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Abstract— Videos capture the evolution of continuous dynam-
ical systems over time in the form of discrete image sequences.
Recently, video generation models have been widely used in
robotic research. However, generating controllable videos from
image-text pairs is an important yet underexplored research
topic in both robotic and computer vision communities. This
paper introduces an innovative and elegant framework named
TiV-ODE, formulating this task as modeling the dynamical
system in a continuous space. Specifically, our framework
leverages the ability of Neural Ordinary Differential Equa-
tions (Neural ODEs) to model the complex dynamical system
depicted by videos as a nonlinear ordinary differential equation.
The resulting framework offers control over the generated
videos’ dynamics, content, and frame rate, a feature not
provided by previous methods. Experiments demonstrate the
ability of the proposed method to generate highly controllable
and visually consistent videos and its capability of modeling
dynamical systems. Overall, this work is a significant step
towards developing advanced controllable video generation
models that can handle complex and dynamic scenes.

I. INTRODUCTION

Controllable video generation from image-text pairs aims
to generate videos corresponding to given control signals,
which allows for precise manipulation of various aspects
of videos, such as appearance and motions. This level of
controlled video generation is crucial for a wide range
of applications, such as video editing, and custom video
generation. Moreover, controllable video generation models
have recently been used in edge-cutting robot research to
synthesize data for model training [1], [2], [3], or to function
as a robot planner [4], [5], [6]. However, compared to static
images, videos have an additional temporal dimension to
be modeled. The appearance and states of objects in the
video are tightly coupled with the temporal dimension — the
model must generate visually consistent content while pre-
dicting temporal changes based on motion cues to maintain
motion consistency. Previous methods focus on generating
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Fig. 1: An example of controllable video generation from a
static image and a text caption using our proposed TiV-ODE.
The underlying dynamical system is modeled using Neural
ODE. Our model is capable of generating highly controllable
and visually consistent video frames at any desired timesteps.

controllable videos from images [7], [8], [9], [10] or from
texts [11], [12]. However, Image-to-Video methods typically
have no control over the motions in the generated videos,
whereas Text-to-Video methods offer limited control over the
appearance of generated videos. Hence, to facilitate control
over both motion and appearance in video generation, it is
necessary to combine image and text signals.

Another vital limitation of previous controllable video
generation methods is the lack of modeling of the underlying
continuous dynamical system from videos. The dynamical
system refers to a closed system that governs changes of
the entire environment (e.g. the dynamics of objects). In the
predicted image sequences, the appearance and motion of
observed objects shall always be consistent with given con-
trol signals — consistency between the underlying dynamical
system and the generated videos. Prior methods typically
model the underlying dynamical system as a discrete function
of time, ignoring the fundamental difference between the
continuous time dimension and the discrete image dimension
as discussed in [13], [14]. Such approaches limit the ability to
generate videos with flexible frame rates and handle videos
with arbitrary frame rates. Moreover, in various applica-
tions, such as slow-motion video processing [15] or high-
speed camera video processing [16], the regular timestep
assumption does not hold. Therefore, a new controllable
video generation method is needed which should be capable
of generating highly controllable videos while correctly
modeling the underlying continuous dynamical system.

To address these limitations, we developed a frame-
work Text-image-to-Video Ordinary Differential Equa-
tion (TiV-ODE). Firstly, our proposed method leverages the



advantages of both Image-to-Video methods and Text-to-
Video methods since images and texts are two complemen-
tary signals, static images provide rich visual information,
while text captions describe the dynamic processes within
videos in human language. By combining image input and
text input, both the visual appearance and the physical
motions within the videos can be further constrained to allow
a higher level of control over the video content. Secondly,
stemming from the physical modeling of dynamical sys-
tems [17], [18], Neural ODE [19] is incorporated in our
proposed method to model the underlying continuous dynam-
ical systems as ordinary differential equations (ODEs). By
solving the ODE at arbitrary timestamps, our model is able
to generate videos with flexible frame rates efficiently (See
Figure[I). To the best of our knowledge, the proposed method
is a new approach to solving controllable video generation
problems. We summarize our contributions as follows:

e We proposed a novel video generation framework,
TiV-ODE, which is capable of generating highly control-
lable and visually consistent videos conditioned on a single
image and a text caption.

