
Circulation: Genomic and Precision Medicine

319

Circulation: Genomic and Precision Medicine is available at www.ahajournals.org/journal/circgen

Circ Genom Precis Med. 2025;18:e004624. DOI: 10.1161/CIRCGEN.124.004624� June 2025

 

Correspondence to: C. Anwar A. Chahal, MBChB, MRCP, PhD, Center for Inherited Cardiovascular Diseases, WellSpan Health, 157 N Reading Rd, Ephrata, Lancaster, 
PA 17522, Email cchahal@wellspan.org; or Antonis A. Armoundas, PhD, Cardiovascular Research Center, Massachusetts General Hospitals, 149 13th St, Charlestown, 
MA 02129, Email armoundas.antonis@mgh.harvard.edu
Supplemental Material is available at https://www.ahajournals.org/doi/suppl/10.1161/CIRCGEN.124.004624.
For Sources of Funding and Disclosures, see pages 334 and 335.
© 2025 The Authors. Circulation: Genomic and Precision Medicine is published on behalf of the American Heart Association, Inc., by Wolters Kluwer Health, Inc. This is 
an open access article under the terms of the Creative Commons Attribution Non-Commercial-NoDerivs License, which permits use, distribution, and reproduction in 
any medium, provided that the original work is properly cited, the use is noncommercial, and no modifications or adaptations are made.

REVIEW

Data Interoperability and Harmonization in 
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ABSTRACT: Despite advances in cardiovascular care and improved outcomes, fragmented healthcare systems, nonequitable 
access to health care, and nonuniform and unbiased collection and access to healthcare data have exacerbated disparities 
in healthcare provision and further delayed the technological-enabled implementation of precision medicine. Precision 
medicine relies on a foundation of accurate and valid omics and phenomics that can be harnessed at scale from 
electronic health records. Big data approaches in noncardiovascular healthcare domains have helped improve efficiency 
and expedite the development of novel therapeutics; therefore, applying such an approach to cardiovascular precision 
medicine is an opportunity to further advance the field. Several endeavors, including the American Heart Association 
Precision Medicine platform and public-private partnerships (such as BigData@Heart in Europe), as well as cloud-based 
platforms, such as Terra used for the National Institutes of Health All of Us, are attempting to temporally and ontologically 
harmonize data. This state-of-the-art review summarizes best practices used in cardiovascular genomic and precision 
medicine and provides recommendations for systems’ requirements that could enhance and accelerate the integration of  
these platforms.
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Cardiovascular genomic and precision medicine is 
going through a revolution with the availability of  
cutting-edge clinical and research technologies 

being introduced at a rapid pace. Furthermore, institu-
tions and governments are funding and establishing 
biobanks and biorepositories to facilitate precision medi-
cine. The cornerstone to making sense of genomic and 
precision technologies, in particular, omics, imaging, and 
monitoring data (telemetry, ambulatory ECG, smartphone, 
and wearable), is the electronic health records (EHRs).1

As access to health data increases exponentially, the 
adoption of regulatory frameworks and standards is criti-
cal for translating these health data to improve patient 
outcomes. In 2014, the US National Institutes of Health 
(NIH) introduced its Genomic Data Sharing Policy that 

was intended to encourage the broad and responsible 
sharing of genomic research data.2

While considerable and commendable efforts are 
underway to improve EHR interoperability, there is little 
progress tailored to cardiovascular genomic and preci-
sion medicine. Therefore, it is vital that cardiovascular-
specific challenges are identified, and solutions are 
developed to harness the power of these technologies, 
in order to facilitate not only first-class clinical care, but 
also synergize research and outcomes’ assessment.

The aim of this state-of-the-art review is to summarize 
the best practices used in cardiovascular genomic and 
precision medicine research, identify challenges and bar-
riers and provide recommendations for systems require-
ments that could enhance and accelerate the integration 
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of data (Figure 1), and enhance their uses in translational 
research and applicability in real-world settings.

THE FOUNDATION
Accurate phenotypic and outcome data are vital to har-
ness the power of precision medicine.3 Connecting mul-
tiomics data is expected to become the cornerstone in 
precision diagnosis, whether this is about known dis-
eases involving the identification of novel genetic vari-
ants, the illumination of new biological pathways, or in 
pursuing the understanding of unknown diseases (diag-
nostic odysseys). This section summarizes the role and 
challenges of the EHR in harnessing its potential.4 Used 
correctly, complementing multiomics with the EHR can 
redefine current nosology and ontology.

STRUCTURED VERSUS FREE TEXT: USE 
OF NATURAL LANGUAGE PROCESSING IN 
CODING AND ONTOLOGY
The EHRs’ complexity, attributed to the heterogeneity of 
clinical patient data generated and collected by disparate 
systems, presents challenges for data entry, manage-
ment, and use (Figure 2).5 EHRs exist in both struc-
tured and unstructured formats. Structured EHR data 
are recorded using clinical terminologies, ontologies, 
and coding systems (eg, International Classification of 
Diseases [ICD] and current procedural terminology) and 
enable quick analysis and systematic comparison across 
healthcare organizations, including meta-analyses.  
Unstructured data include free text (eg, clinical notes) 
and provide detailed narratives that would not otherwise 
be possible to capture using ontological terms. While 
structured data are crucial for computational tasks and 
align with specific standards, free text often contains 

insights that may be lost in structured data. Natural lan-
guage processing bridges this gap by encoding free text, 
for example, translating human language into machine-
readable formats, for example, by assigning accurate 
ontological concepts.6,7 This type of language embed-
ding, combined with ontology structures, allows for bet-
ter alignment and translation of medical concepts across 
different languages and standards.8

CODING SYSTEMS AND MEDICAL 
ONTOLOGIES
Since the passage of the Health Information Technol-
ogy for Clinical and Economic Health Act in 2009 aim-
ing to adopt the use of EHRs,9 various coding systems 
have evolved and now serve as the backbone of health 
informatics, each with their unique complexity and pur-
pose. The World Health Organization adopted and began 
developing the ICD in 1948 for recording, reporting, and 
analyses of mortality and morbidity data.10,11 ICD, Ninth 
Revision,12 was developed in 1983 and remained in use 
in the United States until 2015 (as ICD, Ninth Revision, 
Clinical Modification, a specific version that was devel-
oped for use in the US healthcare system ICD, Tenth Revi-
sion, encompasses around 68 000 codes; this refined 
revision enabled a more precise coding of diseases; 
Table S1).13,14 Nevertheless, certain limitations remain 
with the use of ICD coding such as errors in coding, vari-
ability in coder expertise, and the occasional imprecision 
in the coding system itself. Among the strategies used 
to mitigate these challenges have been the frequentist 
approach in using multiple coding (diagnosis defined by 
being coded in multiple settings) and the temporal con-
sistency (confirming diagnosis coded similarly over time).

In the United Kingdom, the analogous procedural 
coding system is the Office of Population Censuses and 
Surveys Classification of Surgical Operations and Proce-
dures.15 Systematized Nomenclature of Medicine Clini-
cal Terms (SNOMED CT) provides an international and 
comprehensive medical ontology that allows the precise 
recording of information by healthcare professionals and 
the exchange of health information between healthcare 
providers.16,17 SNOMED CT offers a multiaxial (composi-
tional) approach incorporating: (1) concepts; (2) descrip-
tions; and (3) relationships, which allows for > 500 000 
possible concepts and >1 million clinically meaning-
ful relationships between those concepts, overcoming 
many long-standing coding limitations. SNOMED CT’s 
advantages over other coding standards may allow for 
better specificity of harmonization and is a standard for 
interoperability required by the United States. An adja-
cent standard that is well-structured and has similarly 
high interoperability is Logical Observation Identifiers, 
Names and Codes, which is the international standard 
for laboratory and clinical test results.

