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Abstract 

This study aimed to develop machine learning (ML) models to predict diabetic complications 

in patients with Type 2 diabetes (T2D) in Malaysia. Data from the Malaysian National 

Diabetes Registry and Death Register were used to develop predictive models for five 

complications: all-cause mortality, retinopathy, nephropathy, ischemic heart disease (IHD), 

and cerebrovascular disease (CeVD). Accurate predictions may enable targeted preventive 

intervention and optimal disease management. The cohort comprised 90,933 T2D patients 

treated at public health clinics in southern Malaysia from 2011 to 2021. Seven ML algorithms 

were tested, with the Light Gradient Boosting Machine (LGBM) demonstrating the best 

performance. LGBM models achieved ROC-AUC scores of 0.84 for all-cause mortality, 0.71 

for retinopathy, 0.71 for nephropathy, 0.66 for IHD, and 0.74 for CeVD. These findings 

support integrating ML models, particularly LGBM, into clinical practice for predicting 

diabetes complications. Further optimization and validation are necessary to enhance 

applicability across diverse populations. 

Keywords: Diabetes complications, Diabetes registry, Machine learning, Predictive models, 

Type 2 Diabetes 

 

 

 

 

 

 

 



What We Already Know: 

• Despite current management, T2D still increases the risk of complications, highlighting 

the need for better prevention strategies. 

• Machine learning (ML) models outperform traditional methods in predicting complex 

medical outcomes with large, high-dimensional data. 

• Limited research on diabetes complications prediction in Malaysian cohorts, often with 

small sample sizes, restricts the generalizability of findings. 

 

What This Article Adds: 

• This study supports integrating ML models into clinical practice to target interventions 

and slow T2D complication progression. 

• The Light Gradient Boosting Machine (LGBM) model outperformed other algorithms 

tested, showing good performance for four out of five complications tested. 

• Using a large dataset of 90,933 T2D patients from Malaysia, this study provides stronger, 

locally relevant evidence for predicting complications. 

 

 

 

 

 

 



Introduction 

Diabetes is a major health concern in Malaysia. The prevalence of the disease in the 

country exceeds the global average and is on an upward trajectory.1,2 Patients with diabetes 

are at a higher risk of developing various microvascular and macrovascular complications.3-5 

The increasing prevalence of diabetes may result in a higher number of individuals 

experiencing diabetes-related complications, posing a challenge for healthcare systems in 

providing optimal care.6 Type 2 Diabetes (T2D) accounts for over 90% of all diabetes cases.1 

Risk stratification of T2D patients is crucial for targeted intervention as it facilitates optimal 

resource allocation, and this approach has demonstrated greater efficiency than population-

wide intervention.7 

The identification of T2D patients at the greatest risk of developing complications 

remains a complex task despite the known risk factors due to the intricate and dynamic 

interplay between these factors. Accurate risk stratification can be achieved through the 

development of a robust prediction model based on local data.8 Current evidence suggests 

that machine learning (ML) models generally outperformed non-ML models in predicting 

diabetes complications in T2D patients, as ML algorithms are well-suited for handling 

complex and large datasets compared to traditional statistical methods.9 This is attributed to 

traditional statistical methods typically having a linear structure, while ML allows for 

modelling complex relationships between predictors and outcomes. Consequently, ML may 

effectively utilize high-dimensional data to construct prediction models.10-14 As ML 

algorithms leverage big data for predictions, their popularity has increased due to the 

digitalization of diverse records.   

Many studies worldwide have focused on creating prediction models for disease 

management using ML methods, which are expected to become mainstream.15 However, 



there is a paucity of research on the development of prediction models for diabetes-related 

complications in Malaysia. Previous studies in Malaysia often utilized small sample sizes, 

which limits generalizability.16,17 Therefore, this study aimed to employ ML techniques to 

construct predictive models for T2D complications using big data acquired from the 

Malaysian National Diabetes Registry (MNDR) supplemented with data from the Malaysian 

Death Register (MDR). The T2D complications of interest in this study were all-cause 

mortality, retinopathy, nephropathy, ischaemic heart disease (IHD) and cerebrovascular 

disease (CeVD). 

