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Abstract. This research employs Agent-Based Modelling (ABM) to 
assess the impact of land pricing policies on urban agricultural land 
fragmentation, focusing on enhancing Urban Agricultural productivity. 
Targeted at policymakers, the study provides a predictive tool for 
evaluating and managing urban land use, emphasising how land 
fragmentation influences agricultural productivity within urban 
settings. By simulating different land pricing strategies in Manchester 
through 2042, it illustrates the potential for tailored policy interventions 
to effectively manage land fragmentation. The study specifically 
compares two policy scenarios: one advocating for price increases in 
low land price areas in the north, and another enforcing price reductions 
in high land price areas in the south. Findings suggest that price increase 
policies may be more effective than price reduction policies in reducing 
agricultural land fragmentation. This methodological approach offers 
actionable insights for developing robust AU policies and highlights the 
adaptability of the model for application in various urban contexts 
globally, underlining the need for precise land management strategies 
to foster successful urban agriculture amidst complex urbanisation 
challenges 
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1. Introduction 
This study recognises agricultural productivity as a key indicator of Agricultural 
Urbanism (De la Salle & Holland, 2010) success. It investigates the strategic 
management of land fragmentation to optimise urban sustainability and enhance 
agricultural productivity. Introduced by Janine de la Salle and Mark Holland in 2010, 
AU promotes the integration of agricultural practices into urban planning to foster 
sustainable land use, addressing the multifaceted challenges exacerbated by expanding 
capitalism and its associated metabolic rift (Marx, K., 1894). This concept, which 
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builds on Marx’s analysis, underscores the deepening disconnection between human 
societies and natural processes, now manifesting as various aggravated social issues 
(Salle & Holland, 2010; McClintock, 2009). 

McClintock (2009) argues that AU can significantly mitigate the adverse effects of 
the metabolic rift, presenting a viable approach to contemporary urban and ecological 
challenges by reintegrating agriculture into urban environments. However, the success 
of AU critically depends on effectively managing land fragmentation, which directly 
impacts agricultural productivity. Studies indicate a strong inverse relationship 
between land fragmentation (LF) and Agricultural productivity (AP) under the context 
of AU, suggesting that more fragmented landscapes substantially reduce agricultural 
productivity (Looga et al. 2018). Consequently, a precise understanding and 
management of land fragmentation are essential for maximising AP. 

AU, as a complex urban system (Batty, 2005), involves numerous stakeholders—
each with distinct interests—and their interactions significantly shape the urban 
agricultural landscape. This complexity, characteristic of systems where 'the behaviour 
of the whole can be quite different from the behaviour of its parts,' is aptly captured by 
Agent-Based Modelling (ABM) (Batty, 2005), which excels at simulating the 
interactions of diverse agents within an urban context (Holland, 2014). In AU, ABM 
facilitates detailed simulations of various entities, including local governments, 
commercial developers, and agricultural landscapes, all interacting within a shared 
urban environment. 

ABM's utility in this study is demonstrated by its ability to model individual 
decisions and their collective impact on urban dynamics, crucial for addressing AU 
challenges. ABM simulates these interactions to offer detailed insights into how urban 
planning and land use policies affect agricultural productivity and sustainability. It also 
allows for scenario testing, providing a dynamic perspective on potential land 
management changes. Moreover, ABM facilitates "what-if" explorations in complex 
urban settings, essential for crafting effective urban agricultural strategies and 
evidenced by studies showcasing its policy analysis capabilities. 

Thus, ABM is chosen not merely as a technical tool but as a strategic approach, 
informed by theoretical frameworks that recognise the interconnectedness and 
interdependence of urban systems. This method ensures that simulations reflect the 
real-world complexities of urban agriculture, providing policymakers with realistic, 
actionable insights that surpass the capabilities of traditional static models. 

Through ABM, this research will simulate various scenarios of urban land-use 
changes in Manchester up to 2042, analysing how different urban development and 
land pricing policies might influence the city’s agricultural landscape. By leveraging 
ABM’s capabilities, this study aims to provide new insights that traditional methods 
often overlook, thereby contributing to more effective and sustainable AU policies. The 
flexibility of the model allows it to be use in other region. 

