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Abstract— Imitation learning for robot dexterous manipula-
tion, especially with a real robot setup, typically requires a
large number of demonstrations. In this paper, we present a
data-efficient learning from demonstration framework which
exploits the use of rich tactile sensing data and achieves
fine bimanual pinch grasping. Specifically, we employ a con-
volutional autoencoder network that can effectively extract
and encode high-dimensional tactile information. Further, we
develop a framework that achieves efficient multi-sensor fusion
for imitation learning, allowing the robot to learn contact-aware
sensorimotor skills from demonstrations. The ablation studies
on encoded tactile features highlighted the effectiveness of in-
corporating rich contact information, which enabled dexterous
bimanual grasping with active contact searching. Extensive
experiments demonstrated the robustness of the fine pinch
grasp policy directly learned from few-shot demonstration,
including grasping of the same object with different initial
poses, generalizing to ten unseen new objects, robust and firm
grasping against external pushes, as well as contact-aware and
reactive re-grasping in case of dropping objects under very
large perturbations. Furthermore, the saliency map analysis
method is used to describe weight distribution across various
modalities during pinch grasping, confirming the effectiveness
of our framework at leveraging multimodal information. The
video is available online at: https://youtu.be/BlzxGgiKfck.

I. INTRODUCTION

Dexterous robot manipulation has the capability to work
across a range of tasks and environments. However, enabling
dexterous manipulation in robots, particularly in a manner
that is comparable to human capabilities, remains an un-
solved challenge. Currently, numerous studies utilize visual
feedback to enable robots to perform dexterous manipula-
tion tasks such as box flipping [1], object rotating [2], re-
configuring and grasping objects from ungraspable poses [3],
and door opening [4]. However, these visual-based methods
have limitations, as the visual data could be influenced by
occlusion and lighting variations. Consequently, it is very im-
portant to investigate how to incorporate tactile information
for the enhancement of dexterous manipulation in robotic
systems.

Tactile sensing plays a vital role in capturing detailed
information about contact surfaces, including the distribu-
tion of contact forces and their variations during force-
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Fig. 1: Autonomous dexterous grasping with soft tactile
sensors, including pre-grasp, press, roll-lift, and firm grasp.

sensitive tasks – which is indispensable for achieving dexter-
ous handling of lightweight objects with irregular surfaces,
shapes, and deformable properties. Especially during close-
range interaction between hands and objects, visual occlusion
restricts the ability to perceive detailed information of the
contact surfaces, during which tactile sensors become valu-
able for providing essential information of these unseeable
surfaces. Integrating tactile sensing into motor learning of
dexterous grasping can enhance the rich and precise sensing
of surface contacts and interaction dynamics, provide irre-
placeable and direct feedback when manipulating objects,
and enable more robust and precise manipulation tasks [5],
[6]. It is crucial to explore how robots can leverage this
information to achieve dexterous manipulation abilities.

The canonical hardware for robot manipulation incorpo-
rates Force/Torque sensors that can only measure the 6-
degree-of-freedom (DoF) wrench at each end-effector. Soft
optical-based tactile sensors can provide abundant and dis-
criminative contact information by quantifying the defor-
mation of the soft materials using a camera system [6].
Currently, several soft tactile sensors have been devel-
oped, including TacTip [7], DigiTac [8], Gelsight [9], and
DIGIT [10]. However, how to use high-dimensional data
from tactile sensors for robot contact-rich tasks remains open
research.

The complex and non-trivial deformation of soft tactile
sensors during dexterous grasping tasks presents a con-
siderable challenge. Humans can deal with soft contacts,
quickly adapt to new tasks, and produce skills of dual-
arm coordination for manipulating objects. Learning from
Demonstration (LfD) offers an intuitive, efficient method for
acquiring human skills through synchronized tactile informa-
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tion, encoding rich state-action mapping and enabling robots
to learn human sensorimotor skills while responding to tactile
and proprioceptive feedback. Additionally, the issue of errors
accumulating in contact-rich tasks during Learning from
Demonstration (LfD), due to the lack of direct feedback,
can be addressed by incorporating rich tactile feedback in
real-time. The challenge involves effectively fusing high-
dimensional data with robot proprioceptive states for sample-
efficient human dexterous manipulation behavior learning.

