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This paper presents an Agent-Based Model (ABM) with Monte Carlo sampling, designed to
simulate the deterioration processes within a population of objects over time. The model
incorporates damage functions with the risk parameters of the ABC framework to simulate
adverse events. As a result, it combines continuous and probabilistic degradation. This hybrid
approach makes it possible to study the emergent behavior of the system and explore the
range of possible lifetimes of collections with cultural value or scientific interest within
galleries, museums, archives or libraries. A toy application of the model is tested with paper,
with the main outcome of the model being the decay in condition of a collection as a
consequence of all the combined degradation processes. The model is based on six
hypotheses that are described for further testing. This paper presents a first attempt at a
universal implementation of Collections Demography principles, with the hope that it will
generate discussion and the identification of research gaps.

1University College London, London, UK. ®email: miriam.andrews@ucl.ac.uk

HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS | (2025)12:889 | https://doi.org/10.1057/s41599-025-05325-6 1


http://crossmark.crossref.org/dialog/?doi=10.1057/s41599-025-05325-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1057/s41599-025-05325-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1057/s41599-025-05325-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1057/s41599-025-05325-6&domain=pdf
mailto:miriam.andrews@ucl.ac.uk

ARTICLE

Introduction

he concept of Collections Demography, developed by Strli¢

et al. (2015), originated from the need to develop evidence-

based management strategies for historic collections. In the
context of libraries and archives, users are primarily concerned with
textual information, which if sufficiently lost to degradation, may cause
the collection item to be categorised as unfit for use. To understand the
mechanisms behind this deterioration further, researchers have
developed damage functions (mathematical models of material
change) that combine aspects of material degradation, use, and
material attributes important for user interaction with heritage (Strli¢
et al. 2013). These functions are based on data from paper degradation
experiments and real collections. By treating the collection as a
population of objects with different characteristics and combining this
with damage functions that suggest the deterioration over time, the
effects of various management strategies can be modelled to provide
informed decisions based on predicted outcomes. Collections demo-
graphy has been used for the evaluation of scenarios for managing
storage environments and levels of access for different types of library
and archival paper (Duran-Casablancas et al. 2021). Michalski (2013)
also proposed a collection-wide model focused on mechanical damage
to paintings. Clearly, the collections demography principles have
demonstrated advantages in the sustainable management of collec-
tions. However, their application has so far been restricted to very
specific collection types. The question remains as to whether collec-
tions demography could be extended to any collection, from coins to
churches?

Recent efforts by the Department for Culture, Media, and Sport
(DCMS) of the UK Government to develop a framework for
valuing culture and heritage capital have highlighted the sig-
nificance of damage functions in this context (Clark 2021). The
goal of the “Culture and Heritage Capital Programme" is to create
a formal approach to value culture and heritage assets, which will
ultimately inform decision-making processes in the public and
private sectors. Sagger and Bezzano (2023) have put forward a
proposal to integrate economic valuation methodologies with
degradation rates to measure the welfare impact of interventions
that halt the loss or deterioration of cultural and heritage assets.
This requires an ability to calculate how any intervention, to any
collection, will impact its lifetime.

The success of these policy initiatives is predicated on the
existence of damage functions that have sufficient accuracy in
predicting the degradation of most relevant collection materials.
This is complicated for several reasons. Firstly, there are only a
handful of materials for which damage functions have been
produced that are at an advanced enough level to generate life-
time estimates, e.g., photographs (Fenech et al. 2012), paper
(Strli¢ et al. 2015), and PVC (Rijavec et al. 2023). Secondly,
damage functions that predict chemical degradation are only a
part of the picture. There are also other types of ongoing pro-
cesses that affect most materials; in the case of paper or canvas,
for example, items may undergo physical changes related to RH
fluctuations, mechanical damage from wear generated by repe-
ated handling or cleaning, or biological damage from decom-
position processes associated with mould. Different material
typologies have varying sensitivities to these types of processes
that need to be accounted for within a modelling approach.
Lastly, as it is well known, heritage degrades through both con-
tinuous deterioration and catastrophic events, like fire, theft, or
flooding (Michalski 1990), necessitating a holistic risk approach,
i.e., considering all potential risks comprehensively and together.

Several risk assessment approaches with quantitative and hol-
istic aspects are used within preventive conservation practice and
academic research. The ABC framework is well-established and
provides a structured approach to risk management, focusing on
specific risk factors and their impacts (Michalski and Pedersoli Jr.
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2016, Michalski and Karsten 2018). The framework is now
available as an online program, making it accessible and user-
friendly (COC/FIOCRUZ et al. 2022). However, rates and prob-
abilities for processes are based on user estimates (with guidance
provided by expert knowledge), meaning that the framework does
not make use of available damage functions and may not incor-
porate relevant statistical data. HERIe, another online digital
platform, uses quantitative assessment tools based on modelled
deterioration processes to evaluate risks to collection objects
(Kupczak et al. 2018). While HERIe provides robust assessment,
it relies heavily on predefined modules that are not combined into
an overall model of risk. At present, operational modules mainly
focus on risks that take environmental data as input, e.g., relative
humidity, temperature, and Lux, although expansions to other
types of risk, for example, fire (Bratasz and Berger 2024), have
recently been made. Crucially, neither of the two approaches
described above are able to output impact in terms of changes to
the lifetime of collection objects.

