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 A B S T R A C T

Simulating reacting flows with detailed chemistry is often prohibitively expensive due to the complexity of 
reaction mechanisms and the numerical stiffness arising from disparate chemical time scales. While recent 
advancements in neural networks offer potential for efficiently capturing the dynamics of stiff chemistry, its 
application to dual-fuels with drastic differences in reactivity such as ammonia (NH3) and hydrogen (H2) 
remains challenging. In this study, we present a neural network model with variable time steps aimed at 
enhancing the efficiency of combustion chemistry simulations focusing on the complex dual-fuel NH3∕H2 under 
premixed combustion. We improved the "sampling-training" workflow based on previous HFRD method to 
overcome the challenge of generalizing neural network models to fuel blends under premixed combustion. This 
workflow involves three improvements: defining the base manifold using unity Lewis number laminar flames, 
introducing continuously controllable randomization, and employing a training process with mass conservation 
and heat release rate similarity constraints. Our approach is validated against simulations of planar turbulent 
premixed flames and temporally-evolving jet flames across various conditions. The model demonstrates high 
accuracy and consistency, achieving a chemical calculation acceleration of 7 times and an overall simulation 
acceleration of 5 times using a model with 4 hidden layers and 800 neurons on the same CPU device. When 
a GPU is adopted, the chemical calculation acceleration increases to 30 times, and the overall simulation 
acceleration reaches 10 times.
Novelty and Significance Statement

Utilizing detailed chemistry in reacting flow simulations drastically increases computational cost due to 
numerical stiffness and disparate time scales. A promising approach is to replace the time-consuming ODE 
solvers with compact neural networks. Despite the rapid development of the neural network approach for 
accelerating combustion kinetics calculations, the application of this concept to fuel blends with varying 
mixing ratios and reactivities remains insufficient, particularly in turbulent premixed flames. In this study, we 
improved the neural network framework that could predict the kinetics of fuel blends of low-reactivity fuel 
NH3 and high-reactivity fuel H2, highlighting the applications to binary fuel with large reactivity differences. 
Specifically, the unity Lewis number laminar flames are leveraged as an economical thermochemical base 
manifold, given their close resemblance to turbulent flame profiles. A continuously controllable randomization 
method is introduced to balance model capacity and computational efficiency by adjusting key parameters. 
Additionally, a loss function with mass conservation and heat release rate similarity constraints ensures stable 
long-term predictions. The well-trained neural network model was coupled with CFD codes to simulate two 
challenging cases across a wide range of turbulent intensities and fuel compositions. The results show visually 
identical scalar fields and highly accurate statistical outcomes, even under intense turbulence and after O(104) 
neural network model calls, with a O(10) acceleration in computation.
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1. Introduction

Due to the ongoing climate crisis and the increasing levels of 
atmospheric carbon dioxide (CO2) [1], it is imperative to explore zero-
carbon fuels and carbon-neutral combustion technologies to reduce 
greenhouse gas emissions and meet stringent pollutant regulations. The 
dual-fuel engine concept, which utilizes a high-reactivity pilot fuel to 
ignite low-reactivity premixed charges, has been gaining significant 
attentions [2]. Among the various alternative dual-fuels, hydrogen 
(H2) and ammonia (NH3) have become important topics in recent 
combustion research. While H2 is recognized as a clean fuel with 
well-understood combustion characteristics, challenges related to its 
supply chain, economic storage, and secure transportation have hin-
dered widespread adoption [3]. In contrast, NH3 has emerged as a 
promising zero-carbon fuel due to its advantages in storage and trans-
portation. Nevertheless, NH3 presents challenges such as low reactivity, 
low flame speeds, high autoignition temperature, and a narrow flamma-
bility range compared to H2, making stable ignition and combustion 
difficult. To enhance the combustion of NH3/air mixtures, the addition 
of H2 is a common approach. The significant differences in reactivity 
between NH3 and H2 complicate the chemical kinetics modeling and 
reacting flow simulations for NH3/H2 mixtures.

To accurately address the chemical kinetics, burning character-
istics, and nitric oxide (NOx) emissions across various combustion 
devices, such as gas turbines and internal combustion engines, it is 
essential to employ detailed mechanisms in simulations [4]. How-
ever, reacting flow simulations involving detailed chemistry can be 
prohibitively expensive due to the size of reaction mechanisms and 
the numerical stiffness arising from the broad range of chemical time 
scales [5]. Evaluating the chemical source terms at every grid node 
and for each time step of the simulation is particularly computationally 
intensive, usually accounting for over 80% of the total computing 
time [6]. More importantly, the calculation of chemical reactions is 
a common challenge faced by all combustion simulations, and the 
acceleration of this submodule can benefit almost all simulation codes, 
even other broader fields involving detailed chemical kinetic modeling 
in chemical, biological and atmospheric systems.

The advent of deep learning technologies offers a promising solution 
to the challenges in simulating stiff chemistry [7,8]. Artificial neural 
networks (ANNs) have shown the ability to capture the dynamics of 
stiff chemistry with larger time steps more efficiently than traditional 
stiff ordinary differential equation (ODE) solvers, which typically re-
quire small step sizes and computationally expensive implicit methods 
(e.g., SEULEX [9] and CVODE [10]) [11–13]. ANNs are trained to map 
initial states to final states and can be applied in an explicit manner. 
Replacing these costly solvers with pre-trained neural ODE solvers has 
emerged as a promising alternative.

ANNs have been utilized in combustion research since at least 
1996 [14]. More advanced neural network architectures such as self-
organizing maps (SOMs) have been used to cluster the high-
2 
dimensional thermochemical space and trained ANN for each cluster 
separately [15]. This SOM-ANN approach has been extended to various 
complex multi-dimensional problems [16–19]. Ding et al. [20] pro-
posed a multiple ANN approach to build the ANN for each species, suc-
cessfully coupled with simulation of CH4/air piloted flames. Deep neu-
ral networks (DNNs) with complex structures comprising large numbers 
of layers and neurons are gaining increasing attention. Hansinger 
et al. [21] adopted deep residual networks for flamelet/progress vari-
able tabulation with application to the piloted flame. Recently, neural 
operators have also been explored. Goswami et al. [22] employed 
autoencoder-based deep operator networks (AE-DeepONet) for the 
kinetics of a skeletal syngas model. DeepONet is also applied by Kumar 
et al. [23] for the complex chemical kinetics of n-dodecane at high- 
and low-temperatures. Weng et al. [24] evaluated and tested the 
performance of Fourier neural operators (FNO) in solving stiff chemical 
kinetics.

One key challenge in training ANNs or DNNs for the tabulation 
of thermochemistry is preparing the dataset. Early validation efforts 
trained neural networks with data from a single case and tested them 
in the same case (a-priori validation), which frequently led to poor 
generalization to new cases (a-posteriori validation). This issue arises 
because thermochemical states sampled from a multi-dimensional case 
represent only a small subset of the broader thermochemical space and 
may not be suitable for other multi-dimensional problems. To address 
this, many studies have focused on a-posteriori validation of ANN/DNN 
models across various cases. Fig.  1 reviews existing sampling methods 
for preparing the dataset, which are categorized into global sampling 
and manifold sampling.