A. Contribution

In this work, we present a framework to teach biman-
ual, dexterous sensorimotor skills. To handle the complex
dynamics involved with deformable tactile sensors, we em-
ploy behavior cloning (BC) to learn from human teleop-
erated demonstrations. A convolutional autoencoder (CAE)
is trained in a self-supervised manner to extract essential
features from the rich tactile data, which are then integrated
with the robot’s proprioceptive state. This multimodal fusion
enables the robot to efficiently acquire feedback-driven dex-
terous grasping skills through a few human demonstrations.
The proposed framework is validated by pinch grasp tasks on
a dual-arm setup equipped with TacTips sensors [7] and has
achieved the successful retrieval of a small, cylindrical object
on a table using few-shot demonstrations. Our experimental
results show that the policy, learned from few-shot human
demonstration data, can achieve stable grasping of unseen
objects with different diameters, masses, and materials.

Furthermore, the robustness of the framework against
external disturbances has been validated, with the learned
policy demonstrating stable grasping under external distur-
bance, as well as the capacity to autonomously execute
successful re-grasping in case of a large external force that
pushes off the object. We applied saliency map analysis [11]
and revealed how the learned policy uses different sensory
modalities in a variable way throughout the dexterous pinch
grasp process. This analysis demonstrates the capability and
effectiveness of our proposed network to efficiently use
high-dimensional data and autonomously segment the long-
horizon data into several distinct fine-skills for execution
according to different contact situations.

II. RELATED WORKS

During robotic dexterous manipulation, tactile sensors
can provide rich contact information which is not easily
accessed via visual information, thereby playing a crucial
role in enhancing the dexterous grasping capabilities [12].
Soft deformable tactile sensors can perform contact-rich
interactions with the environment and manipulate delicate
objects safely [13]. With optical-based tactile sensors, the
orientation of the contact surface can be inferred from the
tactile image, enabling stabilization of the pinch grasp by
rolling the sensor on the contact surface and applying desired
grasping forces [14]. The study in [15] explores utilizing
tactile feedback to achieve bimanual tasks including bi-
pushing, bi-reorienting, and bi-gathering, conducted within
a simulated environment using reinforcement learning, and

successfully achieves simulation-to-reality transfer. In con-
trast, our work focuses on using both deformable properties
and rich surface contact information provided by the tactile
sensor to achieve dexterous bimanual pinch grasping of
small, fragile, and delicate objects.

One open question with high-dimensional tactile sensors
is how to extract useful information from them. The works
in [16] estimate 6D contact wrenches from tactile images
and the estimated wrenches that can be used as feedback to
the grasping controllers within the classical control theory.
Deep neural networks can also be used to process tactile
images. The works in [17] show that contact poses can also
be detected from tactile images, which was then combined
with goal-driven methods to achieve non-prehensile object
stable pushing. The works in [18] introduce Autoencoder
networks [19] to compress the high-dimensional tactile im-
ages into low-dimensional latent vectors which can be used
for several down-stream tasks, such as object classification.
In our work, we similarly employ an autoencoder to extract
and encode tactile images. However, we extend its utility to
achieve data-efficient learning from human demonstration by
fusing the encoded tactile feature with robot proprioceptive
information.

Moreover, although deformable tactile sensors facilitate
area contact, potentially improving grasp stability and pro-
tecting delicate objects, the dynamics of the deformable
sensor cannot be neglected. The work proposed in [13] com-
bines 3D geometry of the tip of a deformable tactile sensor
with robot proprioceptive action to learn the tactile sensor
membrane dynamics and predict the deformation conditioned
on robot action. Data-driven method can be used to learn the
dynamics and combined with the Model Predictive Control
(MPC) methods to achieve tactile servoing [20]. Insights
from human intrinsic understanding may prove valuable in
leveraging deformable sensors to achieve dexterous dual-arm
manipulation tasks. LfD is an intuitive and effective way
to learn human skills from collected demonstrations, which
is very helpful for tasks requiring high-level skills, such as
intricate coordination between two arms [21], [22]. By uti-
lizing action chunking with transformer (ACT), a framework
trained as a conditional Variational Autoencoder (CVAE) to
learn a generative model over action sequences, the study
in [23] enables the dual-arm robot to learn 6 complex tasks
with only 10 minutes demonstration. Additionally, the work
in [24] proposed to train a self-supervised tactile encoder
and learn non-parametric policies from tactile and vision
features, without integrating with the robot proprioceptive
state. In contrast, our work incorporates the fusion of tactile
features with robot priprioceptive state, facilitating the end-
to-end learning of the manipulation tasks using BC method.