2. Methodology 
In this study, agent-based modelling (ABM) is used to simulate urban agricultural land 
use development in Manchester. Agents, representing land developers, navigate a 
digitally rendered landscape to select and develop plots. The process includes stages of 
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plot selection, evaluation, and competitive development, reflecting real-world urban 
planning dynamics. Agents are divided into five groups, each with unique 
characteristics, moving through stages to assess and choose development sites. 
Competing agents at desirable plots engage in a mechanism to determine the winner. 
This approach demonstrates how ABM helps policymakers assess the impact of urban 
pricing strategies on LF and AP, as depicted in flowcharts Figure1and Figure 2. 

 
Figure 1. Flowchart of the model in the searching stage. (by author). 

 
Figure 2. Flowchart of the model in the developing stage (by author). 
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2.1 CRITERIA FOR TARGET LOCATION SELECTION AND ADAPTIONS 
Prior studies have highlighted various criteria used by agents to select development 
targets. Influential research in this domain (Matthews et al., 2007; Parker et al., 2003) 
has identified factors such as property price, demographic characteristics, and 
accessibility, which typically influence less than 30% of development decisions 
(Benenson & Torrens, 2004). These insights point to the limitations of traditional 
modelling approaches that fail to account for the interdependencies among decision-
making factors. 

To address these limitations, our model integrates three critical criteria: 
attractiveness, accessibility, and land value, customised to Manchester’s urban 
landscape. This approach, based on relevant research: Agent-based modelling of urban 
land-use development, case study: Simulating future scenarios of Qazvin city, provides 
a solid framework for simulating urban land use and understanding complex urban 
dynamics (Hosseinali, Alesheikh, & Nourian, 2013). The decision-making framework 
for agents considers the unique spatial dynamics of the city, utilising GIS data to create 
a realistic simulation environment. This method allows for a nuanced understanding of 
how different urban zones attract various types of development based on their inherent 
characteristics, and each agent should assess whether to develop the undeveloped area 
based on these interdependency criteria. 

2.2 AGENT CLASSIFICATION AND BEHAVIOUR 
In refining our Agent-Based Model (ABM) for simulating urban land use devel-
opment, accurately classifying agents is crucial to capture the diversity and com-
plexity of developer interests within Manchester’s urban landscape. Drawing on 
established methodologies, notably from Hosseinali, Alesheikh, & Nourian 
(2013) and Loibl and Toetzer, our model divides agents into five distinct groups. 
Each group represents specific economic statuses, developmental goals, and op-
erational strategies. 

● Young Moderate-Income Seekers: Seek affordably priced plots with good access to 
amenities and transportation. 

● High-Income Developers: Aim for high-value land in desirable locations that 
balance cost with potential for future appreciation. 

● Affluent Lifestyle Developers: Prefer locations with exceptional attractiveness for 
luxury residences or leisure developments. 

● Low-Income Individuals: Focus on the least expensive options available, often in 
less sought-after locations. 

● Balanced Income Developers: Evaluate land based on an equal consideration of 
price, accessibility, and attractiveness, aiming for plots that offer a comprehensive 
blend of these factors. 
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2.3 DISTRIBUTION OF AGENTS IN CELLS, MOVEMENT PATTERNS, 
SCANNING COVERAGE 
After defining agent preferences for cell selection, the next step involves setting their 
distribution within cells, movement patterns, and scanning range. 

Agents start on the map with randomised initial positions and then move based on 
their preferences. Upon entering the environment, they evaluate eight cells around their 
current location, considering price, traffic, and attractiveness. If scores are equal, agents 
make random selections. During cell scanning, agents record selected and 
neighbouring unselected cells, choosing the one with the highest value for 
development. If multiple agents compete for the same cell, they move to the 
competition phase. 

2.4 COMPETITION 
If multiple agents choose the same cell, they compete, and the agent to develop it is 
determined by their competitiveness score, here is the formula, where competitiveness 
score represented as S: 𝑆 ൌ 𝑊்௬௣௘ ൈ 𝑆்௬௣௘ ൅𝑊ி ൈ 𝐹                                                                                    (1) 𝑆்௬௣௘ is an agent's assigned score, and 𝐹 represents the frustration value quantified 
by units lost by agents failing to compete. 𝑊௧௬௣௘ is the weight score for different land 
types, and 𝑊ி represents the weight for frustration. 

