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A B S T R A C T

Anaerobic digestion (AD) is a widely adopted waste management strategy that transforms organic waste into 
biogas, addressing both energy and environmental challenges. Feedstock pretreatment is crucial for enhancing 
organic matter breakdown and improving biogas yield. Among various techniques, microwave (MW) irradiation- 
based pretreatment has shown significant promise. However, the optimization of MW-assisted AD processes 
remains underexplored, necessitating predictive tools for process simulation. Machine Learning (ML) has 
recently emerged as a powerful alternative for predicting and optimizing AD performance. In this study, an ML- 
driven pipeline was developed to predict methane yield based on food waste (FW) composition, AD reactor 
parameters, and MW pretreatment conditions. A range of data preprocessing techniques and ML models (linear, 
non-linear, and ensemble) were systematically evaluated, with model performance assessed via hyperparameter- 
optimized cross-validation. The most accurate models (non-linear and ensemble) achieved R2 > 0.91 and RMSE 
<35 mL/g volatile solids (gVS), whereas linear models underperformed (R2 < 0.71, RMSE >70 mL/gVS). Sup
port Vector Machine (SVM) emerged as the best-performing model, with R2 ~0.94 and RMSE ~34 mL/gVS. 
Beyond predictive accuracy, this study offers novel insights into MW pretreatment’s role in AD efficiency. 
Permutation feature importance (PFI) analysis revealed that while MW pretreatment enhances methane yield, its 
effects are secondary to reactor pH and FW composition. This suggests that MW treatment primarily facilitates 
substrate disintegration but does not drastically alter biochemical methane potential unless coupled with opti
mized reactor conditions. Additionally, minor fluctuations in MW pretreatment time and temperature were found 
to have negligible impacts on methane production, indicating a level of operational flexibility in MW-based AD 
processes. These findings provide a refined understanding of MW pretreatment’s practical implications, guiding 
process design for improved scalability and industrial application.

1. Introduction

With the continued urbanization across the globe, municipal waste 
production is expected to increase by 70 %, resulting in 3.4 billion 
metric tons by 2050, adding significant pressure on waste management 
[1]. The organic fraction of municipal waste (OFMSW) typically com
prises food waste (FW). As per the UN Food and Agriculture Organiza
tion (FAO), 1.3 billion tonne of FW is globally generated each year, 
typically disposed of via incineration, landfilling, and compositing [2]. 
This exacerbates the direct greenhouse gas emissions associated with FW 
disposal, jeopardizing the UN SDG 13 (i.e., climate action). Biogas and 
digestate production via Anaerobic Digestion (AD) of FW has improved 

waste valorization while facilitating a circular economy.
AD uses microbial communities to decompose organic and moisture 

content-rich FW substrates to produce biogas containing 55–70 % 
methane, a promising source of clean energy production [3]. The 
semi-solid by-product, digestate is rich in nitrogen and 
phosphorus-based nutrients, which serve as a potential biofertilizer. AD 
is a multi-step complex bio-kinetic process, consisting of four sequential 
stages: hydrolysis, acidogenesis, acetogenesis, and methanogenesis [4]. 
The methane yield from an AD process is affected by feedstock com
positions, bioreactor operating conditions, reactor design, inoculum 
type, etc, optimization of which is a challenging task. Hydrolysis is one 
of the slowest stages and determines the organic matter decomposition, 
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ultimately regulating methane yield [5].
Feedstock pretreatment accelerates hydrolysis, enhancing substrate 

solubilization, biodegradability, and expediting organic waste decom
position. Traditional pretreatment methods encompass: (a) chemical (e. 
g., saponification and alkali treatments), (b) mechanical (e.g., ultrasonic, 
extrusion, and grinding), (c) thermal (e.g., steam explosion and hydro
thermal processes), or (d) biological (e.g., compositing, fungal, and 
enzymatic methods) [6]. Microwave (MW)-assisted pretreatment has 
emerged as a promising thermal method for enhancing AD processes. 
MW-assisted pre-treatment offers advantages such as rapid heating 
rates, improved energy efficiency, and uniform heating [7]. This tech
nique facilitates the release of organic matter from complex substrates 
like FW into the soluble phase, increasing the biodegradable fraction 
available to microorganisms. MW pretreatment operates at powers 
ranging from 440 to 500 W, temperatures between 30 ◦C and 160 ◦C, 
and durations of 1–10 min [8].