III. METHODS

A. System Overview

Teleoperation through a physical robot is a viable approach
for generating real demonstration data that can be executed
on a physical system, and it was shown to be effective in
performing fine dexterous grasping [25]. As shown in Fig. 2,
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Fig. 2: Architecture detailing the teleoperation system for demonstrations and the LfD framework.

the overall architecture incorporates a teleoperation system
for the collection of human demonstration data and a dual-
arm setup for executing pinch grasp tasks. The teleoperation
system consists of two haptic devices (Force Dimension
Sigma 7) for human operators to control the dual-arm robot
[26]. The dual-arm robot system includes two Franka Emika
Panda arms each with a TacTip [7] installed on the end-
effector of each arm. The Tactips capture contact informa-
tion between end-effector and objects as 2D tactile images.
Task-Space Sequential Equilibrium and Inverse Kinematics
Optimization (SEIKO) runs in the backend to guarantee the
physical constraints and safety of the dual-arm robot [27].

The Learning from Demonstration (LfD) framework (see
Fig. 2) is composed of two distinct networks: 1) a Convo-
lutional AutoEncoder (CAE) network to extract the latent
features from tactile images; 2) a Behavior Cloning (BC)
network to learn the policy of dexterous dual-arm grasping
with tactile sensing from human demonstrations.

B. Demonstration Dataset of Bimanual Manipulation

In our implementation, the haptic devices allow operators
to adjust the 6D pose simultaneously, providing an intuitive
way to demonstrate bimanual grasping skills on a dual-
arm robot. During the demonstration, a human operator
teleoperates the dual-arm robot to complete the grasping
task by sending Cartesian commands to the two end-effectors
via two haptic devices. The human demonstration data are
recorded automatically during the entire grasping.

C. Tactile Feature Extraction

The Tactip used in this work is an optical tactile sensor
with a soft hemispherical tip, which was 3D-printed in
one piece combining an elastic skin with 330 rigid white
markers (pins) [7]. When the soft tip deforms during contact
with objects, the white pins start to move away from their
initial positions. The displacement of these pins reflects the

complex deformation of the soft surface. An inner camera
captures and projects the displacement to an array of white
pins on a black background in the image plane. Raw tactile
RGB images are firstly resized to 256×256 pixels using
linear interpolation and converted to grayscale images, which
are then cropped using a circle mask and converted to binary
images by thresholding. A median filter is applied to denoise
the binary images.

We propose to use a self-supervised learning method –
convolutional autoencoder network to extract robust features
that can represent the contact properties from the prepro-
cessed tactile images. Eight convolutional layers are used in
the CAE network to extract the spatial information repre-
sented by the displacement of the pins. The CAE network
consists of an encoder and a decoder, formulated as follows:

gΘ(·) : X −→ H
fΦ(·) : H −→ X̂ . (1)

The encoder gΘ(·) projects each tactile image γt in the
high-dimensional input space X (256×256) to 16 feature
maps γl in the low-dimensional latent space H (16×16),
then the decoder fΦ(·) reconstructs that image from the same
feature maps to the output space X̂ (256×256). The binary
cross-entropy loss function is used as the reconstruction loss
between the input images X and the reconstructed images X̂
to update the network parameters via back-propagation:

LCAE(γt, γp) = −(γt log γp) + (1− γt) log(1− γp)
γl = gΘ(γt), γp = fΦ(γl)

,

(2)
where γp is the reconstructed image by the decoder network.

D. Behavior Cloning Network

We propose and design a BC network to learn the
behaviors of coordinated manipulation skills of bimanual



grasping from human demonstration data. Dexterous biman-
ual grasping skills can be considered into two categories:
(1) adaptive interaction with objects, and (2) dual-arm motion
coordination. To capture these skills, we have designed the
input to our network to include encoded tactile feature maps,
tactile image differences, and the robot’s proprioceptive state.
The encoded feature maps and tactile image differences
capture the human-object interaction skills. The robot’s pro-
prioceptive state, on the other hand, offers insights into the
coordination of movements between both arms. These inputs
collectively serve to reflect the complexity and adaptability
of dexterous grasping skills.