Nonstandard Abbreviations and Acronyms

AI	 artificial intelligence
CDM	 common data model
DICOM	 �Digital Imaging and 

Communications
HER	 electronic health record
FHIR	 �Fast Healthcare Interoperability 

Resources
ICD	 �International Classification of 

Diseases
NIH	 National Institutes of Health
OMOP	 �Observational Medical Outcomes 

Partnership
SNOMED CT	 �Systematized Nomenclature of 

Medicine Clinical Terms
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CHALLENGES
The availability of different coding standards, as well as 
the multitude of vendor-created proprietary EHR infor-
mation systems, inevitably leads to wide gaps in how data 
are collated, stored, transferred, curated, and used. Fur-
thermore, adopting subsequent updated coding systems, 
although helping to overcome prior coding limitations, 
is inherently difficult and costly. Not all health systems 
are equally able to adopt newer updates and better EHR 
systems, as digital maturity is a major component that 
influences transitions to complex information systems.18 
These lead to several data harmonizing challenges 
that jeopardize the integrity and reliability of data use. 
The purpose of coding, be it for billing or registry, often 

affects the quality and level of detail, and several stud-
ies have shown concerning inconsistencies that include 
a lack of or incorrectly coded data.19 Furthermore, a lack 
of consensus on coding for diagnosis and procedures 
due to different coding practices, underlying incentives, 
or clinical pathways may lead to systematic biases in the 
data. This causes confusion and a lack of interoperabil-
ity at a national and international level.20,21 Finally, coding 
systems and medical ontologies may lack the nuance to 
capture complex medical realities, leading to imprecise 
representations and maintaining the need for the inclu-
sion of natural language processing22,23 (Figure 2).

Common data models (CDMs) are utilized when 
there is a need to share and exchange data for particu-
lar uses. CDMs can be used to specify structure, format, 

Figure 1. Summary of present challenges and possible solutions to improve data harmonization and interoperability for 
genomic and precision medicine.
EHR indicates electronic health record.
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and content and have formed the cornerstone of multi-
center registries and data reporting in clinical research. 
Examples of CDMs include the Informatics for Inte-
grating Biology and the Bedside, the Patient-Centered 
Clinical Research Network, the Observational Medical 
Outcomes Partnership (OMOP), the Clinical Data Inter-
change Standards Consortium Study Data Tabulation 
Model, and Sentinel. These aim to format, clean, har-
monize, and standardize data mostly for research and 

discovery purposes (Figure 2),24 across countries.25 
Head-to-head comparisons of CDM employing longi-
tudinal EHR data consisted of 11 criteria, covering 6 
categories, content coverage (completeness), integ-
rity, flexibility, ease of querying (simplicity), standards 
compatibility (integration), and ease and implementa-
tion, have highlighted these challenges.26 The OMOP 
CDM also includes a natural language processing ele-
ment focused on medical notes and serves as a great 

Figure 2. Current status of standardization for observational data.
The Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM) is an open community data standard, designed 
to standardize the structure and content of observational data and to enable efficient analyses that can produce reliable evidence. A central 
component of the OMOP CDM is the Observational Health Data Sciences and Informatics (OHDSI) standardized vocabularies. The OHDSI 
vocabularies allow organization and standardization of medical terms to be used across the various clinical domains of the OMOP common 
data model and enable standardized analytics that leverage the knowledge base when constructing exposure and outcome phenotypes and 
other features within characterization, population-level effect estimation, and patient-level prediction studies.
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example of an effective standardized data model within 
health informatics.

Closed-world assumptions in formal logic refer to an 
accurate statement known to be true; conversely, what 
is not known to be true is untrue. With an open-world 
assumption, what is not known to be true is simply 
unknown. Finally, in leveraging CDMs, a differential viola-
tion can be made with a closed-world assumption model.

However, appropriate funding underpins many of 
these initiatives, and because funding tends to favor 
historically larger and better-funded institutions, popula-
tions not served by these institutions are inadvertently 
excluded and remain poorly represented.

STEPS IN DATA PROCESSING
Data Collection
When individuals interact with the healthcare system, a 
wealth of data and metadata is generated,27 including 
anything related to care, such as diagnoses, physical 
examination findings, drug administrations and prescrip-
tions, laboratory measurements, procedures, and surgi-
cal interventions. Metadata include information about 
the method of admission, the discharge destination, 
spatiotemporal information (eg, date and time of admis-
sion and hospital identifiers), and other details around 
health care (eg, the specialty of the treating physician), 
which eventually become real-world evidence.28

Data Storage and Processing
Data are often stored in EHRs and health information 
management systems. EHR systems are specialized, 
and often proprietary, software applications that are used 
to store structured and unstructured information and 
use healthcare information exchange standards, such 
as Health Level Seven Fast Healthcare Interoperability 
Resources (FHIR),29 to structure data and enable its por-
tability. Images are stored often on Digital Imaging and 
Communications (DICOM) servers that are specialized 
servers designed to store, retrieve, and transmit medical 
images and related data in the DICOM format.30 DICOM 
servers are used in healthcare settings, such as hospitals, 
clinics, and imaging centers, to manage medical imaging 
data produced by devices such as X-ray machines, mag-
netic resonance imaging scanners, and computerized 
tomography scanners.

Data Linkage
Disparate data sources are often linked using patient 
identifiers through a process known as data linkage and 
normalization, for example, linking data between primary 
care EHR and hospital admissions’ data.31 Data linkage 
is often performed using a unique healthcare identifier, 

such as the National Health Service Number in the 
United Kingdom, in a deterministic fashion. In the United 
States, such a common identifier in many cases does not 
exist,32,33 and the medical record number is often used 
as an identifier unique to the patient and the health sys-
tem; therefore, one unique patient may have multiple 
medical record numbers if they visit multiple health sys-
tems. When a unique healthcare identifier does not exist 
or does not coincide with another data set, which often 
occurs when linking data between health and nonhealth 
data (eg, educational records), the linkage is performed 
using nonunique information, such as name, postcode, 
and date of birth, using probabilistic approaches. Both 
deterministic and probabilistic approaches are prone to 
errors in the data (such as missing data and incorrect 
data) or nonuniqueness across patient information. Care-
ful evaluation of the linked data is required to ensure that 
no biases or errors are introduced during the linkage 
process.34

Federated Studies
Federated studies in health care35 refer to research initia-
tives that involve the collaborative analysis of data from 
multiple institutions or organizations while keeping the 
data localized and secure within each respective site. 
Unlike traditional centralized meta-studies where data 
are pooled into a single database, federated studies allow 
researchers to perform meta-analyses across disparate 
data sets without physically combining them. Instead, 
queries and analyses are distributed across different 
sites, ensuring data privacy and security. This approach 
is particularly valuable in healthcare research, enabling 
large-scale studies involving diverse patient populations 
and data sets without compromising individual privacy or 
violating data-sharing regulations.

Data Quality Control: Foundation of Good 
Scientific Data Management and Stewardship
Data Management
Data management plans are now required by the NIH 
and the National Science Foundation. A data manage-
ment plan includes types of data, metadata, data and 
metadata standards, related tools, software, code, data 
preservation, access, timelines, distribution, or reuse con-
siderations and oversight.

