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Anaerobic digestion (AD) is a widely adopted waste management strategy that transforms organic waste into
biogas, addressing both energy and environmental challenges. Feedstock pretreatment is crucial for enhancing
organic matter breakdown and improving biogas yield. Among various techniques, microwave (MW) irradiation-
based pretreatment has shown significant promise. However, the optimization of MW-assisted AD processes
remains underexplored, necessitating predictive tools for process simulation. Machine Learning (ML) has
recently emerged as a powerful alternative for predicting and optimizing AD performance. In this study, an ML-
driven pipeline was developed to predict methane yield based on food waste (FW) composition, AD reactor
parameters, and MW pretreatment conditions. A range of data preprocessing techniques and ML models (linear,
non-linear, and ensemble) were systematically evaluated, with model performance assessed via hyperparameter-
optimized cross-validation. The most accurate models (non-linear and ensemble) achieved R? > 0.91 and RMSE
<35 mL/g volatile solids (gVS), whereas linear models underperformed (R? < 0.71, RMSE >70 mL/gVS). Sup-
port Vector Machine (SVM) emerged as the best-performing model, with R? ~0.94 and RMSE ~34 mL/gVS.
Beyond predictive accuracy, this study offers novel insights into MW pretreatment’s role in AD efficiency.
Permutation feature importance (PFI) analysis revealed that while MW pretreatment enhances methane yield, its
effects are secondary to reactor pH and FW composition. This suggests that MW treatment primarily facilitates
substrate disintegration but does not drastically alter biochemical methane potential unless coupled with opti-
mized reactor conditions. Additionally, minor fluctuations in MW pretreatment time and temperature were found
to have negligible impacts on methane production, indicating a level of operational flexibility in MW-based AD
processes. These findings provide a refined understanding of MW pretreatment’s practical implications, guiding
process design for improved scalability and industrial application.

1. Introduction

With the continued urbanization across the globe, municipal waste
production is expected to increase by 70 %, resulting in 3.4 billion
metric tons by 2050, adding significant pressure on waste management
[1]. The organic fraction of municipal waste (OFMSW) typically com-
prises food waste (FW). As per the UN Food and Agriculture Organiza-
tion (FAO), 1.3 billion tonne of FW is globally generated each year,
typically disposed of via incineration, landfilling, and compositing [2].
This exacerbates the direct greenhouse gas emissions associated with FW
disposal, jeopardizing the UN SDG 13 (i.e., climate action). Biogas and
digestate production via Anaerobic Digestion (AD) of FW has improved
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waste valorization while facilitating a circular economy.

AD uses microbial communities to decompose organic and moisture
content-rich FW substrates to produce biogas containing 55-70 %
methane, a promising source of clean energy production [3]. The
semi-solid by-product, digestate is rich in nitrogen and
phosphorus-based nutrients, which serve as a potential biofertilizer. AD
is a multi-step complex bio-kinetic process, consisting of four sequential
stages: hydrolysis, acidogenesis, acetogenesis, and methanogenesis [4].
The methane yield from an AD process is affected by feedstock com-
positions, bioreactor operating conditions, reactor design, inoculum
type, etc, optimization of which is a challenging task. Hydrolysis is one
of the slowest stages and determines the organic matter decomposition,
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ultimately regulating methane yield [5].

Feedstock pretreatment accelerates hydrolysis, enhancing substrate
solubilization, biodegradability, and expediting organic waste decom-
position. Traditional pretreatment methods encompass: (a) chemical (e.
g, saponification and alkali treatments), (b) mechanical (e.g., ultrasonic,
extrusion, and grinding), (c) thermal (e.g., steam explosion and hydro-
thermal processes), or (d) biological (e.g, compositing, fungal, and
enzymatic methods) [6]. Microwave (MW)-assisted pretreatment has
emerged as a promising thermal method for enhancing AD processes.
MW-assisted pre-treatment offers advantages such as rapid heating
rates, improved energy efficiency, and uniform heating [7]. This tech-
nique facilitates the release of organic matter from complex substrates
like FW into the soluble phase, increasing the biodegradable fraction
available to microorganisms. MW pretreatment operates at powers
ranging from 440 to 500 W, temperatures between 30 °C and 160 °C,
and durations of 1-10 min [8].