To accomplish the ambitious vision of the “Culture and Heritage
Capital Programme”, the field of heritage science must come together
to develop more comprehensive damage functions for continuous
deterioration processes and also to establish better understanding
about the levels of risk from other hazards that cultural heritage
institutions face, while ensuring these interrelated processes work
together effectively. However, this ideal may be years away. This paper
proposes that, in the meantime, using collections demography prin-
ciples in with conjunction with agent-based models (ABMs) (or other
similar statistical models) is the key to combining the different types of
degradation processes that affect collections, as well as handling the
uncertainties within the system.

Agent-based models can simulate changes that occur to indi-
vidual agents (e.g., objects in a collection) over time, providing a
granular view of deterioration processes. By modelling interac-
tions between agents, the model can reveal complex system
dynamics that might not be apparent in more static models.
While ABMs can be computationally intensive to develop, once
established it is relatively easy to incorporate various types pro-
cesses, e.g., risk scenarios and damage functions, allowing for a
comprehensive and adaptable model. The use of probability
distributions within their risk sampling procedure allows for the
modelling of uncertainty and variability within deterioration
processes. However, it is sometimes a challenge to obtain the
high-quality, detailed data that is necessary to accurately para-
meterise these models. Furthermore, due to the lack of com-
parative datasets, ensuring a model’s accuracy and reliability
through validation can also be difficult.

Nonetheless, in other fields, agent-based models have been
widely used to study the ageing of different types of “popula-
tions", from the literal ageing of patients (Spijker et al. 2022), to
survival rates during clinical trials (An 2001), to the mechanical
breakdown of engineering assets as diverse as pipeline infra-
structure (Li et al. 2020), structural components within civil
engineering (Guo et al. 2020), and maritime vessels (Liu and
Frangopol 2018). All these examples are partial analogies to
heritage collections. They display some of the key features similar
to the deterioration system of cultural heritage, but rarely all of
them. The characteristics that define the system that is unique to
cultural heritage can be considered as follows:

1. There is a finite population
Each agent in the population has a key property (such as
condition or value) that decreases over time

3. The decreasing property is affected by gradual rate-
processes as well as probabilistic accidents
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4. The process of decay is extremely slow, of the order of
centuries

The slowness of the process is such that it cannot be
assumed that the decreasing property (condition or value)
will be defined in the same way in the future. In other
words, societal change is of a similar time-scale than the
physical process.

5.

As far as the authors are aware, there are not any analogous or
similar systems in any other field that fulfill all these criteria, and
certainly none that have already been modelled using computa-
tional simulation. Hence, the application of ABMs to heritage
collections provides a new modelling scenario and will, inevitably,
be full of research challenges. This paper presents a first attempt
at investigating the problem, with the hope that it will generate
discussion and the identification of research gaps. To aid dis-
cussion, every time a new hypothesis is introduced, it will be
noted and marked with an index like “HO".

An operational definition of lifetimes. To calculate the lifetimes
of heritage objects, a definition of unacceptable degradation is
required. A limit that is commonly adopted is the threshold
beyond which the social function of an artifact changes funda-
mentally, ie., the ‘end-of-life’ (Strli¢ et al. 2013). For example, a
book may be degraded to the point it cannot be handled by
readers, or a tapestry may be faded to the point of not being
decipherable. Another alternative definition can be understood as
the point where value loss is such that a clear need for investment
or action emerges. The word “operational” signifies clearly that
this threshold is meant to enable informed management.

A reductive approach is necessary in deciding a threshold
because it helps to inform better decision-making. However, it is
adopted with the full knowledge that any quantitative straight line
drawn over a social continuum is, of course, a fiction. In many
instances, it is difficult to approximate this limit of unacceptable
degradation because many stakeholders will perceive the damage
differently (Taylor and Stevenson 1999). What is damage in some
contexts is patina in others. Social and curatorial contexts
influence the perception of age and loss (Grossi and
Brimblecombe 2004). The fundamental hypothesis of collection

demography is that these thresholds are definable for a wide
diversity of heritage typologies (H1). Only one or two decades of
research in perception and the social value of heritage may bring
us closer to workable definitions of unacceptable change for all
the useful cases.

