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Input-Output Constrained Adaptive Cruise Control
Panagiotis S. Trakas , Valerio Modugno , Dimitrios Kanoulas and Charalampos P. Bechlioulis

Abstract—In this paper, we introduce an adaptive cruise
control (ACC) scheme that ensures collision avoidance by enforc-
ing amplitude-and-rate constraints on the control input, while
dynamically adapting output performance specifications. The
proposed control strategy leverages the adaptive performance
control (APC) methodology to handle asymmetrical input con-
straints, providing robust performance under diverse driving
conditions. By incorporating multiple constraints into a unified
funnel-based approach, the controller eliminates the need for
complex optimization techniques, thereby maintaining low com-
putational complexity. A rigorous theoretical analysis is provided,
demonstrating the boundedness of all closed-loop signals and
the overall feasibility of the control design. Comprehensive and
comparative simulations highlight the ability of the proposed
scheme to maintain a safe inter-vehicular distance, achieve
accurate velocity tracking when state constraints allow and strict
adherence to input limitations, resulting in improved passenger
comfort. Finally, experimental validation using mobile robots
confirms the effectiveness of the proposed ACC scheme in real-
world conditions.

Index Terms—Cruise control, adaptive performance control,
input constraints, autonomous driving

I. INTRODUCTION

ADAPTIVE Cruise Control (ACC) is an Advanced Driver-
Assistance System (ADAS) [1] that automatically adjusts

the speed of a vehicle, to maintain a safe following distance
from the vehicle ahead. Unlike traditional cruise control,
which maintains a constant speed, ACC uses sensors, such
as cameras and radars, to monitor the distance and relative
speed of preceding vehicles. By continuously processing this
data, the ACC unit can dynamically adjust the vehicle’s speed,
decelerating when the leading vehicle slows down and accel-
erating when the road clears, without driver intervention en-
suring compliance with state constraints. Thenceforward, state
constraints within the control scheme guarantee a minimum
following distance from the lead vehicle, imposing collision-
free cruising.
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ACC represents a significant step toward fully autonomous
driving, as it automates a crucial aspect of vehicle operation,
enhancing both safety and convenience. However, traditional
ACC systems often face challenges in complex, real-world
environments, and factors like sensor inaccuracies, actuator
constraints, and rapidly changing traffic conditions can limit
their effectiveness. These systems should balance the need to
maintain a safe following distance while providing a smooth
and efficient driving experience, as well as ensuring low
computational complexity to facilitate real-time operation.

In the realm of traffic flow improvement, vehicle-following
automation has been shown to offer substantial benefits over
human drivers. The authors in [2], proposed a PID control law
for automatic vehicle following, which ensures string stability,
through a constant time headway rule, resulting in smoother
traffic flow by mitigating the delays and errors inherent in
human driving. In [3] the authors developed a PID controller
that reduces the transient error and improves robustness. More-
over, the introduction of Cooperative Adaptive Cruise Control
(CACC), which allows vehicles to communicate wirelessly
with each other, has opened new avenues for traffic flow
optimization. The work in [4] explored the impact of CACC on
highway merging and stability, demonstrating improvements in
traffic flow efficiency. The authors in [5] highlighted the need
for more robust ACC algorithms that can be implemented in
dynamic driving environments. The role of spacing policies
in ACC has also garnered attention. In [6] various spacing
policies were evaluated, concluding that a nonlinear spacing
policy could offer superior traffic flow stability and capacity
compared to the conventional time-gap controller. This insight
reinforces the importance of carefully designed spacing poli-
cies to ensure both individual vehicle performance and broader
traffic stability.

In terms of integrating collision avoidance and perfor-
mance, advanced control techniques have been applied to
ACC systems. A notable method that unifies Control Barrier
Functions (CBFs) and Control Lyapunov Functions (CLFs)
through quadratic programming was introduced in [7], [8].
This approach balances collision avoidance, represented by
CBFs, with performance, represented by CLFs, while consid-
ering actuator limitations. The resulted scheme ensures that
ACC systems can maintain desired speeds and safe following
distances, while also adhering to acceleration and braking
force constraints. Recently, the authors in [9] introduced the
funnel cruise controller (FCC), a promising ACC approach en-
suring that a safe following distance to the lead vehicle is never
violated. While theoretically sound, the FCC does not account
for practical input limitations, such as the force constraints
imposed by the vehicle’s engine, which can result in internal
blow-up of the controller, leading to unbounded closed-loop
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signals in real-world applications. Inspired by the FCC and
building on our previous work on the adaptive performance
control (APC) [10], [11], in this paper we aim at addressing
the limitations of current ACC schemes by introducing a novel
robust framework that rigorously incorporates input, output,
and state (collision avoidance) constraints into the control
strategy. The proposed approach guarantees adherence to state
requirements, (i.e., maintaining a minimum following dis-
tance) and enforces hard input constraints, including maximum
acceleration and jerk limits. Simultaneously, it dynamically
adjusts the output performance specifications based on real-
time input condition. By employing the APC technique, the
proposed ACC system adapts to actuator limitations and sensor
inaccuracies, ensuring robust performance across a wide range
of driving scenarios. The key contributions of this work
include:

• A novel ACC framework that guarantees state constraints
and adaptive output performance by enforcing both am-
plitude and rate limitations on the control input, con-
straining both the vehicle’s acceleration and jerk, unlike
[9].

• A unified APC strategy that, unlike [10], [11], accom-
modates asymmetric saturation limits and performance
boundaries relaxation.

• A robust control approach that integrates multiple con-
straints into a single funnel, eliminating the need for
knowledge of model parameters or exploitation of ap-
proximation techniques.

The remainder of this paper is organized as follows. Section II
formulates the multi-constrained control problem and presents
some preliminaries on APC. In Section III-A, we design the
input amplitude constrained ACC scheme, which integrates
input-output and state constraints. Section III-B extends the
design of Section III-A, to incorporate both amplitude and
rate constraints. In Section IV, we present comprehensive
and comparative simulation results, while Section V provides
experimental validation using mobile robots to demonstrate
the practical effectiveness of the proposed ACC framework.
Finally, Section VI concludes the paper.

II. PROBLEM STATEMENT AND PRELIMINARIES

Ground vehicles are composed of several key components,
including the engine, transmission, wheels, brakes, etc. Al-
though modeling the entire system can be highly complex, the
model required for designing a cruise control system can be
considerably simplified, as highlighted in [12]. The dynamics
of the vehicle’s motion is described by the following model:

ẋ = v

mv̇ = fd(t, v) + u
(1)

where m (kg) is the total mass of the vehicle and x, v
denote the position and velocity of the vehicle, respectively.
Moreover, u (N) is the control input, representing the engine
or braking force and fd(t, v) is expressed as:

fd(t, v) = −mgCrsgn(v)−
1

2
ϱ(t)CdAv

2 −mg sin (θ(t))

where g = 9.81 (m/s)2 is the gravitational acceleration,
A (m2) is the frontal area of the vehicle, and Cr, Cd are
the rolling friction and aerodynamic drag coefficients, respec-
tively. Additionally, ϱ(t) (kg/m3) denotes the time-varying but
bounded air density, while θ(t) ∈ [−θ̄, θ̄] (rad) represents the
road slope, with θ̄ ∈< π

2 . In this work, we focus on a scenario
where a vehicle is following another, with xp(t) and vp(t)
representing the position and velocity of the preceding vehicle,
respectively.

A. Control Objective

Let vref(t) denote a smooth reference velocity, with un-
known but bounded time derivative. The objective of this
work is to design a state-feedback control scheme ensuring
that the system (1) tracks the reference velocity vref(t), while
strictly adhering to specific state and operational constraints.
In particular, the proposed control scheme should guarantee
that the closed-loop system satisfies the following constraints
for all t ≥ 0:

1) State constraints (SC): The inter-vehicular distance must
satisfy the collision avoidance constraint:

d(t) := xp(t)− x(t) > δ (SC)

with δ representing a minimum safe distance when the
vehicle is stationary.