However, MW pretreatment presents specific challenges that require
careful consideration. Excessive temperatures (above 160 °C) or pro-
longed treatment times can induce the Maillard reaction, producing
recalcitrant compounds that inhibit microbial activity, thereby reducing
AD efficiency and biogas production [9]. Additionally, the non-thermal
effects of microwaves and their mechanisms remain subjects of ongoing
research and debate. A comprehensive understanding of these effects is
crucial for optimizing MW pretreatment conditions. Furthermore, the
energy consumption associated with MW pretreatment is a critical fac-
tor; the energy input must not outweigh the benefits gained in biogas
production. Therefore, it is imperative to optimize MW pretreatment
parameters—such as power, temperature, and duration—while consid-
ering their holistic impact on methane production and overall process
efficiency [10]. Addressing these MW-specific challenges is essential for
the effective integration of MW pretreatment in AD systems.

FW is characterized by high moisture and organic content, making it
an ideal substrate for the MW-AD process. Nevertheless, the geograph-
ical variability of food habits makes FW a complex AD feedstock. This
affects their digestibility, hydrolysis rate, and decomposition time, ul-
timately varying the methane production [11]. MW-based precise uni-
form heating facilitates enzymatic reaction for breaking complex
organic matters, maximizing the biogas yield of AD. For example,
varying the pretreatment temperature across a range of 70, 120, and
150 °C improves the biogas yield by 2.7 %, 24 %, and 11.7 % respec-
tively [12]. Nevertheless, increasing the temperature beyond a
threshold slows down the decomposition rate due to the formation of
complex polymers (e.g., melanoidins), which impart an inhibitory effect
on the AD reactor. Other investigations have indicated the importance of
optimizing MW time and temperature, simultaneously [11]. Although a
slower heating rate (HR, 1.9 °C/min) resulted in faster digestibility (due
to gradually cell decomposition and lower chances of inhibitory com-
pounds formation from thermal shock), the anaerobic biodegradability
improved at a faster HR (7.8 °C/min). MW pretreatment at HRs 1.9 and
3.9 °C/min increased the biogas production by 14-fold for the soluble
fraction. In contrast, for the whole fraction of FW, HR = 7.8 °C/min
improved the biogas yield, suggesting the necessity of transient MW
time control for MW-AD [11].

In parallel to the pretreatment parameters, other routinely controlled
AD process attributes are temperature, pH, scale of operation (i.e.,
reactor volume), hydraulic retention time (HRT), etc. Meanwhile,
feedstock properties such as total solid (TS), volatile solid (VS), and
carbohydrate (%C), protein (%P), and lipid (%L) contents are essential
components that regulate methane production [13]. To improve the
process efficiencies and understand the whole-system operation of the
AD process a range of mathematical models have been developed,
among which the Anaerobic Digestion Model 1 (ADM1) is one of the
most sophisticated biokinetic models [14]. Nevertheless, the intricate
nature of the model limits its applicability to real-time AD reactor
control systems, moreover, the ADM1 requires extensive model cali-
bration before industrial implementation [15]. To circumvent the
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drawbacks of ADM1, machine learning (ML)-based methane yield pre-
diction models have rapidly emerged over the past few years [16].