Adoption and employment of data standards, before 
data collection, are expected to facilitate interoperabil-
ity and extend the reusability of data.21 Table 1 provides 
resources for data and metadata standards. Table S2 
provides examples of data platforms and repositories 
that provide data to end users with accompanying data 
dictionaries and documentation that are expected to 
improve data handling efficiency and usability. Quality 
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control procedures and quality evaluation metrics for 
each data set are not normally provided in data docu-
mentation, yet such information is important for end 
users. Therefore, we propose that a reporting criterion 
should include quality evaluation metrics.

Data Collection, Preservation, Backup, and 
Security
Table S3 provides examples of open-source workstreams 
that are expected to improve interoperability and usabil-
ity. As a case study, the American Heart Association 
Precision Medicine Platform adopted an open-source 
workstream for data access and data governance made 
available by the Broad Institute, Data Use Oversight Sys-
tem.41 The Data Use Oversight System brings together 
researchers submitting and requesting data, as well as 
data access committees and institutional review boards.41

However, a major challenge appears to be how to man-
age, store, and back up large volumes of data. Data preser-
vation ensures that data remain accessible and usable for 
future researchers. In that case, data backups and redun-
dancy prevent data loss due to hardware failures or other 
unforeseen events. There are many different paths for 
data preservation and backup, and considerations for the 
different setups include data size, access speed, and bud-
get constraints. On-premises solutions include Network 
Attached Storage, and off-premises options include cloud 
services (Figure 3). A combination of approaches may be 
chosen to optimize different types of data access against 
the cost of storage, and data lifecycle management is an 
approach that can be used to plan data lifecycles from 

data entry to either archival or destruction. Recently, the 
NIH released a policy (NOT-OD-21-013), which requires 
researchers generating NIH-funded data to create a 
strategy and budget for data management and sharing. 
Similarly, the National Human Genome Research Institute 
Genomic Data Science Analysis, Visualization, and Infor-
matics Lab-Space is a secure, cloud-based environment 
where researchers are able to store, share, and analyze 
key unrestricted- and controlled-access genomic data sets 
and associated phenotypic data or metadata, particularly 
those generated with National Human Genome Research 
Institute funding or support (Analysis, Visualization, and 
Informatics Lab-Space, NOT-HG-19-024). The Analysis, 
Visualization, and Informatics Lab-Space is designed to 
minimize local analyses because of unsustainable storage 
needs, security concerns, and large volumes of data tradi-
tionally downloaded from a data warehouse by providing 
a cloud environment for the analysis of large genomic and 
other omic-related data sets.42

Data Storage and Organization
Hierarchical electronic file storage systems, often using 
a tree-based directory structure, underpin electronic 
data organization. The file tree stores data files in a 
logical structure that mirrors the workflow, which can 
either be the workflow, which generated the data, or 
the workflow by which the generated data will be used 
for downstream analyses. Such structured data storage 
is facilitated by strong file naming conventions, which 
often also provide metadata. Aside from the traditional 
tree-based directory systems, other database structures 

Table 1.  Data Types, File Types, and Examples of Where to Find Data and Metadata Standards; Adopted and Revised From 
Repository (Meta) Data Standards Examples, Version 0.4, April 17, 2023, From NIDDK

Data type File type Data standards Metadata standards

Clinical Flat tabular files (eg, CSV  
and TSV)

Clinical Data Interchange Standards Consortium
ICD-10-CM
CTAE
SNOMED CT
Phenotype and Trait Ontology
NIH Common Data Elements Repository

CDISC ADaM

Imaging DICOM, NiFTi, mp4, PNG,  
and TIFF

DICOM
NIH Common Data Elements Repository

Photo Metadata IPTC

Genomics BAM, BED, FASTQ, and VCF HUGO Gene Nomenclature Committee
NIH Common Data Elements Repository

Minimum information about any se-
quence36

Transcriptomics BAM and FASTQ HUGO Gene Nomenclature Committee Minimal information about a high-
throughput sequencing experiment37

Metabolomics imzML and mzTab mzTab for Metabolomics38

Nuclear Magnetic Resonance Markup Language
Core information for metabolomics 
reporting38

Proteomics mzidentML, mzTab, RAW,  
and TSV

Mz Markup Language39 Minimal information about a pro-
teomics experiment40

ADaM indicates Analysis Data Model; BAM, binary alignment/map; BED, browser extensible data; CDISC, Clinical Data Interchange Standards Consortium; CSV, 
comma-separated values; CTAE, Common Terminology Criteria for Adverse Events; DICOM, Digital Imaging and Communications in Medicine; FASTQ, a text-based for-
mat that stores both nucleotide sequences and quality scores, standard for raw sequencing reads; Format Mz, mass-to-change ratio; HUGO, Human Genome Organisa-
tion; ICD-10-CM, International Classification of Diseases, Tenth Revision, Clinical Modification; IPTC, Photo Metadata Standard; MP4, MPEG-4 Part 4; Mz, mass-to-charge 
ratio; NIDDK, National Institute of Diabetes and Digestive and Kidney Diseases; NiFTi, Neuroimaging Informatics Technology Initiative; NIH, National Institutes of Health; 
PNG, portable network graphics; RAW, a generic term for unprocessed data from imaging devices; SNOMED CT, Systematized Nomenclature of Medicine Clinical Terms; 
TIFF, tagged image file format; TSV, tab-separated values; and VCF, variant call format.

https://www.ahajournals.org/doi/suppl/10.1161/CIRCGEN.124.004624
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exist, which are particularly useful for large data, includ-
ing relational database structures, such as Structured 
Query Language and network databases, where child 
records can be linked to multiple parent records.

Data Accessibility and Sharing
EHR originated mainly for making information accu-
rate, current, complete, and more readily available at the 

point-of-care, coding, and billing purposes, but they were 
later adapted for improving clinical workflows, enabling 
healthcare quality innovation, and supporting research 
endeavors. As such, data sharing is a necessity for 
achieving equitable healthcare advances. Health data can 
be deidentified by removing Health Insurance Portability 
and Accountability Act identifiers,43 but this may result 
in the removal of key information needed to optimize 
model performance. An alternative solution is to maintain 

Figure 3. Overview of Gen3 framework services for cloud-based data analysis and execution.
This figure highlights the comprehensive ecosystem supporting cloud-based data analysis and execution. The Gen3 framework, developed 
to support large-scale biomedical data analysis, leverages cloud infrastructure to provide robust, scalable, and secure services. Components 
include the following. Synthetic cohorts: the creation and management of synthetic data sets for various research purposes, enabling analysis 
without compromising real data privacy. Data/metadata queries: tools and services that facilitate efficient querying of data and metadata to 
support research workflows. Workflow requirements and analysis workflows: specifications and execution pathways necessary for conducting 
data analyses within the Gen3 environment. Gen3 framework services and data commons: core services and shared resources within the 
Gen3 ecosystem that supports data storage, management, and accessibility. Gen3 workspaces and hello world workflow: user-friendly 
interfaces and example workflows provided to help users get started with the Gen3 environment. Findable, accessible, interoperable, and 
reusable (FAIR) principle implementation: emphasis on ensuring data is FAIR, following the FAIR guiding principles as promoted by initiatives 
such as FORCE11. Cloud-based analysis and execution environment: integration of secure cloud environments for data analysis, providing 
scalable resources for handling large data sets. Reusable docker-based tools and workflows: the use of docker containers to encapsulate 
tools and workflows, promoting reusability and reproducibility of research. Cloud storage and secure data download requests: mechanisms 
for storing large volumes of data securely and facilitating controlled access for download and analysis. Cohorts, workflows, and notebooks: 
support for generating and managing cohorts, executing workflows, and using interactive notebooks for data analysis. AnVIL indicates Analysis, 
Visualization, and Informatics Lab-Space; IRB, institutional review board; OMOP, Observational Medical Outcomes Partnership; PCORnet, 
patient-centered outcomes research network; and SDV, synthetic data vault.
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identifiable data but work in secure enclaves. A third 
solution is to use federated practices to pool data used 
in analyses or model building without physically bring-
ing the data together. While valuable data often reside in 
disparate silos across institutions, and sometimes even 
within institutions, several concerns and policies prevent 
effective use of these data. Some factors preventing data 
sharing involve concerns of reidentification of individual 
patients and risks to privacy, while others involve a lack of 
motivation and trust by the stakeholders. Nevertheless, 
data-sharing carries more benefits than risks and can be 
of paramount importance, as evidenced by the COVID-
19 pandemic.44,45