 

Methodology 

A detailed protocol for the model-building strategy adopted in this study has been 

published.18 This report was structured according to the Transparent Reporting of a 

Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) statement 

for the development of prediction models in medicine.  

 

Study design and data source 

This was an eleven-year retrospective open cohort study from 2011 to 2021, where 

the longitudinal dataset used for this study was first extracted and analyzed specifically for 

this research. The longitudinal dataset was formed by merging eleven datasets in the MNDR 

and a death register of the patients recorded in 2021 from the MDR. The MNDR consists of 

the ‘registry’ and the ‘clinical audit’ datasets. The registry contains general information on all 

patients with diabetes who received treatment in public health clinics, while the clinical audit 

dataset is a subset of patients’ registries that are randomly selected yearly for auditing clinical 

variables.19 Eleven clinical audit datasets from 2011 to 2021 were merged, and the data 



coming from similar patients were linked based on their national registration identity card 

numbers. Subsequently, this dataset was merged with the data from MDR to form a master 

cohort dataset.  

 

Participants 

The study included all T2D patients treated at 172 public health clinics in the southern 

region of Malaysia. This region was chosen for its high diabetes prevalence and the highest 

proportion of diabetes patients registered in the MNDR.6 Moreover, the demographic 

characteristics of T2D patients in the southern region are comparable to the national average.6 

Patients were included if they had at least two clinical audits between 2011 and 2021, as the 

longitudinal study required data from at least two separate time points. Patients with other 

types of diabetes, such as Type 1 Diabetes, congenital diabetes, monogenic diabetes, and 

maturity-onset diabetes of the young, were excluded. Additionally, patients who already had 

the studied diabetes complications at baseline were excluded from specific analyses to ensure 

temporality between the predictors and target variables. For example, in analyses conducted 

for nephropathy, patients who already had nephropathy at baseline were excluded. Patients 

with missing information about the studied diabetes complications were also excluded from 

specific analyses to avoid introducing bias through imputed target variables. For instance, in 

analyses conducted for nephropathy, patients with missing information about their 

nephropathy status were excluded. 

 

Predictors and outcomes variables 

The study included various sociodemographic data, clinical parameters, and medical 

history as the predictors in the models.18 The outcomes predicted by the model were all-cause 



mortality, retinopathy, nephropathy, IHD, and CeVD. These outcomes were assessed based 

on clinical diagnoses recorded in the MNDR. The timing of these assessments varied, with 

outcomes recorded as they occurred during routine follow-ups.  

 

Sample Size 

While no universally accepted sample size calculation exists for ML algorithms20, a 

common rule suggests having at least ten times as many data instances as there are data 

features21. With 50 features analyzed, the minimum required sample size was 500.  

 

Missing Data 

The dataset had a complex pattern of missing data, requiring imputation. Of the 48 

variables in the dataset, 25 contained missing values, ranging from 0.02% to 22.3% 

(Supplementary Figure 1). A simulation compared four methods: mean/mode substitution, k-

nearest neighbors (k-NN), MissForest, and multivariate imputation by chained equations 

(MICE). A complete subset of the dataset was used to create an artificial dataset with missing 

values matching the original dataset's pattern. The performance of each method was 

evaluated using root mean square error (RMSE). MissForest, which had the lowest RMSE, 

was selected to input all missing values into the full dataset (Supplementary Table 1). This 

method can impute continuous and categorical data, including complex interactions and non-

linear relations.22 

 

Analysis Methods 



From the master cohort dataset, information was extracted to generate five datasets 

which corresponded to the five diabetic complications intended to be analyzed in this study. 

Each dataset was used to developed prediction model for their respective complications. 