Frequent choices for ML models have been Artificial neural network
(ANN), K-nearest neighbour (KNN), Linear regression (LR), ElasticNet
(EN), Gaussian process regression (GPR), Support Vector Machine
(SVM), Random Forest (RF), and eXtreme gradient boosting (XGBOOST)
[17]. Some of the seminal works include: (a) tree-based model devel-
opment for predicting methane yield for anaerobic co-digestion for a
diverse organic waste stream based on long-term data [18], (b) predic-
tion of biogas yield based on genetic abundance data [19], and (c)
data-driven inverse interpretable ML modelling to predict biogas yields
[20]. An extensive overview of ML modelling for AD can be found
elsewhere [13,16].

Despite extensive efforts to develop interpretable ML models for
predicting methane yields for AD processes without feedstock pre-
treatment, relevant ML modelling accounting for feedstock pretreatment
is relatively sparse. Previous efforts include ML modelling for (a) AD of
activated sludge with hydrothermal pretreatment [21], (b) generaliz-
able AD modelling for a range of pretreatment methods (e.g., chemical,
ultrasonic, and thermal) of sewage sludge [22], and (c) mechanical
grinding and Fe3O4 additive-assisted AD of Arachis hypogea (i.e., peanut)
shells [23]. To our knowledge, there has not been any effort toward
developing an optimal ML model selection pipeline for MW-AD process.

The development of ML models for MW-AD of FW as the feedstock
adds significant value to the literature from a process modelling and
optimization perspective. Specifically, accurate MW-AD process
modelling has the potential to facilitate the implementation and prac-
tical design of the process towards greater efficiency and sustainability.
FW being one of the ubiquitous feedstocks for AD and MW-based pre-
treatment of feedstock offering efficient and rapid heating has the po-
tential to decarbonize the overall carbon footprint of the biogas
production process. This work develops and compares a series of ML
models (linear, non-linear, and ensemble-based) to predict methane
production based on FW composition, AD conditions, and MW pre-
treatment parameters. The models are built upon and validated, which
after optimization achieve high accuracy and enhanced interpretability
(ie., via permutation feature importance).

2. Methodology
2.1. Data assimilation

In total, 53 datasets were collected from the literature to develop the
data-driven models [24-32]. This included a wide variety of food waste
streams (e.g., kitchen waste, organic fraction of municipal solid waste),
mono- or co-digestion, thermophilic or mesophilic conditions, and
mostly batched reactors. The collected datasets contained a range of
information on feedstock properties such as substrate compositions
(protein (%P), carbohydrate (%C), lipids (%L)), volatile solids (VS, wt.
%), AD reactor operating temperature (°C), hydraulic retention time
(HRT, days), pH, reactor volume (L), MW pretreatment temperature
(°C), MW pretreatment time (minutes), and methane yield from AD
(mL/g VS). The first ten variables (%P, %C, %L, VS, AD temperature,
HRT, pH, volume, MW temperature, and MW time) are considered the
predictor variables. In contrast, the methane yield is taken as the pre-
dicted variable. The raw dataset is provided in the Supplementary
Material.

2.2. Data preprocessing methodologies

Since the dataset contains experimental datasets from several
different research groups; the assimilated dataset will contain missing
values, outliers, and values with dissimilar ranges. This will cause con-
sistency issues while training ML-based continuous regression models,
thus affecting their accuracy in predicting methane yield. This problem
was addressed by imputing the missing values of an attribute to its



R. Gupta et al.

corresponding mean [33], ultimately resulting in a complete dataset. It
is important to note that these artificially imputed mean values were
only performed during the model training and therefore would not affect
the model testing.

The constructed dataset would also contain outliers, which require
additional preprocessing steps to remove them. Two such popular
outlier removal methods such as (a) Z-score normalization and (b)
interquartile range (IQR) are considered [4]. The first maps the dataset
in terms of the standard normal variate Z = (X — u) /o, where X is the
attribute of interest, u and ¢ are the mean and standard deviation of the
attribute, respectively. In this case, any datasets with Z scores beyond

+3 are eliminated from the datasets. As a competing method, IQR-based

outlier removal removes any datapoint beyond the 25th and 75th
percentile.