These issues may be set aside in the pursuit of a practical
solution. Within this scenario, it is necessary to assume that a
condition state can be defined for each artifact: a quantity that
decreases from 1 to 0O as the artifact ages. This is purely a
theoretical construct and can be referred to as the absolute
condition of the object. In practice, there is no need to attempt to
model the entire lifetime of an object, from condition 1 to
condition 0, for two reasons. Firstly, it is likely than in a lifetime
of hundreds of years, the way society sees an object will change
more than the object itself. Secondly, it is likely that as an object
approaches the end of its lifetime, its function will change, for
example through deaccessioning, joining a handling collection, or
being forgotten. When this happens, the artifact will drop out of
the management system we are attempting to model. To avoid the
great uncertainty that these processes will bring to modelling, it is
sensible to refrain from predicting the decay of absolute
condition. Let us consider instead that, at some point early in
the lifetime, the absolute condition will hit the operational limit
that will trigger an action or investment. For example, as
commonly assumed, a museum will worry when fading begins to
be visible, rather than when a watercolor is absolutely white. As
Fig. 1 represents, this point in time helps us define a shorter, less
uncertain lifetime. We define a new contingent condition as the
one that becomes 0 when the absolute condition hits the
operational threshold.

We should note that in this simple framework we are
introducing another important dynamic hypothesis: that the
probability of an action in response to condition increases in a
step-wise manner when condition decreases. We can set up a
threshold of unacceptable condition with ease when there is a
condition above which most actors perceive a change or decide to
act upon it. The sharper this change in perception, the more
realistic it is to define an operational threshold. While a step-wise
response is not essential, it is highly desirable. We may call this
the “sharp response hypothesis" (H2). In some cases, for example,
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Fig. 1 lllustrative graphic demonstrating that condition decays in an unknown and unpredictable way, but the crux of decision-making is focused on a small

time window at the start of the process.
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Fig. 2 Diagram showing a summary of the capabilities of damage functions depending on their level of development.

the number of observers who see a surface as visibly dirty has
been found to increase sharply at 5-10% area coverage by
particulates. However, this behaviour may not be universal.

The model

Modelling degradation rates with damage functions. The gen-
eral demographics model relies on the existence of damage
functions that provide the decay rate of key properties (color,
surface recession, mechanical strength, degree of polymerisation,
etc.). It is necessary to assume that these key properties are
directly proportional to the absolute condition of an object (H3).
The model also requires a definition of the operational threshold
for these properties as an input. However, not all damage func-
tions are at the required level of development. For the purpose of
clarifying the state of development of damage functions for dif-
ferent materials, we have classified them into four levels below
(Fig. 2):

A Level I damage function includes a model of change with
well-defined inputs and outputs, identifying which input para-
meters are critical and which can be ignored. There are models at
this level of detail for many materials, for example, for metals
(Thickett et al. 2013), cellulose acetate (Ahmad 2022, King et al.
2020), or paintings on canvas and wood (Jakieta et al. 2008,
Mecklenburg et al. 1998, Rachwat et al. 2012, Rachwat et al. 2012).
At this level, we understand the physicochemical processes
at play.

A Level IT damage function can estimate lifetimes, because the
physicochemical model is paired with a definition of damage
derived from stakeholder preferences and value judgments. For
example, we know at which point fading is just noticeable. It is
also possible to define levels of stone recession where essential
detail is lost. Many heritage materials such as plastics (Rijavec
et al. 2023), paintings (Bucklow 1999, Zhang et al. 2023), and
wooden objects (Kupczak et al. 2018) are nearing level II,
although the definitions of damage for most remain open to
debate.

Level III damage functions have aligned their input with
management decisions. They contain inputs that correspond with
what a manager would know. The functions that predict fading
are good examples (Fenech et al. 2012), as they relate to Lux and
light spectra of common sources.

The most advanced Level IV damage functions also evaluate
uncertainty, offering lifetime estimates with a margin of error.
Currently, only the damage functions for paper have reached this
level (Strli¢ et al. 2015).

The model presented here requires at least Level II damage
functions.

Definition of adverse events. This model takes advantage of the
ABC framework for risk assessment (Michalski and Pedersoli Jr.
2016). Consequently, adverse events in the model are defined by
three parameters, each characterized by a level of uncertainty.

e Mean Time (A): This parameter defines the mean time
before an adverse event occurs. It is also expressed as a
range, reflecting the uncertainty in the timing of event
occurrences.

o Extent of Impact on Condition of Objects (B): This
parameter quantifies the degree to which the condition of
affected objects is reduced following an adverse event. It is
given as a range, such as 0.2 to 0.4.

o Fraction of Collection Affected (C): This parameter
represents the proportion of the population or collection
of objects that is impacted by an adverse event. It is
expressed as a range, such as 0.01 to 0.2, indicating the
uncertainty in the extent of the event’s impact.