Initially, all agents have zero frustration. As they move, 1 is added to frustration for 
each lost competition. Competitiveness depends on an agent's weight score and 
competition failures. 

3. Study Area 
The study area, situated in the heart of Greater Manchester, spans 35 kilometres in both 
length and width. Comprising 122,500 units of 100m x 100m, this urban planning 
challenge focuses on rationalising agricultural land allocation within the city's central 
area, as depicted in Figure 3. 

Figure 3. The study area 
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3.1. DATA PREPARATION AND CRITERIA MAPPING 
The study utilised three essential criterion maps—land value, attractiveness, and 
accessibility—developed using GIS and sourced from OpenStreetMap to capture 
various characteristics across Manchester. Each map was normalised to have 
values between 0 and 1 to ensure uniformity as shown in Figure 4: 

● Land Value Map: Assesses economic viability using land prices, development 
potential, topography, and soil quality. 

● Accessibility Map: Measures connectivity by calculating the shortest travel times to 
urban centres. 

● Attractiveness Map: Enhances location desirability with environmental features and 
scenic views. 

The area was divided into several districts, each analysed for development potential 
based on historical growth from 2005 to 2022. This segmentation helps simulate future 
urban development scenarios. ArcGIS pro 3.0 (Esri 2022) and the NetLogo GIS 
extension (Wilensky, 2009) were pivotal in processing these maps facilitated spatial 
data processing, providing a realistic setting for our agent-based modelling. 

Figure 4. Maps of accessibility (left), attractiveness (middle), and land price(right) 

3.2. SETTING PARAMETERS 
To set the values of the parameters, settings were adopted from the reference article, 
'Agent-based modelling of urban land-use development: a case study simulating future 
scenarios in Qazvin city,' with adjustments made based on the specific conditions of 
Manchester. The reliability of these adjustments is determined by comparing data from 
different years and calculating the kappa coefficient. 

The referenced research identified key model parameters reflecting dynamics such 
as land price, accessibility, and attractiveness, which were initially set based on expert 
opinions and empirical data. While these parameters were initially applied to Qazvin, 
Iran, their methodology and settings have universal applicability and thus were adapted 
for use in Manchester. This adaptation involved adjustments and validations to ensure 
the parameters accurately reflect Manchester’s urban development trends and policy 
impacts. 
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According to the reference, values of 9 and 10 were determined for 𝑊௧௬௣௘  and 𝑊ி௥௨௦௧௥௔௧௜௢௡.The number of  agents for each type should also be determined. For the 
289ha study area,  the number of agents were determined as below:agent1 (90), agent2 
(70), agent3 (10), agent4 (20), and agent5 (10). The agents can develop 1 hectare of 
land per year. The search area and development probability are initially set at 50%, 
70%, and 90%. After comparing the kappa coefficient, the most stable results are 
obtained when each agent develops one-tenth of the scanned land cells with a 70% 
search area. To verify the reliability of the parameters, data for the year 2017 were 
entered into the model during calibration. Next, the results of the simulation conducted 
using the model were compared with data for the year 2020. We computed the Kappa 
statistic based on the calibrated model. The value of Kappa was 0.77, whichmeans that 
there is a good agreement between the results from themodel and the observed data.The 
calibration of the model utilised these parameters alongside those detailed in Table 1 
(Table 1). 

Table. 1. Parameters of the model 

 
Data up to 2022 of the study area has been obtained and utilised as the baseline for 
near-term analysis. Following the calibration of model parameters, the 2022 data was 
used to forecast Manchester's land use into 2042 and to determine the distribution of 
agent numbers and types, as illustrated in Figure 5 

This result was first retained, followed by defining the impact of different policy 
measures for the model to explore how the future distribution of agricultural land in 
Manchester would be affected by the policy. 

Figure 5. Distribution of the number and type of agents projected for 2042 
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4. Definition of policy scenarios 
This model forecasts future changes and assesses the impacts of policy interventions 
on agricultural land distribution in Manchester using 2022 data (ArcGIS) as a baseline. 
Two scenarios are examined, extending up to the year 2042: 

● Increase land prices Scenario: Increases land prices in Manchester's northern low-
price areas to stimulate development and potentially concentrate agricultural 
activities. 

