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The temporal dynamics and clinical relevance
of choroid plexus measures in multiple
sclerosis
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Choroid plexus enlargement is a promising biomarker of disease activity in multiple sclerosis. However, longitudinal changes in choroid
plexus volume and microstructural integrity remain unclear. This study investigated temporal changes in choroid plexus measures and
their correlations with clinical disability and brain volume changes over 18 months and the entire disease duration. We recruited consecu-
tive relapsing-remitting multiple sclerosis patients at treatment initiation who were then invited to come back for clinical, neuropsycho-
logical and brain MRI assessments at 6 and 18 months. Choroid plexus volume was measured using FreeSurfer and Gaussian Mixture
Models on 3D-T1-weighted scans, and choroid plexus T1/T2 ratio was calculated from conventional 3D-T1- and T2-weighted images.
Brain lesion, whole brain, grey matter, and white matter volumes were measured. Alternating conditional expectation algorithm was used
to estimate trajectories of changes in choroid plexus measures over the entire disease course. Multiple linear regression and mixed effects
models were used to investigate associations of choroid plexus measures with clinical and MRI measures. False discovery rate correction
was applied. 422 RRMS patients were recruited [mean age: 40.8 years (SD 10.9), mean disease duration: 9.5 years (SD 17.4), median
expanded disability status scale: 2.0 (IQR: 1.5-3.5); mean symbol digit modalities test score: 50.6 (SD 14.7), mean brief visuospatial mem-
ory test-revised score: 25 (SD7.6)]; 276 participants were studied at 6-months follow-up and 80 at 18-months. During the entire disease
course, an initial increase in normalized choroid plexus volume was observed, followed by a plateau; T1/T2 ratio decreased initially, but
then increased once the volume had stabilized. When examining changes in choroid plexus volumes over a median follow-up of 8.6
months, significant increases in both choroid plexus volumes [B=0.45, standard error =0.11, False discovery rate-corrected P <
0.001)] and T1/T2 ratios (B = 0.29, standard error = 0.14, False discovery rate-corrected P = 0.05) were observed. A higher baseline chor-
oid plexus T1/T2 ratio was linked to a faster rate of decrease in normalized brain volume (p = —0.21, standard error = 0.08, False discov-
ery rate-corrected P = 0.01) and deep grey matter volume (f = —0.25, standard error = 0.10, False discovery rate-corrected P = 0.03) over
time. Higher baseline choroid plexus T1/T2 values were associated with worsening performance on brief visuospatial memory test-revised
over time (B = —0.23, standard error = 0.10, False discovery rate-corrected P = 0.04). Changes in choroid plexus measures over time ap-
pear non-linear, with volumes increasing earlier in the disease course and T1/T2 ratios rising later. After a mean disease duration of 9.5
years, higher choroid plexus T1/T2 ratios, but not volume, predicted faster memory decline and whole brain and deep grey matter volume
loss, underscoring the value of assessing choroid plexus microstructure, alongside volumes, in predicting clinical and MRI outcomes.
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Choroid plexus volume and microstructure

Choroid Plexus over the disease course
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Choroid plexus in multiple sclerosis

Introduction

In multiple sclerosis (MS), inflammation occurs not only in
the central nervous system (CNS) parenchyma, but also in
the surrounding meninges and intrathecal space.! There is
growing evidence that inflammation outside the CNS influ-
ences pathology within the brain and spinal cord,' and leads
to progressive disability!™; this inflammatory activity can
become the target of new treatments® and biomarkers of in-
flammation outside the brain parenchyma can be used to pre-
dict treatment response.®

Among the extra-parenchymal structures which are af-
fected by inflammation in MS, there is the choroid plexus
(ChP) that generates the cerebrospinal fluid that fills the sub-
arachnoid space. The ChP also plays a crucial role in immu-
nosurveillance trough the CCR6-CCL20 axis” and the
expression of ICAM-1, VCAM-1, MAdCAM-1 and MHC
class I and IT molecules that facilitate T cells access to the
CNS,? as shown in post mortem studies.”” Recent studies
using magnetic resonance imaging (MRI) have shown en-
hancement'? and enlargement'' of ChP in people with MS
when compared to healthy subjects. ChP enlargement is as-
sociated with: (i) less remyelination in white matter (WM) le-
sions (quantified by using ''C-PiB-PET),"? (ii) chronic lesion
growth and progressive lesional tissue damage (as measured
by diffusion MRI)'® and (iii) greater concurrent disability.'?
The exact mechanisms underlying ChP enlargement are un-
known. Studies in experimental autoimmune encephalomy-
elitis have reported changes in the expression of genes
encoding adhesion molecules, interleukins, and T-cell activa-
tion markers, which may be responsible for ChP enlargement
by promoting the extravasation of autoreactive T cells from
the circulation into the ChP stromal compartment.'®
Degenerative changes (including thickening of basement
membrane, fibrosis, and gliosis) may also contribute to
ChP enlargement.'’