Global sampling involves sampling the training data from the entire 
composition space. The most straightforward method, Monte Carlo 
(MC) sampling, is impractical for large mechanisms due to the complex-
ity of data distribution and the limited capacity of model parameters. 
To mitigate this, effective data filtering is essential. Zhang et al. [25] 
introduced the multi-scale (MS) sampling method to address the chal-
lenge of collecting diverse thermochemical states for H2 combustion. 
Building on this, Xu et al. [26] proposed a global multi-scale sampling 
(GMS) method that improves the prediction accuracy for methane and 
n-heptane kinetics by sampling along the evolution trajectory of Monte 
Carlo data and filtering based on the temporal gradient range.

Manifold sampling, which is also employed in this work, assumes 
that thermochemical states in high-dimensional simulations lie nearly 
on a low-dimensional manifold [27]. This method uses canonical com-
bustion configurations to identify base states and generate realistic 
states through data randomization algorithms. 0-D homogeneous reac-
tors such as autoignition have been widely applied to prepare dataset 
due to their simplicity [25,28,29]. Sen et al. [30] trained the ANN 
on a table extracted from an unsteady flame—vortex interaction (FVI) 
simulation and applied it to turbulent premixed flames. In their further 
work [31,32], linear eddy mixing (LEM) simulations are employed 
Fig. 1. Review of sampling methods.
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for ANN training to include the effect of the eddies on a wide range 
of scales. Chatzopoulos et al. [16] simulated an ensemble of laminar 
flamelets to generate training samples, which was also the basis of the 
approach in Franke et al. [17]. Wan et al. [33] trained the ANN using 
a turbulent non-adiabatic non-premixed micro-mixing based canonical 
problem. Nguyen et al. [34] also sampled from a turbulent micro-
mixing problem and decomposed the thermochemical hyperspace into 
clusters to facilitate the training of neural networks. To simulate tur-
bulent premixed flames, Readshaw et al. employed [35] a set of 1-D 
premixed flame simulations to generate data. To enhance the robust-
ness and generalization capability of the models, data augmentation on 
the base manifold is necessary. Recently, the hybrid flamelet/random 
data (HFRD) method [20,36] used unsteady laminar flamelets with 
ignition and extinction phases to generate training data, with successful 
application to various turbulent non-premixed flames. HFRD method 
is further developed by Li et al. [37,38] and applied to hydrogen, 
ethylene, and Jet-A premixed combustion.

Although many of the aforementioned works have applied ANNs 
or DNNs to combustion problems with fixed fuel compositions, there 
are very few examples of ANN/DNN application to fuel blends. An 
early work on blended fuels with varying mixing ratios is [39], which 
employed a wide range of mixing ratios and initial temperature for 
the flamelet simulations to account for fuel blends and radiative heat 
losses. The trained ANNs are applied to two turbulent flames with 
different fuel compositions: a pure methane flame, Sandia flame D, and 
Sydney flame HM1, which is a methane/hydrogen flame. Moreover, 
compared with non-premixed flames, generating suitable data for ANN 
training that successfully anticipates a premixed flame composition 
space is even more difficult [35]. The applicability of ANNs to pre-
dict the stiff chemistry dynamics of NH3∕H2 in turbulent premixed 
flames, where significantly different kinetics are involved, has yet to 
be thoroughly examined. To achieve this, the ANN or DNN model must 
accurately reproduce the predictions of ODE solvers across a wide range 
of equivalence ratios and mixing ratios.

In this study, we develop a DNN model with variable time steps to 
enhance the efficiency of combustion chemistry simulations for turbu-
lent premixed NH3∕H2 flames. Using NH3∕H2 as the example of fuel 
blends with significantly different chemical properties, we improved 
the ‘‘sampling-training’’ workflow based on previous HFRD method. 
The improvements includes defining the base manifold using unity 
Lewis number laminar flames, introducing continuously controllable 
randomization, and employing a training process with mass conserva-
tion and heat release rate similarity constraints. We simulate planar 
turbulent premixed flames with intensive turbulence and temporally-
evolving jet flames with strong shear flows using both CVODE and 
the proposed DNN model. Two key hyperparameters are optimized to 
balance data coverage and model complexity. Then, scalar distributions 
and statistical results are compared across various temperatures, time 
steps, equivalence ratios, and mixing ratios.

The rest of the paper proceeds as follows: Section 2 introduces 
the chemistry ODE system and the details of the ‘‘sampling-training’’ 
workflow. Section 3 describes the validation configurations employed 
in the present study. Qualitative and quantitative analysis of proposed 
method are provided in Section 4. Finally, Section 5 gives conclusions 
and suggests future work.

2. Chemistry acceleration framework

2.1. Problem statement

In the combustion simulations, complex interactions between con-
vection, diffusion, and chemical reaction processes are described by 
equations such as partial differential equations (PDE), ordinary differ-
ential equations (ODE), and algebraic equations. For example, the mass 
fraction advances in time, as shown in the following equation, 

(1)
𝑌 (𝑡 + 𝛥𝑡) = 𝑌 (𝑡) + (−𝐶 +𝐷 + 𝑅)𝛥𝑡,

3 
where 𝑌 , 𝐶, 𝐷, and 𝑅 are the mass fraction, convection term, diffusion 
term, and chemical reaction term of the mass fraction transport equa-
tion. In many reacting flow codes, the operator-splitting strategy [40] is 
employed where chemistry and transport are decoupled and integrated 
with distinct numerical methods. This strategy splits the governing 
equation into sub-steps and integrates each separately to advance to 
the next time step [41]. The chemistry contribution results in a system 
of ODEs at each cell of the computational domain, which is typically 
integrated using a stiff ODE solver. The transport contribution results in 
a system of PDEs, usually solved by finite difference/volume methods 
(FDM/FVM). A typical solving process is outlined below, 
𝑌 ∗(𝑡 + 𝛥𝑡) = 𝑌 (𝑡) + (−𝐶 +𝐷)𝛥𝑡

𝑌 (𝑡 + 𝛥𝑡) = 𝑌 ∗(𝑡 + 𝛥𝑡) + ∫

𝛥𝑡

0
𝑅𝛥𝑡.

(2)

This widely adopted operator-splitting strategy offers opportunities 
to accelerate each submodule separately. This paper focuses on the 
accelerating submodule of the chemical reaction source term.

Considering a chemical system of 𝑛𝑠 species and 𝑛𝑟 reactions, 
𝑛𝑠
∑

𝑖=1
𝑣′𝑖𝑗𝑖 ⇌

𝑛𝑠
∑

𝑖=1
𝑣′′𝑖𝑗𝑖 for 𝑗 = 1,… , 𝑛𝑟, (3)

where 𝑖 denotes species 𝑖, 𝑣′𝑖𝑗 and 𝑣′′𝑖𝑗 represent the molar stoichio-
metric coefficients of species 𝑖 in reaction 𝑗. For each cell in the 
computational domain, the change in composition due to chemistry 
over a computational timestep 𝛥𝑡 is the solution of a system of (𝑛𝑠 +
1) ODEs for the species mass fraction and temperature. The species 
equations and temperature equation for a constant pressure system are 

𝑑𝑌𝑖
𝑑𝑡

=
𝜔𝑖𝑊𝑖
𝜌

 for 𝑖 = 1,… , 𝑛𝑠,

𝑑𝑇
𝑑𝑡

= −
∑𝑛𝑠

𝑖=1 𝜔𝑖ℎ𝑖𝑊𝑖

𝜌𝑐𝑝
,

(4)

where 𝑌𝑖, 𝜔𝑖, 𝑊𝑖, and ℎ𝑖 are the mass fraction, net production rate, 
molecular weight, and molar enthalpy of species 𝑖, and 𝜌 is mixture 
mass density. 𝑇  is temperature, and 𝑐𝑝 is the heat capacity at constant 
pressure. The ideal gas law is used as the equation of state.