Following this idea, we use the encoded tactile feature
maps lt, the proprioceptive state ϕt, and the tactile image
difference et as input to the BC network to represent and
learn fine human skills. The discrete-time state-action pair
set G = {(s0, a0), (s1, a1), ..., (st, at), ...} is created to train
the BC network, where st = (lt, ϕt, et) denotes the robot
state and at denotes the Cartesian commands of the two
arms at time t.

Using such data of multiple modalities as input to train a
network requires a well-crafted embedding structure [28].
A common way of fusing a 2D feature map and a 1D
feature vector is to flatten the 2D feature map into a 1D
vector and concatenate the flattened vector and the 1D feature
vector [29]. However, we found that the flattening projection
results in the loss of spatial correlation of tactile information.
For fine dexterous pinch grasping of small objects, the
spatial information provided by tactile images is essential
in understanding the contact situation and the object being
contacted. To preserve the spatial information of the encoded
tactile feature maps, we specifically tile the proprioceptive
state of robots and the tactile image difference to match the
dimension of the tactile feature maps, so as to keep the spatial
information of the encoded tactile feature maps.

We then concatenate the tactile feature maps, the tiled
proprioceptive state maps, and the tactile image difference
on each feature channel. The convolutional layers in the BC
network first filter the input feature maps (46×16×16) to a
feature map (1×8×8), which is then flattened and fed into a
fully connected network (FCN). The FCN network outputs
a vector â ∈ R12 as the predicted Cartesian pose commands
of the two arms, including 3D position and 3D orientation
for each arm.

The loss function used to train the BC network consists
of two parts, which are formulated as:

LBC(a, â) = ∥a− â∥2 +
∥∥∥d− d̂

∥∥∥2
â = ψ(l, ϕ, e; Φconv,Φfcn)

(3)

where a ∈ R12 is the Cartesian pose commands of the two
arms from the human demonstration dataset, and â ∈ R12 is
the predicted Cartesian pose command by the BC network
ψ(·; Φconv,Φfcn), parameterized by Φconv and Φfcn; l, ϕ
and e denote the tactile feature maps, the proprioceptive
state maps and the tactile image difference, respectively.

The second term
∥∥∥d− d̂

∥∥∥2 is added to learn the dual-
arm coordination skills from human demonstrations, where
d ∈ R3 is the relative position between the two end-effectors,
and d̂ ∈ R3 is the predicted relative position between the two
end-effectors by the BC network.

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup and Data Collection

We validate the performance of LfD with tactile sensing
for robot dexterous manipulation on the challenging task:
the retrieval of small and fragile objects from the desk
using dual-arm pinch grasp and and ensuring a stable grasp
throughout the process. During dexterous grasping, external
vision can be easily occluded by the end-effector, potentially
leading to inaccurate object estimation. Therefore, our ex-
periments operate without using external visual sensors. By
default, the starting position of the object lies between two
robot hands, and the whole demonstration is operated in the
task space.

We collected 5 demonstrations for this task. The human
demonstration dataset collected in the grasping task includes
three main components: the Cartesian commands, the propri-
oceptive states, and the tactile feedback (i.e., tactile images
provided by the TacTip sensors). The Cartesian commands
and the proprioceptive states of the two arms are collected
at a frequency of 1000 Hz. Two Tactips record the tactile
image pairs at a frequency of 60 Hz. For each demonstration,
about 1500 tactile images are recorded. Before using the
collected dataset to train the networks, several pre-processing
methods are used to process the raw data. The proprioceptive
states of the two arms and the tactile images, collected at
different sampling rates, are synchronized using a linear
interpolation method to align their timestamps. A median
filter is then applied to smooth the Cartesian commands
at, i.e., the 6D poses of two end-effectors. For raw tactile
images, the structural similarity index measure (SSIM) [30]
is used to quantify the difference between the current frame
and the original frame, serving as a preliminary metric for
estimating contact forces.

B. Implementation detail

Our proposed model is developed using PyTorch [31]. For
the training of the CAE, we utilized a dataset that com-
prised 20 trials, including demonstrations of random behavior
unrelated to our experiment. This dataset was collected
using our robot setup, with each trial yielding approximately
1500 images captured during the demonstration phases. The
trained CAE exhibits a satisfactory reconstruction quality,
with a Mean Squared Error (MSE) loss of 0.015 and a Struc-
tural Similarity Index Measure (SSIM) of 0.934. The model
training process for CAE, which involved 100 iterations, was
completed in approximately two hours using an NVIDIA
1080 GPU. In the case of the BC network, the model was
trained using data from 5 collected demonstrations, with the
training process involving over 1,000 iterations and taking
approximately 5 minutes to complete.