The application of the ABC risk assessment model in this
context approaches the limit of its suitability and intended use.
This ABC model is primarily designed to facilitate decision-
making by comparatively identifying and prioritising the most
significant risks in a semi-quantitative scoring system, rather than
delivering precise risk predictions (though it has been used in this
way before by Michalski and Karsten (2018)). The authors of this
type of risk assessment have cautioned users about its limits from
the very start. The words of Robert Waller in 1994 are still true:
“Currently, the information required to produce accurate
estimates of the magnitude of many risks is lacking. Nevertheless,
simply attempting the exercise among a group of collections care
staff produces several valuable results" (Waller 1994). Another
critical hypothesis is, therefore, that the ABC method can
eventually become the basis of quantitative forecasts (H4). As
we shall see, the simulation model presented in this paper can
help evaluate this hypothesis.

Table 1 contains several examples of some of the types of
adverse events that pose a threat to cultural heritage. Due to the
catastrophic nature of fire events and the heightened number of
incidences within historic buildings (Landis 2017), fire often
features within many risk and vulnerability assessments for
cultural heritage (Ashley 2013, Salazar et al. 2021, Ulug Kegik
2022). The availability of statistics regarding the frequency of fires
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Condition Loss
(Range)

Fraction Affected
(Range)

Process Description

Table 1 Example of adverse events, how they are characterised in the model, and the logic associated with them.

Mean Time
(Range)

Logic

Serious fire where fire service 0.06-0.2 0.6-1

is called in several rooms

Serious incident of heritage 0.006-0.02 0.6-1
crime where high value item

is stolen

Flood from overflowing 0.06-0.2 0.06-0.2
drains affecting several

ground rooms

Roof leak in heavy rain 0.006-0.02 0.006-0.02
causing damage to

collections

200-600 years

20-60 years

60-200 years

Once per year

The fraction affected value reflects that these objects are
within several rooms, rather than the entire collection.
The condition loss value will be high in the case of a fire.
The mean time value is for a museum with medium fire
prevention, mitigation, and control measures, estimated
by statistics within Kidd (2002) Kincaid (2022),
Tétreault (2008), and Landis (2017).

The fraction affected value reflects that a single high
value item is likely to only contribute a small proportion
to the overall value of a collection. The condition loss
value will be high in the case of stolen objects (assuming
that they are not recovered). The mean time value is for a
museum with a medium crime prevention, mitigation,
and control measures, estimated by statistics within
Coupe & Kaur (2005), Welsh & Farrington (2009),
Bradley et al. (2012), and Tseloni et al. (2018).

The fraction affected value reflects that these objects are
within a several rooms, rather than the entire collection.
The condition loss value is reflective of the fact that
potentially only a part of the value of the object may be
lost under these circumstances. The mean time value is
suggestive of a museum that has a medium surface water
flood risk according to GOV.UK (2025).

The fraction affected value reflects that these events
likely happen in very confined spaces. The condition loss
value reflects that only a small part of the value of each
object would likely be lost under these circumstances.
The mean time value is suggestive of a museum that has
few water ingress events each year.

is relatively good in some places around the world, with potential
incidence rates for different levels of prevention, mitigation, and
control measures also beginning to be defined (Tétreault 2008).
However, there are currently no publicly available fire risk
statistics that are finely tuned to museums in the UK.

Like fire, the theft of objects can also constitute another form of
total value loss to an artifact since, in the words of the National
Trust Manual of Housekeeping, “a stolen object is, to all intents
and purposes, as lost as one that is destroyed in a fire" (National
Trust 2011). The high incidence of heritage crime (Bradley et al.
2012) means that security threats are another focus of risk
assessments for cultural heritage (Brokerhof et al. 2017).
However, more sector-specific statistics need to be developed to
understand the risk levels for museums with different combina-
tions of crime prevention measures.

Flooding is a common concern for heritage managers due to
the physical damage and staining caused by exposure to water, as
well as the mould infestations that often emerge after an event,
and has been included within, or made the focus of, many risk
and vulnerability assessments (D’Ayala et al. 2020, Gandini et al.
2020, Miranda and Ferreira 2019, Ogden 2012). The flood risk of
a heritage asset is closely aligned to the proximity of a site to
bodies of water, as well as the drainage capacity of local land and
wastewater pipes.

Water ingress from a leaking roof (or rainwater goods),
generating staining and humidity problems, is also a common
occurrence, though exactly how often these events happen on
average and how much damage is sustained per incident has not
been investigated. The substantial number of projects within the
MEND and PBIF funding programmes focused upon the
replacement of faulty roofs suggests that the deterioration of
these elements is a frequent issue experienced within historic
buildings, many of which have highly complex roof arrangements

comprised of a range of historic materials, making them
vulnerable to damage (Cassar and Pender 2003). The incidences
of flooding and water ingress are likely to increase in many places
around the world as climate change exacerbates the number of
intense rainfall events (Martel et al. 2021, Orr et al. 2018) and
storm surges (Bevacqua et al. 2020).