Here, 𝜔𝑖, the net production rate of species 𝑖, is calculated from 

𝜔𝑖 =
𝑛𝑟
∑

𝑗=1

(

𝜈′𝑖𝑗 − 𝜈′′𝑖𝑗
)

(𝐾𝑓𝑗

𝑛𝑠
∏

𝑖=1
[𝑋]

𝜈′𝑖𝑗
𝑖 −𝐾𝑟𝑗

𝑛𝑠
∏

𝑖=1
[𝑋]

𝜈′′𝑖𝑗
𝑖 ), (5)

where 𝐾𝑓𝑗 and 𝐾𝑟𝑗 are the forward and reverse rates of reaction 
𝑗, which are usually modeled using the Arrhenius law with neces-
sary modifications. [𝑋]𝑖 is the molar concentration of species 𝑖. 𝑄̇ =
−
∑𝑛𝑠

𝑖=1 𝜔𝑖ℎ𝑖 is defined as heat release rate (HRR).
Considering the requirement to invoke expensive stiff ODE solvers 

at every time step and on every grid, it is prudent to replace them 
with compact neural networks. Neural networks eliminate the stiffness 
differences (i.e., load imbalance) under various thermochemical states 
and offer the potential for further acceleration with the help of ad-
vanced GPUs. The ‘‘sampling-training’’ framework applied in this work 
is developed based on hybrid flamelet/random data (HFRD) generation 
approach, as shown in Fig.  2. This framework divided the whole 
‘‘sampling-training’’ process into three parts,

1. Calculate the base manifold.
2. Perform randomization to enhance model generalization capa-
bility and robustness.

3. Train the neural network model.

After these steps, we can couple the pre-trained neural network into 
high-dimensional CFD codes to accelerate combustion chemistry.
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Fig. 2. General framework for combustion chemistry acceleration.
Table 1
Summary of flame simulations used to generate the dataset of base thermochemical 
states. 𝑝 is the pressure, 𝑇𝑢 is the unburnt gas temperature, 𝜙 is the equivalence ratio, 
𝑋(H2) is the mixing ratio of H2.
 Simulation Combustion 

mode
Conditions Values used  

 
Flame Premixed

𝑝 [Bar] 1  
 𝑇𝑢 [K] 800  
 𝜙 [−] 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 

1.2, 1.3, 1.4, 1.5
 

 𝑋(H2) [−] 0, 0.05, 0.10, 0.15, 0.20, 0.25, 
0.30

 

2.2. Base manifold

Following Readshaw et al. [35], which used a set of laminar pre-
mixed flames as the canonical problem for turbulent premixed flames, 
we generate a dataset of thermochemical states consisting of tempera-
ture, pressure, and species mass fractions 

[

𝑇 , 𝑝, 𝑌1, 𝑌2,… , 𝑌𝑛𝑠
]

 using 1-D 
unity Lewis number laminar premixed flame simulations. It is noted 
that the unity Lewis number transport model is based on findings 
that, as turbulence intensity increases, conditioned profiles of various 
local mixture characteristics tend to resemble those computed for unity 
Lewis number laminar flames [42–45]. This is true of NH3 and NH3∕H2
turbulent flames, as depicted in Fig.  3. The selected conditions span an 
extensive range of equivalence ratios and mixing ratios for dual-fuels 
in NH3∕H2 combustion, as summarized in Table  1. The mixing ratio of 
H2 is defined as, 

𝑋(H2) =
[H2]0

[NH3]0 + [H2]0
, (6)

where [H2]0 and [NH3]0 denote the molar concentration of H2 and 
NH3 in the fuel [46,47]. The equivalence ratio is varied to cover both 
lean and rich conditions, and the mixing ratio is adjusted to reflect 
typical experimental and industrial applications [48,49]. 77 1-D tran-
sient laminar premixed flames are simulated using OpenFOAM [50]. 
All simulations utilized the Otomo mechanism [46], which contains 32 
species and 213 reactions.

Each flame’s computational domain is 20 mm long, discretized into 
1000 uniform cells. The domain is initialized with a premixed fuel/air 
mixture (unburnt gas) on one side and equilibrium states (burnt gas) on 
the other. The inlet velocity is set to the laminar flame speed calculated 
by Cantera. A time step of 1 × 10−7 s is used, with each simulation 
running for 10,000 steps. Thermochemical states are sampled every 10 
time steps.

2.3. Randomization method

Randomization is a necessary step to enhance model generalization 
and robustness. Firstly, high-dimensional reacting flow simulations 
used for a-posteriori validation may produce thermochemical states that 
deviate from the base manifold. Secondly, studies [20,25,26,29,37] 
4 
have demonstrated that relying solely on simple, smooth base man-
ifold data can lead to model overfitting, making the trained model 
susceptible to disturbances and unable to tolerate even 5% noise [25]. 
Thirdly, temperature, pressure, and species distributions are strongly 
correlated and exhibit multi-scale features. Leveraging these features 
can improve sampling efficiency. Therefore, we propose a stratified and 
continuous randomization strategy that matches the data complexity 
with the parameters of the neural network model.

As described in Section 2.2, initial states for randomization are 
sampled from 1-D laminar premixed flames, taking advantage of the 
strong correlations between temperature, pressure, and various com-
ponents. Due to the uniform grid, many states are concentrated around 
the unburnt and burnt states, necessitating data balancing. To address 
this, we employ a stratified sampling method, selecting 100 reaction 
progress variables from a uniform distribution over the interval [0,1] 
for each laminar flame and each saved time step, resulting in 7.7 
million initial states. The reaction progress variable 𝑐 is defined as 

𝑐 =
𝑇 − 𝑇𝑢
𝑇𝑏 − 𝑇𝑢

, (7)

where 𝑇𝑢 and 𝑇𝑏 denote the unburnt and burnt temperatures, calculated 
according to the fuel composition.

Given that physical quantities exhibit multi-scale distributions, ini-
tial thermochemical state [𝑇0, 𝑝0, 𝑌𝑖,0] is randomly perturbed to
[𝑇 ′, 𝑝′, 𝑌 ′′

𝑖 ] in different ways. For each initial state, the temperature is 
perturbed by injecting 10% noise, 

𝑇 ′ = (1 + 𝛼)𝑇0, 𝛼 ∼ Uniform(−0.1, 0.1). (8)

Pressure is sampled from a wide uniform distribution, 

𝑝′ ∼ Uniform(0.5, 2.0) 𝑏𝑎𝑟. (9)

The key developments above the previous randomization work [20,
35–39] lie in the randomization of mass fractions and filtering methods.