To date, only few studies have assessed longitudinal
changes in ChP volumes, reporting contrasting results:
while some studies observed increase in ChP volume
over time,'® which was associated with development of
brain atrophy and chronic active lesion expansion,'” other
studies reported ChP volume stability and no association
between ChP volume and changes in clinical measures.'®
No studies have looked yet at the microstructural integrity
of the ChP, assessed using the T1/T2 ratio, which is a re-
cently introduced quantitative MRI measure, easily ob-
tainable from conventionally acquired clinical images.
When measured in the brain parenchyma, the T1/T2 ratio
is sensitive to myelin content, axonal/dendritic structure,
and factors such as iron dysregulation, astrogliosis, and
inflammation.'”

In the present study, we assessed ChP volume and T1/T2
ratio at baseline, 6 and 18 months of follow-up, in a pro-
spectively recruited cohort of MS patients. We aimed to in-
vestigate: (i) The temporal trajectory of ChP volumes and
T1/T2 ratios over both 18-months follow-up and the entire
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disease duration, using an alternating conditional expect-
ation (ACE) algorithm?’ (ii) The association between base-
line ChP measures and changes in disability (including
cognitive performance) and changes in other brain MRI mea-
sures over 18 months. To complete the investigation, we also
assessed cross-sectional associations between ChP measures,
conventional MRI measures, and physical disability and cog-
nitive performance.

Materials and methods

We recruited prospective patients who fulfilled the following
inclusion criteria: (i) Diagnosis of relapsing-remitting (RR)
MS; (ii) within 3 months from initiation of a disease-
modifying treatment (DMT). Participants were invited to
undergo clinical, neuropsychological and MRI assessments
at three time points: baseline, 6 months and 18 months
[the POINT-MS (Predicting Optimal INdividualized
Treatment response in MS) cohort].

The study was approved by the local Research Ethics
Committee (19/WA/0157) and all participants gave written
informed consent at enrolment.

At each visit, patients had a neurological assessment to deter-
mine the Expanded Disability Status Scale (EDSS) score.”!
Detailed information on relapses (date and degree of remis-
sion [complete/incomplete clinical recovery within 6 months
or no remission]) and DMT use was collected. DMTs were
grouped into moderate/low efficacy (interferon-beta, glatira-
mer acetate, dimethyl fumarate, teriflunomide, fingolimod
and cladribrine) and high-efficacy treatments (natalizumab,
rituximab, ocrelizumab, ofatumumab and alemtuzumab).??

The Brief International Cognitive Assessment for MS
(BICAMS) was used.”? The BICAMS assesses the most fre-
quently impaired cognitive domains in MS, incorporating
tests of: information processing speed [symbol digit modal-
ities test (SDMT)?>*], learning and memory [California verbal
learning test (CVLT-II)** and the brief visuospatial memory
test-revised (BVMT-R)*°].

A Philips Ingenia CX 3 Tesla scanner (Philips Medical
System, Best, The Netherlands) was used to obtain the fol-
lowing at baseline and follow-up scans: 3DT1-gradient
echo (GRE, for volumetric measures and segmentation:
1x1x1mm, TR=6.9ms, TE=3.1ms, flip angle=8°),
2DT2-turbo spin echo (1x1x3mm, TR=3500ms,
TE = 8/19 ms, turbo-factor = 10) to assist lesion identifica-
tion and 3D fluid-attenuated-inversion recovery (FLAIR,
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for lesion identification: 1x1x1mm, TR =8000 ms,
TE = 388 ms, turbo-factor = 120, inversion time = 2400 ms).
For all sequences, slices were positioned to run parallel to a
line joining the most infero-anterior and infero-posterior mar-
gins of the corpus callosum.

Hyperintense lesions were identified on FLAIR images using
a convolutional neural network-based method.?” This seg-
mentation was visually reviewed by an experienced observer
(EDM). Normalized brain volume, cortical grey matter vol-
ume, deep grey matter volume, white matter volume and lat-
eral ventricle volume were measured on the 3DT1-weighted
scans using the FreeSurfer software version 7.4.1 (https:/
surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferWiki)  after
T1-hypointense lesion filling.”® The FreeSurfer longitudinal
pipeline (https:/surfer.nmr.mgh.harvard.edu/fswiki/FsTuto
rial/LongitudinalTutorial) was applied to serial scans, and
segmentation again reviewed (by EDM). Normalized vo-
lumes were obtained by dividing each tissue volume by the
total intracranial volume.