2) Amplitude and rate input constraints (ARIC): A
dynamic control law is formulated to satisfy both the
amplitude and rate of change constraints on the control
input:

¯
u = −cdmg ≤u(t) ≤ camg = ū (AC)

¯
r ≤u̇(t) ≤ r̄ (RC)

where
¯
u ∈ R<0 and ū ∈ R>0 denote the maximum

allowable deceleration and acceleration forces, respec-
tively. The parameters cd and ca represent user-defined
factors of g, which can be adjusted based on the vehicle’s
specifications. Typically, a cruising experience involves
limiting acceleration and deceleration forces to a range
between −0.8g and 0.5g. Furthermore,

¯
r ∈ R<0 and

r̄ ∈ R>0 are constants that define the maximum allowable
rate of change of the control input u(t), delimiting the
jerk in the vehicle’s motion.

3) Output performance constraints (OPC): The output
tracking error e(t), to be formally defined later, is re-
quired to satisfy:

ρa(t) < e(t) < ρd(t) (OPC)

where ρa(t) and ρd(t) are performance functions (PFs)
that will be designed to dynamically adjust the soft
constraints (OPC) when the hard constraints (AC),(RC)
tend to be violated.

The performance specifications (OPC) ensure that the output
tracking error is as small as possible, while maintaining
compliance with the hard state (SC) and input (AC), (RC)
constraints. To address the control problem outlined, we pose
the following working assumptions:
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Assumption 1. The relative position x(t)−xp(t) between the
controlled vehicle and the leading vehicle is assumed to be
measurable using the vehicle’s onboard sensors.

Assumption 2. The velocity of the leading vehicle, vp(t) is
unknown but bounded.

Assumption 3. The parameters in the system dynamics (1)
are unknown. However, the total mass m of the vehicle and
an upper bound on the absolute value of the road slope θ̄ < π

2
are assumed to be known.

Remark 1. In scenarios where input constraints are imposed,
(i.e., both acceleration and jerk limits are applied to the
system) it is necessary to assume knowledge of the nominal
value for the mass of the vehicle (including passengers).
The total mass can be estimated using the system’s onboard
sensors combined with a sensor fusion method, as proposed
in [13]. The mass value is used to calculate the maximum
accelerating and braking forces, defined as ū = camg and

¯
u = −cdmg, respectively. Furthermore, while this work does
not rely on detailed information about the system parameters,
it is important to note that the only term in fd(·) that
can contribute to vehicle acceleration is the gravitational
component mg sin(θ(t)) when θ ∈ [−θ̄, 0), (i.e., downhill
driving). Given the hard constraints on both position and
input, it is practical to assume that an absolute upper bound θ̄
on the road slope is known. This assumption facilitates a less
conservative selection of the parameters cd and ca, as will be
discussed in Section III-A1.

B. Preliminaries on Adaptive Performance Control
APC is a control framework presented in [10] as an exten-

sion of prescribed performance control (PPC) [14], to ensure
that a system adheres to output performance specifications
despite uncertainties and input constraints. A key attribute of
PPC-based approaches, is the normalized tracking error, which
quantifies the deviation between the desired and actual system
outputs, scaled by adaptive PFs that define the performance
funnel over time. The normalized tracking error is defined
as ξp(t) := e(t)

ρ(t) , ρ(0) > |e(0)|, where e(t) is the tracking
error and ρ(t) is the adaptive PF that imposes bounds of
the acceptable performance funnel. The error transformation
ϵp(t) := ln

(
1+ξ(t)
1−ξ(t)

)
maps the constrained error dynamics into

an unconstrained domain, with ϵ : (−1, 1) → R, facilitating
the design of control laws that ensure predefined perfor-
mance attributes. Additionally, the positive factor ζp(t) :=

4
ρ(t)(1−ξ(t)2) is used to scale the control signal in response
to changes in the tracking error, enhancing the effectiveness
of the control law to maintain desired system behavior. The
control input is then given by u(t) := sat(ud(t)), where
ud(t) := −kζp(t)ϵp(t) and k > 0 is a control gain. The
function sat(·) is a saturation function that ensures the control
signal remains within predefined bounds, thus respecting the
input constraints.

To ensure the error remains strictly within the adaptive
performance envelope in presence of hard input constraints,
i.e., −ρ(t) < e(t) < ρ(t), the PF ρ(t) is dynamically adjusted
through an adaptive law:

ρ̇ = −λ(ρ(t)− ρ∞) + ρ(t)
u(t)− ud(t)

e(t)

where λ is a positive constant regulating the convergence
rate, and ρ∞ represents the maximum allowable absolute
steady-state error. Note that when e(t) is close to zero, it
holds that u(t) − ud(t) = sat(ud(t)) − ud(t) = 0, as
saturation is not active in a neighborhood around e(t) = 0.
Consequently, the dynamics of ρ is well defined. The objective
of APC is to design feedback control laws that ensure the
tracking error evolves strictly within the adaptive performance
envelope, allowing the controller to maintain bounded closed-
loop signals and meet performance specifications, even when
faced with conflicting input constraints.

III. CONTROL DESIGN

In this section, we first design a robust ACC scheme
that ensures compliance with the (SC), (AC) and (OPC)
constraints. Then, we extend the design to incorporate both
the amplitude and the rate constraints (RC), addressing the
full input limitation scenario.

A. Control Design under Amplitude Input Constraints

Generally, the force required to satisfy the hard state
constraint (SC) conflicts with the input constraints (AC). To
address this, we first introduce a time-varying safety distance
function that guarantees the simultaneous satisfaction of both
(SC) and (AC). Following this, we propose a static control
law that ensures the closed-loop system adhere to the hard
constraints (SC) and (AC), as well as the soft constraints
(OPC).

1) Safety Distance: Inspired by [7] and considering the
dynamics in (1), while neglecting the decelerating effects of
rolling friction and aerodynamic drag, we obtain:

mv̇ = u−mg sin (θ(t)) (2)

In the worst-case scenario, under maximum braking, the
velocity of the vehicle after a time interval τ can be determined
by assuming the steepest negative slope, θ(t+τ) = −θ̄, which
gives:

v(t+ τ) = v(t)− τg(cd − sin (θ̄)). (3)

Solving (3) for tb seconds ahead, when the controlled vehicle
stops, i.e., v(t+ tb) = 0, we obtain:

tb =
v(t)

g(cd − sin (θ̄))
. (4)

Note that cd must be chosen such that cd > sin (θ̄) for this
condition to hold. Thus, the worst-case travelled distance x(t+
tb) after tb seconds of maximum braking can be expressed as:

x(t+ tp) = x(t) +

tb∫
0

v(t+ τ)dτ = x(t) + db(t)

with

db(t) =
v(t)2

2g(cd − sin (θ̄))
(5)
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To address multiple hard constraints, including state and input
limitations, we define a dynamically adaptive reference inter-
vehicular distance as:

dref(t) := δ + db(t) + ρd,∞. (6)

The proposed ACC framework is depicted in Fig. 1. To
guarantee both collision avoidance and robust performance,
dref(t) involves the following components:

• Minimum desired distance δ: Serves as a baseline to
maintain safe spacing between vehicles when the velocity
is zero.

• Time-varying safety distance db(t): Calculated online
based on (5), ensuring that the inter-vehicle distance never
falls below the threshold δ, even in scenarios involving
maximum emergency braking.

• Prescribed performance parameters ρa,∞, ρd,∞: De-
fine the steady-state tracking performance set. These
parameters regulate control accuracy, ensuring that the
distance tracking error converges to zero when the inter-
vehicle distance satisfies x(t)−xp(t) = δ+db(t)+ρ

d,∞.
The motivation for dref(t) lies in its ability to incorporate both
collision avoidance and performance constraints. When the
vehicle enters the prescribed performance set (−ρa,∞, ρd,∞),
the controller prioritizes distance tracking to ensure safe cruis-
ing. This strategy guarantees collision-free operation while
robustly imposing output performance specifications, related to
both cruising speed and inter-vehicle distance, within actuation
limitations.

Fig. 1. Illustration of the proposed ACC framework. The highlighted area
designate when the (AC) tend to be violated.