Considering the significant changes in mass fraction magnitudes, 
in the HFRD method [20], mass fractions are randomized using an 
exponent that follows a uniform distribution, 
𝑌 ′
𝑖 = 𝑌 𝑏

𝑖,0 for 𝑖 = 1,… , 𝑛𝑠,

𝑏 ∼ Uniform(1 − 𝑐, 1 + 𝑐),

𝑐 = 0.2.

(10)

Note that parameters 𝑏 and 𝑐 are presented in a form different from 
the original work [20] for ease of comparison. In subsequent studies, 
Li et al. [37,38] applied this randomization method 10 times and 
selected 𝑐 ∈ [0.1, 0.15]. It is observed that this randomization approach 
generates an exponent following a log-normal-like distribution, which 
amplifies the magnitude differences between components and ensures 
sufficient coverage of the radical space. In this work, a larger number 
of randomization iterations is used to generate a smoother distribution 
while reducing the degree of randomness in each iteration. Specifically, 
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Fig. 3. Conditional profiles of selected mass fractions for (a) pure NH3 and (b) 30%NH3∕H2 flames. Blue and orange dots are sampled from the two turbulent flames for validation 
(Section 3), the black line is the 1-D laminar flame profile using a mixture averaged transport model, and red line is 1-D unity Lewis number profile.  (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)
the exponent is generated by multiplying 50 random numbers, each 
independently sampled from a uniform distribution, 
𝑌 ′
𝑖 = 𝑌 𝛽

𝑖,0 for 𝑖 = 1,… , 𝑛𝑠,

𝛽 =
50
∏

𝑘=1
𝛾𝑘,

𝛾𝑘 ∼ Uniform(1 − 𝜉, 1 + 𝜉).

(11)

The parameter 𝜉 is crucial to controlling the spread of the data distri-
bution continuously and is typically chosen within the range of 0.005 
to 0.02. Finally, the species concentrations are normalized so that the 
species mass fractions sum to unity, 

𝑌 ′′
𝑖 =

𝑌 ′
𝑖

∑𝑛𝑠
𝑖=1 𝑌

′
𝑖

. (12)

Randomization based on mathematical formulas can generate nu-
merous unphysical states, which reduce the model’s accuracy in the 
regions of interest. To filter out these unphysical states, the HFRD 
method [20] discards any data outside the flammability limits and 
ensures that the generated thermochemical states maintain appropri-
ate molar element ratios. In the context of premixed combustion, Li 
et al. [37,38] proposed a criterion based on heat release rate change to 
remove the unphysical perturbed states. In their study, perturbed states 
with HRR values exceeding 100 times above or below the original HRR 
values are discarded. In this work, a physical constraint based on both 
heat release rate and net production rate is proposed as follows, 

|𝑄̇′
| < 𝑚𝑎𝑥(|2 × 𝑄̇|, 108),

𝑛𝑠
∑

𝑖=1
|𝜔′

𝑖 − 𝜔𝑖| < 5 ×
𝑛𝑠
∑

𝑖=1
|𝜔𝑖|,

(13)

where 𝑄̇ and 𝜔𝑖 are calculated from the initial state [𝑇0, 𝑝0, 𝑌𝑖,0], while 
𝑄̇′ and 𝜔′

𝑖 are calculated from the perturbed state [𝑇 ′, 𝑝′, 𝑌 ′′
𝑖 ]. The 

randomization process continues until a state that satisfies the physical 
constraint is found. Based on this data perturbation and filtering pro-
cess, the training dataset of 7.7 million perturbed states is sampled from 
7.7 million initial states. Each perturbed state advanced a variable time 
step to get the corresponding labeled state by solving the ODE system 
in Eq.  (4) using CVODE in Cantera. The time steps are randomly chosen 
from 10−8 to 10−6 second for a wider application range.

2.4. Training details

The goal of the DNN is the same as that of stiff ODE solvers, 
i.e., predicting the change in mass fraction [𝑌 (𝑡+𝛥𝑡)−𝑌 (𝑡)] from current 
𝑖 𝑖
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thermochemical state [𝑇 (𝑡), 𝑝(𝑡), 𝑌𝑖(𝑡)] and given time step 𝛥𝑡. For mass 
fractions, Box–Cox transformation (BCT) [51] defined as 

 (𝑥) = 𝑥𝜆 − 1
𝜆

, 𝜆 ≠ 0, (14)

is applied to emphasize the multi-scale distribution of minor compo-
nents and avoid the singularity of the log transformation [25]. In this 
work, we use 𝜆 = 0.1. Thus, the DNN’s input is [𝑇 (𝑡), 𝑝(𝑡), (𝑌𝑖(𝑡)), 𝛥𝑡]
and the output is [ (𝑌𝑖(𝑡 + 𝛥𝑡)) −  (𝑌𝑖(𝑡))]. Besides, all the input and 
output variables are transformed using Z-score normalization [52].

The DNN architecture comprises 4 hidden layers, each with 800 
neurons, and uses the Gaussian Error Linear Unit (GELU) [53] as 
the activation function. Additionally, a multi-objective loss function is 
proposed, incorporating accuracy, mass conservation, and heat release 
rate similarity constraints. Let 𝑟𝑡𝑎𝑟𝑔𝑒𝑡𝑖 =  (𝑌𝑖(𝑡 + 𝛥𝑡)) −  (𝑌𝑖(𝑡)) and 
𝑟𝑝𝑟𝑒𝑑𝑖  denote the targeted and predicted mass fraction variations before 
inverse transformation, calculated using CVODE or DNN chemistry ODE 
solver. Similarly, 𝑌 𝑡𝑎𝑟𝑔𝑒𝑡

𝑖 = 𝑌𝑖(𝑡 + 𝛥𝑡) and 𝑌 𝑝𝑟𝑒𝑑
𝑖  are the targeted and 

predicted mass fractions, 𝑇 𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑇 (𝑡 + 𝛥𝑡) and 𝑝𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑝(𝑡 + 𝛥𝑡) are 
the temperature and pressure given by the stiff ODE solver. The loss 
function can be expressed as 
𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠1 + 𝐿𝑜𝑠𝑠2 + 𝜂𝐿𝑜𝑠𝑠3,

𝐿𝑜𝑠𝑠1 =
𝑛𝑠
∑

𝑖=1
|𝑟𝑝𝑟𝑒𝑑𝑖 − 𝑟𝑡𝑎𝑟𝑔𝑒𝑡𝑖 |,

𝐿𝑜𝑠𝑠2 = |

𝑛𝑠
∑

𝑖=1
𝑌 𝑝𝑟𝑒𝑑
𝑖 − 1|,

𝐿𝑜𝑠𝑠3 = |(𝑇 𝑡𝑎𝑟𝑔𝑒𝑡, 𝑝𝑡𝑎𝑟𝑔𝑒𝑡, 𝑌 𝑝𝑟𝑒𝑑
𝑖 ) −(𝑇 𝑡𝑎𝑟𝑔𝑒𝑡, 𝑝𝑡𝑎𝑟𝑔𝑒𝑡, 𝑌 𝑡𝑎𝑟𝑔𝑒𝑡

𝑖 )|.