For the development of each prediction model, the respective dataset was randomly 

split into 80% training and 20% validation using a stratified approach based on the target 

variable to maintain class balance. Feature selection was conducted using the filter method 

for simplicity and computational efficiency. Correlations between predictors were assessed 

using Pearson's correlation for numerical variables and Cramer's V for categorical variables. 

Highly correlated predictors were removed to avoid multicollinearity issues. Mutual 

information with the target variable was also considered, and features with mutual 

information below 0.001 were removed. 

The class imbalance was managed using the synthetic minority oversampling 

technique (SMOTE), which generated synthetic samples for the minority class, ensuring a 

more balanced dataset. Data normalization was applied to bring numerical variables to a 

common scale, preventing any single variable from disproportionately influencing the model. 

Seven ML algorithms were tested: logistic regression (LR), support vector machine 

(SVM), k-nearest neighbors (kNN), decision tree (DT), random forest (RF), Extreme 

Gradient Boosting (XGB), and Light Gradient-Boosting Machine (LGBM). Stratified k-fold 

cross-validation (k=10) was used to maintain balanced class distribution in each fold, 

enhancing the robustness of model evaluation. Hyperparameter tuning through grid search 

was performed to identify the optimal settings for each algorithm, with the highest Receiver 

Operating Curve – Area Under the Curve (ROC-AUC) score guiding the selection. The 10-

fold cross-validation was used within the training set to tune hyperparameters and optimize 



model performance. The separate 20% validation set was reserved for final model evaluation 

on unseen data, ensuring an unbiased assessment of generalizability. 

The best models for each complication were further evaluated for accuracy, 

sensitivity, and specificity across various decision thresholds, providing a more 

comprehensive understanding of the models’ performance. A decision threshold in a binary 

classification model is the probability value that determines how predictions are classified. If 

a model’s predicted probability for a given case exceeds the threshold, it is classified as a 

positive case; otherwise, it is classified as negative. Typically, the threshold is set at 0.5 

(default threshold), but it can be adjusted based on the desired balance between false 

positives and false negatives. In medical applications, where the consequences of 

misclassification can vary, adjusting the threshold allows for optimizing sensitivity and 

specificity depending on clinical priorities. 

This study specifically presented accuracy, sensitivity, and specificity at the optimal 

threshold (decision threshold where Youden’s J statistic is highest) to provide a balanced view 

of model performance, as this threshold best distinguishes between true positives and false 

positives. Youden’s J statistic is a widely used measure in diagnostic test evaluation to assess 

the effectiveness of a medical test in distinguishing between diseased and non-diseased 

individuals.23 It is calculated as: 

J=Sensitivity+Specificity−1 

The value ranges from 0 to 1, where 0 indicates no discriminatory power (the test 

gives the same proportion of positive results for groups with and without the disease), and 1 

indicates perfect sensitivity and specificity. A higher Youden’s J value suggests a better trade-

off between sensitivity and specificity, making it a useful metric for determining the optimal 



decision threshold in classification models. The feature importance of these models was also 

assessed to ensure the interpretability of the models. 

 

Results 

Participants 

The master cohort dataset comprised 90,933 T2D patients from southern Malaysia, 

resulting in a total of 288,308 instances available for the development of prediction models. 

Information from this dataset was extracted and used to form five datasets corresponding to 

the five selected diabetes complications being studied. The cohort predominantly featured 

female participants (60.89%) and was mostly Malay (66.03%), followed by Chinese 

(19.89%), Indian (13.59%), and other ethnicities (0.49%). Such distribution reflects the 

gender and ethnic distribution of patients with diabetes in Peninsular  Malaysia.24 Overall, the 

whole cohort was followed up for a median of eight years. At baseline, the median age of the 

cohort was 59 years old, with median diabetes duration of four years. Summary of the 

number of patients and instances extracted for each dataset is available in Supplementary 

Figure 2. 