However, MW pretreatment presents specific challenges that require 
careful consideration. Excessive temperatures (above 160 ◦C) or pro
longed treatment times can induce the Maillard reaction, producing 
recalcitrant compounds that inhibit microbial activity, thereby reducing 
AD efficiency and biogas production [9]. Additionally, the non-thermal 
effects of microwaves and their mechanisms remain subjects of ongoing 
research and debate. A comprehensive understanding of these effects is 
crucial for optimizing MW pretreatment conditions. Furthermore, the 
energy consumption associated with MW pretreatment is a critical fac
tor; the energy input must not outweigh the benefits gained in biogas 
production. Therefore, it is imperative to optimize MW pretreatment 
parameters—such as power, temperature, and duration—while consid
ering their holistic impact on methane production and overall process 
efficiency [10]. Addressing these MW-specific challenges is essential for 
the effective integration of MW pretreatment in AD systems.

FW is characterized by high moisture and organic content, making it 
an ideal substrate for the MW-AD process. Nevertheless, the geograph
ical variability of food habits makes FW a complex AD feedstock. This 
affects their digestibility, hydrolysis rate, and decomposition time, ul
timately varying the methane production [11]. MW-based precise uni
form heating facilitates enzymatic reaction for breaking complex 
organic matters, maximizing the biogas yield of AD. For example, 
varying the pretreatment temperature across a range of 70, 120, and 
150 ◦C improves the biogas yield by 2.7 %, 24 %, and 11.7 % respec
tively [12]. Nevertheless, increasing the temperature beyond a 
threshold slows down the decomposition rate due to the formation of 
complex polymers (e.g., melanoidins), which impart an inhibitory effect 
on the AD reactor. Other investigations have indicated the importance of 
optimizing MW time and temperature, simultaneously [11]. Although a 
slower heating rate (HR, 1.9 ◦C/min) resulted in faster digestibility (due 
to gradually cell decomposition and lower chances of inhibitory com
pounds formation from thermal shock), the anaerobic biodegradability 
improved at a faster HR (7.8 ◦C/min). MW pretreatment at HRs 1.9 and 
3.9 ◦C/min increased the biogas production by 14-fold for the soluble 
fraction. In contrast, for the whole fraction of FW, HR = 7.8 ◦C/min 
improved the biogas yield, suggesting the necessity of transient MW 
time control for MW-AD [11].

In parallel to the pretreatment parameters, other routinely controlled 
AD process attributes are temperature, pH, scale of operation (i.e., 
reactor volume), hydraulic retention time (HRT), etc. Meanwhile, 
feedstock properties such as total solid (TS), volatile solid (VS), and 
carbohydrate (%C), protein (%P), and lipid (%L) contents are essential 
components that regulate methane production [13]. To improve the 
process efficiencies and understand the whole-system operation of the 
AD process a range of mathematical models have been developed, 
among which the Anaerobic Digestion Model 1 (ADM1) is one of the 
most sophisticated biokinetic models [14]. Nevertheless, the intricate 
nature of the model limits its applicability to real-time AD reactor 
control systems, moreover, the ADM1 requires extensive model cali
bration before industrial implementation [15]. To circumvent the 

drawbacks of ADM1, machine learning (ML)-based methane yield pre
diction models have rapidly emerged over the past few years [16].

Frequent choices for ML models have been Artificial neural network 
(ANN), K-nearest neighbour (KNN), Linear regression (LR), ElasticNet 
(EN), Gaussian process regression (GPR), Support Vector Machine 
(SVM), Random Forest (RF), and eXtreme gradient boosting (XGBOOST) 
[17]. Some of the seminal works include: (a) tree-based model devel
opment for predicting methane yield for anaerobic co-digestion for a 
diverse organic waste stream based on long-term data [18], (b) predic
tion of biogas yield based on genetic abundance data [19], and (c) 
data-driven inverse interpretable ML modelling to predict biogas yields 
[20]. An extensive overview of ML modelling for AD can be found 
elsewhere [13,16].