(15)

𝐿𝑜𝑠𝑠1 ensures accuracy in mass fractions, 𝐿𝑜𝑠𝑠2 enforces that the mass 
fractions sum to unity, and 𝐿𝑜𝑠𝑠3 ensures accuracy in heat release rates. 
 maps the thermochemical state to the heat release rate. Due to the 
complexity and non-differentiability of , a pre-trained and differen-
tiable neural network, DNN2, is used for parameterization. During the 
training of the chemical acceleration network, DNN1, the parameters of
DNN2 are frozen and remain unchanged, serving solely as a well-fitted 
function. Specifically, DNN1 first predicts the thermochemical state for 
the next time step. The HRRs are then estimated using the frozen DNN2
for both the target and predicted thermochemical states. These two 
HRRs are required to be as close as possible, and their discrepancy is 
incorporated as an additional term in the loss function when optimizing
DNN1.

DNN2 has the same hidden layers and neurons as DNN1, with 
its output neurons adjusted from 𝑛𝑠 to 1. Testing confirms that this 
architecture accurately predicts the HRR. Due to the typically large 
values of HRR discrepancy, the trade-off hyperparameter 𝜂 is set to 
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Fig. 4. Computational domain, initial conditions, and boundary conditions for (a) planar turbulent premixed flame and (b) temporally-evolving jet flame.
10−10 to balance the different components of the loss function and 
ensure they are on the same order of magnitude.

Optimization is performed for 1500 epochs using the Adam opti-
mizer [54], with a batch size of 20000 and the initial learning rate 
of 10−3 gradually reduced to 10−6 using the cosine annealing learning 
rate scheduler [55]. The training process for the whole dataset requires 
about 1.5 h on one NVIDIA RTX 4090 GPU.

3. Validation configurations

Validating the pre-trained DNN using completely unseen high-
dimensional configurations is vital in checking the model’s generaliza-
tion capability. In this work, we adopt several DNS cases to avoid the 
uncertainties due to turbulent and combustion models. Cantera [56], 
pybind11 [57], and pytorch [58] have been integrated into Open-
FOAM [50] to enable a detailed transport model (mixture averaged 
transport model) and the call of user-defined neural networks within 
the turbulent reacting flow simulation framework, as recommended by 
the DeepFlame software [6].

3.1. Configuration of planar turbulent premixed flames

First, planar turbulent premixed flames are simulated using CVODE 
and DNN to validate model performance in intensive turbulence and 
across a wide range of equivalence ratios and mixing ratios for dual-
fuels.

Fig.  4(a) illustrates the computational domain, initial conditions, 
and boundary conditions for simulating planar premixed NH3 and 
NH3∕H2 turbulent flames. The computational domain is 𝐿𝑥 × 𝐿𝑦 =
2𝐿 × 𝐿 in the streamwise direction 𝑥 and transverse direction 𝑦, re-
spectively, where 𝐿 is 10 mm. The simulation is initialized with the 
corresponding laminar premixed flame solution and a homogeneous 
isotropic turbulence field based on a prescribed von-Karman Pao energy 
spectrum [59]. The inlet velocity is chosen to keep the whole flame 
structure statistically stationary in the computational domain. The 
inflow temperature and mass fraction boundary conditions are chosen 
as the corresponding unburnt state, and the outflow is non-reflecting 
(waveTransmissive in OpenFOAM). Other boundary conditions are pe-
riodic. The domain is discretized by a uniform grid of 600 × 300 for 
all the cases with a grid size 𝛥𝑥 of 33.3 μm, which is smaller than the 
Kolmogorov length scale 𝜂, as shown in Table  2.

Three cases with different turbulent intensities are simulated, de-
noted as case L, case M, and case H, respectively, where ‘‘L’’, ‘‘M’’ and 
‘‘H’’ refer to the level of turbulence intensity (low, medium, and high). 
The reactant is comprised of NH3∕air mixture with an equivalence ratio 
of 1.0 and a temperature of 800 K. Besides, 9 cases including three dif-
ferent equivalence ratios (0.5, 1.0, and 1.5) and three different mixing 
ratios of H2 (0, 0.05 and 0.30) are also validated with medium turbulent 
intensity, denoted as case M1 ∼ case M9. The simulation parameters of 
6 
these 11 DNS cases are listed in Table  2, where 𝑆𝐿 is the laminar flame 
speed, 𝛿𝐿 is the laminar flame thickness, 𝑢′ is the root-mean-square 
turbulent velocity fluctuation, and 𝑙𝑡 is the turbulence integral length 
scale. The turbulent Reynolds number (Re) is defined as 𝑅𝑒 = 𝑢′𝑙𝑡∕𝜈, 
and the Karlovitz number (Ka) is defined as 𝐾𝑎2 = ((𝑢′∕𝑆𝐿)3(𝛿𝐿∕𝑙𝑡)). 
The Kolmogorov length scale is defined by 𝜂 = 𝑙𝑡𝑅𝑒−3∕4.

3.2. Configuration of temporally-evolving jet flames

Next, a more complex configuration of temporally-evolving jet 
flames of premixed NH3 and NH3∕H2 is considered to examine model 
generalization capability in turbulent flames with strong shear flows.

As shown in Fig.  4(b), the computational domain is a square with 
a side length of 16 mm, and the central 1 mm along the 𝑦-axis is 
initialized as unburnt gas, while the surrounding region is set as burnt 
gas. The average velocities of the unburnt and burnt gases are 36 
m/s and −84  m/s, respectively. To promote instability and mixing 
in the boundary between burnt and unburnt gas, turbulent velocity 
fluctuations of 10  m/s are imposed on the unburnt gas using a 
prescribed von-Karman Pao energy spectrum [59] with a turbulence 
integral length scale of 1 mm. The boundary conditions are periodic 
in the streamwise direction (𝑥) and non-reflecting in the transverse 
direction (𝑦). The domain consists of 800 × 550 grid points. The grid is 
uniform in the 𝑥-direction and stretched at both ends in the 𝑦-direction. 
The minimum grid spacing used in the DNS grid is 20 μm in each 
direction, which is sufficient to reasonably resolve the smallest scales 
of the turbulent flow in the flame region.

Similarly, 9 cases are validated, including three different equiva-
lence ratios (0.5, 1.0, and 1.5) and three different mixing ratios of 
H2 (0, 0.05, and 0.30), and are denoted as case J1 ∼ case J9. The 
parameters of case J1 ∼ case J9 are the same as those of case M1 ∼
case M9, shown in Table  2. A similar configuration was also utilized 
by Satio et al. [28] to validate their DNN model for NH3 combustion. 
Their model considers only 7 species with maximum mass fractions 
above 0.01 in the training data (NH3,O2,H2,OH,H2O,N2, and NO). 
In contrast, DNN model in current work includes all species involved 
in detailed chemical kinetics. Additionally, Saito et al.’s validation 
involves a complex procedure to perform DNN model selection using an 
ODE solver, with the model applied only at temperatures above 1400 
K. Our approach, however, utilizes the same DNN model consistently 
for all cases.