Following the outlier removal, the dataset was normalized to ensure
that the features were appropriately scaled for the ML model develop-
ment. Two types of normalization were explored (a) max-min normali-
zation (MMN) and (b) maximum absolute scaling (MAS) [33]. MMN
uses the transformation function X = (X —Xmin) /(Xmax —Xmin) where
Xmax and X, are the maximum and minimum values of the attribute X,
respectively. In contrast, the MAS scales the entire dataset using the
absolute maxima of the attribute, i.e., X' = X /|Xinqx|-

2.3. Machine learning models

Based on the pre-processed datasets a total of eight different types of
ML models are developed and compared, which uses 10 input attributes
to predict the methane yield of MW-pretreated AD process. The entire
ML workflow has been constructed in Python using the scikit-learn li-
brary. The pre-processed dataset is split into 80 % training and 20 %
testing fractions to evaluate the model performances. Each of the model
was trained using k-fold cross validation approach, which ensures high
generalizability of the model and mitigate overfitting. The k-fold cross-
validation was coupled with a hyperparameter optimization engine (i.e.,
GridSearchCV in scikit-learn), where initially k = 5 was assigned. The
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optimization routine heuristically searches through a dictionary of
hyperparameters for each model adhering to the k-fold cross-validation
routine and maximizes the model prediction accuracy. The data-driven
modelling pipeline integrated with dataset preprocessing methods are
shown in Fig. 1. The ML models are described below.

Among the linear ML models, LR and EN are considered. LR can
embed several independent variables into the model to predict an output
variable (i.e., methane yield). Training an LR model involves determi-
nation of unknown regression constants by minimizing the prediction
error. The EN is a more sophisticated version of the LR which uses
regularization to mitigate drawbacks of LR. This is achieved via
combining the penalty terms of Lasso (L1) and Ridge (L2) regression
methods, enabling the model to simultaneously perform variable se-
lection and handle correlated predictors. This becomes important when
the datasets involve a larger number (i.e., 10+) of input attributes.

From the pool of non-linear models, ANN, KNN, SVM, and GPR have
been selected. Multilayer perceptron (MLP)-based ANN is considered
due to its deep non-linear pattern recognition abilities from complex
physical datasets. The key to develop an MLP-based ANN is identifying
the optimal number of neurons, hidden layer, weights, biases, and
activation function. To determine an optimal combination of these
hyperparameters for a certain dataset, ANNs must therefore be trained
using an hyperparameter optimization engine. KNN model predicts
output variables based on individual datapoints and its proximity to k
neighbouring datapoint. The number of k instances in the training
dataset is usually determined using statistical distance from the data
cluster centroid with Euclidean or Manhattan distances. These further
embed onto weighted averaging that determines the influence of
neighbouring points on predicting a target variable. The SVM model is a
non-parametric, non-probabilistic method which are suitable for high
dimensional datasets handling large number of input/output variables.
The model maps input features into a multi-dimensional space using
non-linear kernel function, further creating an optimal hyperplane to
differentiate between various subsets. In contrast, GPR is a Bayesian
probabilistic regression method beneficial for datasets with high vari-
ances. The GPR method determines covariance of model predictions
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Fig. 1. Sequential stages of the machine learning model development to predict methane yield. Following on to the preliminary dataset construction, missing values
in the dataset were imputed with respective means. The dataset was then subjected data preprocessing that included outlier removal and variables scaling. The pre-
processed dataset was split into training and testing sets using which a range of ML models were constructed. The predictive accuracy of the optimized ML model was
quantified in terms of RMSE and R? metrics. Finally, the relationships between the variables were understood via Permutation Feature Importance analysis and
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which enables uncertainty quantification, generally overlooked by the
other ML models.