Regarding all-cause mortality, 17.79% (n=16,180) of the cohort developed 

complications, with an incidence rate of 23.6 per 1000 person-years. For retinopathy, 4.23% 

(n=3,537) of 83,602 patients experienced complications, with an incidence rate of 10.2 per 

1000 person-years. Nephropathy affected 5.74% (n=4,642) of 80,876 patients, with an 

incidence rate of 14.0 per 1000 person-years. For IHD, 1.34% (n=1,131) of 84,383 patients 

developed complications, with an incidence rate of 3.2 per 1000 person-years. Lastly, for 

CeVD, 0.32% (n=282) of 88,491 patients faced complications, with an incidence rate of 0.8 



per 1000 person-years. Table 1 summarizes the incidence rate of the diabetic complications 

found in this study. 

“INSERT TABLE 1 HERE” 

 

Prediction models 

The results of the models for all-cause mortality prediction showed that the XGB and 

LGBM models performed the best, with ROC-AUC scores of 0.84, while the other models 

scored between 0.78 and 0.79. In predicting retinopathy, the XGB and LGBM models had the 

highest ROC-AUC scores, at 0.69 and 0.71, respectively, while the SVM model had the 

lowest score of 0.52. The assessment of nephropathy prediction capabilities also showed a 

similar pattern, where LGBM marginally led with a score of 0.71, followed closely by the 

XGB model at 0.70, and the SVM model remaining the least effective, with a score of 0.53. 

For IHD prediction, both the XGB and LGBM models had the highest performance with a 

score of 0.66, in contrast to the SVM's lowest score of 0.51. Finally, in CeVD prediction, the 

LGBM model had the best performance with a score of 0.74, followed by the XGB model at 

0.71, while the DT model exhibited the least competence, scoring 0.50.  

“INSERT TABLE 2 HERE” 

Overall, the XGB and LGBM models consistently demonstrated superior performance 

across all five selected diabetic complications. In this study, the LGBM models showed the 

best performance in predicting the five selected diabetic complications, followed closely by 

the XGB model. Among the five models, four of them (excluding the IHD model) showed 

good performance with ROC-AUC score of at least 0.70. Table 2 summarizes the ROC-AUC 

score for all models. 



 

Evaluation of the best models – the LGBM models 

As the best-performing model for each complication, the performance of the LGBM 

models was further evaluated. The ROC curve for each LGBM model, along with their 

respective ROC-AUC score, optimal threshold and the best Youden’s Index is available in 

Supplementary Figure 3. Figure 1 depicts their accuracy, sensitivity, and specificity at various 

decision thresholds, along with their corresponding accuracy, sensitivity, and specificity 

values at the optimal threshold.   

Among the LGBM models, the all-cause mortality model showed the best 

performance with a sensitivity of 0.76, specificity of 0.74, and a Youden's index of 0.51 at the 

optimal threshold of 0.18. The retinopathy model had an optimal threshold of 0.04 with a 

sensitivity of 0.63, a specificity of 0.67, and a Youden's index of 0.32. The nephropathy 

model performed better than retinopathy at an optimal threshold of 0.04, with a sensitivity of 

0.70, specificity of 0.62, and a Youden's index of 0.32. The IHD model had an optimal 

threshold of 0.01 with a sensitivity of 0.57, a specificity of 0.68, and a Youden's index of 

0.25. The CeVD model had an optimal threshold of 0.002 with a sensitivity of 0.64, a 

specificity of 0.72, and a Youden's index of 0.37. 

“INSERT FIGURE 1 HERE” 

In addition to their performance, the feature importance of the LGBM models was 

also evaluated for a better understanding of the models. This analysis demonstrates a 

consistent pattern of feature importance across the LGBM models for the five diabetes 

complications. Several features such as ethnicity, glycosylated haemoglobin A1c (hbA1c), 

blood pressure, LDL-cholesterol, and diabetes duration consistently emerge as key predictors, 

though their importance scores vary across models. Despite this variability, the overall trend 



shows these features as dominant in predicting complications. Conversely, other features, 

such as medications and comorbidities, consistently exhibit lower importance scores, 

reinforcing their lesser predictive value (Supplementary Figure 4).  

