract their
less efficient metabolism and a potential inability to sufficiently utilize nutrients. These results provide the first demonstration
of how metabolic function can be corrupted by meiotic drive. All the markers of stress within the metabolic system occurred
in females as well as males carrying the drive chromosome, despite the direct disruption of meiosis in stalk-eyed flies being
limited to spermatogenesis. This strongly points to the genomic inversions on the driving X chromosome being linked to a
raised mutational load, which causes a range of metabolic costs.

Mitochondrial function was measured through high-resolution respirometry using an O2k-Fluorespirometer (Oroboros
Instruments, Austria). This measures the flux through the electron transport chain during OXPHOS using a substrate-uncou-
pler-inhibitor titration protocol (see electronic supplementary material for details). Two aspects were found to be compromised.
Individuals carrying meiotic drive had a lower RCR (figure 1A), indicating the uncoupling of oxidative phosphorylation from
ATP synthesis [58]. They also presented reduced Complex I substrate oxidation contribution to respiration (figure 1B). Complex
I is the first and largest unit in the respiratory chain and the primary contributor to the proton motive force that facilitates
ATP synthesis [59]. Other mitochondrial states tested were not found to differ between SR and ST individuals (electronic
supplementary material, SI Models §5). A possible cause of low RCR and Complex I dysfunction is mutations in the nuclear
DNA encoding mitochondrial subunits or accessory proteins located within the driving X chromosome inversions. For example,
several X-linked mutations associated with Complex I dysfunction have been characterized by various pathologies [60,61],
including the NDUFA1 gene implicated in mitochondrial encephalomyopathy [62]. These possibilities could be tested in future
bioinformatic work comparing SR and wild-type sequence data [63], specifically looking for evidence of disruption to coding
sequences of nuclear genes involved in mitochondrial function or for differential expression of nuclear and mitochondrial genes
involved.

There were no sex differences in the RCR or Complex I measurements, but the sample size was not large, which limits
the assurance of this result. However, it is noteworthy to mention that the number of samples tested in this experiment is
typical of protocols used in this field [64–68]. In addition, the flies used in this experiment were virgins, which suggests it
would be interesting to investigate mitochondrial metabolism in mated flies. Previous studies have reported reduced sexual
dimorphism in virgin metabolic rate [69]. A potential shortcoming is that the O2k assessment was limited to female homozy-
gotes, meaning that the degree of dominance of drive effects on mitochondrial activity in females cannot be discerned. This
could be investigated as part of future work. Another area to investigate is the male reproductive tissues, where the drive
genes causing disruption of spermatogenesis are active (i.e. the testes and accessory glands) [70]. These tissues are expected
to show elevated dysfunction compared to thorax musculature due to the direct effect of drive, which might be measurable
through mitochondrial deficits in RCR, Complex I or other elements of the respiratory chain. Previous studies in the t haplotype
meiotic drive system in mice provide valuable parallels. Mutant tn sperm show increased aerobic metabolism (exemplified by a
reduced NADH/NAD ratio), which is thought to put them at a selective advantage because it increases motility, maturation and
fertilization [71]. In some cases, drive not only causes dysfunction in wild-type sperm, but also causes drive sperm to experience
pleiotropic collateral damage [6]. This does not appear to be the case in T. dalmanni, as SR males show no reduction in sperm
competitiveness or paternity gain in competition with wild-type males [43,48], though experimental evolution suggests weaker
fertility under high multiple mating [46]. The most plausible explanation is the compensatory enlargement of SR male testes,
with a concomitant equal sperm count per ejaculate when compared to wild-type males [42,44]. How these adaptive changes
alter mitochondrial function in these tissues remains to be investigated. In contrast, female reproductive tissues are not expected
to be differentially affected compared with somatic tissues, as meiotic drive has no known downstream consequences for
oogenesis in stalk-eyed flies. Mitochondrial function again remains to be assessed.

The whole-organism metabolic rate of stalk-eyed flies was examined using a MAVEn-FT system, which takes repeated
measurements of CO2 production of resting flies over a 3-hour period. Respiration was higher in drive individuals. Female
drive heterozygotes and homozygotes were tested alongside wild-type homozygous females, which demonstrated that the
SR chromosome has a dominant effect on respiration, as females with a single SR chromosome produced as much CO2 as
those with two (figure 2). Likewise, there was no difference between drive males and the two female genotypes carrying drive
(figure 2). These findings suggest that less efficient mitochondrial function induces a compensatory elevated metabolic rate in
drive-carrying individuals, both male and female. This is consistent with the notion that most of the metabolic costs arising are
associated with the mutational load in the SR chromosome inversions, as was seen in direct measurements of mitochondrial
activity. Increases in CO2 production of a similar dimension have been noted in other insects, between virgin and mated
flies [69], associated with sexually selected weapons [72] and when there is an incompatibility between the nucleus and the
mitochondria [73–76], and other species [74,76]. However, opposing results were found in mice, as females carrying the t locus
were found to exhibit a lower resting metabolic rate compared to wild-type [77]. This association led the latter authors to argue
that reduced metabolism is an adaptation in drive female mice to compensate for smaller litter sizes [4], as a lower metabolic
rate has been linked to increased longevity [78], thereby extending the number of litters they sire during their lifespan [78].
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The decrease in metabolic rate with body size is not observed in males carrying the t locus, so it is not a direct consequence of
drive; rather, it is a female-only phenomenon, which aligns with the adaptation hypothesis [78]. We note that whole-organism
respiration in stalk-eyed flies was greater in males than in females after taking account of differences in body size (with which
metabolic rate scales). Sex differences in metabolic rates are common, reflecting the different life histories and management of
energy budgets [69,72]. However, there was no variation in this difference and with carriage of the meiotic drive chromosome.