Among ensembled tree models, RF and XGBoost are chosen due to
their complex data learning capabilities for regression applications. Both
these models combine many decision trees via ensembling, which ulti-
mately mitigate overfitting issues. The RF is a bagging technique where
each tree is trained on a random subset of the training dataset. These
individual predictions are then unified via statistical metrics (e.g., mean,
median, and mode) towards a robust final prediction, ultimately
increasing the model generalizability. XGBoost, on the other hand, is a
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boosting-based ensembled learning methods where deeper trees are
grown in an additive manner. It implements a boosting framework that
bases predictions on individual decision trees while simultaneously
mitigating errors introduced from each tree. Features such as regulari-
zation and randomization minimize the loss function, resulting in
reduced overfitting. In general, it is important to note that boosting-
based algorithms have shorter training time that bagging algorithms.
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Fig. 2. Statistical analysis of the assimilated dataset. (A) Exploratory data analysis across different variables via two-ways plots. (B) Box-whisker plot showing spread
of different variables. (C) Pearson correlation coefficient map across any two variables where the diameter of the circles is proportional to the correlation coefficient.
VS: Volatile Solids, Pro: Protein, Car: Carbohydrate, Lip: Lipid, DT: Digester temperature, HRT: Hydraulic retention time, MWTe: Microwave pretreatment tem-
perature, MWTi: Microwave pretreatment time, Vol: Digester volume, CH,4: Methane yield.
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2.4. Model performance and interpretability

The root mean squared error (RMSE) and coefficient of determina-
tion (R?) are considered performance metrics for the ML-base regression
models.
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@

here y; and y are the true and predicted values of the output attribute (i.
e., methane yield), respectively; ¥ is the mean of the methane yields, and
N is the total number of datasets, which is 53.

In addition, understanding the dependence of model predictions on
the input features (i.e., model interpretability) is essential. Being a
global interpretability analysis method, permutation feature importance
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Fig. 3. Performance assessment of different data-driven models using R? (light blue) and RMSE (red). (A) Z-score based outlier removal, (B) interquartile range-based
outlier removal, (C) max-min normalization, (D) max absolute scaling, (E) with principal component analysis, (F) after hyperparameter optimization.
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is chosen that provide an overall correlation strength for each predictor
variable toward methane yield prediction. This technique is particularly
useful for non-linear or opaque estimators and involves randomly
shuffling the values of a single feature and observing the resulting
degradation of the model’s accuracy. By disrupting the relationship
between the predictor and the predicted, it is determined how much a
model relies on that predictor. It is important to note that PFI is a model-
agnostic (i.e., model-independent) method.

3. Results and discussion
3.1. Statistical analysis of the dataset

To understand the correlations between variables in the assimilated
dataset, which substantiate the physics of MW-AD process, a preliminary
statistical analysis is carried out. This includes exploratory analysis on
all the variables, data spread visualization, and correlation quantifica-
tion (see Fig. 2). Coupling MW pretreatment with AD increases the di-
gestibility of organics by effective decomposition of extracellular
polymeric substances (e.g., protein, carbohydrate), which would then be
easily available to microbial communities. The substrate concentration,
reactor operating conditions, and MW conditions altogether regulate the
methane yield as suggested by the exploratory data analysis (see
Fig. 2A). To understand the linear correlation strength of any two var-
iables in the dataset, the Pearson Correlation Coefficient (PCC) is eval-
uated. PCC ~ =1 signifies that the variables are highly correlated, while
a PCC = 0 suggests that the attributes are uncorrelated. The PCC be-
tween any two attributes x; and y; is defined as,

Y =X —y)
VE x-S - 3)?

The PCCs are shown in Fig. 2C via a two-dimensional map where the
diameters of the circles are proportional to the PCC values. This reveals
that the methane yield is positively correlated with the pH, lipid content,
and microwave conditions (i.e., time and temperature). In contrast,
negative correlation was observed between the protein and carbohy-
drate contents, VS, AD temperature and HRT.