4. Results and discussion

4.1. Key hyperparameter selection

Given adequate training data to mitigate overfitting, increasing the 
number of parameters in a neural network can enhance its perfor-
mance. However, for the purpose of accelerating combustion chemistry 
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Table 2
Parameters of the planar turbulent premixed flames.
 Case L M(M2) H M1 M3 M4 M5 M6 M7 M8 M9  
 𝜙 1.0 1.0 1.0 0.5 1.5 0.5 1.0 1.5 0.5 1.0 1.5  
 𝑋(H2) 0 0 0 0 0 0.05 0.05 0.05 0.3 0.3 0.3  
 𝑆𝐿 [m∕s] 0.56 0.56 0.56 0.21 0.41 0.24 0.62 0.46 0.54 1.2 0.85 
 𝛿𝐿 [mm] 0.9 0.9 0.9 1.67 1.43 1.5 0.83 1.32 0.78 0.51 0.85 
 𝑢′ [m∕s] 5 10 30 10 10 10 10 10 10 10 10  
 𝑙𝑡 [mm] 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0  
 𝑢′∕𝑆𝐿 8.9 17.9 53.6 48.6 24.6 41.9 16.1 22.0 18.4 8.3 11.8 
 𝑙𝑡∕𝛿𝐿 1.1 1.1 1.1 0.6 0.7 0.7 1.2 0.8 1.3 1.9 1.2  
 𝜂 [μm] 199 118 52 82 112 82 119 113 84 123 119  
 𝛥𝑥∕𝜂 0.17 0.28 0.64 0.41 0.3 0.41 0.28 0.3 0.39 0.27 0.28 
 𝑅𝑒 9 17 52 28 19 28 17 18 27 16 17  
 𝐾𝑎 25 72 373 437 146 332 59 118 70 17 37  
Fig. 5. NMAE of T, NH3, NO, OH, NH2, NH, N2H4, and HNO versus simulated time using the same DNN model (4 × 800) trained with datasets of different complexity 
(𝜉 = 0.001, 0.005, 0.01, 0.02, 0.05).
simulations, the parameter count must be carefully managed to main-
tain computational efficiency. This work aims to achieve several-fold 
acceleration on the same hardware by adapting the parameter count to 
the complexity of the data distribution.

To assess the impact of key hyperparameters that control data 
and model complexity on both prediction accuracy and computational 
efficiency, we analyze the error evolution curves for Case M, a NH3/air 
premixed flame with an equivalence ratio of 1.0. Model performance is 
quantified by the normalized mean absolute error (NMAE) across the 
computational domain, defined as 

 NMAE 𝑢,𝑡 =
∑𝑁

𝑘=1
|

|

|

𝑢𝑡𝑎𝑟𝑔𝑒𝑡𝑘 − 𝑢𝑝𝑟𝑒𝑑𝑘
|

|

|

∑𝑁
𝑘=1 𝑢

𝑡𝑎𝑟𝑔𝑒𝑡
𝑘

, (16)

where the subscript 𝑢 refers to any calculated field (𝑇 , 𝑝, or 𝑌𝑖), and 
𝑡 denotes the 𝑡th time step. 𝑢𝑡𝑎𝑟𝑔𝑒𝑡𝑘  and 𝑢𝑝𝑟𝑒𝑑𝑘  represent the targeted and 
predicted value at the 𝑘th cell in the computational domain, calculated 
using CFD code coupled with CVODE or DNN chemistry ODE solver. 𝑁
is the total grid number.

4.1.1. Data complexity
Randomization techniques are essential for enhancing model gen-

eralization, but they can increase data distribution complexity, making 
neural network fitting more challenging. In this work, we propose a 
parameter 𝜉 to control the spread of the data distribution continuously. 
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To evaluate the performance of a neural network model across training 
data of varying complexity, 𝜉 is set to 0.001, 0.005, 0.01, 0.02, or 0.05 
for comparison. We employ a DNN model with four hidden layers, each 
containing 800 neurons in this analysis.

Fig.  5 presents the NMAE for T, NH3, NO, OH, NH2, NH, N2H4, 
and HNO as a function of simulated time. These results compare the 
performance of the same DNN model (4 × 800) trained on datasets 
with varying complexities (𝜉 = 0.001, 0.005, 0.01, 0.02, 0.05) against 
the CVODE solver. The model demonstrates rapid performance im-
provement for moderate dataset complexities (𝜉 = 0.005 to 0.02), 
neither too complex (𝜉 = 0.05) nor too simple (𝜉 = 0.001). The NMAE 
of 𝑌OH decreased from 30% to 6% and the NMAE of 𝑌NO decreased 
from 15% to 3% compared with the worst case with highest dataset 
complexity. Additionally, the larger NMAE in OH compared to NO 
suggests better predictive performance for ammonia chemistry than for 
hydrogen chemistry. This observation aligns with the statistical results 
presented later (Figs.  10 and 11). To enhance the accuracy of OH 
predictions, future work could explore a component-weighted accuracy 
loss. Consequently, we select 𝜉 = 0.01 for generating training dataset in 
all subsequent calculations.

4.1.2. Model complexity
Ideally, we aim to develop a DNN model with as few parameters 

as possible to decrease computation time of chemistry evaluation. 
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Fig. 6. NMAE of T, NH3, NO, OH, NH2, NH, N2H4, and HNO versus simulated time using DNN models of different complexity (4 × 400,  4 × 800,  4 × 1200) trained with the 
same dataset (𝜉 = 0.01).
Table 3
The performance comparison between DNNs and CVODE (baseline) on architectures w/o GPU on case M using 8 processors. The results represent 
a step-wise average of the chemical and total times.
 Chemical (s) Total (s) Chemical 

speed up
Total 
speed up

 

 CVODE (baseline, 8 CPUs) 11.51 12.47 1.0 1.0  
 DNN (4 × 400, 8 CPUs) 0.85 1.76 13.5 7.1  
 DNN (4 × 800, 8 CPUs) 1.63 2.55 7.0 4.9  
 DNN (4 × 1200, 8 CPUs) 4.37 5.29 2.6 2.3  
 DNN (4 × 400, 8 CPUs + 1 GPU) 0.34 1.24 33.8 10.0  
 DNN (4 × 800, 8 CPUs + 1 GPU) 0.38 1.28 30.3 9.7  
 DNN (4 × 1200, 8 CPUs + 1 GPU) 0.44 1.35 26.1 9.2  
However, the data complexity is considerable since the sampling space 
encompasses various conditions (temperature, pressure, equivalence ra-
tios, and mixing ratios of dual-fuels). An interesting finding is that, after 
a certain threshold, further reducing the number of model parameters 
may lead to a significant drop in prediction accuracy. We evaluate 
models with four hidden layers, each containing 400, 800, and 1200 
neurons, respectively. The prediction accuracy and inference time for 
various configurations are shown in Fig.  6 and Table  3. As illustrated, 
models with 800 and 1200 neurons achieved similar accuracies, both 
significantly outperforming the model with 400 neurons. Too few 
neurons can lead to incomplete coverage of thermochemical space, 
resulting in significant deviations of the model in certain states.

Furthermore, as the number of neurons decreases from 1200 to 
800 to 400, the chemical and overall speed-up on the CPU increases 
linearly. On the GPU, there are fewer disparities in chemistry and 
overall speed-up. Based on the trade-off between speed-up and accu-
racy, we select a model architecture with four hidden layers, each 
with 800 neurons, as the optimized model. This model achieves a 
chemical calculation acceleration of 7 times and an overall simula-
tion acceleration of 5 times using a model with 4 hidden layers and 
800 neurons on the same CPU device. When a GPU is adopted, the 
chemical calculation acceleration increases to 30 times, and the overall 
simulation acceleration reaches 10 times.