Starting from FreeSurfer segmentation, to refine ChP seg-
mentation, we applied Gaussian Mixture Models (GMM)
as previously used by Tadayon et al. (https:/github.com/
EhsanTadayon/choroid-plexus-segmentation).”’ Briefly, a
Bayesian GMM with two components was applied to all
voxels within the lateral ventricle mask obtained from
FreeSurfer segmentation, to group these into two clusters ac-
cording to their intensity. The higher intensity cluster of vox-
els is then smoothed by using 3D Susan smoothing algorithm
implemented in FSL software (sigma =1 mm).>® A second
Bayesian GMM with three components is applied to select
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the voxels with highest average voxel intensity, then consid-
ered as the final ChP.

ChP segmentation was reviewed and manually edited
when needed by an experienced observer (EDM). An ex-
ample of ChP is shown in Fig. 1. To obtain a normalized
measure for ChP (NChP) volume we divided the ChP volume
by the total intracranial volume.>'

3D T1-weighted and T2-weighted images were pre-
processed and combined using a dedicated pipeline adapted
from Ganzetti et al.,>” implemented in the MATLAB® en-
vironment. T2-weighted images were first co-registered to
the 3D T1-weighted image space through a rigid-body
transformation using FLIRT tool (FSL Library) and then
both sequences underwent the intensity N4 bias field cor-
rection from the ANTs toolbox (http:/stnava.github.io/
ANTSs/).?*3 The 3D Tl-weighted and co-registered
T2-weighted image intensities were then normalized using
a non-linear scaling procedure relative to intensity peaks
derived from CSF, bone and soft tissue masks>®>” and the
ratio between T1 and T2 intensities calculated. The ChP
mask was eroded by one voxel (to reduce the potential for
partial volume effects) and corresponding T1/T2 ratios
extracted.

Demographic, clinical, neuropsychological and MRI fea-
tures of the study cohort are presented as descriptive statis-
tics, using either mean and standard deviation (SD),
frequencies or median and interquartile ranges according
to the variable distribution and category. Normality was
assessed by the Shapiro—Wilk test and visually inspected
by using Q-Q plots. Since no significant difference was

Figure | Choroid plexus. Example of choroid plexus as segmented on 3DT | -weighted images.
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observed between left and right NChP, we used the sum of
these. To calculate annualized changes, we used the change
observed during each available interval. When multiple
follow-up intervals were available, the mean of the annual-
ized changes for each interval was calculated. To assess
NChP volume and T1/T2 ratio changes over the follow-up
time we used mixed effect models, while to characterize the
temporal dynamics of ChP and lateral ventricle volume and
T1/T2 ratio throughout the disease course, we initially
transformed the raw outcome measures into normalized va-
lues ranging from 0 to 1, using the empirical cumulative
distribution function. We chose this approach to ensure
that the variables are considered on a common scale, as
done in previous studies applying the same analysis.”’
Subsequently, ACE algorithm, as described by Donohue
et al. (https:/bitbucket.org/mdonohue/grace/src/master),>°
was used to estimate long-term trajectories of ChP mea-
sures and lateral ventricle volume changes over the disease
course from short-term longitudinal observations. To ex-
plore associations between NChP volume and microstruc-
ture with clinical, neuropsychological measures, and other
MRI variables—as well as their temporal changes—we
used multiple linear regression and mixed-effects models.
Age, gender, disease duration, DMTs (low/moderate and
high efficacy groups) and baseline ChP metrics (where rele-
vant) were used as covariates along with random intercepts
for patients. For the multivariable analyses, a stepwise vari-
able selection procedure was used. Additionally, noting the
association between ChP and lateral ventricle volumes,>**°
we re-ran analyses to explore NChP volume changes over
time and their association with clinical, neuropsychologic-
al, and MRI variables, including normalized lateral ven-
tricle volumes as a covariate. Except for the multivariable
stepwise regression analysis, statistical significance was cor-
rected for multiple comparisons using the Benjamini-
Hochberg method, with the threshold for significance set
at a corrected P <0.05. Stepwise regression was excluded
from this correction as it is a model selection technique,
where P-values are dynamically influenced by the selection
process and are not independent comparisons. Results that
remain significant after multiple comparison correction are
flagged with *. Statistical analysis was performed using R
version 4.2.2.