PCC= 3

3.2. Systematic optimization of the ML models

Following the statistical analysis, a range of what-if scenarios were
investigated for developing an optimal ML model selection pipeline from
a pool of eight different models (LR, EN, GPR, KNN, SVM, ANN, RF, and
XGBoost). Fig. 3 shows the effects of applying different data

Table 1
Optimal hyperparameter values of the ML models using GridSearchCV algorithm.
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preprocessing (i.e., outlier removal and normalization), dimension
reduction (ie., principal component analysis (PCA)), and hyper-
parameter optimization methods. As mentioned above, the R? and RMSE
values are used for the accuracy quantification of the ML models.

A high-level comparison across Fig. 3A and B reveals that the ML
models developed using Z-score-based outlier removal methods provide
R? ~ 0.92 with RMSE ~38.5 mL/gVS, where RF, KNN, and XGBoost
outperform the other models. In contrast, the IQR-coupled ML models
fail to predict the methane yield accurately, thus providing unrealistic
R2 values. This is attributed to the fact that IQR is extremely sensitive to
dataset removal that removes any data points outside the 25th and 75th
quartile. Inspecting Fig. 2B suggests that for the present dataset, many
datapoints are beyond this range, which makes the IQR method unfa-
vorable. In contrast, the Z-score-based outlier detection is much more
conservative in removing outliers, relying on p and +3c values. After
selecting the optimal outlier removal method, the effect of utilizing two
different data normalization methods (MMN and MAS) on the model
performance is explored. Fig. 3C and D suggest that either of the nor-
malizations can provide accurate model development. The highest ac-
curacy was observed with the ANN model achieving R? values up to
0.94, with RMSE as low as 33.5 mL/gVS. Based on this analysis, the Z-
score outlier removal with MMN was used for all subsequent analyses.

Coupling dimensionality reduction methods (e.g., PCA) with ML
models helps toward feature engineering, eliminates collinearity, and
can prevent model overfitting. To understand if PCA is required for the
current model pipeline development, all the models were integrated
with the PCA-based feature reduction method. Inspecting Fig. 3E reveals
that although R? and RMSE values for some ML models improve when
coupled with PCA, it does not drastically change their values. The KNN
model outperforms other methods, with an R?> ~ 0.92 and RMSE ~38
mL/gVS. The potential reason for not gaining additional accuracy
improvement by adding PCA might be attributed to the size of the
dataset, where the current dataset is at least an order of magnitude
smaller than the scenarios where PCA can provide better results. Sub-
sequently, the ML models were subjected to a 5-fold cross-validation
routine with an automatic hyperparameter optimization algorithm (i.
e., GridSearchCV). The cross-validation coupled with hyperparameter
mitigates model overfitting, provides a generic model accuracy aver-
aged over multiple trials, and ensures model generalizability for unseen
(ie., testing) datasets. The optimal setting of hyperparameters for each
ML model is provided in Table 1. Fig. 3F shows that the SVM model has
the highest predictive accuracy after hyperparameter optimization, with
an R% ~ 0.84 and RMSE ~33.5 mL/gVS.

ML Model

Optimal Hyperparameter Combination

Linear Regression Fit Intercept: False
ElasticNet

Support Vector Machine
K-Nearest Neighbour
Artificial Neural Network
Gaussian Process Regression
Random Forest

eXtreme Gradient Boosting

Fit Intercept: False, a: 0.1, L1 Ratio: 0.9

C: 50, &: 0.1, Kernel Type: Polynomial

No. Neighbours: 9, Weight Function: Distance

Hidden Layer Size: 100, Activation Function: Logistic, Solver: SGD, Max Iterations: 1000

Kernel Type: RBF 1, Normalise: True

No. of Trees: 50, Max Depth of Trees: 5, Min Leaf Samples: 2, Min Split Samples: 2