The short list of specific risk scenarios presented in Table 1 are
only a very limited selection of all the different types of hazards
that a museum, gallery, archive or library has to contend with. To
build a fully comprehensive model, a much more expansive
collection of hazards (and associated metrics), e.g., earthquake,
pests, terrorism, or breakages, associated with specific risk
scenarios would have to be included.

Modelling time to failure with the Weibull distribution. At
every time step of the simulation, an adverse event can occur or
not. A way to model this is to sample a time before an adverse
event from a distribution centred around the mean time (based
on the A score of the ABC risk framework) and sample the time
to the next event from a probability distribution. To that end, we
adopt the Weibull distribution. This probability distribution is
commonly used in reliability engineering and survival analysis
(Elmahdy 2015, O’Connor 2011) to model the failure rates of
mechanical and electronic systems, among other applications.
While the random mean time introduces variability, the Weibull
distribution adds a crucial layer of probabilistic modelling. This
combination ensures that the simulation is both flexible and
realistic, accurately reflecting the complexity of real-world event
timing.

An event-driven simulation could also be a suitable method, in
particular for cases where degradation is dominated by prominent
and infrequent adverse events rather than continuous processes.
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However, there are several benefits of the chosen approach.
Continuous degradation is a key component of the model,
described via a simple differential equation that is updated at
every time step. While this could be incorporated into an event-
driven framework, the aim is to build a platform that can
accommodate more complex continuous dynamics in the future,
including interactions between concurrent degradation processes,
for which a time-stepped approach is more natural and scalable.
It is also important to prepare the model for the eventual
inclusion of time-dependent policies, for example, a conservation
protocol that only occurs between two dates, or even a gradual
change of temperature caused by climate change. These processes
are more intuitively and transparently applied to a time-stepped
framework. Finally, managing a long event queue in an event-
driven simulation with extensive lists of adverse events may be
computationally intensive. Some events may be relatively high
frequency (hundreds of times a year) while some are very low
(once in a few hundred years). As a result, the simulation would
still effectively process most time-steps.

The Weibull distribution is characterised by two parameters: A,
the scale parameter, and k, the shape parameter. The probability
density function (PDF) of the Weibull distribution is given by:

x>0

0 x<0

£)* g=te/*

fleA k) = {Ii(k

In this equation, x represents the random variable (e.g., the time
to an adverse event), A represents the scale parameter, which
determines the characteristic mean time before an adverse event,
and k represents the shape parameter, which determines the
shape of the distribution.

e For k < 1, the probability of an event decreases as time
progresses.

e For k = 1, the probability of an event remains constant
over time.

e For k > 1, the probability of an event initially increases with
time and then eventually decreases. This characteristic is
known as the “bathtub curve" and is commonly observed in
reliability engineering.

The effect of k can be seen in Fig. 3. The scale parameter of the
plotted Weibull distributions is 1, but this parameter takes
different values in the simulation. The implementation of the
model demonstrated here uses k = 1 (H5). A Weibull distribution
with a scale parameter of 200 years implies that an event, for
example, a fire, happens with a mean time between events of 200
years, and a median time between events of 138.6 years. This
means that it is actually more likely that an event will happen
before 200 years than after, specifically there is a 63.2% chance
that the event will happen before 200 years, and 36.8% afterwards.

It is conceivable that in some well known hazards in heritage k
> 1. For example, the older a book is, the more likely a piece will
break during handling. However, this and similar scenarios where
this might hold have never been measured.

The bathtub curve produced when k > 1 makes sense in an
engineering context, but it remains to be seen if the same logic
applies in heritage systems. The idea is that, initially, the
probability of an event increases with time because the failure
rate accelerates due to wear-out mechanisms. This is often seen in
engineering applications in the early life of a product when there
is a higher likelihood of defect due to manufacturing imperfec-
tions or stress on components. As time progresses, the probability
of an event peaks and then declines. This decline occurs because
as weaker components fail early in the life of the system, the
surviving components tend to be more robust, leading to a

o
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Fig. 3 Graphical representation of the probability density function of the
Weibull distribution for different values of k and 4 = 1.

decrease in the failure rate. This phase is often referred to as the
“random failures" period, where failures occur due to random
events rather than wear-out mechanisms.

Monte Carlo sampling to determine the impact of
adverse events. Within the model, the B and C risk parameters of
the ABC framework are used to simulate the impact of the
adverse events and update the condition of affected agents:

e When an adverse event occurs, a function is called to select
a random subset of agents based on the fraction of the
collection affected parameter. This function determines the
number of agents affected by the event.

e For each affected agent, their condition is updated by
subtracting a random value within the specified range of
the extent of impact on the condition of objects parameter.
This simulates the degradation or damage caused by the
event to the affected agents.

This way of proceeding is usually referred to as Monte Carlo
sampling. The properties are assumed to be normally distributed
and that the ranges listed in the ABC model correspond to 95%
confidence intervals (H6).