e Our proposed method is able to generate videos with
flexible frame rates by leveraging Neural ODE to model
the underlying continuous dynamical system from videos.

e We created a new dataset, the Synthetic Robot Pick-
and-Place dataset — video sequences depicting a robot
performing pick-and-place tasks with corresponding text
captions — for evaluating our method and demonstrating its
effectiveness. We also performed experiments on existing
datasets such as CATER and Moving MNIST and showed
improvements compared to previous works.

To the best of our knowledge, this is the first work that
approaches the problem of controllable video generation
from the dynamical system perspective, i.e., the system
modeled as an ODE evolves according to constraints set by
a given initial condition, resulting in a sequence of visual
observations which form the generated video.

II. RELATED WORKS

A. Controllable Video Generation

A synthetic video can be generated in a number of ways
using various conversion techniques. The controllable video
generation methods that are most pertinent to our work
include Image-to-Video and Text-to-Video methods.
Image-to-Video methods generate video sequences condi-
tioned by given images. However, as a static image provides
no motion clues, to facilitate video generation with editable
scene dynamics, these methods require additional input to
control the motions within the generated video, such as
sparse trajectories [7], [14], and semantic masks [8], [9].
Existing Image-to-Video methods can only achieve low-level
control of the generated videos, thus they are not suitable to
be used to generate videos with complex motions [13].
Text-to-Video methods aim at generating video sequences
from text captions. However, the appearance and motion

information in the text caption is highly ambiguous lead-
ing to unavoidable uncertainties in generated videos. Sync-
Draw [11] is the first framework proposed to solve Text-
to-Video tasks. Recently, GODIVA [12] was proposed to
generate open-domain videos from given text captions. Given
the ambiguous nature of the text, Text-to-Video methods can
only achieve a low level of control over the generated videos.
As a result, the appearance and motions within generated
videos are mostly determined by the training dataset.

There is limited research work focused on combin-
ing the advantage of both Image-to-Video methods and
Text-to-Video methods. To the best of our knowledge, the
work in [20] is the closest one to our work. The work
in [20] proposed a framework, MAGE, which generates
videos from images with text captions. A motion embedding
is used in MAGE [20] to memorize the motion patterns after
observing the whole video, while our method formulates
the underlying continuous dynamical system as an ordinary
differential equation (ODE) and approximates it using a
neural network [19]. Compared to MAGE, our method is
able to generate controllable videos with flexible frame rates,
which greatly widens its potential applications in robotics
research. A detailed comparison between our method and
the MAGE is presented in Section

B. Dynamical System Understanding from Videos

Modeling and understanding dynamical systems from
videos is important for video processing. Previous methods
typically model the underlying dynamical system using an
RNN-based structure [14], [21], [22], [23] or a transformer-
based structure [24] that can represent the temporal infor-
mation. Another energy-based Spatial-Temporal generative
model was proposed in [25], [26], learning the dynamic
patterns in video sequences by matching the synthesized
signals from the sampled Langevin dynamics to the observed
training signals. However, since these methods are mostly
Video-to-Video methods, which are affected by the dynamics
bias from the training data, they failed to generate videos
with editable dynamics.