Ethics and Compliance
Regulation and management of scientific data involve a 
range of ethical and data privacy considerations at each 
stage (ie, at collection, storage, access, and sharing). 
Research involving human subjects may require review 
by an institutional review board and informed consent. 
Data should be deidentified by removing any personal 
identifying information that could reidentify individuals. 
Therefore, investigators must be familiar with interna-
tional and local regulations, such as the General Data 
Protection Regulation in the European Union or the 
Health Insurance Portability and Accountability Act in the 
United States.

Analysis and Reproducibility
Data collection methods should be specified clearly 
in the study design to ensure equity, integrity, reliabil-
ity, transparency, traceability, and reproducibility of the 
research findings.41,46

Collaboration with external organizations and experts 
is needed to validate and benchmark data quality control 
processes and metrics. Participation in data quality initia-
tives and consortia provides an opportunity to share and 
harmonize best practices.

Quality Assurance and Continuous 
Improvement
Prioritizing an understanding of both the importance of 
and methodologies in acquiring, analyzing, and maintain-
ing scientific data, is an important principle of medical 
research. Individuals could be trained in standardized 
data collection protocols, including training to minimize 
data entry errors such as double-data entry and validation 
procedures. Audit trails that track changes and updates 
to the data provide transparency and help identify any 
unauthorized modifications.47 Protocols for data cleaning 
can address missing data, outliers, and inconsistencies, 
but these data cleaning protocols must be documented 
clearly. Quality control checks at various stages of the 

research may also be implemented to look for anomalies 
and discrepancies.

Continuous improvement in the methodology of data 
collection and management should follow advances in 
technology, evolving best practices, and feedback from 
interested stakeholders. Periodic reviews of best prac-
tices ensure that the most current, relevant, and effective 
tools and methodologies are being used.

Standards That Exist or Are Being Developed
Imaging
In the domain of cardiovascular imaging, an established 
array of data standards exists, encompassing multiple 
facets, such as data storage format, communication pro-
tocols, data security, and standardized reporting.21 These 
standards are integral to facilitating interoperability and 
consistency, as well as fostering efficiency and resilience 
in the management of vast data generated by rapidly 
advancing imaging techniques.

Data Storage Formats
The most universally recognized image storage standard 
is stipulated by the DICOM initiative.48 All major imag-
ing device vendors adhere to the DICOM format, which 
encapsulates both the metadata pertaining to patient 
and scan details and the image data (pixel information). 
DICOM supports a broad range of imaging modalities, 
including ultrasound, magnetic resonance imaging, and 
computerized tomography. An alternative image format, 
Neuroimaging Informatics Technology Initiative, has been 
developed by the neuroimaging community at the NIH,49 
as a preferred file format within the machine learning com-
munity for its compactness, ease of postprocessing, and 
minimal metadata, which facilitates privacy preservation.

Communication Protocols and Security Standards
Health Level Seven, augmented by the FHIR standard, 
establishes a broad spectrum of international messaging 
and communication protocols. These standards are piv-
otal for the secure transmission, exchange, and retrieval of 
electronic health information, thereby enhancing interoper-
ability across the radiology IT ecosystem, including picture 
archiving and communication systems, radiology informa-
tion systems, and FHIR. FHIR, a highlight of Health Level 
Seven, introduces a Web-based, application programming 
interface–driven framework for health data exchange, 
characterized by its flexible, resource-oriented architecture 
that is gaining increasing endorsement from key regula-
tory agencies. These agencies, including the Centers 
for Medicare & Medicaid Services and the Office of the 
National Coordinator for Health Information Technology in 
the United States, are actively encouraging the adoption of 
FHIR to streamline healthcare interoperability.21 The Inte-
grating the Healthcare Enterprise initiative50 further sup-
ports the integration of Health Level Seven and FHIR with 
various healthcare IT assets. Compliance with stringent 
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security and privacy regulations, such as the Health Insur-
ance Portability and Accountability Act51 and the General 
Data Protection Regulation,52 is integral to these stan-
dards, including FHIR. There are specific security chal-
lenges pertaining to picture archiving and communication 
systems and DICOM standards, with vulnerabilities rang-
ing from malware or ransomware and unauthorized access 
to malicious manipulation of images (injection attacks). 
DICOM working group 14 coordinates and produces 
recommendations to enhance DICOM security.53 The US 
National Institute of Standards and Technology has also 
published the best practice guidance to safeguard medical 
images from cybersecurity threats.54,55

Standardized Reporting
Within the realm of cardiovascular imaging, international 
societies have published modality-specific acquisition 
and reporting guidelines. These include the Coronary 
Artery Disease Reporting and Data System36 for coronary 
computerized tomography angiography, cardiac mag-
netic resonance imaging reporting standards as laid out 
by the Society for Cardiovascular Magnetic Resonance,37 
and the transthoracic echocardiography data set recom-
mended by the American Society of Echocardiography38 
and the British Society of Echocardiography.51

Electronic Health Records
Artificial intelligence (AI) research using information from 
EHR is often challenging because many disparate infor-
mation technology systems and databases are used to 
collect, curate, and store the data and do not follow com-
mon standards; thus, data are highly heterogeneous.39 
Therefore, there have been 5 proposed themes of EHR 
data quality: (1) completeness (the presence of data in 
the EHR); (2) correctness (the truthfulness of data in 
the EHR); (3) concordance (the agreement between ele-
ments within the EHR, between EHR sources, compared 
with other data sources); (4) plausibility (the extent to 
which EHR data make sense in a larger medical con-
text); and (5) accuracy (the accuracy of the EHR data 
for the time at which it was recorded and how up-to-date 
the data are).