 

Discussion 

The overall performance of the models shows that the LGBM and XGB models 

consistently outperformed simpler models like kNN, SVM, LR, and DT, highlighting the 

strength of ensemble methods in capturing complex patterns in medical data.9,25 LGBM 

achieved the highest ROC-AUC scores across all five complications, with four models 

showing good performance (ROC-AUC ≥ 0.7). Despite the similar performance between the 

LGBM and XGB models, the LGBM models were much more efficient, training seven to 13 

times faster than XGB (Supplementary Table 2). Simpler models, particularly DT and SVM, 

showed lower performance, likely due to their limited ability to model complex, non-linear 

relationships and high-dimensional data interactions, with SVM models being 

computationally expensive and time-consuming to train.26 

In comparison to findings from a systematic review,9 the performance of ML models 

in this study demonstrated relatively lower ROC-AUC scores, particularly for microvascular 

outcomes like retinopathy and nephropathy. The review reported that neural networks and 

decision trees achieved mean ROC-AUCs of 0.87 and 0.86, respectively, while this study 

observed the highest ROC- AUC for LightGBM, with 0.70 for retinopathy and 0.71 for 

nephropathy. Similarly, for macrovascular outcomes such as ischemic heart disease, the 

review found that ensemble methods had a mean ROC-AUC of 0.70, which is slightly higher 

than the results in this study, where random forest and LightGBM reached ROC-AUCs of 



0.66. These differences may be attributed to variations in model complexity, dataset size, or 

the features used in the analyses. 

The LGBM, which is the best-performing model, was further evaluated using 

accuracy, sensitivity, and specificity across various decision thresholds. Due to class 

imbalance, the models showed high specificity but low sensitivity at the default threshold. A 

more balanced accuracy and sensitivity were observed at the optimal threshold. At the 

optimal threshold, the models demonstrated acceptable levels of accuracy, sensitivity, and 

specificity, indicating that they are reliable tools for prediction. In practice, the choice of 

decision threshold depends on the desired balance between the consequences of false 

positives and false negatives. All models have relatively low optimal thresholds, suggesting 

that such low points might be considered the starting point for deciding on the desired 

decision threshold to be used in real-world practice. 

While most models did not achieve excellent ROC-AUC values (>0.8), they remain 

clinically useful for risk stratification among diabetes patients. Since all individuals with 

diabetes are inherently at risk of complications, the cost of false positives is relatively low. 

Therefore, a higher sensitivity may be preferable, which can be achieved by lowering the 

decision threshold. The acceptable trade-off in specificity should be determined based on the 

available resources for screening in each healthcare setting, ensuring feasibility in real-world 

practice. 

In practice, training ML models require relatively high computational resources. 

However, this demand is primarily limited to the training phase. Once trained, these models 

are computationally efficient for inference (making predictions), ensuring practical feasibility 

for real-world implementation. Additionally, newer algorithms like LGBM are specifically 

designed to optimize computational efficiency, significantly reducing resource demands 



while maintaining strong predictive performance. As shown in Supplementary Table 2, the 

LGBM model required significantly less train time than most other algorithms, highlighting 

its efficiency. 

In this study, feature importance scores reveal consistent trends across diabetic 

complications, highlighting key predictors such as ethnicity, hbA1c, blood pressure, LDL-

cholesterol, and duration of diabetes as crucial for predicting complications, aligning with 

existing evidence.27 Conversely, predictors such as prescribed medications rank lower, 

suggesting that they have a less direct impact on outcomes. This may be due to adherence 

issues and registry limitations, as prescription data do not reflect actual medication use or 

capture dosage adjustments over time. Such a consistent pattern across the five models 

supports shared pathways in diabetes complications and aligns with current scientific 

understanding, enhancing model validity.27 Understanding these feature importance scores 

helps to address the black box issue in ML by improving model interpretability, thereby 

increasing confidence among healthcare professionals in using these models for patient care. 