Remark 2. The safety distance db(t) is updated online,
without incorporating the velocity of the leading vehicle or
knowledge of the model parameters specified in (1), which may
vary over time for both the controlled and leading vehicles.
Consequently, the computed safety distance is conservative
owing to the presence of hard input constraints, which conflicts
with state constraints in emergency braking scenarios. Incor-
porating additional information would allow for an accurate
estimation of the braking distances for both the lead and
the controlled vehicles, as both the first and second terms
in fd(t, v) contribute to deceleration. This, in turn, would
allow for a less conservative computation of db(t). However,
obtaining such information in real-time practical applications
remains a significant challenge, and is left open for future
research.

2) Static Control Law: Building on the APC methodol-
ogy outlined in Section II-B we introduce the asymmetrical

adaptive PFs ρd(t) and ρa(t) (m/s), whose dynamics will be
designed later in this section. The performance parameters
λd > 0 and λa > 0 (s−1) regulate the exponential rate of
tracking error convergence, while ρa,∞ > 0 and ρd,∞ > 0
(m) define the bounds of the residual set, within which the
steady-state error evolves. Then, we define the asymmetric
saturation function as:

satū
¯
u(ud) :=


ū if ud > ū

ud if
¯
u ≤ ud ≤ ū

¯
u if ud <

¯
u.

and the tracking errors:

ed(t) := µ(x(t)− xp(t) + dref(t)) [Distance tracking error]
ev(t) := v(t)− vref(t) [Velocity tracking error].

To ensure consistency in units, a scaling factor µ = 1s−1 is
introduced in the definition of ed(t) allowing it to be expressed
in m/s, similar to ev(t). In order to guarantee that the state
constraint (SC) is always satisfied, while also ensuring that
the velocity of the vehicle tracks the reference vref(t) when
(SC) is not violated, we define the output tracking error as:

e(t) := (1− w(t))ev(t) + cww(t)ed(t) (7)

where w(t) := max
(

ed(t)+ρa(t)
ρd(t)−ρa(t)

, 0
)

∈ [0, 1) with cw > 0

dictating the weight of the distance error ed(t) on the output
tracking error e(t). Note that w(t) < 1 as long as ed(t) <
ρd(t). The switch function w(t) determines when the distance
error ed(t) begins to significantly affect the control strategy,
thus enabling the transition from prioritizing velocity tracking
to maintaining a safe following distance as the distance error
increases. The normalized tracking error is defined as in [15]:

ξ(t) :=
e(t)− 1

2

(
ρd(t) + ρa(t)

)
1
2 (ρ

d(t)− ρa(t))
. (8)

Next, we define the following control-related signals: ϵ(t) :=
ln
(

1+ξ(t)
1−ξ(t)

)
and ζ(t) := 4

(ρd(t)−ρa(t))(1−ξ(t)2)
. The constrained

control input is then derived by:

ud(t) := −kζ(t)ϵ(t), k > 0 (9)
u(t) := satū

¯
u(ud(t)). (10)

The saturation function ensures that the control input u(t)
remains within the predefined bounds [

¯
u, ū], ensuring the

satisfaction of (AC). As shown in [9], a control input of the
form u(t) = −ked(t), with k > 0, can efficiently regulate the
inter-vehicular distance for the system (1) in this context.

Finally, the adaptive performance laws that adjust the soft
(OPC) constraints in response to the hard (AC) constraints are
given by:

ρ̇d := −λd(ρd(t)− µρd,∞) + seγd(t)
u(t)− ud(t)

ξ(t) + 1
(11)

ρ̇a := −λa(ρa(t) + µρa,∞) + s−e
γa (t)

u(t)− ud(t)

1− ξ(t)
(12)
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where the initial condition is set such that ρa(0) < e(0) <
ρd(0). Subsequently, the switch function sba(·) (1/kg) is de-
fined as:

sba(t) :=

{
a, b(t) ≥ 0

0, b(t) < 0.
(13)

Additionally, γd and γa are positive constants scaling the
second term in (11) and (12), respectively.

Theorem 1. Consider the system described by (1), a smooth
reference velocity vref(t) and a leading vehicle obeying As-
sumptions 1-3. The proposed amplitude constrained adaptive
cruise controller (AC-ACC) (6)-(12) guarantees that the ve-
locity tracking error remains within the adaptive performance
bounds:

ρa(t)− cww(t)ed(t)

1− w(t)
< v(t)− vref(t) <

ρd(t)− cww(t)ed(t)

1− w(t)
(14)

while ensuring that: (i) the closed-loop signals
x(t), v(t), ud(t), ρ

a(t) and ρd(t) remain bounded, and
(ii) the constraints (SC), (AC) and (OPC) are satisfied for all
t ≥ 0.

Proof. See the Appendix.

Remark 3. Note that ρd(t) ≥ µρd,∞ > 0 and ρa(t) ≤
−µρa,∞ < 0 for all t ≥ 0. Hence, when e(t) > 0, the
second term in (11) is activated by the function seγd(t) and
increases ρd(t). Conversely, when e(t) < 0, the second term
in (12) is activated by the function s−e

γd (t) and decreases ρa(t).
Thus, the performance adaptations are mutually exclusive;
only one function is active at a time, based on the sign of
e(t). The performance funnel, defined by ρd(t) and ρa(t),
is dynamically adapted in response to input saturation to
maintain bounded signals in the closed-loop system. When
the control input is not saturated, the PFs return to their
predefined form, converging to ρi,∞ with a rate no less than
λi for i = {d, a}, thereby ensuring that the tracking error
is as small as possible, within the limitations imposed by
the hard (AC) constraints. Further details on the selection of
parameters k, λi, ρi,∞, γi, i ∈ {d, a} are provided in Remark
4 of [16].

Remark 4. The tracking error e(t) adheres to the (OPC)
constraints, as it is guaranteed that ρa(t) < e(t) < ρd(t)
for all t ≥ 0. This ensures that e(t) converges exponentially
to the residual set (−µρa,∞, µρd,∞) when input saturation is
inactive. However, when input saturation occurs, the perfor-
mance specifications are relaxed in response to the system’s
input limitations. During this period, the vehicle either accel-
erates at its maximum capacity or decelerates under maximum
braking. In the case of maximum acceleration, the PF ρa(t)
decreases, loosening the output constraints to allow the vehicle
to track the reference velocity as soon as possible. On the
other hand, as shown in (5), under maximum braking, in the
worst case scenario the inter-vehicular distance is reduced
by db(t) until v(t) → 0. Hence, based on (6), the minimum
inter-vehicular distance under maximum braking is d(t) > δ,
thereby satisfying (SC).

B. Control Design under Amplitude and Rate Input Con-
straints

Limiting jerk, i.e., the rate of change of acceleration, is
crucial for maintaining passenger comfort by avoiding abrupt,
uncomfortable movements during acceleration or braking. It
also enhances vehicle stability by preventing sudden shifts
in weight distribution, which can degrade control efficiency,
especially in emergency situations or on slippery surfaces.
Furthermore, regulating jerk reduces mechanical wear on the
vehicle’s suspension and braking system, ensuring smoother
and safer driving performance.

In this subsection, we extend the approach outlined in
Section III-A, proposing a dynamic control law that ensures
compliance with the hard rate input constraints (RC) as
well. The design procedure for the dynamic adaptive cruise
controller is organized into two main steps. First, we introduce
a time-varying safety distance function to cope with control
amplitude and slew-rate constraints and then we formulate the
control signal to meet both output specifications and input
constraints with respect to the amplitude of the control signal.
Subsequently, building on our previous work [11], we develop
the dynamic control law to simultaneously address the hard
amplitude (AC) and rate (RC) input constraints and the soft
output constraints (OPC).

