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Abstract

This thesis covers research in three separate but interlinked areas: superfluidity

in driven-dissipative polariton systems, path integral methods for the study of

metastability in Markovian systems, and phase space methods for spin master

equations. The unifying theme of the three works is their non-equilibrium na-

ture, but other overlaps are also present. The first two topics share a primary

analytical tool, the Feynman-Vernon path integral, with the first applying it to

quantum field theory and the second to quantum mechanics. The first and third

both utilise the Truncated Wigner method, albeit for very different purposes and

rather different phase spaces, while the second and third illustrate the twin ap-

proaches of geometric and deformation quantisation.

The first part is subdivided into three, dealing with different sub-projects un-

dertaken under the broad umbrella of superfluidity. These are, in order, the ab-

sence of it in coherently driven polaritons, the application of Truncated Wigner to

its study in Markovian polariton systems, and the analysis of whether non-linear

dissipation can cause a non-interacting bosonic gas to exhibit it. Non-equilibrium

functional integral methods are extensively used for all three but with varying

emphasis: the first features extensive diagrammatic calculations, the second fo-

cuses on the stochastic semi-classical limit of the integral, while the third fore-

goes Feynman diagrams for a generating function approach. Conclusive results

are obtained in the first project2, which completes a calculation by a predecessor

in the group to show that no regime of coherently driven polaritons exhibits su-

perfluidity; in the second I derive a method to extract the linear response tensor

used for identifying superfluid components via the Truncated Wigner method

derived from the functional integral, which should allow the numerical study of

systems too complicated for the analytical tools employed in the first sub-part;

in the final, third part I analyse a non-interacting bosonic system with non-linear

dissipation, serving as a minimal model of a dye cavity photon Bose-Einstein con-

densate, to find that at mean-field level it is predicted to exhibit superfluidity. I

then perform a significant portion of the associated fluctuation correction calcu-

lation, though difficulties with model regularisation prevent a conclusive answer

being given at this time.

2Published in Phys. Rev. B 108, 214513 (2023).
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Part II is devoted to calculations of Lindbladian spectra via the coherent state

path integral, the initial aim of which was the study of metastability of systems

governed by such Markovian superoperators. A working perturbation theory

based on the exact propagator for a coherently driven-dissipative harmonic os-

cillator is derived and tested on some toy models. This perturbation theory in

principle can be applied to systems not covered by the existing methods of third

quantisation3 and exact expressions for truncated Fock bases. The part also in-

cludes a review of the two pre-eminent approaches to the coherent state path

integral, emphasizing its links to holomorphic polarisation and highlighting the

difficulties associated with it and consequently instanton calculations performed

using it.

Finally, moving away from bosonic systems, I develop a stochastic Truncated

Wigner approach to spin degrees of freedom of arbitrary magnitude. This builds

on earlier work constructing the Stratonovich-Weyl representation of spin as func-

tions on the 2-sphere S2 by calculating the explicit form of the series expansion

of the associated star product to higher order than previously available in the lit-

erature. This is then used to study nearest-neighbour and long-range anisotropic

XY models in two dimensions, obtaining promising results, in particular the di-

rect observation of vortices associated with the BKT transition that destroy the

staggered XY phase in the first model. This method differs from existing discrete

Truncated Wigner methods and those specialised to spin-1
2 , in particular being

based around an expansion in a small parameter proportional to ℏ. This allows it

to be easily integrated with bosonic phase space methods, since a truncation can

then be carried out at a consistent order in ℏ.

3Third quantisation refers to canonical quantisation in the superoperator space.



Impact Statement

In Part I of this thesis I consider models capable of describing systems of driven-

dissipative exciton polaritons, an experimental platform that in recent years is

finding applications in spintronics, lasing, quantum simulators, and in industry

development of optical transistors. A better theoretical and numerical under-

standing of the behaviour of these systems is of direct relevance to much ongoing

work, and I consider approaches of both kinds. In particular I explore aspects

of superfluidity, an important physical phenomenon the study of which has pre-

viously led directly to two Nobel prizes in physics4, via an analytical approach

and also propose a numerical method for its study. Analytical results were pub-

lished in Phys. Rev. B 108, 214513 (2023), and it is hoped that the proposed

numerical method will lead to further publications for the group at a later time.

These methods are also applicable to other experimental platforms, and I use

the analytical approach to explore the possibility of superfluidity in a model of

non-interacting dye cavity photon Bose-Einstein condensation.

Part II is concerned with the application of coherent state path integrals to

the study of metastability in driven-dissipative systems with Markovian dynam-

ics and finite degrees of freedom. Metastability, especially bistability, of this kind

may be important for quantum devices, with some previous work relating bista-

bility in circuit-QED to improved qubit readout protocols. While the results in

this direction are of a preliminary nature, they provide a theoretical foundation

for possible future work in this direction by other members of the research group.

A review of the two important approaches to the coherent state path integral,

one of them less common in the literature and rarely contrasted against the other

but very important for theoretical work, is also provided to assist with this. A

manuscript based on this work will be in preparation after submission of this

thesis.

In Part III I develop a new stochastic numerical method for the simulation

of spin lattice systems. The method, a variant of the Truncated Wigner ap-

proach, is very general: it is suitable for arbitrary lattice geometries, both long

and short range interactions, and may be easily coupled to existing bosonic Trun-

4Half of the 1978 prize was awarded to Pyotr Kapitsa for his discovery of superfluidity in
Helium-4, and the 1996 prize went to David Lee, Douglas Osheroff, and Robert Richardson for
their discovery of it in Helium-3.
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cated Wigner methods to yield a simulation scheme for spin-boson systems. The

method may thus find application in a large variety of research. Some new results

are obtained for important models, in particular an explicit observation of theo-

retically predicted BKT vortex proliferation in the nearest neighbour interaction

driven-dissipative anisotropic XY model. A manuscript based on this work will

be in preparation after submission of this thesis.
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Chapter 1

Superfluidity

We begin our discussion with a review of superfluidity because, for all the de-

tails of a given open quantum system or subsequent field-theoretic or stochastic

machinery, this is the phenomenon we are actually interested in studying. At the

same time it will likely be the most familiar to a reader coming from outside the

open quantum systems community and, moreover, is such a broad field in itself

that it will be important to establish a shared language and perspective before

proceeding with any specifics.

Superfluidity is a well known phenomenon in quantum mechanics. First dis-

covered in 1937 in liquid helium-4 [1], [2], it is characterised by a series of un-

usual hydrodynamic properties such as vanishingly small viscosity, the inability

to rotate except in quantised vortices, and the existence of metastable currents.

It has been widely studied and found to occur in a variety of other equilibrium

systems including helium-3, ultra-cold bosonic atoms, and charged Cooper pairs

in superconductors [3], [4].

Of special note is that, in equilibrium systems, the mechanisms behind su-

perfluidity are well understood and these different hydrodynamic phenomena

have generally been observed together, so that the classic notion of superfluid-

ity groups together multiple behaviours into a “complex of phenomena” [5]. Yet

when we cross over into the realm of open quantum systems, how superfluid-

ity manifests is less understood and, more importantly, it is unclear whether all

the effects seen in equilibrium will continue to manifest together [6]–[8]. If we

wish to discuss superfluidity in such systems, then, we must first identify which

part of this complex of phenomena we consider as most essential to a superfluid’s

definition.

In many ways the principal property is that of a persistent flow without vis-

cosity — the prototypical example of a superfluid is liquid helium-4 flowing

through a capillary with no dissipation via the capillary walls, as observed by

Allen and Misener [2]. It is upon this intuition that perhaps the most famous

method of identifying superfluidity, the Landau criterion, is based. Seemingly

25
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requiring only knowledge of the excitation spectrum of a given system and being

applicable at both zero and non-zero temperature, it is often the primary tool

for identifying superfluid regimes. Were it to also hold for open quantum sys-

tems, the majority of the questions in this portion of the thesis would be easily

answerable.

Unfortunately, all the more so because a fair number of works in the field

have been carried out on the assumption that it holds [6], [9]–[13], the Landau

criterion in its conventional form fails in the open system setting. Given that

the criterion is such a standard tool , it is important to understand why this oc-

curs. To this end we will explore this question in the subsequent sections, start-

ing with the criterion as it is typically presented. We will then lift the criterion

into a field-theoretic setting to better understand its underlying assumptions and

demonstrate how these break down in an open system setting.

With this accomplished, the final section will be devoted to a proposed alter-

native way of characterising superfluidity. Generalised from an equilibrium ar-

gument due to Baym [14], this approach defines a superfluid as a system possess-

ing unequal linear responses of its current to longitudinal and transverse current

perturbations. This definition, by now standard [15]–[20], relies purely on the

properties of the system’s linear response and thus transfers easily from closed to

open systems.

1.1 The Landau Criterion

To understand the pitfalls of the Landau criterion, we must first recall its typ-

ical formulation. Due to and named after Landau [16], the criterion is largely

phenomenological, calling for no information about the system other than its ex-

citation energy spectrum ϵ(p), and is motivated by the following clear physical

reasoning (we follow the classical textbooks [21], [22]).

Consider a fluid at zero temperature with total mass M moving with velocity

V relative to a carrying medium (the frame of which we shall refer to as the labo-

ratory frame) such as a capillary or perhaps a semiconductor substrate. Suppose

now that, through a dissipative interaction with some external perturbation (e.g.

a capillary wall or substrate defect), a quasiparticle with momentum p is created.

In its reference frame, the energy and momentum of the fluid become

Pf = p, (1.1)

Ef = ϵ(p), (1.2)
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which, when translated to the laboratory frame, become

Pl = Pf +MV = p+MV , (1.3)

El = Ef +V · Pf +
1
2
MV 2 = ϵ(p) +V ·p+

1
2
MV 2. (1.4)

The last part is simply the energy of the moving fluid without the excitation, and

we see that in order for this interaction to have truly been dissipative it must be

that

ϵ(p) + V ·p < 0. (1.5)

Thus, in order for dissipation via interactions with the carrying medium to be

possible, the Landau criterion must be satisfied:

min
p

[ϵ(p) + V ·p] < 0. (1.6)

For an isotropic system this is equivalent to minp[ϵ(p) −V p] < 0, and the largest

value of V for which this does not hold Vcrit = minp
ϵ(p)
p is termed the critical

velocity. This is because for fluid velocities not exceeding this value it is ener-

getically unfavourable for the system to generate excitations and thus it cannot

dissipate energy via this route — non-dissipative flow characteristic of a super-

fluid occurs.

That the criterion may be stated in less than a page and with so few equa-

tions is no doubt part of its enduring appeal. Moreover, all that is required being

the excitation spectrum, superfluidity can be easily tested by an experimental-

ist capable of measuring it or a theorist in possession of bare or dressed Greens

functions. Let us, however, consider what might possibly go wrong with this

approach under different circumstances.

Firstly, when deriving the criterion, we have used a change of reference frame.

This may cause unease in some when dealing with an optical carrying substrate

because the expression for energy in different frames would now be affected by

the Fresnel drag effect [23]. It is possible, however, to arrive at the criterion while

staying purely in the laboratory frame, thus avoiding this complication.

Next, the above analysis assumed that the fluid was at zero temperature and

thus possessed no excitations prior to the interaction with the medium. At finite

temperature such excitations will be present and the portion of the fluid associ-

ated with them will in fact experience dissipation even when the Landau criterion

is satisfied. This too is easily addressed with an approach known as the two-fluid

model, and we will briefly outline this in the next section.

A more significant question arises when a system is being externally driven.

The Landau criterion argues that an energetic instability of a flow [16] will lead

to dissipation via interactions with the medium, which at zero temperature or in
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equilibrium will gradually take energy out of the flow and destroy it (manifesting

a dynamical instability). It is not immediately obvious, however, whether this

is still the case if the flow is being constantly replenished with energy via the

external drive — can a flow be dissipative yet still persistent? The answer is yes

(see [15] or the mean-field section of Part Ic), but the reason for this is better

understood with the criterion embedded in a field-theoretic language.

Finally, the criterion actually only addresses a very small portion of the ‘com-

plex of phenomena’ that make up superfluidity, namely its ability to maintain a

persistent non-dissipative flow. From the above paragraph we already see that,

in an open system, ‘persistent’ and ‘non-dissipative’ may already not be the same

thing, but it is also not immediately clear why a fluid capable of persistent flow

should also exhibit properties like irrotationality. We will touch on these matters

briefly in our field-theoretic discussion, but more broadly it will be seen in the

main body of Part Ia that this indeed need not be the case — coherently driven

polaritons may exhibit persistent flow yet still be sensitive to shear forces.

1.2 The Two-Fluid Model

At finite temperature, we consider the excitations already present in the fluid as

a gas with energy distribution function nr(ϵ) in its rest frame and moving with

some velocity v. Since

nr(ϵ) = nl(ϵ+ v ·p) (1.7)

we have that the momentum of the gas per unit volume in the laboratory frame

is

Pl =
1

(2π)3

∫
d3ppnr (ϵ(p)− v ·p) . (1.8)

Expanding this for small velocity,

Pl = − 1
(2π)3

∫
d3pp(v ·p)

∂nr
∂ϵ

= − v
3(2π)3

∫
d3pp2∂nr

∂ϵ
, (1.9)

and we can thus associate a density to this gas of excitations:

ρn = − 1
3(2π)3

∫
d3pp2∂nr

∂ϵ
. (1.10)

This density will not generally equal the total density of the fluid (indeed it is

zero at T = 0) but will depend on the distribution function. At the same time,

since the excitations are already in existence, they will be able to dissipate via

interactions with the medium at flow velocities below those stipulated by the

Landau criterion. The combined behaviour of a fluid at finite temperature will

thus be a ‘normal’ component of the fluid comprising the above gas of excita-
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tions and being at rest with the carrier medium (since its flow is dissipative), and

the rest of the fluid exhibiting non-dissipative superfluid flow below the critical

velocity.

1.3 Field Theory Model

Let us now construct the Landau criterion in the context of field theory, this be-

ing the language of our subsequent work, the prevailing language in the theory

of phases of matter, and in general a helpful framework in which to see the sub-

tleties of the criterion. Throughout we shall focus on a toy bosonic model that

exhibits superfluidity via a U (1) symmetry breaking transition.

1.3.1 Condensates and Irrotational Flow

The zero-temperature Lagrange density for a system of bosonsH0 = ψ̄(E0− 1
2m∇

2)ψ

with a four-body point interaction Hint = V |ψ|4 and chemical potential µ (µ′ =

µ−E0) may be written as1

S = ψ̄∂tψ +
1

2m
ψ̄∇2ψ +µ′ |ψ|2 −V |ψ|4. (1.11)

This action possesses a U (1) symmetry associated with the family of transforma-

tions ψ→ eiαψ which leave it invariant.

Asymptotically in ℏ the possible states of the system will be determined by

the solutions of the classical equations of motion of this action. If the state in

which the system was being evaluated were known (e.g. the ground state), this

would fix the boundary conditions of these equations. We will instead work back-

wards, searching for time-homogeneous solutions without fixed boundary condi-

tions and then identifying them with possible macroscopic states.

The equations of motion are obtained by searching for the stationary point of

the action, yielding

δS

δψ̄
= ∂tψ +

1
2m
∇2ψ +µ′ψ − 2V |ψ|2ψ = 0 (1.12)

and its complex conjugate (we will not write down conjugate equations in this

chapter, since they are trivial in the zero-temperature/equilibrium theory). If

spacetime-homogeneous solutions are of interest, this reduces to

µ′ψ = 2V |ψ|2ψ. (1.13)

1The present action has been constructed in the coherent state path integral formalism, the de-
tails of which may be found in [24] or [25], and we have redefined the fields to turn the condensate
oscillation into a µ′ |ψ|2 action term. Chap.3 and Part II of this thesis also cover the construction
of such path integrals.
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If µ′ ≤ 0 the only solution isψ = 0 and there is no symmetry breaking. If, however,

µ′ > 0, there appears a family of solutions characterised by

|ψ| =
√
µ′

2V
(1.14)

and arbitrary argψ. These states correspond to the occurrence of condensation

into a spatially homogeneous state and in finite systems the ground state of the

system will be a symmetry-preserving superposition of these. In the thermody-

namic limit, however, the system may become pinned in one with no transition

rate into the others, leading it to become the effective ground state and causing

symmetry breaking.

Relaxing the requirement of spatial homogeneity, we are led to the equation

1
2m
∇2ψ +µ′ψ − 2V |ψ|2ψ = 0. (1.15)

Before considering specific solutions, suppose that we decompose an arbitrary

solution in polar form as ψ =
√
ρeiθ, and use that to write down the mean-field

system current:

j =
1

2mi

[
ψ̄∇ψ −ψ∇ψ̄

]
=
ρ

m
∇θ = ρv. (1.16)

We may thus identify 1
m∇θ with the flow velocity v, which immediately demon-

strates that the flow is irrotational: ∇×v ∝ ∇×∇θ = 0. Thus any macroscopic flow

state that our model supports will be irrotational, just as we would expect of a

superfluid.

1.3.2 Energetic Stability: The Landau Criterion in Field Theory

Let us now specialise the discussion to plane wave states ψ =
√
ρeiq·xeiα, such that

the equation of motion becomes (the global phase α is once again arbitrary)

µ′ − |q|
2

2m
= 2V ρ. (1.17)

These states are precisely the sorts of uniform fluid flows that the Landau crite-

rion considers, and so we should be able to apply similar reasoning to them.

In order to do so, let us Fourier-transform our action into (k = (ω,k))

S =
∑
k

[
ω − |k|

2

2m
+µ′

]
|ψk |2 −V

∑
k,k′ ,p

ψ̄k+pψ̄k′−pψkψk′ (1.18)

and expand it in small fluctuations around a uniform flow ψk = ψq =
√
ρδ(ω)δ(k−

q) satisfying the equations of motion (we choose the flow to be real for simplicity,

using our global phase freedom). This is made simpler by first performing a
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transformation ψk→ ψk−(0,q) so that the uniform flow state is ψk = ψ0δ(k) and the

action is

S =
∑
k

[ω − ϵ(k) +µ′] |ψk |2 −V
∑
k,k′ ,p

ψ̄k+pψ̄k′−pψkψk′ (1.19)

with ϵ(k) = |k+q|2
2m .

The expansion may be written as

S = S0[ψq] +
∑
k

δS

δΨ
µ
k

[ψq]δΨ
µ
k︸                ︷︷                ︸

= 0 since ψq satisfies the equations of motion

+
1
2

∑
k,k′

δS

δΨ̄
µ
k δΨ

ν
k′

[ψq]δΨ̄
µ
k δΨ

ν
k′ + . . . (1.20)

with the aid of Nambu spinors Ψ k = (ψk , ψ̄−k). Setting aside the constant and the

zero linear terms, we may examine the quadratic part of this expansion:

S2[ψq] =
1
2

∑
k

δΨ̄ k

ω+µ′ − 4Vψ2
0 − ϵ(k) −2Vψ2

0

−2Vψ2
0 −ω+µ′ − 4Vψ2

0 − ϵ(−k)

δΨ k . (1.21)

and calculate the equations of motion corresponding to it, which is equivalent to

linearising the original equations around our chosen flow solution:

ωδΨ k =

ϵ(k) + 4Vψ2
0 −µ′ 2Vψ2

0

−2Vψ2
0 µ′ − 4Vψ2

0 − ϵ(−k)

δΨ k . (1.22)

Excitations around the uniform flow are thus governed by the above eigenvalue

equation. This can be solved [16] via the ansatz

δψk = u(p)δ(ω −ω(p))δ(k−p) + v̄(p)δ(ω+ω(p))δ(k+p), (1.23)

which yields (substituting (1.17))

ω(p)

u(p)

v(p)

 =

ϵ(p) +µ′ − 2ϵ(0) µ′ − ϵ(0)

ϵ(0)−µ′ 2ϵ(0)−µ′ − ϵ(−p)

u(p)

v(p)

 . (1.24)

and the corresponding energy fluctuation is

δE =ω(p)
[
|u(p)|2 − |v(p)|2

]
, (1.25)

which must be positive for any p if the state is to be energetically stable.

Doing the calculation explicitly, we find

ω±(p) =
p ·q
m
± 1

2
|p|
√
m

√
|p|2
m

+ 4µ′ − 4ϵ(0), (1.26)
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[
|u±(p)|2 − |v±(p)|2

]
=

 |p|22m
± 1

2
|p|
√
m

√
|p|2
m

+ 4µ′ − 4ϵ(0) +
(
µ′ − ϵ(0)

)
2

−
(
µ′ − ϵ(0)

)2
.

(1.27)

Since condensation into the flow state requires µ′ > ϵ(0) (see 1.17),[
|u+(p)|2 − |v+(p)|2

]
> 0 and

[
|u−(p)|2 − |v−(p)|2

]
< 0. (1.28)

Moreover, ω+(p) = ω−(−p), so it is sufficient to check energetic stability using

ω+(p) and verifying that it is nowhere negative. This circumstance is common

enough that it frequently works to simply consider ω+(p) from the start, ignoring

the negative ‘ghost branch’2 ω−(p) and the checks on u and v.

Plotting ω(p)+ for q = 0 in Fig.1.1, we see the familiar form of the Bogoliubov

spectrum with sound velocity vs = dω+
dp (0) =

√
µ′

m .

p

ω+

Figure 1.1: Excitation spectrum of a zero temperature weakly interacting Bose gas. The
spectrum has the distinctive Bogoliubov form, with a linear dispersion for low momenta
and a quadratic one for higher ones.

It is easy to see that in this case the sound velocity is also the critical velocity,

with a flow velocity
∣∣∣ qm ∣∣∣ > vs leading to an energetic instability (see Fig.1.2). Using

Landau’s logic, interactions with the carrying medium of our Bose gas (which we

have not specified) would thus be able to reduce the total energy of the system by

creating excitations associated to the portion of the diagram below the horizontal

axis and thus dissipate energy. We have thus recovered the Landau criterion in

the field-theoretic picture, the same logic as above carrying over to models more

complicated than our toy one. With this in hand, we may now consider two

situations in which the criterion is not applicable.

Firstly, recall that in this formalism we obtained the excitation spectrum as the

eigenvalues of linearised classical equations of motion. Linear stability analysis

2The discussion presented here explains why the presence of the negative branch ω−(p), often
confusingly called an energy spectrum, does not immediately imply energetic instability, showing
that the real energy fluctuation involves another term |u−(p)|2−|v−(p)|2 which typically makes the
overall sign positive.
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p

ω+

Figure 1.2: Excitation spectrum of a zero temperature weakly interacting Bose gas
flowing at velocity q

m exceeding the critical velocity vs. In this picture the velocity was
chosen to be in the ‘positive’ p direction, so that the instability is driving the fluid back
to a lower velocity.

in general yields complex eigenvalues, and the fact that all of ours were real is a

feature specific to equilibrium systems — open quantum systems with drive and

dissipation typically have complex spectra. Let us thus consider how the analysis

is altered if we suppose our tilted Bogoliubov spectrum also has an imaginary

component.

p

ω+

- ⅈ κ

Figure 1.3: Excitation spectrum of a hypothetical dissipative weakly interacting Bose
gas flowing at velocity q

m exceeding the critical velocity vs. The red curve is the
imaginary portion of the spectrum, which here has been assumed constant and negative
— for real models this will typically not be constant, but the negativity is essential for
dynamical stability.

For the system to be dynamically stable, the imaginary portion of the eigen-

values found during stability analysis must be negative. This is distinct from

energetic stability since failure of dynamical stability will lead to an immediate

‘blow-up’ of the system with no need for dissipative interactions with a carrier

medium or similar external considerations. Let us thus simply postulate a con-

stant, negative imaginary component of the spectrum −iκ.
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This means that any excitation now has a finite lifetime τ = 1
κ and the system

thus brings itself back to its original state after being perturbed. Contrast this

with the equilibrium case where an excitation, once created by an interaction,

was assumed to persist and lead to the eventual collapse of the flow once enough

had been created. This important distinction is due to the fact that the spectra

of equilibrium systems lie exactly on the boundary of stability and are thus less

stable than driven-dissipative systems. Indeed, from the point of view of lin-

ear stability analysis, equilibrium systems are the ‘odd‘ ones as their eigenvalues

belong to a very restricted class.

When, then, would we expect a flow of a driven-dissipative system that ex-

ceeds the Landau critical velocity to be destroyed? A heuristic answer might go

as follows: supposing we consider the most energetically unstable excitation and

postulate that interactions with the carrier medium generate it at some rate λ

independent of the existing number of excitations, we find the following simple

rate equation for its occupation ne:

dne
dt

= λ−κne. (1.29)

This equation can never drive the occupation to above λ
κ meaning that, unless

λ very significantly exceeds κ, interactions with the medium will be unable to

generate sufficient excitations to destroy the flow. Whether λ is sufficiently high

enough will depend on the nature of interactions with the carrier medium, which

were left unstated in the original form of the Landau criterion as there κ = 0

meant that any rate was sufficient. We see, thus, that in order to apply the Landau

criterion to driven-dissipative systems, we would need to specify in detail the

form of the dissipative interactions with the carrier, which would complicate its

application considerably. It is certainly no longer true that any flow exceeding

the Landau critical velocity (as derived from the real part of the spectrum) is

unstable.

1.3.3 Sufficiency of the Landau Criterion

From the discussion of the previous section, the reader may get the impression

that driven-dissipative systems are in fact even more prone to superfluidity than

equilibrium ones. With their more stable spectra it may seem that, while the

Landau criterion may no longer be immediately used to prove a flow above a crit-

ical velocity is unstable, any flow below the Landau critical velocity must be even

more stable than in equilibrium. This would suggest that the Landau criterion in

the driven-dissipative setting simply goes from a ‘necessary and sufficient’ con-

dition to a merely sufficient one for superfluidity.

This is, unfortunately, not the case, because there is at least one other mecha-
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nism which undermines its logic. This mechanism is in fact not obviously specific

to the open system setting, and it may simply be that it is encountered much less

frequently in the equilibrium setting.

Recall our expression (1.17) for the density of the flowing condensate:

µ′ − |q|
2

2m
= 2V ρ. (1.30)

The condensate fraction is thus zero if µ′ < |q|
2

2m , or |q|m >
√

2µ′
m = vc. This defines

a new critical velocity above which the flowing condensate solution simply does

not exist. For our system this velocity is greater than the Landau critical velocity

vc =
√

2vs and thus energetic instability sets in first. Were our system’s spectrum

stabilised by drive and dissipation, however, it would in principle be possible to

encounter this vanishing of the flow solution at sufficiently high flow velocity.

More specifically to the work of Part Ia, we will encounter a system for which

the classical equation of motion reads3

(
i∂t +ωp +

1
2m
∇2 + iκ

)
ψ −Fp −

V
2
|ψ|2ψ = 0. (1.31)

We observe that we cannot now simply construct a flow solution via the ansatz

ψ = ψ0e
iq·x because in the resulting equation(

ωp −
q2

2m
+ iκ

)
ψ0e

iq·x −Fp −
V
2
|ψ0|2ψ0e

iq·x = 0 (1.32)

no eiq·x factor appears on the Fp term and thus it cannot be divided out. This

factor, corresponding to a coherent drive of the condensate, in effect locks the

condensate to a specific frequency and momentum (here both zero). Taking the

spectrum of the stationary condensate and applying the Landau criterion in this

case is meaningless, because the flow states which would correspond to the tilted

spectrum and give a critical velocity simply do not exist — the condensate is

locked to the pump.

An interesting feature of this pumped model is that, if the pump is tilted

via Fp → Fpe
iq·x, then a flow solution does exist and is stable. Yet the system is

still clearly not a superfluid (as will be confirmed by the criterion we introduce

in the next section when we apply it in Part Ia). This is because we had to tilt

the pump to permit the flow and this is now the only flow that may exist, still

being locked to the pump. We thus see here another instance of the Landau

criterion coupling the ‘complex of phenomena’ that is superfluidity too tightly —

the existence of persistent flows is a poor indicator of other features of superfluids

3We have taken the equation for the classical Keldysh field as this most closely corresponds to
an equilibrium equation of motion. The reader unfamiliar with Keldysh may ignore this remark
for now and return to it once Keldysh methods have been introduced later in the thesis.
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such as insensitivity to shear forces.

The circumstances described in this section, in which the Landau criterion is

inapplicable, may be summarized as follows. The Landau criterion assumes that,

for any given velocity, it is possible to construct a solution of the system’s equa-

tions of motion moving with that velocity, and then analyses the linear stability

of that solution. This analysis is indirect, however, since as typically used the

criterion takes the spectrum of one non-flowing solution and then extrapolates it

to flows it supposes exist by linearly tilting that spectrum. If, however, the flows

corresponding to a given ‘tilted’ spectrum are not actual solutions of the equa-

tions of motion, then linear stability analysis is meaningless and the criterion is

inapplicable.

We see thus that the Landau criterion is generally unreliable in the open quan-

tum system setting. It cannot rule out superfluidity because it does not suffi-

ciently specify the nature of the dissipative interaction with the carrier medium,

nor can it confirm superfluidity due to the incomplete way in which it performs

linear stability analysis.

1.4 Superfluid Linear Response

With the reader hopefully convinced that the Landau criterion is an unreliable

tool for open quantum systems, we now seek to introduce a replacement for it.

We will begin by returning to the equilibrium setting for intuition, before ex-

tending the result to driven dissipative systems and arguing that it is sufficiently

general to still apply.

The criterion we now introduce was first presented in the equilibrium set-

ting by Baym [14] and is covered in great detail in the cited work. Here we will

present a highly abridged version, focusing on the most core components of the

argument.

To this end, consider a fluid with Hamiltonian H in its rest frame at inverse

temperature β in equilibrium. Placing the fluid in a box and taking the box to

be moving with velocity v, the standard argument about the form of the macro-

canonical ensemble given broken global symmetries [26] requires us to write it

in a frame in which the walls of the box are stationary. Using our formula for

energy in different reference frames once again, we find the ensemble in the box

frame to read

1
Zv
e−β[H−P ·v+ 1

2Mv
2−µN ], (1.33)

Zv = Tre−β[H−P ·v+ 1
2Mv

2−µN ], (1.34)

where P is the total momentum of the fluid, M its total mass, µ and N the chem-
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ical potential and particle number. The core of the argument about to be pre-

sented is that by considering different shapes of the box, we can induce either the

whole fluid or only its superfluid component to move.

To this end, let us consider the linear (in v) response of the system’s current

j(x) to our movement of the box. At linear order in v the term Mv2 will not

appear, and we are thus interested in the response to the term P · v. Writing

P = m
∫
dxj(x), up to the factor m we are seeking the linear response of j(x) to∫

dxj(x) · v.

In general, when working with linear response of j(t,x) to a perturbation∫
dxj(t,x) ·v(t,x) to the Hamiltonian, the resulting expression will be of the form

(we contract on repeated indices throughout this work)

δji(t,x) =
∫
dt′dx′χij(t,x; t′,x′)vj(t

′,x′) (1.35)

where χij is some tensor determined by the precise nature of the system. In the

zero temperature and driven-dissipative cases it is given by (we typically omit ℏ

throughout this work except when it is relevant, here contrasting with β)

χij(t,x) =
i
ℏ

Θ(t − t′)⟨[ji(t,x), jj(t
′,x′)]⟩ (1.36)

while in the equilibrium setting, because the perturbation also changes the macro-

canonical density matrix and there is no t-dependence, the expression is differ-

ent:

χ
eq
ij (t,x) = β

[
⟨ji(x)jj(x

′)⟩ − ⟨ji(x)⟩⟨jj(x′)⟩
]
. (1.37)

The argument about to be made, however, does not depend on either of these

specific forms. Rather it will rely on properties that can be ascribed to this tensor

on general grounds as follows.

Firstly, we will restrict ourselves to time and space-translationally4 invariant

systems. The former property is obviously true of systems in equilibrium, but is

also true of many driven-dissipative systems: dissipation is often time indepen-

dent, while drive may also either be time-independent or it may be possible to

gauge out the dependence. At any rate, we will proceed on the assumption that

this is so — a definition of superfluids for systems with explicitly non-stationary

dynamics would run into questions like whether the superfluid is always super-

fluid or only part of the time and is beyond our present scope.

The second property is clearly not always true even in equilibrium, but is a

reasonable requirement on similar grounds to our last comment about station-

4Here we mean approximate space-translational invariance in the bulk of the box containing
the fluid. Such a system’s response tensor will be well approximated by a space-translationally
invariant form outside boundary regions near the box’s walls, and these regions may be neglected
when considering the macroscopic properties of a very large system.
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arity. A theory of superfluidity without these assumptions would be forced to

consider systems that might only be superfluid in certain regions of the system,

and would pose problems for the Landau criterion too since the standard spec-

tral representation of Greens functions relies on this invariance (as indeed it also

does on the dynamics being stationary).

Given these assumptions, the form of the response tensor is constrained to

χij(t − t′,x − x′). (1.38)

With this, let us rewrite (1.35) using the Fourier transform of our tensor and the

fact that our v(t,x) is in fact constant, and consider the response of the component

of the current j∥ parallel to v:

δj∥(t,x) =
∫
dt′dydωdk∥dk⊥ ei(k

∥(x∥−y∥)+k⊥·(x⊥−y⊥))e−iω(t−t′)χij(ω,k)
vivj
|v|2

v. (1.39)

Taking the box containing the fluid to be of finite extent in all directions, we may

still perform the t′ and ω integrals between −∞ and∞ to obtain

δj∥(t,x) =
∫
dydk∥dk⊥ ei(k

∥(x∥−y∥)+k⊥·(x⊥−y⊥))χij(0,k)
vivj
|v|2

v. (1.40)

This shows that, for a time-independent v, the response will also be static. This

is of course generally so in equilibrium since only the change in equilibrium ex-

pectation value is taken into account, meaning any transient behaviour of the

system is ignored. Since, when studying phases of driven-dissipative matter, we

are typically interested in the steady-state behaviour rather than transient effects,

it makes sense to focus on the static response in that case also.

Finally, we can consider two situations. First, suppose the box has infinite

extent in its direction of motion but finite in the others — this corresponds to

the integral in y∥ being between −∞ and∞. This integral will yield δ(k∥) and set

that component of the momentum to zero. In this case, since the walls of the box

are now interacting with the fluid only via shear and superfluid is insensitive to

shear, only the ‘normal’ or non-superfluid portion of the fluid should respond.

At the end we may also extend the box’s walls to spatial infinity, obtaining

δj∥n(x) = lim
k⊥→0

lim
k∥→0

χij(0,k)
vivj
|v|2

v. (1.41)

On the other hand, suppose we first infinitely extend the box in all directions

orthogonal to the direction of motion. Now the fluid is being pushed by the rear

wall and is expected to move irrespective of whether it is superfluid or not. This

situation interchanges the momentum limits and we obtain the response of the
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total fluid:

δj∥t (x) = lim
k∥→0

lim
k⊥→0

χij(0,k)
vivj
|v|2

v. (1.42)

If these responses are unequal, it stands to reason that a portion of the fluid

acts as superfluid in the direction of the v used — by taking v in different di-

rections, one may account for anisotropic systems just as the Landau criterion

may yield different critical velocities in different directions. In equilibrium these

responses may also be related directly to normal and superfluid densities via

identities known as sum rules, but these do not easily generalise to the driven-

dissipative case.

While at first it may seem like the line of reasoning above relied on equi-

librium considerations (namely the logic about which frame one must write the

macrocanonical ensemble in), let us consider the core meaning of the above rea-

soning. Namely, there exists a general form of static perturbation∫
dxj(ω = 0,x) · v(x) (1.43)

for a Hamiltonian which can act like a shear in a given direction if v(k∥,k⊥) =

v(k⊥) or a push if v(k∥,k⊥) = v(k∥) independent of the form of the Hamiltonian or

the carrying medium (the box can be anything so long as it has spatial extent and

confines the fluid).

Nothing about the form of this perturbation restricts it to an equilibrium set-

ting, it captures our intuition about the insensitivity of superfluids to shear (this

will be made even more explicit in section 4.3 for an isotropic setting), and every

equilibrium superfluid reacts to it as above. The specific form of the response to

it outlined above is thus a very strong contender for a generalised definition of

superfluid that may be used for open quantum systems, and is the one we will

use throughout this work.
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Divergences in the Linear Response
of Coherently Driven Microcavity
Polaritons and Their Relation to

Superfluidity
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Chapter 2

Coherently Driven Microcavity
Polaritons

2.1 Microcavity Polaritons and Superfluidity

As was laid out in the previous chapter, research on systems exhibiting super-

fluidity in thermal equilibrium has been extensive and far-ranging since the phe-

nomenon’s discovery. More recently, with the increasing interest in driven-dissip-

ative systems which never thermalise due to constant decay and must be pumped

to maintain a steady state, work has begun on identifying whether the same phe-

nomena can occur in these. Examples of such systems are numerous, including

Bose-Einstein condensates (BEC) of photons [1], [2], cold atoms coupled to pho-

tonic modes in optical cavities [3], and cavity arrays [4]–[6]. Of particular note are

microcavity polaritons [7]–[9], which are two-dimensional bosonic quasiparticles

made of photons trapped in a cavity strongly coupled to excitons in a quantum

well. While we shall focus here on their more fundamental properties, in recent

years microcavity polaritons have found many practical applications [10]–[12]

including spintronics [13]–[15], lasing [16]–[18], and optical circuits [19], [20].

Polariton experiments have observed a number of effects usually associated

with superfluidity, such as the suppression of scattering for flow past a defect

[21]–[23], metastable persistent currents [24], and quantised vortices [25]. The

question of how superfluidity may occur in these out-of-equilibrium systems has

proved contentious [25]–[31], however, and it is unclear whether all the effects

seen in equilibrium will continue to occur [7], [32]. The Landau criterion in its

usual form is, as we have discussed, no longer applicable to open systems. This

opens up space for unusual situations, discussed below, such as persistent cur-

rents without suppressed scattering [27] and suppressed scattering without zero

viscosity [33].

The properties of microcavity polaritons are heavily dependent on how the

system is pumped — that is, on how photons are injected into the cavity. When

45
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this occurs incoherently, meaning photons are injected far off-resonance, then

relaxation processes involving excitons and photons will under the right condi-

tions lead to the “condensation” of polaritons into a low energy state [34]. This

process involves the spontaneous breaking of the U (1) phase symmetry of the

macroscopic wavefunction (very similar to the toy model in the previous chap-

ter), leading to a Goldstone mode in the excitation spectrum of the system [35],

[36]. In a theoretical study of the longitudinal and transverse response functions

of an incoherently driven system using the Keldysh path integral technique (to be

developed in the next chapter) [27], it was found that the driven-dissipative na-

ture of the system allowed superfluidity to survive despite the Landau criterion

yielding a zero critical velocity. Crucially, in open quantum systems, it appears

that a gapless spectrum is crucial for the phenomenon.

Alternatively, polaritons may be pumped coherently, meaning they are in-

jected at a specific energy and momentum near resonance, and can form a macro-

scopic state with a phase fixed to that of the external pump [37]. Because of

this phase fixing, the excitation spectrum in such a system is typically gapped.

Despite this, experiments have observed that coherently pumped polaritons can

flow past a defect with vanishing dissipation; this, together with theoretical anal-

ysis speculatively applying the Landau criterion to the real part of the polariton

spectrum [38], [39], has been claimed as evidence of superfluidity [21]. By apply-

ing the Keldysh path integral technique to directly calculate the longitudinal and

transverse current-current responses of the system, however, it was found [33]

that these responses are equal in all regimes with a gapped excitation spectrum.

According to the alternative criterion developed at the end of the last chapter,

then, the system is not superfluid in these regimes, in contradiction to the Landau

criterion, underscoring the criterion’s poor applicability beyond the equilibrium

setting.

2.1.1 Summary of Present Work: Absence of Superfluidity in

Gapless Regimes of Coherently Driven Polaritons

For special choices of system parameters coherently pumped polaritons may be

induced to possess a gapless spectrum and thus possibly exhibit superfluidity.

The mean-field1 responses at such points in parameter space were derived in

[40], where it was shown that while an anisotropic2 pump yields a divergent

linear response, an isotropic pump leads to a pure superfluid one. One of the

1Strictly speaking, the mean-field of a perturbative calculation corresponds to O(ℏ0), at which
order this response is simply zero. Throughout this part I slightly misuse the term to refer to the
lowest order non-zero contribution at O(ℏ1).

2By an anisotropic pump is meant one which injects particles with non-zero momentum in the
plane to which the polaritons are confined. Similarly, an isotropic farm injects particles with zero
momentum in this plane.
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main results of this part of the thesis, though, is that when considered more care-

fully, coherently driven polaritons do not exhibit superfluidity in any regime. By

analysing the system from the point of view of catastrophe theory, it is shown

that the anisotropic mean-field divergence of the response is physical and related

to bifurcations in the system order parameter. Such bifurcations are also respon-

sible for the gapless mode, which proves to be due to the appearance of a “non-

Morse critical point” of the action. Finally, performing perturbative calculations

to O(ℏ2), I demonstrate that higher-order terms of the perturbation expansion in

both isotropic and anisotropic cases diverge in the gapless regime due to these

points in fact corresponding to phase transitions and the condensate density di-

verging; this indicates that perturbation theory is not rigorously applicable and

that the mean-field superfluidity result is misleading.

The rest of this chapter is devoted to the simple microscopic model of co-

herently driven microcavity polaritons that is used in this part of the thesis;

in Chap.3 this model is rewritten in the language of Keldysh field theory (and

Keldysh field theory is introduced). Chap.4 covers earlier work on superfluid-

ity in coherently driven polaritons, explaining the attempted applications of the

Landau criterion [38], [39] and the direct calculations of the current responses

[33]. This is followed by my catastrophe-theoretic analysis of the anisotropic

mean-field behaviour of the system in Chap.5, demonstrating the origin of the

mean-field response divergences in bifurcations of the order parameter. Then

in Chap.6, quantum fluctuations of the system are taken into account to show

that, despite isotropic mean-field calculations yielding a superfluid response, the

response in gapless regimes is still divergent. This divergence is analysed both

from the perspective of the infinite-dimensional analogue of catastrophe theory,

renormalization group theory, and of naive perturbation theory, showing that it

originates from the phase transitions in these regimes. In Chap.7 I conclude that,

within the bounds of validity of the Keldysh model analysed here, there are no

regimes of coherently-driven microcavity polaritons that exhibit superfluidity.

2.2 Strong Coupling of Photons and Excitons: the Co-

herently Driven Lower Polariton Model

Semiconductor microcavities are typically constructed by placing semiconductor

quantum wells supporting Wannier-Mott excitons between Bragg reflectors (lay-

ers of alternating refractive index material leading to high quality reflection for

wavelengths close to four times the layer widths), typically spaced microns apart

(Fig. 2.1 a). Semiconductor quantum wells are thin layers of semiconductor with

a thickness comparable to the exciton Bohr radius, sandwiched between two bar-

rier layers with a much larger band gap. The exciton centre-of-mass motion is
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quantized in the confinement direction, and the wells are typically engineered to

support only the lowest of these energy modes at the relevant energies, making

the excitons quasi-2D particles [41].

Figure 2.1: Polaritons in semiconductor microcavities. a Polaritons are quasiparticles
formed when cavity photons, which are massive due to confinement in the z direction
between two Bragg mirrors, interact strongly with excitons confined in a quantum well.
Polaritons are free to move in the two-dimensional plane perpendicular to their
confinement. b The excitonic dispersion (dashed green) is approximately constant
compared to the photonic (dashed red) due to the much larger exciton mass. Strong
coupling leads to anticrossing and the formation of upper and lower polariton branches
(solid black). Polaritons interact because of their excitonic component, while their
photonic part causes decay and the need for an external drive. A coherent laser pump
resonantly tuned to the polariton dispersion is marked by a blue dot.

Photons trapped in the cavity also behave as quasi-2D particles, developing

an effective mass related to their quantized mode in the confinement direction.

Typically only the lowest mode is considered, and the effective energy spectrum

becomes

ωc(k) =
c
n

√(2π
Lw

)2
+ |k|2, (2.1)

where n is the refractive index of the quantum well and Lw is the cavity width.

With appropriate tuning, the system can be described by a Jaynes-Cummings

interaction3:

H0 =
∑

k

ωc(k)c†kck +
∑

k

ωx(k)x†kxk +
ΩR

2

∑
k

(
c†kxk + x†kck

)
(2.2)

with quasi-2D photon annihilation operators ck and exciton annihilation opera-

tors xk, where the Rabi frequency ΩR acts as the exciton-photon coupling con-

stant. The exciton spectrum ωx(k) has negligible curvature compared to the

3Throughout this part we will perform intermediate calculations as though the system is in
a finite volume and thus integrals over momentum are replaced by sums over a momentum lat-
tice. This approach follows [40] and allows us to avoid dealing with expressions involving Dirac
deltas of zero, thus acting as a pre-emptive regularisation. Expressions obtained using this ap-
proach may safely have the k → 0 limit applied to them as if no lattice had been used (this is
demonstrated in Appendix B of [40]).
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parabolic cavity photon spectrum ωc(k) due to the much higher effective mass

of the excitons, and may thus be approximated as flat: ωx(k) ≈ωx.

The Hamiltonian may be diagonalized into quasi-particles known as lower

and upper polaritons [42]:

H0 ≈
∑

k

ωLP(k)a†LP,kaLP,k +
∑

k

ωUP(k)a†UP,kaUP,k, (2.3)

with (ωUP/LP(k) is depicted in Fig. 2.1 b)aLP,k

aUP,k

 =

 Xk Ck
−Ck Xk

xkck
 (2.4)

Xk =
ωc(k)−ωLP(k)√

(ωLP(k)−ωc(k))2 +Ω2
R/4

(2.5)

Ck = − ΩR

2
√

(ωLP(k)−ωc(k))2 +Ω2
R/4

(2.6)

ωUP/LP(k) =
1
2

(
ωx +ωc(k)±

√
(ωx −ωc(k))2 +Ω2

R

)
. (2.7)

where Xk and Ck are known as excitonic and photonic Hopfield coefficients. This

change of basis is meaningful if the polaritons can be spectroscopically resolved

from the original particles. This may not be the case if, in the region ωc(k) ≈ ωx,
the energy splitting ΩR of the polaritons is less than the dissipative linewidth

of the excitons or cavity photons [43]. We thus focus on systems in the strong

light-matter coupling regime [7], meaning that the exciton-photon coupling ΩR

significantly exceeds the decay and dephasing rates of the excitons and cavity

photons and thus their linewidths.

The gap between the lower and upper polariton spectra is typically large

enough for the lower polaritons to be considered in isolation (from now on we

write ak for aLP,k) if the relevant energy scales are tuned to them, and excitonic

interactions may be modelled as weak contact interactions between polaritons:

Hint =
V
2

∑
k,k′ ,q

a†k−qa
†
k′+qakak′ . (2.8)

Note that this form for the interaction is only valid so long as we may ignore the

spatial extent of the excitons. With a typical exciton Bohr radius as high as 100Å,

we must impose a momentum cut-off on our theory of kmax = h
100Å

. This will also

be relevant to our approximations in Chap.3. Finally, the system is typically

driven and subject to dissipation, meaning that it is externally pumped by a laser

and is in contact with a photonic decay bath. Denoting the bath photon modes
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by Ak and their spectrum by ωA(k), the decay term may be written as

Hbath =
∑

k

ωA(k)A†kAk +
∑
k,q

ζk,q(a†kAq +A†qak). (2.9)

The properties of the coupling ζk,q will be explored in Sec.3.2.

The pump laser is typically applied at some angle to the cavity, and the pro-

jection of its photons’ momenta onto the cavity plane leads to an effective pump

wave-vector kp. A classical coherent pump term, by which we mean resonant or

near-resonant with the lower polariton dispersion, may then be represented as

Hpump = Fp(t)a†kp +F∗p(t)akp , (2.10)

where Fp(t) = Fpe
−iωpt, ωp ≈ ωLP(kp), and the implications of neglecting fluctua-

tions in the pump field are discussed in Sec.6.2. Performing a gauge transforma-

tion a→ ae−iωpt, resumming relative to the pump k→ k + kp, and writing ak for

ak+kp , the complete effective4 Hamiltonian then reads

H =
∑

k

(ωLP(k + kp)−ωp)a†kak +
V
2

∑
k,k′ ,q

a†k−qa
†
k′+qakak′ +

∑
k

ωA(p + kp)A†pAp

+
∑
k,p

ζk,p(eiωpta†kAp +A†pake
−iωpt) +Fp(a†0 + a0).

(2.11)

Note that this is not a closed-system Hamiltonian, since it incorporates a number

non-conserving interaction with laser degrees of freedom the dynamics of which

we do not incorporate in the model; rather it is the effective Hamiltonian for the

polariton and photon bath subsystem.

4The extra −ωpa†kak term is not truly part of the Hamiltonian, but allows for an elegant reso-
lution of the following difficulty that would otherwise be encountered in the next chapter when
constructing a functional integral. The gauge-transformed creation and annihilation operators no
longer act on field coherent states (to be defined in the next chapter) by ak|ψk⟩ = ψk|ψk⟩, but rather
by ak|ψk⟩ = eiωptψk|ψk⟩. In order to retain the original relation, one may use gauge-transformed
coherent states |ψk⟩g = |e−iωptψk⟩, but these will have a different inner product expression to that
of conventional coherent states, complicating the construction of the coherent state functional
integral. By adding this effective term to the Hamiltonian, the functional integral in the next
chapter may be constructed as if the gauge-transformed coherent states retain the usual coherent
state inner product expression: the resulting action is the same as that obtained without the term
and taking full account of the more complicated inner product expression.