Description of the model steps. All the features listed below are
combined together in an agent-based model that simulates the
behavior of a population of agents over time. The main steps of
the model are as follows:

1. Initialisation: The model initialises the population of
agents with their initial conditions. Each agent has a
condition C that follows a normal distribution with a mean
and standard deviation given by the user, capped between 0
and 100. Information on the current condition of the
collection can be introduced in this step.

2. Simulation Loop: The model iterates over multiple years,
simulating the behavior of the population for each year.

21. Continuous Degradation: For each year, the condition
of each agent is decreased by a degradation rate,
calculated from Temperature (T) and Relative Humidity
(RH) conditions.

22. Adverse Events: The model predicts the occurrence of
adverse events using a Weibull distribution. For each
year, a random mean time before an adverse event is
generated, and a time until event occurrence is sampled
from the Weibull distribution. If the sampled time is less
than or equal to 1 year, an adverse event is simulated for
a fraction of the population, reducing their condition
accordingly.
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23. Percentage of Objects in Good Condition: After each
year, the model calculates the percentage of objects in
good condition (condition C > 0) and records it.

3. Repetition: The simulation is repeated multiple times to
capture the variability of the system. Only 10 runs are
usually enough to reveal a characteristic pattern of decay for
the collection.

4. Analysis: After all simulations are completed, the model
analyses the results, including histograms of initial and final
conditions, time series of the percentage of objects in good
condition, and presenting an overall collection lifetime
calculated as the average time to reach 1% of the agents in
good condition.

Implementation in R. Table 2 describes the main inputs and
outputs of the first implementation of the model. The code is
mostly reproducible following the information given in the pre-
vious sections, except for some non-trivial decisions. The trunc-
norm package generates random numbers from a truncated
normal distribution. It is used to initialise the conditions of the
agents, ensuring that the starting values are within a realistic and
predefined range (i.e., that no agent has a condition above 1 or
below 0).

For each year in the simulation, a time until the next event
occurrence is sampled from a Weibull distribution with shape
parameter 1 (indicating an exponential distribution) and scale
parameter equal to the mean time between adverse events
specified by the users.

The following R code snippet illustrates the use of the ‘rweibull’
function to sample the time until the next event occurrence:

mean time <- runif(l, process$mean time[l],
processSmean time[2])

time until event <- rweibull(1l,
scale = mean_ time)

In this snippet, mean time is a random mean time before an
adverse event sampled from the specified range. This accounts for
the uncertainty in the time to failure. The rweibull function
then generates a random deviate from a Weibull distribution with
shape parameter 1 and scale parameter equal to the sampled
mean time. This sampled time until event occurrence determines
whether an adverse event will happen in the current year.

shape = 1,

Example results

To generate some example results, the model was run using the
input parameters described in Tables 1 and 3. Since there is little
available data within the field for initialisation, calibration, or
validation of the model, i.e., empirical data from long-term
controlled experiments and historical degradation reports (pro-
ducing a time series of condition), this exercise can be considered
as a toy application to illustrate the outputs that the model
produces and how they can be visualised. The value of long-
itudinal experiments and the generation of ‘epidemiological’
datasets, i.e., quantitative evidence of patterns of decay in col-
lections, is something that the field is reckoning with, but it will
be some time before the results are readily available for com-
parison. Hence, it is not possible to know whether the model
results reproduce domain knowledge because there is little codi-
fied knowledge on the subject. In this sense, the publication of
this model is timely and can encourage the initiation of possible
validation datasets. While the toy application demonstrated here
is for paper, which has the most advanced damage function, other
mathematical models of material change are close to being ready
for use in this way.

The main outcome of the model is the decay in condition of
the collection as a consequence of all the combined degradation
processes. Figure 4 shows two histograms of condition, at the
start of the process and after 500 years. The mean condition of
the collection gradually displaces to the left. When an object
reaches a contingent condition of 0, it “falls off" from the simu-
lation (it is deaccessioned, conserved, or otherwise receives some
action or investment).

At every time step, the model counts how many objects remain
in good condition. This allows visualisations like Fig. 5, which
shows the evolution of the percentage of objects in good condi-
tion over time for 10 example simulation runs. A simulation run
represents one possible future lifetime, marked by a series of
random accidents. The model should run as many times as
necessary to express all the alternative futures for a collection.
While nothing prevents us from studying hundreds or thousands
of futures, it is interesting to note that in practice, 10 runs are
already enough to cover most of the variability in outcomes.
Models with more degradation processes may require more runs.