Step 1: Design the signal incorporating (AC)
i Select the positive output performance parameters
λdo (s−1) and λao (s−1), ρa,∞o (m) and ρd,∞o (m) as
described in Section III-A2.

ii Select the safety distance:

db,r(t) :=
v(t)2

2g(cd − sin (θ̄))
+ v(t)tr

+
(u(t) +mg sin (θ̄))t2r

2m

(15)

with tr = u(t)+cdmg
|
¯
r| . Further details on the derivation of

(15) can be found in the analysis between (50)-(54) in the
Appendix. Additionally, select the reference distance:

drref(t) := δ + db,r(t) + ρd,∞o . (16)

Define the distance error ed(t) := µ(x(t)−xp(t)+drref(t))
as well as the velocity error ev(t) := v(t) − vref(t). The
parameter µ = 1 (s−1) ensures unit consistency as in
Section III-A2. Hence, the output tracking error is similar
to (7):

eo(t) := (1− wo(t))ev(t) + cwo wo(t)ed(t) (17)

where wo(t) := max
(

ed(t)+ρa
o(t)

ρd
o(t)−ρa

o(t)
, 0
)
∈ [0, 1), with cwo >

0.
iii Next define:

ξo(t) :=
eo(t)− 1

2

(
ρdo(t) + ρao(t)

)
1
2 (ρ

d
o(t)− ρao(t))

(18)

where ρdo(t) (m/s) and ρao(t) (m/s) represent the adap-
tive PFs to be designed. Additionally, define the signals
ϵo(t) := ln

(
1+ξo(t)
1−ξo(t)

)
and ζo(t) := 4

(ρd
o(t)−ρa

o(t))(1−ξo(t)2)
.
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iv Introduce the following control-related signals:

ud(t) := −koζo(t)ϵo(t), ko > 0 (19)
us(t) := satū

¯
u(ud). (20)

v The output performance constraints are governed by the
following adaptive laws:

ρ̇do := −λdo(ρdo(t)− µρd,∞o ) + seγd
o
(t)
us(t)− ud(t)

ξo(t) + 1
(21)

ρ̇ao := −λao(ρao(t) + µρa,∞o ) + s−e
γa
o
(t)
us(t)− ud(t)

1− ξo(t)
(22)

with sba(·) (kg−1) denoting the switch function (13).
Step 2: Design the signal incorporating (RC)

i Define the control input tracking error as:

eu(t) := u(t)− us(t) (23)

where u is the actual control input and us is the amplitude
saturated control signal.

ii Select the positive input performance parameters λdu and
λau (s−1), ρa,∞u (N) and ρd,∞u (N) as described in Section
III-A2.

iii Define the normalized input tracking error:

ξu(t) :=
eu(t)− 1

2

(
ρdu(t) + ρau(t)

)
1
2 (ρ

d
u(t)− ρau(t))

(24)

where ρdu(t) (N) and ρau(t) (N) denote the adaptive PFs
to be designed. Additionally, define the signals ϵu(t) :=

ln
(

1+ξu(t)
1−ξu(t)

)
and ζu(t) := 4

(ρd
u(t)−ρa

u(t))(1−ξu(t)2)
.

iv Define the signal ur(t) (N/s) related to the rate of change
of the control input as:

ur(t) := −kuζu(t)ϵu(t), ku > 0. (25)

v The control input is then governed by the following law:

u̇ := satr̄
¯
r(ur(t)), u(0) ∈ [

¯
u, ū] (26)

where the saturation function ensures that the time deriva-
tive of the control input remains within predefined bounds
[
¯
r, r̄].

vi The performance constraints of eu(t) are governed by the
following adaptive laws:

ρ̇du := −λdu(ρdu(t)− ρd,∞u ) + seγd
u
(t)

satr̄
¯
r(ur(t))− ur(t)

ξu(t) + 1
(27)

ρ̇au := −λau(ρau(t) + ρa,∞u ) + s−e
γa
u
(t)

satr̄
¯
r(ur(t))− ur(t)

1− ξu(t)
(28)

with sba(·) denoting a switch function given by (13).

Corollary 1. Under the conditions of Theorem 1, there
exists λ∗u > 0 such that for all λdu > λ∗u, the pro-
posed amplitude-and-rate constrained adaptive cruise con-
troller (ARC-ACC) (16)-(28), guarantees that the veloc-
ity tracking error remains within the adaptive performance
bounds (14), while ensuring that: (i) the closed-loop signals
x(t), v(t), ud(t), ρ

a
o(t), ρ

d
o(t), ρ

a
u(t), ρ

d
u(t) and ur(t) remain

bounded, and (ii) the constraints (SC), (AC), (RC) and (OPC)
are satisfied for all t ≥ 0.

Proof. See the Appendix.

Remark 5. The output performance of the closed-loop system
is governed by the evolution of the PFs ρdo(t) and ρao(t).
When the signal ud(t) reaches saturation, these performance
constraints need to be relaxed to ensure the boundedness
of the closed-loop signals. The extent of this relaxation is
influenced by the controller gains ko, γdo , γ

a
o and the con-

vergence rates λdo and λao . Additionally, the relaxation is
affected by the control input tracking error eu(t) [11], which
should be maintained low. To achieve faster convergence of
eu(t), higher values for the parameters ku, λdu and λau are
advantageous. However, selecting large values for the gains ki,
i = {o, u}, may lead to excessive relaxation of the PFs (21)-
(22) and (27)-(28), potentially causing unnecessary degrada-
tion of tracking accuracy. This is because larger gains can
cause the signals ud(t) and ur(t) to reach saturation faster,
increasing the second term in the corresponding adaptive
performance laws, which may result in overshoot and slower
convergence. Therefore, gain tuning must strike a balance
between achieving rapid tracking error convergence and pre-
serving the prescribed performance specifications, minimizing
any unnecessary performance degradation.

Remark 6. The proposed control design is developed for a
dynamical model (1) where u represents the force input, incor-
porating both engine propulsion and braking forces. Notably,
the proposed control protocol can be readily implemented in
a kinematic vehicle model of the form:

ẋ = u (29)

where u (m/s) is now the velocity control input, subject to
constraints u ∈ [u, ū] with its rate of change (acceleration)
u̇ ∈ [r, r̄]. The transition from the dynamical to the kinematic
framework is justified under the assumption that the velocity
control input u is directly available, which is a reasonable
simplification in many robotic and autonomous vehicle appli-
cations. In practice, this assumption holds when a low-level
controller ensures accurate tracking of velocity commands
with negligible error. Regarding collision avoidance guaran-
tees, the safety distance db,r(t) in the dynamical model case
accounts for acceleration and jerk constraints. In the kine-
matic model framework, the safety distance db,r(t) captures
the maximum distance required until the velocity command u
reaches zero while respecting acceleration constraints. After
straightforward algebraic manipulations, the simplified safety
distance is given by:

db,r(t) := v(t)tr +
u(t)t2r

2
(30)

where v(t) denotes the velocity of the vehicle, with tr = u(t)
|
¯
r| .

Notably, at the kinematic level, neither the vehicle mass nor
an upper bound on the road slope is required to be known.
Thus, the proposed (ARC-ACC) (16)-(28) controller remains
applicable across both dynamical and kinematic frameworks.
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IV. SIMULATION RESULTS

The proposed AC-ACC and ARC-ACC schemes were im-
plemented and tested across two distinct driving scenarios
to validate their effectiveness and demonstrate their efficacy
compared to the FCC, presented in [9]. Both scenarios were
simulated in MATLAB using the ode15s solver with relative
and absolute error tolerances set to RelTol = 10−10 and
AbsTol = 10−10, respectively. The model and control pa-
rameters remained unaltered throughout the simulations and
are summarized in Table I.

TABLE I
SIMULATION PARAMETERS

Model Parameters Controller Parameters

m = 1100 kg ko = 45 kg · m2/s3 cwo = 1 ρd,∞u = 10 N
θ = −0.1 rad ku = 500 N2/s λd

o = 2 1
s ρa,∞u = 10 N

Cr = 0.01 r̄ = 3000 N
s λa

o = 0.5 1
s γd

o = 1

Cd = 0.32
¯
r = −4000 N

s λ
d/a
u = 10 1

s γa
o = 1

ϱ(t) = 1.3 kg/m3 cd = 1.1 ρd,∞o = 0.5 m γd
u = 1

A = 2.4 m2 ca = 0.9 ρa,∞o = 0.2 m γa
u = 1

A. Generic Evaluation

In this simulation scenario, we demonstrate the effectiveness
of the ARC-ACC (16)-(28) in maintaining both state and
adaptive performance under amplitude-and-rate input con-
straints. Initially, the lead vehicle cruises at a constant speed
20 m/s for 80 seconds. Subsequently, the lead vehicle’s speed
oscillates according to cos(0.25t), simulating fluctuating traffic
conditions. The ACC scheme was tasked with maintaining a
minimum inter-vehicular distance δ = 2 m while tracking a
reference velocity vref = 30 m/s. The initial conditions were
set x(0) = 0, v(0) = 10, xp(0) = 300, vp(0) = 20, ρdo(0) =
20, ρao(0) = −40, ρdu(0) = 100, ρau(0) = −100, u(0) = 0.