Chapter 3

Keldysh Field Theory for Polariton
Systems

3.1 Non-Equilibrium Field Theory

Zero-temperature perturbative QFT is often concerned with calculating time-

ordered (denoted by T , and we assume tn > tn−1 > . . . > t2 > t1) expectations of

operators in an interacting ground state |Ω⟩:

⟨Ω|T O1(t1) . . .On(tn)|Ω⟩ =
⟨0|U (∞, tn)On . . .U (t2, t1)O1U (t1,−∞)|0⟩

⟨0|U (∞,−∞)|0⟩
, (3.1)

where |0⟩ is the non-interacting ground state. For a Hamiltonian consisting of cre-

ation and annihilation operators, the operator ⟨0|U (∞,−∞)|0⟩ may be converted

to a coherent state path integral expression (up to a phase factor that cancels in

the ratio above) of the form

⟨0|U (∞,−∞)|0⟩ ∝
∫
D[ψk,out, ψ̄k,out,ψk,in, ψ̄k,in]⟨0|ψk,out⟩⟨ψk,in|0⟩

×

ψk(∞) = ψk,out∫
ψk(−∞) = ψk,in

D[ψk, ψ̄k]eiS = G(0),
(3.2)

S =
∫
dt

−H[ψ̄k,ψk, t] +
∑
k

ψ̄ki∂tψk

 , (3.3)

where the boundary conditions ψin, ψout depend on the initial and final states, via

Trotter decomposition [44] as described in the next subsection. The numerator

in the above ratio may then be calculated (up to the same phase factor) by taking

functional derivatives of this object with a modified action:

⟨0|U (∞, tn)On . . .U (t2, t1)O1U (t1,−∞)|0⟩ ∝ δ
δiJ1(t1)

. . .
δ

δiJn(tn)
GJ (0)

∣∣∣∣
J=0
, (3.4)

51
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GJ (0) =
∫
D[ψk,out, ψ̄k,out,ψk,in, ψ̄k,in]⟨0|ψk,out⟩⟨ψk,in|0⟩

ψk(∞) = ψk,out∫
ψk(−∞) = ψk,in

D[ψk, ψ̄k]eiSJ , (3.5)

SJ = S +
∫
dt

∑
k

n∑
i=1

Ji(t)Oi(ψ̄k,ψk). (3.6)

The fundamental difference of this approach with that taken in non-equilibrium

QFT does not lie in how the coherent state path integral is constructed or how ex-

pectations are obtained via a generating function, so we will briefly review where

the above expressions come from as a stepping stone in the next section. With

these expressions in hand, two of the main constructions of non-equilibrium

QFT, the Feynman-Vernon path integral and Keldysh partition function, will be

easy to introduce and we shall briefly review some ways they may be used before

applying them to our polariton problem. In other parts of this thesis, namely

Parts Ib and II, the uses of these objects will be developed further as needed.

3.1.1 Field-Theoretic Coherent State Path Integral

We begin the construction of the above mentioned coherent path integral by writ-

ing the unitary time evolution operator in terms of the Hamiltonian via Dyson’s

formula:

U (T ,−T ) = T e−i
∫ T
−T dtH(t). (3.7)

Splitting the time interval into a large number N + 1 of segments so that ϵ = 2T
N+1

and tn = nϵ − T , this expression may be approximately written as

U (T ,−T ) ≈ T
N+1∏
n=1

e−iϵH(tn). (3.8)

At this point we introduce what are known as coherent states, which satisfy1 (ψ

is a scalar field while a, a† are annihilation and creation operators, and |0⟩ is the

ground state of the non-interacting QFT)

|ψk⟩ = e
∑
k[ψka†k− 1

2 |ψk|
2]|0⟩, (3.9)

ak′ |ψk⟩ = ψk′ |ψk⟩, (3.10)

⟨φk|ψk⟩ = e
∑
k[φ̄kψk− 1

2 (|φk|2+|ψk|2)], (3.11)∫
D[ψk, ψ̄k] |ψk⟩⟨ψk| =

∫ ∏
k

dReψkd Imψk
π

|ψk⟩⟨ψk| = I. (3.12)

1The states being described here are the field-theoretic generalisations of what are typically
known as coherent states. The conventional coherent states will play a major role in Part II of this
thesis when we consider this construction in the quantum mechanical context.
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Inserting the last expression N times into (3.8) and placing the result between

two states ⟨ψk,out| = ⟨ψk,N+1|, |ψk,in⟩ = |ψk,0⟩, we find

⟨ψk,out|U (T ,−T )|ψk,in⟩ ≈
∫ N∏

i=1

D[ψk,i , ψ̄k,i]
N+1∏
j=1

⟨ψk,j |e−iϵH(tj )|ψk,j−1⟩. (3.13)

If the Hamiltonian is normal-ordered, the terms ⟨ψk,j |e−iϵH[a†k,ak,tj ]|ψk,j−1⟩ may be

approximated as (up to terms of order O(ϵ2))

⟨ψk,j |e−iϵH[a†k,ak,tj ]|ψk,j−1⟩ ≈ ⟨ψk,j |1− iϵH[a†k, ak, tj]|ψk,j−1⟩

= ⟨ψk,j |ψk,j−1⟩(1− iϵH[ψ̄k,j ,ψk,j−1, tj])

≈ e−iϵH[ψ̄k,j ,ψk,j−1,tj ]+
∑
k[ψ̄k,jψk,j−1− 1

2 (|ψk,j |2+|ψk,j−1|2)]

= e
−iϵH[ψ̄k,j ,ψk,j−1,tj ]− ϵ2

∑
k

[
ψ̄k,j

ψk,j−ψk,j−1
ϵ −ψk,j−1

ψ̄k,j−ψ̄k,j−1
ϵ

] (3.14)

where we have written H[a†k, ak, t] to show that it is a functional of the operators.

Putting this expression back into (3.13), we then take N →∞. Interpreting terms

of the form
ψj−ψj−1

ϵ as ∂tψ and identifying H[ψ̄k,j ,ψk,j−1, tj] ≈H[ψ̄k,j ,ψk,j , tj] when

ϵ→ 0, we finally obtain (the functional integration measure is now over the field

at all continuous moments in time, and the fields are implicitly indexed by time)

⟨ψk,out|U (T ,−T )|ψk,in⟩ ≈
∫
D[ψk, ψ̄k]ei

∫
dt [−H[ψ̄k,ψk,t]+

1
2
∑
k(ψ̄ki∂tψk−ψki∂tψ̄k)]. (3.15)

An integration by parts reduces this to

⟨ψk,out|U (T ,−T )|ψk,in⟩ ≈
∫
D[ψk, ψ̄k]ei

∫
dt [−H[ψ̄k,ψk,t]+

∑
k ψ̄ki∂tψk], (3.16)

and noting that

⟨0|U (∞,−∞)|0⟩ =
∫
D[ψk,out, ψ̄k,out,ψk,in, ψ̄k,in]⟨0|ψk,out⟩⟨ψk,in|0⟩,

× ⟨ψk,out|U (T ,−T )|ψk,in⟩,
(3.17)

we recover (3.2). From here it is a short step to (3.4): one sees that, by considering

the Hamiltonian

HJ (t) =H(t)−
n∑
i=1

Ji(t)Oi(a
†, a), (3.18)
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the above construction will yield the action SJ of (3.6). At the same time in the

operator picture it is evident that

⟨0|U (∞, tn)On . . .U (t2, t1)O1U (t1,−∞)|0⟩

∝ δ
δiJ1(t1)

. . .
δ

δiJn(tn)
⟨0|T e−i

∫ T
−T dtHJ (t)|0⟩

∣∣∣∣
J=0
.

(3.19)

Substituting (3.17) and (3.16) into this expression, we recover (3.4).

3.1.2 The Feynman-Vernon Path Integral and Keldysh Contour

Non-equilibrium theory field theory, like the zero temperature one described

above, is often used to calculate certain time-ordered operator expectations. The

ordering employed differs, however, from the simpler zero temperature one be-

cause the time evolution of a density matrix is more complicated than that of a

pure state.

Naively, we may view an expression like

⟨0|U (∞, tn)On . . .U (t2, t1)O1U (t1,−∞)|0⟩ (3.20)

as the pure state on the right hand side evolving forwards in time ‘to the left’,

and the operator time ordering t1 ≤ t2 ≤ . . . ≤ tn is dictated by the order in which

this time-evolving state temporally reaches each operator.

Considering an analogous expression for the expectation

⟨O−1 (t−1 ) . . .O−m(t−m)O+
n (t+n ) . . .O+

1 (t+1 )⟩ρ−∞ (3.21)

of a product of operatorsO+
1...n,O−1...m with an initial density matrix ρ−∞ and using

the cyclicity of the trace to place all operators with a − superscript to the right of

the density matrix,

Tr
[
O+
nU (t+n , t

+
n−1) . . .O+

1U (t+1 ,−∞)ρ−∞U (−∞, t−1 )O−1 . . .U (t−m−1, t
−
m)O−m

]
(3.22)

or, in the Heisenberg picture,

Tr
[
O+
n (t+n ) . . .O+

1 (t+1 )ρ−∞O
−
1 (t−1 ) . . .O−m(t−m)

]
, (3.23)

we see that a natural ordering in this case is t+1 ≤ t
+
2 ≤ . . . ≤ t+n and t−1 ≤ t

−
2 ≤ . . . ≤ t−n .

This ‘causal’ ordering proves to be the relevant one for most physically observable

temporal correlation functions [45].

This ordering is sometimes visualized as a time contour (the “Keldysh con-

tour”) consisting of two parts. The first, the “forward contour”, runs from t = −∞
to t =∞ while the second, the “backward contour”, then runs back from t =∞ to
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t = −∞. It is then stated that the operators O+
1...n lie on the forward contour while

the operators O−1...m lie on the backward contour.

The origin of this terminology may be seen by rearranging

Tr
[
O+
n (t+n ) . . .O+

1 (t+1 )ρ−∞O
−
1 (t−1 ) . . .O−m(t−m)

]
(3.24)

as

Tr
[
O−1 (t−1 ) . . .O−m(t−m)O+

n (t+n ) . . .O+
1 (t+1 )ρ−∞

]
. (3.25)

Supposing that the causal ordering holds, we see that this may also be viewed as

an ordering along this total contour: starting from the density matrix and going

from right to left, the operators O+
1...n always come before O−1...m since the forward

contour comes before the backwards one, and operators on the backwards con-

tour appear in reverse order to the numerical values of their times as this part of

the contour runs backwards.

The Keldysh contour picture is frequently referenced in the literature and its

power will be seen momentarily when we consider Green’s functions. It bears

remembering, however, that it does not have a real physical meaning. What is

happening is not forwards then backwards evolution in time of a pure state but

rather a forward evolution of a density matrix. The physical meaning of O+ is

thus not of an operator existing on a forward-evolving time contour but rather an

operator corresponding to one of the Hilbert spaces (the left one) comprising the

product Hilbert space in which the density matrix lies. Similarly,O− corresponds

to the degrees of freedom of the right Hilbert space.

Rewriting the density matrix using the Glauber–Sudarshan P representation

[46] as

ρ−∞ =
∫
D[ψk,in, ψ̄k,in] |ψk,in⟩P−∞[ψk,in]⟨ψk,in|, (3.26)

and using the cyclicity of the trace, the object may be rewritten as∫
D[ψk,out, ψ̄k,out,ψk,in, ψ̄k,in]P−∞[ψk,in]

× ⟨ψk,out|U (∞, t+n )O+
nU (t+n , t

+
n−1) . . .O+

1U (t+1 ,−∞)|ψk,in⟩

× ⟨ψk,in|U (−∞, t−1 )O−1 . . .U (t−m−1, t
−
m)O−mU (t−m,∞)|ψk,out⟩.

(3.27)

We know from (3.4) how to represent the two non-density matrix objects in the

integrand as functional integrals: because the ground state is here replaced by

purely coherent in and out states, we may omit the leading integral in that ex-
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pression to give

⟨ψk,out|U (∞, t+n )O+
nU (t+n , t

+
n−1) . . .O+

1U (t+1 ,−∞)|ψk,in⟩

∝ δ

δiJ+
1 (t1)

. . .
δ

δiJ+
n (tn)

ψ+
k (∞) = ψk,out∫

ψ+
k (−∞) = ψk,in

D[ψ+
k , ψ̄

+
k ]eiS

+
J

∣∣∣∣
J=0
,

(3.28)

⟨ψk,in|U (−∞, t−1 )O−1 . . .U (t−m−1, t
−
m)O−mU (t−m,∞)|ψk,out⟩

∝

 δ
δiJ−1 (t1)

. . .
δ

δiJ−m(tm)

ψ−k (∞) = ψk,out∫
ψ−k (−∞) = ψk,in

D[ψ−k , ψ̄
−
k ]eiS

−
J

∣∣∣∣
J=0

,
(3.29)

S+
J = S[ψ̄+

k ,ψ
+
k ] +

∫
dt

∑
k

n∑
i=1

J+
i (t)O+

i (ψ̄+
k ,ψ

+
k ), (3.30)

S−J = S[ψ̄−k ,ψ
−
k ] +

∫
dt

∑
k

m∑
i=1

J−i (t)O−i (ψ̄−k ,ψ
−
k ). (3.31)

Here we have annotated the fields ψ+, ψ− in the functional integral to indicate

whether they lie on the forward or backwards portion of the Keldysh contour.

Using the form of the action in (3.16), we may use the above to rewrite (3.23) as

Tr
[
O+
n (t+n ) . . .O+

1 (t+1 )ρ−∞O
−
1 (t−1 ) . . .O−m(t−m)

]
=

δ

δiJ+
1 (t1)

. . .
δ

δiJ+
n (tn)

δ
δiJ−1 (t1)

. . .
δ

δiJ−m(tm)∫
D[ψk,out, ψ̄k,out,ψk,in, ψ̄k,in]P−∞[ψk,in]G+−

J [ψk,in,ψk,out]

∣∣∣∣∣∣
J=0

,

(3.32)

G+−
J [ψk,in,ψk,out] =

ψ+
k (∞)=ψk,out

ψ−k (∞)=ψk,out∫
ψ+
k (−∞)=ψk,in

ψ−k (−∞)=ψk,in

D[ψ+
k , ψ̄

+
k ,ψ

−
k , ψ̄

−
k ]eiS

+−
J , (3.33)

S+−
J =

∫ ∞
−∞
dt

∑
k

ψ̄+
k i∂tψ

+
k −H[ψ̄+

k ,ψ
+
k , t]

−∫ ∞−∞dt
∑
k

ψ̄−k i∂tψ
−
k −H[ψ̄−k ,ψ

−
k , t]


+
∫ ∞
−∞
dt

∑
k

n∑
i=1

J+
i (t)O+

i (ψ̄+
k ,ψ

+
k ) +

∫ ∞
−∞
dt

∑
k

m∑
i=1

J−i (t)O−i (ψ̄−k ,ψ
−
k ).

(3.34)

Finally, we may discard some of the initial conditions (as encoded in P−∞)

and perform a change of variables. The former may be done because we shall

be interested in an effective action for the evolution of a driven-dissipative sub-
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system of this system. Such systems typically possess a unique steady state [47]

independent of the initial conditions, and this is the state we will be calculating

correlators in (since we have taken an infinite time interval). However, this must

be done with care. The evolution will become driven-dissipative only after some

bath is integrated out, and so initial conditions can be discarded only after this

step — the initial conditions for the bath may contribute to a correct derivation

of an effective action.

The latter is a variable change known as the Keldysh rotation, and allows

for the easy calculation of the system’s retarded, advanced, and kinetic Green’s

functions. The transformation is unitary (hence the name “rotation”):ψcψq
 =

 1√
2

1√
2

1√
2
− 1√

2


ψ+

ψ−

 , (3.35)

and it may be shown that in these new variables [48]

iGR(k, t − t′) = ⟨ψc(k, t)ψ̄q(k, t′)⟩, (3.36)

iGA(k, t − t′) = ⟨ψ̄c(k, t)ψq(k, t′)⟩, (3.37)

iGK (k, t − t′) = ⟨ψc(k, t)ψ̄c(k, t′)⟩, (3.38)

0 = ⟨ψq(k, t)ψ̄q(k, t′)⟩. (3.39)

That this is the case is precisely because of the forwards-backwards contour struc-

ture we have discussed above. Consider, for instance, ⟨ψc(k, t)ψ̄q(k, t′)⟩. Writing

this in terms of the ψ+ and ψ− fields, we find

⟨ψc(k, t)ψ̄q(k, t′)⟩ =
1
2
⟨ψ+(k, t)ψ̄+(k, t′)−ψ+(k, t)ψ̄−(k, t′)

+ψ−(k, t)ψ̄+(k, t′)−ψ−(k, t)ψ̄−(k, t′)⟩.
(3.40)

Recalling the operator ordering along the Keldysh contour, in terms of operators

this is equal to
1
2⟨ak(t)a†k(t′)− a†k(t′)ak(t) + ak(t)a†k(t′)− a†k(t′)ak(t)⟩ = ⟨[ak(t), a†k(t′)]⟩ for t > t′,
1
2⟨a
†
k(t′)ak(t)− a†k(t′)ak(t) + ak(t)a†k(t′)− ak(t)a†k(t′)⟩ = 0 for t′ > t.

(3.41)

Thus

⟨ψc(k, t)ψ̄q(k, t′)⟩ = θ(t − t′)⟨[ak(t), a†k(t′)]⟩ = iGR(k, t − t′), (3.42)

with analogous contour reasoning yielding the other Green’s function expres-

sions.

The fields ψc and ψq are known as the classical and quantum fields in Keldysh

parlance. While their primary importance in this portion of the thesis will be
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their utility for calculating the above Green’s functions, it bears to explain their

naming and some of their other properties as these will come up in Part Ib.

This will hopefully also serve to show the connection between Keldysh theory

and driven-dissipative Gross-Pitaevskii equations for those readers more famil-

iar with the latter.

The typical structure of a bosonic Keldysh action is

1
ℏ

∫
dtddx

[
ψ̄q ·CGPE[ψc] +ψq ·CGPE[ψc]

+K[ψc]|ψq|2 +O(|ψq|3)
] (3.43)

where we have temporarily re-inserted ℏ, CGPE stands for “Complex Gross-

Pitaevskii Equation”, and K[ψc] relates to the dissipation in the problem (we will

see how such a term arises upon integrating out the environment in the next sec-

tion). If we rescale ψq → ℏψq and K → K/ℏ (the latter amounting to measuring

the dissipation in units of energy [48]), we find the action to now be∫
dtddx

[
ψ̄q ·CGPE[ψc] +ψq ·CGPE[ψc]

+K[ψc]|ψq|2 +O(ℏ3|ψq|3)
]
.

(3.44)

We thus see that in the ℏ→ 0 limit, all terms in ψq of order higher than quadratic

vanish. This is one of the reasons ψq is referred to as the quantum field — it is not

present beyond quadratic order in the classical limit. Of the remaining terms, if

K[ψc] = 0, the functional integral over ψq yields functional Dirac delta functions

(via the functional version of the identity
∫
dxeixy = 2πδ(y)) strictly enforcing

the CGPE for the classical field ψc. If the dissipative K term is not zero, it can

be shown to convert the CGPE to a stochastic CGPE. This term thus introduces

classical thermal/driven-dissipative effects into the problem [48].

This brings us to a second reason for the names of these fields. By the sym-

metry of the problem with respect to the forward and backward contours, it can

be shown that ⟨ψ+⟩ = ⟨ψ−⟩ and thus ⟨ψc⟩ =
√

2⟨ψ+⟩, ⟨ψq⟩ = 0. In this way, the

classical field ψc is what captures the mean field of the problem (as we saw, it is

the field that obeys the CGPE in the classical limit) while the quantum field is

always zero in the mean field or classical limit.

3.2 Deriving the Action

We are now ready to apply this method to the Hamiltonian of coherently driven

polaritons (2.11). Denoting the polariton and bath fields by ψ and b respectively,

and grouping them via Ψ = (ψc,ψq), B = (bc,bq), we find the full action to be
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(ωb(p) = ωA(p+kp))

S[Ψ,B]

=
∫
dt

[∑
k

Ψ̄(t,k)(i∂t +ωp −ωLP (k + kp))σ1Ψ(t,k)

−
√

2Fp(ψ̄q(t,0) +ψq(t,0))

+
∑

p

B̄(t,p)(i∂t −ωb(p))σ1B(t,p)

−
∑
k,p

ζk,p

(
B̄(t,p)σ1Ψ(t,k)e−iωpt

+ eiωptΨ̄(t,k)σ1B(t,p)
)

−
∑

k,k′ ,q

V
2

(
ΨT (t,k)Ψ(t,k′)

ψ̄c(t,k−q)ψ̄q(t,k′ + q) + h.c.
)]
,

(3.45)

where σi denote the corresponding Pauli matrices acting on the c, q field indices

and h.c. stands for Hermitian conjugate. We may split off the part of this action

containing the bath fields,

Sbath[Ψ,B]

=
∫
dt

[∑
p

B̄(t,p)(i∂t −ωb(p))σ1B(t,p)

−
∑
k,p

ζk,p

(
B̄(t,p)σ1Ψ(t,k)e−iωpt

+ eiωptΨ̄(t,k)σ1B(t,p)
)]
,

(3.46)

and note that this term is quadratic in them. Performing the corresponding Gaus-

sian integral yields

Sbath[Ψ] = −
∫
dtdt′

∑
k,k′ ,p

Ψ̄(t,k)σ1ζk,pζk′ ,p

eiωptGb(t − t′,p)e−iωpt
′
σ1Ψ(t′,k′).

(3.47)

whereGb(t−t′,p) = δ(t−t′)[(i∂t′−ωb(p))σ1]−1. At this stage, we must recall that the

initial combined density matrix of the system and reservoir also makes a contri-

bution to the functional integral; the combined system is non-dissipative so there

is no unique steady state that would allow us to discard the initial conditions.

The first assumption we will make is that the system begins in a tensor prod-

uct state of the form

ρsystem ⊗ ρbath.

This may be naturally achieved by supposing that we consider the combined sys-
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tem from the moment the system and bath first begin interacting2. From here,

we concentrate on ρbath since we will eventually be able to disregard ρsystem. This

is because it will be ρsystem evolving in the final driven-dissipative problem, at

which point there will be a unique steady state allowing us to disregard the ini-

tial density matrix.

The initial bath density matrix enters the problem by amending the term we

have written as

[(i∂t −ωb(p))σ1]−1.

With the density matrix accounted for and performing a Fourier transform,

eiωptGb(t − t′,p)e−iωpt
′

instead becomes [48]

G̃b(ω+ωp,p) =

−2πiF(ω+ωp)δ(ω+ωp −ωb) 1
ω+ωp−ωb(p)+iϵ

1
ω+ωp−ωb(p)−iϵ 0

 (3.48)

where F(ω) is the “distribution function” corresponding to the bath density ma-

trix. We now seek to show that, for reasonable choices of this initial distribution,

the interaction of the polaritons with the reservoir will be Markovian and the

resulting action will be time-local.

We can simplify further by assuming the coupling between the bath and the

system is independent of the polariton momentum, ζk,pζk′ ,p = ζ2
p , and by sug-

gesting that, if the bath frequencies ωb(p) form a dense spectrum and the cou-

pling constants ζp = ζ(ωb) are smooth functions of these, we can replace the sum

over bath modes with the integral

∑
p

ζ2
p→

∫ ωb(kmax)

0
dωb ζ(ωb)

2N (ωb), (3.49)

where N (ωb) is the bath density of states. The action then becomes

Sbath[Ψ] = −
∫
dω

∑
k

Ψ̄(ω,k)

 0 dA(ω)

dR(ω) dK (ω)

Ψ(ω,k), (3.50)

2While this is a common assumption in the theory of open quantum systems and makes sub-
sequent calculations simple, it can reasonably be criticized for being unphysical [49]. Observing,
however, that its purpose in our argument is to enable the use of free particle correlators for
the reservoir, it may be relaxed to the following more physical one: the reservoir is initially in a
thermal state and so large that coupling to the much smaller microcavity does not meaningfully
affect its properties. In this case the initial state can be viewed as approximately separable for our
purposes [35].
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with dA(ω), dR(ω), and dK (ω) obtained via the Sokhotski–Plemelj theorem as

dR/A(ω) = P
∫ ωb(kmax)

0
dωb

ζ(ωb)2N (ωb)
ω+ωp −ωb

∓ iπζ(ω+ωp)2N (ω+ωp),

(3.51)

dK (ω) = −2πiF(ω+ωp)ζ(ω+ωp)2N (ω+ωp). (3.52)

In order for the final action to be time-local or “Markovian”, the bath must appear

to be frequency-independent to the system. To this end, recall that the system’s

spectrum (that of the interacting lower polaritons) acts like the continuum ana-

logue of the natural frequency of an oscillator — the bath will interact with the

system preferentially at these frequencies [48].

Due to our gauge transformation, the spectrum of the interacting polaritons

is ωLP (k + kp)−ωp. This has also, however, shifted F, ζ, and N in the d functions

(3.51, 3.52) via ω → ω +ωp. Thus we may consider the variation of N (ωLP (k)),

N (ωLP (k)), and N (ωLP (k)) over the range of the lower polariton spectrum, as-

suming that kp is negligible relative to our momentum cut-off and that the inter-

acting spectrum has roughly the same range as the bare spectrum (this is true in

our weakly interacting case).

For exciton-polaritons, the bottom of the bare spectrum (and ωp, since we

pump resonantly) is typically on the order of 1.5eV [9] and the spectrum is

bounded above by the exciton spectrum, the bottom of which is ∼ 10meV higher.

With exciton masses typically being between 0.1me and 1me, whereme is the elec-

tron mass, we may crudely estimate the variation of the exciton spectrum up to

the momentum cut-off of h
100Å

as

1
0.2me

(
h

100Å

)2

≈ 0.15eV. (3.53)

Together with the ghost branch of the polariton spectrum, this gives an approx-

imate range of variation of 1.5 ± 0.15eV. We would thus like to argue that the

variation of N , ζ, and F is negligible on it.

For a 3D photonic bath, the density of states N (ω) will be quadratic in ω,

and a quick calculation shows that Nmax ≈ 1.5Nmin on this range. Around the

midpoint of these values, N (ωp), the variation is on the order of 20% — for our

purposes this sufficiently little variation to take this as constant.

We now turn to the frequency-dependence in the bath’s distribution function

F and decay coupling ζ. This is the point at which assumptions must be made

about the initial density matrix. The most natural initial distribution for the bath

would be thermal; it is a large reservoir which has equilibrated with its environ-

ment before coming into contact with the system. In this case the distribution
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function is F(ω) = 2no(ω) + 1, where no is the occupation number of the given

energy level. If the bath is in thermal equilibrium at an energy scale significantly

lower than the range of variation of the polariton spectrum, then at all relevant

energies the occupation number no will be identically zero and the distribution

function will be F(ω) = 1. At the same time, we may expect the decay of the high

energy polaritons to not occur preferentially into any of the equally empty pho-

tonic modes and thus set ζ(ω) = ζconst. In this case, setting κ = N (ωp)ζconst and

F(ω) = 1, we obtain from (3.51, 3.52)3:

dR/A(ω) = ∓iκ, (3.54)

dK (ω) = −2iκ. (3.55)

We see that stipulating such an initial distribution yields a fully Markovian bath.

It remains to check that the thermal distribution is indeed lower energy than the

polaritons. With an average thermal photon energy of kT , at room temperature

(300K) this energy is 25meV, which is significantly lower than the smallest en-

ergy in the cut-off polariton spectrum (roughly 1.35eV). Thus the distribution

has negligible occupation at the relevant energy levels as required.

While we have discussed a thermal distribution above, it being a natural ex-

perimental distribution, our arguments carry over to any distribution which may

be expressed in terms of occupation numbers and which has occupancy only at

energies significantly below those of the polaritons.

In this Markovian approximation, the final form of the action is

Seff =
∑
k

(ψ̄ck ψ̄
q
k )

 0 g−1(k)

(g−1)∗(k) 2iκ

ψckψqk


− V
2

∑
k,k′ ,q

(
ψ̄ck−qψ̄

q
k′+q[ψ

c
kψ

c
k′ +ψ

q
kψ

q
k′ ] + h.c.

)
−
√

2Fp(ψ̄q0 +ψq0),
(3.56)

where g−1(k) = ω+∆p −ωLP (k + kp)− iκ and h.c. stands for Hermitian conjugate.

The perturbative diagrammatics associated with this action are worked out in

Appendix A, and will be used extensively throughout the rest of Part Ia.

3In principle one could attempt to account for the Cauchy principal value term in (3.51), which
will not be exactly zero and will introduce a real ‘Lamb shift’ [50] to (3.54). Since the numerator is
almost constant in the vicinity of the pole, however, the principal value will be heavily suppressed
relative to the coefficient of the same term already present in the Hamiltonian and thus may be
neglected (the upper bound of the integral for a 3D photonic bath is ∼ 100eV ≫ ωLP so the
integral is essentially of an odd function in some symmetric neighbourhood of the pole).



Chapter 4

Previous Results Regarding
Coherently Driven Polariton
Superfluidity

This chapter summarizes previous results obtained with regards to superfluidity

in coherently driven microcavity polaritons. In particular it covers attempts to

apply the Landau criterion to this system indicating the presence of superfluid,

and the contradictory results in this regard obtained in [40]. It also describes

preliminary results obtained by the author of [40] with regards to the gapless

regime of this system, which were subsequently published in [51].

The only results in this chapter due to me are the explanation of the struc-

ture of the current-current response tensor in terms of the Helmholtz decom-

position, the diagrammatic approach to the derivation of this particular mean-

field current-current response1 and, indirectly, the arguments from Chap. 1 for

why the Landau criterion is neither necessary nor sufficient for superfluidity in

driven-dissipative systems. All non-Feynman diagrams in this chapter are due to

Richard Juggins, author of [40].

4.1 Keldysh Effective Action

In the previous chapter we obtained the effective action (3.56) for the coherently

driven polaritons in terms of two fields ψc, ψq. In the absence of the last term,√
2Fp(ψ̄q0 +ψq0), the action possesses a global U (1) symmetry ψc/qk → ψ

c/q
k eiθ. Such

symmetry in condensed matter systems is often indicative of superfluidity [52]

because, as discussed in Chap 1, its spontaneous breaking is a common mecha-

nism by which superfluidity arises; Indeed, incoherently pumped systems, which

1Specifically, Fig. 4.2 and equations (4.39), (4.40), and (4.41) as a way to obtain (4.42) are due
to me. this quantity was obtained in [40] but via a different method, while the diagrams involved
for this general type of system are considered in [27], [31]

63
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do posses this symmetry, can be shown to exhibit superfluidity [27]. The drive

term, however, breaks the U (1) symmetry, since the phase of the pump Fp is in-

dependent of that of the fields.

The mean-field equations for this action are found by functional differentia-

tion to be

dSeff

dψ̄c(k)
=(ω+∆p − ϵ(k)− iκ)ψq(k)

−V
2

∑
k′ ,q

(
ψ̄q(k′ + q)[ψc(k + q)ψc(k′) +ψq(k + q)ψq(k′)]

+ 2ψ̄c(k′ + q)ψq(k + q)ψc(k′)
)

= 0,

dSeff
dψc(−k)

=(−ω+∆p − ϵ(−k) + iκ)ψ̄q(−k)

−V
2

∑
k′ ,q

(
ψq(k′ + q)[ψ̄c(−k + q)ψ̄c(k′) + ψ̄q(−k + q)ψ̄q(k′)]

+ 2ψc(k′ + q)ψ̄q(−k + q)ψ̄c(k′)
)

= 0,

dSeff

dψ̄q(k)
=(ω+∆p − ϵ(k) + iκ)ψc(k

−V
2

∑
k′ ,q

(
ψ̄c(k′ + q)[ψc(k + q)ψc(k′) +ψq(k + q)ψq(k′)]

+ 2ψ̄q(k′ + q)ψq(k + q)ψc(k′)
)

+ 2iκψq(k)−
√

2Fpδk,0 = 0,

dSeff
dψq(−k)

=(−ω+∆p − ϵ(−k)− iκ)ψ̄c(−k)

−V
2

∑
k′ ,q

(
ψc(k′ + q)[ψ̄c(−k + q)ψ̄c(k′) + ψ̄q(−k + q)ψ̄q(k′)]

+ 2ψq(k′ + q)ψ̄q(−k + q)ψ̄c(k′)
)

+ 2iκψ̄q(−k)−
√

2Fpδ−k,0 = 0.

(4.1)

Assuming the solution to be space-time homogeneous and classical

(ψc(k) =
√

2ψ0δk,0, ψq(k) = 0), the equations simplify to

(∆p − ϵ(0) + iκ)ψ0 −Fp = V |ψ0|2ψ0, (4.2)

(∆p − ϵ(0)− iκ)ψ̄0 −Fp = V |ψ0|2ψ̄0. (4.3)

Writing δp = ∆p − ϵ(0) for the detuning and taking the squared modulus of the

left and right hand sides of one of the above equations yields a cubic equation for

the mean-field occupancy of the pump mode n = |ψ0|2:

V 2n3 − 2δpVn
2 + (δ2

p +κ2)n−F2
p = 0. (4.4)

Depending on whether δp >
√

3κ or δp ≤
√

3κ, the equation may or may not have
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multiple (specifically, three) real solutions for certain values of Fp. The former

case is referred to as the bistable regime and will be of primary interest to us in

this paper.

For a particular value of ψ0, the action may be rewritten via the background

field method in terms of the fields ψc(k)→ ψc(k) −ψ0δk,0, ψq(k)→ ψq(k). Up to

second order in the fields this yields

Seff = Seff

∣∣∣∣
ψ=ψ0

+
1
2

∑
k,k′

Ψ†(k)D−1(k,k′)Ψ(k′) +O(ψ3), (4.5)

where

D−1(k,k′) =


0 0 J∗(k) −Vψ2

0

0 0 −V ψ̄2
0 J(−k)

J(k) −Vψ2
0 2iκ 0

−V ψ̄2
0 J∗(−k) 0 2iκ

δk,k′ (4.6)

and J(k) = ω +∆p − ϵ(k) + iκ − 2V |ψ0|2. Here we have written the action in terms

of the Nambu vector Ψ(k) = (ψc(k), ψ̄c(−k),ψq(k), ψ̄q(−k)), explained in Appendix

A. Taking this into account, the bare propagators are given in terms of the block

matrix iGK (k,k′) iG
R

(k,k′)

iG
A

(k,k′) 0

 =D(k,k′), (4.7)

where the blocks are 2× 2 matrices in Nambu space. Each block is named for its

corresponding top left entry, so that the conventional Keldysh Green’s functions

are given by GK/R/A(k,k′) = (G
K/R/A

(k,k′))11. The exact expressions for these are

given in Appendix A, and in the next section we will use them to study the system

spectrum.

4.2 System Spectrum and the Landau Criterion

In Chap. 1 we discussed in some detail the Landau criterion for superfluidity in

equilibrium, which comes down to the condition

min
p

[ϵ(p) + v ·p] < 0, (4.8)

where ϵ(p) is the excitation spectrum of a fluid in its rest frame, with the largest

absolute value of fluid velocity |v| in a given direction for which this does not hold

vcrit termed the critical velocity in that direction. In equilibrium non-dissipative

flow characteristic of a superfluid occurs for velocities below this in said direc-

tion.

As we argued in the selfsame chapter, the Landau criterion is not rigorously

applicable to driven-dissipative systems. It assumes a real excitation spectrum,
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which in such systems is generally complex, and relies on a conservation of en-

ergy argument that may be violated by the external drive. Nevertheless, some

works have presented results via a heuristic application of it to the real part of the

complex spectrum of coherently driven exciton-polaritons in the bistable regime

[7], [38], [39].

The excitation spectrum of the system may be obtained from the poles of the

retarded Green’s function [53], which is given by (see Appendix A):

GR(k) =
J∗(−k)

J(k)J∗(−k)−V 2|ψ0|4
. (4.9)

The spectrum ω(k) is thus given by the solution to

J(ω(k),k)J∗(−ω(k),−k)−V 2|ψ0|4 = 0, (4.10)

and is found to be

ω±(k) =
ϵ(k)− ϵ(−k)

2
− iκ

±
√(ϵ(k) + ϵ(−k)

2
−∆p + 2V |ψ0|2

)2
−V 2|ψ0|4.

(4.11)

For kp = 0, Reω+(k) = −Reω−(k), Imω+(k) = Imω−(k), and the ω−(k) negative

energy branch corresponds to the same physical excitations as the positive energy

one. It may thus be interpreted as the spectrum for “holes”, and is sometimes

referred to as the ghost branch.

For kp , 0, due to our resummation with respect to the pump momentum in

(2.11), we may view the system’s action as that for an isotropically pumped (and

thus stationary) fluid of polaritons but with a tilted energy spectrum. While sim-

ilar to a change of reference frame to one in which the polaritons are stationary,

we emphasize that this is simply a formal manipulation of the action. Writing

ϵ(k) ≈ (k+kp)2

2m where m is the effective polariton mass, to linear order one finds

that

ω±(k) = ω±(k)
∣∣∣∣
kp=0

+
kp
m
·k +O(|kp|2), (4.12)

which shows that the tilt is due to the bulk flow of the fluid (induced by the

pump) with velocity v =
ℏkp
m . From this point of view, superfluidity will be de-

stroyed when the linear tilt becomes so significant as to push ω±(k) for some

non-zero k below the energy of the condensed mode ω±(0) so that particles may

scatter into this new mode. Comparing with (1.6), it is evident that this is equiv-

alent to applying the Landau criterion to the real part of the spectrum without
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this linear correction (here δp = ∆p − ϵ(0)):

Reω+
rest(k)

= Re

√(
ϵ(k)|kp=0 − δp + 2V |ψ0|2

)2
−V 2|ψ0|4.

(4.13)

Here three situations are possible. If V |ψ0|2 < δp then, for some value of |k0| , 0,

ϵ(k0)|kp=0 − δp + 2V |ψ0|2 = 0 (4.14)

and Re ω+(k0)
∣∣∣∣
kp=0

= 0, meaning the critical velocity is zero and there is no su-

perfluid (per the Landau criterion). If V |ψ0|2 > δp, then the spectrum is gapped

and there is a positive critical velocity and associated superfluidity. This velocity

is given by

Vcrit =√√
−δp + 2V |ψ0|2 −

√
(−δp + 2V |ψ0|2)2 −V 2|ψ0|4

m
.

(4.15)

Finally, if V |ψ0|2 = δp, then the real spectrum is gapless at |k| = 0 and its gradient

there (the polariton “sound velocity”) must be considered. This derivative comes

out as

Vcrit =
dReω+

rest(|k|)
d|k|

∣∣∣∣
k=0

=

√
V |ψ0|2
m

, (4.16)

which agrees with the limit of the previous expression in δp.

Figure 4.1: Absolute value squared of the homogeneous solution ψ0 to the mean-field
equations for varying values of the pump Fp. The left figure corresponds to the
δp = 3κ >

√
3κ bistable regime with multivalued solutions and inversion points (marked

by fuchsia dots), while the right corresponds to the monostable δp <
√

3κ regime with a
single solution for each pump value.
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This discussion can be specialised to the case of the bistable regime, where

the mean field solution of Eq. (4.4) can be split into three branches (red, green,

and blue in Fig. 4.1). These branches are separated by points called “inversion

points”, which correspond to

V |ψ0|2 =
1
3

(
2δp ±

√
δ2
p − 3κ2

)
. (4.17)

We thus see that V |ψ0|2 < δp on the lower red branch, and so superfluidity cannot

occur there per the Landau criterion. The middle green branch can be shown to

be dynamically unstable since

∃ks.t. Im ω±(k) > 0 (4.18)

for every point on that branch (a simple proof of this is given in Section 5.1), and

this is an indication of dynamical instability [53]. Thus, according to the Landau

criterion, superfluidity is present on the upper blue branch for every point with

V |ψ0|2 ≥ δp. As we are about to see, however, this conclusion is incorrect.

4.3 Current-Current Response and the Rigid State

4.3.1 Linear-Response Superfluid Criterion

The work on which this part of the thesis builds [33] opted to use the linear

response-based criterion we introduced in Chap.1 as the correct generalisation of

the definition of superfluid to non-equilibrium systems. The results, briefly out-

lined now, differ from the Landau criterion analysis and highlight its limitations

in a driven-dissipative context.

For a system possessing a conserved current j(x, t), consider a Hamiltonian

perturbation of the form

−
∫
dxdt j(x, t) ·u(x, t) (4.19)

where u(x, t) is an external field. Considering the historical example of fluid in a

capillary, this generalises the term −m
∫
dxdt j(x, t) · u = −P · u, which appears in

the superfluid’s rest frame Hamiltonian when the walls are moving with velocity

u (recall the discussion of Chap.1). The Helmholtz decomposition of u(x, t),

u(x, t) = −∇Φ(x, t)︸     ︷︷     ︸
longitudinal

+∇×A(x, t)︸      ︷︷      ︸
transverse

, (4.20)

consists of longitudinal and transverse components. Intuitively, the gradient

term corresponds to some sort of push, while the curl term introduces shear. The

generalisation of the classical superfluid’s frictionless flow through a capillary is
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the statement that its current does not respond to transverse perturbations, since

friction with the walls is a shearing force.

To study this (linear) response, we require the current-current response ten-

sor. By Kubo’s formula, this is

χij(x, t,x
′, t′) = iθ(t − t′)⟨[ji(x, t), jj(x′, t′)]⟩. (4.21)

In an isotropic, time and space translation-invariant system, the most general

form the static (ω = 0) Fourier transform of this quantity can take is

χij(k) =
kikj
|k|2

χL(|k|) +
(
δij −

kikj
|k|2

)
χT (|k|). (4.22)

The subscripts indicate that the first term couples to the longitudinal component

of the static Helmholtz decomposition, −kΦ(k), while the second couples to the

transverse component k×A(k). Using the special form of (4.22), we observe that

the static limits of the normal and transverse components may be extracted by

sequential limits. For example

lim
ky→0

lim
kx→0

χxx = lim
k→0

χT (k), (4.23)

lim
kx→0

lim
ky→0

χxx = lim
k→0

χL(k). (4.24)

These equations may be understood as special cases of equations (1.41) and (1.42)

when u is constant, |u| = 1, and u is oriented along the x-direction. While we will

use this property later to perform explicit calculations, it is worth highlighting

what it suggests about the response tensor. Namely, in order for a system to

possess different transverse and longitudinal responses, the response tensor must

be discontinuous at zero momentum.

Superfluidity is then defined in the thermodynamic limit as a difference be-

tween the static, homogeneous linear and transverse responses:

lim
k→0

(χL(k)−χT (k)) > 0 =⇒ superfluid. (4.25)

4.3.2 Non-Equilibrium Current

The above definition relies on a conserved system current, but the situation is

more complicated for driven-dissipative systems. For such systems, we are inter-

ested in the component of the current that is internal to the system as opposed to

the component relating to pump and dissipation. This is known as the coherent

current [54], and takes the familiar form

j(x, t) =
1

2mi
(ψ̄∇ψ −ψ∇ψ̄). (4.26)
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In [33], care is taken to normal-order this operator. Normal ordering, however,

only affects the expectation of the operator up to a constant. Since we are inter-

ested in the linear response of this expectation the constant is irrelevant.

Suppose that we introduce a term of the form

−
∫
dxdt j(x, t) ·u(x, t) (4.27)

to the original Hamiltonian, where u is a classical field. Writing j+ for (4.26) writ-

ten in terms of fields on the forward contour, and similarly j− for the backward

contour, this will give the following contribution to the overall Keldysh action:∫
dxdt

(
j+(x, t) ·u+(x, t)− j−(x, t) ·u−(x, t)

)
. (4.28)

We may now define, by analogy with the classical and quantum fields, the

classical and quantum current operators jc, jq as2

jc =
1
2

(j+ + j−), (4.29)

jq = (j+ − j−). (4.30)

Also introducing the “physical” field f = 1
2(u+ + u−) and the “unphysical” field

θ = u+ − u−, the significance of which will be explained shortly, we may rewrite

(4.28) as ∫
dxdt

(
jc(x, t) ·θ(x, t) + jq(x, t) · f(x, t)

)
. (4.31)

Since the classical field is the same on both contours, u+ = u−, we have that the

unphysical field θ = 0 which motivates its name. On the other hand the physical

field is equal to the original field f = u. The perturbation to the Keldysh action

thus takes the form ∫
dxdt jq(x, t) · f(x, t), (4.32)

from which one can see that the first perturbative correction to the expectation

of the classical current will be∫
dx′dt′ i⟨jc(x, t)jq(x′, t′)⟩ · f(x′, t′). (4.33)

Since, up to normal ordering, the expectation value of the classical current is

equal to the expectation value of the true current, this shows that the response

2The choice of factors 1
2 and 1 here, contrary to the symmetric choice of 1√

2
for both classi-

cal and quantum fields, ensures that the expectation of the classical current is equal to that of
the physical current. This is convenient, since the physical current is the primary observable of
interest throughout this part of the thesis.
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function we seek is given by

χij(x, t,x
′, t′) = i⟨jci (x, t)j

q
j (x′, t′)⟩, (4.34)

and we may view the response we seek as the response of the classical current to

the physical field. This result is derived in an alternative way in [54].

In terms of Fourier-transformed fields, (4.32) is∑
k

jq(−k) · f(k) (4.35)

so that the static response in terms of these fields becomes

χij(0,q) = χij(q) = i⟨jci (0,q)jqj (0,−q)⟩, (4.36)

while the static classical and quantum currents are given by

jci (0,q) = jci (q) =
1
2

∑
ω,k

γi(2k+q)[ψc(ω,k+q)ψ̄c(ω,k)+ψq(ω,k+q)ψ̄q(ω,k)], (4.37)

j
q
i (0,q) = jqi (q) =

∑
ω,k

γi(2k + q)[ψc(ω,k + q)ψ̄q(ω,k) +ψq(ω,k + q)ψ̄c(ω,k)], (4.38)

where γ(q) =
q+kp
2m .

4.3.3 The Rigid State

The response tensor may be worked out perturbatively using the diagrammatics

of Appendix A. At order O(ℏ) there are six diagrams, presented in Fig. 4.2.

A: B: C:

D: E: F:

Figure 4.2: Order O(ℏ) diagrams for the current-current response. Circles with a line
through them represent the condensate ψ0 while those with a cross represent ψ̄0. Solid
lines with the arrow at their end oriented towards a momentum p represent ψcp, while
those with an arrow pointing away from it represent ψ̄cp. Analogously, such dashed lines
represent ψqp and ψ̄qp. Two such lines, when connected, represent the Green’s function
equal to the expectation of the product of the associated fields.
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Placing one current operator on the left of the diagram and one on the right,

the first four of these represent

− |ψ0|2G11
R (0,q)γi(q)γj(q)−ψ2

0G
21
R (0,q)γi(−q)γj(q)

− ψ̄2
0G

12
R (0,q)γi(q)γj(−q)− |ψ0|2G22

R (0,q)γi(−q)γj(−q),
(4.39)

while the last two yield the more complicated term

−γi(0)|ψ0|2δq,0

∑
ω′ ,k′

[G11
R (ω′,k′) +G11

A (ω′,k′)]γj(2k′). (4.40)

This term is zero by the Keldysh identity
∑
ω[G11

R (ω,k)+G11
A (ω,k)] = 0, so at order

O(ℏ) the current-current response is given by

χ
ℏ,ij(q) =− |ψ0|2G11

R (0,q)γi(q)γj(q)−ψ2
0G

21
R (0,q)γi(−q)γj(q)

− ψ̄2
0G

12
R (0,q)γi(q)γj(−q)− |ψ0|2G22

R (0,q)γi(−q)γj(−q).
(4.41)

We may briefly comment on the physical significance of these diagrams, as re-

lated in [27] (the present diagrams correspond to the first diagram in Fig. 1. of

that paper). In all (non-zero) of these, each current vertex scatters a particle out

of the condensate and thus yields a term of the form γi(q). All such diagrams

thus contribute to the superfluid qiqj component of the response tensor.

We may expand this expression out to facilitate taking appropriate limits.

Substituting in for the propagators and splitting γi(q) = 1
2m(q)i + 1

2m(kp)i yields

χ
ℏ,ij(q) = −

|ψ0|2

4m2(J(q)J∗(−q)−V 2|ψ0|4)((
J(q) + J∗(−q) + 2V |ψ0|2

)
(kp)i(kp)j − (J(q)− J∗(−q))(q)i(kp)j

− (J(q)− J∗(−q))(kp)i(q)j +
(
J(q) + J∗(−q)− 2V |ψ0|2

)
(q)i(q)j

)
.

(4.42)

So long as J(0)J∗(−0)−V 2|ψ0|4 , 0 (the condition for the complex spectrum to

be gapped), the q→ 0 limit of this quantity is direction-independent and is equal

to

χ
ℏ,ij(0) = −

|ψ0|2
(
2δp − 2V |ψ0|2

)
4m2(3V 2|ψ0|4 − 4δpV |ψ0|2 + δ2

p +κ2)
(kp)i(kp)j . (4.43)

The system (and thus this homogeneous response) is not isotropic unless kp = 0,

so the tensor cannot be decomposed as in (4.22). Note, however, that the direc-

tion independence of the limit means that for a perturbation in a given direction

d, for q → 0 the response is χ
ℏ,ij(0)(d(0))j and is thus independent of whether

the perturbation was longitudinal or transverse. This absence of a discontinuity

at k = 0 means the behaviour is the same in all directions, so we may conclude
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that the response is entirely non-superfluid. More specifically, it will be shown

in Section 5.2.2 that it can be interpreted as a change in occupation of the macro-

scopically occupied q = kp pump state (also referred to as the condensate, and

corresponding to ψ0 due to the momentum shift performed earlier), so that the

homogeneous component of the non-equilibrium current is rigidly in the kp di-

rection. This situation was referred as the system being in a “rigid state” by [33],

and corresponds to what was discussed in Chap.1: the system can only support

one persistent flow (or none if kp = 0), locked to the pump, and thus does not

satisfy the implicit assumptions of the Landau criterion.

A particularly interesting situation occurs when V |ψ0|2 = δp, as the response

then vanishes entirely even at kp , 0. This corresponds to what is sometimes

known as the “sonic point”, as here the real part of the spectrum becomes gapless

and linear (refer to Section 4.2), and has been studied in experiments where the

polariton fluid was induced to flow past a defect [21]. Such experiments report

significantly reduced scattering of the fluid by the defect (also referred to as fric-

tionless flow) in this regime and interpret this as a sign of superfluidity. It seems,

however, that what was actually detected was the vanishing of the linear response

in its entirety. This means that, while scattering is indeed expected to be reduced,

the transverse and longitudinal responses are equal and both zero so that the sys-

tem is in the unique rigid state rather than a superfluid state: “frictionless flow

in the sonic regime is the only property associated with superfluidity that is ex-

hibited by this rigid state, as vortices and persistent currents cannot form when

the phase is externally fixed” (note that recent work has demonstrated that the

topological defects associated with coherently driven polaritons are domain walls

rather than vortices [55]), “and the superfluid response is zero” [33].

A number of groups have also experimentally measured the spectrum in the

sonic regime based on a belief in the importance of the linearisation of the real

part of the spectrum (and thus it taking on a Bogoliubov form) to the Landau

criterion [56]–[58]. Such interest in this point as a superfluid candidate warrants

an explanation for why we detect no superfluid response despite the linearised

spectrum (the explanation of Chap.1 continues to apply, this is merely another

way of looking at the problem).