(a) Robustness of the learned control policy against external disturbances.

(b) Successful re-grasping using the learned policy.

(c) Successful grasping of unseen objects using the learned policy.

Fig. 3: Generalization of the learned policy and its robustness to external disturbances.

C. Design of Validation Tasks

1) Learning grasping vial: The human demonstrator per-
forms teleoperation of dual-arm robots to grasp a plastic vial
(a test tube with Φ = 15.65mm) that is horizontally placed
on the table. A Behavior Cloning (BC) network is trained
using the gathered demonstration data, and the trained policy
is tested on dual-arm robots to validate its generalization
on unseen initial poses. During the evaluative phase, we
positioned the test tube between the end-effectors to evaluate
the performance of the learned policy given variations in the
starting position, specifically alterations of up to ±20 degrees
and displacements of up to ±2 centimetres in the objects’
locations.

2) Generalization to unseen objects: To evaluate the
generalizability of the trained policy to unseen objects with
a variation of radius, weight, or even materials (e.g., soft
and fragile objects), a set of test experiments have been
conducted using multiple objects of different radii ranging
from 11.7mm to 28.6mm.

3) Robustness against external disturbance: We also val-
idate the robustness of the trained policy against external
disturbances. We applied random external pushes from the
left, right, up, and down directions on the grasped object to
test if the two arms can coordinate their end-effectors’ poses
to ensure the balance of the object.

4) Re-grasping capability: The re-grasping experiments
are conducted to test if the trained controller is contact-
awareness and can perceive the loss of contact with the
object in order to make necessary adjustments according to
the tactile feedback and react to grasping failures. After the
successful normal grasping, we severely pushed the object
away to break its static equilibrium, and the object dropped
down between two end-effectors again.

D. Results of Grasping Tasks

The BC network trained on human demonstration data is
deployed on a real dual-arm robot to verify its performance
by the designed tasks. In both grasping tasks, the learned
control policy achieved a 95% success rate, even when the
initial poses of the tube were different from their original
pose in the demonstration. Occasionally, the policy might not
succeed in grasping the object on the first attempt. However,
it consistently adapts the behavior based on the contact
situation with objects and will attempt to repeat the grasping
action upon failure. The policy fails to grasp an object only
when the object falls outside the workspace boundaries.

The dual-arm robot can make prompt adjustments and
enable stable dexterous grasping by learning from only few
demonstrations. In the process of lifting the object, the dual-
arm robot achieves stable grasping by constantly twiddling
the “fingertips” (tips of TacTip sensors) and adjusting the



(a) Unsuccessful grasping of the baseline policy using exactly the same BC network trained with unchanged tactile feedback.

(b) Unsuccessful grasping of the baseline FCN policy trained with only the proprioperceptive information of end-effectors’ poses and positions.

Fig. 4: Results of the comparison study. The policy trained with both comparison frameworks bypass the object directly,
manoeuvring the end-effectors directly to the desired end-poses without making any physical contact, grasping attempts, or
interactions with the tube.

object to the central position. The process of retrieving an
object from the table and adjusting its pose to maintain bal-
ance requires very fine movements and interactions supported
by rich tactile information, where a 6-axis force/torque infor-
mation is not sufficient to discern different contact situations
in this scenario.

We evaluate the robustness of the learned policy against
external disturbances. It can be seen from Fig. 3a that the
dual-arm robot can make a proper adjustment to adapt to
pushes. Although the pose of the two-arm robot in con-
tact with the object was changed each time while being
pushed, the dual-arm robot can always fine-adjust the object
reactively to the center of the fingertips (Tactip sensors),
roll and move the object to the desired position. Compared
with the manually programmed behavior, this serves as a
feedback policy that has been successfully acquired from
human dexterity skills, which enables the dual-arm robot to
autonomously adjust the posture and ensure a stable grasp
quickly. It is noteworthy that such active rolling adjustment
has not been specially demonstrated by any separate trials,
but rather, this behavior was successfully captured by the rich
tactile data during the demonstration of pick-lift grasping.