C. Neural ODE

Neural Ordinary Differential Equations (Neural ODE:s,
NODEs) [19] interprets the forward pass of a ResNet [27]
as solving an ordinary differential equation. It is designed
to model the temporal evolution of any dynamical system.
Recent works [28], [29], [30] have shown the power of
Neural ODE for modeling time series. Augmented Neural
ODEs (ANODE:s) [19] was proposed to extend the original
Neural ODE by augmenting the latent space, which makes
it a universal approximator [31], [32]. The method in [33]
introduces the Neural ODE into video generation tasks to
model time-continuous dynamics within the videos over a
continuous latent space. Vid-ODE [13] further combines
Neural ODE with GAN [34] to improve the quality of
generated videos, however, Vid-ODE [13] relies on the input
video clip to estimate the latent dynamics, which makes the
generated videos hugely biased by the input video clips.
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Fig. 2: System structure of TiV-ODE. The continuous physical motions of objects are recorded as a set of discrete video
frames. The latent vectors of the video are assumed to follow an ODE trajectory that corresponds to the motions of
objects (See the blue and red blocks). Given the initial image and the text caption, the whole video sequence is generated
as follows: (1) the input image and text are encoded by the image encoder and text encoder respectively. (2) Together with
positional embeddings, the image embeddings and text embeddings are fused by a transformer to generate a Text-image
embedding. (3) The Text-image embedding is used as the initial condition of Neural ODE, then the Neural ODE is solved
at the desired timesteps using a numerical ODE solver to generate latent vectors at every timestep. (4) The generated latent
vectors are quantized by the codebook and decoded by the image decoder to generate video frames at every timestep. The
training objective of our model is to minimize the distance between each pair of data points at each desired timestep.

III. TIV-ODE FOR CONTROLLABLE VIDEO GENERATION

In this section, we first explain how we formulate the
problem of controllable video generation by learning the dy-
namical system using Neural ODE, followed by a discussion
on the general architecture of our proposed TiV-ODE. Then,
details of our TiV-ODE, including the VQ-VAE for image
generation, the text-image fusion module, and the Neural
ODE module, will be presented individually.

A. Problem Formulation

This paper targets the Text-image-to-Video task with mod-
eling of the underlying continuous dynamical system. Let
r; € X C RY be an image observation of the system
(defined in the image sample space X’) at time point ¢,
and s € S C RY be the text caption (defined in the text
sample space S). We aim to model the dynamical system
defined over the text-image domain (X x S) such that, given
a text caption s and an image observation xy as the initial
conditions, our model can generate the image observations x;
for any ¢ > 0. Unlike the previous method [20] which models
a dynamical process using a discrete state-transition, i.e.
2y = RNN(z4_1, s), we model the system as a continuous
vector field, (zg,s) — x(t), V¢ € (0,1), that is saying
we want to approximate a function &(t) = F'(xo, s,t),Vt €
(0,1). The training objective of our proposed method is to
approximate the continuous vector field by minimizing the
distance between each data point and its prediction, i.e. video
frame x; and the generated image ;.

B. Text-image-to-Video ODE

The overall architecture of the proposed method, TiV-
ODE, is illustrated in Figure 2] Our approach uses the

VQ-VAE [37] model for image generation. Given the initial
static image, xg, and the text caption, s, the input image xg
is encoded as a set of image embeddings by the VQ-VAE
encoder, while the text caption s is tokenized and encoded
into a set of text embeddings using BERT [38]. After that,
the image embeddings and text embeddings are aligned and
fused using a multi-modal transformer [39], [40]. Image em-
beddings are used as Query, while text embeddings are used
as Key and Value. The Text-image embeddings generated by
the transformer are then used as the initial condition of the
Neural ODE [19]. Afterward, using this initial condition, the
Neural ODE module learns the underlying dynamical system
behind the videos by approximating the continuous vector
field during the training phase. Hence, the latent vector for
any time point ¢ can be generated by solving the Neural ODE
at time ¢. The generated latent vector is then quantized by the
codebook and decoded by the VQ-VAE decoder to generate
a video frame x; at time ¢.

C. VO-VAE for Image Generation

The VQ-VAE-based encode-decoder structure [37] is used
in our proposed method for image generation. It is important
to note that before training our TiV-ODE, the VQ-VAE [37]
module is pre-trained separately on each dataset and then
fine-tuned to make the codebook more suitable for represent-
ing the video frames. A typical VQ-VAE model is composed
of an encoder &, a decoder D, and a discrete codebook Q €
REXN “which is basically a list of vectors {eg, e1,...,ex},
where K is the size of the codebook and N is the dimension
of the codebook. The encoder encodes input image x €
RIXWX3 into a latent vector z.(z) = &£(x) € Rhxwxe,



(a) Text caption: Pick the green block and place it on the gray bowl.

FYV VNNV VPV

(b) Text caption: The digit 6 is moving up then down and the digit 2 is moving up then down.