Results

The Graphical Abstract highlights the key findings of the
study.

Of the 422 people included in this study, 276 (65%) had
at least one follow-up [median time: 7.2 months, interquar-
tile range (IQR): 6.0, 9.6 months] and 80 (19%) had two
follow-ups (median time: 19.2 months; IQR =18.0, 22.8
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months) with an overall median follow-up of 8.6 months
(IQR = 6.6, 16.4 months) (Table 1).

Demographic, clinical, neuropsychological and MRI mea-
sures at the study entry and their annualized changes are re-
ported in Table 1.

Associations between NChP volume and ChP T1/T2 ratio
values with MRI measures are shown in Table 2. A higher
NChP volume was associated with a higher brain lesion
load (B=0.35, 95% confidence intervals (CI) =0.28, 0.43,
*P<0.001) and lower volumes of cortical (Bp=-0.18,
95%Cl=-0.25, —0.11, *P <0.001) and deep grey matter
(B=-0.29, 95%CI=-0.36, —0.21, *P < 0.001) and white
matter (B=-0.22, 95%CI=-0.31, —0.14, *P <0.001). A
higher ChP T1/T2 ratio was significantly associated with
greater white matter volumes (B=0.09, 95%CI=0.01,
0.18, *P=0.03). After accounting for normalized lateral
ventricle volume, none of the associations between NChP
volume and other MRI measures remained statistically sig-
nificant (Supplementary Table 1).

Among demographic features, only age was significantly as-
sociated with NChP volume (3 =0.16,95% CI=0.05,0.27,
*P =0.009). No other significant associations were observed
between demographic variables and either ChP volume or
the T1/T2 ratio. Associations between MRI variables and
EDSS and subtests of the BICAMS are shown in Table 3.
A higher NChP volume was correlated with higher EDSS
[3=0.13,95%CI=0.02, 0.24, P = 0.02] and lower BVMT-R
scores (B=-0.16,95%CI=-0.27,-0.05, P = 0.004), whereas
the T1/T2 ratio showed no correlation with clinical and neuro-
psychological measures (Table 3). These findings were material-
ly unchanged by the addition of normalized lateral ventricle
volume to the statistical models.

Over the follow-up period, NChP showed an overall increase
in volume (B =0.45, 95%CI=0.23, 0.67, *P < 0.001), even
when accounting for normalized lateral ventricle volume
as covariate (B=0.08, 95%CI=0.02, 0.14, *P=0.01).
Similarly, ChP T1/T2 ratio values increased over the follow-
up (B=0.29, 95%CI=0.02, 0.56, *P =0.03).

However, when examining the temporal trajectories of
ChP and lateral ventricle measures in relation to disease dur-
ation, an initial increase in normalized ChP volume was ob-
served during the first 12 years following disease onset, after
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Table | Summarizes baseline demographic, clinical and neuropsychological features and their annualized changes, in
the whole cohort and in patients with and without available follow-up data

All MS MS patients without MS patients with
patients follow-up follow-up P-values

Self-identified gender [male/female/not-binary] 150/270/2 46/99/1 104/171/1 0.42
Mean age (SD) [years] 40.8 (10.9) 40.5 (10.6) 41.4 (11.5) 0.47
Mean disease duration (SD) [years] 9.5 (17.4) 8.9 (15.7) 10.7 (20.0) 0.31
DMTs (high efficacy/moderate and low efficacy) 2571165 75171 182/94 0.19
Median EDSS (IQR) 2.0 (1.5-3.5) 2.0 (1.5-3.0) 2.0 (1.5-3.5) 0.67
Median EDSS annualized changes (IQR) 0.3 (0.5, 0.8) 0.04%
Mean symbol digit modalities test (SDMT) score (SD) 50.6 (14.7) 51.6 (14.0) 48.6 (15.7) 0.07
Mean SDMT annualized changes (SD) 5.7 (11.8) 0.17#
Mean brief visuospatial memory test-revised (BVMT-R) score 25.0 (7.6) 25.6 (7.51) 24.9 (7.54) 0.36

(sD)
Mean BVMT annualized changes (SD) 1.6 (8.0) 0.009*"
Mean California verbal learning test second edition (CVLT-II) 53.1 (12.0) 54.0 (11.4) 52.5 (12.9) 0.22

score (SD)
Mean CVLT-Il annualized changes (SD) 4.4 (9.9) <0.001*"
Mean lesion volume (SD) [ml] 11.9 (14.1) 11.4 (14.6) 12.5 (15.1) 0.59
Mean lesion volume annualized changes (SD) [ml] 1.4 (14.2) 0.10%
Mean *normalized brain volume (NBV)x 1000 (SD) 774.7 (24.3) 776.7 (25.0) 772.7 (23.0) 0.11
Mean *NBV x 1000 annualized changes (SD) -0.9 (17.2) 0.001%*"
Mean *normalized cortical grey matter volume 416.9 (12.5) 417.9 (12.0) 4159 (13.1) 0.12