One of the key strengths of this study was the use of real-world, big data from the 

MNDR, which represents a comprehensive dataset of patients in Malaysia. The routine nature 

of MNDR data collection ensures that the methodology of this study can be replicated in the 

future, facilitating direct comparisons and practical applications of the developed prediction 

models. Furthermore, this study represents one of the first efforts in Malaysia to develop ML 

models for predicting diabetic complications by utilizing advanced algorithms such as XGB 

and LGBM. These models are based on data from primary healthcare settings, ensuring their 

relevance to the local context while offering greater accuracy and robustness than traditional 

methods. 



Several limitations should be considered when interpreting these findings. One major 

limitation of this study stems from the constraints of using secondary data, which only 

includes variables already collected in the registry. This limits the ability to consider other 

important factors, such as family history, physical inactivity, and health literacy, which could 

be relevant to diabetes complications. Additionally, the study did not employ deep learning 

methods, which may restrict the potential of the model to capture more complex associations. 

While deep learning can offer higher accuracy, concerns over interpretability and the high 

computational resources required led to its exclusion from this study. 

Another potential limitation is that the dataset is geographically limited to southern 

Malaysia. While it includes a diverse population with varying socioeconomic backgrounds, 

urban and rural distributions, and major ethnic groups, the model’s generalizability to other 

regions remains uncertain and would require external validation. Additionally, although 

efforts were made to capture real-world clinical diversity, potential biases in model 

predictions cannot be fully ruled out, highlighting the need for ongoing evaluation to ensure 

fairness in different healthcare settings. 

Findings from this study provide evidence to support the integration of ML models, 

particularly LGBM, into clinical practice as supportive tools to complement clinical 

judgement, enhance risk stratification and provide personalized care for patients with 

diabetes. To ensure robustness and applicability, further optimization, validation, and fine-

tuning of these models across diverse populations is necessary. Future studies may consider 

comparative studies with deep learning models to identify the most effective predictive tools, 

as these models may capture complex patterns that simpler models might overlook; however, 

balancing accuracy and interpretability should always be prioritized. In addition, using a 

more comprehensive national dataset would improve model generalization and accuracy, 

making it applicable across different regions and populations.  



 

Conclusion 

In predicting diabetic complications, the LGBM models demonstrated superior 

performance compared to other ML algorithms, including LR, kNN, SVM, DT, and RF. The 

LGBM models achieved good performance in all diabetic complications with an ROC-AUC 

of at least 0.7, except for IHD. The performance of the XGB models was comparable to that 

of the LGBM models but required a much longer training time. The feature importance 

analysis highlights that features such as age at first diagnosis of T2D, T2D duration, ethnicity, 

BP, and HbA1c are crucial predictors of various diabetic complications, aligning with the 

existing medical literature. This emphasizes the potential of LGBM models in medical 

predictive analytics, particularly in diabetes management, while also highlighting the 

importance of feature selection and the need for careful consideration of model 

interpretability and computational efficiency in healthcare applications. 

 