To examine the reaction in the presence of an unknown sit-
uation, i.e., grasping failures, the learned policy demonstrated
contract-awareness of the falling object, i.e., loss of contact
according to the tactile feedback, and thus controls the robot
to restart the grasping process, which was not explicitly
programmed or demonstrated by the prior LfD data. The
result of the re-grasping experiments in Fig. 3b shows that
the tactile-based control learned from human demonstrations
is very effective in performing robotic dexterous bimanual
manipulation tasks autonomously and quickly without the
need for explicit manual programming or complex planning.

The policy also achieves successful grasping of previously
unseen objects, as shown in Fig 3c. Although the test objects
have a variety of sizes and weights compared with the object
used in the demonstration, the policy can still perform stable

grasping. The experiment results show that the trained policy
can generalize to unseen objects with similar cylindrical
shapes but with different sizes and weights.

E. Comparison Study

We conducted a comparison study to validate that suc-
cessful grasping is achieved by the active use of tactile
sensing. Besides training a BC network using the structure
shown in Fig. 2, we also train two different BC networks
for comparison. The first one has exactly the same BC
network structure but with frozen tactile images as input to
CAE, meaning that the encoded image feature input stays
unchanged during both the training and testing. The second
one has an FCN structure and uses the poses of two end-
effectors (both positions and orientation) as the input to
train the network. The proposed BC network demonstrates
convergence to a loss of 0.04 on the testing set. In contrast,
the network employing frozen tactile information achieves
convergence with a loss of 0.5, while the FCN converges
to a loss value of 1. These results prove that the effective
integration of tactile information significantly enhances the
convergence rate and leads to a reduced loss value in the
final model.

We also compared all the grasping performances of the
real dual-arm robot. As shown in Fig. 4, both BC network
structures without using the tactile information failed in
grasping the tube: robot arms failed to approach the ob-
ject from its initial pose, and instead, they bypassed the
object and moved towards the desired end-poses, showing
no contact-awareness. The experimental results indicate that
tactile feedback plays an essential role in providing contact
information for initiating contacts, generating appropriate
adjustments, lifting and retrieving to the desired target lo-
cations, enabling the dual-arm robot to perform very fine
and dexterous contact-rich skills.



(a) The output of the desired positions and angles of the BC network for the dual-arm robot during dexterous grasping.

(b) Relative weight changes of each modality and its corresponding tactile information.

Fig. 5: The output of the learned policy and the weight changes during the grasping.

F. Interpretability

To explicitly show how much different modalities influ-
ence the entire operation, we use the saliency map method
for calculating the weight distribution. The procedure for
calculating this distribution is formulated as follows [32]:

Wi =
N(I)

N(I)+N(J) ,Wj =
N(J)

N(I)+N(J) , (4)

where Wi and Wj are the weight distributions of each
modality. N(·) represents the normalization process. I is
the importance of the tactile information that is calculated
by adding all the absolute values of weight that the learned
policy distributed to tactile features. J is calculated in the
same way by adding all the absolute values of weight that
are distributed to robot proprioceptive state features.

The comprehensive process of dexterous pinch grasping
can be subdivided into four primary stages: pre-grasp, press-
ing, rolling and lifting, and stabilization. Each of these stages
utilizes tactile feedback in a distinct manner. In Fig 5b,
the weight changes during the complete dexterous pinch
grasping process are depicted. Initially, as the end-effector
moves toward the objects without any contact deformation
on the tactile sensor, the weight of the robot’s proprioceptive
state exceeds that of the tactile information. When the tactile
sensor comes into contact with the desk and is prepared
for a pre-grasp pose, the weight of the tactile information

increases (stage A). As the end-effector moves towards the
object and initiates contact, the weight attributed to the tactile
information increases, exceeding that of the proprioceptive
state (stage B). During the roll and lift phase, the weight
of the tactile information initially decreases, subsequently
achieving equilibrium with the proprioceptive state (stage C).
This indicates that during the lifting phase, the learned policy
necessitates both tactile information for successful in-hand
manipulation and proprioceptive information for effective
dual-arm coordination. Finally, upon successfully lifting the
tube, the weight reverts to the tactile information, facilitating
the stabilization of the tube (stage D).