(NCGMV)x 1000 (SD)
Mean *NCGMYV x 1000 annualized changes (SD) —0.8 (6.6) 0.01*"
Mean *normalized deep grey matter volume (NDGMV)x 1000 27.5 (3.0) 27.7 (3.0) 27.3 (2.8) 0.32

(sD)
Mean *NDGMYV X 1000 annualized changes (SD) —04 (2.1) 0.01*"
Mean *normalized white matter volume (NWMV)x 1000 (SD) 315.7 (16.2) 315.8 (19.7) 311.4 (26.6) 0.06
Mean *NWMYV X 1000 annualized changes (SD) -2.2(19.0) 0.03*"
Mean *normalized ChP volume (ChPV)x 1000 (SD) 1.6 (0.6) 1.6 (0.6) 1.6 (0.6) 0.51
Mean *NChPV x 1000 annualized changes (SD) 0.2 (0.5) <0.001%"
Mean ChP (ChP) T1/T2 (SD) 0.5 (0.1) 0.5 (0.1) 0.5 (0.1) 0.53
Mean ChP T1/T2 annualized changes (SD) 0.0 (0.0) 0.03*"

SD, standard deviation; IQR, interquartile range; DMTs, disease modifying treatments. *Normalized volumes are obtained dividing the volume of the regions divided by the total
intracranial volume. “P-values remaining significant after controlling for multiple comparisons. *P-values for time effect in linear mixed effect models for longitudinal data.

Table 2 Summarizes the baseline associations between normalized ChP volume and T1/T2 ratio with the MRI

measures assessed

Normalized ChP volume (NChPV)*

ChP TI1/T2 ratio

Std P coefficient

Std P coefficient

(95% CI) Adjusted R> P-values (95% CI) Adjusted R*> P-values
Normalized brain volume (NBV)* —0.30(-0.37,-0.22) 0.08 <0.001*  0.08 (—0.01, 0.16) 0.0l 0.07
Normalized cortical grey matter volume —0.18 (—0.25, -0.11) 0.07 <0.001*  0.00 (—0.07, 0.08) 0.00 0.93
(NCGMV)*
Normalized deep grey matter volume (NDGMV)*  —0.29 (-0.36, —0.21) 0.09 <0.001*  0.07 (-0.01, 0.15) 0.01 0.09
Normalized white matter volume (NWMV)* —0.22 (-0.31,-0.14) 0.09 <0.001*  0.09 (0.01, 0.18) 0.03 0.03*
Lesion load 0.35 (0.28, 0.43) 0.09 <0.001*  0.06 (—0.02, 0.14) 0.02 0.11

Std, standardized; Cl, confidence intervals. *Normalized volumes are obtained dividing the volume of the regions divided by the total intracranial volume. “P-values remaining significant
after controlling for multiple comparisons. All analyses adjusted for age, gender, disease duration at assessment and current DMT class.

which a plateau occurred, followed by a subtle decrease,
while the normalized lateral ventricle volume continued to
increase. Simultaneously, the T1/T2 ratio initially decreased
until 10 years into the disease, but then increased once the
ChP volume had stabilized (Fig. 2).

There was a significant decrease in normalized brain volume

(B=-0.05, 95%CI=-0.07, —0.13, *P=0.001), cortical

(B=-0.03, 95%CI=-0.05, —0.01, *P=0.01) and deep
(Bp=-0.05, 95%CI=-0.09, —0.01, *P =0.01) grey matter
volumes, and white matter volume (B=-0.04, 95%
CI=-0.06, —0.02, P =0.03). Table 4 reports the associa-
tions between MRI measures and follow-up time.