Although direct integration of chemistry on GPUs achieves a
speedup comparable to DNN inference on GPUs [60–62], our method 
significantly accelerates combustion simulations on the same CPU 
device. This advantage is particularly beneficial for supercomputers 
where expensive GPUs are not available.
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4.2. Planar turbulent premixed flames

4.2.1. Comparisons of scalar distributions
Fig.  7 visualizes the instantaneous snapshots of heat release rate, 

temperature, and species mass fraction from CVODE, DNN, and abso-
lute error for Case M and H, with Ka of 72 and 373, respectively. Case 
M belongs to the thin reaction zone regime, where the smallest eddy 
cannot disrupt the inner layer. In contrast, Case H, with a Ka exceeding 
100, features small-scale vortices to disrupt the inner reaction zone. 
Here, the turbulent flame is expected to be in the distributed reaction 
zone [63]. In Case H, high turbulence intensity leads to unexpected gas 
composition, resulting in more accumulated errors in the DNN case. 
The absolute error for temperature and most radicals in Case H is an 
order of magnitude higher than in Case M at 1.0 ms (after 10,000 time 
steps using DNN-based calculations). For example, the temperature 
error is consistently less than 80 K in Case M, while in Case H, there are 
substantial pockets with errors reaching up to 750 K. This discrepancy 
is due to the flame position deviation and the rapid accumulation of 
errors under high turbulence intensity. However, the statistical results 
remain accurate for both Case M and Case H, as presented later (Figs. 
10 and 11).

Fig.  8 compares the instantaneous snapshots for different equiva-
lence ratios with 30% blending of hydrogen. The NO concentration 
accumulated in the rich flame is significantly lower than that of lean 
or stoichiometric flames. Meanwhile, the concentrations of NH, NH2, 
and N2H4 radicals in the reaction zone of the rich flame are notably 
higher compared to lean or stoichiometric flames. Additionally, the 
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Fig. 7. Comparisons of the distributions of heat release rate, temperature, and species mass fraction from CVODE, DNN, and absolute error for Case M and H (pure NH3 combustion 
with different turbulent intensities).
lean flames are more wrinkled and stretched than the rich flames, 
which could due to the thermal-diffusive instability caused by hydro-
gen. The DNN accurately reproduces these phenomena, demonstrating 
its ability to capture the ODE behaviors over a wide range of conditions 
with high fidelity. Overall, the DNN model effectively predicts scalar 
distributions across various equivalence ratios and H2 blendings, even 
under extreme turbulent conditions.

4.2.2. Turbulent flame speed comparison
In this article, we apply the evolution curve of turbulent flame 

speed 𝑆𝑇 , which is one of the most important global parameters for 
characterizing turbulent premixed flames, as a comprehensive metric 
for comparing CVODE and DNN, defined as 

𝑆𝑇 = 1
𝐴 ∫𝑉

𝑄̇
𝜌𝑐𝑝

(

𝑇𝑏 − 𝑇𝑢
)𝑑𝑉 , (17)

where 𝑄̇ is the heat release rate, 𝜌 is the density, 𝑐𝑝 is the specific heat 
capacity at constant pressure, 𝑇𝑏 and 𝑇𝑢 are the burnt and unburnt gas 
temperature respectively, and 𝐴 is the equivalent flame front area.

Fig.  9 compares various simulation parameters, including differ-
ent equivalence ratios, mixing ratios, time steps, and unburnt gas 
temperatures, to demonstrate the applicability of the trained DNN 
model.

Subfigures (a), (b), and (c) illustrate the DNN’s performance across 
different equivalence ratios and mixing ratios. The DNN accurately 
predicts both lean (a) and rich (c) combustion scenarios, capturing 
variations in turbulent flame speed from pure NH3 to mixtures with 
up to 30% H2. Despite the significant chemical property differences 
in dual-fuel mixtures, the DNN effectively handles a broad range of 
conditions.
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Subfigure (d) demonstrates the DNN’s accuracy under varying tur-
bulence intensities, characterized by Ka of 25, 72, and 373. The ran-
domized data distribution, based on a unity Lewis number manifold, 
closely resembles distributions of intense turbulence, enabling the DNN 
to predict chemical reactions accurately under high turbulence inten-
sity.

Subfigure (e) displays the DNN’s capability to handle variable time 
steps, accurately adapting to 1x, 5x, and 10x the original time step. 
This flexibility eliminates the need to train the model for each time 
step, making it suitable for multi-scale simulations, such as large eddy 
simulation (LES) and DNS, and for scenarios with variable time steps 
while maintaining a fixed Courant number.

Finally, Subfigure (f) highlights the DNN’s accuracy across different 
initial unburnt gas temperatures, 𝑇𝑢. Although the model was trained 
on data sampled from a base manifold at 𝑇𝑢 = 800K for 1D flames, the 
incorporation of randomized temperature and pressure in the training 
data enables the DNN to accurately predict turbulent flames with 𝑇𝑢
values of 700 K and 900 K.

4.2.3. Comparisons of statistical results
This subsection performs statistical analyses to examine the model 

performance further. Fig.  10 presents the profiles of the mean stream-
wise temperature 𝑇  and mass fractions 𝑌NH3

, 𝑌NO, 𝑌OH, 𝑌NH2
, 𝑌NH, 

𝑌N2H4
 and 𝑌HNO, for Case L, M, H, M7, M8, and M9. The curves of 

these parameters demonstrate good quantitative agreements between 
DNN and CVODE across low-to-high turbulence intensity, lean and rich 
combustion, and different fuel compositions.

To further compare the flame structure between CVODE-based cal-
culation and DNN-based calculation, Fig.  11 shows conditionally av-
eraged mass fractions 𝑌 , 𝑌 , 𝑌 , 𝑌 , 𝑌 , 𝑌  and 𝑌  at 
NH3 NO OH NH2 NH N2H4 HNO
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Fig. 8. Comparisons of the distributions of heat release rate, temperature, and species mass fraction from CVODE, DNN, and absolute error for Case M7, M8, and M9 (NH3∕H2
combustion with different equivalence ratios).
𝑡 = 1.0 ms for Case L, M, H, M7, M8, and M9. Conditionally averaged 
𝑌NH2

 and 𝑌NH reach their peaks at relatively high temperatures, while 
𝑌N2H4

 peaks at relatively low temperatures. This indicates that NH3
gradually decomposes into NH2, and then into NH, while the rate of 
the addition reactions of NH𝑖, such as NH + NH + M ⇄ N2H2 + M, 
and NH2 + NH2 + M ⇄ N2H4 + M, are enhanced with relatively low 
temperatures. All the conditional profiles given by the DNN agree 
well with the CVODE calculations. The only notable discrepancy is 
in the species OH at high temperatures in Cases M8 and M9, which 
feature high H2 blending. The accurate predictions for N-containing 
radicals by the neural network suggest superior prediction for NH
3

10 
chemistry compared to H2 chemistry. This may be due to insuffi-
cient radical concentration coverage for H2 chemistry in the dataset, 
highlighting the need for more balanced data distribution in future 
studies.