Despite extensive efforts to develop interpretable ML models for 
predicting methane yields for AD processes without feedstock pre
treatment, relevant ML modelling accounting for feedstock pretreatment 
is relatively sparse. Previous efforts include ML modelling for (a) AD of 
activated sludge with hydrothermal pretreatment [21], (b) generaliz
able AD modelling for a range of pretreatment methods (e.g., chemical, 
ultrasonic, and thermal) of sewage sludge [22], and (c) mechanical 
grinding and Fe3O4 additive-assisted AD of Arachis hypogea (i.e., peanut) 
shells [23]. To our knowledge, there has not been any effort toward 
developing an optimal ML model selection pipeline for MW-AD process.

The development of ML models for MW-AD of FW as the feedstock 
adds significant value to the literature from a process modelling and 
optimization perspective. Specifically, accurate MW-AD process 
modelling has the potential to facilitate the implementation and prac
tical design of the process towards greater efficiency and sustainability. 
FW being one of the ubiquitous feedstocks for AD and MW-based pre
treatment of feedstock offering efficient and rapid heating has the po
tential to decarbonize the overall carbon footprint of the biogas 
production process. This work develops and compares a series of ML 
models (linear, non-linear, and ensemble-based) to predict methane 
production based on FW composition, AD conditions, and MW pre
treatment parameters. The models are built upon and validated, which 
after optimization achieve high accuracy and enhanced interpretability 
(i.e., via permutation feature importance).

2. Methodology

2.1. Data assimilation

In total, 53 datasets were collected from the literature to develop the 
data-driven models [24–32]. This included a wide variety of food waste 
streams (e.g., kitchen waste, organic fraction of municipal solid waste), 
mono- or co-digestion, thermophilic or mesophilic conditions, and 
mostly batched reactors. The collected datasets contained a range of 
information on feedstock properties such as substrate compositions 
(protein (%P), carbohydrate (%C), lipids (%L)), volatile solids (VS, wt. 
%), AD reactor operating temperature (◦C), hydraulic retention time 
(HRT, days), pH, reactor volume (L), MW pretreatment temperature 
(◦C), MW pretreatment time (minutes), and methane yield from AD 
(mL/g VS). The first ten variables (%P, %C, %L, VS, AD temperature, 
HRT, pH, volume, MW temperature, and MW time) are considered the 
predictor variables. In contrast, the methane yield is taken as the pre
dicted variable. The raw dataset is provided in the Supplementary 
Material.

2.2. Data preprocessing methodologies

Since the dataset contains experimental datasets from several 
different research groups; the assimilated dataset will contain missing 
values, outliers, and values with dissimilar ranges. This will cause con
sistency issues while training ML-based continuous regression models, 
thus affecting their accuracy in predicting methane yield. This problem 
was addressed by imputing the missing values of an attribute to its 
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corresponding mean [33], ultimately resulting in a complete dataset. It 
is important to note that these artificially imputed mean values were 
only performed during the model training and therefore would not affect 
the model testing.

The constructed dataset would also contain outliers, which require 
additional preprocessing steps to remove them. Two such popular 
outlier removal methods such as (a) Z-score normalization and (b) 
interquartile range (IQR) are considered [4]. The first maps the dataset 
in terms of the standard normal variate Z = (X − μ) /σ, where X is the 
attribute of interest, μ and σ are the mean and standard deviation of the 
attribute, respectively. In this case, any datasets with Z scores beyond 

±3 are eliminated from the datasets. As a competing method, IQR-based 
outlier removal removes any datapoint beyond the 25th and 75th 
percentile.