Fig. 2(a) illustrates the evolution of the output tracking error
eo(t), which remains strictly within the adaptive performance
bounds ρdo(t) and ρao(t). Additionally, Fig. 2(b) depicts both
the actual control input u(t) and the saturated control signal
us(t), as well as the control boundaries ū,

¯
u, showcasing

the rate limiting ability of the proposed ACC scheme. It is
worth noting that the actual control input u(t) is smoother
than us(t), avoiding the sharp accelerating peak observed at
the first seconds of the simulation. The adaptive PFs adjusted
effectively to dynamic driving conditions, ensuring that the
tracking errors remained within the prescribed bounds. The
ACC controller also addressed changes in the lead vehicle’s
speed, demonstrating its robustness in maintaining perfor-
mance under versatile driving conditions. In Fig. 3(a), the
vehicle’s cruising velocity is shown. Initially, the vehicle
accelerates to track the reference velocity, followed by a
deceleration to maintain a safe distance from the leading
vehicle. Thanks to the dynamic safety distance db,r(t), which
is illustrated in Fig. 3(b), the vehicle’s deceleration is smooth
and satisfies the constraints in (SC), (AC), (RC), and (OPC).
Fig. 3(b) also shows the actual inter-vehicular distance d(t)
compared with the minimum allowable distance δ. Overall, the
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Fig. 2. (a): Adaptive performance bounds defined by the functions ρdo(t) and
ρao(t), ensuring that eo(t) remains strictly within the prescribed limits; (b):
Actual control input u(t) compared with the saturated control signal us(t),
along with the input constraints ū = camg = 9712 N and u = −cdmg =
−11870 N .

ARC-ACC controller ensures safe and comfortable cruising
along with adaptive performance specifications. The safety
distance for braking db,r(t) is computed dynamically, ensuring
robust safety margins throughout the simulation. Additionally,
the adaptive PFs dynamically adjust the system’s response
to ensure the control input and its rate of change adheres
to predefined saturation limits, effectively guaranteeing ac-
celeration and jerk limits, ensuring passenger comfort as
well. However, as observed in Fig. 3(b), the inter-vehicular
distance at a cruising speed of 20 m/s is approximately 80
meters, which is somewhat conservative. This safety distance
is directly influenced by the maximum deceleration rate, which
is regulated by the parameter

¯
r = −4000N/s. This results in a

maximum jerk of approximately 3.6m/s3 during deceleration,
ensuring driver comfort even in the event of an abrupt stop by
the preceding vehicle. To reduce the conservativeness of the
safety distance, in the next simulation scenario, we select a
lower

¯
r, closer to the mean deceleration rate observed in real-

world emergency braking scenarios, thus achieving a more
practical safety distance.
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Fig. 3. (a): Evolution of the vehicle’s cruising velocity; (b): Actual inter-
vehicular distance d(t) along with the minimum allowable distance δ,
demonstrating compliance with safety distance requirements db,r(t).
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B. Comparative Study

In this comparative simulation study, the performance of
the proposed controllers AC-ACC and ARC-ACC was eval-
uated against the FCC introduced in [9], under identical
driving conditions. The primary objective was to analyze their
relative performance in terms of maintaining desired inter-
vehicular distance, regulating vehicle speed, and respecting
input constraints. The simulation scenario began with the lead
vehicle cruising at a steady speed of 30 m/s, followed by an
abrupt deceleration at 120 seconds until reaching 20 m/s,
and subsequently accelerating at 150 seconds. The ACC
controllers were configured to maintain a minimum inter-
vehicular distance δ = 2 m while tracking a reference velocity
vref = 40 m/s. The specific parameter settings for both AC-
ACC and ARC-ACC are listed in Table I, except for the force
and yank limits (rate of change of force), which were set to
ca = 0.8, cd = 1, 1, r̄ = 1000 N/s,

¯
r = −11000 N/s.

Yank limits restrict the maximum jerk during deceleration
to 10 m/s3, ensuring a balance between performance and
passenger comfort. For fair comparison, the FCC scheme was
structured similarly to the AC-ACC, with a proportional gain
set to k = ko = 45. The performance funnels were defined as:
ϕv(t) = (80 exp (−0.5t) + 0.5)

−1 and ϕd(t) = (0.5)
−1. The

initial conditions for the simulations were set as: x(0) = 0,
v(0) = 5, xp(0) = 500, vp(0) = 40, ρdo(0) = 0, ρao(0) = −80,
ρdu(0) = 100, ρau(0) = −100, and u(0) = 0. The safety
distance, considering the input constraints, was determined
using (15) for the ARC-ACC and (5) for the AC-ACC and
FCC.

Unlike the proposed controllers, which dynamically adjust
the performance specifications in response to input constraints,
the FCC does not explicitly account for these limitations.
Instead, it relies on saturating the control signal outside a pre-
defined compact set, which may lead to internal blowup of the
controller, i.e., as the tracking error exceeds the performance
boundary, the desired control signal diverges to infinity. To
analyze this behavior, two scenarios were considered for the
FCC, with limits set to ca = 0.8 and ca = 0.9, respectively.

Fig. 4(a) illustrates the control signals generated by the
different controllers. Notably, the control signal from the ARC-
ACC is significantly smoother than those from the other
controllers, effectively delimiting both acceleration and jerk
during cruising. In contrast, the input generated by the AC-
ACC and the FCC with ca = 0.9 are quite similar, except
during the transient phase where the FCC exhibits a brief,
sharp spike, generating a force of approximately 9700 N .
In comparison, the AC-ACC generates a lower peak force of
8700 N . Figures. 4(b)-(c) illustrate the adaptive performance
funnel for the ARC-ACC and AC-ACC schemes, while Figures
4(d)-(e) depict the predefined performance funnels for the FCC
with ca = 0.8 and FCC with ca = 0.9 schemes, respectively.
The FCC with ca = 0.8 suffers from internal blow-up, as the
control effort is insufficient to keep the tracking error within
the predefined performance funnel as shown in 4(d), ultimately
leading to degraded performance.

Figures 5 and 6 present the actual inter-vehicular distance
compared to the minimum allowable distance δ and the ve-

Fig. 4. (a): Control signals and (b)-(e): tracking errors along with the
corresponding performance funnels generated by ARC-ACC, AC-ACC, and
FCC.

hicle’s cruising speed, respectively. While all schemes satisfy
the safety distance constraint (SC) as shown in Fig. 5, the
velocity tracking performance of the FCC with ca = 0.8
exhibits degraded velocity tracking performance compared to
the rest of the schemes, as depicted in Fig. 6. Notice that in the
FCC with ca = 0.8 the vehicle’s velocity continues to increase
until t = 60 seconds, despite the control input being zero, due
to the influence of gravity, as the road slope set at θ = −0.1
rad. Moreover, it can be seen from Fig. 5 that the inter-vehicle
distance at cruising speed 20 m/s is approximately 45 meters
compared to the 80 meters of the previous simulation owing
to the greater yank limit during decceleration.
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Fig. 5. Comparison of the actual inter-vehicular distance d(t) vs the minimum
allowable distance δ under the different ACC schemes.

V. EXPERIMENTAL RESULTS

To validate the performance and the applicability of the
proposed control scheme, an experimental procedure was
conducted for the input-output constrained ACC problem using
the ARC-ACC scheme. For the experiment we utilized two
Husky A200 unmanned ground vehicles, as depicted in Fig.
7. In this setup, the lead vehicle was teleoperated to move in a
straight line with a time-varying velocity, while the following
vehicle implemented the ARC-ACC controller (16)-(28). To
measure the inter-vehicular distance, the following vehicle was
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Fig. 6. Cruising speed comparison of the vehicle under the ACC schemes.

equipped with an Intel RealSense Depth Camera, and the lead
vehicle was fitted with an ArUco marker to be detected by the
camera.