BEEOEEEEEEE

(c) Text caption: The cone is picked up and containing the snitch.

(d) Text caption: The large brown rubber cone is picked up and containing the medium purple rubber cone. the medium gray
metal cube is rotating.

Fig. 3: Samples from: (a)Robot pick-and-place dataset; (b)Moving MNIST dataset [11];

where h = H/n,w = W/n, n is the downsampling ratio of
the encoder, and c is the output dimension of the encoder.
Then the latent vector z.(x) is compared to all vectors in the
codebook, and the closest codebook vector (Euclidean dis-
tance) is input into the decoder to generate the reconstructed
image. Mathematically, this is written as & = D(z,(z)),
where z,(x) = ey, k = argmin,||z.(z) — €;||2. The training
objective of VQ-VAE is to minimize:

log(p(]z4(2))) + llsglze (@) — el3 + Bllze(@) — sglel 3. (1)

where sg[*] stands for the stop gradient operation. The first
term is the standard reconstruction loss. The second and
third terms are the codebook alignment loss to make the
selected codebook vector e, close to the latent vector z.(x)
by updating the codebook and encoder respectively, 3 is the
commit loss weight. The VQ-VAE in our method is trained
using the Expectation Maximization (EM) algorithm [41].

D. Text-Image Fusion Module

Inspired by the MLIM proposed in [40], a multi-modal
transformer [39] is used in our TiV-ODE to fuse the input
image and the text caption. Specifically, the image embedder
is the encoder of a pre-trained VQ-VAE. The 2D positional
embedding, similar to the one in [39], [42], is added to each
image token to keep the positional information. The text
caption is firstly tokenized by the BERT’s [38] tokenizer,
then, the text embeddings are obtained from BERT’s [38]
word embeddings. The positional embeddings for text tokens
come with the BERT’s [38] word embeddings. During the
multi-modal transformer operation, the image embeddings
are used as Query, while the text embeddings are used as
Key and Value.

E. Neural ODE for Modeling Dynamical System

Neural ODE is the essential part of our proposed
TiV-ODE, which models the underlying dynamical system in
the latent space as a continuous ordinary differential equa-
tion. To better represent the complex dynamical systems (e.g.
the trajectories of moving objects are overlapped with each
other), we adopted the augmented Neural ODE [43] instead
of the original one [19].

(¢, d)CATER datasets [35], [36].

Let & be the state of the dynamical system in the latent
space at an arbitrary time ¢, and let f be the ordinary differ-
ential equation that describes the dynamical system. The dif-
ferential function f is approximated by an estimator fp ~ f
parameterized by 6. A time-dependent convolutional network
is used in our method as the fy. Then, the dynamical system
modeled by the Neural ODE satisfies a Cauchy problem,
B.f:;(tt) = fo(&(t),t), where &, = Transformer(z.(0),s).
Thus, the state of the dynamical system can be obtained
at any timestep by invoking an ODE solver (e.g. Runge-
Kutta of Dormand-Prince [44] in our setting) to compute
a numerical approximation of the integral of the dynamical
system from the initial value:

&(t;) = ODESolver( fg, &, (to, ti))
N§0_|_/ f&(r),s,7)dr =¢&;. @

Then, the state of the dynamical system in latent space at
timestep t, £(¢), is quantized by the codebook Q and decoded
by the VQ-VAE decoder D to reconstruct the video frame
at timestep t, Z;.

IV. EXPERIMENTS

In this section, we first introduce the datasets used to
evaluate our method. Samples from each dataset are depicted
in Figure [3] Then we present the quantitive results on these
datasets and compare our method with MAGE [20]. After
that, we demonstrate the controllability of video genera-
tion (See Section [[V-C)) and the ability to model continuous
dynamical systems (See Section [[V-D)) of our method by pre-
senting videos generated with different image-text pairs, and
videos with different frame rates respectively. Finally, our
ablation studies validated the effectiveness of our model de-
signs. For a better understanding of the videos generated by
our model, we highly recommend checking the supplemen-
tary video accompanying this paper. Moreover, the training
and implementation details of our TiV-ODE are presented
in the support material. The video demo of our TiV-ODE is
available at https://youtu.be/2nQKKcgLZ28.
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Fig. 4: Results of controllable video generation on (a) robot moving MNIST dataset [11], (b) synthetic pick-and-place
dataset, and (¢) CATER datasets [35], [36]. The coordinate system used in CATER datasets is demonstrated in (c). It is
noteworthy that given the fixed initial image, our TiV-ODE can precisely manipulate different objects specified by different
text captions and generate videos with both visual consistency and motion consistency.