4.3. Temporally-evolving jet flames

4.3.1. Comparisons of scalar distributions
Fig.  12 illustrates the snapshot comparisons of pure NH3 (Case J2) 

and 30% H  blending (Case J8). In Case J8, both the heat release rate 
2



S. Wu et al. Combustion and Flame 278 (2025) 114218 
Fig. 9. Turbulent flame velocity of planar premixed NH3∕H2 turbulent flames versus simulated time (lines from CVODE, symbols from DNN). Subfigures (a), (b), and (c) show 
validations under various equivalence ratios 𝜙 and mixing ratios 𝑋(H2). Subfigure (d) shows validations for different turbulence intensities 𝑢′, subfigure (e) for different time steps 
𝛥𝑡, and subfigure (f) for different unburnt gas temperatures 𝑇𝑢.
Fig. 10. The mean profile of streamwise temperature 𝑇  and mass fractions 𝑌NH3
, 𝑌NO, 𝑌OH, 𝑌NH2

, 𝑌NH, 𝑌N2H4
 and 𝑌HNO, for Case L, M, H, M7, M8, and M9.
and temperature are significantly higher, demonstrating the enhanced 
reactivity due to H2 addition. The NO concentration also doubles, 
and the marked differences in N-containing radicals indicate distinct 
chemical reaction pathways.

After 0.1 ms, the mixing of unburnt and burnt gases intensifies, 
suggesting that the advection and diffusion of chemical species become 
more pronounced. Despite the intense mixing and broader gas com-
position, the accumulated error remains minimal, indicating that the 
effective randomization strategy has covered a sufficiently broad ther-
mochemical space. The DNN provides highly accurate predictions for 
key distributions such as heat release rate, temperature, NO, and vari-
ous intermediate radicals, demonstrating its ability to accurately simu-
late strong shearing turbulent flames across a wide range of operating 
conditions.
11 
4.3.2. Turbulent flame speed comparison
Fig.  13 compares turbulent flame velocity of temporally-evolving jet 

flames versus simulated time (lines from CVODE, symbols from DNN) 
across various equivalence ratios 𝜙 and mixing ratios 𝑋(H2). Unlike 
statistically steady flames, temporally-evolving jet flames capture the 
changes in flow and composition conditions as the observation window 
shifts from upstream to downstream along the actual jet flame. Each 
subplot illustrates the rapid increase in fuel consumption rate with 
higher H2 volume percentage, emphasizing the significantly different 
chemical properties of NH3 and H2. The temporal evolution of tur-
bulent flame velocity exhibits similar trends between DNN-based and 
CVODE-based calculations, indicating that the DNN model accurately 
captures these variations across a wide range of equivalence and mixing 
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Fig. 11. Conditionally averaged mass fractions 𝑌NH3
, 𝑌NO, 𝑌OH, 𝑌NH2

, 𝑌NH, 𝑌N2H4
 and 𝑌HNO at 𝑡 = 1.0 ms for Case L, M, H, M7, M8, and M9. Blue solid lines and red dashed lines 

represent conditionally averaged values calculated using CVODE and the DNN, respectively. Blue shaded regions and red dotted lines denote the mass fraction bounds in the 
temperature interval.
ratios. This consistency further demonstrates the DNN model’s broad 
adaptability in turbulent flames with strong shear flows.

4.3.3. Comparisons of statistical results
Similarly, the transverse mean profiles (Fig.  14) and conditionally 

averaged profiles (Fig.  15) are plotted for Case J1, J2, J3, J7, J8, and 
J9 at 𝑡 = 0.1 ms. The results indicate that the DNN model reproduces 
the overall flame structure with high fidelity.

For the transverse mean profiles (Fig.  14), despite significant differ-
ences in radical distributions across turbulent flames with varying fuel 
compositions and equivalence ratios, the DNN achieves good agreement 
in temperature and species profiles for all cases. In the conditionally 
averaged profiles (Fig.  15), slight deviations are observed only for 𝑌NH2

, 
𝑌NH, and 𝑌HNO in Case J1. Given that Case J1 is near the boundary in 
the training set (extremely lean, pure NH3), and that the mass fractions 
of these radicals are an order of magnitude lower compared to other 
cases, this level of prediction accuracy is satisfactory.

5. Conclusion and further scope

To address the high computational costs associated with using de-
tailed chemical kinetics in combustion simulations, we develop a DNN 
model with variable time steps to enhance the efficiency of combustion 
chemistry simulations for turbulent reacting flows. Using NH3∕H2 as 
an example of complex dual-fuels with significantly different chemical 
properties, we improved the ‘‘sampling-training’’ workflow based on 
previous HFRD method, which includes calculating the base manifold, 
performing randomization, and conducting training. Unity Lewis num-
ber laminar flames are chosen as the base manifold because turbulent 
diffusion overwhelms molecular diffusion under large turbulent intensi-
ties. To enhance randomization, we introduce a method to continuously 
control data complexity and a filtering criterion for precise coverage 
of the thermochemical space in turbulent flames. The model training 
process is carefully designed by adding mass fraction conservation and 
heat release rate constraints to the loss function.

We simulate planar turbulent premixed flames with high turbulence 
intensity and temporally-evolving jet flames with strong shear using 
both CVODE and the DNN model. Two key hyperparameters are op-
timized to balance data coverage and model complexity, highlighting 
the trade-off between data coverage and computational efficiency. 
12 
The optimized DNN accurately reproduces scalar distributions and 
statistical results, even for radicals, across a diverse range of unburnt 
temperatures, pressures, time steps, equivalence ratios, and mixing 
ratios. Our approach achieves a chemical calculation acceleration of 7 
times and an overall simulation acceleration of 5 times using a model 
with 4 hidden layers and 800 neurons on the same CPU device. When 
a GPU is adopted, the chemical calculation acceleration increases to 30 
times, and the overall simulation acceleration reaches 10 times.

The complexity of DNN models is constrained by the need to ac-
celerate combustion chemistry, especially when dealing with complex 
dual-fuels with significantly different chemical properties. Training 
a universal model for the entire thermochemical space with limited 
parameters remains challenging. Future research needs to explore more 
representative training state distributions, and develop more efficient 
model architectures and training processes.
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Fig. 12. Comparisons of the distributions of heat release rate, temperature, and species mass fraction from CVODE, DNN, and absolute error for Case J2 and J8 (NH3 and NH3∕H2
combustion with stoichiometric equivalent ratio).

Fig. 13. Turbulent flame velocity of temporally-evolving jet flames versus simulated time (lines from CVODE, symbols from DNN). Subfigures (a), (b), and (c) show validations 
under various equivalence ratios 𝜙 and mixing ratios 𝑋(H2).
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Fig. 14. The mean profile of transverse temperature 𝑇  and mass fractions 𝑌NH3
, 𝑌NO, 𝑌OH, 𝑌NH2

, 𝑌NH, 𝑌N2H4
 and 𝑌HNO at 𝑡 = 0.1 ms for Case J1, J2, J3, J7, J8, and J9.
Fig. 15. Conditionally averaged mass fractions 𝑌NH3
, 𝑌NO, 𝑌OH, 𝑌NH2

, 𝑌NH, 𝑌N2H4
 and 𝑌HNO at 𝑡 = 0.1 ms for Case J1, J2, J3, J7, J8, and J9. Blue solid lines and red dashed lines 

represent conditionally averaged values calculated using CVODE and the DNN, respectively. Blue shaded regions and red dotted lines denote the mass fraction bounds in the 
temperature interval.
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