The aim of the experiment is to demonstrate the controller’s
ability to incorporate multiple constraints and adapt soft
constraints based on hard constraints, which represents the
primary contribution of this work. In this vein, the control
scheme was implemented at the kinematic level as described in
Remark 6, where the control inputs were the desired velocities,
since the embedded motor controller generated the necessary
wheel torque to achieve these velocities precisely. As a result,
the proposed controller in this ACC setup enforces both veloc-
ity and acceleration constraints on the vehicle. Based on the
specifications of the Husky A200 robot, the maximum feasible
speed is 1 m/s and the maximum acceleration is 3 m/s2.
Accordingly, the control inputs were subject to saturation
limits: ū = 0.9,

¯
u = 0, r̄ = 3, and

¯
r = −3 ensuring that

the generated control commands remain physically feasible
for the robot. The control gains were defined as ko = 0.045,
ku = 0.3, cw = 1, γjo = 0.3 and γju = 0.1 for j = {d, a}.
The minimum allowable distance was set at δ = 1.99 m.
The steady-state bounds for the PFs were set at ρj,∞o = 0.1
and ρj,∞u = 0.05, with the corresponding convergence rates
chosen as λdo = 0.2 and λao = 2.5 and λju = 3 for
j = {d, a}. The control loop was executed with a time step of
dt = 0.01 s, allowing for high-frequency updates and smooth,
continuous control signals. The initial conditions were set as:
x(0) = 0, v(0) = 0, xp(0) = 3.49, vp(0) = 0, ρdo(0) =
0.1, ρao(0) = −2, ρdu(0) = 4, ρau(0) = −4, u(0) = 0.
The reference velocity was set to vref(t) = 0.8 m/s, and
the velocity-dependent safety distance db,r(t) was calculated
based on (30). By applying the selected parameters ū,

¯
r and

invoking (30) we determine that in the worst-case scenario,
where the vehicle must decelerate from v(t) = ū = 0.9 m/s
at the maximum deceleration rate

¯
r = −3m/s2, the maximum

traveled distance before stopping is max(db,r) = 0.31 m.
Thus, we incorporate this worst-case stopping distance into
the reference inter-vehicular distance, which can be set as
a fixed value: dref = max(db,r) + ρd,∞o + δ = 2.4 m. The
experiment demonstration can be accessed at: https://youtu.
be/GKaBWztVO 4.

The experimental results are presented in Fig. 8. In partic-
ular, Fig. 8(a) shows the actual inter-vehicular distance d(t),

Fig. 7. Experimental setup involving two Husky A200 unmanned ground
vehicles.

which remains greater than the minimum allowable distance δ,
demonstrating collision avoidance throughout the experiment.
Fig. 8(b) illustrates the evolution of the output tracking error
eo(t) along with its corresponding performance functions,
while Fig. 8(c) presents the control tracking error eu(t),
encapsulating the control deficiency owing to rate limitations.

The commanded velocity generated by the ACC controller
is shown in Fig. 8(d), and the corresponding acceleration
(i.e., the rate of change of the commanded velocity) is
depicted in Fig. 8(e). The abrupt deceleration observed at
t = 4 s results from the ACC scheme switching from velocity
tracking to position tracking, triggered by the inter-vehicular
distance approaching the safety threshold. When the relative
distance increases again at t = 5 s, the system resumes
velocity tracking, resulting in re-acceleration. The velocity
oscillations are primarily attributed to: (i) feedback delays
introduced by the vision-based localization system (camera
with ArUco markers), which degrade the accuracy of real-
time state measurements, and (ii) the motion profile of the
leading robot, which involves frequent starts and stops and
generally moves at a lower speed than the follower’s reference
velocity (see https://youtu.be/GKaBWztVO 4). These factors
lead the controller to respond rapidly, producing fluctuations
in the control signal.

The aforementioned oscillations could be mitigated through
more exhaustive gain tuning, e.g., by reducing the value of
cwo , which determines the influence of the distance error ed(t)
on the total output tracking error. Overall, the experimental
results validate the effectiveness of the proposed controller in
satisfying the constraints (SC), (AC), (RC), and (OPC), despite
the presence of sensor inaccuracies and physical disturbances
that are not present in computer simulations.

VI. CONCLUSIONS

In this paper, we presented a robust ACC scheme that
rigorously incorporates input, output and state constraints
into the control strategy. The proposed scheme ensures the
maintenance of a safe following distance, while the perfor-
mance specifications are dynamically adjusted, to accommo-
date actuation limitations, including amplitude-and-rate input
constraints. The simulation and experimental results validate
the theoretical findings and showcase the effectiveness of

https://youtu.be/GKaBWztVO_4
https://youtu.be/GKaBWztVO_4
https://youtu.be/GKaBWztVO_4
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Fig. 8. Experimental results: (a) Actual inter-vehicular distance between d(t) vs the minimum allowable distance δ; (b) evolution of the output tracking error
eo(t) and its corresponding PFs; (c) evolution of the control tracking error eu(t) along with the associated PFs; (d) commanded velocity generated by the
ACC controller; (e) rate of change of the commanded velocity (acceleration) generated by the ACC controller.

the proposed controller, particularly in generating smooth
control signals and ensuring robust performance across a wide
range of driving scenarios, making it suitable for real-world
autonomous driving applications. Since the proposed control
framework does not incorporate any information about the
preceding vehicle’s dynamics, the safety distance which is
updated online is conservative. As part of future work, we
aim to reduce this conservativeness by incorporating vehicle-
to-vehicle communication and extending the ACC framework
to handle multi-vehicle interactions in congested traffic con-
ditions.

APPENDIX

Proof of Theorem 1 Thenceforward, we omit the time argu-
ment for the closed-loop signals to enhance the clarity of the
proof. Let us first define ψ := ed+ρa

ρd−ρa and recall that the output
tracking error is e := (1−w)ev + cwwed with time derivative
given by:

ė = (1− ẇ)ev + (1− w)ėv + cwẇed + cwwėd (31)

with:

ėv =
u+ fd(t, v)

m
− v̇ref (32)

ėd = v − vp + ḋref (33)

ẇ =

{
0 if ψ < 0
ėd+ρ̇a

ρd−ρa − (ed+ρa)(ρ̇d−ρ̇a)
(ρd−ρa)2

otherwise
. (34)

Next, let the normalized error be written as ξ = e− 1
2 ρ̃n

1
2 ρ̃d

, with
ρ̃n := ρa + ρd and ρ̃d := ρd − ρa. The time derivative of ξ is
given by:

ξ̇ =
2

ρ̃d

(
ė− 1

2
˙̃ρn − 1

2
ξ ˙̃ρd

)
=

2

ρ̃d

(
ė− 1

2

(
ρ̇a(1− ξ) + ρ̇d(ξ + 1)

))
.

(35)

Let the total state of the system described by (1) be denoted
as s := [x, v]T ∈ R2. Subsequently, we define the closed-loop
system as follows:

χ̇ := ϕ(t, χ), χ(0) (36)

with χ := [s, ξ, ρa, ρd]T denoting the state, which initializes
within the open set Ωχ := R2 × (−1, 1)× R<0 × R>0.

The proof proceeds through three phases. First, we establish
the existence of a unique maximal solution to (36) over the
time interval [0, τmax), ensuring that χ(t) ∈ Ωχ for all
t ∈ [0, τmax). Next, we show that for every t ∈ [0, τmax),
the proposed control strategy ensures that χ remains strictly
within a compact subset of Ωχ. By contradiction, this implies
that τmax = ∞, thereby guaranteeing the boundedness of all
closed-loop signals for all t ≥ 0.