Ethical Approval: Approved Institutional Review Board Name: Medical Research and 

Ethics Committee, Ministry of Health Malaysia IRB reference Number: NMRR ID- 22-

00928-MMB (IIR) 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

References 

 
1. International Diabetes Federation. IDF Diabetes Atlas. 10th Edition ed. 2021. 
Accessed 14/2/2023. https://www.diabetesatlas.org 
2. Institute for Public Health. National Health and Morbidity Survey (NHMS) 
2019: Vol. I: NCDs – Non-Communicable Diseases: Risk Factors and other Health 
Problems. 2020. http://www.iku.gov.my/nhms-2019 
3. Viigimaa M, Sachinidis A, Toumpourleka M, Koutsampasopoulos K, Alliksoo S, 
Titma T. Macrovascular Complications of Type 2 Diabetes Mellitus. Curr Vasc 
Pharmacol. 2020;18(2):110-116. doi:10.2174/1570161117666190405165151 
4. Zimmerman RS. Diabetes mellitus: management of microvascular and 
macrovascular complications. Cleveland Clinic: Centers for Continuing Education. 
2016. 
https://www.clevelandclinicmeded.com/medicalpubs/diseasemanagement/endocrinol
ogy/diabetes-mellitus/ 
5. Emerging Risk Factors Collaboration. Diabetes mellitus, fasting glucose, and 
risk of cause-specific death. N Engl J MedNew. 2011;364(9):829-841.  
6. Ministry of Health Malaysia. National Diabetes Registry Report 2013-2019. 
2020. www.moh.gov.my 
7. Zulman DM, Vijan S, Omenn GS, Hayward RA. The relative merits of 
population-based and targeted prevention strategies. Milbank Q. Dec 
2008;86(4):557-80. doi:10.1111/j.1468-0009.2008.00534.x 
8. Grant SW, Collins GS, Nashef SAM. Statistical Primer: developing and 
validating a risk prediction model†. Eur J Cardiothorac Surg. 2018;54(2):203-208. 
doi:10.1093/ejcts/ezy180 



9. Tan KR, Seng JJB, Kwan YH, et al. Evaluation of machine learning methods 
developed for prediction of diabetes complications: a systematic review. J Diabetes 
Sci Technol. 2023;17(2):474-489.  
10. Dagliati A, Marini S, Sacchi L, et al. Machine Learning Methods to Predict 
Diabetes Complications. J Diabetes Sci Technol. Mar 2018;12(2):295-302. 
doi:10.1177/1932296817706375 
11. Dworzynski P, Aasbrenn M, Rostgaard K, et al. Nationwide prediction of type 
2 diabetes comorbidities. Sci Rep. Feb 4 2020;10(1):1776. doi:10.1038/s41598-020-
58601-7 
12. Ljubic B, Hai AA, Stanojevic M, et al. Predicting complications of diabetes 
mellitus using advanced machine learning algorithms. J Am Med Inform Assoc. Jul 1 
2020;27(9):1343-1351. doi:10.1093/jamia/ocaa120 
13. Segar MW, Vaduganathan M, Patel KV, et al. Machine Learning to Predict the 
Risk of Incident Heart Failure Hospitalization Among Patients With Diabetes: The 
WATCH-DM Risk Score. Diabetes Care. Dec 2019;42(12):2298-2306. 
doi:10.2337/dc19-0587 
14. Song X, Waitman LR, Yu AS, Robbins DC, Hu Y, Liu M. Longitudinal Risk 
Prediction of Chronic Kidney Disease in Diabetic Patients Using a Temporal-
Enhanced Gradient Boosting Machine: Retrospective Cohort Study. JMIR Med 
Inform. Jan 31 2020;8(1):e15510. doi:10.2196/15510 
15. Cichosz SL, Johansen MD, Hejlesen O. Toward Big Data Analytics: Review of 
Predictive Models in Management of Diabetes and Its Complications. J Diabetes Sci 
Technol. Oct 14 2015;10(1):27-34. doi:10.1177/1932296815611680 
16. Khairudin Z, Razak NAA, Abd Rahman HA, Kamaruddin N, Abd Aziz NA. 
Prediction of Diabetic Retinopathy Among Type II Diabetic Patients Using Data 
Mining Techniques. Malays J Comput. 2020;5(2):572-586.  
17. Sim R, Chong CW, Loganadan NK, Adam NL, Hussein Z, Lee SWH. 
Comparison of a chronic kidney disease predictive model for type 2 diabetes mellitus 
in Malaysia using Cox regression versus machine learning approach. Clin Kidney J. 
2022;16(3):549-559. doi:10.1093/ckj/sfac252 
18. Abas MZ, Li K, Hairi NN, Choo WY, Wan KS. Machine learning based 
predictive model of Type 2 diabetes complications using Malaysian National 
Diabetes Registry: A study protocol. J Public Health Res. 
2024;13(1):22799036241231786. doi:10.1177/22799036241231786 
19. Feisul MI ASE. National Diabetes Registry Report, Volume 1, 2009-2012. Vol. 
1. 2013. http://www.moh.gov.my 
20. Vollmer S, Mateen BA, Bohner G, et al. Machine learning and artificial 
intelligence research for patient benefit: 20 critical questions on transparency, 
replicability, ethics, and effectiveness. BMJ. 2020;368:l6927. doi:10.1136/bmj.l6927 
21. Falconer N, Abdel-Hafez A, Scott IA, Marxen S, Canaris S, Barras M. 
Systematic review of machine learning models for personalised dosing of heparin. Br 
J Clin Pharmacol. 2021;87(11):4124-4139. doi:https://doi.org/10.1111/bcp.14852 