A. Datasets

Modified Moving MNIST dataset [11], [20]. Instead of the
original moving MNIST datasets [11], we used a modified
version introduced in [20]. Five motion patterns are included
in moving MNIST datasets, up then down, left then right,
down then up, right then left, and static. We use three types
of moving MNIST datasets to evaluate our method: single
digits, double digits, and triple digits.

CATER datasets [35], [36] were introduced in [36] based
on the CLEVR dataset [35]. There are four different motion
patterns in the dataset, “contain”, “slide”, “rotate”, and “pick-
place”. Each video in the dataset contains one or two random
actions. We follow the same settings used in [20] to generate
CATER-v1 dataset and CATER-v2 dataset. The CATER-
vl dataset contains scenes with 2 objects and one random
motion. The CATER-v2 dataset contains scenes with 3 to 6
objects with two random motions.

Synthetic Robot Pick-and-Place dataset. We propose the
synthetic robot pick-and-place dataset based on the simu-
lation environment used in [45], [46]. Each sample in this
dataset contains a video sequence depicting a robot pick-
and-place process and a text caption specifying the pick-up
and placement targets. We constructed this dataset and used
it to evaluate our model, showing that our method is capable
of generating videos depicting intricate robotics processes.
Our results highlight the potential of our model for future
robotics research.

B. Quantitive Results

Quantitative results of our TiV-ODE and comparisons
against MAGE on the datasets mentioned in Section [[V-A]
are presented in Table [} [l [} Both conventional pixel-
base metrics (SSIM [47]) and perceptual metrics (image-
level Fréchet inception distance (FID) [48], and learned
perceptual image patch similarity (LPIPS) [49]) are used as

TABLE I: Quantitive results on moving MNIST
datasets [11]. The quantitative results of MAGE are
taken from [20].
Datasets | Methods | SSIM 1T PSNR 1
Single moving | MAGE [20] | 097 33.89
MNIST | TiV-ODE (Ours) | 0.97 31.8
Double moving | MAGE [20] | 087 24.66
MNIST | TiV-ODE (Ours) | 0.90 23.95
Modified double | ~MAGE [20] | 0.85 23.24
moving MNIST 1oy ODE (Ours) | 085 2141

TABLE II: Quantitive results on CATER-v1 dataset and
CATER-v2 dataset [11]. The quantitative results of MAGE
are produced using the official implementation plus our
metrics implementation.

Inference

Datasets ‘ Methods ‘ SSIMt+ FID| LPIPS | speed 1
CATER-GEN-v1 |  MAGE[20] | 096 19.97 0.20 0.8s
‘ TiV-ODE (Ours) ‘ 0.96 11.98 0.12 0.06s
CATER.GEN+2 | MAGE[20] | 095 338 020 0.8
‘ TiV-ODE (Ours) ‘ 0.93 38.12 0.18 0.06s

TABLE III: Quantitive results on synthetic robot pick-and-
place dataset [11]. The quantitative results of MAGE are
produced using the official implementation plus our metrics
implementation.