Phase A: In the design procedure, we choose ρa(0) <
e(0) < ρd(0), which implies that ξ(0) ∈ (−1, 1), ensuring
that the open set Ωχ is non-empty. Moreover, the function
ϕ : R>0 × Ωχ → R5 is locally Lipschitz with respect
to χ over the set Ωχ and continuous with respect to t.
Therefore, by applying Theorem 54 from [17] (pp. 476), we
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establish the existence and uniqueness of a maximal solution
χ : [0, τmax) → Ωχ, with χ(t) ∈ Ωχ for all t ∈ [0, τmax) and
τmax ∈ {R∗

>0,∞}.
Phase B: It can be readily concluded that the model in

(1) satisfies the input-to-state stability (ISS) property, as it
is impossible to impose infinite velocity on a ground vehicle
given bounded acceleration. Consequently, due to the input
saturation, there exist a class K function γ(·) and a class KL
function β(·, ·) such that s ∈ Ωs, where Ωs := {s ∈ R2 :
∥s(t)∥ ≤ β(∥s(0)∥, t) + γ(∥u∥∞)}.

Subsequently, note that the transformed error ϵ(ξ) =

ln
(

1+ξ
1−ξ

)
lies in (−∞,∞) for ξ ∈ (−1, 1) and consider the

Lyapunov function candidate V := 1
2ϵ

2. Differentiating V with
respect to time and exploiting (11),(12),(35) we get:

V̇ =ζϵ(ė+
1− ξ

2
λa(ρa + µρa,∞)

+
ξ + 1

2
λd(ρd − µρd,∞)− sγ(u− ud))

(37)

with sγ :=
se
γd+s−e

γa

2 . By differentiating (6) with respect to time
and substituting the result into (33), we obtain:

ėd = v

(
1− u+ fd(t, v)

mg(cd − sin (θ̄))

)
− vp. (38)

Note that the control input u is essentially bounded due to
input saturation, which, by the ISS property of the system,
implies the boundedness of v. Furthermore, by invoking As-
sumption 2, we can conclude that e is also bounded. Finally,
considering the continuity of fd(·) and the fact that ė is a
piece-wise continuous function of time involving bounded
signals, there exists a positive constant H such that:∣∣∣∣ė+ 1− ξ

2
λa(ρa + µρa,∞) +

ξ + 1

2
λd(ρd − µρd,∞)− sγu

∣∣∣∣ ≤ H

for any (ρa, ρd) ∈ R<0×R>0. By letting γ =
max(γd,γa)

2 and
substituting (9) into (37) we arrive at:

V̇ ≤ H|ζϵ| − kγ|ζϵ|2. (39)

Notice that V̇ ≤ 0 when:∣∣∣∣ ϵ

(ρd − ρa)(1− ξ2)

∣∣∣∣ ≥ H

kγ
. (40)

It is important to note that the saturation effect on ud does not
occur when e = 0. To proceed, we examine two distinct cases
based on the sign of the tracking error e(t).

Case 1: When e > 0 and the control signal ud becomes
saturated, the second term in (11) is activated, leading to an
increase in the upper PF ρd, while the relaxation mechanism
for ρa remains inactive. Let ρa

′
< 0 represent the value of ρa

when the error e crosses zero into the right-half plane, which
acts as a lower bound since (12) is strictly positive for all
e > 0. Exploiting (8) we have (ρd−ρa)(ξ+1) = 2(e−ρa). By
multiplying (40) by |e− ρa| and substituting ϵ(ξ), we obtain:

ln
(

1+ξ
1−ξ

)
(ξ + 1)

(1− ξ2)
≥ 2H|e− ρa|

kγ
. (41)

Note that the left-hand side of (41) is positive and increasing
in |ξ|, while the right-hand side is upper bounded owing to
the ISS property of (1) and the fact that ρa(t) ≥ ρa

′
. Thus,

there exists an ϵ̄ := ϵ(ξ̄) > 0 such that V̇ ≤ 0 for all ϵ(t) ≥ ϵ̄.
It is obvious from (9) that the boundedness of ϵ implies the
boundedness of ud(t). Hence, let ūd denote the upper bound
of |ud(t)| in the case where e > 0, which corresponds to
a braking scenario. Note that the actual control input u is
essentially bounded because of input saturation. Moreover, by
exploiting (11) we obtain:

ρ̇d ≤ −λd(ρd(t)− ρd,∞) + γūd

(ξ′+1) (42)

where ξ′ is the smallest value of ξ(t), at which the second
term in equation (11) becomes active. Notice that the second
term in (42) is bounded regardless of the amplitude of ρd(t).
Consequently, there exists ρ̄d > 0 for which ρ̇d ≤ 0, and thus
ρd(t) ≤ ρ̄d , implying that ρd(t) ∈ [µρd,∞, ρ̄d] ⊂ R>0, ∀t ∈
[0, τmax).

Case 2: When e < 0 and the control signal ud gets satu-
rated, then the second term in (12) is activated and decreases
the lower PF ρa, while the relaxation mechanism of ρd remains
inactive. As in case 1, there exists an

¯
ϵ := ϵ(

¯
ξ) < 0 such that

V̇ ≤ 0 for all ϵ(t) ≤
¯
ϵ. Let

¯
ud denote the upper bound of ud(t)

in case that e < 0, corresponding to an acceleration scenario.
Similar to case 1, we obtain:

ρ̇a ≥ −λa(ρa(t) + µρa,∞)− γ
¯
ud

(1−
¯
ξ) (43)

Notice that the second term in (43) is bounded regardless of
the amplitude of ρa(t), while the first term is non-negative
since ρa(t) ≤ −µρa,∞. Consequently, there exists ρ̄a > 0 for
which ρ̇a ≥ 0, and thus ρa(t) ≥ −ρ̄a, leading to ρa(t) ∈
[−ρ̄a,−µρa,∞] ⊂ R<0, ∀t ∈ [0, τmax).

Phase 3: Based on the analysis above, ϵ(t) is uniformly
ultimately bounded with respect to the compact set E := {ϵ :

¯
ϵ ≤ ϵ ≤ ϵ̄}. By denoting the inverse function of ϵ(ξ) as T :
R → (−1, 1), we obtain the following result:

−1 < T (
¯
ϵ) =

¯
ξ ≤ ξ ≤ ξ̄ = T (ϵ̄) < 1 (44)

for all t ∈ [0, τmax). As a result, χ ∈ Ωs × [
¯
ξ, ξ̄] ×

[−ρ̄a,−µρa,∞] × [µρd,∞, ρ̄d] ⊂ Ωχ for all t ∈ [0, τmax).
According to Proposition C.3.6 from [17] (pp. 481), there
should exist a time t′ ∈ [0, τmax) where χ(t′) escapes
Ωs× [

¯
ξ, ξ̄]× [−ρ̄a,−µρa,∞]× [µρd,∞, ρ̄d] for all t ∈ [0, τmax).

However, this would contradict the assumption that τmax <
∞. Hence, we conclude that τmax = ∞. Moreover, since
ξ(t) ∈ [

¯
ξ, ξ̄] it follows that −ρ̄a ≤ ρa(t) < e(t) < ρa(t) ≤ ρ̄d

ensuring that w(t) ∈ [0, 1) for all t ≥ 0. Invoking the latter
along with (7) we obtain:

ρa(t)− cww(t)ed(t)

1− w(t)
< v(t)− vref(t) <

ρd(t)− cww(t)ed(t)

1− w(t)

Note that during braking, i.e., e > 0 the performance
function ρd, which serves as a barrier for e, increases only
when maximum braking is applied, i.e., when the control
signal ud becomes saturated. In this scenario, the maximum
traveled distance is given by (5). Once the saturation is no
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longer active, the PF ρd retrieves its prescribed form with
exponential rate, leading to a decrease in the tracking error
e. This ensures that xp(t) − x(t) > δ for all t ≥ 0, thus
completing the proof.