Following the outlier removal, the dataset was normalized to ensure 
that the features were appropriately scaled for the ML model develop
ment. Two types of normalization were explored (a) max-min normali
zation (MMN) and (b) maximum absolute scaling (MAS) [33]. MMN 
uses the transformation function Xʹ = (X − Xmin) /(Xmax − Xmin) where 
Xmax and Xmin are the maximum and minimum values of the attribute X, 
respectively. In contrast, the MAS scales the entire dataset using the 
absolute maxima of the attribute, i.e., Xʹ = X /|Xmax|.

2.3. Machine learning models

Based on the pre-processed datasets a total of eight different types of 
ML models are developed and compared, which uses 10 input attributes 
to predict the methane yield of MW-pretreated AD process. The entire 
ML workflow has been constructed in Python using the scikit-learn li
brary. The pre-processed dataset is split into 80 % training and 20 % 
testing fractions to evaluate the model performances. Each of the model 
was trained using k-fold cross validation approach, which ensures high 
generalizability of the model and mitigate overfitting. The k-fold cross- 
validation was coupled with a hyperparameter optimization engine (i.e., 
GridSearchCV in scikit-learn), where initially k = 5 was assigned. The 

optimization routine heuristically searches through a dictionary of 
hyperparameters for each model adhering to the k-fold cross-validation 
routine and maximizes the model prediction accuracy. The data-driven 
modelling pipeline integrated with dataset preprocessing methods are 
shown in Fig. 1. The ML models are described below.

Among the linear ML models, LR and EN are considered. LR can 
embed several independent variables into the model to predict an output 
variable (i.e., methane yield). Training an LR model involves determi
nation of unknown regression constants by minimizing the prediction 
error. The EN is a more sophisticated version of the LR which uses 
regularization to mitigate drawbacks of LR. This is achieved via 
combining the penalty terms of Lasso (L1) and Ridge (L2) regression 
methods, enabling the model to simultaneously perform variable se
lection and handle correlated predictors. This becomes important when 
the datasets involve a larger number (i.e., 10+) of input attributes.

From the pool of non-linear models, ANN, KNN, SVM, and GPR have 
been selected. Multilayer perceptron (MLP)-based ANN is considered 
due to its deep non-linear pattern recognition abilities from complex 
physical datasets. The key to develop an MLP-based ANN is identifying 
the optimal number of neurons, hidden layer, weights, biases, and 
activation function. To determine an optimal combination of these 
hyperparameters for a certain dataset, ANNs must therefore be trained 
using an hyperparameter optimization engine. KNN model predicts 
output variables based on individual datapoints and its proximity to k 
neighbouring datapoint. The number of k instances in the training 
dataset is usually determined using statistical distance from the data 
cluster centroid with Euclidean or Manhattan distances. These further 
embed onto weighted averaging that determines the influence of 
neighbouring points on predicting a target variable. The SVM model is a 
non-parametric, non-probabilistic method which are suitable for high 
dimensional datasets handling large number of input/output variables. 
The model maps input features into a multi-dimensional space using 
non-linear kernel function, further creating an optimal hyperplane to 
differentiate between various subsets. In contrast, GPR is a Bayesian 
probabilistic regression method beneficial for datasets with high vari
ances. The GPR method determines covariance of model predictions 

Fig. 1. Sequential stages of the machine learning model development to predict methane yield. Following on to the preliminary dataset construction, missing values 
in the dataset were imputed with respective means. The dataset was then subjected data preprocessing that included outlier removal and variables scaling. The pre- 
processed dataset was split into training and testing sets using which a range of ML models were constructed. The predictive accuracy of the optimized ML model was 
quantified in terms of RMSE and R2 metrics. Finally, the relationships between the variables were understood via Permutation Feature Importance analysis and 
Pearson Correlation Coefficient.
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which enables uncertainty quantification, generally overlooked by the 
other ML models.