Recall that, in order for a superfluid response to be present, there must be

a discontinuity in the current-current response at zero momentum. Yet a cru-

cial effect of the excitation spectrum in Bose-condensed systems in the weakly-

interacting regime relates to the fact that in such systems the poles of one-particle

Green’s functions coincide with those of density and current response functions

(strictly speaking non-analyticities of the response functions, since a pole of the

Green’s function may become “smoothed out” in the response function) [59], [60].

This is easily seen to be the case for our system, where the mean-field current-
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current response is a linear combination of the retarded Green’s functions (see

(4.41)). Thus, in order for our static (ω = 0) response to possess a discontinuity

at k = 0, the retarded Green’s functions must possess a pole at ω = 0, k = 0. This

corresponds to a condition that the spectrum be gapless and, in an equilibrium

system with a purely real spectrum, the linearised Bogoliubov spectrum would

be. In a driven-dissipative system such as ours, however, the spectrum also pos-

sesses an imaginary part and this is found to be non-zero in the sonic regime

(both analytically and from linewidth measurements in the cited experimental

papers). Thus a linearised Bogoliubov form of the real part of the spectrum is

not a sufficient condition for superfluidity in such systems: this is an important

distinction between equilibrium and driven-dissipative systems due to the possi-

bility of complex dispersion relations for the latter.

Overall, the Landau criterion correctly identifies points at which no super-

fluid is present; it agrees with the response analysis that no superfluid is present

for V |ψ0|2 < δp. However it also yields false positives since it predicts superfluid-

ity for points with V |ψ0|2 > δp (possessing a gapped real spectrum), whereas the

linear response at these points is found to be non-superfluid. The Landau crite-

rion does correctly identify the frictionless regime V |ψ0|2 = δp, but this regime

lacks not only a transverse but also a longitudinal response and is thus not a con-

ventional superfluid but rather a special case of the rigid state with vanishing

linear response and thus reduced friction.

4.4 Mean-field response in the gapless regime

The above analysis was restricted to the case of J(0)J∗(−0)−V 2|ψ0|4 , 0, where the

complex spectrum is gapped. At the inversion points, however, this condition

fails, which can be seen in Fig. 4.3.
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Figure 4.3: Gapless excitation spectra at the bistability inversion points, where blue is
the real part and dashed-red imaginary, for the isotropic kp = 0 case. (a) The spectrum
at the the inversion point on the lower branch in Fig. 4.1(a). (b) The spectrum at the the
inversion point on the upper branch in Fig. 4.1(a). For the anisotropic case, where
kp , 0, the real spectra are tilted but still gapless.

To investigate how this change in the spectrum affects the response to per-

turbations of coherently pumped polaritons, we calculate the homogeneous be-

haviour of the mean-field response function (Eq. (4.42)) in this regime. As-

suming a uniformly oriented perturbing field u(q), the longitudinal response

can be found by taking the momentum to zero along the direction of the per-

turbation (u ⊥ q = 0, u ∥ q → 0), and analogously for the transverse response

(u ∥ q = 0, u ⊥ q → 0). To do this, we separate the response function into its

numerator and denominator,

χ
ℏ,ij(q) =

nij(qx,qy)

d(qx,qy)
, (4.44)

where the latter is given by

d(qx,qy) =

q2
x + q2

y

2m

2

− (2δp − 4V
∣∣∣ψ0

∣∣∣2)
q2
x + q2

y

2m

−
k2
pq

2
x

m2 +
2iκkpqx
m

(4.45)

+3V 2
∣∣∣ψ0

∣∣∣4 − 4δpV
∣∣∣ψ0

∣∣∣2 + δ2
p +κ2.

The last line above is zero in the regime we are investigating, as that is the con-

dition for a gapless spectrum. Consequently, in the long-range limit, d will go

to zero and the response function will exhibit singular behaviour. To discover

whether this may be superfluid behaviour, we must look at the limiting behaviour

of the numerator.
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From Eq. (4.42), the numerator of the χ
ℏ,xx component is given by

nxx(qx,qy) =

∣∣∣ψ0

∣∣∣2
2m2

 q4
x

2m
+
q2
xq

2
y

2m

−
2k2

p

m
+ δp − 3V

∣∣∣ψ0

∣∣∣2q2
x (4.46)

+
2k2

p

m
q2
y + 4ikpκqx − 4k2

p(δp −V
∣∣∣ψ0

∣∣∣2)

.
The limits of this expression are different depending on whether kp , 0, the

anisotropic case, or whether kp = 0, the isotropic case. We will deal with each

in turn.

4.4.1 Anisotropic case

In the anisotropic case, choosing kp in the x-direction without loss of generality,

we may study the response to an x-directed perturbation through nxx. Taking

the limits of the above expressions in the correct order, one finds the following

behaviour for the longitudinal and transverse responses:

lim
q→0

χ
ℏ,xx,L(q) =

C1

|q| → 0
, (4.47)

lim
q→0

χ
ℏ,xx,T (q) =

C2

(|q| → 0)2 , (4.48)

for some constants C1 and C2. Performing the equivalent calculations, starting

again from Eq. (4.42), for the off-diagonal components, χ
ℏ,xy and χ

ℏ,yx, we also

encounter divergences, and it is tempting to ask whether any physical conclu-

sions can be drawn from any of these cases. The χ
ℏ,yy component of the response

function however is equivalent to the isotropic χ
ℏ,xx case (due to our choice of

kp), which we now turn to.

4.4.2 Isotropic case

Taking the correct limits in the isotropic case, it is found that

lim
q→0

χ
ℏ,xx,L(q) =

|ψ0|2(δp − 3V |ψ0|2)

m(2δp − 4V |ψ0|2)
, (4.49)

lim
q→0

χ
ℏ,xx,T (q) = 0, (4.50)

and that χ
ℏ,xy = χ

ℏ,yx = 0. This would appear to strongly suggest superfluid be-

haviour. It is not clear, however, whether this conclusion extends to O(ℏ2), and
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what the mechanism for this superfluidity would be in the absence of a global

U (1) symmetry.

In the following two chapters I will answer these questions, starting with the

anisotropic, finite kp case in Chap.5, and continuing with the isotropic kp = 0

case in Chap.6.
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Chapter 5

Diverging Anisotropic Response

5.1 Catastrophe Structure of the Mean Field Solu-

tions

Before directly tackling the origin of the divergent response, it is helpful to first

further analyse the structure of the system’s mean-field. Let us thus return to

Eq. (4.4) for the homogeneous mean-field solutions

V 2n3 − 2δpVn
2 + (δ2

p +κ2)n−F2
p = 0. (5.1)

This equation may be rewritten as

∂n

[1
4
V 2n4 − 2

3
δpVn

3 +
1
2

(δ2
p +κ2)n2 −F2

pn
]

= 0, (5.2)

indicating that these mean-field solutions correspond to extrema of the effective

potential

Ueff(n) =
1
4
V 2n4 − 2

3
δpVn

3 +
1
2

(δ2
p +κ2)n2 −F2

pn. (5.3)

Moreover,

Imω+(0) = −κ+ Im
√

3V 2n2 − 4δpVn+ δ2
p, (5.4)

so a sufficient condition for dynamical instability Imω+(0) > 0 may be written as

3V 2n2 − 4δpVn+ δ2
p < −κ2, (5.5)

or

∂2
nUeff < 0. (5.6)

We may reduce Ueff to a standard form by eliminating the cubic coefficient via a

linear variable change n = m+
2δp
3V , discarding the constant term (which does not

contribute to any derivatives), and subsequently dividing through by the quartic

coefficient, yielding

79



80 CHAPTER 5. DIVERGING ANISOTROPIC RESPONSE

U ′eff(m)

=m4 +
2(3κ2 − δ2

p)

3V 2 m2 +

8δp(δ2
p + 9κ2)

27V 3 −
4F2

p

V 2

m. (5.7)

Introducing control parameters A(δp) =
2(3κ2−δ2

p)
3V 2 , B(δp,Fp) =

8δp(δ2
p+9κ2)

27V 3 − 4F2
p

V 2 , this

is

U ′eff(m) =m4 +A(δp)m2 +B(δp,Fp)m. (5.8)

The reader familiar with catastrophe theory will recognize this as the univer-

sal unfolding of a cusp catastrophe. Catastrophe theory is a branch of bifurca-

tion theory, studying how small changes in an effective potential can yield large

changes in the structure of that potential’s stationary points. This has clear ap-

plications to classical statistical mechanics, where a system’s equilibrium state is

typically determined by minima of a thermodynamic potential, and extends to

mean-field theory when the equations of motion can be reduced to stationarity

equations for an effective potential as above. A short mathematical introduction

to catastrophe theory is given in Appendix B.

That the potential corresponds to this unfolding globally rather than in a local

neighbourhood of a critical point simplifies the analysis. Every possible topolog-

ical configuration of extrema is given in Fig. 5.1, of which there are seen to be

five, and for simplicity we classify points as stable or unstable based on the par-

tial criterion of Eq. (5.5).

A: + - + B: + 2

C: +2 D: 3

E: +

Figure 5.1: Since it is globally expressible as the universal unfolding of a cusp
catastrophe, there are five distinct topological configurations for the critical points of
the effective potential U ′eff(m). Circles represent critical points, with those containing +
denoting local minima and those containing − denoting local maxima. Critical points
with zero second derivative resulting from multiple local minima/maxima coalescing
into a single point are represented by a circle containing the number of coalesced points.

Non-Morse critical points are points with a vanishing second derivative, or

∂2
mU
′
eff(m) = 0. Since such points are structurally unstable relative to the con-

trol parameters A and B, and thus relative to δp and Fp, we see that such points

correspond to phase transitions [61]. Here these are the coalesced critical points
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corresponding to configurations B, C, D in Fig. 5.1. Those of double multiplicity,

5.1.B and 5.1.C, locally correspond to fold bifurcations — an infinitesimal per-

turbation of the control parameters may split such a point into a stable-unstable

pair (case 5.1.A) or eliminate it entirely (case 5.1.E). Such an elimination results

in a discontinuous collapse to the remaining stable critical point, meaning these

are zero-order phase transition points. The configuration with a point of triple

multiplicity 5.1.D, when it is non-Morse (if it is Morse, then we are not in the

bistable regime), is just the catastrophe germ1 for the cusp catastrophe, and thus

corresponds to a continuous phase transition. A general infinitesimal perturba-

tion of the control parameters will continuously split it into two stable and one

unstable critical point, which is the universal unfolding 5.1.A.

In the rest of this part of the thesis, it will be seen that it is the presence

of these structurally unstable non-Morse critical points and their accompanying

phase transitions that is the cause of the divergences appearing in the anisotropic

current-current linear response. We may note already that the condition for a

diverging linear response, a gapless spectrum, corresponds to the inequality in

Eqs (5.4) and (5.5) becoming an equality. This is precisely the condition for a

non-Morse critical point.

Finally, we may visualise this catastrophe structure by solving ∂mU ′eff(m) = 0

for m in terms of A and B, and plotting the resulting msoln(A,B). This is seen in

Fig. 5.2, where the resulting surface is called the “critical manifold” and the line

of non-Morse critical points is termed the “locus of bifurcations”. By our stability

criterion, the section of the surface inside the locus of bifurcations always corre-

sponds to unstable solutions, while the section outside is generally stable (some

of these points are unstable since our criterion only checks dynamical stability at

zero momentum, but this will not be relevant).

5.2 The Geometric Origin of the Divergence

5.2.1 Non-Linearity at the Locus of Bifurcations

Having laid the groundwork by identifying the presence of catastrophes and a

locus of bifurcations in our system, we may now see how this leads to a diverging

anisotropic response.

Consider the static mean-field equations for the anisotropic problem. Recall

from section II.D.2 that the current-current response we seek is a response to the

physical field fi(q), so we add the term
∑
k f(k) · jq(−k) to the action. Moreover,

in the absence of an unphysical field, solutions to Keldysh mean-field equations

have the quantum fields equal to zero so we pre-emptively set them so. The

1Refer to Appendix B for the meaning of this term.
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Figure 5.2: Critical manifold of the solution msoln(A,B) to ∂mU ′eff(m) = 0. Solutions
corresponding to non-Morse critical points form a line (blue) on this surface, called the
locus of bifurcations — the name is due to infinitesimal perturbations in A and B at
these points leading to a change in the number of solutions, i.e. to bifurcations. The
critical point on this line corresponding to the cusp catastrophe germ is labelled by a
red sphere.

resulting equations are

(∆p − ϵ(k) + iκ)ψ(k)−Fpδk,0

− V
2

∑
k′ ,q

ψ̄(k′ + q)ψ(k + q)ψ(k′)

+
∑

q

γi(2k−q)fi(q)ψ(k−q) = 0

(5.9)

and its complex conjugate. Splitting fi(k) as fi(k) = fi(0)δk,0 + fi(k)(1 − δk,0) and

temporarily setting the inhomogeneous components of the force to zero, the equa-

tions may be rewritten as

(∆p +γi(2k)fi(0)− ϵ(k) + iκ)ψ(k)−Fpδk,0

− V
2

∑
k′ ,q

ψ̄(k′ + q)ψ(k + q)ψ(k′) = 0 (5.10)
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Finally consider homogeneous solutions:

((δp +γi(0)fi(0)) + iκ)ψ0 −Fp −Vψ0|ψ0|2 = 0 (5.11)

We see that the homogeneous component of the force couples into this equation

in the same way as the detuning. We can thus absorb this into an effective δ′p =

δp +γi(0)fi(0).

Now, note that the mean-field value of the classical current is given by

jmf,i(q) = γi(0)|ψ0|2δq,0, (5.12)

so that the mean-field linear response to a homogeneous force can, with some

caution, be viewed as

χmf,ij(0) = γi(0)
∂|ψ0|2

∂fj(0)
= γi(0)

∂|ψ0|2

∂δ′p
γj(0), (5.13)

and herein lies the connection. Looking at the control surface again, we see that

along the locus of bifurcations ∂m
∂A and ∂m

∂B diverge. This is because, in a neigh-

bourhood of any point on the locus, a fixed-A or B cross-section will possess one

of the two forms in Fig. 5.3. Such a divergence of the linear response to control

parameters is typical of bifurcation points in catastrophe theory [62].

A/B

m

Figure 5.3: A fixed-A or B cross-section of the critical manifold with a point of the locus
of bifurcations at the origin will have one of the two general forms shown here. The blue
line indicates the case of a two-fold multiplicity point, while the red relates to the point
of triple multiplicity. In both cases, derivatives diverge at the origin, i.e. on the locus.

As a result, if we choose Fp and δp such thatm lies on the locus andm′, defined

as m but with δ′p instead of δp, is a stable solution, we find

∂|ψ0|2

∂δ′p
=

2
3V

+
∂m′

∂A
∂A
∂δ′p

+
∂m′

∂B
∂B
∂δ′p

. (5.14)
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Thus, as f(0)→ 0, i.e. δ′p→ δp, ∂|ψ0|2
∂δ′p
→∞. This shows that the divergence in the

current-current response in this case is intimately tied to the presence of a bifur-

cation. Far from being unphysical, the divergence expresses the high degree of

non-linearity present in the vicinity of a non-Morse critical point corresponding

to a phase transition, and the mechanism just described is typical of the origin of

divergent linear responses at phase transitions.

5.2.2 Directional Dependence of the Response

Equation (5.13) is not entirely well-founded. The limit lim
q→0

χij(q) is sometimes

directional (the definition of superfluid we are using relies on this fact), but

the above expression admits no such possibility. In the case that this direction-

dependence is absent, however, we may show that the result agrees with a more

rigorous treatment using the explicit form of the response tensor. In this case the

response is just a measure of the change in occupation |ψ0|2 of the macroscopi-

cally occupied pump state in response to an external static drive fj(0).

We begin by calculating ∂|ψ0|2
∂δp

, or ∂n
∂δp

= ṅ, by starting from the mean-field

homogeneous equation:

V 2n3 − 2δpVn
2 + (δ2

p +κ2)n−F2
p = 0 (5.15)

Differentiating,

3V 2n2ṅ− 2Vn2 − 4δpVnṅ+ 2δ′pn+ (δ2
p +κ2)ṅ = 0 (5.16)

and rearranging (provided the denominator is not 0):

ṅ =
2Vn2 − 2δpn

3V 2n2 − 4δpVn+ δ2
p +κ2

. (5.17)

Our expression then yields:

χhom-mf,ij =

−
|ψ0|2

(
2δp − 2V |ψ0|2

)
4m2(3V 2|ψ0|4 − 4δpV |ψ0|2 + δ2

p +κ2)
(kp)i(kp)j

(5.18)

which is identical to our O(ℏ) diagrammatic result in Eq. (4.43). We thus see

that, where 3V 2n2 − 4δpVn + δ2
p + κ2 , 0, the limit is direction-independent and

accurately captured by our formula. Moreover, we know that ∂2
nUeff(n) = 3V 2n2−

4δpVn + δ2
p + κ2 = 0 only on the locus of bifurcations, so χhom-mf,ij = γi(0)∂|ψ0|2

∂fj (0)
is valid as the locus is approached, and the divergence indeed arises from our

earlier geometric argument.



Chapter 6

Isotropic Mean-Field Superfluidity

We now turn to the isotropic case. Recalling the discussion of Section 4.4.2, we

know that for kp = 0 the O(ℏ) current-current response is purely superfluid. This

mean-field superfluidity has a curious origin as the interplay of two opposing

processes; on the one hand, as the point of interest lies on the locus of bifurca-

tions, the response for any non-zero pump momentum diverges for the geometric

reasons as discussed in Section 5.2. As kp → 0, however, the homogeneous com-

ponent of the force couples increasingly weakly to the mean-field equations (its

coupling being γi(0) =
kp
2m ), and in the limit kp = 0 does not appear in them at

all. This means that kp→ 0 leads to χ
ℏ
(0)→ 0 off of the locus and the interaction

with the divergence at the locus yields a finite, non-zero superfluid response at

it.

This elegant picture is unfortunately spoiled by higher-order terms in the per-

turbation expansion. We will now show that a divergence persists at O(ℏ2), and

is related to the absence of U (1) symmetry in the problem1.

6.1 One-Loop Keldysh Tadpoles

One-loop tadpoles are truncated Feynman diagrams of the form . There

are are six such tadpoles with R/A correlators as the loop, presented in Fig. 6.1,

and four with a K correlator, presented in Fig. 6.2.

Crucially, the R/A loops are mutually cancelling. To see this, consider the

combination of terms coming from tadpoles (A) and (B) in Fig. 6.1 when attached

to the same external line on a diagram:

−GX(0)
∫
dk

(
G11
R (k) +G11

A (k)
)

= 0. (6.1)

Here GX(0) is some correlator corresponding to the attachment, while the loops

1This divergence was actually also present in the anisotropic case, but there the mean field
divergence invalidated the calculation at a lower order of perturbation.
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A: B: C:

D: E: F:

Figure 6.1: R/A-Correlator Tadpoles. Solid lines with the arrow oriented towards the
vertex represent ψ̄cp, while those with an arrow pointing away from it represent ψcp.
Analogously, such dashed lines represent ψ̄qp and ψqp. Two such lines, when connected,
represent the Green’s function equal to the expectation of the product of the associated
fields.

G: H:

I: J:

Figure 6.2: K-Correlator Tadpoles. Solid lines with the arrow oriented towards the
vertex represent ψ̄cp, while those with an arrow pointing away from it represent ψcp.
Analogously, such dashed lines represent ψ̄qp and ψqp. Two such lines, when connected,
represent the Green’s function equal to the expectation of the product of the associated
fields.

themselves are seen to cancel by the Keldysh relation
∫
dω (GR(ω) +GA(ω)) = 0

(note that the {11} elements of the Keldysh matrices correspond to the true GR/A).

Tadpoles (D) and (E) cancel in the same manner.

To see that tadpole (C) is zero, we write its attachment out explicitly:

−GX(0)
∫
dkG12

R (k) =

−GX(0)
∫
dk

(∫
dω

Vψ2
0

J(ω,k)J∗(−ω,−k)−V 2|ψ0|4

)
.

(6.2)

The denominator of the integrand is quadratic in ω, and the pole lies in the lower

half-plane (the denominator agrees with that of the true retarded Green’s func-

tion). Thus, closing the contour in the upper half-plane, the integral is zero. The

same reasoning then leads to the vanishing of tadpole (F).

The K-correlator tadpoles, however, do not cancel in this way. Moreover,
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when connected to an external line of a diagram, they introduce a term of the

form GR/A(0). Such terms become singular in the limit of a gapless spectrum

(since in that case the pole is precisely at ω = 0, k = 0) so that, for the perturba-

tion expansion to remain finite, certain diagrams with external legs must vanish.

We will now argue that this does not occur.

6.2 Tadpole Diagrams at O(ℏ2)

Associating the connecting edge to the tadpole rather than to the main diagram,

we see that a tadpole contributes ℏ to any diagram to which it is attached. This

means that we are interested in cancellation of diagrams with a free leg2 that are

O(ℏ) prior to the attachment of the tadpole.

To understand what kinds of diagrams may appear, we may apply some graph

theory, considering diagrams with a free leg as graphs where interaction vertices

are the vertices and Green’s functions (but not the free leg) are edges. Denote the

number of 4-valent vertices by a and 3-valent vertices by b, the number of current

fields participating in an edge (as opposed to assuming a mean-field value) by n,

and the number of edges and vertices by e and v respectively. Then one finds (we

subtract 1 because we do not count the free leg)

4a+ 3b − 1−n
2

+n = e, (6.3)

a+ b = v, (6.4)

e − v = 1. (6.5)

Here the first condition equates the number of edges to the number of Green’s

functions connecting two vertices plus the number of Green’s functions connect-

ing to at least one current field, the second equates the total number of vertices to

the number of interaction vertices, and the last enforces that the diagram is O(ℏ),

since each vertex removes a factor of ℏ and each edge adds one. From here a little

manipulation yields

2a+ b = 3−n, (6.6)

which allows us to classify all possible diagrams.

We see that the possible values of n are n = 1, 2, 3. We may disregard n = 1

because in this case three of the four current fields are set to mean-field values,

meaning the remaining field is a quantum field. The attaching field of the K-

tadpole is, however, also quantum and the quantum-quantum correlators are all

zero, so that such diagrams vanish. For n = 2, the only possibility is b = 1, while

2By this we mean a line coming off of a vertex that has not been paired with another line to
form a Green’s function. When a tadpole is attached, it is this line that will be paired with the
corresponding free leg of the tadpole.
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for n = 3 we must have a = b = 0. These are thus the only types of diagrams that

we need consider.

Unfortunately even after discarding those which trivially vanish, this still

leaves a comparably large number — 32 diagrams. These diagrams, however,

have different asymptotic dependencies on |q| → ∞ (the momentum variable of

the response function)3. Because these diagrams must cancel at all momenta

for the perturbation theory to be valid, we may group them by this dependence:

each group must cancel independently. Each diagram will possess two factors of

γ(±q). Furthermore, R/A correlators where the arrows match (G11
R/A andG22

R/A) are

O(|q−2|), while the others (G12
R/A and G21

R/A) are O(|q−4|). We then have 6 diagrams

of O(|q|−6), 12 diagrams of O(|q|−4), 10 diagrams of O(|q|−2), and 4 diagrams of

O(|q|0). These are given in Figs. 6.3, 6.4, 6.5, 6.6.

Figure 6.3: O(|q|0) diagrams, with the small circle denoting the tadpole attachment
point. Circles with a line through them represent the condensate ψ0 while those with a
cross represent ψ̄0. Solid lines with the arrow at their end oriented towards a
momentum p represent ψcp, while those with an arrow pointing away from it represent
ψ̄cp. Analogously, such dashed lines represent ψqp and ψ̄qp. Two such lines, when
connected, represent the Green’s function equal to the expectation of the product of the
associated fields.

3Here we are referring purely to the functional form of this dependence, disregarding the
cut-off of the theory.
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Figure 6.4: O(|q|−2) diagrams, with the small circle denoting the tadpole attachment
point. Circles with a line through them represent the condensate ψ0 while those with a
cross represent ψ̄0. Solid lines with the arrow at their end oriented towards a
momentum p represent ψcp, while those with an arrow pointing away from it represent
ψ̄cp. Analogously, such dashed lines represent ψqp and ψ̄qp. Two such lines, when
connected, represent the Green’s function equal to the expectation of the product of the
associated fields.

Figure 6.5: O(|q|−6) diagrams, with the small circle denoting the tadpole attachment
point. Circles with a line through them represent the condensate ψ0 while those with a
cross represent ψ̄0. Solid lines with the arrow at their end oriented towards a
momentum p represent ψcp, while those with an arrow pointing away from it represent
ψ̄cp. Analogously, such dashed lines represent ψqp and ψ̄qp. Two such lines, when
connected, represent the Green’s function equal to the expectation of the product of the
associated fields.
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Figure 6.6: O(|q|−4) diagrams, with the small circle denoting the tadpole attachment
point. Circles with a line through them represent the condensate ψ0 while those with a
cross represent ψ̄0. Solid lines with the arrow at their end oriented towards a
momentum p represent ψcp, while those with an arrow pointing away from it represent
ψ̄cp. Analogously, such dashed lines represent ψqp and ψ̄qp. Two such lines, when
connected, represent the Green’s function equal to the expectation of the product of the
associated fields.

We begin by considering the four O(|q|0) diagrams. The two with a ψc con-

necting field come out to

− 1
√

2
(G11

R (q) +G22
R (q))ψ̄0γi(q)γj(q), (6.7)

while the other two yield

− 1
√

2
(G11

R (q) +G22
R (q))ψ0γi(q)γj(q). (6.8)

Considering all possible K-tadpole attachments, we obtain the following expres-

sion for the sum of these diagrams:

− V√
2

(G11
R (q) +G22

R (q))γi(q)γj(q)
[
ψ̄0

(
G11
R (0)(

1
2
ψ̄0 Tr[G12

K ] +ψ0 Tr[G11
K ])

+G12
R (0)(

1
2
ψ0 Tr[G21

K ] + ψ̄0 Tr[G22
K ])

)
+ψ0

(
G21
R (0)(

1
2
ψ̄0 Tr[G12

K ] +ψ0 Tr[G11
K ])

+G22
R (0)(

1
2
ψ0 Tr[G21

K ] + ψ̄0 Tr[G22
K ])

)]
(6.9)
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Denoting

a =
1
2
ψ̄0 Tr[G12

K ] +ψ0 Tr[G11
K ], (6.10)

b =
1
2
ψ0 Tr[G21

K ] + ψ̄0 Tr[G22
K ], (6.11)

the condition for this sum to be zero may be written as

ψ̄0J
∗(0)a+ ψ̄0Vψ

2
0b︸                  ︷︷                  ︸

A

+ψ0V ψ̄
2
0a+ψ0J(0)b︸                 ︷︷                 ︸
−A

= 0. (6.12)

Further, recalling that

(G11
R (k))∗ = G22

R (−k), (6.13)

(G12
R (k))∗ = G21

R (−k), (6.14)

(G11
K (k))∗ = −G22

K (−k), (6.15)

(G12
K (k))∗ = −G21

K (−k), (6.16)

we have a∗ = −b. This means that A = A∗ so A is real.

Setting A′ = A
|ψ0|2

, another real quantity, this equation may be rewritten as a

matrix expression:  J∗(0) −Vψ2
0

−V ψ̄2
0 J(0)

 aa∗
 =

ψ0A
′

ψ̄0A
′

 . (6.17)

Since this supposed cancellation is of interest only on the locus of bifurcations, we

may specialise ψ0 to it. From Eq. (4.11) and the fact that the locus of bifurcations

corresponds to a gapless complex spectrum, we find the condition (n = |ψ0|2)

3V 2n2 − 4δpVn+ δ2
p +κ2 = 0 (6.18)

This may be combined with Eq. (4.2) to yield

ψ0 = −
√
n

V n− δp
(Vn− δp)2 +κ2 − i

√
n

κ

(Vn− δp)2 +κ2 , (6.19)

Vψ2
0 = Vn

(Vn− δp)2 −κ2

(Vn− δp)2 +κ2 + iV n
2κ(Vn− δ)

(Vn− δp)2 +κ2 , (6.20)

Vψ2
0 = −

2Vn(Vn− δp)

(Vn− δp)2 +κ2︸             ︷︷             ︸
=−1

J∗(0) = J∗(0). (6.21)

From the last equation above we see that the matrix is degenerate, and the exis-

tence of a solution to (6.17) is not certain. To check this, we may split the matrix

equation into its real and imaginary components via
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11 + iM i

11 Mr
12 + iM i

12

Mr
21 + iM i

21 Mr
22 + iM i

22

x+ iy

l + im

 =

v + iw

p+ iq



=⇒


Mr

11 −M
i
11 Mr

12 −M
i
12

M i
11 Mr

11 M i
12 Mr

12

Mr
21 −M

i
21 Mr

22 −M
i
22

M i
21 Mr

21 M i
22 Mr

22




x

y

l

m

 =


v

w

p

q

 .

Applying this to (6.17) yields

2


Im J(0)

Re J(0)

Im J(0)

−Re J(0)

 Ima =


Reψ0

Imψ0

Reψ0

− Imψ0

A
′ (6.22)

Using (6.21), we must have

A′ = 2
Im J(0)
Reψ0

Ima = 4V
√
nκ Ima, (6.23)

A′ = 2
Re J(0)
Imψ0

Ima = 2V
√
n(κ −

(Vn− δp)2

κ
) Ima. (6.24)

Since κ > 0, 4κ , 2(κ − (Vn−δp)2

κ ) so we must have Ima = A′ = 0. Since Ima = 0

implies A′ = 0, we need only consider this condition:

Im
(1
2
ψ̄0 Tr[G12

K ] +ψ0 Tr[G11
K ]

)
= 0. (6.25)

Defining

D(k) = |J(k)J∗(−k)−V 2|ψ0|4|2, (6.26)

this is

−2iκ
∫
dk

1
D(k)

([
|J(−k)|2 +V 2|ψ0|4 − ϵ(k)V |ψ0|2

]
ψ0 +

[
V 2|ψ0|2

]
ψ3

0

)
∈R. (6.27)

To proceed, it is helpful to calculate
∫
dω 1

D(ω,k) and
∫
dω ω2

D(ω,k) (the denomina-

tor here is even in ω so any term of the form
∫
dω ω

D(ω,k) is zero). This may be

accomplished by casting D(k) in residue form via the equation for the spectrum

(4.11):

D(ω,k) = (ω −ω−k)(ω −ω+
k)(ω − (ω−k)∗)(ω − (ω+

k)∗). (6.28)

At large ω this is O(ω−4), so we may close the contour of integration in the upper
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half-plane (we assume for the moment that the complex spectrum is stable and

gapped), yielding∫
dω

1
D(k)

=
2πi

((ω+
k)∗ −ω−k)((ω+

k)∗ −ω+
k)((ω+

k)∗ − (ω−k)∗)

+
2πi

((ω−k)∗ −ω−k)((ω−k)∗ −ω+
k)((ω−k)∗ − (ω+

k)∗)
,

(6.29)

∫
dω

ω2

D(k)
=

2πi((ω+
k)∗)2

((ω+
k)∗ −ω−k)((ω+

k)∗ −ω+
k)((ω+

k)∗ − (ω−k)∗)

+
2πi((ω−k)∗)2

((ω−k)∗ −ω−k)((ω−k)∗ −ω+
k)((ω−k)∗ − (ω+

k)∗)
.

(6.30)

Denoting

z =
√

(ϵ(k)− δp + 2V |ψ0|2)2 −V 2|ψ0|4, (6.31)

ω± = −iκ ± z, (6.32)

we find ∫
dω

1
D(k)

=
8πκ

z4 − 2z2((z∗)2 − 4κ2) + ((z∗)2 + 4κ2)2 , (6.33)∫
dω

ω2

D(k)
=

4πκ(z2 + (z∗)2 + 2κ2)
z4 − 2z2((z∗)2 − 4κ2) + ((z∗)2 + 4κ2)2 . (6.34)

The above results were worked out on the assumption that the spectrum is stable

and gapped. This may be viewed as a regularisation of the gapless case, and we

may now study the behaviour of the above expressions for a gapless spectrum

and k→ 0. In this case, some algebra yields∫
dω

1
D(k)

∼ mπ

2(2V |ψ0|2 − δp)κ
1

|k|2 + ϵ
, (6.35)

∫
dω

ω2

D(k)
∼ π

2κ
. (6.36)

Here ϵ is a quantity that tends to zero as we go from a gapped to a gapless spec-

trum. The important consequence of this is that for a gapless spectrum, traces

over the first of these quantities yield logarithmic divergences (we replace |k| → r
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and use rotational symmetry):∫
dk

1
D(k)

=
∫ Λ

0
dr r

∫
dω

1
D(ω,r)

∼ mπ

2(2V |ψ0|2 − δp)κ

∫ ϵ′

0
dr

r

r2 + ϵ
+
∫ Λ

ϵ′
dr r

∫
dω

1
D(ω,r)

=
mπ

4(2V |ψ0|2 − δp)κ
log

(ϵ′2 + ϵ
ϵ

)
+
∫ Λ

ϵ′
dr r

∫
dω

1
D(ω,r)

.

(6.37)

Above ϵ′ is some energy scale small enough for our small |k| approximation to

be valid, Λ is the cut-off of the effective field theory, and we have used rotational

invariance to write the momentum integral as a one-dimensional integral over

|k|. For a fixed κ, ϵ may be shown to be polynomial in δp, so that this logarith-

mic divergence differs from the polynomial divergences of the zero momentum

correlators.

Traces over ϵ(k)
D(k) are also seen to be finite (compare (6.35), noting that ϵ(k) ∼

|k|2 and the dk integral has a cut-off), so that the logarithmically divergent terms

in (6.27) are seen to be

−2iκV 2|ψ0|2(2|ψ0|2ψ0 +ψ3
0)

∫
dk

1
D(k)

. (6.38)

The gapped-spectrum regularisation of
∫
dk 1

D(k) is real, so that the only way for

the above expression to be real (recall that (6.27) being real is the condition for

tadpole cancellation) is for |ψ0|2ψ0 +ψ3
0 to be purely imaginary. From (6.19), this

is only possible if Vn − δp = ± κ√
3
. Solving this equation (also recall that Vn is

given by (4.17) at the inversion points) yields a single solution of δp =
√

3κ —

when the inversion points coincide.

For any other relative magnitudes of δp and κ, the condition fails to hold and

the tadpole diagrams fail to cancel (moreover, they also possess the additional

logarithmic divergences found above). This means that generically, as one ap-

proaches a non-Morse critical point of the system, the current-current linear re-

sponse is perturbatively divergent beyond O(ℏ), nullifying the mean-field result

indicative of superfluidity.

The fact that the cancellation occurs at δp =
√

3κ, the point corresponding to

the monostable to bistable continuous phase transition, may suggest that some-

thing interesting may be occurring here. To this end we consider the remaining

terms

−2iκ
∫
dk

1
D(k)

(
ω2 + ϵ(k)2 + ϵ(k)(3V |ψ0|2 − 2δ)

)
ψ0. (6.39)

The bracket multiplying ϵ(k) is zero for δ =
√

3κ (since V |ψ0|2 = 2
3δ in this case),

so we are left with
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−2iκψ0

∫
dk

1
D(k)

(
ω2 + ϵ(k)2

)
. (6.40)

This is an integral of a real non-negative quantity and thus clearly greater than

zero (the integrand is zero only at ω = |k| = 0). For δp =
√

3κ, ψ0 ∝ 1 −
√

3i, so

that the above expression cannot be purely real. This means that, even if the

logarithmic divergences cancel at δp =
√

3κ, the algebraic tadpole divergences do

not and so the response still diverges.

Before proceeding, we should comment on our use of a classical drive term Fp
despite performing calculations to O(ℏ2). Because all expectation values we cal-

culate are in terms of the polariton fields only, any connected diagram involving

the drive fields would contain either at least two polariton-drive correlators or a

drive tadpole. We know that there are no tadpoles at mean-field in the current-

current response, so the drive fields would contribute only atO(ℏ2), namely to the

fluctuation calculations above. At that order, the drive tadpoles would replace

polariton tadpoles in any diagram in which they appeared. Since these tadpoles

would have a significantly different form to the polariton tadpoles, they would

fail to cancel the divergences in the latter that we demonstrate, and our analysis

would remain unchanged. The presence of two polariton-drive correlators would

also not affect the divergences, and thus our analysis above is insensitive to this

classical field simplification.

6.3 Perturbative Results and RG at Non-Morse Criti-

cal Points

The above perturbative result is sufficient to cast serious doubt on the mean-field

assertions of superfluidity we were investigating. That the higher-order fluctua-

tion corrections are divergent is an example of the Ginzburg criterion at a phase

transition, and indicates that mean-field and, by extension, perturbation the-

ory are not to be trusted. Mathematically, this is because perturbative results

can be highly misleading in the vicinity of non-Morse critical points. Conven-

tional perturbation theory relies on the Morse Lemma to locally approximate the

integrand as Gaussian — if the lemma does not apply, integrals over the non-

Morse/catastrophe part of the integrand may yield divergences in the perturba-

tive scheme.

For integrals with a finite or countable number of modes such as simple path

integral problems in quantum mechanics, the appearance of elementary catastro-

phes in the action yields certain special functions (e.g. the Airy function above)

in an exact evaluation of the propagator or partition function, when a pertur-

bative evaluation would fail [44]. In those simple cases, however, the essential

variables/field modes were discrete and the action is purely real. Problems with
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a continuum of modes are typically studied via the Renormalization Group (RG),

in light of which we may now consider the above result. Since RG is a subject

considerably too vast to introduce here in a self-contained manner, it is suggested

that the reader interested in this section but unfamiliar with RG first consult [63],

which uses the same terminology and notation as we do here.

Consider the continuous phase transition at δp =
√

3κ, and the following part

of the Keldysh action: ∫
dtd2x

(
ψ̄q(i∂t +∇2)ψc + 2iκ|ψq|2

)
. (6.41)

With two fields we are free to fix the behaviour of two couplings under the renor-

malization group (RG) flow, and may also choose the dynamical exponent via

anisotropic scaling. Choosing to fix the couplings of ψ̄q∇2ψc, |ψq|2, and choosing

the dynamical exponent to be z = 2 yields the following naive scaling dimensions:

[ψc] = 0, (6.42)

[ψq] = 2. (6.43)

If we consider a field coupled to a quantum current, this will add terms to the

action of the form ∫
dtd2xf a(x, t)ψ̄q∇aψc, (6.44)

with [ψq∇ψc] = 3. If we consider very long-wavelength fields f a, such that they

may be considered essentially constant, f a will then correspond to a relevant cou-

pling — the addition of this term to the action at criticality will drive the system

to a different RG fixed point, likely altering its behaviour in a non-analytic way.

For this reason we expect the long-wavelength linear response to such a coupling

to be divergent at the phase transition (in classical statistical mechanics such lin-

ear responses are typically second derivatives of an effective energy with names

like “heat capacity” and “compressibility”, explaining why these transitions are

often “second order”).

By the above argument, that the low-wavelength current-current response at

this phase transition diverged in our perturbative calculation is unsurprising.

That it diverged at all wavelengths, however, is of interest. To get a more physical

sense of why this occurs, let us focus on the divergent sub-expression of (6.9):

ψ̄0

(
G11
R (0)(

1
2
ψ̄0 Tr[G12

K ] +ψ0 Tr[G11
K ]) +G12

R (0)(
1
2
ψ0 Tr[G21

K ]ψ̄0 Tr[G22
K ])

)
+

+ψ0

(
G21
R (0)(

1
2
ψ̄0 Tr[G12

K ] +ψ0 Tr[G11
K ]) +G22

R (0)(
1
2
ψ0 Tr[G21

K ] + ψ̄0 Tr[G22
K ])

)
.

(6.45)

A little inspection shows that this is actually the O(ℏ) correction to ⟨ψc(0)ψ̄c(0)⟩,
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generated by diagrams of the form (mean-field ψ) × tadpole, which tells us that

⟨ψc(0)ψ̄c(0)⟩ also perturbatively diverges. This is a classic manifestation of the

Ginzburg criterion, with the field fluctuations exceeding the mean-field value at

the transition. Looking at Figs. 4.2 and 6.3–6.6, we see that to O(ℏ2) every dia-

gram of the current-current is proportional either |ψ0|2 or to this O(ℏ) correction.

Intuitively this makes sense — the current response is proportional to the amount

of condensate “available” to respond. Thus, if ⟨ψc(0)ψ̄c(0)⟩ is divergent at a phase

transition in a perturbative scheme, so too ought to be the current-current re-

sponse.

The physical perturbative argument and RG theory argument combined give

compelling evidence for the incorrectness of the mean-field superfluid result, and

the absence of superfluid at this point. While the RG argument is not directly

applicable to the rest of the locus of bifurcations, these points are all dynami-

cally unstable and correspond to first order phase transitions — one would thus

a priori expect the linear response at them to also be non-analytic, and the per-

turbative calculation seems to support this.

6.4 Comparison With Incoherent Drive

It is instructive to contrast the above cancellation failure with the case of isotropic

incoherently driven polaritons, for which Ref. [27] established the presence of

superfluidity. The Keldysh action of this model may be written as

Sinc =
∑
k

(ψ̄ck ψ̄
q
k )

 0 g̃−1(k)

(g̃−1)∗(k) 2iκ

ψckψqk


− V
2

∑
k,k′ ,q

(
ψ̄ck−qψ̄

q
k′+q[ψ

c
kψ

c
k′ +ψ

q
kψ

q
k′ ] + h.c.

)
,

(6.46)

g̃−1 =ω+µ− ϵ(k)− iκ+ ip(ω+µ), (6.47)

p(ω) = γ − ηω, µ =
γ −κ
η

. (6.48)

Here the Fp pump term of the coherent model has been replaced by the inco-

herent ip(ω +µ) pump term, where µ is a chemical potential calculated from the

condition for the existence of a macroscopically occupied mean-field:

µ+ ip(µ)− iκ = V |ψ0|2 =⇒ p(µ) = κ. (6.49)

Due to the great similarity of this effective action to that for coherently driven

polaritons (3.56), the diagrammatics are identical up to a redefinition of |ψ0|2
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and J(k). For the incoherent model these are given by

J̃(k) = ω+µ− ϵ(k) + iκ − ip(ω+µ)− 2V |ψ̃0|2, (6.50)

V |ψ̃0|2 = µ. (6.51)

The condition for tadpole cancellation (6.12) studied in the preceding section

carries over to the incoherent model via the J → J̃ , ψ0 → ψ̃0 replacement. Since

J̃(0) = −V |ψ̃0|2, the condition is satisfied and the diagrams do not cause a diver-

gence in the gapless regime of the incoherent model. From our above discussion

we see that this also means a zero O(ℏ) correction to ⟨ψc(0)ψ̄c(0)⟩. Thus there is a

well defined value for the condensate, the current-current response is thus finite,

and superfluidity is present as expected.



Chapter 7

Conclusion

Early work [38], [39] argued, via an appeal to the Landau criterion for a complex-

valued spectrum, that coherently pumped systems below the Optical Parametric

Oscillator threshold could display superfluid behaviour in a wide range of pump

regimes despite the breaking of U (1) symmetry by the drive. We have reviewed

these arguments in the context of subsequent work [33], which focused on a more

rigorous definition of superfluidity via a system’s current-current response tensor

as opposed to the Landau criterion, and showed that the steady states identified

by the Landau criterion were not superfluid but rather a kind of rigid state which

does not respond to either longitudinal or transverse perturbations (as opposed

to a superfluid, which should respond longitudinally but not transversely). The

focus of the present part of this thesis is in turn concentrated on a restricted

pump regime, namely inversion points of the bistability curve, where the ex-

citation spectrum is gapless and mean-field calculations of the response tensor

suggest superfluidity can nevertheless be found.

In the general anisotropic pump regime, we found that such inversion points

exhibit diverging current-current responses. While the physical significance of

these divergences was initially unclear, we demonstrated that they arise from a

cusp-catastrophe structure present in the mean-field values of the system’s fields.

The inversion points of interest correspond to the cusp’s “locus of bifurcations”,

a line of solutions where small variations in system parameters lead to drastic

changes in behaviour due to possible bifurcations of the mean-field solution. It

is generically true that at such points the linear response of the variables under-

going the bifurcation, here the system fields, diverges and we show how to relate

the divergence of the linear current-current response to this.

Beyond that, in the isotropic case, we found that the mean-field current-

current response at an inversion point is indicative of superfluidity. We show,

however, that higher-order perturbative corrections at these points are divergent.

These divergences may be viewed through either the lens of renormalization,

which shows them to be driven by the current being a relevant operator, or via
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perturbation theory. In the latter, they arise due to a failure of Keldysh tadpole

diagrams to cancel in a consistent manner. This cancellation failure induces a

divergence in the condensate magnitude, which then yields a divergence in the

current-current response. These divergences indicate that the mean-field super-

fluid result is not reliable, as is to be expected since the inversion points in fact

correspond to phase transitions.

While in both cases the divergences arise from the phase-transition nature of

points along the locus of bifurcations, we see that there are two different mech-

anisms at play — a purely geometric, catastrophe-theoretic mechanism which

manifests at the mean-field level in the anisotropic regime, and a fluctuational

“Ginzburg criterion” one that appears in both the isotropic and anisotropic regimes.

I have thus shown that initially promising mean-field results indicating super-

fluidity in the system are invalid, and there remain no known superfluid regimes

in coherently driven exciton-polaritons. Nevertheless, there are remaining pos-

sible avenues of research. Firstly, we have throughout considered a Markovian

photon reservoir for the system, having demonstrated that an experimentally

natural thermal reservoir will exhibit this property. Nevertheless, a number of

recent works have considered the possibility of non-Markovian reservoir engi-

neering (see [64] and references 50–56 therein) to achieve various desired many-

body states. While this seems unlikely to overcome the absence ofU (1) symmetry

in the system, it may nevertheless be worth investigating. Such an investiga-

tion, however, would be significantly more complicated than that in our present

manuscript, as the resulting Keldysh action would be non-time local.

Another possible direction would be non-homogeneous systems. For exam-

ple, Ref. [65] considered scattering against a defect outside a coherently pumped

spot, and observed suppressed scattering in the small region around the pump

spot where the fluid velocity was below the sound velocity of the sonic regime.

Since the U (1) symmetry of the fluid outside the pump region was not directly

broken by the pump, there may be a possibility of engineering non-homogeneous

systems with regions of the polariton fluid being coherently pumped and others

exhibiting superfluidity. While this may prove not to be the case (interactions

with fluid flowing out of the pump spot may somehow still break the U (1) sym-

metry of the fluid outside), it is a possible interesting avenue to explore.



Appendix A

Nambu Diagrammatics for the
Keldysh Action

In the main body of Part Ia, a path integral over the action (3.56) is considered.

This action may be written in terms of fluctuations (δψc,δψq) around the mean-

field result (ψc,ψq) = (
√

2ψ0,0) worked out from (4.4). From here on we simply

write (ψc,ψq) for these fluctuations. Such an expansion around the mean-field

will, however, contain quadratic fluctuation terms which do not fit the pattern of

the quadratic term in the above action. These may be gathered in the following

“Nambu” form (see Sec. 4.1 and recall that J(k) = ω+∆p − ϵ(k) + iκ − 2V |ψ0|2),

1
2

∫
dkdk′


ψ̄c(k′)

ψc(−k′)
ψ̄q(k′)

ψq(−k′)


T 

0 0 J(k) −Vψ2
0

0 0 −V ψ̄2
0 J∗(−k)

J∗(k) −Vψ2
0 2iκ 0

−V ψ̄2
0 J(−k) 0 2iκ

δ(k − k′)


ψc(k)

ψ̄c(−k)

ψq(k)

ψ̄q(−k)

 , (A.1)

but this introduces a certain redundancy of degrees of freedom. This redun-

dancy arises from the fact that the complex variables in the Nambu vector Ψ (k) =

(ψc(k), ψ̄c(−k),ψq(k), ψ̄q(−k)) appear on both the left and right-hand sides of the

matrix as (k,k′) vary. As a result, the Gaussian functional integral cannot be im-

mediately performed via the standard form for z†M−1z actions. Moreover, the

associated measure DΨ (k)DΨ̄ (k′) is redundant if a full range is taken for (k,k′).

The solution is to note that the action is invariant under the transformation

(k,k′)→ (−k′,−k). This transformation may be used to partition R
8 into two dis-

joint sets Σ and Σ′ such that they transform into each-other under it. There will

be some ambiguity for elements of the form (k,−k) since they are invariant under

it, but they represent a set of measure 0 and may thus be neglected. With this

partition, the action may be rewritten as (note the elimination of the 1
2 factor to
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preserve the action due to the halving of the integration volume)

∫
Σ

dkdk′


ψ̄c(k′)

ψc(−k′)
ψ̄q(k′)

ψq(−k′)


T 

0 0 J(k) −Vψ2
0

0 0 −V ψ̄2
0 J∗(−k)

J∗(k) −Vψ2
0 2iκ 0

−V ψ̄2
0 J(−k) 0 2iκ

δ(k − k′)


ψc(k)

ψ̄c(−k)

ψq(k)

ψ̄q(−k)

 (A.2)

and the functional measure is also taken over Σ, eliminating its redundancy and

reproducing the original measure.

It remains to observe that, were we to multiply this functional integral by

another where we took Σ′ as the integration range, we would again obtain a func-

tional integral with action (A.2) but the integration range unrestricted. Moreover,

since in this new integral the field ψ(−k′), (k,k′) ∈ Σ in the left vector and ψ(−k′),
(−k′,−k) ∈ Σ′ in the right vector originate from two separate original integrals and

are thus independent, the integral has no redundancy and is simply equal to the

functional determinant of
0 0 J(k) −Vψ2

0

0 0 −V ψ̄2
0 J∗(−k)

J∗(k) −Vψ2
0 2iκ 0

−V ψ̄2
0 J(−k) 0 2iκ

δ(k − k′). (A.3)

Since the value of the original integral should not depend on whether Σ or Σ′ was

used, this means that it is equal to the square root of this functional determinant.

We have above that the path integral in this form corresponds to the trace of a

time-evolved density matrix, so that this square root should be equal to 1.