We observed a significant increase in EDSS scores over the
follow-up period (B=0.03, 95%CI=0.03, 0.09, P =0.04),
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Table 3 Summarizes the results of multivariable stepwise regression analysis between clinical and

neuropsychological outcomes with MRl measures

Std P coefficient

MRI variables (95%Cl) P-values Adjusted R?
Expanded disability status scale (EDSS) Normalized choroid plexus volume 0.13 (0.02, 0.24) 0.02 0.24
(NChPV)?
Symbol digit modalities test (SDMT) Lesion load —0.33 (—0.44, —-0.21) <0.001 0.25
Normalized brain volume (NBV)* 0.16 (0.04, 0.27) 0.01
Brief visuospatial memory test-revised (BVMT-R) NChPV? —0.16 (-0.27, —0.05) 0.004 0.32
Lesion load —0.28 (—0.42, —0.14) <0.001
NBV* 0.14 (0.03, 0.25) 0.0l
California verbal learning test second edition Lesion load —0.19 (-0.33, —-0.05) 0.01 0.28
(CVLT-Il) NBV* 0.15 (0.04, 0.26) 0.0l

Std, standardized; Cl, confidence intervals. *Normalized volumes are obtained dividing the volume of the regions divided by the total intracranial volume. All analyses adjusted for age,

gender, disease duration at assessment and current DMT class.

Trajectories of choroid plexus volume and T1/T2 ratio over the disease course

Number of Subjects = 422
Number of Observations = 858

Normalized Values

Altemating Conditional
Expectation algorithm

10 15 20
Disease Duration [years]

*Nomalized value according to emprirical cumulative distribution function to range from 0 to 1

= Normalized Choroid Plexus Volume
= Normalized T1/T2 ratios

= Normalized Lateral Ventricle Volume

Figure 2 Trajectories of ChP volume and T |/T2 ratio over the disease course. The figure shows the trajectories (with 95% confidence
intervals, shaded in grey) of ChP volume and T1/T2 ratio values and of lateral ventricle volume over disease duration. All three variables were
rescaled using the empirical cumulative distribution function to range from 0 to |. Alternating conditional expectation (ACE), a non-parametric
regression technique, was applied to data from all available time points (422 patients; 858 observations) to estimate the non-linear long-term

trajectories.

Table 4 Summarizes the time, and the time X baseline normalized ChP volume and T1/T2 ratio value interaction

effect on the changes of the remaining MRI measures obtained

Time X baseline

Time X baseline ChP T1/T2

Time normalized ChP volume ratio
Std
B coefficient Std B coefficient Std P coefficient
MRI variables (95% CI) P-values (95% CI) P-values (95% CI) P-values
Normalized brain volume (NBV)* —0.05 (-0.07, —0.03)  0.001*  0.07 (—0.03, 0.16) 0.21 -0.21 (-0.37, —0.05)  0.005*
Normalized cortical grey matter volume —0.03 (—-0.05, —0.01) 0.01* 0.04 (—0.06, 0.14) 0.44 —0.13 (—0.27, 0.00) 0.05
(NCGMV)*
Normalized deep grey matter volume —-0.05 (-0.09, —0.01)  0.01* 0.09 (—0.05, 0.23) 0.21 —0.25 (-0.45, -0.05)  0.01*
(NDGMV)?
Normalized white matter volume (NWMV)? —0.04 (—0.06, —0.02)  0.03 0.06 (—0.04, 0.16) 0.39 —0.16 (-0.30, —0.02)  0.03
Lesion load —0.03 (-0.11, 0.05) 0.10 0.02 (—0.01, 0.14) 0.64 0.10 (—0.06, 0.26) 0.19

Std, standardized; Cl, confidence intervals. *Normalized volumes are obtained dividing the volume of the regions divided by the total intracranial volume. “P-values remaining significant

after controlling for multiple comparisons. All analyses adjusted for age, gender, disease duration at assessment, and current DMT class.
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alongside improved performance on the BVMT-R (8 =0.05,
95%CI=0.01, 0.09, P=*0.009) and CVLT-R (B=0.13,
95%CI=0.09, 0.17, *P <0.001). Table 5 reports the all
the associations between clinical and neuropsychological
measures and follow-up time.

Associations between baseline NChP volume and ChP
T1/T2 with MRI variable changes over time are reported
in Table 4, while those accounting for normalized
lateral ventricle volume are reported in Supplementary
Table 2.

A higher baseline ChP T1/T2 ratio was linked to a
faster rate  of normalized brain  (B=-0.21,
95%CI=-0.36, —0.05, *P=0.005), cortical (B=-0.13,
95%CI=-0.25, —-0.01, P=0.05) and deep (B=-0.25,
95%CIl=-0.45, —0.05, *P=0.01) grey matter and white
matter (B=-0.16, 95%CI=-0.30, —0.02, P=0.03) vol-
ume loss over time. Conversely, baseline NChP volume
was not associated with changes in MRI measures over
time, and this did not change when accounting for normal-
ized lateral ventricle volume.