Among ensembled tree models, RF and XGBoost are chosen due to 
their complex data learning capabilities for regression applications. Both 
these models combine many decision trees via ensembling, which ulti
mately mitigate overfitting issues. The RF is a bagging technique where 
each tree is trained on a random subset of the training dataset. These 
individual predictions are then unified via statistical metrics (e.g., mean, 
median, and mode) towards a robust final prediction, ultimately 
increasing the model generalizability. XGBoost, on the other hand, is a 

boosting-based ensembled learning methods where deeper trees are 
grown in an additive manner. It implements a boosting framework that 
bases predictions on individual decision trees while simultaneously 
mitigating errors introduced from each tree. Features such as regulari
zation and randomization minimize the loss function, resulting in 
reduced overfitting. In general, it is important to note that boosting- 
based algorithms have shorter training time that bagging algorithms.

Fig. 2. Statistical analysis of the assimilated dataset. (A) Exploratory data analysis across different variables via two-ways plots. (B) Box-whisker plot showing spread 
of different variables. (C) Pearson correlation coefficient map across any two variables where the diameter of the circles is proportional to the correlation coefficient. 
VS: Volatile Solids, Pro: Protein, Car: Carbohydrate, Lip: Lipid, DT: Digester temperature, HRT: Hydraulic retention time, MWTe: Microwave pretreatment tem
perature, MWTi: Microwave pretreatment time, Vol: Digester volume, CH4: Methane yield.
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2.4. Model performance and interpretability

The root mean squared error (RMSE) and coefficient of determina
tion (R2) are considered performance metrics for the ML-base regression 
models. 

R2 =

∑
(yi − ŷ)2

∑
(yi − y)2 (1) 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1
(yi − ŷi)

N

√
√
√
√
√

(2) 

here yi and ŷ are the true and predicted values of the output attribute (i. 
e., methane yield), respectively; y is the mean of the methane yields, and 
N is the total number of datasets, which is 53.

In addition, understanding the dependence of model predictions on 
the input features (i.e., model interpretability) is essential. Being a 
global interpretability analysis method, permutation feature importance 

Fig. 3. Performance assessment of different data-driven models using R2 (light blue) and RMSE (red). (A) Z-score based outlier removal, (B) interquartile range-based 
outlier removal, (C) max-min normalization, (D) max absolute scaling, (E) with principal component analysis, (F) after hyperparameter optimization.
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is chosen that provide an overall correlation strength for each predictor 
variable toward methane yield prediction. This technique is particularly 
useful for non-linear or opaque estimators and involves randomly 
shuffling the values of a single feature and observing the resulting 
degradation of the model’s accuracy. By disrupting the relationship 
between the predictor and the predicted, it is determined how much a 
model relies on that predictor. It is important to note that PFI is a model- 
agnostic (i.e., model-independent) method.

3. Results and discussion

3.1. Statistical analysis of the dataset

To understand the correlations between variables in the assimilated 
dataset, which substantiate the physics of MW-AD process, a preliminary 
statistical analysis is carried out. This includes exploratory analysis on 
all the variables, data spread visualization, and correlation quantifica
tion (see Fig. 2). Coupling MW pretreatment with AD increases the di
gestibility of organics by effective decomposition of extracellular 
polymeric substances (e.g., protein, carbohydrate), which would then be 
easily available to microbial communities. The substrate concentration, 
reactor operating conditions, and MW conditions altogether regulate the 
methane yield as suggested by the exploratory data analysis (see 
Fig. 2A). To understand the linear correlation strength of any two var
iables in the dataset, the Pearson Correlation Coefficient (PCC) is eval
uated. PCC ~ ±1 signifies that the variables are highly correlated, while 
a PCC = 0 suggests that the attributes are uncorrelated. The PCC be
tween any two attributes xi and yi is defined as, 

PCC=

∑
(xi − x)(yi − y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

(xi − x)2 ∑
(yi − y)2

√ (3) 

The PCCs are shown in Fig. 2C via a two-dimensional map where the 
diameters of the circles are proportional to the PCC values. This reveals 
that the methane yield is positively correlated with the pH, lipid content, 
and microwave conditions (i.e., time and temperature). In contrast, 
negative correlation was observed between the protein and carbohy
drate contents, VS, AD temperature and HRT.