Health information technology providers must meet 
3 requirements for their interface to be certified: (1) it 
must meet certain technical programming standards that 
ensure interoperability; (2) it must be transparent; and (3) 
it must be procompetitive or promote efficient exchange, 
access, and use of health data.40 Recently, the American 
Medical Association published Principles for Augmented 
Intelligence Development, Deployment, and Use.56

As previously mentioned, approaches that harmonize 
data to a common semantic structure, such as CDMs, 
can enable better-quality linkage of multiple data sources 
and provide a common platform in which analytical 

methods can be built and deployed. An example of such 
an approach is OMOP CDM of the Observational Health 
Data Sciences and Informatics.57 The OMOP CDM con-
sists of 23 tables that are organized into 4 top-level 
domains: (1) clinical, (2) derived elements, (3) health sys-
tem, and (4) health economics. Clinical data tables hold 
core data on patient demographics, clinical events (eg, 
diagnoses, laboratory measurements, medication pre-
scriptions, and surgical procedures), visit occurrences, 
and observation periods. The health system data tables 
provide information on healthcare providers associated 
with the healthcare events held in the clinical data types. 
The health economics data tables contain cost informa-
tion and details on the enrollment of patients in health 
benefit plans. Individual data sets are transformed into 
the OMOP CDM through an extract, transform, and load 
process, which maps data fields in each data source to 
OMOP vocabulary concepts (Athena, https://athena.
ohdsi.org/) and to the CDM schema. Once data are 
transformed, federated studies can be executed on every 
source containing data in the CDM. OMOP has been suc-
cessfully used to transform EHR data, clinical registries, 
and administrative data sets and, furthermore, has been 
successfully used to harmonize and execute federated 
analyses on disparate healthcare data sets and provide 
important insights to policymakers during the pandemic.57

Data harmonization can also occur as part of large-
scale research studies, that rely on data from health 
care to enable deeper phenotyping and longer follow-
up of individuals. These platforms tend to extract, load, 
and harmonize data from several EHR sources and link 
it with research data collected from consented par-
ticipants. Examples of these types of platforms include 
the American Heart Association Precision Medicine 
Platform, Analysis, Visualization, and Informatics Lab-
Space, the NIH All of Us,58 the Million Veteran Program 
and Department of Veteran Affairs and in the UK Bio-
bank, Our Future Health, and Genes and Health studies. 
The European Union is establishing a European Health 
Data Space to facilitate the exchange and sharing of 
health data (eg, health records, genomics, and regis-
tries) for purposes such as the delivery of primary care 
and the development of new treatments, medicines, 
medical devices, and services while ensuring that peo-
ple have control of their own health data.59 Health Data 
Research UK is an independent, not-for-profit organi-
zation of 22 research institutions in the United King-
dom, which enables access to EHR data for research 
on diseases and ways to prevent, treat, and cure them. 
Principles of participation have been defined in consul-
tation with policymakers, the National Health Service, 
the industry, and the public.60 The Human Colossus 
Foundation is a Swiss-based not-for-profit organiza-
tion, which has developed the Dynamic Data Economy 
architecture and an Overlays Capture Architecture for 
data harmonization across data ecosystems.61 The key 

https://athena.ohdsi.org/
https://athena.ohdsi.org/
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strength of this model is decentralized semantics, which 
describes the separation of semantic (definitional) and 
pragmatic (contextual) tasks into task-specific objects 
that, when combined, provide a digital representation 
of a complex object. The use of the ontology-agnostic 
Overlays Capture Architecture allows harmonization 
and interoperability between data models and data rep-
resentation formats, with a roadmap to resolve privacy-
compliant data sharing. The particular strength of this 
approach lies in separating capture base and overlays, 
enabling harmonization of non-English language text or 
within nations with multiple official languages.

OMICS
Omics include, but are not limited to, genomics, epig-
enomics, transcriptomics, proteomics, metabolomics, 
nutrigenomics, and microbiomics (Figure 4). The con-
cept of using omic technologies in precision medicine 
has gained significant attention with the completion of 
the Human Genome Project in 2003. Today, the term 

expressed genome is sometimes used to combine epi-
genetics, RNA transcripts, proteins, and metabolites.62 
The first successful clinical application used genomics to 
identify cells with KIT and the PDGFRA gene mutation, 
responsible for gastrointestinal stromal tumors, to tar-
get them with the use of imatinib mesylate (also known 
as Gleevec).63 Since then, large clinical initiatives, such 
as, but not limited to, National Cancer Institute Molecu-
lar Analysis for Therapy Choice (MATCH) trial,64 Inves-
tigation of Serial Studies to Predict Your Therapeutic 
Response with Imaging and Molecular Analysis 2 (I-SPY 
2) trial,65 MyPathway trial,66 and National Health Ser-
vice England’s 100 000 Genomes Project,67 have been 
pursued to establish and develop a novel healthcare 
approach under the umbrella of precision medicine.

However, despite >20 years since the first application 
of omic technologies in precision medicine, we are still far 
from a state of standard personalized health care. Process-
ing such swathes of generated data is highly dependent 
on systems network biology to synthesize and curate data 
and to evaluate the prediction, progression, and outcome 

Figure 4. Multiomic approaches 
with application procedures in the 
development stages.
Different multiomics approaches that 
are incorporated in healthcare delivery 
at various extents. Note that the 
challenges for data acquisition, analysis, 
harmonization, and reporting of standards 
and applicability differ between different 
omics methods.
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of disease.68 In addition, network systems aid with the col-
lation, integration, and prioritization algorithms to guide the 
cartography and decoding of omic landscapes.

While we embrace the many advantages of the 
approach (Table S4), we still face many hurdles (Table 2) 
that require disease community-based solutions. Col-
laborative efforts between researchers, clinicians, policy-
makers, and the broader healthcare community to ensure 
continued advancements in technology, data sharing, and 
regulatory frameworks will play a crucial role in overcom-
ing these hurdles and in the future of precision medicine.47

As the omic-based precision medicine application 
expands worldwide, one of the hurdles that require the 
big data communities’ immediate attention is the chal-
lenge of data harmonization. Establishing principles of 
harmonization, through standardized protocols and com-
putational tools, to data sets from all omic technologies 
and diseases will be critical in ensuring reliability and 
reproducibility of the analysis and interpretation process. 
Such principles are summarized in Table S5.

Genomics and Transcriptomics
Standards for whole genome and whole exome next- 
generation sequencing, and primary and secondary bioin-
formatic analyses are well established. Determining variant  
calls is also reliable. However, the major challenges lie 

with tertiary bioinformatics and variant annotation, and 
classification, into the 5 American Council of Medi-
cal Genetics and Genomics classes.69 While there are 
attempts to evaluate evidence to classify genetic variants, 
there is a wide variation with reports and often conflict-
ing data within ClinVar. Reports of samples processed 
by 2 different laboratories can vary widely, which is not 
unsurprising as all the evidence categories set out by the 
American Council of Medical Genetics and Genomics 
cannot be met. As new evidence arises, disease variants 
can be reclassified, with increased attention to gene- 
disease mechanisms.70 From a precision medicine per-
spective, efforts ensuring genomic data as part of the 
EHR are being implemented. For example, Epic offers a 
Precision Medicine module, which allows not only reports 
but also key structured reporting, including type of gene 
test (panel or Whole Exome Sequencing/Whole Genome 
Sequencing), wild-type alleles, and mutations, with their 
class. There are challenges in updating these data, as 
new assertions of variants are updated in databases, 
such as the ClinVar.

Proteomics
Over the years, as proteomics integrated into the 
precision medicine toolbox, several standards and 
guidelines have been established to ensure data 

Table 2.  Challenges With the Use of Omic Technologies in Precision Medicine

Domain Issues Challenges

Data harmonization, 
 integration, and  
interpretation

Harmonizing data from different sources, and integrating and 
interpreting vast amounts of data in a consistent, reliable, and 
meaningful way. 

Poor integration along with incomplete or inaccurate interpreta-
tion can lead to incorrect clinical decisions.

Standardization and quality 
control

Standardizing protocols for data generation and ensuring data 
quality and reproducibility across different laboratories and plat-
forms are essential for reliable results.

Inconsistencies in data quality can lead to erroneous conclu-
sions and hinder cross-study comparisons.