From here we may add source terms of the form
J1(k)

J2(−k)

J3(k)

J4(−k)


T 

ψc(k)

ψ̄c(−k)

ψq(k)

ψ̄q(−k)

+


ψ̄c(k)

ψc(−k)

ψ̄q(k)

ψq(−k)


T 

J5(k)

J6(−k)

J7(k)

J8(−k)

 (A.4)

to either the Σ or Σ′ action, depending on which range of wavevectors we wish to

study, and then perform the integral over the sum of the two actions. This will

be a standard Gaussian integral with source terms, yielding

G[J1, J2, J3, J4, J5, J6, J7, J8]

= exp


−i

∫
Σ̃

dkdk′


J1(k′)

J2(−k′)
J3(k′)

J4(−k′)


T 

0 0 J(k) −Vψ2
0

0 0 −V ψ̄2
0 J∗(−k)

J∗(k) −Vψ2
0 2iκ 0

−V ψ̄2
0 J(−k) 0 2iκ


−1 

J5(k)

J6(−k)

J7(k)

J8(−k)




(A.5)
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where we have denoted the integration range of the action to which we added the

source terms by Σ̃. From here we observe that for (k,k′) ∈ Σ̃ (denoting the other

integration range by Σ̃c , the corresponding action by SΣ̃c , and the action with

source terms and integration range Σ̃ by SΣ̃,J ),

⟨(ψck)
a(ψ̄c−k)

b(ψqk )c(ψ̄q−k)
d(ψ̄ck)

e(ψc−k)
f (ψ̄qk )g(ψq−k)

h⟩

=
δa

δJ1(k)a
δb

δJ2(−k)b
δc

δJ3(k)c
δd

δJ4(−k)d
δe

δJ5(k)e
δf

δJ6(−k)f
δg

δJ7(k)g
δh

δJ8(−k)h︸                                                                                 ︷︷                                                                                 ︸
∂J∫

Σ̃

D[ψc, ψ̄c,ψq, ψ̄q]exp[iSΣ̃,J ]

= ∂J


∫
Σ̃c
D[ψc, ψ̄c,ψq, ψ̄q]exp[iSΣ̃c]︸                                 ︷︷                                 ︸

1

∫
Σ̃

D[ψc, ψ̄c,ψq, ψ̄q]exp[iSΣ̃,J ]


= ∂JG[J1, J2, J3, J4, J5, J6, J7, J8].

(A.6)

This quadratic generating function structure for expectation values means that

Wick’s theorem will hold for diagrammatic calculations and, by selectively choos-

ing Σ, Σ′, and to which action to add the source terms, we may use the above

formula to work out the expectation of the product of any pair of field modes.

This yields the following correlators:〈 ψckψ̄c−k
(ψ̄qk ψ

q
−k

)〉
= iGR(k) =

i

J(k)J∗(−k)−V 2|ψ0|4

J∗(−k) Vψ2
0

V ψ̄2
0 J(k)

 ,〈 ψqkψ̄q−k
(ψ̄ck ψc−k

)〉
= iGA(k) =

i

J(−k)J∗(k)−V 2|ψ0|4

J(−k) Vψ2
0

V ψ̄2
0 J∗(k)

 ,〈 ψckψ̄c−k
(ψ̄ck ψc−k

)〉
= iGK (k)

=
2κ

|J(k)J∗(−k)−V 2|ψ0|4|2

J∗(−k)J(−k) +V 2|ψ0|4 [J∗(−k) + J∗(k)]Vψ2
0

[J(−k) + J(k)]V ψ̄2
0 J∗(k)J(k) +V 2|ψ0|4

 ,〈 ψqkψ̄q−k
(ψ̄qk ψ

q
−k

)〉
= 0.

(A.7)

Since we expanded around the mean-field, linear terms are removed from the

action and quadratic ones have already been included in the matrix above, so it

remains to consider the expansion of the quartic term

−V
2

∫
dkdk′dq

(
ψ̄ck−qψ̄

q
k′+q[ψ

c
kψ

c
k′ +ψ

q
kψ

q
k′ ] + h.c.

)
(A.8)
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into trivalent and tetravalent vertices to complete the standard diagrammatics.

There are 6 topologically distinct trivalent vertices, and 4 tetravalent vertices,

presented in Figs. A.1 and A.2 with their vertex factors. Solid lines with the

arrow oriented towards a momentum p represent ψcp, while those with an arrow

pointing away from it represent ψ̄cp. Analogously, such dashed lines represent

ψ
q
p and ψ̄qp. Standard rules for symmetry factors relating to exchange of vertices

and edges then apply — symmetry multipliers have been included in the vertex

factors, and it remains to divide a given diagram by its symmetry factor. Finally,

since the expansion is taken around a non-zero value ofψc, diagrams may contain

free ψc fields, corresponding to a factor of ψ0, signified by circles with a line

through them for ψ0 and a cross for ψ̄0.

A: B: C:

D: E: F:

Figure A.1: Trivalent Vertices of the Quartic Interaction.

A: B:

C: D:

Figure A.2: Tetravalent Vertices of the Quartic Interaction.



Appendix B

Catastrophe Theory

Elementary catastrophe theory studies structurally unstable local behaviour of

functions. For systems controlled by the extremization of some effective poten-

tial, such local behaviour of the extremum is frequently important [62] — for

dynamical systems, the local behaviour of potential minima affects their stabil-

ity, while in the Landau mean-field theory of phases such behaviour may lead

to phase transitions. In the main body of this part of the thesis we find a situ-

ation where the steady-state condensate density of a non-equilibrium system is

determined by the positions of the minima of a corresponding effective poten-

tial, and apply catastrophe theory to understand the resulting phenomena. We

thus review catastrophe theory and its applications in this appendix, following

the exposition given in [62].

In its most elementary form, catastrophe theory is the extension of two fun-

damental results on the local behaviour of functions, namely a corollary of the

Rectification Theorem for vector fields [66] and the Morse Lemma [61].

Theorem 1 (Rectification Theorem (Corollary))
Let f (x) = f (x1,x2, . . . ,xn) be a smooth function with non-zero gradient at x0:

∇f |x0
, 0. (B.1)

Then there exists a neighbourhood of x0 and a smooth change of coordinates, y =

(y1, y2, . . . , yn), y = y(x), on this neighbourhood so that

f (y) = y1. (B.2)

Theorem 2 (Morse Lemma)
Let f (x) = f (x1,x2, . . . ,xn) be a function with vanishing gradient and non-singular
Jacobian matrix at x0:

∇f |x0
= 0, (B.3)

det[∂2f /∂xi∂xj]|x0
, 0. (B.4)
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Then there exists a neighbourhood of x0 and a smooth change of coordinates, y =

(y1, y2, . . . , yn), y = y(x), on this neighbourhood so that

f (y) = y2
1 + y2

2 + . . .+ y2
m − y2

m+1 − . . .− y
2
n , (B.5)

where the number of positive and negative signs matches the Jacobian signature.

The first of these theorems describes the most common situation, away from

a function’s critical points while the second describes the local behaviour of non-

degenerate, or “Morse”, critical points. In particular, the Morse Lemma and re-

lated family of “Preparation Theorems” facilitate famous integral approxima-

tion methods such as Laplace’s Method, the Method of Stationary Phase, and the

Method of Steepest Descent, which are common in thermodynamic and QFT cal-

culations.

A key feature of non-critical points and Morse critical points is known as

“structural stability”. Using the above theorems it may be shown that the ad-

dition of an infinitesimal perturbation to a function cannot change their nature

— if a function f (x) possesses a non-critical or a Morse critical point at x0, then

for sufficiently small ϵ, so will f (x) + ϵg(x) (the position of the critical point may

shift infinitesimally but it will remain Morse).

Catastrophe theory, then, is concerned with situations where such structural

stability is absent and so-called “catastrophes” may occur from infinitesimal per-

turbations. The bulk of elementary catastrophe theory is contained in two further

theorems, the Thom Splitting Lemma and Thom Classification Theorem:

Theorem 3 (Thom Splitting Lemma)
Let f (x) = f (x1,x2, . . . ,xn) be a function with vanishing gradient and singular Jacobian
matrix at x0:

∇f |x0
= 0, (B.6)

det[∂2f /∂xi∂xj]|x0
= 0. (B.7)

If the Jacobian matrix possesses l vanishing eigenvalues, then there exists a neighbour-
hood of x0 and a smooth change of coordinates, y = (y1, y2, . . . , yn), y = y(x), on this
neighbourhood so that the function splits as

f (y) = fNM(y1, . . . , yl) +M(yl+1, . . . , yn), (B.8)

M(y) = y2
l+1 + y2

l2
+ . . .+ y2

l+m − y
2
l+m+1 − . . .− y

2
n , (B.9)

fNM ∈O(y3), (B.10)

whereM(y) is a structurally stable Morse component (the number of positive and neg-
ative signs again matches the signature of the Jacobian’s non-zero eigenvalues) while
fNM is a structurally unstable non-Morse component.
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The coordinates appearing in M are known as “inessential”, since they do

not participate in the dramatic structural instabilities associated with non-Morse

behaviour. Conversely, the coordinates appearing in fNM are known as “essen-

tial”. The Thom Classification Theorem seeks to classify the possible forms of the

non-Morse component in the presence of external “control parameters”, namely

variables c upon which a function f (x;c) depends but which are not coordinates

(e.g. the mean and variance of a normal distribution Norm(x;µ,σ )).

Theorem 4 (Thom Classification Theorem)
Let fNM(x;c) = f (x1, . . . ,xl ;c1, . . . , ck) be a function of l coordinates and k control pa-
rameters, possessing a non-Morse critical point at x0. Then there exists a neighbour-
hood of x0 and a smooth change of coordinates, y = (y1, y2, . . . , yn), y = y(x), on this
neighbourhood so that the function takes the form of an elementary catastrophe func-
tion Cat:

fNM(y;c) = Cat(y,c), (B.11)

Cat(y,c) = CG(y) + Pert(y,c). (B.12)

Every elementary catastrophe function consists of a catastrophe germ, CG, depending
only on the coordinates, and a perturbation Pert, which is linearly dependent on the
control parameters.

The possible canonical forms of catastrophe germs and perturbation terms are ex-

haustively catalogued for small numbers of coordinates and control parameters

[62]. The addition of the most general perturbation to a given catastrophe germ is

known as its universal unfolding. Structural instability comes from the dramatic

effects of infinitesimal variations in the control parameters on the topology of the

function’s critical points. Such variations may locally create, merge, and annihi-

late critical points, in stark contrast to the stable regimes around non-critical and

Morse critical points.

There exists a simple graphical notation for such topological configurations

of critical points in the case of a function of a single coordinate. The idea is to

draw a chain of circles corresponding to critical points, connected by lines and

ordered from left to right per the ordering of the critical points along the real line.

When the maximum possible number of critical points is present, maxima are

denoted by a minus inside a circle and minima by a plus. In configurations where

two or more critical points have just merged (creating a structurally unstable

non-Morse critical point), the plus/minus is replaced by the number of merged

critical points. If a critical point is annihilated in a configuration, that circle is

removed. An example is given in Fig. B.1. More sophisticated notation exists for

the multivariate case [61], but will not be used in this paper.
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+ - + - +
2 + - +
+ - +

Figure B.1: Plot of a degree six polynomial for various values of its coefficients and the
corresponding topological diagrams, showing how the diagrams change as the left-most
critical points merge and then annihilate. From top to bottom, the topological diagrams
correspond to the red, blue, and green plots respectively.

We conclude this section by proving an important result that is used in the

main paper. Suppose that a function f (x;c) possesses a critical point at xc(c),

whose position depends smoothly on c and such that xc(c0) = x0. We will now

prove that the linear response dxc/dc diverges if the critical point becomes non-

Morse.

Expand f (x;c) in a Taylor series in both coordinates and control variables,

taking δx and δc such that xc(c0 + δc) = x0 + δx:

f (x0 + δx;c0 + δc) =
[
f + δxi∂if + δca∂af

+
1
2
δxiδxj∂ijf + δxiδca∂iaf

+
1
2
δcaδcbfab +O(3)

]∣∣∣∣
x=x0,c=c0

(B.13)

From this one obtains an expression for d
dxf (x0 + δx,c0 + δc), which must be zero

due to how we have chosen the increments:

d
dxi

f (x0 + δx,c0 + δc) =
[
∂if + δxj∂ijf

+ δca∂iaf +O(3)
]∣∣∣∣ x=x0
c=c0

.
(B.14)

∂if
∣∣∣∣
x=x0

= 0 by the condition that x0 is a critical point, so we find

δxj∂ijf + δca∂iaf = 0, (B.15)
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which yields
dxc,i
dca

= −[∂2f ]−1
ij ∂jaf . (B.16)

If the critical point is non-Morse then ∂2f will be degenerate, and its inversion

in the above formula will yield a divergent linear response.
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Chapter 8

General Markovian Actions

This part of the thesis addresses an alternative approach to studying superfluid-

ity in Markovian driven-dissipative systems. Whereas the previous, significantly

longer, part took an analytical Keldysh functional integral approach, here I ad-

dress the application of the numerical Truncated Wigner technique (to be intro-

duced in Sec. 9.1) to the same problem.

At the same time, the model of a Part Ia was based on a specific microscopic

system and the associated Keldysh action was derived by combining two copies

of a path integral describing the unitary evolution of the system and its envi-

ronment, then integrating out the spurious environment variables. If one is in

possession of a reasonable model of the environment and its interactions with

the system, this is a reasonable way to proceed. It would be somehow inelegant,

however, if to produce a description of an open subsystem a full model of a total

closed system was always the required starting point. It seems evident that in

many situations we would like to speak of just the open system and the prop-

erties of its external interactions, yet even simple features such as Markovian

evolution may be tedious to engineer starting with a full environment model: we

have seen the multi-step reasoning required to show the Markovian nature of the

coherently driven polariton system.

Since I will restrict my numerical approach to studying superfluidity in Marko-

vian systems but with a wide range of possible external interactions, we begin

with a language in which such models may be specified without the repeated

work of specifying (likely unrealistic) environment models. This language will

also be used in Parts II and III, making this an especially important introductory

chapter1. In the following two chapters the numerical method will be introduced

and then applied to the specific problem of superfluidity.

1This chapter covers standard textbook and literature material rather than my original contri-
butions.
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8.1 CPTP Maps

This language is that of the Completely Positive Trace Preserving (CPTP) maps

often encountered in quantum information. The full definition of these objects

is more involved than is required for our purposes so we will speak of them as

maps between operators on Hilbert spaces2. These objects physical meaning is

that of maps between density matrices corresponding to the time evolution of

one matrix into the other, and their properties are precisely those that ensure

they do this correctly:

• Positive: The maps must map positive operators to positive operators, since

all density matrices are positive semi-definite.

• Completely Positive: The above must still hold true if we tensor the map

with the identity map on operators of an arbitrary auxiliary Hilbert space.

As will be discussed in the next section, this is not true of every open sub-

system and thus CPTP maps do not cover all possible subsystem evolutions.

They do, however, to a very large class of these.

• Trace Preserving: Density matrices are trace one and this must be pre-

served.

• Linear: Unsurprisingly for a quantum evolution operator, the maps must

be linear.

The last property is clear when we consider the connection between CPTP

maps and our earlier physical construction. Stinespring’s dilation theorem [1]

says (once again discarding a large amount of mathematical rigour) that any

CPTP map may be constructed by attaching an ‘ancilla’ space to the system (di-

lation), evolving with a unitary operator, and then tracing out the ancilla. In

a condensed matter setting the ancilla is precisely the environment, so that our

earlier construction for the polaritons featured an ancilla in the form of the ther-

mal photon bath, and this affirms the obvious physical view that open quantum

systems are subsystems of closed systems evolving in a unitary manner. This

connection is sometimes known as the ‘Church of the Larger Hilbert Space’ [2].

CPTP maps Φ(ρ) of density matrices ρmay be described using what are known

2In fact two of the main theorems characterizing representations of CPTP maps, Choi’s and
Kraus’ theorems, assume that the Hilbert spaces are finite-dimensional in their classical forms.
This will pose no problem when we later deal with pure spin systems, but is unfortunate in the
case of the present field theory considerations. Here we will take the easy way out and implicitly
work with finite-dimensional spaces, pointing out later when trouble arises from this assumption.
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as Kraus operators Bk so that

Φ(ρ) =
∑
k

BkρB
†
k , (8.1)∑

k

B†kBk = 1. (8.2)

Moreover, if one is content to restrict consideration to Markovian evolution, evo-

lution may be described by what is known as the Lindblad master equation. This

equation is specified via a superoperator known as the Lindbladian, and it is pre-

cisely the mechanism of constructing this operator that provides the language

for describing systems that we are seeking. The rest of this chapter will thus

be devoted to the derivation of the Lindblad equation. We follow the compact

derivation in Ref. [3], which in turn follows Ref. [4].

8.1.1 Kraus Operators

We begin by demonstrating how the representation of the evolution of a subsys-

tem in terms of Kraus operators comes about. We will start from a closed system

with density matrix ρ evolving in the Schrödinger picture via unitary operators

U (t) such that

ρ(t) =U (t)ρU−1(t). (8.3)

Suppose now that the closed system is partitioned into a subsystem and an en-

vironment, with the initial total density matrix separating into subsystem ρs and

environment ρe density matrices as

ρ(0) = ρs(0)⊗ ρe(0). (8.4)

This assumption physically corresponds to setting t = 0 at the moment the sub-

system and environment first come into contact. If one starts in an initially entan-

gled total state violating this construction, the resulting evolution may be non-

CPTP — specifically complete positivity may be lost [5]. We will not consider

this situation, assuming that we can always start in a completely separable state.

The evolution of the subsystem density matrix is then given by

ρs(t) = Tre
[
U (t)ρU−1(t)

]
. (8.5)
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Suppose now that we choose an orthonormal eigenbasis |ψα⟩ of ρe(0) so that

ρe(0) =
∑
α

λα |ψα⟩⟨ψα |, (8.6)∑
α

λα = 1, (8.7)

⟨ψα |ψβ⟩ = δα,β . (8.8)

Then

Tre
[
U (t)ρU−1(t)

]
=

∑
α,β

[
Is ⊗ ⟨ψβ |

]
U (t) [ρs(0)⊗λα |ψα⟩⟨ψα |]U−1(t)

[
Is ⊗ |ψβ⟩

]
=

∑
α,β

Bαβ(t)ρs(0)B†αβ(t) = V (t)ρs(0),
(8.9)

where

Bαβ =
[
Is ⊗ ⟨ψβ |

]
U (t)

[
Is ⊗

√
λα |ψα⟩

]
(8.10)

and V (t) is a ‘superoperator’, meaning it is a linear operator acting on the space

of the system’s linear operators interpreted as a vector space. We will typically

typeset superoperators in calligraphic font.

Verifying that∑
α,β

B†αβBαβ =
∑
α,β

[
Is ⊗

√
λα⟨ψα |

]
U−1(t)

[
Is ⊗ |ψβ⟩⟨ψβ |

]
U (t)

[
Is ⊗

√
λα |ψα⟩

]
=

∑
α

[
Is ⊗

√
λα⟨ψα |

]
U−1(t) [Is ⊗ Ie]U (t)

[
Is ⊗

√
λα |ψα⟩

]
=

∑
α

[
Is ⊗

√
λα⟨ψα |

] [
Is ⊗

√
λα |ψα⟩

]
=

∑
α

λαIs = Is,

(8.11)

we see that we have reproduced the Kraus operators mentioned in the previous

section. The resulting map is positive and trace-preserving by construction, the

latter property being easily verified from the above equality and cyclicity of the

trace. In finite-dimensional spaces Kraus’ theorem [6] allows one to invert this

logic, showing that any map written in terms of such operators is CPTP.

8.1.2 Lindblad Master Equation

Our goal now is to move from the general evolution equation

ρs(t) = V (t)ρs(0) =
∑
α,β

Bαβ(t)ρs(0)B†αβ(t) (8.12)
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to a Markovian one of the form

d
dt
ρs(t) = L(t)ρs(t). (8.13)

For an open quantum system Markovian evolution means that the states of the

system and its environment are always decoupled, i.e. ρ(t) = ρs(t)⊗ρe(t), and this

assumption will be used to obtain the above form.

Suppose that {I,Fi}, where I is the identity operator, form a basis for the space

of linear system operators. Decomposing the Kraus operators in this basis via the

Hilbert-Schmidt inner product (A,B) = Tr[A†B], we find

Bαβ(t) = I(I,Bαβ(t)) +
∑
i

Fi(Fi ,Bαβ(t)). (8.14)

Denoting

a(t) =
∑
α,β

(I,Bαβ(t))(I,B†αβ(t)), (8.15)

bi(t) =
∑
α,β

(I,Bαβ(t))(Fi ,Bαβ(t)), (8.16)

cij(t) =
∑
α,β

(Fi ,Bαβ(t))(Fj ,Bαβ(t)), (8.17)

we may rewrite the evolution equation as

ρs(t) = a(t)ρs(0) +
∑
i

(
b̄i(t)Fiρs(0) + bi(t)ρs(0)F†i

)
+
∑
i,j

cij(t)Fiρs(0)F†j . (8.18)

Consider the rate of change of the density matrix at the initial moment in time:

ρ̇s(0) = ȧ(0)ρs(0) +
∑
i

( ¯̇bi(0)Fiρs(0) + ḃi(0)ρs(0)F†i
)

+
∑
i,j

ċij(0)Fiρs(0)F†j . (8.19)

This moment in time was distinguished by being the moment when the total

density matrix had the decoupled form, for instance when the system and envi-

ronment first came into contact. As mentioned above, however, in the Markovian

case the density matrix always has this form and thus nothing specific distin-

guishes one moment in time from another. This leads us to the conclusion that

the evolution equation should have the above form at every moment in time,

yielding the general form of a Markovian evolution equation

ρ̇s(t) = α(t)ρs(t) +
∑
i

(
β̄i(t)Fiρs(t) + βi(t)ρs(t)F

†
i

)
+
∑
i,j

γij(t)Fiρs(t)F
†
j (8.20)
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with the functions3 α(t), βi(t), and γij(t) inheriting any constraints on ȧ(0), ḃ(0),

ċij(0) in (8.19). In particular, γij(t) is a Hermitian matrix. Moreover, since for any

vector vi it holds that
∑
ij v̄icij(t)vj =

∑
α,β

∣∣∣(∑i v̄iFi ,Bαβ(t))
∣∣∣2 ≥ 0, cij(t) must be

positive semi-definite. Because Bαβ(0) = I we must have cij(0) = 0, and the previ-

ous property thus means that ċij(0) must also be positive semi-definite. Therefore

γij(t) must be positive semi-definite.

We may also combine
∑
i β̄i(t)Fi = F to rewrite the above as

ρ̇s(t) = α(t)ρs(t) +Fρs(t) + ρs(t)F
† +

∑
i,j

γij(t)Fiρs(t)F
†
j . (8.21)

Some further simplifications are possible, and in fact required to enforce trace-

preservation. Specifically, we know that the trace of the left hand side of the

above is 0:

Tr ρ̇s(t) = 0 = Tr

α(t)ρs(t) +Fρs(t) + ρs(t)F
† +

∑
i,j

γij(t)Fiρs(t)F
†
j

 . (8.22)

To explicitly incorporate the above condition into the equation we split the F

operator into Hermitian and anti-Hermitian parts (both g and H are Hermitian)

F(t) = g(t)− iH(t), (8.23)

obtaining

ρ̇s(t) = −i[H(t),ρs(t)] +
{
α(t)

2
I + g(t),ρs(t)

}
+
∑
i,j

γij(t)Fiρs(t)F
†
j . (8.24)

Taking the trace and using its cyclicity (note the trace of a commutator is zero),

we find the condition

Tr


α(t)I + 2g(t) +

∑
i,j

γij(t)F
†
j Fi

ρs(t)
 = 0. (8.25)

Since the above must hold for any ρs(t) and g(t) is arbitrary, we must take the

latter to be

g(t) = −1
2

α(t)I +
∑
i,j

γij(t)F
†
j Fi

 , (8.26)

3The time dependence of these parameters in the non-stationary cases arises because in that
case a(t), b(t), c(t), and thus their derivatives depend on the moment in time that is chosen to be
t = 0. When we use the fact that, for a Markovian system, the always decoupled density matrix
means we can choose any time as t = 0, we must account for this implicit time dependence.
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giving the trace-preserving evolution equation

ρ̇s(t) = −i[H,ρs(t)]−
1
2

∑
i,j

{
γij(t)F

†
j Fi ,ρs(t)

}
+
∑
i,j

γij(t)Fiρs(t)F
†
j . (8.27)

This equation is referred to as the ‘first standard form’ by Breuer and Petruccione

[4] and, so long as γij is chosen to be Hermitian positive semi-definite, is suffi-

cient to ensure valid evolution of the density matrix. These properties of γij may,

however, be built explicitly into the equation by diagonalising γij(t) with unitary

matrices Vij(t):

γi(t)δij =
∑
pq

V †ip(t)γpq(t)Vqj(t), (8.28)

γi(t) ≥ 0, (8.29)

Li(t) = FjVji(t), (8.30)

ρ̇s(t) = −i[H,ρs(t)] +
∑
i

γi(t)
[
Li(t)ρs(t)L

†
i (t)−

1
2

{
L†i (t)Li(t),ρs(t)

}]
. (8.31)

The last equation above is known as the Lindblad Master Equation, and is the

general master equation4 describing Markovian CPTP maps. If the evolution is

stationary, i.e. α, βi , and γij are constant, it takes the particularly simple form

ρ̇s(t) = −i[H,ρs(t)] +
∑
i

γi

[
Liρs(t)L

†
j −

1
2

{
L†jLi ,ρs(t)

}]
. (8.32)

The superoperator associated with this evolution

L(t)ρ = −i[H,ρ] +
∑
i

γi(t)
[
Li(t)ρL

†
j (t)−

1
2

{
L†j (t)Li(t),ρ

}]
, (8.33)

is known as the Lindbladian, the operators Li are known as jump operators, and

the portion of the Lindbladian containing these operators and the γi(t) terms is

known as the dissipator. The Lindbladian assumes a similar role to that of the

Hamiltonian in unitary dynamics, it being possible to write the solution to the

Lindbladian master equation as

ρs(t) = V (t,0)ρs(0), (8.34)

V (t, r) = T e
∫ t
r
dsL(s), (8.35)

V (t, t) = I . (8.36)

4We will shortly see that it has close connections with the master equations appearing in the
theory of stochastic processes.
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When the evolution is stationary, as it will typically be for us, this simplifies to

ρs(t) = V (t)ρs(0), (8.37)

V (t) = etL, (8.38)

V (0) = I , (8.39)

with the evolution superoperator V (t) obeying a Markovian

Chapman–Kolmogorov equation:

V (t + s) = V (t)V (s). (8.40)

An important difference with the case of unitary evolution is that the super-

operator V (t) will generally not possess a well-behaved inverse for an infinite-

dimensional system. Indeed, much like in the case of the heat equation, running

the Lindbladian master equation backwards in time is generally not a well-posed

problem for such systems. Driven-dissipative evolution described by this equa-

tion is therefore generally ‘one-way’. One way of understanding this, related to

the spectral properties of L, will be elaborated on further in Part II.

8.2 Keldysh Action from Lindblad Master Equation

Having obtained the general form of the evolution superoperator for Markovian

driven-dissipative systems, thus allowing us to easily write down models without

worrying about the specifics of the reservoir ancilla, we now require a way to map

evolution written in this language into a suitable Keldysh functional integral. We

will present here a straightforward mechanism to achieve this, sufficient for our

present purposes, due to Ref. [7]. In Part II of this thesis I will provide an alter-

native construction that rectifies certain deficiencies of the present approach, but

doing so now would take us too far afield relative to our present goals.

Similar to the construction of Sec.3.1.1, the starting point is the Trotter de-

composition of the evolution superoperator5 (ϵ = 2T
N+1 ):

ρT = e2TLρ−T =

N+1∏
n=1

eϵL
ρ−T . (8.41)

We may use the coherent state resolution of identity to write an iterative evolu-

5We will present the construction, as in [7], for a stationary evolution. Adapting it to a time-
dependent L(t) is not conceptually difficult but adds visual clutter to the presentation, and we
will not be considering any non-stationary models.
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tion equation for the matrix elements of the density matrix ρn at times t = ϵn−T :

⟨ψ+
k,n+1|ρn+1|ψ−k,n+1⟩ = ⟨ψ+

k,n+1|e
ϵLρn|ψ−k,n+1⟩

=
∫
D[ψ+

k,n, ψ̄
+
k,n,ψ

−
k,n, ψ̄

−
k,n]⟨ψ+

k,n+1|e
ϵL

[
|ψ+
k,n⟩⟨ψ

−
k,n|

]
|ψ−k,n+1⟩⟨ψ

+
k,n|ρn|ψ

−
k,n⟩.

(8.42)

Recursively applying this equation yields

⟨ψ+
k,N+1|ρT |ψ

−
k,N+1⟩

=
∫ N∏

n=0

[
D[ψ+

k,n, ψ̄
+
k,n,ψ

−
k,n, ψ̄

−
k,n]⟨ψ+

k,n+1|e
ϵL

[
|ψ+
k,n⟩⟨ψ

−
k,n|

]
|ψ−k,n+1⟩

]
⟨ψ+

k,0|ρ−T |ψ
−
k,0⟩,

(8.43)

and it is the terms in the product on the right hand side that generate the action

of the resulting functional integral.

Taking all operators in L to be normal ordered6 we may approximate (again

up to O(ϵ2) terms)

⟨ψ+
k,n+1|e

ϵL
[
|ψ+
k,n⟩⟨ψ

−
k,n|

]
|ψ−k,n+1⟩

≈ ⟨ψ+
k,n+1|ψ

+
k,n⟩⟨ψ

−
k,n|ψ

−
k,n+1⟩+ ⟨ψ

+
k,n+1|ϵL

[
|ψ+
k,n⟩⟨ψ

−
k,n|

]
|ψ−k,n+1⟩

= ⟨ψ+
k,n+1|ψ

+
k,n⟩⟨ψ

−
k,n|ψ

−
k,n+1⟩

(
1 + ϵL[ψ+

k,n,ψ
−
k,n,ψ

+
k,n+1,ψ

−
k,n+1]

)
,

≈ ⟨ψ+
k,n+1|ψ

+
k,n⟩⟨ψ

−
k,n|ψ

−
k,n+1⟩e

ϵL[ψ+
k,n,ψ

−
k,n,ψ

+
k,n+1,ψ

−
k,n+1],

(8.44)

where

L[ψ+
k,n,ψ

−
k,n,ψ

+
k,n+1,ψ

−
k,n+1] =

⟨ψ+
k,n+1|L

[
|ψ+
k,n⟩⟨ψ

−
k,n|

]
|ψ−k,n+1⟩

⟨ψ+
k,n+1|ψ

+
k,n⟩⟨ψ

−
k,n|ψ

−
k,n+1⟩

(8.45)

is simply a sum of monomials in the constituent fields when L is normal ordered.

6This is a somewhat delicate point. While requiring the Hamiltonian H to be normal-ordered
is fairly customary, difficulties arise in the dissipator for even very simple jump operators Li .
Taking L = a†k for instance (corresponding to a one-particle incoherent drive), the term L†L =
aka
†
k in the dissipator is clearly not normal-ordered, and the operators must be in this order

according to our prescription for the form of the Lindbladian. Attempting to bring the operator to
a normal-ordered form by use of the commutation relation for the ak, a†k operators in an infinite-
dimensional system will yield a pathological Dirac delta distribution with zero argument, to some
extent reflecting the fact that the form of the Lindbladian and many results about it were worked
out in the finite-dimensional setting. This difficulty can be ameliorated by starting from a unitary
evolution with a specially chosen bath [8] which, upon being integrated out, yields a Feynman-
Vernon functional identical (up to Lamb shift terms which we typically neglect) to one which
would have been obtained if the Lindbladian had been taken as normal ordered from the start,
contrary to its finite-dimensional standard form. This is essentially what was done in Part Ia.
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Using (3.11) and (3.14) this becomes

⟨ψ+
k,n+1|e

ϵL
[
|ψ+
k,n⟩⟨ψ

−
k,n|

]
|ψ−k,n+1⟩

= Exp

ϵL[ψ+
k,n,ψ

−
k,n,ψ

+
k,n+1,ψ

−
k,n+1]

− ϵ
2

∑
k

ψ̄+
k,n+1

ψ+
k,n+1 −ψ

+
k,n

ϵ
−ψ+

k,n

ψ̄+
k,n+1 − ψ̄

+
k,n

ϵ


− ϵ

2

∑
k

ψ−k,n+1

ψ̄−k,n+1 − ψ̄
−
k,n

ϵ
− ψ̄−k,n

ψ−k,n+1 −ψ
−
k,n

ϵ

.
(8.46)

and, as ϵ→ 0, we find

N∏
n=0

⟨ψ+
k,n+1|e

ϵL
[
|ψ+
k,n⟩⟨ψ

−
k,n|

]
|ψ−k,n+1⟩ → eiST [ψ+

k,t ,ψ
−
k,t], (8.47)

ST [ψ+
k,t,ψ

−
k,t] =

∫ T

−T
dt

[
− iL[ψ+

k,t,ψ
−
k,t]

i
2

∑
k

(
ψ̄+
k,t∂tψ

+
k,t −ψ

+
k,t∂tψ̄

+
k,t +ψ−k,t∂tψ̄

−
k,t − ψ̄

−
k,t∂tψ

−
k,t

)]
,

(8.48)

or, after integrating by parts,

ST [ψ+
k,t,ψ

−
k,t] =

∫ T

−T
dt

[∑
k

(
iψ̄+
k,t∂tψ

+
k,t − iψ̄

−
k,t∂tψ

−
k,t

)
− iL[ψ+

k,t,ψ
−
k,t]

]
. (8.49)

Performing the Keldysh rotation,

Scq,T [ψck,t,ψ
q
k,t] =

∫ T

−T
dt

[∑
k

(
iψ̄ck,t∂tψ

q
k,t + iψ̄qk,t∂tψ

c
k,t

)
− iLcq[ψck,t,ψ

q
k,t]

]
. (8.50)

and we may write

⟨ψ+
k,out|ρT |ψ

−
k,out⟩ =

ψck(T )=
√

2ψk,out

ψ
q
k(T )=0∫

ψck(−T )=
√

2ψk,in
ψ
q
k(−T )=0

D[ψck,t, ψ̄
c
k,t,ψ

q
k,t, ψ̄

q
k,t]e

Scq,T [ψck,t ,ψ
q
k,t]⟨ψ+

k,in|ρ−T |ψ
−
k,in⟩. (8.51)

For driven-dissipative dynamics with a unique steady state we may discard the

initial density matrix so long as we maintain the functional integral’s normalisa-

tion, and we will generally be interested in traces over the final density matrix

(which corresponds to integrating over all final values of field trajectories instead

of fixing them at time T ) rather than its individual matrix elements. This allows
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us to rewrite the foregoing as

TrρT =
∫
D[ψck,t, ψ̄

c
k,t,ψ

q
k,t, ψ̄

q
k,t]e

Scq,T [ψck,t ,ψ
q
k,t] = 1. (8.52)

Finally, just as in Chap.3, by adding terms of the form Ji(t)Oi to the Hamiltonian

in L we may work out expectations of operators via functional differentiation.

It is easy to see that, for expectations in the steady state when we may ignore

the initial density matrix as above, this amounts to (taking T =∞ to achieve the

steady state)

⟨O−1 (t−1 ) . . .O−m(t−m)O+
n (t+n ) . . .O+

1 (t+1 )⟩

=
∫
D[ψck,t,ψ̄

c
k,t,ψ

q
k,t, ψ̄

q
k,t]e

Scq,∞[ψck,t ,ψ
q
k,t]

O−1 [ψ−k,t1] . . .O−m[ψ−k,tm]O+
n [ψ+

k,tn
] . . .O+

1 [ψ+
k,t1

]

=
∫
D[ψck,t,ψ̄

c
k,t,ψ

q
k,t, ψ̄

q
k,t]e

Scq,∞[ψck,t ,ψ
q
k,t]

O−1

ψck,t1 −ψ
q
k,t1√

2

 . . .O−m
ψck,tm −ψ

q
k,tm√

2


O+
n

ψck,tn +ψqk,tn√
2

 . . .O+
1

ψck,t1 +ψqk,t1√
2

 .

(8.53)

We thus possess a way to map Lindbladian master equations to Keldysh path

integrals, and a prescription for calculating expectations of operators via the lat-

ter in the steady states of the former.
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Chapter 9

Stochastic Limit of the Keldysh Path
Integral

In Part Ia of this thesis, we saw how the linear current-current response of polari-

ton systems could be calculated via field theoretic perturbation theory. Already

at O(ℏ2) the number of Feynman diagrams involved was very significant and, for

more complicated regimes, such analytical calculations become exceedingly im-

practical. The case of coherently pumped polaritons above the OPO threshold,

for instance, is so complicated that the perturbative calculation remains undone

[9], [10]. This part of the thesis is thus devoted to exploring the application of

alternative, numerical methods to the problem of classifying superfluidity in po-

lariton systems.

A method particularly well suited to the semi-classical phenomena observed

in polaritons is the Truncated Wigner Approximation wherein the quantum dy-

namics reduce to a suitable jump-diffusion process in the semi-classical limit.

This method has its roots in the theory of deformation quantisation (which we

will explore in the form of the Stratonovich–Weyl correspondence for the 2-

sphere in Part III), but may also be derived as a semi-classical limit of the Keldysh

functional integral. To set the scene I will present the schematic derivation of the

method following Ref. [11] (highlighting some difficulties related to topics ad-

dressed in Part II of this thesis) and then work out the concrete stochastic equa-

tions for a rather general Lindbladian. The following chapter will cover how the

static current-current response may be obtained numerically via this method.

9.1 Truncated Wigner Approximation via Hubbard-

Stratonovich

The main idea is that, to order O(ℏ2), the dynamics of a Markovian open quan-

tum system may be reduced to those of a stochastic differential equation via a

131
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Hubbard-Stratonovich transformation [12] of the associated Keldysh functional

integral. To this end, consider a general Keldysh action associated to a Lindbla-

dian L, as constructed in the previous chapter (we have Fourier-transformed to

position space):

S =
∫
dtdr

(
iψ̄cr,tψ̇

q
r,t + iψ̄qr,tψ̇

c
r,t − iL[ψ̄cr,t,ψ

c
r,t, ψ̄

q
r,t,ψ

q
r,t]

)
. (9.1)

With these variables, it is not difficult to show that the O(ℏ0) expectation of ψqr,t
is 0 — this motivates an expansion fluctuations of ψqr,t, where the redefinition

ψ
q
r,t→ ℏψ

q
r,t then effectively makes this an expansion in ℏ as described in Sec.3.1.2

(though we will omit writing the ℏs explicitly). Truncating this expansion at

second order in ψqr,t is a semi-classical approximation that leads to the Truncated

Wigner Approximation [13]:

S ≈ S[ψcr,t,0]+ψqr,t
∂S

∂ψ
q
r,t

∣∣∣∣
ψ
q
r,t=0

+ψ̄qr,t
∂S

∂ψ̄
q
r,t

∣∣∣∣
ψ
q
r,t=0

+ψqr,tψ̄
q
r,t

∂2S

∂ψ̄
q
r,t∂ψ

q
r,t

∣∣∣∣
ψ
q
r,t=0

+ . . . . (9.2)

The first term on the RHS above is zero because ψqr,t = 0 means that the ψ+ and ψ−

trajectories are equal. For a unitary evolution this means that the actions coming

from the ψ+ and ψ− fields will cancel perfectly while, if a bath was integrated

out, this is the statement that the trace of the bath density matrix is preserved

if ψ is treated as a classical external field. Furthermore, for the kinds of actions

we typically consider, the above O(|ψqr,t |2) term is the only non-zero one at O(ℏ2).

This allows us to utilise a Hubbard-Stratonovich transformation:

e−
∫
dtdrMr,tψ̄

q
r,tψ

q
r,t =

∫
D[ξr,t, ξ̄r,t]e

∫
dtdr

[
−ξ̄r,tξr,t+iψ

q
r,t

√
Mr,t ξ̄r,t+iψ̄

q
r,t

√
Mr,tξr,t

]
, (9.3)∫

D[ξr,t, ξ̄r,t]e
−
∫
dtdr ξ̄r,tξr,t = 1, (9.4)

to rewrite the functional integral as (denoting −i ∂2S
∂ψ̄

q
r,t∂ψ

q
r,t

∣∣∣∣
ψ
q
r,t=0

=Mr,t)

∫
D[ψ̄cr,t,ψ

c
r,t, ψ̄

q
r,t,ψ

q
r,t]e

−
∫
dtdr

Mr,tψ
q
r,tψ̄

q
r,t−iψ

q
r,t

∂S

∂ψ
q
r,t

∣∣∣∣
ψ
q
r,t=0
−iψ̄qr,t ∂S

∂ψ̄
q
r,t

∣∣∣∣
ψ
q
r,t=0


≈

∫
D[ψ̄cr,t,ψ

c
r,t, ψ̄

q
r,t,ψ

q
r,t, ξ̄

q
r,t,ξ

q
r,t]

e

∫
dtdr

[
−ξ̄r,tξr,t+iψ

q
r,t

(
∂S

∂ψ
q
r,t

∣∣∣∣
ψ
q
r,t=0

+
√
Mr,t ξ̄r,t

)
+iψ̄qr,t

(
∂S

∂ψ̄
q
r,t

∣∣∣∣
ψ
q
r,t=0

+
√
Mr,tξr,t

)]
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From here, if one inserts an operator O[ψ̄cr,t,ψ
c
r,t] dependent only on ψcr,t and in-

tegrates over ψqr,t, one finds that

⟨O[ψ̄cr,t,ψ
c
r,t]⟩ ∝

∫
D[ψ̄cr,t,ψ

c
r,t, ξ̄r,t,ξr,t]O[ψ̄cr,t,ψ

c
r,t]e

−
∫
dtdr ξ̄r,tξr,t

δ
( ∂S

∂ψ
q
r,t

∣∣∣∣
ψ
q
r,t=0

+
√
Mr,tξ̄r,t

)
δ
( ∂S

∂ψ̄
q
r,t

∣∣∣∣
ψ
q
r,t=0

+
√
Mr,tξr,t

)
.

(9.5)

At this point [11] argues that such steady-state expectations may thus be calcu-

lated by averaging O[ψ̄cr,t,ψ
c
r,t] over trajectories of the Langevin equation

∂S
∂ψ̄

q
r,t

∣∣∣∣
ψ
q
r,t=0

+
√
Mr,tξr,t = 0, enforced by the Dirac delta functions, once these have

converged to the steady state of their corresponding Fokker-Planck equation. The

properties of the Gaussian noise ξ are determined by its expectation ⟨ξr,t⟩ = 0 and

its two-point correlation ⟨ξr,tξr′ ,t′⟩ = δ(r − r′)δ(t − t′).

There are two points worth considering. The first is that the above prescrip-

tion only allows the calculation of operators expressible in terms of ψcr,t, while

the second concerns the choice of a specific stochastic integral when the Langevin

equation contains multiplicative noise. These are addressed in the following two

subsections.

9.1.1 Time-Symmetric Ordering of ψc Operators

A curious feature of the stochastic formalism developed above, which is shared by

other variants of the Truncated Wigner approach, is that it is generally difficult to

calculate temporal correlation functions. The reason for this is easier to explain

when armed in the Moyal star product (and I will touch on it in Part III), but the

heuristic explanation is that this is caused by quantum measurements. Unlike

in a classical stochastic theory, where one may sample at different points in time

without affecting the evolution of the probability density, ‘sampling’ (measuring)

a quantum operator induces a back action on the density matrix and affects its

subsequent evolution. When treated correctly this leads to discontinuous jumps

in the otherwise diffusive stochastic dynamics [14] at the times of earlier mea-

surements, so that it is generally invalid to simply average operators at different

times over purely diffusive trajectories to obtain their correlation functions.

At the same time, nothing in the reasoning of the previous section appears to

forbid us to perform exactly this sort of purely diffusive average on operators at

different times so long as they depend only onψcr,t and not onψqr,t. It is thus worth

commenting on this, especially for readers more familiar with non-Keldysh ap-

proaches to the Truncated Wigner approximation.

Let us denote the quantum operator that generated a field operator by dots on
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either side, so that for instance

•ψcr1,t1• =
1
√

2
•ψ+

r1,t1 +ψ−r1,t1• =
1
√

2

[
ar1,t

+
1

+ ar1,t
−
1

]
(9.6)

where, as usual, the plus minus superscripts on times indicate whether the as-

sociated quantum operators appears to the left or right of the density matrix in

an expectation. Now consider the expectation of a chain of ψc fields at different

times t1 < t2 < . . . < tn (some of the fields may be complex conjugated without

changing the argument):

⟨ψcr1,t1ψ
c
r2,t2 . . .ψ

c
rn,tn⟩. (9.7)

Appealing to the time ordering on the total Keldysh contour introduced in

Sec.3.1.2, we know that the earliest time is t+1 and the latest is t−1 . Thus

•ψcr1,t1ψ
c
r2,t2 . . .ψ

c
rn,tn• =

1
√

2
• (ψ+

r1,t1 +ψ−r1,t1)ψcr2,t2 . . .ψ
c
rn,tn•

∝ ar1,t1 •ψ
c
r2,t2 . . .ψ

c
rn,tn •+ •ψcr2,t2 . . .ψ

c
rn,tn • ar1,t1 .

(9.8)

This reasoning can be applied recursively to the terms on the right hand side,

and we observe that we have obtained the same recursive relation (up to constant

factors) as expression (190) in [14]. There it is noted that operators with this

ordering, referred to there as time-symmetric ordering, have the special prop-

erty that they do not generate a back action on the density matrix when mea-

sured. They may thus be averaged without introducing jumps to the diffusive

stochastic dynamics, which is precisely the claim we are making about opera-

tors composed of ψcr,t fields. Thus operators composed of the classical fields are

time-symmetrically ordered, and because of this correspond to those temporal

correlation functions that may be calculated using purely diffusive stochastic dy-

namics.

It is worth noting that most temporal correlation functions of interest (for

instance the static current-current response that is key to superfluidity) are not

time-symmetrically ordered, and thus do not admit a representation in terms

of ψcr,t fields alone, a difficulty we will face in the next chapter. Moreover, many

equal-time operators do not have obvious representations in terms of these fields.

Consider for instance a†r2,t
ar1,t. In order to write this in terms of ψcr,t we first

consider a†r2,t2
ar1,t1 , so that

a†r2,t2ar1,t1 =
1
2

(
a†r2,t2ar1,t1 + ar1,t1a

†
r2,t2

)
+

1
2

[
a†r2,t2 , ar1,t1

]
. (9.9)

The first term on the right is time-symmetrically ordered, corresponding to 1
2ψ̄

c
r,t2ψ

c
r,t1 .

Now taking t2 → t1 and using the equal-time commutation relation for the ar,t
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operators we find

a†r2,tar1,t =
1
2
• ψ̄cr2,tψ

c
r1,t − δ(r2 − r1)•, (9.10)

which differs from the •ψ̄cr2,t
ψcr1,t
• that one might naively expect.

9.1.2 The Ito Convention

The line of reasoning that led to our Langevin equations can be seen to be incom-

plete because the functional integral contains Dirac delta functions of non-trivial

functionals of the fields. This means that, before it is permissible to carry out

the integral of the delta functions over the ψr,t field, the formula for composi-

tion of a Dirac delta with a functional must be applied. Doing so and denoting
∂S
∂ψ̄

q
r,t

∣∣∣∣∣ ψqr,t=0
ψcr,t=ψr,t

+
√
Mr,tξr,t by f [ξ̄r,t,ξr,t, ψ̄r,t,ψr,t], we may rewrite (9.5) as

⟨O[ψ̄cr,t,ψ
c
r,t]⟩

≈
∫
D[ξ̄r,t,ξr,t] exp[−ξ̄r,tξr,t]

O[ψ̄r,t,ψr,t]det

∂ψr,tf ∂ψ̄r,tf

∂ψr,t f̄ ∂ψ̄r,t f̄

−1
∣∣∣∣∣∣∣
ψr,t s.t. f [ψr,t ,ξr,t]=0

.

(9.11)

By correctly treating the delta functions, we have obtained the desired interpre-

tation of the expectation as that of an average over solutions of the f [ψr,t,ξr,t] = 0

Langevin equations with noise ξr,t. The problem is that, in the process, a func-

tional determinant factor

det

∂ψr,tf ∂ψ̄r,tf

∂ψr,t f̄ ∂ψ̄r,t f̄

−1

(9.12)

has appeared. This factor precisely corresponds to the fact that, when writing

down the Langevin equation, we did not stipulate whether the Ito or Stratonovich

convention1 was to be used [12].

The most direct way to remedy this issue, knowing that due to the system’s

evolution being trace-preserving the expectation of the identity operator should

be one (⟨I⟩ = 1), is to pick the Ito formalism. In this case the Langevin equation

is to be interpreted as the following discretised stochastic differential equation

(SDE) (we have multiplied through by the ϵ time factor, an operation that can

be easily absorbed into the other spurious constant factors carried around by a

functional integral so long as we maintain the normalisation ⟨I⟩ = 1):

fn[ψr,n,ψr,n−1,ξr,n−1] = ψr,n −ψr,n−1 − ϵ
(
µ[ψr,n−1] + σ [ψr,n−1]ξr,n−1

)
(9.13)

1Of course other variants of stochastic integral would also be admissible, these being simply
the most common ones.
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with µ and σ the drift and diffusion coefficients of the Langevin equation taken

at the specified discrete moment in time. We find that the discrete form of the

Jacobian matrix 
∂fi
∂ψr,j

∂fi
∂ψ̄r,j

∂f̄i
∂ψr,j

∂f̄i
∂ψ̄r,j


−1

(9.14)

has

∂fi
∂ψr,i

= 1,
∂fi

∂ψr,i−1
, 0, (9.15)

∂fi
∂ψ̄r,i−1

, 0., (9.16)

∂f̄i
∂ψr,i−1

, 0, (9.17)

∂f̄i
∂ψ̄r,i

= 1,
∂f̄i

∂ψ̄r,i−1
, 0, (9.18)

with all other elements zero. All four block matrices comprising the Jacobian ma-

trix are lower triangular, so their determinants are the products of their diagonal

elements. This means that ∂fi
∂ψr,j

is invertible (it and ∂f̄i
∂ψ̄r,j

have determinant 1)and

the determinant formula for a block matrix

M =

A B

C D

 , A invertible, (9.19)

detM = detA ·det
(
D −CA−1B

)
(9.20)

applies. It is easy to see that ∂f̄i
∂ψr,j

(
∂fi
∂ψr,j

)−1
∂fi
∂ψ̄r,j

is lower triangular2 and has a

zero diagonal, so that ∂f̄i
∂ψ̄r,j
− ∂f̄i
∂ψr,j

(
∂fi
∂ψr,j

)−1
∂fi
∂ψ̄r,j

is lower triangular with 1s on the

diagonal and thus has determinant 1. Thus

det

∂ψr,tf ∂ψ̄r,tf

∂ψr,t f̄ ∂ψ̄r,t f̄

−1

= det
∂fi
∂ψr,j

·det

 ∂f̄i
∂ψ̄r,j

−
∂f̄i
∂ψr,j

(
∂fi
∂ψr,j

)−1
∂fi
∂ψ̄r,j

 = 1 · 1 = 1.