3.2. Systematic optimization of the ML models

Following the statistical analysis, a range of what-if scenarios were 
investigated for developing an optimal ML model selection pipeline from 
a pool of eight different models (LR, EN, GPR, KNN, SVM, ANN, RF, and 
XGBoost). Fig. 3 shows the effects of applying different data 

preprocessing (i.e., outlier removal and normalization), dimension 
reduction (i.e., principal component analysis (PCA)), and hyper
parameter optimization methods. As mentioned above, the R2 and RMSE 
values are used for the accuracy quantification of the ML models.

A high-level comparison across Fig. 3A and B reveals that the ML 
models developed using Z-score-based outlier removal methods provide 
R2 ~ 0.92 with RMSE ~38.5 mL/gVS, where RF, KNN, and XGBoost 
outperform the other models. In contrast, the IQR-coupled ML models 
fail to predict the methane yield accurately, thus providing unrealistic 
R2 values. This is attributed to the fact that IQR is extremely sensitive to 
dataset removal that removes any data points outside the 25th and 75th 
quartile. Inspecting Fig. 2B suggests that for the present dataset, many 
datapoints are beyond this range, which makes the IQR method unfa
vorable. In contrast, the Z-score-based outlier detection is much more 
conservative in removing outliers, relying on μ and ±3σ values. After 
selecting the optimal outlier removal method, the effect of utilizing two 
different data normalization methods (MMN and MAS) on the model 
performance is explored. Fig. 3C and D suggest that either of the nor
malizations can provide accurate model development. The highest ac
curacy was observed with the ANN model achieving R2 values up to 
0.94, with RMSE as low as 33.5 mL/gVS. Based on this analysis, the Z- 
score outlier removal with MMN was used for all subsequent analyses.

Coupling dimensionality reduction methods (e.g., PCA) with ML 
models helps toward feature engineering, eliminates collinearity, and 
can prevent model overfitting. To understand if PCA is required for the 
current model pipeline development, all the models were integrated 
with the PCA-based feature reduction method. Inspecting Fig. 3E reveals 
that although R2 and RMSE values for some ML models improve when 
coupled with PCA, it does not drastically change their values. The KNN 
model outperforms other methods, with an R2 ~ 0.92 and RMSE ~38 
mL/gVS. The potential reason for not gaining additional accuracy 
improvement by adding PCA might be attributed to the size of the 
dataset, where the current dataset is at least an order of magnitude 
smaller than the scenarios where PCA can provide better results. Sub
sequently, the ML models were subjected to a 5-fold cross-validation 
routine with an automatic hyperparameter optimization algorithm (i. 
e., GridSearchCV). The cross-validation coupled with hyperparameter 
mitigates model overfitting, provides a generic model accuracy aver
aged over multiple trials, and ensures model generalizability for unseen 
(i.e., testing) datasets. The optimal setting of hyperparameters for each 
ML model is provided in Table 1. Fig. 3F shows that the SVM model has 
the highest predictive accuracy after hyperparameter optimization, with 
an R2 ~ 0.84 and RMSE ~33.5 mL/gVS.

Table 1 
Optimal hyperparameter values of the ML models using GridSearchCV algorithm.

ML Model Optimal Hyperparameter Combination

Linear Regression Fit Intercept: False
ElasticNet Fit Intercept: False, α: 0.1, L1 Ratio: 0.9
Support Vector Machine C: 50, ε: 0.1, Kernel Type: Polynomial
K-Nearest Neighbour No. Neighbours: 9, Weight Function: Distance
Artificial Neural Network Hidden Layer Size: 100, Activation Function: Logistic, Solver: SGD, Max Iterations: 1000
Gaussian Process Regression Kernel Type: RBF 1, Normalise: True
Random Forest No. of Trees: 50, Max Depth of Trees: 5, Min Leaf Samples: 2, Min Split Samples: 2
eXtreme Gradient Boosting No. of Boosting rounds: 50, Max Depth of Trees: 3, Learning Rate: 0.1, Subsample Ratio 1: 0.8, Subsample Ratio 2: 1
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Fig. 4. Parity plots obtained after optimizing different ML models. (A) LR, (B) ElasticNet, (C) SVM, (D) ANN, (E) GPR, (F) KNN, (G) RF, and (H) XGBoost.
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3.3. Performance of optimal ML models