V. CONCLUSION AND FUTURE WORK

In this work, we introduce a tactile-driven LfD frame-
work that demonstrates promising results in bimanual pinch
grasping with a limited number of real robot demonstra-
tions. Our exploration into leveraging the latest compliant
tactile sensors has led to the development of the presented
encoding methods that can effectively extract and capture
high-dimensional contact sensing from soft tactile sensors,
together with the fusion with proprioceptive feedback. The
interesting outcome is to confirm the possibility of learning
from real robot data directly, eliminating the necessity for
large datasets and extensive training time, if the right data is
effectively used.



Our comparison studies showed that without tactile sens-
ing, dexterous motor skills cannot be learned by few-shot
demonstrations with traditional robot sensing which is rather
limited. Despite the deformable sensor offering more com-
pliant behavior during grasping, the extracted feature from
the tactile image is negligible. Our approach demonstrates
remarkable robustness in the presence of external pushes
and is able to re-grasp the object if it drops. This ability
was not explicitly illustrated in the initial demonstrations,
emerging instead as a natural consequence of contact-aware
sensorimotor skills through state-action mapping.

Meanwhile, one apparent limitation is that the skill needs
to be trained on a specific task, and it can be generalized and
robust only around neighbourhood situations within a cate-
gory of similar tasks: generalization applies to new/unseen
objects that are similar to the demonstrated object of certain
variations. Another limitation is that the robot’s performance
is based on blind grasping and re-grasping, and has not yet
utilized external visual perception. In the future, integration
of the current framework with stereo vision could extend
the versatility and dexterity of object manipulation. Overall,
our proposed LfD framework provides an attractive solution
for learning from a few demonstrations with tactile sensing
and supports broad real-world applications in contact-rich
manipulation tasks.

REFERENCES

[1] H. Zhu, A. Gupta, A. Rajeswaran, S. Levine, and V. Kumar, “Dexter-
ous manipulation with deep reinforcement learning: Efficient, general,
and low-cost,” in 2019 International Conference on Robotics and
Automation (ICRA). IEEE, 2019, pp. 3651–3657.

[2] S. P. Arunachalam, S. Silwal, B. Evans, and L. Pinto, “Dexterous im-
itation made easy: A learning-based framework for efficient dexterous
manipulation,” arXiv preprint arXiv:2203.13251, 2022.

[3] Z. Sun, K. Yuan, W. Hu, C. Yang, and Z. Li, “Learning pregrasp
manipulation of objects from ungraspable poses,” in 2020 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2020, pp. 9917–9923.

[4] Y. Qin, B. Huang, Z.-H. Yin, H. Su, and X. Wang, “Dexpoint: Gener-
alizable point cloud reinforcement learning for sim-to-real dexterous
manipulation,” in Conference on Robot Learning. PMLR, 2023, pp.
594–605.

[5] Q. Li, O. Kroemer, Z. Su, F. F. Veiga, M. Kaboli, and H. J. Ritter, “A
review of tactile information: Perception and action through touch,”
IEEE Transactions on Robotics, vol. 36, no. 6, pp. 1619–1634, 2020.

[6] N. F. Lepora, “Soft biomimetic optical tactile sensing with the tactip:
A review,” IEEE Sensors Journal, vol. 21, no. 19, pp. 21 131–21 143,
2021.

[7] B. Ward-Cherrier, N. Pestell, L. Cramphorn, B. Winstone, M. E.
Giannaccini, J. Rossiter, and N. F. Lepora, “The TacTip Family: Soft
Optical Tactile Sensors with 3D-Printed Biomimetic Morphologies,”
Soft Robotics, vol. 5, no. 2, pp. 216–227, 4 2018.

[8] N. F. Lepora, Y. Lin, B. Money-Coomes, and J. Lloyd, “Digitac:
A digit-tactip hybrid tactile sensor for comparing low-cost high-
resolution robot touch,” IEEE Robotics and Automation Letters, vol. 7,
no. 4, pp. 9382–9388, 2022.

[9] W. Yuan, S. Dong, and E. Adelson, “GelSight: High-Resolution Robot
Tactile Sensors for Estimating Geometry and Force,” Sensors, vol. 17,
no. 12, p. 2762, 11 2017.

[10] M. Lambeta, P.-W. Chou, S. Tian, B. Yang, B. Maloon, V. R. Most,
D. Stroud, R. Santos, A. Byagowi, G. Kammerer et al., “Digit: A
novel design for a low-cost compact high-resolution tactile sensor with
application to in-hand manipulation,” IEEE Robotics and Automation
Letters, vol. 5, no. 3, pp. 3838–3845, 2020.