Associations between baseline NChP volume and ChP T1/T2
with MRI variable changes over time are reported in Table 5,
while those accounting for normalized lateral ventricle vol-
ume are reported in Supplementary Table 3. Higher baseline
ChP T1/T2 values were associated with worsening BVMT-R
performance over time (B=-0.23, 95%CI=-0.43, —0.03,
*P=0.02). Baseline NChP volume was not associated with
significant changes in clinical and neuropsychological mea-
sures, and this did not change when accounting for normal-
ized lateral ventricle volume.

Discussion

We found that after a mean disease duration of 9.5 years,
both the volume and structural integrity of the ChP changed
over time, but not in parallel. While both ChP volumes and
T1/T2 ratios increased over a median follow-up of 8.6
months, their trajectories differed when mapped against
the entire disease duration. ChP volumes initially increased,
plateaued around 12 years of disease duration, and showed a
subtle decline thereafter. In contrast, T1/T2 ratios initially
decreased reaching a nadir at about 8 years of disease dur-
ation, before beginning to rise. Associations with subsequent
clinical outcomes were observed principally with ChP T1/T2
ratios rather than volumes. This suggests that volume alone

Table 5 Summarizes the time and the time X baseline MRI variable interaction effect on the EDSS and neuropsychological measure changes over time

Symbol digit modalities test Brief visuospatial memory California verbal learning test

Expanded disability status scale

(SDMT) test-revised (BVMT-R) second edition (CVLT-II)

(EDSS)

Std B coefficient Std B coefficient (95% Std P coefficient

Std P coefficient

Cl) P-values (95% CI) P-values
0.05 (0.01, 0.09) 0.13 (0.09, 0.17)

P-values

(95% CI)
0.03 (=0.01, 0.07)

P-values
0.00 (—0.12, 0.12)

(95% CI)
0.03 (0.01, 0.50)

MRI variables

0.17 0.009* <0.001*
0.08

0.99

0.04
0.85

Time

0.41

0.06 (—0.08, 0.20)

0.18 (=0.02, 0.38)

Normalized choroid plexus 0.01 (—0.11,0.13)

Interaction

volume (NChPV)?
ChP T1/T2 ratio
Normalized brain volume

Time x

0.27
0.10

0.11 (=0.09, 0.31)
—1.39 (=3.06, 0.28)

0.02#
0.11

—0.23 (=043, —0.03)
—1.48 (-3.28, 0.32)

0.69
0.36

0.39 —0.03 (-0.21, 0.15)

0.32

0.08 (—0.10, 0.26)
0.30 (~1.03, 1.63)

033 (~1.18, 1.84)

(NBV)?
Normalized cortical grey
matter volume (NCGMV)?

Normalized deep grey matter

1.86 (0.49, 3.23) 0.0l —1.40 (=3.11,0.31) 0.11 2.20 (0.18, 4.22) 0.03

0.88

0.10 (=1.17, 1.37)

0.37

0.48 0.04 (=0.06, 0.14) 0.44 0.35 (~0.08, 0.78) 0.11 ~0.18 (—0.57, 0.21)

~0.12 (=047, 0.23)

volume (NDGMV)?
Normalized white matter

—0.66 (—1.89, 0.56) 0.11 —-0.79 (-1.79, 0.21) 0.12 —1.16 (-2.67, 0.35) 0.11

43

0.

0.32 (~0.46, 1.10)

E. De Meo et al.

volume (NWMV)?

0.77

—0.01 (=0.07, 0.05)

0.53 —0.05 (-0.13, 0.03) 0.13

0.01% —0.02 (—0.08, 0.04)

0.07 (0.01, 0.13)

Lesion load

Std, standardized; Cl, confidence intervals. Normalized volumes are obtained dividing the volume of the regions divided by the total intracranial volume. "P-values remaining significant after controlling for multiple comparisons. #Surviving at

stepwise regression analysis. All analyses adjusted for age, gender, disease duration at assessment and current DMT class.
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does not fully reflect clinically relevant ChP pathology in MS,
and that a measure of tissue integrity provides complemen-
tary insights.