(9.21)

This then ensures that

⟨O[ψ̄cr,t,ψ
c
r,t]⟩

≈
∫
D[ξ̄r,t,ξr,t] exp[−ξ̄r,tξr,t]

O[ψ̄r,t,ψr,t]det

∂ψr,tf ∂ψ̄r,tf

∂ψr,t f̄ ∂ψ̄r,t f̄

−1
∣∣∣∣∣∣∣
ψr,t s.t. f [ψr,t ,ξr,t]=0

=
∫
D[ξ̄r,t,ξr,t] exp[−ξ̄r,tξr,t]O[ψ̄r,t,ψr,t]

∣∣∣
ψr,t s.t. f [ψr,t ,ξr,t]=0

,

(9.22)

2The inverses and products of lower triangular matrices are also lower triangular.
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which ensures ⟨I⟩ = 1 due to the normalisation of the ξr,t Gaussian integral and

gives the desired interpretation of an average over stochastic trajectories with no

extra determinant factor.

It must be noted that, while likely sufficient for our applications, this line

of reasoning is not entirely satisfying. In particular the choice of discretisation

convention is made very late in the process, based almost purely on the desire

to achieve ⟨I⟩ = 1, and in fact disagrees with the discretisation that was used

when initially constructing the path integral. That discretisation of the action,

as described in Sec.8.2, does not actually admit the Hubbard-Stratonovich trans-

formation used to obtain the Langevin equation because of how the quantum

fields are offset in time. To perform the transformation one thus has to first pass

to the continuous form, discarding discretisation information, obtain a Langevin

equation, and then select a new discretisation convention based on some other

principle (here the normalisation requirement).

My suspicion is that this is closely related to the general difficulties with dis-

cretisation choice when handling coherent state path integrals, some of which

are addressed in Part II. In particular, from the point of view of the Klauder-

Daubechies construction [15] of the coherent path integral, the passage from the

discrete to the continuous form of the action we used in Sec.8.2 (specifically the

implicit discarding of the time offset of fields in the Lindbladian term before

passing to the continuous form), while conventional, actually corresponds to an

incorrect operator ordering and would not satisfy ⟨I⟩ = 1. It is thus unsurpris-

ing that a post-hoc correction is required at a later stage to achieve this desired

normalisation.

9.2 General Lindbladian Model

In this section I construct the Keldysh action and associated Truncated Wigner

equations for a general Lindbladian with many-particle gain and loss. This model

generalises that found in Ref. [16] for incoherently driven polaritons.

Denoting the individual dissipator operators D[o,ρ] =
∫
dr [oρo† − 1

2 {o
†o,ρ}],

L[ρ] = −i[H,ρ] +D [ρ], (9.23)

H =
∫
dr

[
a†r(ω0 −K∇2)ar +

M∑
n=2

un(a†r)
nanr

]
, (9.24)

D [ρ] =
N∑
n=1

γp,nD[(a†r)
n,ρ] +

L∑
n=1

γl,nD[anr ,ρ]. (9.25)

The pumping terms D[(a†r)
n,ρ] pose a difficulty for constructing a correspond-

ing Keldysh functional integral since, as discussed before, they are not normal-
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ordered. Moreover, the approach taken in [8] and Part Ia to circumvent this prob-

lem generates Lamb shift terms that affect the coefficients of terms un(a†r)
nanr in

the Hamiltonian. In order to neglect these terms the Hamiltonian coefficients

should be significantly larger, which means that the Hamiltonian must possess

such terms in the first place. We thus require that M ≥N .

With this in mind, we may now proceed using the method of Sec. 8.2 as if all

terms are normal-ordered. We undertake this in the following subsections.

9.2.1 Dissipation Contribution

Starting with the dissipation contributions γl,nD[anr ,ρ], we find

Tr[|ψ−r,j⟩⟨ψ
+
r,j |D

[
anr , |ψ+

r,j−1⟩⟨ψ
−
r,j−1|

]
]

Tr[|ψ−r,j⟩⟨ψ
+
r,j |ψ

+
r,j−1⟩⟨ψ

−
r,j−1|]

=
∫
dr

γl,n
⟨ψ−r,j−1|ψ

−
r,j⟩⟨ψ

+
r,j |ψ

+
r,j−1⟩

[
⟨ψ+

r,j |a
n
r |ψ+

r,j−1⟩⟨ψ
−
r,j−1|(a

†
r)
n|ψ−r,j⟩

− 1
2

(
⟨ψ+

r,j |(a
†
r)
nanr |ψ+

r,j−1⟩⟨ψ
−
r,j−1|ψ

−
r,j⟩

+ ⟨ψ+
r,j |ψ

+
r,j−1⟩⟨ψ

−
r,j−1|(a

†
r)
nanr |ψ−r,j⟩

)]
−−−−→
ϵ→0

∫
drγl,n

[
(ψ+
r,t)

n(ψ̄−r,t)
n − 1

2
((ψ+

r,t)
n(ψ̄+

r,t)
n + (ψ−r,t)

n(ψ̄−r,t)
n
]

=
∫
dr
γl,n
2n

[
(ψcr,t +ψqr,t)

n(ψ̄cr,t − ψ̄
q
r,t)

n

− 1
2

(
(ψcr,t +ψqr,t)

n(ψ̄cr,t + ψ̄qr,t)
n + (ψcr,t −ψ

q
r,t)

n(ψ̄cr,t − ψ̄
q
r,t)

n
)]
.

(9.26)

Anticipating our use of the Truncated Wigner approximation, we may expand

this to second order in ψqr,t to obtain

∫
dr
nγl,n|ψcr,t |2(n−1)

2n−1

[1
2
ψ
q
r,tψ̄

c
r,t −

1
2
ψ̄
q
r,tψ

c
r,t −n|ψ

q
r,t |2

]
. (9.27)
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9.2.2 Drive Contribution

Moving onto the drive terms γp,nD[(a†r)
n,ρ] and recalling that we may treat them

as normal ordered up to Lamb shifts, the process is very similar:

Tr[|ψ−r,j⟩⟨ψ
+
r,j |D

[
(a†r)

n, |ψ+
r,j−1⟩⟨ψ

−
r,j−1|

]
]

Tr[|ψ−r,j⟩⟨ψ
+
r,j |ψ

+
r,j−1⟩⟨ψ

−
r,j−1|]

=
∫
dr

γp,n
⟨ψ−r,j−1|ψ

−
r,j⟩⟨ψ

+
r,j |ψ

+
r,j−1⟩

[
⟨ψ+

r,j |(a
†
r)
n|ψ+

r,j−1⟩⟨ψ
−
r,j−1|a

n
r |ψ−r,j⟩

− 1
2

(
⟨ψ+

r,j |(a
†
r)
nanr |ψ+

r,j−1⟩⟨ψ
−
r,j−1|ψ

−
r,j⟩

+ ⟨ψ+
r,j |ψ

+
r,j−1⟩⟨ψ

−
r,j−1|(a

†
r)
nanr |ψ−r,j⟩

)]
−−−−→
ϵ→0

∫
drγp,n

[
(ψ̄+
r,t)

n(ψ−r,t)
n − 1

2
((ψ+

r,t)
n(ψ̄+

r,t)
n + (ψ−r,t)

n(ψ̄−r,t)
n
]

=
∫
dr
γp,n
2n

[
(ψ̄cr,t + ψ̄qr,t)

n(ψcr,t −ψ
q
r,t)

n

− 1
2

(
(ψcr,t +ψqr,t)

n(ψ̄cr,t + ψ̄qr,t)
n + (ψcr,t −ψ

q
r,t)

n(ψ̄cr,t − ψ̄
q
r,t)

n
)]
.

(9.28)

Again anticipating Truncated Wigner, to second order in ψqr,t this is

∫
dr
nγp,n|ψcr,t |2(n−1)

2n−1

[1
2
ψ̄
q
r,tψ

c
r,t −

1
2
ψ
q
r,tψ̄

c
r,t −n|ψ

q
r,t |2

]
. (9.29)

9.2.3 Hamiltonian Contribution

Finally we consider the contribution to the action from the Hamiltonian

H =
∫
dr

[
a†r(ω0 −K∇2)ar +

M∑
n=2

un(a†r)
nanr

]
. (9.30)

This is clearly

−
∫
dtdr

[
ψ̄+
r,t(ω0 −K∇2)ψ+

r,t +
M∑
n=2

un(ψ̄+
r,t)

n(ψ+
r,t)

n

− ψ̄−r,t(ω0 −K∇2)ψ−r,t −
M∑
n=2

un(ψ̄−r,t)
n(ψ−r,t)

n
] (9.31)
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which, when rewritten in terms of Keldysh fields, yields to second order ψqr,t:

∫
dtdr

ψcr,tψ
q
r,t

†  0 −ω0 +K∇2

−ω0 +K∇2 0

ψcr,tψ
q
r,t


−

M∑
n=2

nun|ψcr,t |2(n−1)

2n−1

(
ψ̄cr,tψ

q
r,t +ψcr,tψ̄

q
r,t

)
(9.32)

9.2.4 Truncated Wigner Equations

Taking into account the dynamical terms, the overall action to second order in

the ψq fields comes out to be

S =
∫
dtdr

ψcr,tψ
q
r,t

†  0 i∂t −ω0 +K∇2

i∂t −ω0 +K∇2 0

ψcr,tψ
q
r,t


−

M∑
n=2

nun|ψcr,t |2(n−1)

2n−1

(
ψ̄cr,tψ

q
r,t +ψcr,tψ̄

q
r,t

)
− i

N∑
n=1

nγp,n|ψcr,t |2(n−1)

2n−1

(1
2
ψ̄
q
r,tψ

c
r,t −

1
2
ψ
q
r,tψ̄

c
r,t −n|ψ

q
r,t |2

)
− i

L∑
n=1

nγl,n|ψcr,t |2(n−1)

2n−1

(1
2
ψ
q
r,tψ̄

c
r,t −

1
2
ψ̄
q
r,tψ

c
r,t −n|ψ

q
r,t |2

).

(9.33)

This may be rewritten in a more familiar form by writing γp,1 −γl,1 = δγ ,

γp,1 +γl,1 = σγ , and moving the n = 1 terms from the dissipator contributions into

the quadratic matrix contribution, yielding

S =
∫
dtdr

ψcr,tψ
q
r,t

†  0 i∂t −ω0 +K∇2 + i
2δγ

i∂t −ω0 +K∇2 − i
2δγ iσγ

ψcr,tψ
q
r,t


−

M∑
n=2

nun|ψcr,t |2(n−1)

2n−1

(
ψ̄cr,tψ

q
r,t +ψcr,tψ̄

q
r,t

)
− i

N∑
n=2

nγp,n|ψcr,t |2(n−1)

2n−1

(1
2
ψ̄
q
r,tψ

c
r,t −

1
2
ψ
q
r,tψ̄

c
r,t −n|ψ

q
r,t |2

)
− i

L∑
n=2

nγl,n|ψcr,t |2(n−1)

2n−1

(1
2
ψ
q
r,tψ̄

c
r,t −

1
2
ψ̄
q
r,tψ

c
r,t −n|ψ

q
r,t |2

).

(9.34)

Finally, we may add external classical scalar and vector fields hr,t, f
j
r,t coupled to

the system’s quantum field and quantum current (as defined in Sec. 4.3.2) to the

action. These contributions have the form

h̄r,tψ
q
r,t + hr,tψ̄

q
r,t, (9.35)
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f
j
r,t
K
i

(
ψ̄cr,t∇jψ

q
r,t + ψ̄qr,t∇jψcr,t −ψcr,t∇jψ̄

q
r,t −ψ

q
r,t∇jψ̄cr,t

)
︸                                                            ︷︷                                                            ︸

jq

, (9.36)

and will allow us, in the next chapter, to calculate response functions (we will

not actually make use of the hr,t field, but add it for completeness).

With these in place we are ready to derive the Truncated Wigner equations

for the total action.

Shf =
∫
dtdr

ψcr,tψ
q
r,t

†  0 i∂t −ω0 +K∇2 + i
2δγ

i∂t −ω0 +K∇2 − i
2δγ iσγ

ψcr,tψ
q
r,t


−

M∑
n=2

nun|ψcr,t |2(n−1)

2n−1

(
ψ̄cr,tψ

q
r,t +ψcr,tψ̄

q
r,t

)
− i

N∑
n=2

nγp,n|ψcr,t |2(n−1)

2n−1

(1
2
ψ̄
q
r,tψ

c
r,t −

1
2
ψ
q
r,tψ̄

c
r,t −n|ψ

q
r,t |2

)
− i

L∑
n=2

nγl,n|ψcr,t |2(n−1)

2n−1

(1
2
ψ
q
r,tψ̄

c
r,t −

1
2
ψ̄
q
r,tψ

c
r,t −n|ψ

q
r,t |2

)
+ h̄r,tψ

q
r,t + hr,tψ̄

q
r,t

− if jr,tK
(
ψ̄cr,t∇jψ

q
r,t + ψ̄qr,t∇jψcr,t −ψcr,t∇jψ̄

q
r,t −ψ

q
r,t∇jψ̄cr,t

).

(9.37)

We know from Sec 9.1 that these take the form

∂S

∂ψ̄
q
r,t

∣∣∣∣
ψ
q
r,t=0

+
√
Mr,tξr,t = 0, (9.38)

Mr,t = −i ∂2S

∂ψ̄
q
r,t∂ψ

q
r,t

∣∣∣∣
ψ
q
r,t=0

, (9.39)

so all that is required is to calculate ∂S
∂ψ̄

q
r,t

∣∣∣∣
ψ
q
r,t=0

, ∂2S
∂ψ̄

q
r,t∂ψ

q
r,t

∣∣∣∣
ψ
q
r,t=0

. This is easily

achieved, giving3

∂2S

∂ψ̄
q
r,t∂ψ

q
r,t

∣∣∣∣
ψ
q
r,t=0

= iσγ + i
N∑
n=2

n2γp,n|ψcr,t |2(n−1)

2n−1 + i
L∑
n=2

n2γl,n|ψcr,t |2(n−1)

2n−1 , (9.40)

3We will consider the dynamical and external classical fields to be cyclic on their domains,
meaning no boundary terms are generated during required integrations by parts. For the dynam-
ical fields this can be argued on the grounds that the domain is meant to represent the bulk of
a driven dissipative system and so spatial cyclic boundary conditions are appropriate, while the
smoothing nature of dissipative dynamics means that the initial conditions may be ignored and
thus freely set equal to the final ones. The external fields will generally be used in the static limit
(cyclic in time), and no difficulties arise from choosing them to be cyclic in space.
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∂S

∂ψ̄
q
r,t

∣∣∣∣
ψ
q
r,t=0

=

i∂t −ω0 +K∇2 − i
2
δγ −

M∑
n=2

nun|ψcr,t |2(n−1)

2n−1

− i
N∑
n=2

nγp,n|ψcr,t |2(n−1)

2n
+ i

L∑
n=2

nγl,n|ψcr,t |2(n−1)

2n

− 2iKf j∇j − iK(∇jf j)
ψcr,t + hr,t.

(9.41)

The overall Langevin equation, over the trajectories of which we may average

observables dependent on ψc to find their expectation values, is thusi∂t −ω0 +K∇2 − i
2
δγ −

M∑
n=2

nun|ψcr,t |2(n−1)

2n−1

− i
N∑
n=2

nγp,n|ψcr,t |2(n−1)

2n
+ i

L∑
n=2

nγl,n|ψcr,t |2(n−1)

2n

− 2iKf j∇j − iK(∇jf j)
ψcr,t

+ hr,t

+ ξr,t

√√√
σγ +

N∑
n=2

n2γp,n|ψcr,t |2(n−1)

2n−1 +
L∑
n=2

n2γl,n|ψcr,t |2(n−1)

2n−1 = 0.

(9.42)

To finish, let us specialise this expression to a Lindbladian plausibly describ-

ing a polariton system (one which we will consider in Part Ic), namely one with

a quartic interaction in the Hamiltonian M = 2, single-particle incoherent gain

N = 1 < M, and single and two-particle loss L = 2. In this case the Langevin

equation simplifies considerably, yielding(
i∂t −ω0 +K∇2 − i

2
δγ +

( i
2
γl,2 −un

)
|ψcr,t |2 − 2iKf j∇j − iK(∇jf j)

)
ψcr,t

+ hr,t +
√
σγ + 2γl,2|ψcr,t |2ξr,t = 0.

(9.43)

In the next chapter I will consider how this equation (or the more general equa-

tion if a more exotic system is considered) may be used to calculate a system’s

current-current response and thus analyse whether it can sustain a superfluid

phase.



Chapter 10

Truncated Wigner Approximation
for Superfluidity

With the Truncated Wigner equations in hand, we are now ready to consider how

they may be used to calculate the superfluid fraction of the system they describe.

As in Part Ia we will use the definition of superfluid based on the system’s current-

current response, and once again consider its directional static limits. Unlike in

the Keldysh formalism where operators could depend on both classical and quan-

tum fields with no difficulty, however, with the Truncated Wigner approximation

we are constrained to calculating expectations of time-symmetrically ordered op-

erators depending only on the classical fields. Since the current-current response

does not fit this description, we will have to take a more indirect approach to its

calculation.

10.1 Current-Current Response

As discussed in Chap. 4, in studying superfluidity we typically seek the static

current-current response tensor

χij(q) = i⟨jci (ω = 0,q)jqj (ω = 0,−q)⟩, (10.1)

jci (0,q) = jci (q) =
1
2

∑
ω,k

γi(2k + q)[ψc(ω,k + q)ψ̄c(ω,k) +ψq(ω,k + q)ψ̄q(ω,k)],

(10.2)

j
q
i (0,q) = jqi (q) =

∑
ω,k

γi(2k + q)[ψc(ω,k + q)ψ̄q(ω,k) +ψq(ω,k + q)ψ̄c(ω,k)],

(10.3)

γi(k) = K(k)i , (10.4)

143
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which encodes the response of the classical static current jci (q) to the static com-

ponent of the external classical field f i(q) = f i(0,q):

⟨δjci (q)⟩ = χij(q)f j(q). (10.5)

As mentioned in the first paragraph, we cannot directly calculate χij(q) with the

Truncated Wigner method because it is an expectation of an operator dependent

on both the quantum and classical fields. We may notice, however, that jci (q)

splits into terms individually consisting of either only classical or quantum fields.

Since the correlator of two quantum fields is 0 in the Keldysh formalism [12], we

see that

⟨jci (q)⟩ =
∑
ω,k

γi(2k + q)⟨ψc(ω,k + q)ψ̄c(ω,k)⟩. (10.6)

This now depends only on classical fields, and may be calculated in our formal-

ism. A possible approach to calculating χij(q) is thus to work backwards from

(10.5). By measuring the response of the current to appropriately chosen exter-

nal fields, the response tensor may be recovered from this equation.

Considering all averages in the remainder of this section to be over realisa-

tions of the stochastic trajectories of the system’s Langevin equation, we wish to

calculate ⟨δjac (q)⟩ as the difference between ⟨jac (q)⟩f and ⟨jac (q)⟩0. The subscript

denotes whether the field f is present in the action, and we have set h = 0 since we

are not calculating responses associated to it here. Assuming a bounded, cyclic

domain of temporal extent T and spatial extent L with Fourier conventions

kn = 2πn/T , (10.7)

f (t) =
∞∑

n=−∞
fne

iknt, (10.8)

fn =
1
T

T /2∫
−T /2

dt f (t)e−iknt, (10.9)

we have, for the static current:

jci (0,x) =
1
T

T /2∫
−T /2

dt jci (t,x) =
2K
T

T /2∫
−T /2

dt Im
[
ψ̄(t,x)∇aψ(t,x)

]
, (10.10)

jci (0,k) =
1
T

∑
q

T /2∫
−T /2

dtγi(2q + k)ψ(q + k)ψ̄(q). (10.11)

The stochastic average commutes with integration, summation, and differenti-

ation, so it is sufficient to calculate either ⟨ψ̄(t,x)ψ(t,y)⟩ or ⟨ψ̄(t,q)ψ(t,k)⟩. The
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current average can then be obtained by post-processing this expectation accord-

ing to the preceding formulas.

One way to extract the response would be to select a sequence ϵn→ 0 as n→
∞ and, for each ϵm, calculate the response for two different perturbing fields

f1(x) = ϵm

g(x)

0

 , (10.12)

f2(x) = ϵm

 0

g(x)

 , (10.13)

where g(x) is a function containing all Fourier basis functions (or at least all those

in some neighbourhood of k = 0, since that is the region of the response we are

most interested in). This means that the response equation in two spatial dimen-

sions (we take i = x, y) will take the form (ji,n represents the i-th coordinate of

the current in the presence of the n-th external field fn).〈
δ

jx,1(kn) jx,2(kn)

jy,1(kn) jy,2(kn)

〉 = ϵmg(kn)

χ11(kn) χ12(kn)

χ21(kn) χ22(kn)

1 0

0 1

 , (22)

i.e.χ11(kn) χ12(kn)

χ21(kn) χ22(kn)

 = lim
m→∞

1
ϵmg(kn)


〈jx,1(kn) jx,2(kn)

jy,1(kn) jy,2(kn)

〉
ϵm

−
〈jx,1(kn) jx,2(kn)

jy,1(kn) jy,2(kn)

〉
0

 .
(23)

If the sequence on the RHS converges, one obtains a good estimate for the re-

sponse tensor in Fourier components. This can then be analysed analytically to

study superfluidity. Note that this approach does not require the separate use of

longitudinal and transverse forces.

10.1.1 Isotropic Simplification

In the isotropic case this simplifies considerably. The most general form of a

rotationally invariant matrix in momentum space is

χij(q) =
qiqj
|q|2

χS(|q|) + δijχN (|q|). (10.14)

Here χS encodes the superfluid response in the |q| → 0 limit, and likewise χN the

normal response in that same limit. Comparing to expression (4.22) in Chap. 4,

we have put χS = χL −χT and χN = χT since a superfluid responds only to longi-

tudinal perturbations.
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This means that if we consider the χxx component:

χxx(q) =
(qx)2

(qx)2 + (qy)2χS(|q|) +χN (q) (10.15)

lim
qx→0

χxx(q) = χN (|qy |) (10.16)

lim
qy→0

lim
qx→0

χxx(q) = lim
|q|→0

χN (|q|) =N (10.17)

lim
qy→0

χxx(q) = χS(|qx|) +χN (|qx|) (10.18)

lim
qx→0

lim
qy→0

χxx(q) = lim
|q|→0

(
χS(|q|) +χN (|q|)

)
= T (10.19)

We thus see that we can obtain all information about the superfluid fraction from

just the χxx component as:

fS =
T −N
N

. (10.20)

In light of this, it is sufficient to calculate χxx(q). We may now choose a conve-

nient magnitude function g(x) for our source field:

fx(x) = ϵmg(x) (10.21)

fy(x) = 0. (10.22)

Given we are typically working in the bulk of the condensate (our justification for

cyclic boundary conditions earlier), it would be conceptually elegant to consider

a field that is strongly localised to this bulk. If the external field has a minimal

effect near our boundaries, we may imagine that beyond the boundaries the field

is not applied while keeping cyclic boundary conditions.

To this end, we will consider the “finite box” analogue of a sharply peaked

Gaussian. This is the Jacobi Theta Function, or third Elliptic Theta Function.

For our purposes what matters is its Fourier decomposition which, taking θ(x) =∏
i θ3(xiL ; 4iπ

L2 ) for time and likewise for the spatial variables, is

θ(q) = e−|q|
2
. (10.23)

We then have the relation

δ⟨jx(q)⟩ = χxx(q)fx(q) = ϵme
−|q|2χxx(q), (10.24)

and we have an expression for χxx(q):

χxx(q) = lim
ϵm→0

e|q|
2

ϵm

(
⟨jx(q)⟩ϵm − ⟨jx(q)⟩0

)
. (10.25)
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If it were possible to calculate the right hand side for all momenta in some

neighbourhood of q = 0 this would, as we established earlier, be sufficient to

find the effective superfluid fraction of the system. In practice, one will run into

the problem that due to the finite box/grid size of the simulation the available

momenta will form a non-dense grid QL with spacing 2π
L and it will be possible

to calculate χxx(q) only for q ∈ QL. This will pose an obstacle to taking the q→ 0

limits, since the smallest non-zero available momenta values will be off-set by 2π
L

from zero. This means that L must be big enough to see convergence in these

limits. It is thus likely that, in practice, the application of this method would

amount to taking a double limit of the sought quantity

χxx(q) = lim
L→∞
ϵm→0

e|q|
2

ϵm

(
⟨jx(q)⟩ϵm − ⟨jx(q)⟩0

)
. (10.26)

and observing whether convergence is obtained for numerically viable grid sizes

and perturbations.

10.2 Conclusion

In the preceding two chapters we introduced the language of Lindbladian super-

operators to describe general Markovian driven-dissipative systems and intro-

duced the mappings from a Lindbladian to a Keldysh action and from the latter

to a stochastic process via Truncated Wigner. Having then worked out the form

of the stochastic process for a general Lindbladian with non-linear drive and dis-

sipation and presented its simplification in the case of a Lindbladian appropriate

to some polariton systems, this concluding chapter has been devoted to how this

may be employed to calculate a driven-dissipative system’s superfluid fraction.

In the process we have highlighted some difficulties such as:

1. normal-ordering problems associated with Lindbladians of infinite-dimensional

systems;

2. the fact that only time-symmetrically ordered the finite strength of any per-

turbing external field;

3. disagreement between the Ito discretisation used for defining the stochastic

process and the original discretisation of the Keldysh action; and

4. the need to numerically take a double limit in external field magnitude and

system size.

The first three of these are essentially theoretical in nature, with the first two

already possessing standard solutions in the literature. The third is somewhat
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unsatisfactory and likely related to the material in Part II, but is not expected to

pose any difficulties in practice. On the last point, it remains to be seen whether

the double limit is numerically feasible.

During the course of my PhD I did not have the opportunity to apply this

method to any problems, only derive it. The next steps for this project would

entail the use of the XMDS software package [17] to run the associated stochastic

simulations for the polariton model described in the previous chapter and to

compare the results to known analytical ones [16]. This is likely to be undertaken

by a different member of the group in the near future.
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Chapter 11

The Model and its Mean Field

Aside from polaritons, photons in a dye cavity are another light-matter system ca-

pable of exhibiting Bose-Einstein condensation [1], [2]. Compared to the former,

however, such photons have significantly weaker particle-particle interactions1,

which has motivated the study of how condensation can take place in this system

via incoherent drive and dissipation rather than particle-particle interactions [4].

Given the possibility of condensation, a related question is whether a system

with no particle-particle interactions can also exhibit superfluidity. A typical

model for such dye cavity photons in the absence of a trapping potential and ne-

glecting the particle-particle interactions is given by the following Lindbladian2

[3], [5], [6]:

L [ρ] = −i[H,ρ] +D [ρ], (11.1)

H =
∫
dr

[
ψ†r (ω0 −K∇2)ψr

]
, (11.2)

D [ρ] =
∫
dr

[
γp,1D[ψ†r ,ρ] +γl,1D[ψr,ρ] +γl,2D[ψ2

r ,ρ]
]
, (11.3)

D[O,ρ] =OρO† − 1
2
{O†O,ρ}. (11.4)

This model is an ideal Bose gas subject to one-particle gain γp,1 from stimulated

scattering of photons into the condensate and one-particle loss γl,1 through the

cavity mirrors. There is also effective two-particle loss γl,2, modelling the fact

that gain in such systems is typically saturable: the condensate does not grow in-

definitely if one-particle gain exceeds one-particle loss [7]. As is well known [8],

though the ideal Bose gas is capable of condensation, it does not exhibit super-

fluidity in equilibrium due to the absence of interactions. Goldstone modes and

superfluidity are instead found in the weakly interacting Bose gas, with the pro-

totypical interaction being of the form V |ψ|4. We shall refer to this as the unitary

1There are at least two possible mechanisms for this interaction [3], with the Kerr mechanism
that is more likely to be observed on experimental time-scales being particularly weak.

2This Lindbladian agrees with the Gross-Pitaevskii equations used in the cited works.

153



154 CHAPTER 11. THE MODEL AND ITS MEAN FIELD

two-particle contact interaction.

Nevertheless, the above driven-dissipative version of the ideal Bose gas has

been proposed as a model of vortex formation in trapped dye cavity photon Bose-

Einstein condensates; numerical simulation of the associated mean field Gross-

Pitaevskii equation demonstrates vortex lattice formation [6] analogous to the

exciton-polariton case [7]. Since vortices are a topological defect frequently as-

sociated with superfluidity, this raises the question of whether this system can

support the latter phenomenon in the absence of a trapping potential (when the

steady state should be stable against vortex formation), i.e. whether an ideal

Bose gas can exhibit superfluidity via non-linear dissipation rather than unitary

interactions. This interpretation of vortex formation as indicative of superflu-

idity was argued against in [4] due to the dye photon model’s Landau criterion

critical velocity being zero. As I have emphasized throughout this part, however,

the Landau criterion is unreliable in the driven-dissipative setting. Thus, while

I agree with [4] that vortices are not synonymous with superfluidity, it does not

appear possible to rule it out so simply.

An important and promising distinction between this and the equilibrium

model is that the non-linear loss terms of the Lindbladian generate what look like

two-particle contact interactions in the associated Keldysh action. These are not

the unitary interactions mentioned above, as their coupling constants are now

imaginary, but could still be sufficient for superfluidity to manifest. Thus, in

this sub-part I will use the Keldysh formalism and the current-current response

superfluidity criterion to analyse the effect of these incoherent particle-particle

pseudo-interactions.

To begin, we write out the Keldysh action associated to the Lindbladian. Via

the mapping presented in Chap. 9, in the Fourier domain we find this to be (we

perform a change of variables ψ(ω,k)→ ψ(ω−ω0,k) to eliminate ω0, and denote

k = (ω,k), ϵ(k) = K |k|2, γp,1 −γl,1 = δγ , γp,1 +γl,1 = σγ ):

S =
∫
dk

ψckψqk
†  0 ω − ϵ(k) + i

2δγ
ω − ϵ(k)− i

2δγ iσγ

ψckψqk
∫

dk′dq

[
− i

2
γl,2ψ̄

c
k−qψ̄

c
k′+qψ

c
kψ

q
k′ +

i
2
γl,2ψ̄

c
k−qψ̄

q
k′+qψ

c
kψ

c
k′

+
i
2
γl,2ψ̄

c
k−qψ̄

q
k′+qψ

q
kψ

q
k′ −

i
2
γl,2ψ̄

q
k−qψ̄

q
k′+qψ

c
kψ

q
k′

+ 2iγl,2ψ̄
c
k−qψ̄

q
k′+qψ

c
kψ

q
k′

].
(11.5)
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The mean-field equations for a spacetime-homogeneous condensate are then

δS

δψ̄
q
0

∣∣∣∣∣∣
ψq=ψ̄q=0

= − i
2
δγψ

c
0 +

i
2
γl,2|ψc0|

2ψc0 = 0, (11.6)

δS

δψ
q
0

∣∣∣∣∣∣
ψq=ψ̄q=0

=
i
2
δγ ψ̄

c
0 −

i
2
γl,2|ψc0|

2ψ̄c0 = 0. (11.7)

which yields the two possible solutions

ψc0 = 0 or |ψc0|
2 = |ψ0|2 =

δγ
γl,2

. (11.8)

The second of these corresponds to condensation, with the density of the con-

densate controlled by the constant pumping term. The fact that such a constant

pump can achieve saturation is an important difference with the open dissipative

condensate considered in [9], and is due to the quartic coupling being imaginary

rather than real (i.e. to the presence of two-body decay rather than unitary inter-

actions).

The excitation spectrum for the condensate is calculated in [10] (in fact they

consider the more general model containing both two-particle loss and unitary

interactions), and is found to be dynamically stable. I briefly present the calcu-

lation, since we shall need the system’s Greens functions for subsequent calcula-

tions anyway.

Expanding our action around the condensate (which we choose to be real

ψ0 = ψ̄0 via our system’s U (1) symmetry and associated phase freedom of the

symmetry broken condensate) to second order, we may write the resulting ex-

pression in terms of Nambu spinors Ψk = (ψck , ψ̄
c
−k ,ψ

q
k , ψ̄

q
−k)

T :

S2 =
1
2

∫
dkdk′Ψ †k

δ2S

δΨ̄kδΨk′
Ψk′ (11.9)

δ2S

δΨ̄kδΨk′
=

 0 [G−1]A(k)

[G−1]R(k) [G−1]K (k)

δ(k − k′) (11.10)

[G−1]R(k) =

ω − ϵ(k)− i
2δγ + iγl,2|ψ0|2 i

2γl,2ψ
2
0

− i2γl,2ψ̄
2
0 −ω − ϵ(−k) + i

2δγ − iγl,2|ψ0|2


=

ω − ϵ(k) + i
2δγ

i
2δγ

− i2δγ −ω − ϵ(k)− i
2δγ


(11.11)
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[G−1]A(k) =

ω − ϵ(k) + i
2δγ − iγl,2|ψ0|2 i

2γl,2ψ
2
0

− i2γl,2ψ̄
2
0 −ω − ϵ(−k)− i

2δγ + iγl,2|ψ0|2


=

ω − ϵ(k)− i
2δγ

i
2δγ

− i2δγ −ω − ϵ(k) + i
2δγ


(11.12)

[G−1]K (k) =

iσγ + 2iγl,2|ψ0|2 0

0 iσγ + 2iγl,2|ψ0|2


=

iσγ + 2iδγ 0

0 iσγ + 2iδγ


(11.13)

iGR(k) = i
(
[G−1]R(k)

)−1

=
i

ϵ(k)2 − iωδγ −ω2

−ω − ϵ(k)− i
2δγ − i2δγ

i
2δγ ω − ϵ(k) + i

2δγ

 (11.14)

iGA(k) = i
(
[G−1]R(k)

)−1

=
i

ϵ(k)2 + iωδγ −ω2

−ω − ϵ(k) + i
2δγ − i2δγ

i
2δγ ω − ϵ(k)− i

2δγ

 (11.15)

iGK (k) = −iGR(k)[G−1]K (k)GA(k)

=
σγ + 2δγ

(ϵ(k)2 −ω2)2 +ω2δ2
γ

(ω+ ϵ(k))2 + 1
2δ

2
γ iδγ ( i2δγ + ϵ(k))

iδγ ( i2δγ − ϵ(k)) (ω − ϵ(k))2 + 1
2δ

2
γ

 (11.16)

The excitation spectrum of the system is given by the poles of the retarded

Greens function, namely by

ϵ(k)2 − iωδγ −ω2 = 0. (11.17)

This is easily solved to give

ω = − i
2
δγ ±

√
ϵ(k)2 −

δ2
γ

4
. (11.18)

This is gapless and, if plotted for simple values of the constants and a quadratic

ϵ(k), looks like
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Figure 11.1: The excitation spectrum around the condensate of the ideal dissipative
Bose gas. The real part of the spectrum is in blue, the imaginary part in red.

This spectrum clearly fails the Landau criterion/gives a superfluid velocity

of 0. The calculation of the current-current response at order O(ℏ) goes through

essentially unchanged from Sec. 4.3.3, however, and is given by (we choose the

mean-field ψ0 to be real and γi(q) = Kqi):

χ
ℏ,ij(q) =−ψ2

0G
11
R (0,q)γi(q)γj(q)

−ψ2
0G

21
R (0,q)γi(−q)γj(q)

−ψ2
0G

12
R (0,q)γi(q)γj(−q)

−ψ2
0G

22
R (0,q)γi(−q)γj(−q),

(11.19)

which comes out simply to

χ0
ij(q) =

2δγ
γl,2

γi(q)γj(q)

ϵ(q)
(11.20)

and thus exhibits pure superfluid behaviour. While the current-current response

approach is more reliable than the Landau criterion, the question arises whether

this is conclusion modified by fluctuations. Generally this is expected to be the

case [11], and I undertake the calculation in the next chapter.
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Chapter 12

Fluctuations

12.1 Current Generating Function

In Part Ia I used Feynman diagrams, calculated by hand, to analyse fluctuation

corrections to the mean field. When one is interested in only a specific class of

diagrams, such as those exhibiting tadpoles, this allows you to effectively focus

on them. Here, however, we are after all the fluctuation diagrams, the number of

which is quite considerable and would be cumbersome to tabulate. Instead, it is

better to use a generating function approach [9], [12], [13].

To this end, we may insert source fields fi(q), θi(q) coupled to the classical

and quantum currents jc(−q), jq(−q) into the Keldysh action (we omit the factor

of 1
2 in the classical current and instead add it when taking functional derivatives

below):

SJ = S +
∑
ω,k,q

γi(2k+q)

ψcψq
†
ω,k+q

θi fi
fi θi


q

ψcψq

ω,k

. (12.1)

Then, defining the T = ∞ functional integral with this new action by Z[f ,θ]

(recall thatZ[f ,0] = since it is simply the trace of the steady state density matrix),

we have1

χij(q) = i⟨jci (0,q)jqj (0,−q)⟩ = − i
2

[
δ2Z[f ,θ]

δfi(q)δθj(−q)

]
f =0
θ=0

. (12.2)

Z[f ,θ] may be approximated by the method of steepest descent. This requires

us to expand the action around a solution of the mean field equations to second

order, with the latter now also dependent on f , θ. Writing the Nambu field vector

as Ψk = (ψck , ψ̄
c
−k ,ψ

q
k , ψ̄

q
−k)

T , the path integral at this order may be schematically

1Strictly speaking i and j in the last expression should be switched, but because the system is
isotropic the tensor is symmetric. For historical reasons the calculation was done with the indices
in the order displayed.
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represented as

Z[f ,θ] =
∫
D[δΨk ,δΨ̄k]exp

iS0[f ,θ] + i
∑
k

δψ̄k(G
−1 +A[f ,θ])δΨk

 (12.3)

where G is the matrix of bare Green’s functions for f = θ = 0 and S0 is the action

evaluated on the solution of the mean field equations. This Gaussian integral

is easy to carry out (see Part Ia Appendix A, in particular the redundancy in

the Nambu vector leading to the functional derivative appearing under a square

root):

Z[f ,θ] =
∫
D[δΨk ,δΨ̄k]exp

iS0[f ,θ] + i
∑
k

δψ̄k(G
−1 +A[f ,θ])δΨk


= exp(iS0[f ,θ])

(
det i(G−1 +A[f ,θ])

)− 1
2

=
(
det iG−1︸   ︷︷   ︸

=1

)− 1
2 exp(iS0[f ,θ])exp

(
−1

2
Trlog(I +GA[f ,θ])

)
= exp

(
iS0[f ,θ]− 1

2
Tr(GA[f ,θ]) +

1
4

Tr(GA[f ,θ]GA[f ,θ]) + . . .
)

(12.4)

where we have used the fact that Z[f ,0] = 1 to set the term in the third line to 1

and also disregarded terms higher than quadratic in source fields in the last line:

since at most two source fields will be removed by the functional derivatives, all

terms of higher order will vanish when the source terms are set to zero.

A final simplification is achieved by carrying out the θ functional derivative

first (if no functional derivatives are applied to A, it vanishes when the source

fields are taken to zero):[
δ2Z[f ,θ]

δfi(q)δθj(−q)

]
f =0
θ=0

=
(
i
δ2S0[f ,θ]

δfi(q)δθj(−q)
− 1

2
Tr

(
G

δ2A[f ,θ]
δfi(q)δθj(−q)

)
+

1
2

Tr
(
G
δA[f ,θ]
δfi(q)

G
δA[f ,θ]
δθj(−q)

))
f =0
θ=0

+
(
i
δS0[f ,θ]
δθj(−q)

− 1
2

Tr
(
G
δA[f ,θ]
δθj(−q)

))
f =0
θ=0

[
δZ[f ,θ]
δfi(q)

]
f =0
θ=0

.

(12.5)



12.2. FLUCTUATION CALCULATION 161

Since Z[f ,0] = 1,
[
δZ[f ,θ]
δfi(q)

]
f =0
θ=0

= 0 and so we have

χij(q)

= − i
2

[
δ2Z[f ,θ]

δfi(q)δθj(−q)

]
f =0
θ=0

= − i
2

(
i
δ2S0[f ,θ]

δfi(q)δθj(−q)
− 1

2
Tr

(
G

δ2A[f ,θ]
δfi(q)δθj(−q)

)
+

1
2

Tr
(
G
δA[f ,θ]
δfi(q)

G
δA[f ,θ]
δθj(−q)

))
f =0
θ=0

.

(12.6)

Thinking perturbatively, every functional derivative brings down a factor of ℏ−1

so there is an omitted ℏ
2 factor in front of the whole expression to counteract

this. Then S0 and A each contribute a factor of ℏ−1 while G contributes ℏ, so the

first term inside the brackets is of order ℏ and thus the mean field contribution

we have already calculated in the previous chapter. The other two terms are of

order ℏ
2, and are the fluctuation contributions we aim to calculate. I undertake

this calculation in the rest of this chapter.

12.2 Fluctuation Calculation

Expanding the Nambu vector as

ψck

ψ̄c−k

ψ
q
k

ψ̄
q
−k


= δ(ω)





ψ0

ψ̄0

0

0


δ(k) +



X
(1)
k

X̄
(1)
−k

Y
(1)
k

Ȳ
(1)
−k


+



X
(2)
k

X̄
(2)
−k

Y
(2)
k

Ȳ
(2)
−k




(12.7)

where the (1) expressions are first-order in the source fields while the (2) expres-

sions are second order, and writing

δ2S

δΦ̄kδΦk′
=


Sc̄c Sc̄c̄ Sc̄q Sc̄q̄
Scc Scc̄ Scq Scq̄
Sq̄c Sq̄c̄ Sq̄q Sq̄q̄
Sqc Sqc̄ Sqq Sqq̄

δω,ω′ (12.8)

one finds to second order (J(k) = ω+ i
2δγ −Kϵ(k)):

Sc̄c =γi(k+k′)θi(k−k′) + 2iγl,2
∑
q

Y
(1)
k+qȲ

(1)
k′+q
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− iγl,2

ψ̄0(Y (1)
k−k′ +Y

(2)
k−k′ )−ψ0(Ȳ (1)

k′−k + Ȳ (2)
k′−k) +

∑
q

[
X̄

(1)
k′+qY

(1)
k+q −X

(1)
k+qȲ

(1)
k′+q

]
Sc̄c̄ =− iγl,2

ψ0(Y (1)
k−k′ +Y

(2)
k−k′ ) +

∑
q

X
(1)
k−qY

(1)
q−k′


Sc̄q =J̄(k)δk,k′ +γi(k+k′)fi(k−k′)

− iγl,2

ψ̄0(X(1)
k−k′ +X

(2)
k−k′ ) +ψ0(X̄(1)

k′−k + X̄(2)
k′−k) +

∑
q

[
X

(1)
k+qX̄

(1)
k′+q −Y

(1)
k+qȲ

(1)
k′+q

]
+ 2iγl,2

ψ0(Ȳ (1)
k′−k + Ȳ (2)

k′−k) +
∑
q

X
(1)
k+qȲ

(1)
k′+q


Sc̄q̄ =

i
2
γl,2

ψ2
0δk,k′ +

∑
q

[
X

(1)
k−qX

(1)
q−k′ +Y

(1)
k−qY

(1)
q−k′

]
+ iγl,2ψ0(X(1)

k−k′ +X
(2)
k−k′ )

+ 2iγl,2

ψ0(Y (1)
k−k′ +Y

(2)
k−k′ ) +

∑
q

X
(1)
k−qY

(1)
q−k′


Scc =iγl,2

ψ̄0(Ȳ (1)
k′−k + Ȳ (2)

k′−k) +
∑
q

X̄
(1)
k′−qȲ

(1)
q−k


Scc̄ =γi(−k−k′)θi(k−k′) + 2iγl,2

∑
q

Y
(1)
k+qȲ

(1)
k′+q

− iγl,2

ψ̄0(Y (1)
k−k′ +Y

(2)
k−k′ )−ψ0(Ȳ (1)

k′−k + Ȳ (2)
k′−k) +

∑
q

[
X̄

(1)
k′+qY

(1)
k+q −X

(1)
k+qȲ

(1)
k′+q

]
Scq =− i

2
γl,2

ψ̄2
0δk,k′ +

∑
q

[
X̄

(1)
k′−qX̄

(1)
q−k + Ȳ (1)

k′−qȲ
(1)
q−k

]
− iγl,2ψ̄0(X̄(1)

k′−k + X̄(2)
k′−k)

+ 2iγl,2

ψ0(Ȳ (1)
k′−k + Ȳ (2)

k′−k) +
∑
q

X̄
(1)
k′−qȲ

(1)
q−k


Scq̄ =J(−k)δk,k′ +γi(−k−k′)fi(k−k′)

+ iγl,2

ψ0(X̄(1)
k′−k + X̄(2)

k′−k) + ψ̄0(X(1)
k−k′ +X

(2)
k−k′ ) +

∑
q

[
X

(1)
k+qX̄

(1)
k′+q −Y

(1)
k+qȲ

(1)
k′+q

]
+ 2iγl,2

ψ̄0(Y (1)
k−k′ +Y

(2)
k−k′ ) +

∑
q

X̄
(1)
k′+qY

(1)
k+q


Sq̄c =J(k)δk,k′ +γi(k+k′)fi(k−k′)



12.2. FLUCTUATION CALCULATION 163

+ iγl,2

ψ0(X̄(1)
k′−k + X̄(2)

k′−k) + ψ̄0(X(1)
k−k′ +X

(2)
k−k′ ) +

∑
q

[
X

(1)
k+qX̄

(1)
k′+q −Y

(1)
k+qȲ

(1)
k′+q

]
+ 2iγl,2

ψ̄0(Y (1)
k−k′ +Y

(2)
k−k′ ) +

∑
q

X̄
(1)
k′+qY

(1)
k+q


Sq̄c̄ =

i
2
γl,2

ψ2
0δk,k′ +

∑
q

[
X

(1)
k−qX

(1)
q−k′ +Y

(1)
k−qY

(1)
q−k′

]
+ iγl,2ψ0(X(1)

k−k′ +X
(2)
k−k′ )

+ 2iγl,2

ψ0(Y (1)
k−k′ +Y

(2)
k−k′ ) +

∑
q

X
(1)
k−qY

(1)
q−k′


Sq̄q =iσγδk,k′ +γi(k+k′)θi(k−k′)

− iγl,2

ψ0(Ȳ (1)
k′−k + Ȳ (2)

k′−k)− ψ̄0(Y (1)
k−k′ +Y

(2)
k−k′ ) +

∑
q

[
X

(1)
k+qȲ

(1)
k′+q − X̄

(1)
k′+qY

(1)
k+q

]
+ 2iγl,2

ψ0(X̄(1)
k′−k + X̄(2)

k′−k) + ψ̄0(X(1)
k−k′ +X

(2)
k−k′ ) +

∑
q

X
(1)
k+qX̄

(1)
k′+q


Sq̄q̄ =− iγl,2

ψ0(Y (1)
k−k′ +Y

(2)
k−k′ ) +

∑
q

X
(1)
k−qY

(1)
q−k′


Sqc =− i

2
γl,2

ψ̄2
0δk,k′ +

∑
q

[
X̄

(1)
k′−qX̄

(1)
q−k + Ȳ (1)

k′−qȲ
(1)
q−k

]
− iγl,2ψ̄0(X̄(1)

k′−k + X̄(2)
k′−k)

+ 2iγl,2

ψ0(Ȳ (1)
k′−k + Ȳ (2)

k′−k) +
∑
q

X̄
(1)
k′−qȲ

(1)
q−k


Sqc̄ =J̄(−k)δk,k′ +γi(−k−k′)fi(k−k′)

− iγl,2

ψ̄0(X(1)
k−k′ +X

(2)
k−k′ ) +ψ0(X̄(1)

k′−k + X̄(2)
k′−k) +

∑
q

[
X

(1)
k+qX̄

(1)
k′+q −Y

(1)
k+qȲ

(1)
k′+q

]
+ 2iγl,2

ψ0(Ȳ (1)
k′−k + Ȳ (2)

k′−k) +
∑
q

X
(1)
k+qȲ

(1)
k′+q


Sqq =iγl,2

ψ̄0(Ȳ (1)
k′−k + Ȳ (2)

k′−k) +
∑
q

X̄
(1)
k′−qȲ

(1)
q−k


Sqq̄ =iσγδk,k′ +γi(−k−k′)θi(k−k′)

− iγl,2

ψ0(Ȳ (1)
k′−k + Ȳ (2)

k′−k)− ψ̄0(Y (1)
k−k′ +Y

(2)
k−k′ ) +

∑
q

[
X

(1)
k+qȲ

(1)
k′+q − X̄

(1)
k′+qY

(1)
k+q

]
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+ 2iγl,2

ψ0(X̄(1)
k′−k + X̄(2)

k′−k) + ψ̄0(X(1)
k−k′ +X

(2)
k−k′ ) +

∑
q

X
(1)
k+qX̄

(1)
k′+q

 (12.9)

As before γl,2|ψ0|2 = δγ , while the Xs and Y s are given by solving (we have set

ω = 0 throughout since this is the form of our ansatz)

δS

δψ̄
q
k

=(−Kϵ(k)− i
2
δγ )ψck + iσγψ

q
k +

∑
q

γi(2k−q)
[
fi(q)ψck−q +θi(q)ψqk−q

]
+
i
2
γl,2

∑
q,k′

[
ψ̄cq+k′ (ψ

c
k+qψ

c
k′ +ψ

q
k+qψ

q
k′ )− 2ψ̄qq+k′ψ

c
k+qψ

q
k′ + 4ψ̄cq+k′ψ

c
k+qψ

q
k′

]
= 0,

(12.10)

δS

δψ
q
k

=(−Kϵ(k) +
i
2
δγ )ψ̄ck + iσγ ψ̄

q
k +

∑
q

γi(2k+q)
[
fi(q)ψ̄ck+q +θi(q)ψ̄qk+q

]
− i

2
γl,2

∑
q,k′

[
ψcq+k′ (ψ̄

c
k+qψ̄

c
k′ + ψ̄

q
k+qψ̄

q
k′ )− 2ψqq+k′ ψ̄

c
k+qψ̄

q
k′ − 4ψcq+k′ ψ̄

c
k+qψ̄

q
k′

]
= 0,

(12.11)

δS

δψ̄ck
=(−Kϵ(k) +

i
2
δγ )ψqk +

∑
q

γi(2k−q)
[
fi(q)ψqk−q +θi(q)ψck−q

]
+
i
2
γl,2

∑
q,k′

[
ψ̄
q
q+k′ (ψ

c
k+qψ

c
k′ +ψ

q
k+qψ

q
k′ )− 2ψ̄cq+k′ψ

c
k+qψ

q
k′ + 4ψ̄qq+k′ψ

c
k+qψ

q
k′

]
= 0,

(12.12)

δS
δψck

=(−Kϵ(k)− i
2
δγ )ψ̄qk +

∑
q

γi(2k+q)
[
fi(q)ψ̄qk+q +θi(q)ψ̄ck+q

]
− i

2
γl,2

∑
q,k′

[
ψ
q
q+k′ (ψ̄

c
k+qψ̄

c
k′ + ψ̄

q
k+qψ̄

q
k′ )− 2ψcq+k′ ψ̄

c
k+qψ̄

q
k′ − 4ψqq+k′ ψ̄

c
k+qψ̄

q
k′

]
= 0,

(12.13)
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which translate into (recall we have chosen ϵ(−k) = ϵ(k), ψ0 = ψ̄0, and γl,2|ψ0|2 =

δγ ) for X(1)
k , Y (1)

k , X̄(1)
k , Ȳ (1)

k :

−Kϵ(k) + i
2δγ

i
2δγ

− i2δγ −Kϵ(k)− i
2δγ

︸                                  ︷︷                                  ︸
[G−1]R(0,k)

X
(1)
k

X̄
(1)
−k

 =

−

iσγ + 2iδγ 0

0 iσγ + 2iδγ

︸                          ︷︷                          ︸
[G−1]K (0,k)

Y
(1)
k

Ȳ
(1)
−k

−
 ψ0γi(k)

ψ̄0γi(−k)

fi(k)

(12.14)

−Kϵ(k)− i
2δγ

i
2δγ

− i2δγ −Kϵ(k) + i
2δγ

︸                                  ︷︷                                  ︸
[G−1]A(0,k)

Y
(1)
k

Ȳ
(1)
−k

 = −

 ψ0γi(k)

ψ̄0γi(−k)

θi(k) (12.15)

Observing that γi(−k) = −γi(k) and identity (11.16), this may be succinctly rewrit-

ten as

Γi(k) =

 ψ0γi(k)

−ψ0γi(k)

 , (12.16)

X
(1)
k

X̄
(1)
−k

 = −GK (0,k)Γi(k)θi(k)−GR(0,k)Γi(k)fi(k), (12.17)

Y
(1)
k

Ȳ
(1)
−k

 = −GA(0,k)Γi(k)θi(k). (12.18)

This begins to reveal the fundamentally diagrammatic nature of the technique,

as we see the components of the final expression being built up from Greens

functions connecting to external source terms. We can now calculate the first-

order derivatives of our action Hessian (GX(k) = GX(0,k)):

Γ̂1 =

iγl,2ψ0

iγl,2ψ0

T , Γ̂2 =

−iγl,2ψ0

0

T , Γ̂3 =

 0

iγl,2ψ0

T (12.19)
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(
δA(1)

δfi(q)

)
k,k′

=

 0 aAi
aRi aKi


k,k′

δω,ω′δk,q+k′ (12.20)

aAi (k,k′) =

γi(k+k′) 0

0 γi(−k−k′)

+

Γ̂1G
RΓi Γ̂2G

RΓi

Γ̂3G
RΓi −Γ̂1G

RΓi


k−k′

(12.21)

aRi (k,k′) =

γi(k+k′) 0

0 γi(−k−k′)

+

−Γ̂1G
RΓi Γ̂2G

RΓi

Γ̂3G
RΓi Γ̂1G

RΓi


k−k′

(12.22)

aKi (k,k′) =

−2Γ̂1G
RΓi 0

0 −2Γ̂1G
RΓi


k−k′

(12.23)

(
δA(1)

δθi(−q)

)
=

bQi bAi
bRi bKi


k,k′

δω,ω′δk+q,k′ (12.24)

bQi (k,k′) =

γi(k+k′) 0

0 γi(−k−k′)

+

Γ̂1σ3G
AΓi −Γ̂2G

AΓi

−Γ̂3G
AΓi Γ̂1σ3G

AΓi


k−k′

(12.25)

bAi (k,k′) =

Γ̂1G
KΓi − 2Γ̂3G

AΓi Γ̂2G
KΓi + 2Γ̂2G

AΓi

Γ̂3G
KΓi − 2Γ̂3G

AΓi −Γ̂1G
KΓi + 2Γ̂2G

AΓi


k−k′

(12.26)

bRi (k,k′) =

−Γ̂1G
KΓi + 2Γ̂2G

AΓi Γ̂2G
KΓi + 2Γ̂2G

AΓi

Γ̂3G
KΓi − 2Γ̂3G

AΓi Γ̂1G
KΓi − 2Γ̂3G

AΓi


k−k′

(12.27)

bKi (k,k′) =

γi(k+k′) 0

0 γi(−k−k′)


+

−Γ̂1σ3G
AΓi − 2Γ̂1G

KΓi −Γ̂2G
AΓi

−Γ̂3G
AΓi −Γ̂1σ3G

AΓi − 2Γ̂1G
KΓi


k−k′

(12.28)

Proceeding to the expression for the first part of the O(ℏ2) corrections to the re-

sponse tensor, we find (any terms of the form δ(0) which may arise are due to us

not being careful with length/time factors in taking the continuum limit — they

are spurious and may be ignored, as explained in Appendix B of [13])

χ
(1)
ij (q) = − i

4

∫
dkdk′dk̂dk̃ Tr

[
[G]k,k′

(
δA(1)

δfi(q)

)
k′ ,k̂

[G]k̂,k̃

(
δA(1)

δθi(−q)

)
k̃,k

]

= − i
4

∫
dωdk Tr


GK GR

GA 0


ω,k+q

 0 aAi
aRi aKi


k+q,k

GK GR

GA 0


ω,k

bQj bAj
bRj bKj


k,k+q


= − i

4

∫
dωdk Tr

[(
GK (ω,k+q)aAi (k+q,k)GA(ω,k)

+GR(ω,k+q)aRi (k+q,k)GK (ω,k)

+GR(ω,k+q)aKi (k+q,k)GA(ω,k)
)
bQj (k,k+q)

]
.