Ethical and privacy  
concerns

The generation and storage of sensitive genetic information 
require privacy and ethical handling of the data.

Mishandling of genetic data can lead to breaches of privacy and 
potential discrimination.

Cost and accessibility Elevated costs may limit the accessibility, particularly in  
resource-limited settings or for underserved populations.

Limited access can bias the data sets for one population over 
the other. It can also lead to disparities in health care, as not all 
individuals may have equal access to the benefits of precision 
medicine.

Clinical validation and 
regulatory approval

Demonstrating the clinical validity and utility of omic-based 
tests or treatments is crucial for gaining regulatory approval and 
widespread adoption in clinical practice.
Because the approaches are in development, the approval pro-
cess can become a vicious circle.

Without proper validation, there may be uncertainty about the 
reliability and effectiveness of omic-based approaches.

Lack of comprehensive 
databases

Comprehensive databases that catalog omic data from diverse 
populations are essential for understanding genetic variation 
and disease susceptibility.

Without comprehensive databases, it can be challenging to ap-
ply precision medicine approaches to populations with unique 
genetic backgrounds.

Patient and physician 
education

Both patients and healthcare providers may have a limited un-
derstanding of omic technologies and how they can be applied 
in clinical practice.

This can lead to hesitancy or reluctance to adopt precision 
medicine approaches.

Longitudinal data and 
follow-up

Omic technologies provide snapshots of a patient’s molecular 
profile at a specific point in time. Long-term data collection and 
follow-up are crucial for understanding disease progression and 
treatment response over time.

Without longitudinal data, it may be challenging to optimize and 
adjust treatment plans as needed.

Rare and complex diseases Identifying relevant genetic or molecular markers and develop-
ing targeted treatments for rare or heterogeneous diseases. 

Precision medicine approaches may not be as readily appli-
cable for these conditions, due to the low number of cases.

https://www.ahajournals.org/doi/suppl/10.1161/CIRCGEN.124.004624
https://www.ahajournals.org/doi/suppl/10.1161/CIRCGEN.124.004624
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quality, comparability, and reproducibility across dif-
ferent studies and laboratories. A typical pipeline in 
proteomic profiling includes sample collection, pro-
tein isolation, quantification, digestion, peptide frac-
tionation, mass spectrometry acquisition, database 
search and protein identification, and data processing 
and validation.71 Proteomics is one of the omics most 
vulnerable to variability.72,73 Therefore, several stan-
dards and guidelines have been established to ensure 
data quality, comparability, and reproducibility across  
different laboratories (Table S6). However, the lack 
of application-/disease-specific universal standards 
makes it difficult to address variability and improve the 
reliability to make its application a strong presence in 
precision medicine.

For cardiovascular diseases, we often rely on onto-
logical categorization (biological processes, cellular 
components, and molecular function), pathway algo-
rithms (protein annotation, canonical pathways, clus-
ter overrepresentation, and network generation), and 
complex networks (nonstochastic structure, hierar-
chy/modularity, robustness/criticality, and actionable 
prognostication) that all have been curated for global 
applications rather than cardiovascular-specific con-
text. That said, multiple clinical studies have applied 
proteomics to gain insights into the complexities of 
cardiovascular diseases to develop and refine treat-
ment plans. Recently, led by the National Cancer Insti-
tute, Clinical Proteomic Tumor Analysis Consortium 
expanded its scope to include cardiovascular diseases. 
This initiative focuses on in-depth proteomic profiling 
of cardiovascular tissues and fluids to identify bio-
markers and therapeutic targets. Table S7 summarizes 
challenges and provides possible solutions relevant to 
omics studies.

Metabolomics
The metabolomics communities in cardiovascular diseases 
are facing similar challenges to those in transcriptomics-  
or proteomics-based research.

The metabolomics community has established stan-
dards and guidelines to limit the variability and improve 
the reproducibility of their findings. The main guidelines 
are included in the Minimum Information About a Metab-
olomics Experiment, Metabolomics Standards Initiative, 
and Metabolite Identification Standard.

Microbiome
Microbiomics, the study of microbial communities in vari-
ous environments, including the human body, also has 
established standards and guidelines to ensure data 
quality, comparability, and reproducibility across different 
studies and laboratories. Some of the key standards for 
microbiomics are summarized in Table S8.

Application and Implications of Population 
Descriptors in Genomics Research
The application of population descriptors in omics 
research is both deliberate and reflective and should 
adhere to the guidelines recommended by the National 
Academies’ report on using population descriptors in 
genetics and genomics research.74 Recognizing the 
complexity and variability inherent in genetic data, it is 
important to choose descriptors that accurately repre-
sent the genetic and geographic diversity of the study 
populations. These descriptors can then be used to care-
fully facilitate comparisons and highlight genetic patterns 
that help clarify disease prevalence, treatment efficacy, 
and biological mechanisms. To enhance transparency 
and reproducibility, studies should define each descrip-
tor in terms of genetic, environmental, social, and cultural 
factors.

To decrease the risk for omics studies to worsen social 
biases,75 it is important to rely on a strict ethical protocol 
in each study group. This protocol should include ongo-
ing consultations with ethicists and community represen-
tatives to ensure that research practices are culturally 
sensitive and ethically sound. Open communication and 
adhering to established guidelines are also critical for 
public oversight and feedback, particularly when sharing 
methodologies and findings. By adopting and keeping 
these best practices at the forefront, the potential risks 
of reinforcing racial, ethnic, and other stereotypes that 
might occur with genomics research may be mitigated.

Clinical Requirements
Extracting structured data from clinical documentation, 
diagnoses, medications, imaging studies, laboratory val-
ues, and procedures is facilitated by several internation-
ally recognized structured clinical coding sets, as well as 
standards for exchanging healthcare information elec-
tronically.76 Internationally recognized clinical coding sets, 
such as the ICD, SNOMED CT, the Healthcare Common 
Procedure Coding System, and DICOM, play key roles 
in translating clinical data into machine-readable for-
mats (such as eXtensible Markup Language, comma- 
separated values, and JavaScript Object Notation), 
with their integration being largely driven by regulatory 
requirements and the ongoing push toward electronic 
healthcare record optimization (Table S1). Clinical work-
flows can be used to help front-line clinicians record data 
in structured formats.

Clinical Coding Sets
Disease, treatment, or outcome data may be derivable 
from data required for clinical care or claims billing. 
Although the integration of healthcare information sys-
tems has been accelerated by regulations, including the 

https://www.ahajournals.org/doi/suppl/10.1161/CIRCGEN.124.004624
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EHR Meaningful Use program and the Physician Quality 
Reporting System, most systems have focused on docu-
mentation for billing charges.77 Thus, billing code classi-
fications may yield the most complete lists of diagnoses 
and procedures.

The Healthcare Common Procedure Coding System 
is a US national code set used for processing claims. 
HPCS level I codes are part of the current procedural 
terminology codes, maintained and copyrighted by the 
American Medical Association, for medical procedures 
and professional services in outpatient and ambulatory 
settings, and physician visits to inpatients. The current 
set (CPT-4) covers services and procedures categorized 
by Evaluation and Management, Anesthesiology, Sur-
gery, Radiology, Pathology and Laboratory, and Medicine. 
HPCS level II codes, maintained by the Centers for Medi-
care & Medicaid Services, except for D codes (dental ser-
vices) maintained by the American Dental Association, 
cover products, supplies, and services not included in 
level I current procedural terminology codes and include 
durable medical equipment, prosthetics, orthotics, sup-
plies, ambulance services, certain drugs and biologi-
cals, and miscellaneous codes not otherwise classified. 
SNOMED CT has become a coding standard in the 
United States for electronic health information exchange 
and is a standard for interoperability required by the US 
Health Information Technology Standards Panel.78 For 
cardiovascular imaging, DICOM standards have enabled 
a degree of interoperability and have become a global 
standard.