Datasets ‘ ‘ SSIMt+ FID | LPIPS |
Robot Pick-and-Place |  MAGE [20] | 094 3369  0.I8
dataset | TiV-ODE (Ours) | 093 2748  0.12

Methods

the evaluation metrics. It is important to note that, to the best
of our knowledge, there exist no metrics for evaluating the
success rate of video generation w.r.t. image-text guidance.
The SSIM and PSNR results of MAGE are directly taken
from their paper while the FID and LPIPS results of MAGE
are reproduced by using the implementations from Torch-
Metrics [50]. The results show that our method outperforms
MAGE in terms of FID, LPIPS, while performing competi-
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Fig. 6: Generated videos with additionally created slow-motion effects which are generated by solving the Neural ODE
using a set of denser timesteps at the desired slow-motion segment. The slow-motion frames in the figure are highlighted
by the red blocks, which capture more detailed slow changes compared to the normal speed segments.

tively in terms of SSIM, PSNR. The lower performance on
PSNR is due to the approximation nature of the numerical
ODE solvers, which may lead to the residual shadows in the
generated video frames (See the digit 1 and 5 in Figure ] (a)).

C. Controllable Video Generation

In this section, we present the test results on the moving
MNIST dataset, synthetic robot pick-and-place dataset, and
CATER datasets. The generated video sequences are shown
in Figure ] For each dataset, we present video sequences
generated by using the same initial image but with different
text captions. These results demonstrate that our model
successfully learns the alignments between images and texts
as well as the underlying dynamical system, making it
able to generate videos with visual consistency and motion
consistency from different image-text pairs. Overall, these
results show that our method yields promising performance
in achieving highly controllable video generation with a
given static image and a text caption.

D. Video Generation with Different Frame Rates

In this section, we demonstrate the ability of our method to
model the underlying continuous dynamical system by show-
ing : (i) video generation with arbitrary frame rates; (ii) video
generation with manually added slow motion effect.

Video generation with arbitrary frame rates. Our model
is able to generate video sequences with arbitrary frame
rates by solving the learned Neural ODE with different time
intervals. Here we present the results from the synthetic robot
pick-and-place dataset. Three video sequences with 10, 15,
and 20 FPS are generated (See Figure [3).

Video generation with slow-motion effects. Our model is
able to generate video sequences with manually added slow-
motion effects that can be adjusted by using denser timesteps
at the desired slow-motion segment. Formally, this effect
is referred to as frame rate ramping. Here we present two
generated video sequences from the synthetic robot pick-and-
place dataset. One has slow motion at the beginning and the
other has it at the end (See Figure [6).

TABLE IV: TiV-ODE ablation study on CATER-v1 Dataset.

Method SSIMt FID| LPIPS]
TiV-ODE 0.96 11.98 0.12
- w irregular timesteps 0.96 13.71 0.13
- w/o ODE solver 0.90 31.56 0.28

These results show that our model is capable of modeling
the underlying continuous dynamical system from videos,
and with the learned continuous dynamical system, our
model is able to control the framerates of the generated
videos, which cannot be done by previous methods [20].

E. Ablation Study

We have conducted an ablation study on the CATER-v1
dataset to justify the necessity of the Neural ODE module
and the robustness of our method against irregular videos:
(i) Videos with irregular timesteps are used to train our
model. (if) The Neural ODE module is replaced with a step-
wise transition module, i.e. the transition model receives the
video frame at ¢ and predicts the frame at £ 4 1. Quantitative
results of the ablation study are presented in Table |V| These
results show that our method is robust to irregular videos,
which can not be done by previous methods [20], and also
demonstrate the effectiveness of the Neural ODE module in
our proposed TiV-ODE.

V. CONCLUSION

This paper presents a novel controllable video generation
method that generates highly controllable videos conditioned
on an image-text pair. Moreover, our framework models and
learns the underlying continuous dynamical system using
Neural ODE. To show the potential of our model in robotics
research, we created a new robot pick-and-place dataset for
evaluation, as well as using the existing moving MNIST
datasets and CATER datasets. Experiment results showed
that our method yields promising results in terms of con-
trollable video generation and dynamical system modeling.
This work moves a significant step towards solving the
challenging controllable video generation task and has the
potential for downstream applications in robotics.
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TABLE V: Comparison with SOTA methods.

Method PSNRT SSIM{T  LPIPS|
OCVT 31.08 0.88 0.13
Slot-LSTM 32.15 0.90 0.09
Slotformer 32.04 0.91 0.08
Ours

- w/o residual 39.96 0.99 0.01

- w residual 41.21 0.99 0.01
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