The accuracy of methane yield prediction across eight different ML 
models is visualized in the parity plots shown in Fig. 4. The dotted lines 
represent the ideal prediction line, with an optimal model aligning 
predicted values closely to this line. Among the linear models (Fig. 4a 
and b), the LR and EN models achieved training R2 values of 0.78 and 
0.77, respectively, with corresponding RMSE values of 57.64 and 59.24 
mL/gVS. For the testing phase, the LR model retained an R2 of 0.72 and 
RMSE of 71.13 mL/gVS, whereas the EN model exhibited a slight per
formance drop with an R2 of 0.67 and RMSE of 76.92 mL/gVS. The 
smaller difference between training and testing accuracies in the LR 
model suggests better generalization ability. This may be because EN 
incorporates regularization parameters, which, while beneficial for 
preventing overfitting, require larger datasets for optimal tuning and 
effective performance.

Despite the acceptable performance of linear models, AD is governed 
by complex biokinetic interactions that involve non-linear relationships 
between operational and compositional parameters [13]. Hence, 
non-linear ML models are expected to provide superior predictive ca
pabilities for methane yield.

Fig. 4c–f presents the predictive performance of non-linear models, 
including SVM, KNN, ANN, and GPR. These models demonstrated 
significantly improved accuracy, with training R2 values of 0.94, 1.0, 
0.97, and 0.96, and RMSE values of 29.8, 5.14, 21.4, and 24.5 mL/gVS, 
respectively. In the testing phase, these models retained R2 values of 
0.94, 0.92, 0.93, and 0.92, with RMSE values of 33.98, 37.23, 36.06, and 
37.59 mL/gVS, respectively. These RMSE values, being within 10 % of 
the mean methane yield, indicate that the developed ML pipeline can 
effectively predict AD performance trends. Similar observations have 
been reported in prior studies, where ANN-based models outperformed 
linear regressors when predicting biogas yields from pretreated ligno
cellulosic and food waste substrates [17].

Ensemble models such as RF and XGBoost exhibited the highest ac
curacy during training, with R2 values of 0.96 and 0.99 and RMSE values 
of 25.52 and 14.04 mL/gVS, respectively (Fig. 4g and h). However, their 
testing performance revealed increased RMSE values of 36.98 mL/gVS 
(RF) and 41.16 mL/gVS (XGBoost), suggesting overfitting. This aligns 
with findings with literature [16], where ensemble-based models, while 
powerful, often struggle with generalization when trained on small 
datasets due to their high sensitivity to outliers and redundant variables.

Although non-linear and ensemble models demonstrated superior 
predictive power, they also showed a tendency to overfit, particularly 
for KNN, ANN, GPR, XGBoost, and RF models. The SVM model, how
ever, balanced training and testing accuracy effectively, with relatively 
low RMSE values, making it a robust choice for methane yield predic
tion. The overfitting observed in other models is likely due to the limited 
dataset size (53 entries), which restricts their ability to generalize across 
different feedstock conditions. Previous studies have reported that 
larger datasets (>200 entries) significantly improve the performance of 
ANN and ensemble-based models by allowing them to better capture the 
non-linear biokinetics of AD [16,21].

These findings highlight the need for a carefully curated dataset to 
enhance ML model robustness for methane yield prediction in MW- 

assisted AD systems. While MW pretreatment plays a crucial role in 
solubilizing organic matter, the variability in feedstock composition and 
process parameters necessitates advanced ML approaches that effec
tively balance accuracy and generalizability.