Several mechanisms may contribute to the enlargement of
the ChP, including the overexpression of genes associated
with oxidative stress response and its consequent mitochon-
drial dysfunction, as well as increased plasma leakage across
the blood-cerebrospinal fluid (CSF) barrier.*"*** An associ-
ation has been reported between larger ChP volume and long-
er pseudo-T2 relaxation times,'® a putative marker of
inflammation, suggesting that inflammation may be an under-
lying mechanism of enlarged ChP. It is possible that inflamma-
tion, which is associated with increase water content, is thus
responsible for the initial decrease in T1/T2 ratio. However,
leakage of the blood-CSF barrier is not the sole mechanism
potentially responsible for ChP enlargement, which has also
been linked to endothelial immune proliferation and the mi-
gration of immune cells,** including the infiltration of non-
resident immune cells into the ChP.** Indeed, an association
between greater ChP volume and higher translocator protein
(TSPO) expression has been reported likely reflecting in-
creased macrophage/microglia infiltration in the ChP.*!
Activated macrophages and microglia are characterized by in-
creased iron content.’ Iron is known to shorten T2 relaxation
times, leading to a reduction in signal intensity on
T2-weighted images.*® In line with this, animal models of neu-
roinflammation have shown elevated levels of iron in the
ChP.*¢ This supports the hypothesis that iron accumulation
—likely due to macrophage and microglial infiltration®'—
may underlie the delayed increase in T1/T2 ratio values.

Confirming previous studies®®**” we found an association
between ChP and lateral ventricle volume, and noting that lat-
eral ventricle volume is itself related to brain tissue vo-
lumes*”** and correlates with brain WM lesion loads,*” it is
perhaps unsurprising that including normalized lateral ven-
tricle volumes in our statistical models rendered all associa-
tions between NChP volume and other MRI variables
non-significant. It emphasizes that these elements of pathology
are all interrelated but does not lead us to conclude that ChP
volume changes are solely a function of lateral ventricular en-
largement. Here, it is also worth noting that the ChP T1/T2 ra-
tio did not simply change in parallel to either ChP or lateral
ventricle volumes, and so making it unlikely that they are
just the consequence of lateral ventricle expansion. This is
also in line with evidence reporting higher ChP volume with-
out lateral ventricle enlargement in the earliest stages of dis-
ease. Higher ChP volume has indeed been observed in
patients with clinically isolated syndrome compared to healthy
subjects,’® whereas no differences were found in lateral ven-
tricle volume between these groups.’! Further, including lat-
eral ventricle volume in predictive models of neurological
disability and cognitive functioning did not materially affect
associations with NChP volumes, as also observed in a previ-
ous study.*® This suggests that ChP pathology has an inde-
pendent effect on clinical outcomes that is not be mediated
by either brain WM lesions or atrophy. It remains unknown
how such effects are mediated but, for example, the ChP
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may play a role in shaping cognitive functioning by modulat-
ing the migration of immune cells within the CNS*** and
through changes in the inflammatory CSF profile.**

Considering the temporal relationship between ChP vol-
ume increases, ChP T1/T2 ratios and lateral ventricle expan-
sion, no ChP measure mirrors lateral ventricle volumes. This
suggests time-dependent associations, and different elements
of ChP pathology may be associated with ventricular en-
largement at different times; however, in the present study
we cannot establish a clear causal relationship, i.e. a change
in ChP measures preceding ventricular enlargement, or vice
versa. The baseline predictive models do however give
some indication of a plausible direction of travel, showing
the ChP T1/T2 ratios (rather than volumes) predicted a faster
rate of normalized brain volume loss.

With the caveat that most associations with clinical out-
comes were not significant, consistent with baseline ChP T1/
T2 ratios (rather than volumes) predicting brain tissue path-
ology, they also predicted a faster decline in visuospatial mem-
ory (BVMT-R) performance. The mean duration of follow-up
was less than a year and there were significant improvements in
cognitive scores (BVMT-R and CVLT-R), so it would be of
interest to look at these associations again with longer term
follow-up, re-baselining cognitive measures to allow for poten-
tial early learning or initial anti-inflammatory treatment effects.

This study has limitations. Firstly, we did not include
healthy participants in our analysis, which would have en-
abled us to characterize the extent of abnormalities in volume
(which have been previously described®') and T1/T2 ratio in
patients when compared with healthy controls. Our study ex-
clusively focused on people with relapsing-remitting MS, thus
limiting the generalizability of our findings to other disease
phenotypes. In addition, all participants initiated a treatment,
and early treatment effects may have disrupted some associa-
tions (for example through pseudo-atrophy’?). The relatively
short follow-up duration (up to a maximum of 24 months)
will have constrained our ability to detect disability progres-
sion and, in particular, cognitive decline as this may in part
be masked by learning effects.’* However, a learning effect
can be considered an outcome in itself,’* indicating that
ChP microstructural changes can negatively influence this.

In conclusion, our findings suggest that both tissue volume
and microstructure should be assessed when seeking to char-
acterize pathological processes involving the ChP, and their
impact on CNS tissue damage and clinical outcomes.

Supplementary material

Supplementary material is available at Brain Communications
online.
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