[11] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolu-
tional networks: Visualising image classification models and saliency
maps,” arXiv preprint arXiv:1312.6034, 2013.

[12] J. Jiang and S. Luo, “Robotic perception of object properties using
tactile sensing,” in Tactile Sensing, Skill Learning, and Robotic Dex-
terous Manipulation. Elsevier, 2022, pp. 23–44.

[13] M. Oller, M. P. i Lisbona, D. Berenson, and N. Fazeli, “Manipulation
via membranes: High-resolution and highly deformable tactile sensing
and control,” in Conference on Robot Learning. PMLR, 2023, pp.
1850–1859.

[14] E. Psomopoulou, N. Pestell, F. Papadopoulos, J. Lloyd, Z. Doulgeri,
and N. F. Lepora, “A robust controller for stable 3d pinching using
tactile sensing,” IEEE Robotics and Automation Letters, vol. 6, no. 4,
pp. 8150–8157, 2021.

[15] Y. Lin, A. Church, M. Yang, H. Li, J. Lloyd, D. Zhang, and N. F.
Lepora, “Bi-touch: Bimanual tactile manipulation with sim-to-real
deep reinforcement learning,” IEEE Robotics and Automation Letters,
2023.

[16] N. F. Lepora, A. Church, C. De Kerckhove, R. Hadsell, and J. Lloyd,
“From pixels to percepts: Highly robust edge perception and contour
following using deep learning and an optical biomimetic tactile
sensor,” IEEE Robotics and Automation Letters, vol. 4, no. 2, pp.
2101–2107, 2019.

[17] J. Lloyd and N. F. Lepora, “Goal-driven robotic pushing using tactile
and proprioceptive feedback,” IEEE Transactions on Robotics, vol. 38,
no. 2, pp. 1201–1212, 2021.

[18] M. Polic, I. Krajacic, N. Lepora, and M. Orsag, “Convolutional
Autoencoder for Feature Extraction in Tactile Sensing,” IEEE Robotics
and Automation Letters, vol. 4, no. 4, pp. 3671–3678, 10 2019.

[19] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal
representations by error propagation,” California Univ San Diego La
Jolla Inst for Cognitive Science, Tech. Rep., 1985.

[20] S. Tian, F. Ebert, D. Jayaraman, M. Mudigonda, C. Finn, R. Calandra,
and S. Levine, “Manipulation by feel: Touch-based control with deep
predictive models,” in 2019 International Conference on Robotics and
Automation (ICRA). IEEE, 2019, pp. 818–824.

[21] Z. Fu, T. Z. Zhao, and C. Finn, “Mobile aloha: Learning bimanual
mobile manipulation with low-cost whole-body teleoperation,” arXiv
preprint arXiv:2401.02117, 2024.

[22] H. Kim, Y. Ohmura, and Y. Kuniyoshi, “Goal-conditioned dual-action
imitation learning for dexterous dual-arm robot manipulation,” IEEE
Transactions on Robotics, 2024.

[23] T. Z. Zhao, V. Kumar, S. Levine, and C. Finn, “Learning fine-grained
bimanual manipulation with low-cost hardware,” arXiv preprint
arXiv:2304.13705, 2023.

[24] I. Guzey, B. Evans, S. Chintala, and L. Pinto, “Dexterity from touch:
Self-supervised pre-training of tactile representations with robotic
play,” arXiv preprint arXiv:2303.12076, 2023.

[25] R. Wen, K. Yuan, Q. Wang, S. Heng, and Z. Li, “Force-guided high-
precision grasping control of fragile and deformable objects using
sEMG-based force prediction,” IEEE Robotics and Automation Letters,
vol. 5, no. 2, pp. 2762–2769, 2020.

[26] R. Wen, Q. Rouxel, M. Mistry, Z. Li, and C. Tiseo, “Collaborative
bimanual manipulation using optimal motion adaptation and interac-
tion control: Retargeting human commands to feasible robot control
references,” IEEE Robotics & Automation Magazine, 2023.

[27] Q. Rouxel, K. Yuan, R. Wen, and Z. Li, “Multicontact motion
retargeting using whole-body optimization of full kinematics and
sequential force equilibrium,” IEEE/ASME Transactions on Mecha-
tronics, vol. 27, no. 5, pp. 4188–4198, 2022.
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