3.4. Model-agnostic global feature importance analysis

To elucidate the relative importance of various predictor variables in 
forecasting methane yield during, a feature importance analysis was 
conducted using PFI, a global interpretability method (Fig. 5). Analysis 
indicated that pH was the most influential factor affecting methane yield 
in MW-assisted AD, followed by lipid and carbohydrate compositions. 
The methanogenesis stage of AD is highly sensitive to pH fluctuations, 
with an optimal range of approximately 6.8–7.2. Deviations from this 
range can adversely affect microbial activity and process stability. MW 
pretreatment alters the chemical composition of substrates by solubi
lizing complex biopolymers, enhancing biodegradability, and releasing 
by-products like organic acids, leading to decreased pH. Studies have 
shown that MW pretreatment can increase organic matter solubilization, 
thereby improving methane production [9]. Interestingly, fluctuations 
in feedstock pH during AD have a more pronounced impact on methane 
yield than the operational parameters associated with MW pretreat
ment. This suggests that unless MW pretreatment is applied under 
extreme conditions, its influence on methane yield is secondary to fac
tors such as pH and substrate composition [34].

Hydrothermal pretreatment, another thermal method for enhancing 
anaerobic digestibility, involves exposing substrates to high tempera
tures (120–220 ◦C) under pressurized conditions, leading to extensive 
breakdown of complex organic matter. However, this method can pro
duce inhibitory compounds like furfurals and hydroxymethylfurfural 
(HMF), which may suppress microbial activity if not properly managed 
[35]. In contrast, MW pretreatment utilizes rapid, selective heating 
through dielectric polarization, targeting polar molecules such as water. 
This leads to localized overheating, promoting cell wall disruption and 
release of intracellular components without significantly degrading 
sugars into inhibitory compounds [27,29]. Consequently, MW pre
treatment enhances bioavailability while minimizing the risk of toxic 
by-product formation. This distinction aligns with previous studies 
suggesting that variations in feedstock composition have a greater in
fluence on methane yield than changes in pretreatment conditions. For 
instance, studies that maintained constant MW pretreatment parameters 
while altering feedstock chemical composition observed more signifi
cant deviations in methane yield compared to those that modified MW 
pretreatment conditions alone [36].

While controlling MW pretreatment conditions can influence 
methane yield, the effect is relatively moderate unless extreme MW 
treatment settings are applied. This emphasizes the need for tailored 
modelling strategies that prioritize microbial and biochemical parame
ters over purely physical pretreatment variables. Future research should 
explore integrating advanced multi-omics data with machine learning 
approaches to better capture the microbial dynamics governing AD 
performance under different pretreatment strategies.
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4. Conclusions

To facilitate data-driven process optimization of MW-pretreated AD 
of FW, the work herein developed and compared a series of ML models i. 
e., linear, non-linear, and ensembled-learning models. The predictor 
variables included information on FW composition, AD reactor 

conditions, and MW pretreatment parameters. Upon systematic com
parison of the selection of data preprocessing techniques, cross- 
validation, and hyperparameter optimization, models achieved excel
lent accuracy in predicting the methane yield for MW-pretreated AD of 
FW. The optimized SVM-based model coupled with the Z-score method 
as outlier removal and the Max-Min normalization technique provided 

Fig. 5. Premutation feature importance (normalized) analysis showing relative importance of predictor variables for different ML models after optimization. (A) LR, 
(B) ElasticNet, (C) SVM, (D) ANN, (E) GPR, (F) KNN, (G) RF, and (H) XGBoost. The absence of protein content in these plots is due to its exclusion during ML model 
development.
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R2 values in the range of 0.85–0.9 with an RMSE of 34 mL/gVS (rep
resenting less than 10 % relative error). The model’s interpretability was 
augmented by permutation feature importance analysis, a global model- 
agnostic model explainer. It projected insights into the most influential 
variables that regulate methane yield for MW-AD processes, suggesting 
that AD reactor pH and FW compositions were more influential than MW 
operational parameters. The developed model with added experimental 
datasets, in the future, could be used for what-if scenario analysis, life 
cycle assessment framework, and reactor control frameworks towards 
rapid process optimization. This will ultimately facilitate the practical 
application of AD-based waste valorization systems and contribute to a 
circular economy.
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