No. of Boosting rounds: 50, Max Depth of Trees: 3, Learning Rate: 0.1, Subsample Ratio 1: 0.8, Subsample Ratio 2: 1
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Fig. 4. Parity plots obtained after optimizing different ML models. (A) LR, (B) ElasticNet, (C) SVM, (D) ANN, (E) GPR, (F) KNN, (G) RF, and (H) XGBoost.
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3.3. Performance of optimal ML models

The accuracy of methane yield prediction across eight different ML
models is visualized in the parity plots shown in Fig. 4. The dotted lines
represent the ideal prediction line, with an optimal model aligning
predicted values closely to this line. Among the linear models (Fig. 4a
and b), the LR and EN models achieved training R? values of 0.78 and
0.77, respectively, with corresponding RMSE values of 57.64 and 59.24
mL/gVS. For the testing phase, the LR model retained an R? of 0.72 and
RMSE of 71.13 mL/gVS, whereas the EN model exhibited a slight per-
formance drop with an R? of 0.67 and RMSE of 76.92 mL/gVS. The
smaller difference between training and testing accuracies in the LR
model suggests better generalization ability. This may be because EN
incorporates regularization parameters, which, while beneficial for
preventing overfitting, require larger datasets for optimal tuning and
effective performance.

Despite the acceptable performance of linear models, AD is governed
by complex biokinetic interactions that involve non-linear relationships
between operational and compositional parameters [13]. Hence,
non-linear ML models are expected to provide superior predictive ca-
pabilities for methane yield.

Fig. 4c—f presents the predictive performance of non-linear models,
including SVM, KNN, ANN, and GPR. These models demonstrated
significantly improved accuracy, with training R? values of 0.94, 1.0,
0.97, and 0.96, and RMSE values of 29.8, 5.14, 21.4, and 24.5 mL/gVS,
respectively. In the testing phase, these models retained R? values of
0.94, 0.92, 0.93, and 0.92, with RMSE values of 33.98, 37.23, 36.06, and
37.59 mL/gVS, respectively. These RMSE values, being within 10 % of
the mean methane yield, indicate that the developed ML pipeline can
effectively predict AD performance trends. Similar observations have
been reported in prior studies, where ANN-based models outperformed
linear regressors when predicting biogas yields from pretreated ligno-
cellulosic and food waste substrates [17].

Ensemble models such as RF and XGBoost exhibited the highest ac-
curacy during training, with R% values of 0.96 and 0.99 and RMSE values
of 25.52 and 14.04 mL/gVS, respectively (Fig. 4g and h). However, their
testing performance revealed increased RMSE values of 36.98 mL/gVS
(RF) and 41.16 mL/gVS (XGBoost), suggesting overfitting. This aligns
with findings with literature [16], where ensemble-based models, while
powerful, often struggle with generalization when trained on small
datasets due to their high sensitivity to outliers and redundant variables.

Although non-linear and ensemble models demonstrated superior
predictive power, they also showed a tendency to overfit, particularly
for KNN, ANN, GPR, XGBoost, and RF models. The SVM model, how-
ever, balanced training and testing accuracy effectively, with relatively
low RMSE values, making it a robust choice for methane yield predic-
tion. The overfitting observed in other models is likely due to the limited
dataset size (53 entries), which restricts their ability to generalize across
different feedstock conditions. Previous studies have reported that
larger datasets (>200 entries) significantly improve the performance of
ANN and ensemble-based models by allowing them to better capture the
non-linear biokinetics of AD [16,21].

These findings highlight the need for a carefully curated dataset to
enhance ML model robustness for methane yield prediction in MW-
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assisted AD systems. While MW pretreatment plays a crucial role in
solubilizing organic matter, the variability in feedstock composition and
process parameters necessitates advanced ML approaches that effec-
tively balance accuracy and generalizability.