The decay dynamics shown in Fig. 5 have some interesting
features. The most important observation is that the collection

Table 2 User Inputs and Main Outputs.

time series plot

Category Parameter Description
Inputs num_agents Number of agents (population size)
num_years Number of years to simulate
num_simulations Number of simulation runs
lower bound Lower bound of the initial condition distribution
upper bound Upper bound of the initial condition distribution
mean Mean of the initial condition distribution
sd Standard deviation of the initial condition distribution
deg _processes List of degradation processes with parameters
T Temperature for degradation rate calculation
RH Relative humidity for degradation rate calculation
pH pH level for degradation rate calculation
DPO Initial degradation potential for degradation rate calculation
DP1 Estimated end of life for degradation rate calculation
Outputs all conditions Final conditions of agents for each simulation
all percentage good Percentage of agents in good condition over time
time to 1 percent Time taken for the percentage of objects in good condition to drop to 1%
average time Average time to reach 1% good condition across all simulations
sd time Standard deviation of the time to reach 1% good condition
Plots hist Histogram of initial and final agent conditions

Time series plot of percentage of objects in good condition
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Table 3 The parameters used for the generation of example model results.

Input Parameter value Logic
num_agents 1000
num_years 1500

num_simulations 10
adverse events.

lower bound 0

upper bound 100
mean 70
sd 20

Sensitivity analysis suggests that 1000 agents is the minimum number to produce reliable model results.
This is a suitable time frame for the model results.
Sensitivity analysis suggests that 10 simulation runs are satisfactory when testing the model with only four

The lower bound of the initial conditions should reflect that some objects have already reached end of life.
The higher bound of the initial conditions should reflect that some objects are in optimum condition.
Reflects that the majority of the collection is in a reasonable condition.

Reflects the considerable variation in condition within a collection.

We employ the most advanced damage function to test the model here, but it could be expanded to include

A commonly used reference condition for the control of temperature within collections.
A commonly used reference condition for the control of relative humidity within collections.
A neutral pH that minimises acid hydrolysis is assumed for this demonstration.

deg processes Paper
damage functions for other materials in future.
T 20 °C
RH 50%
pH 7
DPO 3000 A DP of 3000 is often considered the maximum value for paper.
DP1 300

For paper, a DP value of around 300 is often considered to mark the end of its useful life.

Note that the parameters relating to the adverse events can be found in Table 1.
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Fig. 4 Histogram of collection condition before and during a simulation.

100
|
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60

% Objects in good condition

20
|
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Fig. 5 Graph demonstrating simulation example of 10 model runs. Some
runs exhibit large impact risks while others show many low impact risks, yet
overall behaviors are very similar.

degradation pathways tend to display similar shapes and time-
lines. This convergence happens even if some futures are more
unlucky than others. For example, simulation run 6 experiences
several fires, while simulation run 1 experiences only minor
accidents. And yet, the final outcome, and the overall lifetime, are
not as different as could be expected. This occurs because an

accumulation of small accidents can be as destructive as a few
large accidents. Note that this emergent behaviour is caused only
by a list of 4 adverse events (Table 1).

The non-linearity of the decay patterns is due mostly to the
initial distribution of conditions. Some non-linearity is also
caused by the underlying damage function that continuously
erodes the condition. In other implementations of the model,
further non-linearity could be introduced by adding self-
reinforcing degradation processes (for example, when some-
thing is a bit broken it breaks more easily, or when acid degra-
dation starts, it accelerates). Such effects would have an effect on
the shape of the distribution of conditions, which would change
during the simulation.

One strength of this model is the ability to compare the con-
sequences of degradation processes, regardless of whether they
are probabilistic or continuous. One way to do this is what
modellers call an “ablation study”. In other words, removing one
factor at a time in order to observe the effect on the overall
outcome. Table 4 compares different scenarios where degradation
processes have been removed. In this scenario, removing che-
mical degradation has the biggest effect, more than tripling the
lifetime. On the other hand, preventing fires only makes a small
difference to the lifetime. Of course, these results are only as good
as the input data. We should not conclude from this that fire is
the least destructive process to collections. Rather, we should use
this evidence to critically evaluate our estimate of fire risk. Have
we underestimated its frequency, impact or capacity to reduce
value? This is how this method may be helpful to fine-tune the
the outcomes of an ABC risk assessment: by allowing us to
visualise the consequences of our estimates.

The model also doubles as an uncertainty propagation analysis.
Because risks are defined with ranges, rather than a single value,
the model outputs a spectrum of possible outcomes. The standard
deviations included in Table 4 are produced by averaging the
results of all the simulation runs. This helps identify in which
cases the effect of a risk is not statistically significant. In this
example, removing fire does not result into a statistically sig-
nificant improvement on the lifetime.

Extensions to the model

Incorporate diverse degradation functions. A number of
damage functions are developed enough to be added to the
model. However, its transferability is still limited for many diverse
collections due to the lack of advanced damage functions for
different material types. In the future, it can be updated to include
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Condition

Table 4 Collection Lifetime, Standard Deviation of Lifetime, and Max Lifetime under different conditions.