A final test of metabolic costs arising through meiotic drive measured food intake over a range of diets using the CAFE
assay. Food consumption is a good proxy for metabolic-reliant phenotypes, given its involvement in fitness and lifespan across
many species, including D. melanogaster [79,80], and its association with metabolic rate [81–83]. SR individuals consistently
consumed more (figure 3). Consumption varied markedly with diet, and intake increased with greater amounts of protein in
the diet provided. However, diet type had no impact on the difference between SR and wild-type flies. This suggests that
metabolic deficiency among flies carrying drive chromosomes is compensated by greater food intake. Even though the value of
different food sources varies with the reproductive demands of females and males [84,85], this was not observed in this assay.
Typically, females prefer diets with greater protein content (for egg production), and, in contrast, males prefer carbohydrates
to power male-male competition and sexual display. Even if this is the case in stalk-eyed flies, drive individuals did not show
consumption modification in response to their mitochondrial dysfunction across different diets other than an overall increase
in consumption. In addition, as in the whole-organism respiration tests, there was no difference between female heterozygotes
and homozygotes, indicating dominance of the dysfunction caused by meiotic drive. Nor did these two female genotypes
differ in consumption compared to drive males (figure 3). It was surprising that there was no difference between females and
males across the three diets (figure 3). This may reflect the virgin status of the flies used. There was a similar lack of sexual
dimorphism in virgin Drosophila melanogaster but a large sex difference among mated flies [84], which suggests a further study
for dietary differences between mated drive and wild-type stalk-eyed flies of both sexes.

Altogether, these results point to the preponderance of indirect mutational load costs being linked to meiotic drive in a
sex-independent manner. This does not rule out the existence of direct effects of meiotic drive in males that reduce metabolic
function, nor the possibility of selection for linked sexually antagonistic alleles that depress female metabolic function [18].
What it suggests is that these effects are relatively less important and subsumed by the indirect mutational load held in the
multiple inversions that cover almost all of the SR X chromosome in T. dalmanni and other examples of X-linked drive [3,40].
Metabolic function measured in this study concerned somatic tissue, whole-organism respiration and dietary consumption. It
may be that reproductive tissues where meiotic drive takes place (i.e. male testes) or gametogenesis in general (i.e. including
ovarian tissue) have different metabolic responses reflecting the direct effect of meiotic drive genes or sexually antagonistic gene
expression, respectively. This possibility suggests future work.

5. Conclusions
This research provides the first evidence of the range of metabolic costs associated with a meiotic drive system in stalk-eyed
flies. The costs uncovered include mitochondrial dysfunction (lowered RCR and reduced Complex I contributions to respira-
tion), metabolic inefficiency (higher basal metabolic rate) and increased food consumption across a range of diets (varying in
protein content). The latter two are likely to be compensatory mechanisms arising from mitochondrial dysfunction. The costs
were of equal scale across the sexes even though the direct action of meiotic drive only manifests as a loss of gametes in male
spermatogenesis. This closely mirrors measures of egg-to-adult viability which revealed almost identical selective coefficients
in males and females possessing drive or wild-type X chromosomes [11]. This supports the hypothesis of predominant indirect
viability costs associated with meiotic drive. These are likely to arise from genes linked to meiotic drive on the X chromosome.
The driving X chromosome contains a number of large genomic inversions, which restrict its recombination with the wild-type
X chromosome. As the meiotic drive X chromosome is at a lower frequency than the wild-type in natural populations (approx.
20%), it is subjected to weak selection and the accumulation of deleterious mutations which impact metabolic function. By
comparing heterozygous and homozygous females with hemizygous males, the analysis found no evidence of predominant
recessive effects in females as predicted by sexually antagonistic selection. This also mirrors the study of egg-to-adult survival
which reported additive (i.e. h approx. 0.5) rather than recessive effects in females [11]. Why this contrasts with other studies
reporting recessive effects of meiotic drive in females is not clear [3,12]. Surprisingly, there was little evidence of greater
metabolic deficits in males, even though they are subject to strong sexual selection and have exaggerated secondary sexual
traits [52,86,87] nor was there a greater effect of drive in males. A further analysis of reproductive tissues is needed to evaluate
whether male-specific metabolic costs are evident where the meiotic drive genes themselves are active. Taken together, these
results offer new insights into the metabolic and energetic underpinnings of harbouring meiotic drive systems.
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