3.4. Model-agnostic global feature importance analysis

To elucidate the relative importance of various predictor variables in
forecasting methane yield during, a feature importance analysis was
conducted using PFI, a global interpretability method (Fig. 5). Analysis
indicated that pH was the most influential factor affecting methane yield
in MW-assisted AD, followed by lipid and carbohydrate compositions.
The methanogenesis stage of AD is highly sensitive to pH fluctuations,
with an optimal range of approximately 6.8-7.2. Deviations from this
range can adversely affect microbial activity and process stability. MW
pretreatment alters the chemical composition of substrates by solubi-
lizing complex biopolymers, enhancing biodegradability, and releasing
by-products like organic acids, leading to decreased pH. Studies have
shown that MW pretreatment can increase organic matter solubilization,
thereby improving methane production [9]. Interestingly, fluctuations
in feedstock pH during AD have a more pronounced impact on methane
yield than the operational parameters associated with MW pretreat-
ment. This suggests that unless MW pretreatment is applied under
extreme conditions, its influence on methane yield is secondary to fac-
tors such as pH and substrate composition [34].

Hydrothermal pretreatment, another thermal method for enhancing
anaerobic digestibility, involves exposing substrates to high tempera-
tures (120-220 °C) under pressurized conditions, leading to extensive
breakdown of complex organic matter. However, this method can pro-
duce inhibitory compounds like furfurals and hydroxymethylfurfural
(HMF), which may suppress microbial activity if not properly managed
[35]. In contrast, MW pretreatment utilizes rapid, selective heating
through dielectric polarization, targeting polar molecules such as water.
This leads to localized overheating, promoting cell wall disruption and
release of intracellular components without significantly degrading
sugars into inhibitory compounds [27,29]. Consequently, MW pre-
treatment enhances bioavailability while minimizing the risk of toxic
by-product formation. This distinction aligns with previous studies
suggesting that variations in feedstock composition have a greater in-
fluence on methane yield than changes in pretreatment conditions. For
instance, studies that maintained constant MW pretreatment parameters
while altering feedstock chemical composition observed more signifi-
cant deviations in methane yield compared to those that modified MW
pretreatment conditions alone [36].

While controlling MW pretreatment conditions can influence
methane yield, the effect is relatively moderate unless extreme MW
treatment settings are applied. This emphasizes the need for tailored
modelling strategies that prioritize microbial and biochemical parame-
ters over purely physical pretreatment variables. Future research should
explore integrating advanced multi-omics data with machine learning
approaches to better capture the microbial dynamics governing AD
performance under different pretreatment strategies.
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Fig. 5. Premutation feature importance (normalized) analysis showing relative importance of predictor variables for different ML models after optimization. (A) LR,
(B) ElasticNet, (C) SVM, (D) ANN, (E) GPR, (F) KNN, (G) RF, and (H) XGBoost. The absence of protein content in these plots is due to its exclusion during ML model

development.

4. Conclusions

To facilitate data-driven process optimization of MW-pretreated AD
of FW, the work herein developed and compared a series of ML models i.
e., linear, non-linear, and ensembled-learning models. The predictor
variables included information on FW composition, AD reactor

conditions, and MW pretreatment parameters. Upon systematic com-
parison of the selection of data preprocessing techniques, cross-
validation, and hyperparameter optimization, models achieved excel-
lent accuracy in predicting the methane yield for MW-pretreated AD of
FW. The optimized SVM-based model coupled with the Z-score method
as outlier removal and the Max-Min normalization technique provided
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R? values in the range of 0.85-0.9 with an RMSE of 34 mL/gVS (rep-
resenting less than 10 % relative error). The model’s interpretability was
augmented by permutation feature importance analysis, a global model-
agnostic model explainer. It projected insights into the most influential
variables that regulate methane yield for MW-AD processes, suggesting
that AD reactor pH and FW compositions were more influential than MW
operational parameters. The developed model with added experimental
datasets, in the future, could be used for what-if scenario analysis, life
cycle assessment framework, and reactor control frameworks towards
rapid process optimization. This will ultimately facilitate the practical
application of AD-based waste valorization systems and contribute to a
circular economy.
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