Collection Lifetime (time to reach 1%)

Standard Deviation of Lifetime Max Lifetime

1025.35
37151
1051.1
1052.1
1077.9
1182.5

All degradation processes
Without chemical degradation*
Without fire

Without theft*

Without flooding*

Without leaking*

1062
4803
1080
1073
1102
1237

27.56
418.04
28.33
16.58
17.06
42.79

Rows marked with an asterisk (*) show a statistically significant difference compared to “All degradation processes".

new research and thus it has the ability to become a living
database of all known damage functions, making it an increas-
ingly realistic in its simulation of heritage lifetimes. The inter-
action between different degradation mechanisms can be
modelled to account for synergistic effects. For example, chemical
degradation might make materials more susceptible to physical
wear, or high humidity could exacerbate both biological and
chemical degradation processes.

There are also likely interactions between objects within a collection
that are related to the distribution of different materials and their
specific characteristics. For instance, a collection with a lot of plastic
will have high levels of off-gassing, which, if not adequately managed
could generate high degradation rates of other materials. The same
could be said for some probabilistic risks, for example, a store of
cellulose nitrate provides a significant fuel source that, if ignited, could
lead to more extensive fire damage within a museum. It is feasible that
these types of interactions might also be included when the model is in
a very advanced state of development.

Dynamic environmental conditions. Rather than relying on
static values for parameters like temperature, relative humidity,
the model can incorporate variable environmental data. Seasonal
variations can be introduced to simulate the cyclical nature of
environmental conditions, which is especially interesting if
mechanical damage is added.

Agent-based model enhancements. The first step to enhance the
agent-based model involves increasing the heterogeneity among
agents. In particular, each agent can degrade in a different way.
Furthermore, it is possible to define several properties for each
agent. Figure 6 shows an invented example, inspired by the spider
plots used for sensory profiles, i.e., in wine tasting. In this case,
each separate agent has 8 dimensions of condition. All of them
can be lost, and the agent would become “unacceptably degraded”
when one of them reaches the threshold. The second enhance-
ment to the model would be to add interactions between agents.
Early experimentation with this idea (Duran Casablancas et al.
2024) has involved the interaction between book-agents and
visitor-agents, which causes accelerated degradation due to
handling. A third enhancement would be to consider sub-spaces
within collections, such as different rooms or storage areas.

Scenario planning. Scenario planning would extend the model’s
applicability by exploring potential future scenarios and their
impacts on the collection. This involves running simulations
under different assumptions, such as varying climate conditions,
funding levels for conservation, or changes in storage environ-
ments. Initial research has involved evaluating the cost of
delaying the decision to deacidify a collection (Duran-Casa-
blancas et al. 2021).

colour

* Object 1
* Object 2

recession .
accretions

cracking reflectance

delamination shape

dissociation

Fig. 6 Spider diagram illustrating an example of how the model can include
different pathways towards condition reduction.

Implications for future research

Can the principles of Collections Demography be extended to
cover any heritage typology? The answer depends on the testing
of six hypotheses, which sustain the model presented in this

paper:

e HI1 Threshold Existence: There exist identifiable thresholds
for unacceptable change in a wide diversity of heritage
typologies. This could be difficult to define for heritage
typologies that have complex or diverse social uses.

e H2 Sharp Response: The perception and response to
condition change in heritage objects increase sharply
beyond a certain threshold. If this hypothesis does not
hold, the definition of lifetime will be more arbitrary.

e H3 Proportional Degradation: An absolute condition can
be defined in a way that is directly proportional to one or
more key measurable properties of heritage objects (e.g.,
color, strength). This could be complicated in degradation
processes which lead to multi-dimensional phenomena that
is not characterised with a single metric, such as crack
networks.

e H4 Risk Forecasting: The ABC risk assessment model or
similar frameworks can evolve into a quantitative tool
for forecasting risks associated with heritage objects.
This is achievable with a combination of data and
expertise.

e H5 Time Distribution: A Weibull distribution effectively
models the probability of adverse events or failure rates of
heritage objects. Exploring this requires data.
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e H6 Modelling Uncertainty: The uncertainty in the severity
of adverse events is measurable and can be modelled, for
example with a normal distribution.

The model presented can be useful even before these six
hypothesis are thoroughly investigated (or indeed even if one or
two are disproved). The uses of the model are:

e To compare the consequences of probabilistic and
continuous degradation.

e To assess critically the quality of risk assessment estima-
tions, by checking if the long-term impact of estimated
risks is realistic in comparison with other processes.

e To study the propagation of different types of uncertainty
to the final lifetime estimation. For example, comparing the
uncertainty caused by measurement errors (e.g. + 3% RH)
with the uncertainty caused by expert estimations of
unknown parameters.

While the six hypotheses are necessary for a universal model,
there is a high potential to use this approach in specific contexts.
We know this works for paper collections. What other collection
types could benefit from this type of analysis with our current
level of knowledge?

Data availability

We do not analyse or generate any datasets, because our work
proceeds within a theoretical and mathematical approach. The R
implementation of the model described in this document is avail-
able on GitHub: https://github.com/jgraubove/generaldegradation.
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