Drug databases include the National Drug Code, 
maintained by the US Food and Drug Administration, and 
the International Council for Harmonization of Technical 
Requirements for Pharmaceuticals for Human Use Medi-
cal Dictionary for Regulatory Activities, which includes 
registration, documentation, and safety monitoring of 
medical products before and after regulatory approval.

Quality
Metrics and outcomes databases have lagged in disease, 
procedure, drug, and imaging harmonization. Most acces-
sible may be inpatient hospital outcomes using admin-
istrative databases, including billing and claim-based 
sources noted above for individual-level data. The US 
Agency for Healthcare Research and Quality Healthcare 
Cost and Utilization Project includes healthcare data-
bases and tools with data elements from inpatient and 
outpatient discharge records (including inpatient stays, 
ambulatory surgery and services visits, and emergency 
department visits) compiled from state, federal, hospital, 
and private sources. The Healthcare Cost and Utilization 
Project has been providing patient-level health care and 
longitudinal hospital care data since 1988, and includes 
the National (Nationwide) Inpatient Sample, a family of 
databases and software tools that are the largest publicly 

available all-payer inpatient healthcare database.79 Medi-
care databases, such as the Medicare Provider Analysis 
and Review, with diagnosis-related groups and billing, as 
well as cost information from Medicare beneficiaries who 
use hospital inpatient services can also provide longitudi-
nal patient-level data.80

Clinical Workflow
Capturing and using clinical data for precision medi-
cine47 can be facilitated by designing clinical workflows 
that guide clinicians and patients with tools embedded 
directly in the EHR, along with natural language process-
ing, digital health questionnaires in the patient portals 
to assist patients in tracking outcomes, and integration 
of data from wearable devices directly into the EHR 
(Table 1).81,82

Digital health questionnaires provide patients with 
tools such as apps or Web portals that allow them to 
input their own data before appointments, such as symp-
toms and family history. Standardized questionnaires can 
be used to help capture the data in a structured format. 
Finally, posttreatment digital questionnaires can also 
be used to monitor patient progress and standardized 
outcomes.

Phenomics and Applicability to Multiomics
Challenges in Analytical and Modeling Approaches
Phenomics is a rapidly evolving domain, seeking to 
comprehensively study phenotypes. Despite its poten-
tial, many challenges remain, particularly in the existing 
analytical and modeling approaches, including, but not 
limited to, the heterogeneous nature of phenotypic data 
(Figure 5).

Phenotypic data are often linked to other multiomics 
data, such as genomics, transcriptomics, proteomics, 
and radiomics, which adds layers of complexity requiring 
sophisticated tailored approaches for accurate integra-
tion, analysis, and interpretation. While the techniques, 
meta-analysis,83 Bayesian methods,84 and machine or 
deep learning,85 around the integration and analysis of 
these data have greatly evolved over time, many obsta-
cles still exist to effectively and meaningfully gain insights 
from these data. The biggest challenges are 2-fold: inte-
grating/harmonizing the data from different technologies 
(using a stepwise approach) and consolidating data for 
the same technology obtained from different sources/
centers using different methods.86

Several algorithms and analytical tools are available 
for phenomic data harmonization and analysis, ranging 
from machine learning models for predictive modeling to 
network-based approaches for understanding complex 
interactions within biological systems. These algorithms 
can uncover latent relationships and provide insights into 
the underlying biological mechanisms.
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An approach expected to promote the harmoniza-
tion of multiomics data is the FAIR data principles.87–89 
The data FAIRification process supports a metadata 
schema/method, which captures relations between 
(omics) measurements and ensures that data structures 
and concepts are clearly defined and easily interpretable 
by both humans and computers. Moving forward, the AI-
supported analysis of biological systems requires setting 
the scene to allow growth and expansion of the harmo-
nization methodologies that aim to seamlessly integrate 
not only different omics sources but also the same omic 
platform sourced from different centers.86,90,91

Differences Across Disease Ontology Systems
Disease ontology systems traditionally operate within pre-
defined categorical boundaries, often limiting the explo-
ration of the vast phenotypic spectrum.92,93 In contrast, 
phenomics adopts a more flexible and lateral approach by 
embracing the variability and nuances inherent in pheno-
type expressions. This flexibility leads to a broader, more 
holistic understanding of disease manifestations (with the 
associated phenotypes) and their potential underlying 

molecular mechanisms. However, the broader definitions 
of phenotypes and the increased number of phenotypes 
can deepen challenges in data harmonization. Mapping 
and translation frameworks to bridge the terminological 
and conceptual gaps are often used to condense the 
observed phenotypes. To be able to maintain the richness 
of phenotypic data, we need continuous development and 
testing of integrative approaches to accommodate the 
depth of clinical phenotypic data while still aligning with 
established disease ontology frameworks.94,95

Managing Patient Phenomics Data
Phenomics data in patient studies can be composed of a 
comprehensive set of observable traits (physical, physi-
ological, and molecular characteristics). These data are 
gathered through a variety of methods, including clinical 
assessments, imaging techniques, genetic sequencing, 
and omics technologies. Once collected, phenomics data 
undergo a rigorous analysis process: cleaning and quality 
control to ensure accuracy and reliability, and statistical 
and computational analysis to extract meaningful pat-
terns, correlations, and associations within the data.

Figure 5. Illustration of the procedural workflow demonstrating the incorporation of data science components within the 
framework of experimental design in biomedical research or clinical study design.
A, Source data can be obtained from human cohorts or model systems, with tailored techniques and methodologies used to procure 
phenotypic and molecular data. B, Given the diversity of data types and features, such as the sequencing technology applied in transcriptomics 
data sets, an initial step involves data harmonization, followed by metadata extraction to facilitate indexing and standardization. C, Following 
the transformation of these data into a standardized and accessible format, integration into a unified interface enables investigators to search 
for and retrieve pertinent digital objects, specifically data sets or computational tools appropriate to the intended study. D, These resources 
are then leveraged to execute cutting-edge analyses, including machine learning and predictive modeling, with the aim of unveiling robust 
genotype-phenotype associations and delineating molecular signatures for the cohort. E, Molecular signatures, thus, obtained undergo 
subsequent processing and in-depth analysis to derive novel mechanistic, therapeutic, and clinical insights. F, Armed with these newfound 
insights, researchers contribute to the expansive network of biomedical knowledge, thereby propelling cardiovascular research forward. EHR 
indicates electronic health record; ICD, International Classification of Diseases; OMIM, Online Mendelian Inheritance in Man; MeSH, Medical 
Subject Headings; and MOD, Model Organism Database.
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Standardization efforts ensure consistency and com-
patibility across different phenomics data sets. Established 
guidelines and ontologies are often used to standardize 
data representation and terminology to target seamless 
data sharing and collaborative research in the field of 
phenomics. Finally, and in contrast to the broad scope of 
phenomics, CDM phenotypes refer specifically to disease 
definitions or categorizations used within CDMs to ensure 
standardized data formatting across different sources, as 
well as ensuring consistency and accuracy.