(12.29)
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Here we have discarded any terms with two GRs or two GAs, as such terms have

all their frequency domain poles in the same half-plane and are thus annihilated

by the frequency integral when it is performed via contour integration. Proceed-

ing to X(2)
k , Y (2)

k , X̄(2)
k , Ȳ (2)

k , we find

−Kϵ(k) + i
2δγ

i
2δγ

− i2δγ −Kϵ(k)− i
2δγ

︸                                  ︷︷                                  ︸
[G−1]R(0,k)

X
(2)
k

X̄
(2)
−k

 = −

iσγ + 2iδγ 0

0 iσγ + 2iδγ

︸                          ︷︷                          ︸
[G−1]K (0,k)

Y
(2)
k

Ȳ
(2)
−k



−
∑
q


(
fi(q)X(1)

k−q +θi(q)Y (1)
k−q

)
γi(2k−q))(

fi(q)X̄(1)
q−k +θi(q)Ȳ (1)

q−k

)
γi(q− 2k))



− i
2
γl,2

∑
q



X̄
(1)
−q

Ȳ
(1)
−q


T 2ψ0 4ψ0

0 −2ψ0


X

(1)
k−q

Y
(1)
k−q

+

X
(1)
q

Y
(1)
q


T  ψ0 2ψ0

2ψ0 ψ0


X

(1)
k−q

Y
(1)
k−q

X̄
(1)
−q

Ȳ
(1)
−q


T −2ψ0 0

4ψ0 2ψ0


X

(1)
k−q

Y
(1)
k−q

+

X̄
(1)
−q

Ȳ
(1)
−q


T −ψ0 2ψ0

2ψ0 −ψ0


X̄

(1)
q−k

Ȳ
(1)
q−k





(12.30)

−Kϵ(k)− i
2δγ

i
2δγ

− i2δγ −Kϵ(k) + i
2δγ

︸                                  ︷︷                                  ︸
[G−1]A(0,k)

Y
(2)
k

Ȳ
(2)
−k

 = −
∑
q


(
θi(q)X(1)

k−q + fi(q)Y (1)
k−q

)
γi(2k−q))(

θi(q)X̄(1)
q−k + fi(q)Ȳ (1)

q−k

)
γi(q− 2k))



− i
2
γl,2

∑
q



X̄
(1)
−q

Ȳ
(1)
−q


T  0 −2ψ0

2ψ0 4ψ0


X

(1)
k−q

Y
(1)
k−q

+

X
(1)
q

Y
(1)
q


T  0 −ψ0

−ψ0 0


X

(1)
k−q

Y
(1)
k−q

X̄
(1)
−q

Ȳ
(1)
−q


T  0 −2ψ0

2ψ0 4ψ0


X

(1)
k−q

Y
(1)
k−q

+

X̄
(1)
−q

Ȳ
(1)
−q


T  0 ψ0

ψ0 0


X̄

(1)
q−k

Ȳ
(1)
q−k




(12.31)
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These may again be rewritten so as to make clearer the diagrammatic structure

via the identity (11.16):Y
(2)
k

Ȳ
(2)
−k

 = −GA(0,k)
∑
q


(
θi(q)X(1)

k−q + fi(q)Y (1)
k−q

)
γi(2k−q))(

θi(q)X̄(1)
q−k + fi(q)Ȳ (1)

q−k

)
γi(q− 2k))



− i
2
γl,2G

A(0,k)
∑
q



X̄
(1)
−q

Ȳ
(1)
−q


T  0 −2ψ0

2ψ0 4ψ0


X

(1)
k−q

Y
(1)
k−q

+

X
(1)
q

Y
(1)
q


T  0 −ψ0

−ψ0 0


X

(1)
k−q

Y
(1)
k−q

X̄
(1)
−q

Ȳ
(1)
−q


T  0 −2ψ0

2ψ0 4ψ0


X

(1)
k−q

Y
(1)
k−q

+

X̄
(1)
−q

Ȳ
(1)
−q


T  0 ψ0

ψ0 0


X̄

(1)
q−k

Ȳ
(1)
q−k




,

(12.32)

X
(2)
k

X̄
(2)
−k

 = −GK (0,k)
∑
q


(
θi(q)X(1)

k−q + fi(q)Y (1)
k−q

)
γi(2k−q))(

θi(q)X̄(1)
q−k + fi(q)Ȳ (1)

q−k

)
γi(q− 2k))



− i
2
γl,2G

K (0,k)
∑
q



X̄
(1)
−q

Ȳ
(1)
−q


T  0 −2ψ0

2ψ0 4ψ0


X

(1)
k−q

Y
(1)
k−q

+

X
(1)
q

Y
(1)
q


T  0 −ψ0

−ψ0 0


X

(1)
k−q

Y
(1)
k−q

X̄
(1)
−q

Ȳ
(1)
−q


T  0 −2ψ0

2ψ0 4ψ0


X

(1)
k−q

Y
(1)
k−q

+

X̄
(1)
−q

Ȳ
(1)
−q


T  0 ψ0

ψ0 0


X̄

(1)
q−k

Ȳ
(1)
q−k




−GR(0,k)

∑
q


(
fi(q)X(1)

k−q +θi(q)Y (1)
k−q

)
γi(2k−q))(

fi(q)X̄(1)
q−k +θi(q)Ȳ (1)

q−k

)
γi(q− 2k))



− i
2
γl,2G

R(0,k)
∑
q



X̄
(1)
−q

Ȳ
(1)
−q


T 2ψ0 4ψ0

0 −2ψ0


X

(1)
k−q

Y
(1)
k−q

+

X
(1)
q

Y
(1)
q


T  ψ0 2ψ0

2ψ0 ψ0


X

(1)
k−q

Y
(1)
k−q

X̄
(1)
−q

Ȳ
(1)
−q


T −2ψ0 0

4ψ0 2ψ0


X

(1)
k−q

Y
(1)
k−q

+

X̄
(1)
−q

Ȳ
(1)
−q


T −ψ0 2ψ0

2ψ0 −ψ0


X̄

(1)
q−k

Ȳ
(1)
q−k




.

(12.33)

Given the unwieldy nature of these expressions, some simplifications to the ex-

pression we intend to plug them into are in order. At second order in the source
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fields, the Hessian has only 8 distinct elements:

A
(2)
k,k′ =


A

(2)
1 A

(2)
2 A

(2)
3 A

(2)
4

A
(2)
5 A

(2)
1 A

(2)
6 A

(2)
7

A
(2)
7 A

(2)
4 A

(2)
8 A

(2)
2

A
(2)
6 A

(2)
3 A

(2)
5 A

(2)
8

︸                        ︷︷                        ︸
A

(2)
k,k′

δω,ω′ (12.34)

We can block-multiply with the Greens function matrix and consider

Tr[[G]kA
(2)
k,k] = Tr

GK (k)

A(2)
1 A

(2)
2

A
(2)
5 A

(2)
1


k,k

+GR(k)

A(2)
7 A

(2)
4

A
(2)
6 A

(2)
3


k,k

+GA(k)

A(2)
3 A

(2)
4

A
(2)
6 A

(2)
7


k,k


(12.35)

Focusing on and expanding the GR and GA portions of this expression, we obtain

GR11(k)A(2)
7 (k) +GR12(k)A(2)

6 (k) +GR21(k)A(2)
4 (k) +GR22(k)A(2)

3 (k)

+GA11(k)A(2)
3 (k) +GA12(k)A(2)

6 (k) +GA21(k)A(2)
4 (k) +GA22(k)A(2)

7 (k).
(12.36)

If we consider the eventual integral over frequency, all the terms with indices 12

or 21 vanish via the estimation lemma and contour integration. Using the fact

that GA22(−ω,k) = GR11(ω,k), GR22(−ω,k) = GA11(ω,k), we may write the remaining

integral as∫
dω

[
(GR11(k) +GA11(k))(A(2)

7 (k) +A(2)
3 (k)) + (GR11(k)−GA11(k))(A(2)

7 (k)−A(2)
3 (k))

]
.

(12.37)

The first term vanishes by the Keldysh identity
∫
dω [GR(ω) +GA(ω)] = 0 while

the second is simplified via the identity
∫
dω [GR(ω)−GA(ω)] = −2πi, and we are

left with∫
dk Tr[[G]kA

(2)
k,k] = Tr


∫
dkGK (k)

A(2)
1 A

(2)
2

A
(2)
5 A

(2)
1


k,k

− 2πi
∫
dk

[
(A(2)

7 (k)−A(2)
3 (k))

]
.

(12.38)

In the coherently driven polariton model considered in the main body of this

part, only the first trace on the right above was present. This is partly due to the

universal cancellation of GR/GA tadpoles in that model, which does not occur so

trivially here.

A
(2)
7 (k) =iγl,2

ψ0X̄
(2)
0 + ψ̄0X

(2)
0 + 2ψ̄0Y

(2)
0 +

∑
q

[
X

(1)
q X̄

(1)
q −Y

(1)
q Ȳ

(1)
q + 2X̄(1)

q Y
(1)
q

]
(12.39)
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A
(2)
3 (k) = −iγl,2

ψ̄0X
(2)
0 +ψ0X̄

(2)
0 − 2ψ0Ȳ

(2)
0 +

∑
q

[
X

(1)
q X̄

(1)
q −Y

(1)
q Ȳ

(1)
q − 2X(1)

q Ȳ
(1)
q

]
(12.40)

The first three terms in each expression are tadpoles, while the rest are those

originating from 4-valent vertices forming a loop (but without a connecting leg,

thus making them not tadpoles). The total tadpole contribution from the second

term on the right of (12.38) is thus

4πγl,2ψ0

∫
dk

δ2

δfi(q)θi(−q)

[
X

(2)
0 + X̄(2)

0 +Y (2)
0 − Ȳ

(2)
0

]
(12.41)

and the integrand must evidently cancel if this term is to be well-behaved.

Here we may perform an elegant trick. Observe that the equations for X(2)
0 ,

X̄
(2)
0 , Y (2)

0 , Ȳ (2)
0 are of the formX

(2)
0

X̄
(2)
0

 = −GK (0)V1 −GR(0)V2, (12.42)

Y
(2)
0

Ȳ
(2)
0

 = −GA(0)V3. (12.43)

The pathology here lies in the denominators of the Greens matrices, which we can

label DK/G/A(k) and assume temporarily regularised, making these expressionsX
(2)
0

X̄
(2)
0

 = − 1
DK (0)


1
2δ

2
γ −1

2δ
2
γ

−1
2δ

2
γ

1
2δ

2
γ

V1 −
1

DR(0)

−
i
2δγ −

i
2δγ

i
2δγ

i
2δγ

V2, (12.44)

Y
(2)
0

Ȳ
(2)
0

 = − 1
DA(0)


i
2δγ −

i
2δγ

i
2δγ −

i
2δγ

V3. (12.45)

Now observe that the integrand in question has the form

(
1 1

)X
(2)
0

X̄
(2)
0

+
(
1 −1

)Y
(2)
0

Ȳ
(2)
0

 (12.46)

and that
(
1 1

)
is in the left null-space of the two matrices in (12.44) while(

1 −1
)

is in the left null-space of the matrix in (12.45). Thus the integrand is

zero and the pathological tadpole diagrams cancel.

We are thus left with (terms containing two Y s do not survive the mixed func-
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tional derivative)

4πγl,2

∫
dk

δ2

δfi(q)δθj(−q)

∑
q

[
X

(1)
q X̄

(1)
q + X̄(1)

q Y
(1)
q −X

(1)
q Ȳ

(1)
q

] . (12.47)

Denoting

U =
(
1 0

)
, D =

(
0 1

)
, (12.48)

this may be rewritten in matrix form as

−4πγl,2

∫
dk Tr

UGR(q)Γi(q) DGR(q)Γi(q)

DGR(q)Γi(q) −UGR(q)Γi(q)

DGK (q)Γj(q) UGA(q)Γj(q)

UGK (q)Γj(q) DGA(q)Γj(q)

 .
(12.49)

We may now turn our attention back to the term

∫
dωdk Tr

GK (k)

A(2)
1 A

(2)
2

A
(2)
5 A

(2)
1


k,k

 . (12.50)

Per the argument in [13], this should be corrected to

∫
dk

i
2

Tr


A(2)

1 A
(2)
2

A
(2)
5 A

(2)
1


k,k

+
∫
dωdk Tr

GK (k)

A(2)
1 A

(2)
2

A
(2)
5 A

(2)
1


k,k


=

∫
dk iA

(2)
1 (k)

+
∫
dωdk

[
GK11(k)A(2)

1 (k) +GK12(k)A(2)
5 (k) +GK21(k)A(2)

2 (k) +GK22(k)A(2)
1 (k)

]
,

(12.51)

and we have the following expressions for A(2)
1 , A(2)

2 , A(2)
5 :

A
(2)
1 = −iγl,2ψ0[Y (2)

0 − Ȳ
(2)
0︸      ︷︷      ︸

0

] + iγl,2
∑
q

[
2Y (1)

q Ȳ
(1)
q +X(1)

q Ȳ
(1)
q − X̄

(1)
q Y

(1)
q

]
, (12.52)

A
(2)
2 = −iγl,2ψ0Y

(2)
0 − iγl,2

∑
q

X
(1)
q Y

(1)
−q , (12.53)

A
(2)
5 = iγl,2ψ0Ȳ

(2)
0 + iγl,2

∑
q

X̄
(1)
q Ȳ

(1)
−q . (12.54)

By our earlier argument, the combination Y
(2)
0 − Ȳ (2)

0 vanishes, so that the only

remaining tadpole diagrams arise from

−iγl,2ψ0[GK21(k)Y (2)
0 −G

K
12(k)Ȳ (2)

0 ]. (12.55)

Unfortunately GK21(k) , GK12(k) and this remains true after integration over fre-
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quency and momentum, so the simple argument about Y (2)
0 − Ȳ

(2)
0 is inapplicable.

Instead, the term may be rewritten as (recall (12.45))

−iγl,2ψ0

(
GK21(k) −GK12(k)

)Y (2)
0

Ȳ
(2)
0

 =
iγl,2ψ0

DA(0)

(
GK21(k) −GK12(k)

) i2δγ − i2δγi
2δγ −

i
2δγ

V3

(12.56)

and we must consider δ2V3
δfi(q)δθj (−q) . With some effort this can be calculated to be

(V3)1 =−UGR(q)Γi(q)γj(q)−UGA(q)Γj(q)γi(q)

+
i
2
γl,2

[
− 2ψ0

(
UGR(q)Γi(q)

)(
DGA(q)Γj(q)

)
+ 2ψ0

(
UGA(q)Γj(q)

)(
DGR(q)Γi(q)

)
+ 2ψ

(
UGR(q)Γi(q)

)(
UGA(q)Γj(q)

)]
,

(12.57)

(V3)2 =DGR(q)Γi(q)γj(q) +DGA(q)Γj(q)γi(q)

+
i
2
γl,2

[
− 2ψ0

(
UGR(q)Γi(q)

)(
DGA(q)Γj(q)

)
+ 2ψ0

(
UGA(q)Γj(q)

)(
DGR(q)Γi(q)

)
− 2ψ

(
DGR(q)Γi(q)

)(
DGA(q)Γj(q)

)]
,

(12.58)

which, upon substituting concrete expressions for all the terms, simplifies dras-

tically to

V3 =
γi(q)γj(q)

K3ϵ(q)3

ψ0(2K2ϵ(q)2 − δ2
γ )

ψ0(2K2ϵ(q)2 − δ2
γ )

 ∝ 1

1

 . (12.59)

This lies in the right null-space of the matrix in (12.56) and thus the remaining

tadpoles all cancel.

This leaves just (we again discard terms containing two Y s)

−γl,2
∫
dk

∑
q

[
X

(1)
q Ȳ

(1)
q − X̄

(1)
q Y

(1)
q

]
+
∫
dωdk

[
iγl,2

(
GK11(k) +GK22(k)

)∑
q

[
X

(1)
q Ȳ

(1)
q − X̄

(1)
q Y

(1)
q

]
− iγl,2GK21(k)

∑
q

X
(1)
q Y

(1)
−q

+ iγl,2G
K
12(k)

∑
q

X̄
(1)
q Ȳ

(1)
−q

]
(12.60)
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which, upon functional differentiation, yields

γl,2

∫
dk

UGR(q)Γi(q)

DGR(q)Γi(q)

T σ3

DGA(q)Γj(q)

UGA(q)Γj(q)


− iγl,2

∫
dωdk

UGR(q)Γi(q)

DGR(q)Γi(q)

T GK11(k) +GK22(k) −GK21(k)

GK12(k) −GK11(k)−GK22(k)

DGA(q)Γj(q)

UGA(q)Γj(q)

 .
(12.61)

Thus, definingcQ(k) cA(k)

cR(k) cK (k)

 =

GK11(k) +GK22(k) −GK21(k)

GK12(k) −GK11(k)−GK22(k)

 (12.62)

we have

χ
(2)
ij (q) =

i
4

∫
dk Tr[[G]kA

(2)
k,k]

=
iγl,2

4

∫
dk

UGR(q)Γi(q)

DGR(q)Γi(q)

T σ3

DGA(q)Γj(q)

UGA(q)Γj(q)


+
γl,2
4

∫
dk

UGR(q)Γi(q)

DGR(q)Γi(q)

T cQ(k) cA(k)

cR(k) cK (k)

DGA(q)Γj(q)

UGA(q)Γj(q)


− iπγl,2

∫
dk Tr

UGR(q)Γi(q) DGR(q)Γi(q)

DGR(q)Γi(q) −UGR(q)Γi(q)

DGK (q)Γj(q) UGA(q)Γj(q)

UGK (q)Γj(q) DGA(q)Γj(q)


(12.63)

With this, all the pieces are in place to write down the current-current response

tensor to O(ℏ2). This will be done in the next chapter, and the resulting expres-

sion and its implications for whether the system exhibits superfluidity will be

discussed.
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Conclusion

Finally putting all the pieces together, this yields the following expression for the

current-current response tensor:

χij(q) =
2δγ
γl,2

γi(q)γj(q)

ϵ(q)

− i
4

∫
dωdk Tr

[(
GK (ω,k+q)aAi (k+q,k)GA(ω,k)

+GR(ω,k+q)aRi (k+q,k)GK (ω,k)

+GR(ω,k+q)aKi (k+q,k)GA(ω,k)
)
bQj (k,k+q)

]
.

+
γl,2
4

∫
dk

UGR(q)Γi(q)

DGR(q)Γi(q)

T cQ(k) cA(k)

cR(k) cK (k)

DGA(q)Γj(q)

UGA(q)Γj(q)


+
iγl,2

4

∫
dk

UGR(q)Γi(q)

DGR(q)Γi(q)

T σ3

DGA(q)Γj(q)

UGA(q)Γj(q)


− iπγl,2

∫
dk Tr

UGR(q)Γi(q) DGR(q)Γi(q)

DGR(q)Γi(q) −UGR(q)Γi(q)

DGK (q)Γj(q) UGA(q)Γj(q)

UGK (q)Γj(q) DGA(q)Γj(q)


(13.1)

U =

1

0

T , D =

0

1

T , (13.2)

Γi(k) =

 ψ0γi(k)

−ψ0γi(k)

T , Γ̂1 =

iγl,2ψ0

iγl,2ψ0

T , Γ̂2 =

−iγl,2ψ0

0

T , Γ̂3 =

 0

iγl,2ψ0

T
(13.3)

aAi (k,k′) =

γi(k+k′) 0

0 γi(−k−k′)

+

Γ̂1G
RΓi Γ̂2G

RΓi

Γ̂3G
RΓi −Γ̂1G

RΓi


k−k′

(13.4)

aRi (k,k′) =

γi(k+k′) 0

0 γi(−k−k′)

+

−Γ̂1G
RΓi Γ̂2G

RΓi

Γ̂3G
RΓi Γ̂1G

RΓi


k−k′

(13.5)

aKi (k,k′) =

−2Γ̂1G
RΓi 0

0 −2Γ̂1G
RΓi


k−k′

(13.6)
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bQi (k,k′) =

γi(k+k′) 0

0 γi(−k−k′)

+

Γ̂1σ3G
AΓi −Γ̂2G

AΓi

−Γ̂3G
AΓi Γ̂1σ3G

AΓi


k−k′

(13.7)

cQ(k) cA(k)

cR(k) cK (k)

 =

GK11(k) +GK22(k) −GK21(k)

GK12(k) −GK11(k)−GK22(k)

 (13.8)

This expression may be compared with the diagrams in Figure 1 of [9] (also

reprinted as Figure 11.4 of [11]). It is not hard to see that the class of diagrams

stated there to be responsible for the normal fluid response corresponds to the

first integral term in my expression

− i
4

∫
dωdk Tr

[(
GK (ω,k+q)aAi (k+q,k)GA(ω,k)

+GR(ω,k+q)aRi (k+q,k)GK (ω,k)

+GR(ω,k+q)aKi (k+q,k)GA(ω,k)
)
bQj (k,k+q)

]
,

(13.9)

and it is thus this term that should be studied to see if there is a fluctuation

correction to the mean field pure superfluid response.

Before this can be done, however, a number of other difficulties must be ad-

dressed. Firstly, in its present form, (13.1) contains many terms that are divergent

in the |q| → 0 limit. These are terms of the form

qiqj
|q|n

(13.10)

for n > 2, and must be shown to cancel if the fluctuation corrections to the re-

sponse in this limit are to be well-defined. This cancellation occurs in [9], but

expression (13.1) exhibits significant structural differences with the analogous

one therein and so the result does not easily transfer.

Moreover, difficulties are present with the integrals involving cQ/A/R/K (k) and

thus GK (k). Considering the integral∫
dk cR(k), (13.11)

performing the frequency integral first, and replacing k2
x + k2

y → r2, we are left

with ∫
dk cR(k) = −

∫
dr r

[
πδγ (2δγ + σγ )

2K4r4 +O(r−2)
]
. (13.12)

The right hand side is clearly divergent, and it thus appears that infrared sector

of the model as written is not correct. It is possible that the culprits are the

frequency-independent drive and dissipation terms, but I did not have time to

explore this. Adding a frequency dependence to δγ (ω) and σγ (ω) would not alter

the final expression for the response tensor since it is written entirely in terms
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of Green’s functions, and would not affect any tadpole cancellations since those

occur at ω = 0. The only changes required would be to use the forms of the

Green’s functions prior to substituting γl,2ψ
2
0 → δγ and instead use γl,2ψ

2
0 →

δγ (0) (or δγ (ω0) if using the non-frequency shifted quantity). More generally, it

is possible that a derivation of the Keldysh action directly from a microscopic dye

molecule and photon model such as those used in [14], [15] is required to identify

the needed corrections to the minimal Lindbladian model I have used.

As such, while the bulk of the fluctuation calculation has been performed and

an analytical expression for the current-current response tensor at this order has

been derived, work remains to ensure that required cancellations of terms occur

and that the model is well-behaved in the infrared sector. Until this is done, little

can be said about the superfluid behaviour at this order.



178 CHAPTER 13. CONCLUSION



Bibliography

[1] J. Klaers, J. Schmitt, F. Vewinger, and M. Weitz, “Bose-Einstein condensa-

tion of photons in an optical microcavity,” Nature, vol. 468, pp. 545–548,

2010.

[2] J. Marelic and R. A. Nyman, “Experimental evidence for inhomogeneous

pumping and energy-dependent effects in photon Bose-Einstein condensa-

tion,” Phys. Rev. A, vol. 91, p. 033 813, 2015.
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Chapter 14

Introduction

The original motivation for the work presented in this part was the desire to study

metastability in quantum mechanical Lindbladian systems via the Feynman-Vernon

path integral. Due to difficulties encountered with the coherent state path inte-

gral, however, only very partial results in this direction were achieved, namely

the construction of a suitably regularised path integral for Lindbladians1 and a

perturbation theory for the calculation of Lindbladian spectra. While the devel-

oped perturbative approach may be of some interest on its own, more broadly

these results can be viewed as initial steps in the more ambitious general direc-

tion of the projects initial goal.

To set the scene, note that the real parts of a Lindbladian’s eigenvalues are al-

ways non-positive [3]. This is, as was mentioned in Part Ib, the reason why evolv-

ing a system backwards in time with a Lindbladian is not a well-posed problem:

the forward dynamics converge to a steady state, while the backward dynam-

ics become extremely sensitive to initial conditions. For our purposes Lindbla-

dian metastability will refer to the opening of a gap in its spectrum between the

first n largest real part eigenvalue pairs and the rest of the spectrum such that

Reλn−1 ≪ Reλn (we take λ0 = 0 as the steady state eigenvalue corresponding to

right eigenvector ρss) [4]. In this case any initial state ρin will decay on a time-

scale (Reλn)−1 to a state spanned by the first n eigenvectors2 Ri :

ρin −−−−−−−−−−→
t∼(Reλn)−1

ρss +
n∑
i=0

ciRi . (14.1)

At the same time, on this time-scale there will be effectively no evolution in the

subspace spanned by these eigenvectors so, denoting the projection operator onto

1Specifically the generalisation of the Klauder-Daubechies path integral [1], [2] from Hamilto-
nian to Lindbladian dynamics.

2We denote the right eigenvectors of the Lindbladian by Ri and the left by Li .
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this subspace by Pn, we have approximately

ρin −−−−−−−−−−→
t∼(Reλn)−1

Pnρin (14.2)

and the long-time evolution of the system is thus governed by effective dynamics

in this subspace.

In the case of ‘classical’ metastability, the shape of this subspace (the ‘meta-

stable manifold’ or MM) will be approximated by an n-vertex simplex, whose

vertices are known as ‘extreme metastable states’ or ‘eMS’ [4]. These extremal

states will be approximately disjoint, states in the MM will be representable as

probability mixtures of them, and the effective dynamics in the MM will be ap-

proximated by classical stochastic transitions between them [5]. The system thus

acts much like a classical system with disjoint basins of attraction and stochastic

dynamics. A typical example is the bistability manifested by a driven-dissipative

Kerr non-linearity V a†a†aa. We saw the field-theoretic version of this in Part Ia,

where a mean-field bistability curve was identified: the states on the bistable sec-

tion of the curve correspond to the two bounding eMSes of a two-dimensional

simplex, and we may infer that the Lindbladian associated to that field theory

has a gap between its first two eigenvalues and the rest of its spectrum in the

bistable regime.

In the case of such classical metastability, it is meaningful to talk about ‘switch-

ing rates’ between the eMSes. There are at least two obvious ways to analytically

study these in the Truncated Wigner approximation (see Part Ib): firstly, one

could formulate a generalised Kramers problem for each eMS basin of attraction

and solve it via the adjoint of the relevant Fokker-Planck operator [6]. Alterna-

tively, it is possible to represent the stochastic dynamics as a path integral over

the noise (much like we did in Part Ib) and calculate a probability per unit time to

escape the basin by considering the most likely (optimal) escape trajectory (e.g.

[7], [8]). From a numerical perspective, the problem is evidently susceptible to

Monte Carlo simulation to simply observe the switching rates.

Without invoking the stochastic limit of the quantum process, one approach

to calculating such rates would be to attempt to generalise the concept of an opti-

mal escape trajectory to the original Feynman-Vernon path integral. Recall from

Part Ib the expression (in this part we will be interested in quantum mechanics

rather than quantum field theory, but the expression is still relevant up to the

presence of the mode label k)

⟨ψ+
k,out|ρT |ψ

−
k,out⟩ =

ψck(T )=
√

2ψk,out

ψ
q
k(T )=0∫

ψck(−T )=
√

2ψk,in
ψ
q
k(−T )=0

D[ψck,t, ψ̄
c
k,t,ψ

q
k,t, ψ̄

q
k,t]e

Scq,T [ψck,t ,ψ
q
k,t]⟨ψ+

k,in|ρ−T |ψ
−
k,in⟩. (14.3)
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Throughout Part I we have always integrated out ψk,out as we were aiming to take

the trace. If this is not done, however, we see that the Feynman-Vernon path in-

tegral gives the projection of some initial density matrix onto some pure state

after the former has been evolved by the Lindbladian dynamics for time 2T , giv-

ing something analogous to a transition probability. If an initial eMS and either

a final eMS or some state on the boundary between them are in some sense well

represented by coherent states (perhaps with ψ given by its mean-field value), the

classical path with largest contribution to the steepest descent approximation of

the path integral could act as an analogue of the stochastic optimal escape path.

Some work by other members of my group has been in this direction [9].

In a sense, however, the application of path integral methods to Lindbladian

metastability would be more interesting when it is not classical, if nothing else

because of the abundance of stochastic methods already in existence for such

problems. In this case the concept of a switching rate is not necessarily meaning-

ful (one no longer has the eMS ‘macro-states’ to switch between and the effective

dynamics in the MM may not be of a stochastic nature) so it is helpful to decom-

pose them into the two more fundamental pieces of information contained in

them. Specifically, switching rates give information both about the steady state

and the rate at which dynamics in the MM converge to it, via the eigenvectors

and eigenvalues respectively of their associated stochastic matrix. When these

two aspects of the problem are no longer tied together by switching rates, it is

valuable to consider them in isolation.

Focusing on the rates, these are given by the real parts of the eigenvalues lying

below the gap (and thus associated with the eigenvectors spanning the MM). The

primary way spectra of operators are studied via the path integral in quantum

mechanics is by considering the spectral decomposition of the propagator associ-

ated to that operator[10], [11], since the latter is a natural object to calculate with

the path integral and contains the relevant information. For a Euclidean path

integral, for instance, the propagator for the Hamiltonian may be expanded as

⟨x′ |e−βH |x⟩ =
∑
n

⟨x′ |n⟩e−βEn⟨n|x⟩ (14.4)

and so encodes the entire spectrum. Indeed, if one is able to calculate the exact

propagator for arbitrary initial and final states, information about all the eigen-

vectors of the Hamiltonian is also present in the decomposition, even if more

difficult to extract analytically.

Outside of quadratic operators or those possessing some special symmetries,

however, the exact propagator is typically not available. Some progress may be

made via perturbation theory relative to a known simple propagator, but this

will fail to pick up many interesting non-perturbative corrections such as the
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eigenvalue splitting of the double well potential. One way to recover the latter,

at least for the slowest decaying eigenvalues, is to consider ‘instanton’ paths in the

long time limit. This term has, at this point, acquired a wide range of meanings:

to be concrete, we are referring to classical paths (approximately, exactly in the

T → ∞ limit) connecting some preferred points in phase space that have finite

action as T → ∞. Such paths will yield the leading order contribution to the

propagator in this limit and, by summing over such paths (for instance the gas

of instantons and anti-instantons of the double well potential) it is possible to

obtain corrections to the smallest real part eigenvalues (the corresponding terms

in the propagator vanish last in the T →∞ limit) that would not have been picked

up by perturbation theory.

My initial aim, then, was to investigate perturbative and instanton approaches

to calculating at least the largest real part portions of Lindbladian spectra for the

purpose of understanding the time-scales of the dynamics in the MM manifold.

While I was somewhat successful in developing a perturbation theory for such

spectra, as will be seen in the relevant Chap. 18 the appearance of the gap in the

spectrum of the driven-dissipative Kerr oscillator in its bistable regime appears

to be non-perturbative. Given this is one of the simplest models of bistability

available, this suggests that the study of metastable spectra will often necessitate

the calculation of non-perturbative corrections to capture the appearance of the

gap. There does not appear be much existing work in this direction. An instanton

calculation of a Lindbladian eigenvalue correction appeared in [12] for a system

possessing high degrees of symmetry allowing the instantons to be found analyt-

ically, while [9] calculates instanton paths numerically for the Kerr oscillator but

does not sum them into an eigenvalue correction. There thus appears room for

further development of these methods.

Unfortunately, there appears to be some difficulties with the use of the coher-

ent state path integral for the calculation of instantons. There are two main ways

to interpret such integrals (what I will call the Berezin and Klauder-Daubechies

formalisms, to be discussed in detail in the next chapter) and, while both agree

on how to calculate the classical paths3 and this appears generally well-known,

the same is not true for the corrections from fluctuations around these paths. In-

deed, the main work I am aware of that covers this calculation for the Berezin

formalism is [16], appearing some twenty years after the results for classical

paths, which I have not seen cited in any mainstream textbook, and which does

not frame the calculation as that of a functional determinant4. The Klauder-

Daubechies formalism disagrees with the foregoing and does reduce the calcu-

3Though they disagree on why they are calculated this way. [13], [14] are the relevant works
for the Berezin formalism, while [15] covers the Klauder-Daubechies formalism.

4This complicates the analysis of zero modes, which we will see is crucial for instanton calcu-
lations.
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lation to that of a functional determinant (albeit a very cumbersome one), but

this prescription appears even less well known: the only literature reference I am

aware of is Ref. [17], a masters thesis with three citations.

At the same time, the rigorous use of instantons requires the ability to cal-

culate this contribution. The reason for this is that the differential operator will

typically have a zero mode in the T → ∞ limit which will contribute a factor

of T to the fluctuation contribution. For the configuration space path integral

a rule of thumb is that each path connecting to stationary points contributes a

single factor of T [11], but it appears this need not always be true: while Ref. [9]

obtain results following this rule (they consider the fluctuation contribution of

such a path divided by T to be an ‘escape attempt frequency’), Ref. [12] assigns

a factor of T to paths connecting both two and four stationary points (the latter

should have a factor of T 3 by the rule of thumb) and obtains correct results. Both

works are unable to calculate the fluctuation contribution precisely, being forced

to infer the factors of T by other means and then numerically fit.

The situation thus appears to be that the method of primary interest to us

crucially relies on the ability to calculate and analyse the zero modes of fluctu-

ation contributions, which is something uniquely difficult and not extensively

studied for the coherent state path integral. Because of this unfortunate circum-

stance, prior to performing any calculations a significant portion of my time was

diverted to reviewing the literature on the coherent state path integral, as a deep

understanding of it appears crucial to making real progress: indeed, we shall see

that there are many non-trivial aspects, with even the method of calculating clas-

sical paths being unusual5. The next chapter summarizes this exercise, providing

much more detailed coverage of the nature of this integral than was given in Part

I. In particular I compare the Berezin and Klauder-Daubechies approaches and

attempt to emphasize some links between them.

In subsequent chapters I extend the Klauder-Daubechies formalism, origi-

nally formulated for Hamiltonian systems, to Lindbladian path integrals and use

it to calculate an exact propagator for the coherent driven-dissipative harmonic

oscillator. This is then used to formulate a perturbation theory for more com-

plicated Lindbladian propagators and their associated spectra. Unfortunately,

due to the aforementioned difficulties and the requirement of my time for other

projects, I do not attempt any instanton calculations.

5It is possible that this is somehow responsible for the failure of the rule of thumb for T factors,
but this is purely a hypothesis.
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Chapter 15

The Coherent State Path Integral: A
Phase-Space Path Integral with
Holomorphic Polarization

As we have already covered the construction of this integral in Part Ia Chap. 3, it

may seem odd to devote another chapter to it here. Unfortunately, the coherent

path integral is a much more complicated object than our prior exposition made

it seem. In so far as it is used as a convenient shorthand for perturbative calcula-

tions (the diagrammatics of Part I could have equally well been performed using

canonical quantisation as in [18]) or as compact notation for its discrete form

(correctly emphasized in [19] and responsible for the corrections to the GK traces

in [20] and our Part I) there is generally no issue. Attempting to treat it as a bona

fide continuous-time path integral, however, will quickly run into problems if

one is not careful. Since we are interested in calculating continuous-time classi-

cal paths and, equally importantly, fluctuations around these paths as functional

determinants of continuous-time differential operators, it is important that we

define the integral carefully.

A closely related issue is that there are now what appear to be two very dif-

ferent characterisations of the coherent state path integral in the literature. The

one most frequently quoted in condensed matter (indeed the one our exposition

in Part I essentially follows) is due to Berezin [13]: in this approach operators ap-

pear as their Wick symbols1, the action is first-order in time derivatives, the paths

entering the integral may be discontinuous, and in order to calculate (continuous)

classical paths one typically has to deform the real contour of integration into the

complex plane. If the reader was introduced to the coherent path integral via any

of [10], [19], [22]–[29], this is the formalism they will have encountered.

Unfortunately this formalism appears not entirely mathematically rigorous

1The Wick symbol QO(z) (also sometimes known as a Q-symbol or Q-function due to its con-
nection to the Husimi Q Representation [21]) of an operator Ô is a function equal to its expecta-
tion in a coherent state: QO(z) = ⟨z|Ô|z⟩.

189
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upon closer inspection. I will go through the difficulties in some detail later

when we examine the structure of phase-space path integrals and construct the

alternative formalism, but will give here a brief summary. Firstly, that the under-

lying paths are discontinuous2 is a significant obstacle. While most of the above

cited works either omit this fact entirely or briefly mention that the paths are

‘jagged’ [27], this family of paths (which, to be precise, are the square integrable

functions L2([0,T ]) on a finite time interval [0,T ]) clearly cannot respect Dirichlet

boundary conditions.

Next, the use of Wick symbols introduces an error into the action that it is

commonly claimed (except, to its credit, in [10]) will vanish in the continuum

limit: this is incorrect. This error would vanish if all the paths involved were

continuous but, as they are not, it may not be rightfully discarded. This error

term is, in fact, fundamental for understanding the correspondence of the coher-

ent state path integral to operator ordering, as will be demonstrated later.

Lastly, that the action contains time derivatives only to first order means that

the resulting differential operator together with the combined Dirichlet bound-

ary conditions for both position and momentum at both ends of the interval is not

elliptic [30]; there are twice the allowed number of boundary conditions for el-

lipticity. It is thus likely that its eigenfunctions fail to be complete, which brings

into question the connection between its functional determinant and the sum

over fluctuations around the classical trajectory. While there exist alternative

boundary conditions that may be used to find classical paths3 and of which there

is the correct number for ellipticity, attempting to use them appears to give in-

correct results.

I have seen no examples in this formalism of a sum over fluctuations being

successfully performed by appealing to functional determinant of the continu-

ous time differential operator. The results in [16] come closest in that they resem-

ble the final expression one obtains from a functional determinant calculation of

the above first order differential operator, but that is not how they are obtained

(rather they are derived directly from the discrete representation of the action,

allowing them to correctly incorporate the error term mentioned above) and it is

not clear what boundary conditions would reproduce them4. More frequently the

2This is somewhat an abuse of notation. The argument by Berezin attempts to generalise a
construction that demonstrates the concentration of a measure on a set to the setting of a phase-
space path integral where no bona fide measure is available (the argument will be presented in
Sec. 15.2). As such, while we will use this nomenclature, it is important to understand that this
is a much weaker statement than the analogous one that the paths of a Euclidean configuration
space path integral are Wiener.

3As we will see later, these are not the true boundary conditions of the path integral regardless
but rather a convenient computational tool for classical paths specifically. As such, the functional
determinant should really be restricted to the full Dirichlet boundary conditions.

4Per [30], the calculation of this functional determinant would also require a choice of ‘ray
of minimal growth’ for the differential operator: these results resemble those one obtains for a
specific such choice, but it is a mystery as to why this would be the correct one.
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calculation is either avoided via other considerations (in the Keldysh formalism

the relevant quantity can often be argued to be 1 as we did in Part Ia Chap. 3, in

equilibrium it is divided out with the bubble diagrams in the partition function,

while in toy quantum mechanical models the answer can be extrapolated from

known results) or performed by returning to the discrete action and computing

a matrix determinant. The latter approach is entirely justified, but untenable

when one is dealing with a complicated classical path unless one switches to the

approach of Ref. [16] and also calls into question the integral’s claim of being

continuous time. Incidentally, this is also the reason why the aforementioned er-

ror due to Wick symbols typically goes unnoticed — it appears in the functional

determinant, which is never explicitly calculated in continuous time.

Overall, I will argue that the Berezin conception of the coherent state path

integral is not entirely well defined mathematically, making it difficult to reason

rigorously about. Nevertheless, convenient prescriptions exist for semiclassical

calculations using it: [13], [14] and an interesting but non-standard approach

by [31] for finding classical paths, and [16], resorting to the discrete form of the

action, or finding a way to neglect them for the fluctuation corrections. When

not dealing with instantons, therefore, it is a reliable computational workhorse,

which likely explains its continued prevalence in the literature, particularly in

the condensed matter community.

There is, however, another formalism due to Ingrid Daubechies and John

Klauder [1], [2], [32], which was subsequently significantly extended by the latter

[33]–[36]. While it appears to have generated some interest in those working on

topological field theories [37], [38] (albeit for more exotic coherent states than the

bosonic ones we will treat) and in the wider HEP community [39], [40], it does not

seem to have been embraced by the condensed matter community. As a mathe-

matical object, however, the Klauder-Daubechies (KD) path integral is much bet-

ter controlled than the Berezin one: the integral is over continuous paths, the

action is second-order in time and the use of operator P-symbols avoids the error

term associated with Wick symbols.

Overall, however, the approach is more complicated: the path integral is de-

fined by a limiting procedure of well-defined configuration space-like path inte-

grals, which makes direct calculation using it difficult (though eminently possi-

ble: indeed, I will demonstrate two examples of an exact functional determinant

calculation of fluctuation corrections using this approach). A useful application

of this method outside of direct computation, however, is that it can be used to

rigorously justify some of the computationally convenient but ad-hoc prescrip-

tions of the Berezin approach, such as the way classical paths are calculated. If

one is able to show that the latter are a simplification of a more laborious but

rigorous KD calculation, this places them on a rigorous footing. With regards to
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fluctuation corrections, a very desirable similar result would be the reframing of

the calculation in Ref. [16] as a simplification of the much more involved func-

tional derivative calculation prescribed by KD. Unfortunately, at present this is

not available.

The most direct way to the KD path integral goes through the deep but rarely

mentioned connection between the coherent state path integral and the more

conventional ‘phase space path integral’ (which uses a very similar action but

different boundary conditions): they correspond to different polarisations of the

underlying phase space. Since the idea of polarization may not be familiar to a

reader without prior interest in quantisation procedures, yet in some sense moti-

vates the whole formalism, we will begin by describing its manifestation for the

simple bosonic particles we will treat, before proceeding to show how it can be

used to understand phase space path integrals. Thereafter we will be in a position

to introduce and compare the Berezin and KD approaches.

15.1 Polarisations: Decomposing the Phase Space

This section is devoted to introducing the step of geometric quantisation known

as selection of a polarisation. A much more detailed reference for this and other

aspects of the geometric quantisation procedure may be found in Ref. [41] if

required.

Consider the classical phase space Γ of a single particle in one dimension, cor-

responding simply to R
2 endowed with the symplectic form ω = dx ∧ dp. We

know that the wave functions of our theory are L2(R) functions defined on po-

sition or momentum, represented by R ⊂ R
2, and so in some sense our phase

space is larger than the space needed to define the Hilbert space of the theory:

we can choose functions depending only on x to construct our position wave

functions ψpos(x,p) = ψ(x), and functions depending only on p to construct the

momentum ones ψmom(x,p) = ψ̃(p). This could also obviously be characterised as

∂pψpos(x,p) = 0, ∂xψmom(x,p) = 0.

That we must restrict our wave functions to a single coordinate is a conse-

quence of the fact that the representation of the Heisenberg group H3(R) (the

Lie algebra of which corresponds to our observables) on L2(R2) will fail to be

irreducible, meaning that the Hilbert space L2(R2) contains a subspace already

suitable for fully describing the system5. Fortunately, as seen above, this is easily

achieved for R
2 on account of its extreme simplicity as a phase space. Not only

5More precisely, the reducibility of the representation will imply the existence of a projection
operator that commutes with any operator constructed from the Lie algebra of the group, which
will generally be true of the Hamiltonian. This means that its eigenvalues are constant in time
and, once measured, will yield a superselection rule that permits the restriction of the dynamics
to the relevant eigenspace.
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is it a cotangent bundle, but in fact may be viewed as a simple product of a base

manifold R and its single cotangent space T ∗x (R) � R. When viewing a cotangent

bundle as a phase space ΓM, the base manifoldM is often associated with position

while the cotangent spaces represent (local) momentum — this trivial decompo-

sition of R2 into a product is what allows the global decoupling of position and

momentum that we are accustomed to.