● Reduces land prices Scenario: Reduces land prices in the southern high-price areas 
to discourage dense development and promote balanced urban growth. 

Each scenario is simulated using the ArcGIS (3.0), providing a dynamic visualisation 
of land price adjustments and their implications for urban and agricultural planning, as 
depicted in Figure 6. These simulations help us understand how strategic adjustments 
in land pricing can direct and shape the future urban landscape, offering valuable 
insights for policy formulation and urban planning. 

Figure 6. Map of land prices after the implementation of the price increase policy(left) and Map of 
land prices after the implementation of the price reduction policy(right) 

 

5. Results and Discussion 
The distribution of the number and type of agents under 2 different policy: price 
increase policy and price reduction policy is shown in the Table 3: 

Table. 3. The distribution of the number and type of agents under the different policy for 2042 
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5.1 ANALYSIS OF LAND FRAGMENTATION 
To evaluate the LF of developed land in our simulations, we introduced the Schmook 
index（Schmook ,1976)： Kୱ = ∑ ୟ౟౤౟సభ୅                                                                                                                 (2) 

The Schmook index, represented as 𝐾௦, quantifies the fragmentation of land 
holdings. It is calculated using the area 𝑎௜ of the 𝑖-th parcel and the area 𝐴 of the 
convex hull that encloses all parcels of a single land holding. This index pro-
vides a measure of the fragmentation of parcels within the defined area. 

A higher index value indicates a greater scattering of land fragments across the 
landscape, highlighting increased LF. 

Following the methodology outlined by Looga et al. (2015), we calculated the 
Schmook index for each scenario run in our ABM to determine the effectiveness of 
different land pricing policies on reducing LF. When price increase policy be applied, 
the Schmook index is 30, while price reduction policy be applied the Schmock index 
is 70. Which indicate that comparing to the price reduction policy, when price increase 
policy be applied may reduce the LF in Manchester.  

The model results clearly show that different land price policies have a significant 
impact. Under a price increase policy, there are more developers with low bids and 
fewer with high bids, resulting in reduced LF. Conversely, a price reduction policy 
leads to fewer low-bid developers, more high-bid developers, and increased LF. 
Adjusting land prices can be an effective way to manage LF and promote AU. 

Through ABM simulations, it has been discovered that different land pricing 
policies do indeed impact the LF. Policies aimed at raising land prices in low-value 
northern areas and lowering land prices in high-value southern areas have shown 
significant effects. These policies influence the distribution of developers, encouraging 
lower bids in areas experiencing price increases and higher bids in areas with declining 
prices. The ABM provides a dynamic perspective on how to effectively implement 
these strategies. 

This finding implies that policymakers possess a potent tool for regulating and 
controlling the LF Such control is crucial for the practical implementation of AU. 

5.2. LIMITATION 
While the ABM offers significant insights for urban planning, it faces challenges 
related to the precision and consistency of data. Enhancing its utility requires 
standardising data collection methods and integrating a broader spectrum of variables, 
such as socio-economic and environmental factors. This will more effectively capture 
the complexities of urban dynamics and refine the ABM's predictive capabilities, 
making it a more reliable tool for urban policymakers. 

6. Conclusion 
In summary, this study has employed the ABM to explore the influence of various land 
pricing policies on LF in Manchester. The simulations provide the following guidelines  
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for enhancing policy effectiveness: 
●  Land pricing policies have a considerable influence on urban agricultural land 

dispersion. 

●  Price increase policies appear more effective than price reduction policy in reducing 
LF, potentially aiding in the implementation of more successful agricultural 
urbanism strategies.  

While these findings are based on idealistic simulations, they illustrate the ABM's 
utility as an insightful tool for urban policymakers. The model offers specific insights 
into how diverse factors and policies might influence agricultural land distribution, 
aiding in the development of refined AU policies to reduce LF and therefore enhance 
AP, This approach confirms the ABM's potential applicability in various urban 
contexts, From the results of the experiment, it seems that the implementation of a price 
increase strategy in Manchester helps to reduce LF more than a price decrease strategy, 
providing a strategic tool for crafting policies that address the complexities of urban 
agriculture and land management. 
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