Harmonizing Data from Different Databases 
and Internationally
Similar to all domains, data harmonization is a corner-
stone in phenomics, especially when assimilating multi-
centric and international data sets.96 Increasingly massive 
amounts of multiomics data are being generated across 
diverse biomedical domains and geographic locations, 
with differing data types, sharing requirements, and stor-
age and handling approaches.97,98 The endeavor to har-
monize phenomics data encompasses not only technical 
challenges but also legal and ethical considerations, par-
ticularly when dealing with international data sharing.99,100 
In this regard, there are successful examples, such as the 
NIH All of Us and the UK Biobank, where EHRs have 
been mapped to OMOP in cloud-based tools running 
on different platforms. However, primary care data for 
UK Biobank have been initially unlinked to participants, 
briefly linked over the pandemic, with a review under-
way about long-term linkage. Therefore, moving forward, 
establishing international guidelines on data interopera-
bility and harmonization can facilitate the pooling of data 
from different sources, enriching existing and new data 
sets, increasing the generalizability of findings, allow-
ing for ancestral-specific findings, enhancing statistical 
power, and fostering international collaborative efforts.101 
It is apparent that the complexity of harmonizing multiple 
platforms and data sets, in different languages, which 
have been built on different hosting systems, compounds 
the implementation complexity of this endeavor into 
clinical workflows that impact health care. These efforts 
are particularly important for genomic and precision 
medicine, where most efforts are vital to include non- 
European ancestry individuals, a strategy that is expected 
to improve our knowledge, for example, reclassifying 
variants, as well as understanding the impact of rare and 
common variants in those of different ancestry.

Reprocessing and Applying Phenomics Tools 
for Phenomics Maps
The creation of phenomics maps and visual representations 
(especially for non-Europeans) of complex phenotype- 
genotype interactions necessitates the reprocessing of 
existing data through advanced phenomics tools.102,103 

These maps serve as invaluable resources for under-
standing the phenotypic landscape of diseases, which 
is particularly essential given the complexity and high 
dimensionality of the multiomics data.104 Robust com-
putational methods can often help with the accuracy 
and reproducibility of phenomics maps; however, the 
endeavor to reprocess and map phenomics data is not 
only technically demanding but also resource-intensive, 
necessitating substantial computational resources and 
expertise. Despite these challenges, phenomics maps 
hold the promise of unveiling novel insights into disease 
mechanisms and fostering the development of personal-
ized medicine. Finally, although the increasing use of AI/
machine learning technologies has helped address many 
previous challenges inherent in multiomics data integra-
tion, it has also added to the complexity of classification.105

Phenomics for Biomarkers and Risk Factors: 
Aligning Genomics and Proteomics to Disease
Phenomics stands at the forefront of biomarker discovery 
and validation.106–108 Novel biomarkers that are instrumen-
tal for early disease detection, monitoring, and personalized 
medicine can be identified using the comprehensive under-
standing facilitated by phenomics.109 In addition, proper 
understanding of disease cause, which is fundamental 
for better risk stratification, diagnostic, and prognostic  
evaluations, requires accurate evaluation of the phenotype-
genotype relationship.110 By aligning genomic and pro-
teomic data to disease phenotypes, phenomics provides a 
unique multidimensional view of disease risk factors and 
its molecular underpinnings. Eventually, this comprehensive 
and nuanced understanding leads to better risk assess-
ment, early detection, and therapeutic interventions.110,111

CHALLENGES
There are several challenges that must be overcome to 
facilitate national and international efforts112 in cardio-
vascular precision medicine.3 These include governance, 
consent, availability and access, privacy and security, use 
of AI, and implementation. These are outlined in Table S9.

The American Heart Association has recently pub-
lished a policy statement on principles for health infor-
mation collection, sharing, and use.76 A challenge faced 
by many researchers is understanding the differing rules 
and regulations in data governance based on which coun-
try one is operating in, or working with, to share data. The 
European Union has established the General Data Pro-
tection Regulation. The cornerstone of the General Data 
Protection Regulation is that no organization can collect, 
store, or use personal data without the explicit consent 
of the data subject.

The historical model of identifying risk factors for dis-
ease and focusing on individual behavioral changes has 
not been able to resolve health inequities among groups 
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that have been economically and socially marginalized. 
Underrepresentation of racial and ethnic minority groups 
in clinical trials, and even as participants in receiving 
health care, has resulted in gaps in our understanding 
of race‐related differences in disease pathobiology, diet, 
lifestyle, and drug responses. Therefore, the existing 
databases and registries have been influenced by struc-
tural racism and many forms of bias, which are likely to 
be integrated into the AI algorithm development. Conse-
quently, a big step toward achieving health equity is not 
only the inclusion in clinical trials of culturally and linguis-
tically diverse people but also policymakers, legislators, 
housing administrators, manufacturers, urban planners, 
and health insurance stakeholders.75

Over the next decade, an exponential rise in the use of 
AI within the healthcare sector is anticipated.113 To maxi-
mize the benefits of AI while minimizing potential harm, 
several data and regulatory standards encompassing 
training data, evaluation metrics, reliability, fairness, gen-
eralizability, explainability, and traceability are currently 
being developed by national and transnational organiza-
tions,47 adopting a risk-based approach.114

The use of clinical data in discovery and care hinges 
on its effective integration with AI and machine learning, 
which brings a wide range of complex and multifaceted 
ethical concerns surrounding bias, inequity, and dispari-
ties in health care. Examples include, how biased data, 
subjective decisions in algorithm design, and unequal 
access to new technological innovations may perpetu-
ate care inequities. Several steps can be taken to mini-
mize the risk of bias or inequity. These include ensuring 
that the data used to train the AI models come from a 
diverse and representative group. Statistical techniques 
can be used to identify disparities in model predictions 
across groups and algorithms, creating a bias detection 
mitigation tool. Although not necessary, when the model 
is transparent about how decisions are made, it can 
help researchers and clinicians understand the rationale 
behind AI decisions, while continuous monitoring and 
evaluation of the model are required. Addressing ethi-
cal challenges demands ongoing vigilance, collaboration 
among stakeholders, and a steadfast commitment to 
equity and fairness in this new era of health care.

In order for AI technologies to develop a trusting social 
license of the public, providers, and patients, a continuous 
effort will be required, as failure at any level of that trust 
will be perceived as commercially driven hype without the 
due care, resulting in the social license’s total collapse.75 
For that matter, public engagement and dialog will ensure 
that the use of data in health care meets certain core 
societal expectations and values, as well as builds and 
maintains broad trust and acceptance. Thus, public dialog 
will also attempt to ascertain the views of society, regard-
ing the ethical responsibilities of data usage, as well as its 
design and uses. Consequently, an essential approach to 
building trust and facilitating a smooth digital transition of 

health care is to redesign training programs for the health 
workforce and improve general education.115

PERSPECTIVES AND CONCLUSIONS
Structured data in clinical documentation are essential for 
capturing comprehensive data that are interoperable,21 
machine-readable, and accessible for research and preci-
sion medicine. Despite the breadth of these coding sets, 
much of the existing data resides in billing data. The impor-
tance of user-friendly workflows cannot be overstated; by 
incorporating features such as standardized EHR fields, 
voice recognition, and digital health questionnaires, the 
healthcare system can ensure both clinician and patient 
participation in data capture. As we move forward, achiev-
ing a balance between efficient data capture for billing and 
ensuring comprehensive care, is paramount. The develop-
ment of structured data tools and the continued emphasis 
on integrating them seamlessly into clinical practice will 
shape the future of patient care, enabling precision medi-
cine3 and enhancing patient outcomes.116
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