Things become rather more difficult when one attempts to define a position-

space wave function on something as seemingly simple as a 2-sphere Γ = S2. S2 is

the classical phase space of a spin degree of freedom6 with associated Lie group

SU(2) and admits an exact deformation quantisation (as we will see in Part III), so

ought to be quantizable. Because it is not a cotangent bundle7, however, it does

not admit an obvious decomposition into a position space and associated mo-

mentum cotangent spaces. Yet this decomposition is needed if we are to achieve

an irreducible representation of SU(2) (we will not go further into this as the

geometric quantisation of S2 is too involved to justify the detour — the reader

is directed to Ref. [43]). The concept of polarisation arose as a way to ‘carve

up’ such unwieldy manifolds into spaces that can be understood as position and

momentum.

We will present a very simplified view of polarisation that captures its core

intuition and is sufficient for what we intend to discuss on Γ = R
2. To this end we

will introduce the intuitive concept of a real polarisation, ignoring considerations

such as integrability conditions, before making a somewhat unjustified jump to

the holomorphic polarisation. It will be seen, however, that the holomorphic

polarisation gives reasonable results.

To begin, let us suppose that our manifold Γ ∋ q is 2n-dimensional, real, and

symplectic. We are thus equipped with a symplectic form ωq and Tq(Γ ) � R
2n.

Thinking back to the case of Γ = R
2, we recall that a wave function being a func-

tion of position was equivalent to the condition ∂pψ(x,p) = 0. From a geometri-

cally local point of view at point q this means that it is annihilated by the tangent

vector ∂p ∈ Tq(R2) while from a global one it is constant on the streamlines of

the associated vector field. The same reasoning can be applied to wave functions

depending on momentum, now with vector field ∂x. Note also that the restriction

of the symplectic form dx∧ dp to a streamline of either vector field gives zero.

The generalisation of the concept of position that we may lift from the above

considerations then goes as follows. Select a subbundle V of the tangent bun-

6This can be understood via the orbit method as the co-adjoint orbits of SU(2) being either
a point (too small for a phase space) or 2-spheres. Alternatively, via the orbit-stabilizer the-
orem, one obtains S2 as the quotient of SU(2) by the stabilizer U (1) of its co-adjoint action:
S2 = SU(2)/U (1) (there are elements of the dual of the Lie algebra for which the stabilizer will
be SU(2) and yield a point, which we again ignore).

7This may be seen directly from the fact that S2 is compact, cotangent spaces are non-compact,
and no fibre bundle with non-compact fibres may compact [42]
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dle T (Γ ) such that the associated vector spaces are half the dimension of the

original bundle’s and the restriction of the symplectic form to this subbundle

vanishes. This amounts to locally choosing n momentum directions (with the n

position directions corresponding to the complement of the subbundle) — the

vanishing of the symplectic form ensures we have correctly separated position

and momentum rather than mixing them together. Under suitable conditions

[41] there will exist a family of integral manifolds of V , namely submanifolds

(which we can imagine are indexed by an n-dimensional index x) Xx ⊂ Γ such

that ∀q ∈ Xx, Tq(Xx) = Vq, that foliate the original manifold Γ 8. Now if we select

wave functions ψ(q ∈ Γ ) such that Vψ = 0, these functions will be constant on

the submanifolds Xx and thus essentially functions of their labels: ψ(q) = ψ(x).

These are the position space wave functions of the theory, and repeating the con-

struction with the complement of the subbundle will yield the momentum space

ones.

The procedure described above is the construction of a real polarisation. Un-

fortunately this fails on the aforementioned S2 because on a two-dimensional

surface the selection of the subbundle amounts to choosing a nowhere-vanishing

vector field. By the hairy ball theorem these do not exist on S2 and so the proce-

dure fails. Thus, when constructing a general polarisation, one uses the complex-

ification of the tangent bundle T (Γ ) in the above. This loses a good deal of the

physical intuition of real polarisations but nevertheless successfully generalises

the construction and, as we are about to see, gives a familiar construction on R
2.

15.1.1 Position, Momentum, and Bargmann-Segal Spaces

Let us rewrite the symplectic form on R
2 as i

2dz ∧ dz̄ with z = x + ip. Following

the procedure of the previous section we can choose the following polarisation:

∂z̄ψ = 0. (15.1)

Evidently this selects the family holomorphic functions on R
2 � C, and is thus

known as the holomorphic polarisation.

Unfortunately this is not quite the Hilbert space we are actually after — there

are more steps to geometric quantisation, which in its whole runs roughly in three

stages

Prequantisation→ Polarisation→Quantization. (15.2)

We have entirely ignored prequantisation since it is not central to the presenta-

tion, but now hit an obstacle in the quantisation stage. Recall that our concept of

8These submanifolds will also possess the property that the symplectic form vanishes on them
and that they are of maximum dimension for this property. This makes them Lagrangian sub-
manifolds, which is a key definition for the general definition of polarisation.
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a real polarisation suggests a possible choice of position space wavefunctions via

∂pψ(x,p) = 0. (15.3)

The problem is that these functions will evidently not be in L2(R2), whereas the

point was to cut down that Hilbert space to a sufficiently small subspace. Ma-

chinery to deal with this during the quantisation stage for general manifolds is

available [41], but on flat phase spaces we know from basic quantum mechanics

that it is sufficient to forget about L2 integrability on the full phase space R
2 and

instead take L2(R) (this is a special case of a convenient metric existing on the

space of leaves of the polarisation foliation). Unfortunately there is no equally

obvious trick for the holomorphic polarisation, and some work is required: we

will skip all of it and present the conclusion. The Hilbert space constructed dur-

ing quantisation from the holomorphic polarisation on R
2 is the Bargmann-Segal

space F (C) of holomorphic functions square integrable with respect to a Gaus-

sian measure:

∂z̄ψ = 0, (15.4)∫
dzdz̄ |ψ|2e−|z|

2
<∞. (15.5)

There are thus at least three possible polarisations of the phase space of a bosonic

particle:

Position: ∂pψ(x,p) = 0→ ψ(x), (15.6)

Momentum: ∂xψ(x,p) = 0→ ψ̃(p), (15.7)

Holomorphic: ∂z̄ψ(z, z̄) = 0→ ψ(z), (15.8)

with each constructing a different Hilbert space. By the Stone–von Neumann

theorem [44] the representations of the Heisenberg group acting on them will be

unitarily equivalent and thus essentially the same, so we need not worry about

obtaining the ‘wrong’ irreducible representation (this is in contrast to the situ-

ation on S2, where one obtains different representations for different spin num-

bers). Nevertheless the constructions lead to different Hilbert spaces, and thus in

order to quantize R
2 (or any other manifold) one must first select a polarisation.

Looking ahead, we will find that each of these polarisations corresponds to

a different phase space path integral. Moreover, while the conventional phase

space path integrals (those that propagate position and momentum wave func-

tions) restrict the Hilbert space they act on to the right one for their given polar-

isation via boundary conditions (and an implicit choice of family of trajectories),

the Berezin formulation of the coherent state path integral (which we argue cor-

responds to the holomorphic polarisation) fails to do so. It is in repairing this
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failure to select a polarisation that most of the ills of the coherent state path in-

tegral are cured.

15.1.2 Ladder of Coherent State Hilbert Spaces

Before moving on, we briefly demonstrate how a generalisation of coherent states

can be used to decompose L2(R2) into a countable set of copies of the Bargmann-

Segal space. Repairing the coherent state path integral requires a way to restrict

it to acting on only a single one of these copies.

As we recall from Part Ia Sec. 3.1.1, a coherent state in a Hilbert space (which

for simplicity we will take to be the position space L2(R)) may be written as

|α⟩ = eαâ
†
e−

1
2 |α|

2
|0⟩ (15.9)

with |0⟩ the harmonic oscillator ground state. Thinking in terms of the more

familiar real variables x and p this may be rewritten as (we will use hats to denote

operators in this section, as it is easier to get operators and numbers confused

than usual)

|α⟩ = eαâ
†
e−

1
2 |α|

2
|0⟩ = eαâ

†
eᾱâe−

1
2 |α|

2
|0⟩ = eαâ

†−ᾱâ|0⟩

= e
α−ᾱ√

2
x̂−i α+ᾱ√

2
p̂|0⟩ = ei(px̂−xp̂)|0⟩ = eipx̂e−ixp̂e−

i
2xp|0⟩ = |x,p⟩.

(15.10)

The object E(x,p) = ei(px̂−xp̂) (or equivalently eαâ
†−ᾱâ) is an element of the irre-

ducible representation of the Heisenberg Lie group [44], with the properties [45]

E(x,p)E†(x′,p′) = eipx̂e−i(x−x
′)p̂e−ip

′ x̂e−
i
2 (xp−x′p′)

= ei(p−p
′)x̂e−i(x−x

′)p̂ei(x−x
′)p′− i2 (xp−x′p′)

= E(x − x′,p − p′)e
i
2 (x−x′)(p−p′)+i(x−x′)p′− i2 (xp−x′p′)

= E(x − x′,p − p′)e
i
2 (xp′−px′),

(15.11)

TrE(x,p) =
∑
n

⟨n|E(x,p)|n⟩

=
∑
n

∫
dy

[
ψ̄n(y)e

i
2px̂e−ixp̂e

i
2px̂ψn(y)

]
=

∑
n

∫
dy

[
ψ̄n(y)e

i
2pye−x∂ye

i
2pyψn(y)

]
=

∑
n

∫
dy

[
ψ̄n(y)e

i
2pye

i
2p(y−x)ψn(y − x)

]
=

∫
du eipu

∑
n

[
ψ̄n(u +

x
2

)ψn(u − x
2

)
]

= 2πδ(p)δ(x)

(15.12)
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where in the last line we have used the completeness of the states |n⟩ we used to

take the trace and thus of their L2(R) representations ψn(x) = ⟨x|n⟩. We will make

use of these presently.

First, we notice that the coherent states furnish a mapping from our Hilbert

space H into L2(R2):

∀|ψ⟩ ∈ H. fψ(x,p) = ⟨ψ|x,p⟩ = ⟨ψ|α⟩ = fψ(α), (15.13)∫
dxdp f̄ψ(x,p)fψ(x,p) =

∫
dxdp ⟨ψ|x,p⟩⟨x,p|ψ⟩ = ⟨ψ|ψ⟩ <∞. (15.14)

where we have used the real form of the completeness relation for coherent states

and that our original |ψ⟩ ∈ H had finite norm in H. At the same time, if we split

E(x,p) into eαâ
†
eᾱâ and e−

1
2 |α|

2
, we find that

∂ᾱ⟨ψ|eαâ
†
eᾱâ|0⟩ = ⟨ψ|eαâ

†
eᾱââ|0⟩ = 0. (15.15)

This means that fψ(α) is the product of a holomorphic function h(α) and a Gaus-

sian weight e−|α|
2

or, equivalently, that our coherent state mapping sends elements

ofH to holomorphic functions that are square-integrable with Gaussian measure

e−|α|
2
dαdᾱ. But this is precisely the Bargmann-Segal space of the previous sec-

tion, and the mapping we have found is the unitary equivalence between irre-

ducible representations of the Heisenberg group guaranteed by the Stone–von

Neumann theorem (this is known as the Bargmann-Segal transform) [43]. We

have thus succeeded in embedding an equivalent copy of our Hilbert space into

L2(R2).

At the same time, we are far from exhausting the ‘capacity’ of L2(R2). While

the coherent states are usually defined with respect to the ground state of the

harmonic oscillator, this is not mandatory [46]. In fact, labelling the complete

set of eigenstates of the harmonic oscillator by |n⟩, we can define generalised

coherent states (sometimes known as ‘displaced number states’)

|x,p,n⟩ = E(x,p)|n⟩ (15.16)

which also possess a completeness relation9 [2]∫
dxdp |x,p,n⟩⟨x,p,m| = δm,nI. (15.17)

Moreover, these states provide variations of the Bargmann-Segal transform for

9For a finite-dimensional Hilbert space and Lie group with finite Haar volume, an identity of
this form is easily proven by arguing that the left hand side is an intertwiner for an irreducible
representation of the group and thus proportional to the identity, with the proportionality con-
stant found by taking the trace. In this case the proof is more difficult: the identity can be seen to
be a consequence of equation (4.6) in Ref. [47], which is proven in Appendix 2 of that work.
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each eigenstate

fψ,n(x,p) = ⟨ψ|x,p,n⟩ (15.18)

with mutually orthogonal ranges Fn(C):

fψ,n ∈ Fn(C), fφ,m ∈ Fm(C), m , n, (15.19)∫
dxdp f̄ψ,n(x,p)fφ,m(x,p) =

∫
dxdp ⟨φ|x,p,m⟩⟨x,p,n|ψ⟩ = δm,n⟨φ|ψ⟩ = 0. (15.20)

Each of the resulting copies Fn(C) of the Bargmann-Segal space can be viewed as

the closure of the span of the mapped states |n⟩:

Fn(C) = span{⟨m|x,p,n⟩ |m ∈N0}. (15.21)

At the same time, the total set of functions {⟨m|x,p,n⟩ |m ∈N0, n ∈N0} forms an

overcomplete basis for L2(R2):∑
n,m

⟨x,p,n|m⟩⟨m|x′,p′,n⟩ =
∑
n

⟨x,p,n|x′,p′,n⟩

=
∑
n

⟨n|E†(x,p)E(x′,p′)|n⟩

= e
i
2 (x′p−p′x) TrE(x′ − x,p′ − p)

= 2πδ(x − x′)δ(p − p′).

(15.22)

Thus ⊕
n∈N0

Fn(C) = L2(R2) (15.23)

and L2(R2) will carry a reducible representation of the Heisenberg group10 that

decomposes as a direct sum of irreducible ones on the spaces Fn(C).

When constructing a coherent path integral using some family of states |x,p,n⟩
(we will generally use n = 0, namely the typical coherent states), we will thus re-

quire some way to encode the restriction to the appropriate subspace Fn(C) into

it. In the next section we shall see how Berezin [13] suggested that real polarisa-

tions could be encoded into the conventional phase space path integral11. I will

then argue that his extension of that procedure to the coherent state path integral

is incorrect, and present the alternative approach of Daubechies and Klauder to

encoding the holomorphic polarisation explicitly [1], [2].

10Here we are referring to H3(R), the three dimensional Heisenberg group over the reals that is
appropriate for a one dimensional particle. Since R

2 is the configuration space of a two dimen-
sional particle, there will evidently be an irreducible representation of H5(R) on L2(R2), but that
is not the Heisenberg group we are after.

11Berezin does not use the language of polarisations, but it will fairly clear that this is what his
procedure indirectly accomplishes.
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15.2 Phase Space Path Integrals

We begin by writing down the prototypical action for a phase-space path integral

(ψ = 1√
2
(x+ ip)):

Sp =
∫

[pdx −H(x,p)dt] =
∫

[−xdp −H(x,p)dt] =
∫ [

iψ̄∂tψ −H(ψ,ψ̄)
]
dt.

(15.24)

The first form is typically used for phase space path integrals with fixed ini-

tial and final particle positions, which in the case of a Hamiltonian quadratic in

momentum can be reduced down to the conventional configuration space path

integral and are perhaps the most familiar type. The second may be taken to

describe phase space path integrals with fixed initial and final momenta, while

the third is usually used for coherent state path integrals. Up to integration by

parts, however, all three forms of the action are equivalent and thus the three

types of integrals must have other distinguishing features. Importantly, the com-

ponents required to construct these actions are the tautological one-form pdx and

the Hamiltonian, both of which are just classical objects associated with the ap-

propriate symplectic manifold. This action alone, thus, contains no information

about polarisation.

The first two types of integral are fairly clearly delineated by their bound-

ary conditions. Position boundary conditions mark the integral out as acting on

position space wavefunctions and corresponding to the real position polarisa-

tion, while momentum ones analogously correspond to the momentum polarisa-

tion. This simplicity again owes itself to the trivial nature of R2 as a phase space.

Nevertheless, even in this simple case, the different boundary conditions are not

enough. Berezin argued that the two integrals should be taken over trajectories

belonging to different function families, so that polarisation is encoded in the

path integral as a combination of boundary conditions and an associated set of

trajectories.

The problem with the coherent state path integral is that, to be meaningful,

it must possess both position and momentum boundary conditions, something

which runs into direct conflict with the acceptable sets of trajectories identified

by Berezin. At the same time, while it is easy to restrict a boundary condition to a

position or momentum polarisation by fixing only the appropriate variable, there

is no obvious way to encode the holomorphic polarisation in this way. To enforce

this polarisation, therefore, one is forced to explicitly build projection onto it into

the path integral. This proves to modify the action, which in turn significantly

changes the acceptable set of trajectories relative to Berezin’s suggestion.

Below, I first present Berezin’s argument for the correct set of paths of a phase

space path integral: this argument covers all three types of integral and may
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thus be presented in one go. Following a discussion of how the resulting paths

plausibly encode the two real polarisations, I then argue that they are unsuit-

able for the holomorphic one and discuss some other difficulties associated with

the conventional form of the action, namely the lack of clarity with regards to

the boundary conditions and other aspects of the associated differential opera-

tor. This then motivates the construction of the coherent path integral as one

explicitly corresponding to the holomorphic polarisation, greatly improving the

properties of the associated paths and modifying the action to contain a more

amenable differential operator. With all this material presented, the next chap-

ter is then devoted to my extension of the Klauder-Daubechies path integral to a

path integral for Lindbladian evolution, which is my original contribution to the

theory of coherent state path integrals.

15.3 Berezin Approach

Berezin’s approach to understanding phase space path integrals relies on assum-

ing there exists something akin to a measure, what we will call the symplectic

pseudomeasure, on the space of paths over which the integral is to be performed.

Choosing some property he wishes the paths to have, he then demonstrates that

this property holds on a set of pseudomeasure equal to the pseudomeasure of the

total space of paths, and refers to this as the integral being concentrated on this

set. In the absence of a true measure this approach is not entirely legitimate but

nevertheless provides some interesting insights and contradictions, so is worth

reviewing. At the same time the thrust of the argument may be unclear if the

reader has not seen a similar approach before. Thus, before tackling Berezin’s

calculation, I will very briefly present Coleman’s classic argument [11] about the

measure of paths of finite action which has precisely this structure.

15.3.1 Finite Action is Zero Measure

Consider a Euclidean path integral on a time interval [0,T ] with action

S[x(t)] =
∫ T

0
dt

1
2

(
dx(t)
dt

)2

+V [x(t)]

 . (15.25)

and boundary conditions x(0) = x(T ) = 0. Coleman asks the question whether

the most important paths for this path integral are those on which this action is

finite or positive infinite (since we assume V [x(t)] bounded from below). At first

glance, given the integral is usually written as∫
Dx(t)e−S[x(t)], (15.26)
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it may appear obvious that any path for which the action is infinite will zero out

the integrand and have no contribution to the path integral.

The problem with this argument is that Dx(t) is not a measure: there is no

non–trivial Lebesgue measure on an infinite dimensional vector space [48], [49].

What may be regarded as a measure is rather the combination

µW =Dx(t)e−
∫ T
0 dt 1

2

(
dx(t)
dt

)2

(15.27)

which yields the Wiener measure on continuous paths (essentially the probability

distribution of Brownian motion trajectories). Writing x(t) as a sine series12

x(t) =
√

2T
∞∑
n=1

Xn
πn

sin
(πnt
T

)
, (15.28)

the above measure may be rewritten as13

µW =
1

√
2πT

∞∏
n=1

∫ ∞
−∞
dXn

1
√

2π
e−

1
2
∑∞
n=1X

2
n , (15.29)

which is an infinite-dimensional Gaussian measure. Incidentally, this gives the

almost surely uniformly convergent Fourier representation of a Wiener process

[50], [51]

x(t) =
√

2T
∞∑
n=1

Xn
πn

sin
(πnt
T

)
(15.30)

where all the Xn are independent and identically distributed (i.i.d.) N (0,1) ran-

dom variables, though proving this rigorously requires more work.

With a convenient representation of the measure in hand, we may consider

sets on which the original action is finite. The portion of the action correspond-

ing to V [x(t)] will be finite for any continuous x(t) as long as V [x(t)] is itself a

continuous function of x(t), so we may restrict our attention to the kinetic energy

term. Using our Fourier representation this is simply∫ T

0
dt

1
2

(
dx(t)
dt

)2

=
1
2

∞∑
n=1

X2
n , (15.31)

so for this to be finite the terms of the series must at a minimum be bounded:

∃C.∀n.Xn < C. We may thus consider an increasing sequence of sets such that

12For simplicity we will consider a Wiener process pinned to x(T ) = 0 at the terminal time, also
known as a Brownian bridge. Because of this the term X0√

T
t that would otherwise be present in the

below equation is absent.
13The extra factor in the front matches the total measure of the space to the correct result for

the Wick-rotated free particle propagator. The total measure of the space is thus not 1 like it
would be in probability.
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any trajectory with finite action must be in one of these sets:

Ak = {x(t)|∀n.Xn < k}, k ∈N, (15.32)

Ak ⊂ Ak+1, (15.33)

xfinite S(t) ∈
⋃
k∈N

Ak . (15.34)

At the same time, the measure of each of these sets is zero:

µW (Ak) =
1

√
2πT

∞∏
n=1

∫ k

−k
dXn e

− 1
2
∑∞
n=1X

2
n =

1
√

2πT

∞∏
n=1

erf
k
√

2
= 0 (15.35)

since erf k√
2
< 1 for k ∈N. Thus, because measures are continuous from below,

µW

⋃
k∈N

Ak

 = lim
k→∞

µW (Ak) = 0, (15.36)

and we have that the measure of the set of paths with finite action is zero. This

is of course not a problem because in this form of the integral the integrand no

longer contains the full action, but only the potential term:∫
Dx(t)e−S[x(t)] =

∫
dµW e

−V [x(t)] (15.37)

and the latter is finite on all the Wiener paths. This result amounts to the fact

that Wiener processes are almost surely nowhere differentiable, which is why the

kinetic part of the action with derivatives diverges almost surely, and also points

to the rightful place of that kinetic term as a component of the measure rather

than as part of the integrand.

15.3.2 Space of Paths for the Symplectic Pseudomeasure

Having seen how one may study the space of paths of a configuration space path

integral via Fourier analysis, we may now tackle Berezin’s analogous argument

for the phase space ones [13]. The first immediate difference is that such integrals

do not contain a kinetic action term and thus no Wiener measure is immediately

available. The closest term available, the one analogously corresponding to the

kinematics rather than the dynamics of the problem, is the symplectic term pdx.

This does not, however, yield a bona fide measure in the way that the config-

uration kinetic term did; indeed, to pass from the phase space path integral to

the configuration one, one also requires a term quadratic in momentum in the

Hamiltonian. Nevertheless, we are about to see that the structure of the above ar-

gument (if not entirely the meaning) may be carried through in just the same way
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while replacing the measure µW with the symplectic pseudomeasure (invariant

under Wick rotation)

Dx(t)Dp(t)ei
∫
pdx. (15.38)

Representing the trajectories x(t), p(t) by complex Fourier series14 (no bound-

ary conditions are being applied, unlike in the Coleman argument)

x(t) =
∞∑

n=−∞
β2n+1e

(2n+1) iπT t, (15.39)

p(t) =
∞∑

n=−∞
α2n+1e

(2n+1) iπT t, (15.40)

the symplectic pseudomeasure takes the form µp(∞), where15

µp(N ) = d[α, ᾱ]d[β, β̄] exp

−π2
N∑
|n|=0

(2n+ 1)(ᾱ2n+1β2n+1 − β̄2n+1α2n+1)

 . (15.41)

Here µp(N ) may be interpreted as the restriction16 of the pseudomeasure to the

set of functions in a Fourier subspace. These sets are increasing with N so, if we

assume the pseudomeasure behaves like a true measure and because Lebesgue

integrals are continuous from below in their domain, we have

lim
N→∞

∫
dµp(N )◦ =

∫
dµp(∞) ◦ . (15.42)

with ◦ a placeholder for some function.

Berezin considers trajectories with finite weighted norm in Fourier space:√
∞∑

n=−∞
[σ (2n+ 1)|α2n+1|2 + τ(2n+ 1)|β2n+1|2]. (15.43)

Varying the weights σ (n), τ(n) changes the decay rates required of the Fourier

coefficients α2n+1, β2n+1 to maintain the finiteness of this norm and thus the

smoothness conditions of the associated functions. To this end, define the func-

14I denote Fourier coefficients consistently with Berezin, who has α and β this way round be-
cause he defines a vector x = (p,q) with momentum as the first variable. Berezin also argues
earlier in the paper that the space of paths may be restricted to those with anti-periodic bound-
ary values, an argument we will not consider but which explains the anti-periodic Fourier series
used.

15α and β are vectors of the Fourier coefficients, and the sum over |n| includes both positive and
negative n with |n| ≤ the upper bound.

16We take the measure to assign zero measure to the complement of the set to which it is
restricted.
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tion

JN (r) =
∫
µp(N )

∫ r2

−r2
dsδ

s − N∑
|n|=0

[
σ (2n+ 1)|α2n+1|2 + τ(2n+ 1)|β2n+1|2

] , (15.44)

This is the restricted pseudomeasure of the set of weighted norm ≤ r. Then,

removing the restriction by taking N →∞, Berezin tries to show that the pseu-

domeasure is concentrated on the union of these increasing sets for r →∞. The

argument goes that this is so if

lim
r→∞

JN (r)
JN (∞)

= 1, lim
r→∞

lim
N→∞

JN (r)
JN (∞)

= 1. (15.45)

I will argue in a moment that this way of defining pseudomeasure concentra-

tion leads to some unintuitive properties, but for now we continue with Berezin’s

argument.

Evaluating JN (r) comes down to a sequence of Gaussian integrals:

JN (r)

=
∫
d[α, ᾱ]d[β, β̄]

∫ r2

−r2
ds exp

− π2
N∑
|n|=0

(2n+ 1)(ᾱ2n+1β2n+1 − β̄2n+1α2n+1)


· δ

s − N∑
|n|=0

[
σ (2n+ 1)|α2n+1|2 + τ(2n+ 1)|β2n+1|2

]
=

∫
d[α, ᾱ]d[β, β̄]

∫ r2

−r2
ds

∫
dp

2π
exp

− π2
N∑
|n|=0

(2n+ 1)(ᾱ2n+1β2n+1 − β̄2n+1α2n+1)


· exp

ip
s − N∑

|n|=0

[
σ (2n+ 1)|α2n+1|2 + τ(2n+ 1)|β2n+1|2

]


=
∫
d[β, β̄]

∫
dp

2π
eipr

2 − e−ipr2

ip

· exp

− N∑
|n|=0

(
ipτ(2n+ 1) +

(2n+ 1)2π2

4ipσ (2n+ 1)

)
|β2n+1|2

 N∏
|n|=0

1
ipσ (2n+ 1)

=
∫
dp

2π
eipr

2 − e−ipr2

ip

N∏
|n|=0

1
(2n+1)2π2

4ipσ (2n+1) + ipτ2n+1

1
ipσ (2n+ 1)

=
∫
dp

π

sin(pr2)
p

( 4
π2

)2N+1 1
((2N + 1)!!)4

N∏
|n|=0

1

1− 4p2σ (2n+1)τ(2n+1)
(2n+1)2π2

.

(15.46)
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Since limr→0
sin(pr2)

p = πδ(p), we have

JN (∞) =
( 4
π2

)2N+1 1
((2N + 1)!!)4 (15.47)

and thus
JN (r)
JN (∞)

=
∫
dp

π

sin(pr2)
p

N∏
|n|=0

1

1− 4p2σ (2n+1)τ(2n+1)
(2n+1)2π2

. (15.48)

If the weights σ , τ are positive, which we will assume since we are not considering

seminorms, then the product

F(p) =
∞∏
|n|=0

(
1−

4p2σ (2n+ 1)τ(2n+ 1)
(2n+ 1)2π2

)
(15.49)

is absolutely convergent iff

∞∑
|n|=0

4p2σ (2n+ 1)τ(2n+ 1)
(2n+ 1)2π2 (15.50)

converges [52]. Assuming this is the case, it is clear that F(0) = 1, and we find

lim
r→∞

lim
N→∞

JN (r)
JN (∞)

= lim
r→∞

∫
dp

π

sin(pr2)
p

F−1(p) =
∫
dpδ(p)F−1(p) = 1. (15.51)

The question of whether the pseudomeasure is concentrated on a set of finite

weighted norm thus reduces to whether the sum

∞∑
|n|=0

σ (2n+ 1)τ(2n+ 1)
(2n+ 1)2 (15.52)

converges for that norm’s weights.

It is worth pausing here to consider a strange property of this procedure: take

a norm for which the above limit is 1, so that the measure is considered con-

centrated on the union
⋃
r→∞Vr of sets Vr with that norm bounded by r. Now

consider those same sets also projected onto the subspace of the first M Fourier

modes, giving new sets Ur,M . Clearly
⋃
r→∞Vr =

⋃
r,M→∞Ur,M so that the pseu-

domeasure should also be concentrated on the second union. If we construct a J

for this second type of set, it is easy to see that JN (r,M) = JM(r). But then

lim
N→∞

JN (r,M)
JN (∞)

= lim
N→∞

JM(r)
JN (∞)

=∞, (15.53)

so

lim
r→∞

lim
N→∞

JN (r)
JN (∞)

= 1, lim
r,M→∞

lim
N→∞

JN (r,M)
JN (∞)

=∞, (15.54)
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which suggests the procedure is dependent on how we choose the sets from which

we construct the union. The infinities appear to be a consequence of the rather

odd fact that the total mass of the pseudomeasure is zero:

lim
N→∞

JN (∞) = lim
N→∞

( 4
π2

)2N+1 1
((2N + 1)!!)4 = 0, (15.55)

but were this mass infinite they would be replaced by zeroes and we would have

the same difficulty. In general the limiting procedure presented here only works

correctly for measures of finite positive mass, and thus its application to this

pseudomeasure should not be trusted (setting aside that the pseudomeasure itself

is not a well-behaved object).

Returning to the sum

∞∑
|n|=0

σ (2n+ 1)τ(2n+ 1)
(2n+ 1)2 (15.56)

consider the choices

1. σ (2n+ 1) = (2n+ 1)1+ϵ, τ(2n+ 1) = (2n+ 1)−2ϵ;

2. σ (2n+ 1) = (2n+ 1)−2ϵ, τ(2n+ 1) = (2n+ 1)1+ϵ;

3. σ (2n+ 1) = (2n+ 1)(1−ϵ)/2, τ(2n+ 1) = (2n+ 1)(1−ϵ)/2.

For the first, finite norm implies

|α2n+1| ∈ o((2n+ 1)−(2+ϵ)/2), |β2n+1| ∈ o((2n+ 1)−(1−2ϵ)/2). (15.57)

This scaling of the Fourier coefficients implies that the momentum is continuous,

while position is not necessarily in L2(R). The second choice gives the reverse of

this, while the third symmetric choice gives

|α2n+1| ∈ o((2n+ 1)−(3−ϵ)/4), |β2n+1| ∈ o((2n+ 1)−(3−ϵ)/4). (15.58)

which suggests both position and momentum are L2(R) but neither is necessar-

ily continuous: indeed, there is no choice one can make that would make both

continuous. This completes Berezin’s analysis of the paths on which phase space

path integrals are concentrated.

15.3.3 Boundary Conditions

Continuing to take the pseudomeasure result at face value, two of the permissible

sets of paths are clearly suitable for two variants of the phase space path integral.

Specifically, if one is considering the position space polarisation path integral,
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it would be natural to take position as continuous since one could then impose

Dirichlet boundary conditions on it. Similarly, continuous momentum enables

sensible boundary conditions for the momentum polarisation path integral.

When confronted with the coherent state path integral, however, we face a

problem. The integral calls for boundary conditions on both position and mo-

mentum but, as we have seen, the pseudomeasure is not concentrated on the set

where both of these are continuous. One thus cannot meaningfully impose the

necessary Dirichlet boundary conditions, and it becomes unclear what the inte-

gral is to mean.

There are also downstream difficulties with boundary conditions when one

considers the semiclassical approximation. The differential equations resulting

from the action are first order in time, which generally cannot be solved for

Dirichlet boundary conditions on all variables at both the initial and final times.

For the position and momentum polarisations the conditions are relaxed on ei-

ther momentum or position respectively, and there is no issue, but the coherent

state path integral calls for the full set of conditions. A way out of this predica-

ment is offered in [13], [14] as follows. Consider the discrete form of the coherent

state path integral action for a normal-ordered Hamiltonian (ψ0 = ψi , ψN+1 = ψf ,

and compare (3.14)):

S =
N∑
n=0

ϵ

[
i
2
ψ̄n+1

ψn+1 −ψn
ϵ

− i
2
ψn
ψ̄n+1 − ψ̄n

ϵ
−H(ψ̄n+1,ψn)

]
. (15.59)

Here H(ψ̄n+1,ψn) is the Wick symbol ⟨ψn+1|H |ψn⟩ of the Hamiltonian, which is

why it contains the field at different times. Note that ψN+1 and ψ̄0 do not appear

outside of the time-derivative terms. The argument then goes that if one searches

for stationary points of this action in the complexified space of real parts of the

fields (see Appendix D), one can effectively treat ψ and ψ̄ as independent and

thus only impose the boundary conditions ψ0 = ψi , ψ̄T = ψ̄f . With the field and

its complex conjugate decouples, this is now the right number of boundary con-

ditions for the first order equations of motion.

This prescription for finding classical paths is correct (we will see in the next

chapter that it can be derived rigorously from the KD approach) but this way of

arriving at it is flawed because the paths are still not smooth enough to impose

even these boundary conditions. This approach, however, reveals something of

the correct way to regularise the integral. Consider again the above discrete ac-

tion as a function of a large number of real variables (the real and imaginary parts

of the various fields), which we will denote by x. Complexifying these to z, the

equations of motion in effect become

∇zS(z) = 0. (15.60)
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Choosing a solution zs of the above, we now observe the following: if the original

action S(x) was real and S(z) is holomorphic, z̄s is also a solution:

∇zS(z̄s) = ∇zS(zs) = 0 (15.61)

The continuous version of the coherent state action is certainly real, and one thus

might expect a second conjugated solution for each complex classical path. The

above prescription, however, frequently gives only a single classical path. The

reason is that the discrete action is in fact not real, breaking the above construc-

tion. Indeed this is why ψN+1 and ψ̄0 do not appear, so the prescription is cru-

cially dependent on a feature of the discrete rather than the continuous action.

Isolating the imaginary part of the discrete action in fact leads to the correction

term that we will see in the KD approach [17], though it is not the best way to

arrive at it.

Finally, a comment is in order on the fluctuation corrections of the path inte-

gral. The closest thing to a continuous-time approach to this is presented in [16],

which gives them as√
δψ̄0

δψ̄T
exp

 i2
∫ T

0
dt

[
∂2H(ψ̄t,ψt)
∂ψt∂ψ̄t

]
ψt=δψt ,
ψ̄t=δψ̄t

 (15.62)

where δψt and δψ̄t are treated as independent and solve

∂tδψt = −i
[
∂2H(ψ̄t,ψt)
∂ψt∂ψ̄t

]
ψt=δψt ,
ψ̄t=δψ̄t

δψt − i
[
∂2H(ψ̄t,ψt)
∂ψ̄t∂ψ̄t

]
ψt=δψt ,
ψ̄t=δψ̄t

δψ̄t, (15.63)

∂tδψ̄t = i
[
∂2H(ψ̄t,ψt)
∂ψt∂ψt

]
ψt=δψt ,
ψ̄t=δψ̄t

δψt + i
[
∂2H(ψ̄t,ψt)
∂ψt∂ψ̄t

]
ψt=δψt ,
ψ̄t=δψ̄t

δψ̄t, (15.64)

with initial conditions δψt(0) = 0 and δψ̄t(0) arbitrary. This prescription is de-

rived entirely from the discrete form of the action, and so is not really ‘continu-

ous time’ in the sense of being the result of a manipulation on a continuous time

path integral. Since it is not presented as the determinant of a differential oper-

ator, it is also difficult to analyse the appearance of zero modes in the operator

governing the action. Interestingly, however, it is possibly not far off from being

such an object. Specifically, if one were to interpret this as the result of Gaus-

sian integration, it would need to be the inverse square root of the functional

determinant
δψ̄T
δψ̄0

exp

−i
∫ T

0
dt

[
∂2H(ψ̄t,ψt)
∂ψt∂ψ̄t

]
ψt=δψt ,
ψ̄t=δψ̄t

 (15.65)

If one applies Forman’s theorem (for first-order differential operators, which I
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do not cover in the appendix but may be found in [30]), the term in the expo-

nent is precisely what the continuous time differential operator would give for a

specific choice of ray of minimal growth17. The pre-exponential factor also de-

pends on the boundary values as expected, but I have not been able to work out

which boundary conditions would give this result. As such, it seems possible to

derive from the discrete action an object that greatly resembles the functional de-

terminant of a first order differential operator, but it is unclear how to motivate

the required boundary conditions (or even establish what they are) and ray of

minimal growth choice outside of appealing directly to the discretisation. Never-

theless, this is an interesting avenue of inquiry that I hope is pursued further in

the future: it would be particularly interesting to have a derivation of an effective

first order differential operator from the KD second order operator we are about

to see in the next section.

With this, we come to the end of our review of the Berezin continuous time

path integral and its semiclassical prescriptions, moving now onto the Klauder-

Daubechies path integral.

15.4 Klauder-Daubechies Approach

The most direct way to arrive at the KD path integral is, as promised, via the con-

cept of holomorphic polarisation. Recall that the latter is characterized by holo-

morphic functions that are square-integrable with respect to a Gaussian measure

on the complex plane, which from (15.15) may arise as (here the complex variable

is α, corresponding to a coherent state, and ψ is an arbitrary state)

⟨0|eαâ
†
eᾱâ|ψ⟩ = e|α|

2/2⟨α|ψ⟩. (15.66)

A better function space to work with is such functions with half of the Gaussian

measure absorbed into them so that they are square integrable with respect to

the plain Lebesgue measure: evidently functions ⟨α|ψ⟩ are of this form, and they

comprise one of the many Hilbert spaces that we saw18 make up the larger space

L2(R2).

Since, as we argued earlier, we are interested only in this single Hilbert space

rather than all of L2(R2), we require a way to restrict the path integral to it. To

achieve this, we may roughly follow the procedure suggested in [36] and define

an operator that is zero on this space:

PSB◦ = ∂α
[
e|α|

2/2◦
]
. (15.67)

17Specifically, πx = 1
2

(
1 −i
i 1

)
.

18The construction in Chap. 15 technically used the complex conjugates of such functions, but
would go through just as well with these.
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It will be helpful to work with a positive semi-definite operator, so we will also

define its adjoint. Since this operator maps functions square-integrable with re-

spect to a Lebesgue measure into ones square-integrable with respect to a Gaus-

sian measure e−|α|
2
d[α,ᾱ], this difference in spaces needs to be accounted for

when defining the adjoint. Thus

P †SB◦ = −e|α|
2/2∂ᾱ

[
e−|α|

2
◦
]

(15.68)

and we have the positive semi-definite operator

P †SBPSB◦ = −e|α|
2/2∂ᾱ

[
e−|α|

2
∂α

[
e|α|

2/2◦
]]
. (15.69)

Using these operators one may define a projector onto the desired Hilbert space

as

lim
ϵ→0

e−
1

2ϵP
†
SBPSB . (15.70)

Since the operator is positive semi-definite, the exponent will always be negative

or zero. As ϵ → 0, only functions on which the exponent is zero will survive,

which is precisely functions from the desired Hilbert space.

It is possible to obtain an integral kernel representation by applying the oper-

ator to a Dirac delta function. The latter has the complex form (z = x+ iy)

δ(α) = δ(Reα)δ(Imα) = 4δ(Re2α)δ(Im2α)

=
1
π2

∫
dxdy e2ixReα+2iy Imα =

1
π

∫
d[z, z̄]eizᾱ+iz̄α,

(15.71)

so

e−
1

2ϵP
†
SBPSBδ(α − β) =

1
π

∫
d[z, z̄]exp

 1
4ϵ
− |α|

2

8ϵ
− |z|

2

2ϵ

+ iz̄
(
α − β − α

4ϵ

)
+ iz

(
ᾱ − β̄ +

ᾱ
4ϵ

)
=

2ϵ
π

exp

 1
4ϵ
− |α|

2

8ϵ
− 1

2ϵ

(
α − β − α

4ϵ

)(
ᾱ − β̄ +

ᾱ
4ϵ

)
=

2ϵ
π
e1/4ϵ exp

− 2ϵ|α − β|2 +
1
2
α(ᾱ − β̄)− 1

2
ᾱ(α − β)

.

(15.72)

At this point we make the redefinition 2ϵ→ ϵ
δt , giving a final expression for the

projector:

lim
ϵ→0

ϵ
πδt

eδt/2ϵ exp

iδt (−iϵ |α − β|2δt2
+
i
2
ᾱ
α − β
δt
− i

2
α
ᾱ − β̄
δt

). (15.73)
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However, there is another representation for this projector, namely ⟨α|β⟩ since

(recall from Chap. 15 that ⟨β,n|m⟩ span L2(R2)19):

∫
d[β, β̄]⟨α|β⟩

∑
m,n

⟨β,n|m⟩⟨m|ψ⟩

 =
∑
m,n

δn,0⟨α|m⟩⟨m|ψ⟩ = ⟨α|ψ⟩. (15.74)

Thus

⟨α|β⟩ = lim
ϵ→0

ϵ
πδt

eδt/2ϵ exp

iδt (−iϵ |α − β|2δt2
+
i
2
ᾱ
α − β
δt
− i

2
α
ᾱ − β̄
δt

). (15.75)

In a sense this is the main result of the KD approach20. Notice that the term in

the exponent is very similar to a portion of the discrete coherent state action but

with a new ϵ term. This term is in fact very similar to what one would obtain

as the small imaginary portion of the action [17] (recall that, while the continu-

ous action is real, the discrete action is not) which is typically discarded because

it appears to be O(δt2), but with ϵ now replacing one of the δt factors. Using

this relation in place of the usual one for the inner product on the left, one can

construct the discrete form of the path integral as usual and then take the con-

tinuum limit (absorbing the exponential prefactor into the normalisation). This

yields the following continuous time action:

Sϵ =
i
2
ψ̄t∂tψt −

i
2
ψt∂tψ̄t − iϵ|∂tψt |2, (15.76)

which in fact resolves basically every conceptual difficulty with the path integral.

To wit, the ϵ term together with the prefactors in the normalisation is enough

to construct a Wiener measure over the paths entering the integral [36]. This

means that for every positive ϵ we are now dealing with a path integral over

entirely continuous paths, on which the appropriate Dirichlet boundary condi-

tions may be validly imposed. Furthermore, the differential operator in the ac-

tion is now second order, meaning that the standard Dirichlet boundary condi-

tions are now correct in number for solutions of the equations of motion to exist:

no changes to the boundary conditions as in the Berezin approach are required

(though we will see in the next chapter that the Berezin approach can be derived

as a simplification of this). This also means that the differential operator with

these Dirichlet boundary conditions is elliptic and thus subject to Forman’s the-

orem [30], meaning fluctuation corrections can now be calculated as a functional

determinant of a well-defined operator which may be analysed directly without

reverting to the discrete action. The procedure for any calculation is thus to per-

19Again, the construction in Chap. 15 was for the complex conjugates of these functions, but
the idea is exactly the same. Also there |β,n⟩ was written as |x,p,n⟩.

20The actual results of [1], [2] are significantly more rigorous, but most of the ‘idea’ is encom-
passed in this result [36].



212 CHAPTER 15. THE COHERENT STATE PATH INTEGRAL

form it with an ϵ > 0 for which the integral is very well-defined, and then take

the ϵ→ 0 limit of the result. In a heuristic way this acts somewhat like a Wick

rotation, allowing one to improve the properties of the integral and perform cal-

culations before then ‘rotating back’ by setting ϵ→ 0.

The main difficulties with this approach are that the limit may be difficult to

perform and that the action is now complex. The first difficulty may be quite

serious both analytically (an explosion of ϵ factors may make even problems that

should be exactly solvable intractable) and numerically (the equations of motion

may become very stiff in this limit), so often one seeks to derive a way to avoid

taking the limit explicitly. The second leads to the method of steepest descent

being necessary, which introduces problems not faced with the method of sta-

tionary phase as described in Appendix D. Since the Feynman-Vernon action is

complex regardless, however, in the non-equilibrium setting this is the case re-

gardless so extra complexity arises only in the zero temperature and equilibrium

settings.

Before concluding, it is also important to consider how a Hamiltonian (or

other operator like a Lindbladian) enters in this picture. This will be addressed

in the next section.

15.4.1 Wick Symbol versus P-Symbol

Consider the conventional discrete action corresponding to the very simple Hamil-

tonian ωa†a, whose Wick symbol at time n is ωψ̄n+1ψn:

SN =
N∑
n=0

δt

[
i
2
ψ̄n+1

ψn+1 −ψn
δt

− i
2
ψn
ψ̄n+1 − ψ̄n

δt
−ωψ̄n+1ψn

]
. (15.77)

We may rewrite this in matrix form by introducing

−M−1 =



−1

1− iωδt −1

1− iωδt −1

1− iωδt −1

1− iωδt −1

1− iωδt −1




N, (15.78)

Ψ =
(
ψ1 . . . ψN

)T
, (15.79)

in terms of which it becomes

iSN = −Ψ †M−1Ψ +Ψ †


ψ0
...

0

+


0
...

ψ̄N+1(1− iωδt)


T

Ψ −
|ψN+1|2

2
−
|ψ0|2

2
. (15.80)
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It is easy to show that detM−1 = 1, and from here a simple Gaussian integral

yields∫
dΨ dΨ̄ eiS[Ψ ,Ψ̄ ] = e−

1
2 (|ψ0|2+|ψN+1|2) detM = e−

1
2 (|ψ0|2+|ψN+1|2)eψ0ψ̄N (1−iω T

N+1 )N .

(15.81)

In the limit of N →∞ this becomes (ψ0 = ψi , ψN+1 = ψf )

lim
N→∞

e−
1
2 (|ψ0|2+|ψN+1|2)eψ0ψ̄N+1(1−iω T

N+1 )N = e−
1
2 (|ψi |2+|ψf |2)+ψ̄f ψie−iωT . (15.82)

which is the known correct result for ⟨φf |e−iH0T |φi⟩ [10]. At this stage we may

observe that it is crucial for this result that the −iωδt term be off of the main

diagonal. Moving it to said diagonal, as the usual continuous time notation sug-

gests, alters the determinant of M−1 to detM−1
diag = eiωT which is incorrect.

What this example demonstrates is that the error incurred by replacing the

Wick symbol H(ψ̄n+1,ψn) by H(ψ̄t,ψt) in the continuous time limit is in fact

meaningful for the fluctuational determinant. Repeating the above calculation

using Forman’s theorem for the continuous version of the action with the KD ϵ

term gives the same erroneous result, but the correct result may be obtained by

observing that

δtωψ̄n+1ψn = δtωψ̄nψn + δt2ω
ψ̄n+1 − ψ̄n

δt
ψn (15.83)

and rather than discarding the second term, replacing it by ϵωψt∂tψ̄t in the con-

tinuous time limit. The correctness of this procedure could be heuristically ar-

gued on the grounds that when we performed the substitution 2ϵ → ϵ
δt , we en-

sured that ϵ goes to 0 faster than δt and so one cannot discard dt2 terms so long

as the dt ϵ|∂tψt |2 term is present. This would lead, however, to delicate question

about the order of the δt → 0 and ϵ → 0 limits which it would be best to avoid

as the rigour of such manipulations would be in question. An alternative way of

avoiding this difficulty is thus desirable.

The answer comes in the form of observing that the detM−1
diag = eiωT func-

tional determinant result would in fact be correct for the anti-normal ordered

Hamiltonian ωaa†. Anti-normal ordered Hamiltonians do not have simple Wick

symbols, but often have an alternative symbol known as the Glauber-Sudarshan

P-Symbol. If this is the case, then the Hamiltonian (or other operator) may be

represented as ∫
d[ψ,ψ̄] |ψ⟩PH (ψ,ψ̄)⟨ψ| (15.84)

with PH the P-symbol of the Hamiltonian.

While essentially every operator has a Wick symbol (referred to as the T-

representation by Glauber), the same is not true of the P-symbol [53]. Any anti-

normal ordered operator that is polynomial in the a, a† operators does have such
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a symbol however, which is why the main KD results [1], [2] specifically refer to

polynomial Hamiltonians.

To use the P-symbol in construction of the path integral for such an operator,

one inserts the coherent state resolution of identity between the a and a† opera-

tors, so that for instance if H =ωaa†, we have

ωaa† =
∫
d[ψn, ψ̄n]a|ψn⟩⟨ψn|a† =

∫
d[ψn, ψ̄n] |ψn⟩(ω|ψn|2)⟨ψn| (15.85)

and PH =ω|ψn|2. One then Trotterizes e−iHT and represents e−iHδt by

e−iHδt ≈ I − iHδt =
∫
d[ψ,ψ̄] |ψ⟩

(
1− iPH (ψ,ψ̄)δt

)
⟨ψ| ≈

∫
d[ψ,ψ̄] |ψ⟩e−iPH (ψ,ψ̄)δt⟨ψ|

(15.86)

which may be justified rigorously. These are then stacked together in the usual

way, using the projector integral kernel expression for the overlap of coherent

states to obtain the kinematic part of the action. Notice that the P-symbol con-

tains the fields at equal times and thus does not introduce the δt error when pass-

ing to the continuous time limit, so it makes sense that the continuous time ac-

tion with fields at equal times would correspond to it and give the correct answer

for an anti-normal rather than normal ordered operator. As such, the Hamilto-

nian in a continuous time KD action should be interpreted as the P-symbol of an

anti-normal ordered polynomial operator. If the original operator was normal or-

dered, it should first be brought to anti-normal form via commutation relations

prior to constructing the integral.

In the next chapter I will use the ideas of KD for Hamiltonian path integrals

to construct an analogous path integral for Lindbladians, which so far as I am

aware has not appeared in the literature. The key ingredients will be the integral

kernel for the projector on the appropriate Hilbert space defined above, and an

appropriate operator kernel for constructing what are essentially P-symbols of

superoperators.



Chapter 16

P-Symbol Coherent State Path
Integral for Lindbladian Operators

16.1 Alternative construction: The Superoperator Anti-

normal Kernel

An alternative to [24] construction of the path integral for a Lindbladian stems

from representing the superoperator via the antinormal kernel

I =
∫
d[ψ+, ψ̄+]d[ψ−, ψ̄−]

(
|ψ+⟩⟨ψ−|

)
⊗
(
|ψ−⟩⟨ψ+|

)
(16.1)

This approach follows the lessons learned from the Klauder-Daubechies formal-

ism, allowing us to avoid error terms in the action and have better control over

the operator ordering.