Proof of Corollary 1 First, consider the normalized errors
ξo, ξu as defined in Section III-B. The time derivatives of these
errors are expressed as:

ξ̇i =
2

ρ̃d,i

(
ėi −

1

2

(
ρ̇ai (1− ξ) + ρ̇di (ξ + 1)

))
, i = {o, u}

(45)

with ρ̃d,i(t) := ρdi (t) − ρai (t). Next, we define the extended
closed-loop system as follows:

η̇ := κ(t, η), η(0) (46)

with η := [s, ξo, ρ
a
o , ρ

d
o, ξu, ρ

a
u, ρ

d
u]

T denoting the state, which
initializes within the open set Ωη := R2 × (−1, 1) × R<0 ×
R>0 × (−1, 1)× R<0 × R>0.

Subsequently, the proof proceeds through three phases,
similar to the proof of Theorem 1. In fact, Phase 1 is identical
to that of Theorem 1. Following the analysis from Phase
2 of Theorem 1, it is straightforward to show that s(t)
remains within the compact set Ωη

s := {s ∈ R2 : ∥s(t)∥ ≤
β(∥s(0)∥, t) + γ(∥u∥∞)}, where γ(·) is a class K function
and β(·, ·) is a class KL function, for all t ∈ [0, τmax). Addi-
tionally, by recalling that ϵo(ξo) = ln

(
1+ξo
1−ξo

)
and introducing

the positive definite function Vo := 1
2ϵ

2
o, and following the

analysis from Phase 2 of Theorem 1, as well as exploiting
the boundedness of u(t) and us(t) owing to input saturation,
we conclude that ϵo is bounded with respect to a compact
set Xo := {ξo :

¯
ξo ≤ ξo ≤ ξ̄o} ⊂ (−1, 1), the size of

which is influenced by the system dynamics and the reference
signals. Furthermore, it is ensured that there exist constants
ρ̄do > 0 and ρ̄ao < 0 such that ρd(t) ∈ [µρd,∞, ρ̄d] ⊂ R>0 and
ρa(t) ∈ [ρ̄a,−µρa,∞] ⊂ R<0 for all t ∈ [0, τmax).

Next, consider the Lyapunov function candidate Vu := 1
2ϵ

2
u.

Differentiating Vu with respect to time yields the following
expression:

V̇u =ζuϵu(ėu +
1− ξu

2
λau(ρ

a
u + ρa,∞u )

+
ξu + 1

2
λdu(ρ

d
u − ρd,∞u )− sγu

(u̇− ur)).

(47)

with sγu
:=

se
γd
u
+s−e

γa
u

2 and:

ėu = satr̄
¯
r(ur) + ko

d

dud
satū

¯
u (ud) (ζ̇oϵo + ζoϵ̇o).

Notice that u̇ is bounded due to the rate saturation. Moreover,
the piece-wise continuous signal ėu is bounded owing to the
fact that ξo ∈ (−1, 1) and the boundedness of ρdo and ρao .
Therefore, we conclude the existence of a positive constant
Hu such that: ∣∣∣∣ėu + ρξ − sγu

u̇

∣∣∣∣ ≤ Hu

with ρξ := 1−ξu
2 λau(ρ

a
u+ρ

a,∞
u )+ ξu+1

2 λdu(ρ
d
u−ρd,∞u ), for any

(ρau, ρ
d
u) ∈ R<0 ×R>0. Substituting (25) into (47) we obtain:

V̇u ≤ Hu|ζuϵu| − ku|ζuϵu|2 (48)

with γu =
max(γd

u,γ
a
u)

2 . Notably, V̇u ≤ 0 when:∣∣∣∣ ϵu
(ρdu − ρau)(1− ξ2u)

∣∣∣∣ ≥ Hu

kuγu
. (49)

Furthermore, notice that eu(t) is uniformly bounded with
respect to a compact set [

¯
u− ū, ū−

¯
u] owing to the amplitude

saturation. Following the reasoning outlined in Phase 2 of
Theorem 1, we conclude that ξu is uniformly bounded with
respect to a compact set Xu := {ξu :

¯
ξu ≤ ξu ≤ ξ̄u},

with ξ̄u < 1. Additionally, there exist constants ρ̄du > 0 and
ρ̄au < 0 such that ρdu(t) ∈ [ρd,∞u , ρ̄du] ⊂ R>0 and ρau(t) ∈
[ρ̄au,−ρa,∞] ⊂ R<0 for all t ∈ [0, τmax). Consequently, for
all t ∈ [0, τmax), η belongs to the compact set Ωη

s × Xo ×
[ρ̄ao ,−µρa,∞o ] × [µρd,∞o , ρ̄do] × Xu × [ρ̄au,−ρa,∞u ] × [ρd,∞u , ρ̄du]
which is clearly a subset of the open set Ωη . This inclusion,
combined with the analysis presented in Phase 3 of Theorem
1 ensures that all closed-loop signals are UUB as well as that
ρao(t) < e(t) < ρdo(t) for all t ≥ 0.

Subsequently, we have to determine the safety distance
considering the worst-case scenario where the vehicle must
brake at maximum capacity −cdmg, in presence of constraints
regarding the rate of change in the control input. In this
extreme scenario, the desired rate of change (25) of the control
signal u saturates and the vehicle has to decelerate at full
negative rate

¯
r. First, we calculate the distance required until

the control input u(t) reaches the maximum braking force,

¯
u = −cdmg, assuming that u(t) decreases linearly at the
maximum negative rate

¯
r. In particular:

u(t+ τ) = u(t)− |̄r|τ. (50)

Solving (50) for tr seconds ahead, when u(t+ tr) = −cdgm
we get:

tr =
u(t) + cdgm

|̄r|
. (51)

Leveraging (2) and (50) the velocity during deceleration is
given by:

v(t+ τ) = v(t) +
1

m

τ∫
0

u(t)− |̄r|τ ′ −mg sin (θ(t+ τ))dτ ′

≤ v(t) +
(u(t) +mg sin (θ̄))τ − |

¯
r|
2 τ

2

m

Therefore, the worst-case travelled distance after tr seconds,
is:

x(t+ tr) = x(t) +

tr∫
0

v(t+ τ)dτ = x(t) + drb(t)

with:

drb(t) :=
(u(t) +mg sin (θ̄))t2r

2m
+ v(t)tr −

|̄r|t3r
6m

. (52)

The adaptive performance bound, governed by (27), expands
until the first term in (27) dominates. Once the saturation effect
in (25) becomes inactive, the rate of change in u(t) is dictated
solely by ρ̇du = −λdu(ρdu(t)−ρd,∞u ). Consequently, the vehicle
decelerates at the maximum negative rate until a time instant
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t′ < tr. As a result, there exists a time instant t′′ such that
|u̇(t)| < |̄r| for all t ∈ [t′, tr + t′′], where tr + t′′ is the
time when u = −cdmg. During this time interval, ur does
not saturate, and the rate of convergence of the error eu is
at least exp (−λdut) for all t ∈ [t′, tr + t′′]. As a result, the
minimum deceleration rate, denoted by l(λdu), is increasing
in λdu. Next, we show that for appropriately chosen values of
λdu, the distance traveled up to trb = t + tr + t′′ remains less
than drb(t), ensuring that the safety inter-vehicular distance is
maintained. Specifically, invoking (52), we aim to satisfy the
condition:

υ2(t)−
l(λdu)t

3
2

6m
≤ υ1(t)−

|̄r|t31
6m

=: βr (53)

where:

υ1(t) :=
(u(t+ t′) +mg sin (θ̄))t21

2m
+ v(t+ t′)t1,

υ2(t) :=
(u(t+ t′) +mg sin (θ̄))t22

2m
+ v(t+ t′)t2,

with t1 = tr − t′ and t2 = t1 + t′′. After straightforward
algebraic manipulations, inequality (53) becomes:

l∗u := l(λdu) ≥
6m(υ2(t)− βr)

t32
. (54)

Finally, by combining (5) and (52) and omitting the last term
of (52), in order to facilitate the selection of l∗u, we define the
safety distance as:

db,r(t) :=
v(t)2

2g(cd − sin (θ̄))
+

(u(t) +mg sin (θ̄))t2r
2m

+ v(t)tr

with tr = u(t)+cdmg
|
¯
r| , for which the proposed scheme (16)-(28)

guarantees that for any λdu ≥ l−1(l∗u) =: λ
∗
u, the inter-vehicular

distance satisfies d(t) > δ, thereby completing the proof.
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