22. Stekhoven DJ, Bühlmann P. MissForest—non-parametric missing value 
imputation for mixed-type data. Bioinformatics. 2012;28(1):112-118. 
doi:10.1093/bioinformatics/btr597 
23. Fluss R, Faraggi D, Reiser B. Estimation of the Youden Index and its 
Associated Cutoff Point. Biom J. 2005;47(4):458-472. 
doi:https://doi.org/10.1002/bimj.200410135 
24. Ministry of Health Malaysia. National Diabetes Registry Report 2023. 2023. 
www.moh.gov.my 
25. Kee OT, Harun H, Mustafa N, et al. Cardiovascular complications in a 
diabetes prediction model using machine learning: a systematic review. Cardiovasc 
Diabetol. 2023;22(1):1-10.  
26. Géron A. Hands-on machine learning with Scikit-Learn, Keras, and 
TensorFlow. " O'Reilly Media, Inc."; 2022. 
27. Elhefnawy ME, Ghadzi SMS, Noor Harun S. Predictors Associated with Type 
2 Diabetes Mellitus Complications over Time: A Literature Review. J Vasc Dis. 
2022;1(1):13-23.  
 
 

 

Table 1: The incidence rate of diabetic complications 

  No of 
patients 

Complications developed Diabetes 
durationa 

(years) 
Incidence rateb 

Yes No 

All-cause 
mortality 

90933 16180 (17.79%) 74753 (82.21%) 13 (10, 17) 23.6 

Retinopathy 83602 3537 (4.23%) 80065 (95.77%) 10 (7, 13) 10.2 

Nephropathy 80876 4642 (5.74%) 76234 (94.26%) 10 (7, 13) 14.0 

IHD 84383 1131 (1.34%) 83252 (98.66%) 10 (7, 13) 3.2 

CeVD 88491 282 (0.32%) 88209 (99.68%) 10 (7, 14) 0.8 
a Duration of diabetes when patients exit the cohort 
b Incidence rate per 1000 patient-years 
Complications presented in n (%); T2D duration presented in median (Q1, Q3) 

 

 

 

 

 



Table 2: Models’ performance for each diabetes complication evaluated on their respective 
hold-out datasets. 

  k-NN SVM LR DT RF XGB LGBM 

All-cause mortality 0.78 0.65 0.78 0.78 0.79 0.84 0.84 

Retinopathy 0.64 0.52 0.62 0.58 0.61 0.69 0.71 

Nephropathy 0.65 0.53 0.64 0.59 0.65 0.70 0.71 

IHD 0.63 0.51 0.63 0.56 0.6 0.66 0.66 

CeVD 0.67 0.61 0.66 0.50 0.65 0.71 0.74 

The performance was measured using ROC-AUC score 

kNN: k-Nearest Neighbors; SVM: Support Vector Machine; LR: Logistic Regression; DT: 
Decision Tree; RF: Random Forest; XGB: Extreme Gradient Boosting; LGBM: Light 
Gradient Boosting Machine. 
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Figure 1: Accuracy, specificity, and sensitivity of the LGBM models for each diabetes 

complication at various decision thresholds with their corresponding value at the optimal 
threshold. 

 

 
 
 