Applying this superoperator to an operator involves tracing that operator

against the right hand side term in the integrand tensor product, after which it is

clear from the coherent state resolution of identity that the above is the identity

superoperator.

A typical Lindbladian constructed from the a†, a ladder operators1 can be re-

cast as an antinormal-ordered non-Hermitian Hamiltonian, an antinormal-ordered

recycling term, and a constant resulting from the antinormal-ordering:

H =
∑
j

QjRj(a)Sj(a
†), Qj ∈C, (16.2)

R =
∑
k

Yk
→
T k(a)

→
U k(a

†)
←
V k(a

†)
←
W k(a), (16.3)

L = −i
→
H + i

←
H† +R+C(Q,Y). (16.4)

1Everything in this section easily generalises to multiple creating and annihilation operators,
so long as their number is finite. Evidently in the case of field theories there are complications
with naively commuting the operators [54].
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Here an arrow over a normal operator denotes a superoperator corresponding to

application from the appropriate side:

→
O[ρ] =Oρ,

←
O[ρ] = ρO, (16.5)

and it is notable that operators with arrows pointing in different directions com-

mute.

When interacting with the superoperator kernel, superoperators coming to

the right (before) the kernel will apply to the right hand side tensor product

term from the opposite side to what their arrow suggests. This is because in

the trace against this term they initially apply to the other operator being traced

over, and then in the process of moving over by trace cyclicity change side. When

applying to the left (after) the kernel, they apply to the left hand side tensor

product term from the side one would expect from their arrow since this is just a

direct application.

We may now write

→
H =

∑
j

Qj
→
Rj(a)I

→
S j(a

†)

=
∑
j

Qj
→
Rj(a)

(∫
d[ψ+, ψ̄+]d[ψ−, ψ̄−]

(
|ψ+⟩⟨ψ−|

)
⊗
(
|ψ−⟩⟨ψ+|

))→
S j(a

†)

=
∫
d[ψ+, ψ̄+]d[ψ−, ψ̄−]

∑
j

QjRj(ψ
+)Sj(ψ̄

+)
(
|ψ+⟩⟨ψ−|

)
⊗
(
|ψ−⟩⟨ψ+|

)
,

(16.6)

←
H† =

∑
j

Q̄j
←
Rj(a

†)I
←
S j(a)

=
∑
j

Q̄j
←
Rj(a

†)
(∫

d[ψ+, ψ̄+]d[ψ−, ψ̄−]
(
|ψ+⟩⟨ψ−|

)
⊗
(
|ψ−⟩⟨ψ+|

))←
S j(a)

=
∫
d[ψ+, ψ̄+]d[ψ−, ψ̄−]

∑
j

Q̄jRj(ψ̄
−)Sj(ψ

−)
(
|ψ+⟩⟨ψ−|

)
⊗
(
|ψ−⟩⟨ψ+|

)
,

(16.7)

R =
∑
k

Yk
→
T k(a)

→
U k(a

†)
←
V k(a

†)
←
W k(a) =

∑
k

Yk
→
T k(a)

←
V k(a

†)I
→
U k(a

†)
←
W k(a)

=
∑
k

Yk
→
T k(a)

←
V k(a

†)
(∫

d[ψ+, ψ̄+]d[ψ−, ψ̄−]
(
|ψ+⟩⟨ψ−|

)
⊗
(
|ψ−⟩⟨ψ+|

))→
U k(a

†)
←
W k(a)

=
∫
d[ψ+, ψ̄+]d[ψ−, ψ̄−]

∑
k

YkTk(ψ
+)Vk(ψ̄

−)Uk(ψ̄
+)Wk(ψ

−)
(
|ψ+⟩⟨ψ−|

)
⊗
(
|ψ−⟩⟨ψ+|

)
,

(16.8)
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which permits us to represent the infinitesimal time evolution operator as

eLδt ≈ eC(Q,Y)δt
(
I +

[
−i
→
H + i

←
H† +R

]
δt

)
= eC(Q,Y)δt

∫
d[ψ+, ψ̄+]d[ψ−, ψ̄−]

(
|ψ+⟩⟨ψ−|

)
⊗
(
|ψ−⟩⟨ψ+|

)
·
1 +

∑
j

i
(
Q̄jRj(ψ̄

−)Sj(ψ
−)−QjRj(ψ+)Sj(ψ̄

+)
)

+
∑
k

YkTk(ψ
+)Vk(ψ̄

−)Uk(ψ̄
+)Wk(ψ

−)

δt
≈ eC(Q,Y)δt

∫
d[ψ+, ψ̄+]d[ψ−, ψ̄−]

(
|ψ+⟩⟨ψ−|

)
⊗
(
|ψ−⟩⟨ψ+|

)
·exp

∑
j

i
(
Q̄jRj(ψ̄

−)Sj(ψ
−)−QjRj(ψ+)Sj(ψ̄

+)
)

+
∑
k

YkTk(ψ
+)Vk(ψ̄

−)Uk(ψ̄
+)Wk(ψ

−)

δt.
(16.9)

From here we simply need to evaluate the geometric part of the action, which

originates from the interaction of two kernel superoperators at adjacent moments

in time:[(
|ψ+
n+1⟩⟨ψ

−
n+1|

)
⊗
(
|ψ−n+1⟩⟨ψ

+
n+1|

)] [(
|ψ+
n ⟩⟨ψ−n

)
⊗
(
|ψ−n⟩⟨ψ+

n |
)]

= ⟨ψ+
n+1|ψ

+
n ⟩⟨ψ−n |ψ−n+1⟩

[(
|ψ+
n+1⟩⟨ψ

−
n+1|

)
⊗
(
|ψ−n⟩⟨ψ+

n |
)]

∼ exp

−δtϵ

∣∣∣∣∣∣ψ+

n+1 −ψ+
n

δt

∣∣∣∣∣∣2 +
∣∣∣∣∣ψ−n+1 −ψ−n

δt

∣∣∣∣∣2



· exp
[
δt
2

(
ψ+
n+1

ψ̄+
n+1 − ψ̄+

n

δt
− ψ̄+

n+1
ψ+
n+1 −ψ+

n

δt
−ψ−n+1

ψ̃−n+1 − ψ̃−n
δt

+ ψ̄−n+1
ψ−n+1 −ψ−n

δt

)]
·
[(
|ψ+
n+1⟩⟨ψ

−
n+1|

)
⊗
(
|ψ−n⟩⟨ψ+

n |
)]
.

(16.10)

where I have used ∼ to denote the omission of normalising factors associated

with the holomorphic polarisation projection operator. As discussed in the last

chapter, these are independent of the dynamics of the integral and thus may be

neglected so long as the integral is normalised against a known one2.

2In so far as we use Forman’s Theorem (see Appendix C), we will always do this to regularise
our functional determinants. As ever, a more rigorous discussion is present in [1], [2].
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Setting δt = T
N , by Trotterization we obtain

eTL = eδtL . . . eδtL︸      ︷︷      ︸
N

=
∫ N∏

m=1

d[ψ+
m, ψ̄

+
m]d[ψ−m, ψ̄

−
m]eiS1,N−1[{ψn,ψ̄n}]

(
|ψ+
N ⟩⟨ψ

−
N |

)
⊗
(
|ψ−1 ⟩⟨ψ

+
1 |
)
,

(16.11)

Sp,q =i
q∑
n=p

δtϵ


∣∣∣∣∣∣ψ+

n+1 −ψ+
n

δt

∣∣∣∣∣∣2 +
∣∣∣∣∣ψ−n+1 −ψ−n

δt

∣∣∣∣∣2


−i
q∑
n=p

δt
2

ψ+
n+1

ψ̄+
n+1 − ψ̄+

n

δt
− ψ̄+

n+1
ψ+
n+1 −ψ+

n

δt

−ψ−n+1
ψ̃−n+1 − ψ̃−n

δt
+ ψ̄−n+1

ψ−n+1 −ψ−n
δt


+

N∑
n=1

δt

∑
j

(
Q̄jRj(ψ̄

−
n )Sj(ψ

−
n )−QjRj(ψ+

n )Sj(ψ̄
+
n )

)
− i

∑
k

YkTk(ψ
+
n )Vk(ψ̄

−
n )Uk(ψ̄

+
n )Wk(ψ

−
n )


− i

N∑
n=1

δtC(Q,Y).

(16.12)

This representation can be used to obtain matrix elements of the time evolution

operator in various bases. The most straightforward expression is obtained for

the coherent states basis, yielding(
|ψ−f ⟩⟨ψ

+
f |
)
eTL

(
|ψ+
i ⟩⟨ψ

−
i |
)

=
∫ N∏

m=1

d[ψ+
m, ψ̄

+
m]d[ψ−m, ψ̄

−
m]eiS0,N−1[{ψn,ψ̄n}] · ⟨ψ+

f +φ+
f |ψ

+
N ⟩⟨ψ

−
N +φ−N |ψ

−
f ⟩

=
∫ N∏

m=1

d[ψ+
m, ψ̄

+
m]d[ψ−m, ψ̄

−
m]eiS0,N [{ψn,ψ̄n}]

(16.13)

where ψi = ψ0, ψf = ψN+1.
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The continuum limit of the action S0,N as N →∞ comes out to

Sc =
∫
dt

iϵ (|∂tψ+
t |2 + |∂tψ−t |2

)
+
i
2

(
ψ̄+
t ∂tψ

+
t −ψ+

t ∂tψ̄
+
t − ψ̄−t ∂tψ−t +ψ−t ∂tψ̄

−
t

)
+
∑
j

(
Q̄jRj(ψ̄

−
t )Sj(ψ

−
t )−QjRj(ψ+

t )Sj(ψ̄
+
t )

)
− i

∑
k

YkTk(ψ
+
t )Vk(ψ̄

−
t )Uk(ψ̄

+
t )Wk(ψ

−
t )


(16.14)

and a final integration by parts yields, with ψ+
T = ψ+

f , ψ−T = ψ−f , ψ+
0 = ψ+

i , ψ−0 = ψ−i ,

the form of the propagator that we will use for the remainder of this part:

(
|ψ−f ⟩⟨ψ

+
f |
)
eTL

(
|ψ+
i ⟩⟨ψ

−
i |
)

=
∫
d[ψ+

t , ψ̄
+
t ]d[ψ−t , ψ̄

−
t ]eiS , (16.15)

S =
i
2

(
|ψ+
i |

2 + |ψ−f |
2 − |ψ+

f |
2 − |ψ−i |

2
)

+
∫
dt

iϵ (|∂tψ+
t |2 + |∂tψ−t |2

)
+ i

(
ψ̄+
t ∂tψ

+
t − ψ̄−t ∂tψ−t

)
+
∑
j

(
Q̄jRj(ψ̄

−
t )Sj(ψ

−
t )−QjRj(ψ+

t )Sj(ψ̄
+
t )

)
− i

∑
k

YkTk(ψ
+
t )Vk(ψ̄

−
t )Uk(ψ̄

+
t )Wk(ψ

−
t )

.
(16.16)

Before moving on to concrete calculations, in the next section we will consider a

simplification that allows us to find ‘effective’ classical trajectories of this action

without an explicit ϵ→ 0 limit.
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16.2 Equivalence of Berezin and Daubechies-Klauder

Equations of Motion

Denoting the portion of the action coming from the Lindbladian by −iL[ψ+
t , ψ̄

+
t ,ψ

−
t , ψ̄

−
t ],

the equations of motion for our action are3

2∂t Imψ+
t + i

δL
δReψ+

t
= −2iϵ∂2

t Reψ+
t , (16.17)

2∂tReψ+
t − i

δL
δ Imψ+

t
= 2iϵ∂2

t Imψ+
t , (16.18)

2∂t Imψ−t − i
δL

δReψ−t
= 2iϵ∂2

t Reψ−t , (16.19)

2∂tReψ−t + i
δL

δ Imψ−t
= −2iϵ∂2

t Imψ−t , (16.20)

where we have had to write them in terms of the real fields because the action is

complex4. These equations are correct, but difficult to use. Solving them analyti-

cally for systems where closed-form solutions are available often yields unwieldy

expressions in ϵ, the limits of which as ϵ → 0 are difficult to find, while nu-

merically they are liable to become very stiff as ϵ → 0. It would be favourable,

therefore, to obtain a way of solving them without explicitly taking that limit.

How to do this for purely Hamiltonian systems is known [15], and I now ex-

tend this method to the Lindbladian setting. The resulting method closely re-

sembles Berezin’s approach, but with a different justification. We start with the

ansatz

Reψ+
t = q+

t + (Reψ+
i − q

+
0 )e−t/ϵ + (Reψ+

f − q
+
T )e−(T−t)/ϵ, (16.21)

Imψ+
t = r+

t + (Imψ+
i − r

+
0 )e−t/ϵ + (Imψ+

f − r
+
T )e−(T−t)/ϵ, (16.22)

Reψ−t = q−t + (Reψ−i − q
−
0 )e−t/ϵ + (Reψ−f − q

−
T )e−(T−t)/ϵ, (16.23)

Imψ−t = r−t + (Imψ−i − r
−
0 )e−t/ϵ + (Imψ−f − r

−
T )e−(T−t)/ϵ, (16.24)

where ψ̃± are not restricted to being real. This represents the bulk of the motion

occurring as qt, rt, with a short time period on the order of ϵ at either end during

which the solution corrects to satisfy the boundary conditions. Substituting this

into the real and imaginary parts of each equation5 and taking the ϵ→ 0 limit,

3Recall that the fields are fixed at both initial and final times, so the functional derivatives
used to obtain these equations yield no boundary constraint equations.

4This and why we are permitted to complexify real variables when searching for solutions
when applying the method of steepest descent is covered in Appendix D.

5It is important to do it this way to correctly account for the deformed contour, because the
real and imaginary parts of each equation must be satisfied individually. Substituting the ansatz
directly into the complex forms of the equations does not correctly enforce this.
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we obtain the following constraints:

q+
0 + ir+

0 = Reψ+
i + i Imψ+

i , q+
T − ir

+
T = Reψ+

f − i Imψ+
f , (16.25)

q−0 − ir
−
0 = Reψ−i − i Imψ−i , q−T + ir−T = Reψ−f + i Imψ−f , (16.26)

2∂tr
+
t + i

δL
δReψ+

t

∣∣∣∣∣∣
ψ→q,r

= 0, (16.27)

2∂tq
+
t − i

δL
δ Imψ+

t

∣∣∣∣∣∣
ψ→q,r

= 0, (16.28)

2∂tr
−
t − i

δL
δReψ−t

∣∣∣∣∣∣
ψ→q,r

= 0, (16.29)

2∂tq
−
t + i

δL
δ Imψ−t

∣∣∣∣∣∣
ψ→q,r

= 0, (16.30)

where ψ→ q,r indicates that q+
t , r+

t , q−T , r−t are substituted for Reψ+
t , Imψ+

t , Reψ−t ,

Imψ−t . Defining

φ+
t = q+

t + ir+
t , φ̃+

t = q+
t − ir+

t , φ−t = q−t + ir−t , φ̃−t = q−t − ir−t , (16.31)

and taking account of the definition of Wirtinger derivatives6, these may be

rewritten as

φ+
0 = ψ+

i , φ̃+
T = ψ̄+

f , (16.32)

φ̃−0 = ψ̄−i , φ−T = ψ−f , (16.33)

∂tφ
+
t − i

δL
δψ̄+

t

∣∣∣∣∣∣
ψ→φ

= 0, (16.34)

∂tφ̃
+
t + i

δL
δψ+

t

∣∣∣∣∣∣
ψ→φ

= 0, (16.35)

∂tφ
−
t + i

δL
δψ̄−t

∣∣∣∣∣∣
ψ→φ

= 0, (16.36)

∂tφ̃
−
t − i

δL
δψ̄−t

∣∣∣∣∣∣
ψ→φ

= 0, (16.37)

where now ψ → φ indicates that φ+
t , φ̃+

t , φ−T , φ̃−t are substituted for ψ+
t , ψ̄+

t , ψ−t ,

6 ∂
∂ψ = 1

2

(
∂

∂Reψ − i
∂

∂ Imψ

)
, ∂
∂ψ̄

= 1
2

(
∂

∂Reψ + i ∂
∂ Imψ

)
.
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ψ̄−t .

These equations and the halved set of boundary conditions look exactly like

those stipulated in the Berezin approach if it was extended to Lindbladian func-

tional integrals. Observe that φ+
t is fixed at t = 0 but φ−t is fixed at t = T , and

vice versa for their conjugates: this agrees with Berezin’s reasoning that there are

no ψ+
N+1, ψ−0 , ψ̄+

0 , ψ̄−T in the discrete action when constructed the conventional

way (see Sec 8.2). Our action does contain these terms, however, and we have

arrived at these equations not as the true equations of motion but as the effective

equations for the bulk of the motion as ϵ→ 0. It remains to understand how to

substitute them back into the action

S =
i
2

(
|ψ+
i |

2 + |ψ−f |
2 − |ψ+

f |
2 − |ψ−i |

2
)

+
∫
dt

iϵ (|∂tψ+
t |2 + |∂tψ−t |2

)
+ i

(
ψ̄+
t ∂tψ

+
t − ψ̄−t ∂tψ−t

)
− iL[ψ+

t , ψ̄
+
t ,ψ

−
t , ψ̄

−
t ]

.
(16.38)

Substituting our ansatz (and taking account of the boundary conditions for φ)

from earlier corresponds to substituting

ψ+
t → φ+

t + (ψ+
f −φ

+
T )e−(T−t)/ϵ, (16.39)

ψ̄+
t → φ̃+

t + (ψ̄+
i − φ̃

+
0 )e−t/ϵ, (16.40)

ψ−t → φ−t + (ψ−i −φ
−
0 )e−t/ϵ, (16.41)

ψ̄−t → φ̃−t + (ψ̄−f − φ̃
−
T )e−(T−t)/ϵ. (16.42)

Upon substitution it can be shown that the iϵ
(
|∂tψ+

t |2 + |∂tψ−t |2
)

terms in the ac-

tion vanish because they decay to 0 as ϵ → 0 on (0,T ) while at t = 0,T they are

annihilated by the boundary conditions. Similarly, because the iL[ψ+
t , ψ̄

+
t ,ψ

−
t , ψ̄

−
t ]

term contains no time derivatives, as ϵ → 0 all the exponential terms inside it

decay to 0 on (0,T ) while their values do not matter on the boundary as it is a set

of measure 0, effectively leaving iL[φ+
t , φ̃

+
t ,φ

−
t , φ̃

−
t ].

The terms i
(
ψ̄+
t ∂tψ

+
t − ψ̄−t ∂tψ−t

)
, however, do interact with the exponential

terms when a single exponential term is present . If the exponential term is not

affected by a derivative, it decays point-wise to zero and there is no contribution.

If it is differentiated with respect to time, however, the extra factor of ϵ−1 means

there is a small contribution from near one of the boundaries of the interval.

Thus, via integration by parts, it can be shown that

i lim
ϵ→0

∫ T

0
dt φ̃+

t ∂t(ψ
+
f −φ

+
T )e−(T−t)/ϵ = iφ̃+

T (ψ+
f −φ

+
T ) = iψ̄+

f (ψ+
f −φ

+
T ), (16.43)

−i lim
ϵ→0

i

∫ T

0
dt φ̃−t ∂t(ψ

−
i −φ

−
0 )e−t/ϵ = iφ̃−0(ψ−i −φ

−
0 ) = iψ̄−i (ψ−i −φ

−
0 ), (16.44)
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so that after substitution the action becomes

S =
i
2

(
|ψ+
i |

2 + |ψ−f |
2 + |ψ+

f |
2 + |ψ−i |

2 − 2φ+
T ψ̄

+
f − 2φ−0ψ̄

−
i

)
+
∫
dt

i (φ̃+
t ∂tφ

+
t − φ̃−t ∂tφ−t

)
− iL[φ+

t , φ̃
+
t ,φ

−
t , φ̃

−
t ]

. (16.45)

Note that varying this action with respect to φ yields (16.34)–(16.37) so long as

one disregards the boundary terms outside the integral. As such, when we refer

to varying this action, we will mean a formal manipulation involving only the

integral portion.

This way of finding the leading contribution in the method of steepest descent

is very convenient. Though we will not consider any such examples in this part,

when calculating functional determinants that depend on the classical path it

should be possible to find the effective path φ via this method and then substitute

the full ansatz before taking the ϵ→ 0 limit. At present, unfortunately, I do not

know of an analogous approach that would allow one to not take the ϵ→ 0 limit

of the functional determinant: the present approach relies greatly on the action

depending only on the integral of the path, while Forman’s theorem depends

specifically on path boundary values. Finding such an approach would likely

constitute the next meaningful step in this development.
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Chapter 17

Exact Result for the Coherently
Driven Harmonic Oscillator

17.1 Coherently Driven-Dissipative Harmonic Oscil-

lator

The Hamiltonian of the system which we refer to as the Coherently Driven Har-

monic Oscillator (the F and E terms may be viewed as a classical coherent drive)

is

HCDHO = δa†a+ iE(a† − a) +F(a† + a). (17.1)

Setting the Lindbladian jump operator as L = a, we first write the Lindbladian

Lρ = −i[HCDHO,ρ] + 2κ
(
aρa† − 1

2

(
a†aρ+ ρa†a

))
(17.2)

in our standard form1:

L = −i
→
H + i

←
H† +R+C, (17.3)

H = (F + iE)a† + (F − iE)a+ (δ − iκ)aa†, R = 2κ
→
a
←
a†, C = 2κ. (17.4)

Setting ω = δ + iκ, Φ = F + iE and mapping ⟨⟨ψf |eTL|ψi⟩⟩ into a path integral via

our kernel, we obtain

S =
i
2

(
|ψ+
i |

2 + |ψ−f |
2 − |ψ+

f |
2 − |ψ−i |

2
)

+
∫
dt

iϵ (|∂tψ+
t |2 + |∂tψ−t |2

)
+ i

(
ψ̄+
t ∂tψ

+
t − ψ̄−t ∂tψ−t

)
− ω̄ψ̄+

t ψ
+
t − Φ̄ψ+

t −Φψ̄+
t +ωψ̄−t ψ

−
t +Φψ̄−t + Φ̄ψ−t − 2iκψ+

t ψ̄
−
t − 2iκ

]
.

(17.5)

1Recall the superoperator arrow notation of Sec.16.1.
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For the purposes of finding the effective classical paths described in the last sec-

tion, our effective action becomes

S =
i
2

(
|ψ+
i |

2 + |ψ−f |
2 + |ψ+

f |
2 + |ψ−i |

2 − 2φ+
T ψ̄

+
f − 2φ−0ψ̄

−
i

)
+
∫
dt

i (φ̃+
t ∂tφ

+
t − φ̃−t ∂tφ−t

)
− ω̄φ̃+

t φ
+
t − Φ̄φ+

t −Φφ̃+
t +ωφ̃−t φ

−
t +Φφ̃−t + Φ̄φ−t − 2iκφ+

t φ̃
−
t − 2iκ

]
.

(17.6)

Varying it with respect to φt yields2 equations of motion

i∂tφ
+
t − ω̄φ+

t −Φ = 0, (17.7)

i∂tφ̃
+
t + ω̄φ̃+

t + Φ̄ + 2iκφ̃−t = 0, (17.8)

i∂tφ
−
t −ωφ−t −Φ + 2iκφ+

t = 0, (17.9)

i∂tφ̃
−
t +ωφ̃−t + Φ̄ = 0, (17.10)

with φ+
0 = ψ+

i , φ̃+
T = ψ̄+

f , φ̃−0 = ψ̄−i , φ−T = ψ−f . Rewriting the action as

S =
i
2

(
|ψ+
i |

2 + |ψ−f |
2 + |ψ+

f |
2 + |ψ−i |

2 −φ+
T ψ̄

+
f − φ̃

+
0ψ

+
i −φ

−
0ψ̄
−
i − φ̃

−
Tψ
−
f

)
+
∫
dt

 i2 (
φ̃+
t ∂tφ

+
t −φ+

t ∂tφ̃
+
t − φ̃−t ∂tφ−t +φ−t ∂tφ̃

−
t

)
− ω̄φ̃+

t φ
+
t − Φ̄φ+

t −Φφ̃+
t +ωφ̃−t φ

−
t +Φφ̃−t + Φ̄φ−t − 2iκφ+

t φ̃
−
t − 2iκ

]
.

(17.11)

and substituting the effective classical solutions of the above equations yields

⟨⟨ψf |eTL|ψi⟩⟩ =e
1
2

(
φ+
T ψ̄

+
f +φ̃+

0ψ
+
i +φ−0 ψ̄

−
i +φ̃−Tψ

−
f −|ψ

+
i |

2−|ψ−f |
2−|ψ+

f |
2−|ψ−i |

2
)

· e
i
2

∫ T
0 dt (Φφ̃−t +Φ̄φ−t −Φφ̃+

t −Φ̄φ+
t )

· e2κT
∫
D[δψ+

t ,δψ̄
+
t ,δψ

−
t ,δψ̄

−
t ]eiSf [{δψt ,δψ̄t}]

(17.12)

2Recall that this is a formal manipulation and we vary only the integral portion of the action.
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where the last term is the quadratic fluctuation integral with

iSf =
∫
dt

− ϵ (|∂tδψ+
t |2 + |∂tδψ−t |2

)
−
(
δψ̄+

t ∂tδψ
+
t − δψ̄−t ∂tδψ−t

)
− iω̄δψ̄+

t δψ
+
t + iωδψ̄−t δψ

−
t + 2κδψ+

t δψ̄
−
t

]

= −
∫ T

0
dt


δψ+

r

δψ+
i

δψ−r
δψ−i


T

M


δψ+

r

δψ+
i

δψ−r
δψ−i

 ,
(17.13)

M =


−ϵ

2


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

︸              ︷︷              ︸
P0

d2

dt2
+


0 i 0 0

−i 0 0 0

0 0 0 −i
0 0 i 0

︸            ︷︷            ︸
P1

d
dt

+


iω̄ 0 −κ iκ

0 iω̄ −iκ −κ
−κ −iκ −iω 0

iκ −κ 0 −iω

︸                       ︷︷                       ︸
P1


. (17.14)

The fluctuational integral thus comes down to evaluating the functional de-

terminant of the operator M. Since detP0 , 0 and the boundary conditions are

homogeneous Dirichlet, M is an elliptic operator and thus subject to Forman’s

theorem. Applying it (see Appendix C), the determinant is found to be detM =

e4κT , so that (detM)−
1
2 = e−2κT perfectly cancels the factor that arose from the

antinormal-ordering. We once again see that the quadratic fluctuations are criti-

cal for correctly taking account of the operator ordering.

The contribution from the classical path, which may be calculated exactly for

this linear boundary problem, comes out to be

⟨⟨ψf |eTL|ψi⟩⟩ = exp

− 1
2

(
|ψ+
i |

2 + |ψ+
f |

2 + |ψ−i |
2 + |ψ−f |

2
)

+ ei(ω−ω̄)T (e−iωT − 1)
Φ̄

ω︸                    ︷︷                    ︸
A(T )

ψ+
i + ei(ω−ω̄)T (eiω̄T − 1)

Φ

ω̄︸                   ︷︷                   ︸
B(T )

ψ̄−i

+ (e−iω̄T − 1)
Φ

ω̄︸         ︷︷         ︸
C(T )

ψ̄+
f + (eiωT − 1)

Φ̄

ω︸        ︷︷        ︸
D(T )

ψ−f

+ψ+
i ψ̄

+
f e
−iω̄T +ψ−f ψ̄

−
i e
iωT +ψ+

i ψ̄
−
i (1− ei(ω−ω̄)T )

−C(T )D(T )

.

(17.15)

Here we have introduced the functions A(t), B(t), C(t), D(t) for convenience in
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later perturbative treatments.

17.1.1 Spectrum of the Coherently Driven Harmonic Oscillator

The spectrum of the operator in this case may easily be extracted from the trace,

since we know the propagator is exact. Noting that the trace has to be taken over

all basis elements, not only diagonal ones, we must consider a double integral for

z = ψ+
f = ψ+

i , u = ψ−f = ψ−i :

Tr⟨⟨ψf |eTL|ψi⟩⟩ =
∫
dψ ⟨⟨ψf |eTL|ψi⟩⟩

=
∫
d[z̄, z]d[ū,u] exp

− zu
†  1− e−iω̄T 0

−1 + ei(ω−ω̄)T 1− eiωT

zu


+

A(T )

D(T )

T zu
+

zu
† C(T )

B(T )

−C(T )D(T )


=

1
(1− e−iω̄T )(1− eiωT )

=
1

(eiδT − e−κT )(e−iδT − e−κT )
.

(17.16)

Expanding this in a suitable series yields the sum of exponents of eigenvalues:

Tr⟨⟨ψf |eTL|ψi⟩⟩ = (1− e−κT−iδT )−1(1− e−κT+iδT )−1

= (
∞∑
n=0

e−n(κ+iδ)T )(
∞∑
m=0

e−m(κ−iδ)T )
(17.17)

from which we can read off the eigenvalues

λm,n = −n(κ+ iδ)−m(κ − iδ) ∀n,m ∈N0. (17.18)

Checking this against the method of bosonic third quantisation [55] confirms that

we have found the correct spectrum (the explicit final result in the cited paper

appears to be missing λ0,1 and λ1,0, but the actual algebra in the paper and the

fact our expression reduces to the known correct expression for κ → 0 means

they must be there). While we will not go to the effort of working out all the

eigenvectors, we can easily identify the stationary state by taking T → ∞. This
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yields

lim
T→∞
⟨⟨ψf |eTL|ψi⟩⟩ = exp

[
−1

2

(
|ψ+
f |

2 + |ψ−f |
2
)
− Φ
ω̄
ψ̄+
f −

Φ̄

ω
ψ−f −

|Φ |2

|ω|2

]
= exp

[
−1

2

(
|ψ+
f |

2 +
|Φ |2

|ω|2

)
− Φ
ω̄
ψ̄+
f

]
]exp

[
−1

2

(
|Φ |2

|ω|2
+ |ψ−f |

2
)
− Φ̄
ω
ψ−f

]
=

〈
−Φ
ω̄

∣∣∣∣∣ψ−f 〉〈ψ+
f

∣∣∣∣∣−Φω̄
〉
.

(17.19)

The steady state is thus ∣∣∣∣∣−Φω̄
〉〉

=
∣∣∣∣∣−Φω̄

〉〈
−Φ
ω̄

∣∣∣∣∣ . (17.20)

This makes sense for the following reason. Our Lindbladian is invariant under

the following inhomogeneous transformation [56]:

L→ L+
Φ

ω̄
, (17.21)

HCDHO→HCDHO + iκ
Φ

ω̄
a† − iκ Φ̄

ω
a. (17.22)

Introducing b = a+ Φ
ω̄ , our Lindbladian may be rewritten as (we can discard any

real constants appearing in the Hamiltonian since they do not affect the resulting

Lindbladian)

H = δb†b, (17.23)

Lρ = −i[H,ρ] + 2κ
(
bρb† − 1

2

(
b†bρ+ ρb†b

))
. (17.24)

Since ∥b†b∥ ≥ 0, the zero energy ground state of the new Hamiltonian is the state

annihilated by b, which is precisely
∣∣∣−Φω̄ 〉

. At the same time,
∣∣∣−Φω̄ 〉〈

−Φω̄
∣∣∣ is clearly

annihilated by the dissipative part of the Lindbladian, and these facts together

mean L
∣∣∣−Φω̄ 〉〈

−Φω̄
∣∣∣ = 0 and thus it is the steady state.

While these spectral results are not new, with [55] providing a way to solve

essentially any quadratic Lindbladian via a method known as ‘third quantisation’

and giving fairly general results, they demonstrate that the Lindbladian path in-

tegral propagator formalism is capable of correctly replicating them. Moreover,

the process of obtaining them has highlighted how the Klauder-Daubechies for-

malism allows for full control of the operator ordering and the exact calculation

of the associated functional determinant, showing that the resulting coherent

state path integral is a well-behaved and controlled object. Finally, as far as I

know the expression for the propagator itself is novel and in the next chapter

we will put it to use to derive a path integral perturbative approach to finding

spectra.



230 CHAPTER 17. EXACT RESULT FOR THE CDHO

17.2 Incoherent and Parametric Drive

Having obtained an expression for the coherently driven harmonic oscillator, a

reasonable next step would be to consider oscillators with incoherent (possessing

an L = a† jump operator) and parametric (possessing a Hamiltonian term Hp =

λ((a†)2 +a2)) drive. Being able to derive the propagator for either one would yield

an approximate propagator for the other, as they are connected by a Bogoliubov

transformation up to terms that vanish in the rotating wave approximation [19].

In the time devoted to this project, unfortunately, I was not able to obtain

tractable expression for the propagator of either oscillator. With the aid of Math-

ematica [57] formal expressions were obtainable for both the classical path con-

tribution and fluctuational derivative, but were colossal in size and failed to sim-

plify even with computer algebra. Moreover, taking the ϵ→ 0 limit of the fluctu-

ational determinant expression was infeasible under these circumstances. Thus,

while these systems are in principle solvable exactly via the path integral, ob-

taining a useful expression this way seems difficult. In the next chapter we will

obtain some perturbative results for the spectrum of both oscillators augmented

with a further coherent drive.



Chapter 18

Perturbation Theory

18.1 Perturbative Evaluation of the Propagator

It is possible to obtain perturbative corrections to spectra of Lindbladians by per-

turbatively evaluating their associated propagator. This may be done knowing

only the propagator for the coherently driven harmonic oscillator. For any per-

turbation of that oscillator’s Lindbladian (recall it must be anti-normal ordered)

Lpert = LCDHO +χl(a,a†), (18.1)

the real part of the coherent state action for the associated Lindbladian will take

the form

S = SCDHO +χ
∫ T

0
dt l(ψ+

t , ψ̄
+
t ,ψ

−
t , ψ̄

−
t ). (18.2)

Performing a perturbative expansion in χ of the propagator [10] amounts to tak-

ing the functional integral representation of it and Taylor-expanding the portion

of the integrand exponential containing the perturbation to the action. Schemat-

ically (t0 = T , ψ(T ) = ψf )

⟨⟨ψf |eTLpert |ψi⟩⟩ =
∫ ψf

ψi

DψeiSCDHO+χ
∫
dt l(ψ(t))

∼
∞∑
n=0

χn
∫ T

0
dt1 . . .

∫ tn−1

0
dtn

∫ ψf

ψi

DψeiSCDHO

n∏
j=1

l(ψ(tj))

∼
∞∑
n=0

χn
∫ T

0
dt1

∫
dψ(t1) . . .

∫ tn−1

0
dtn

∫
dψ(tn)

· ⟨⟨ψ(tn)|etnLCDHO |ψi⟩⟩

·
n−1∏
j=0

⟨⟨ψ(tn−j−1)|e(tn−j−1−tn−j )LCDHO |ψ(tn−j)⟩⟩l(ψ(tn−j)).

(18.3)

231
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where I have omitted most indices and details of the notation to make clear the

skeleton of the calculation. The final line is obtained by performing the unper-

turbed path integrals between the times at which the perturbing terms f (ψ(tj))

appear to obtain unperturbed propagators, leaving integration only over the dy-

namical variables at those times. It is also important to keep in mind that this

series will generally be asymptotic rather than convergent.

We may define the terms in this series recursively by the following scheme:

⟨⟨ψf |eTLpert |ψi⟩⟩ =
∞∑
n=0

Xn[ψf ;T ], (18.4)

X0[ψ; t] = ⟨⟨ψ|etLCDHO |ψi⟩⟩, (18.5)

Xn[ψ; t] = χ
∫ t

0
dt′

∫
dψ′ ⟨⟨ψ|e(t−t′)LCDHO |ψ′⟩⟩l(ψ′, ψ̄′)Xn−1[ψ′; t′]. (18.6)

This recursive structure will significantly simply some of our calculations.

Returning the forwards/backwards contour indices to our notation, the first or-

der perturbation is

χ

∫ T

0
dt

∫
D[u, ū]D[v, v̄]⟨⟨ψ+

f ,ψ
−
f |e

(T−t)LCDHO |u,v⟩⟩l(u, ū,v, v̄)⟨⟨u,v|etLCDHO |ψ+
i ,ψ

−
i ⟩⟩,

(18.7)

while the second is given by

χ2
∫ T

0
dt

∫ t

0
dt′

∫
D[u, ū]D[v, v̄]D[w,w̄]D[x, x̄]

· ⟨⟨ψ+
f ,ψ

−
f |e

(T−t)LCDHO |w,x⟩⟩l(w,w̄,x, x̄)

· ⟨⟨w,x|e(t−t′)LCDHO |u,v⟩⟩l(u, ū,v, v̄)

· ⟨⟨u,v|et
′LCDHO |ψ+

i ,ψ
−
i ⟩⟩.

(18.8)

I will restrict the calculations in this chapter to the first two perturbative orders,

though I will provide a general expression for a generating function for arbitrary

order.

Begin by defining the auxiliary functions

A′u(t) = A(t) + ūe−iω̄t, (18.9)

B′v(t) = B(t) + veiωt, (18.10)

C′w(t) = C(t) +we−iω̄t, (18.11)

D ′x(t) =D(t) + x̄eiωt. (18.12)
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This allows us to write

⟨⟨u,v|e(t−t′)LCDHO |w,x⟩⟩ = exp


− 1

2

wx
†  1 0

2(ei(ω−ω̄)(t−t′) − 1) 1

wx
+

A′u(t − t′)
0

T wx
+

wx
†  0

B′v(t − t′)


− 1

2

uv
† 1 0

0 1

uv
+

uv
† C(t − t′)

0

+

 0

D(t − t′)

uv
−C(t − t′)D(t − t′)

.
(18.13)

Since the integrals over u, v, w, x here will be of the form of Gaussian moments,

it is useful to combine terms of the above form in at each perturbation order

into a single exponent. For first order perturbations we may then add source

terms J1, J2, J3, J4 for u, ū, v, v̄ to obtain the generating function F1(J1, J2, J3, J4),

while for second order the additional source terms J5, J6, J7, J8 for w, w̄, x, x̄ are

required to obtain F2(J1, J2, J3, J4, J5, J6, J7, J8). In general, at nth order there will

be 4n source terms, with J1+4j , J2+4j , J3+4j , J4+4j , 1 ≤ j ≤ n − 1, corresponding to

ψ+(tn−j), ψ̄+(tn−j), ψ−(tn−j), ψ̄−(tn−j) respectively. Differentiation with respect to

the source terms will then bring down the appropriate variables into the integral.

Because of the recursive structure outlined above, the most prudent way to do

this is to define a helper kernel (compare to ⟨⟨u,v|e(t−t′)LCDHO |w,x⟩⟩)

K(J1, J2, J3, J4)[u,v,w,x; t, t′] = exp


− 1

2

wx
†  1 0

2(ei(ω−ω̄)(t−t′) − 1) 1

wx
+

A′u(t − t′) + J1
J3

T wx
+

wx
†  J2

B′v(t − t′) + J4


− 1

2

uv
† 1 0

0 1

uv
+

uv
† C(t − t′)

0

+

 0

D(t − t′)

uv
−C(t − t′)D(t − t′)

,
(18.14)

in terms of which we may write (compare to the recursive structure for the per-

turbation series terms)

F0()[u,v,w,x; t1] = ⟨⟨u,v|et1LCDHO |w,x⟩⟩, (18.15)

Fn(J1 . . . J4n)[u,v,w,x; t1, . . . , tn+1]
∣∣∣∣
J=0

=
∫
d[y, ȳ]d[z, z̄]K(J4n−3, J4n−2, J4n−1, J4n)[u,v,y,z; t1, t2]

·Fn−1(J1 . . . J4(n−1))[y,z,w,x; t2, . . . , tn+1].

(18.16)
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Then∫
d[u, ū]d[v, v̄]⟨⟨ψ+

f ,ψ
−
f |e

(T−t)LCDHO |u,v⟩⟩uaūbvcv̄d⟨⟨u,v|etLCDHO |ψ+
i ,ψ

−
i ⟩⟩ (18.17)

may be obtained from the first generating function as

∂aJ1∂
b
J2
∂cJ3∂

d
J4
F1(J1, J2, J3, J4)[ψ+

f ,ψ
−
f ,ψ

+
i ,ψ

−
i ;T ,t]

∣∣∣∣
J=0
, (18.18)

while∫
d[u, ū]d[v, v̄]d[w,w̄]d[x, x̄]⟨⟨ψ+

f ,ψ
−
f |e

(T−t)LCDHO |w,x⟩⟩wew̄f xg x̄h

· ⟨⟨w,x|e(t−t′)LCDHO |u,v⟩⟩uaūbvcv̄d⟨⟨u,v|et
′LCDHO |ψ+

i ,ψ
−
i ⟩⟩

(18.19)

is given by

∂aJ1∂
b
J2
∂cJ3∂

d
J4
∂eJ5∂

f
J6
∂
g
J7
∂hJ8F2(J1, J2, J3, J4, J5, J6, J7, J8)[ψ+

f ,ψ
−
f ,ψ

+
i ,ψ

−
i ;T ,t, t′]

∣∣∣∣
J=0
.

(18.20)

The Gaussian integrals involved are comparatively simple, and we may avoid

work by first calculating the first order generating function

F1(J1, J2, J3, J4)[ψ+
f ,ψ

−
f ,ψ

+
i ,ψ

−
i ;T ,t]

=
∫
d[u, ū]d[v, v̄]K(J1, J2, J3, J4)[ψ+

f ,ψ
−
f ,u,v;T ,t]⟨⟨u,v|etLCDHO |ψ+

i ,ψ
−
i ⟩⟩

=
∫
d[u, ū]d[v, v̄] exp

−C(t)D(t)−C(T − t)D(T − t)

−
uv

†  1 0

(ei(ω−ω̄)(T−t) − 1) 1

uv
+

A′(T − t) + J1
D ′(t) + J3

T uv
+

uv
†  C′(t) + J2

B′(T − t) + J4


− 1

2

ψ+
f

ψ−f


† 1 0

0 1


ψ+

f

ψ−f

+

ψ+
f

ψ−f


† C(T − t)

0

+

 0

D(T − t)


ψ+

f

ψ−f


− 1

2

ψ+
i

ψ−i

†  1 0

2(ei(ω−ω̄)t − 1) 1

ψ+
i

ψ−i

+

ψ+
i

ψ−i

†  0

B(t)

+

A(t)

0

ψ+
i

ψ−i


(18.21)
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which comes out to

exp


A′ψ+

f
(T − t) + J1

D ′ψ−i
(t) + J3


T  1 0

(1− ei(ω−ω̄)(T−t)) 1


 C′ψ+

i
(t) + J2

B′ψ−f
(T − t) + J4

+

− 1
2

ψ+
f

ψ−f


† 1 0

0 1


ψ+

f

ψ−f

+

ψ+
f

ψ−f


† C(T − t)

0

+

 0

D(T − t)


ψ+

f

ψ−f


− 1

2

ψ+
i

ψ−i

†  1 0

2(ei(ω−ω̄)t − 1) 1

ψ+
i

ψ−i

+

ψ+
i

ψ−i

†  0

B(t)

+

A(t)

0

ψ+
i

ψ−i


−C(t)D(t)−C(T − t)D(T − t)

.

(18.22)

It is clear that for all Js equal to zero this reduces to the CDHO propagator, so we

may write

F1(J1, J2, J3, J4)[ψ+
f ,ψ

−
f ,ψ

+
i ,ψ

−
i ;T ,t] =⟨⟨ψ+

f ,ψ
−
f |e

TLCDHO |ψ+
i ,ψ

−
i ⟩⟩Λ(J1, J2, J3, J4)[T ,t]

·H(J2, J3)[ψ+
f ,ψ

−
f ;T ,t]

·C(J1, J2, J3, J4)[ψ+
i ,ψ

−
i ;T ,t].

(18.23)

f (t, t′) = (1− ei(ω−ω̄)(t−t′))e−iω̄t
′
, (18.24)

g(t, t′) = (1− ei(ω−ω̄)(t−t′))eiωt
′
, (18.25)

H(Ja, Jb)[u,v; t, t′] = exp

ūe−iω̄(t−t′)Ja + veiω(t−t′)Jb

, (18.26)

C(Ja, Jb, Jc, Jd)[u,v; t, t′] = exp

u(Jae
−iω̄t′ + f (t, t′)Jc) + v̄(eiωt

′
Jd + g(t, t′)Jb)

 (18.27)

Λ(Ja, Jb, Jc, Jd)[t, t′] =exp

A(t − t′)Jb +C(t′)Ja + JaJb

+ (1− ei(ω−ω̄)(t−t′))(C(t′)Jc +D(t′)Jb + JbJc)

+B(t − t′)Jc +D(t′)Jd + JcJd

.
(18.28)
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More generally, the above result is easily extrapolated1 to∫
d[u, ū]d[v, v̄]K(Ja, Jb, Jc, Jd)[u,v,y,z; tn−1, tn]

· ⟨⟨y,z|etnLCDHO |ψ+
i ,ψ

−
i ⟩⟩H(Je, Jf )[y,z; tn, tn+1]

=Λ(Ja, J
′
b, J
′
c, Jd)[tn−1, tn]C(Ja, J

′
b, J
′
c, Jd)[ψ+

i ,ψ
−
i ; tn−1, tn]

⟨⟨u,v|etn−1LCDHO |ψ+
i ,ψ

−
i ⟩⟩H(J ′b, J

′
c)[u,v; tn−1, tn],

(18.29)

J ′b = Jb + e−iω̄(tn−tn+1)Je, J ′c = Jc + eiω(tn−tn+1)Jf , (18.30)

which means that, by repeatedly applying (18.16) starting from F1, we find that

(t0 = T ):

Fn(J1 . . . J4n)[ψ+
f ,ψ

−
f ,ψ

+
i ,ψ

−
i ;T ,t1, . . . , tn]

∣∣∣∣
J=0

=⟨⟨ψ+
f ,ψ

−
f |e

TLCDHO |ψ+
i ,ψ

−
i ⟩⟩H(Mn,4n−2,Mn,4n−1)[ψ+

f ,ψ
−
f ;T ,t1]

·
n−1∏
i=0

Λ(J1+4i ,Mn,2+4i ,Mn,3+4i , J4+4i)[tn−i−1, tn−i]

·C(J1+4i ,Mn,2+4i ,Mn,3+4i , J4+4i)[ψ
+
i ,ψ

−
i ; tn−i−1, tn−i],

(18.31)

where, for j ≥ 1,

Mn,4j−2 = J4j−2 + e−iω̄(tn−j+1−tn−j+2)M4(j−1)−2, (18.32)

Mn,4j−1 = J4j−1 + eiω(tn−j+1−tn−j+2)M4(j−1)−1, (18.33)

Mn,2 = J2, (18.34)

Mn,3 = J3. (18.35)

Armed with this expression and a symbolic computation tool like [57] it is possi-

ble to perform perturbative calculations to fairly high orders if desired.

To calculate the spectrum of a Lindbladian, our usual approach is to take the

trace of its associated propagator. The generating functions for the asymptotic

series terms of this trace are simply the traces of the generating functions for the

1Replacing T , t by tn−1, tn, ψ+
f , ψ−f by u, v, and redefining Js by absorbing the H term yields

this result from the one above it.
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propagator series:

Tn(J1 . . . J4n)[T ,t1, . . . , tn] = Tr
[
Fn(J1 . . . J4n)[ψ+

f ,ψ
−
f ,ψ

+
i ,ψ

−
i ;T ,t1, . . . , tn]

]
=Tr

[
⟨⟨ψ+

f ,ψ
−
f |e

TLCDHO |ψ+
i ,ψ

−
i ⟩⟩H(Mn,4n−2,Mn,4n−1)[ψ+

f ,ψ
−
f ;T ,t1]

·
n−1∏
i=0

C(J1+4i ,Mn,2+4i ,Mn,3+4i , J4+4i)[ψ
+
i ,ψ

−
i ; tn−i−1, tn−i]

]
·
n−1∏
i=0

Λ(J1+4i ,Mn,2+4i ,Mn,3+4i , J4+4i)[tn−i−1, tn−i].

=
∫
d[ψ,ψ̄]d[φ,φ̄]

⟨⟨ψ,φ|eTLCDHO |ψ,φ⟩⟩

· exp


ψφ

†  e−iω̄(T−t1)Mn,4n−2∑n−1
i=0

[
J4+4ie

iωtn−i + g(tn−i−1, tn−i)M2+4i

]


· exp


∑n−1

i=0 J1+4ie
−iω̄tn−i + f (tn−i−1, tn−i)M3+4i

eiω(T−t1)Mn,4n−1

T ψφ




·
n−1∏
i=0

Λ(J1+4i ,Mn,2+4i ,Mn,3+4i , J4+4i)[tn−i−1, tn−i]

(18.36)

This final trace integral is Gaussian and may be done exactly. Denoting

Wn = e−iω̄(T−t1)Mn,4n−2, (18.37)

Xn = eiω(T−t1)Mn,4n−1, (18.38)

Yn =
n−1∑
i=0

J1+4ie
−iω̄tn−i + f (tn−i−1, tn−i)Mn,3+4i , (18.39)

Zn =
n−1∑
i=0

J4+4ie
iωtn−i + g(tn−i−1, tn−i)Mn,2+4i , (18.40)

M =

 1 + 1
−1+eiT ω̄

0
i
2

(
cot

(
ωT
2

)
− cot

(
ω̄T
2

))
1

1−eiωT

 (18.41)

we finally have

Tn(J1 . . . J4n)[T ,t1, . . . , tn] =

1
(1− e−iω̄T )(1− eiωT )

exp

Yn +A(T )

Xn +D(T )

MWn +C(T )

Zn +B(T )

−C(T )D(T )


·
n−1∏
i=0

Λ(J1+4i ,Mn,2+4i ,Mn,3+4i , J4+4i)[tn−i−1, tn−i].

(18.42)

To extract the eigenvalue correction from this, we consider the symbolic expres-

sion for the traced propagator in terms of its spectrum (we assume a unique
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steady state):∫
d[u, ū]d[v, v̄]⟨⟨u,v|eTLχ |u,v⟩⟩ = 1 +

∞∑
n=1

(eλn(χ)T + eλ̄n(χ)T ). (18.43)

Were we to assume that this expression is analytic in χ, the linear change would

be

χ ·∂χ
[∫

d[u, ū]d[v, v̄]⟨⟨u,v|eTLχ |u,v⟩⟩
]
χ=0

= T χ ·
∞∑
n=1

[∂λn(χ)
∂χ

]
χ=0

eλn(0)T +
[
∂λ̄n(χ)
∂χ

]
χ=0

eλ̄n(0)T

 . (18.44)

We can rewrite this in terms of the real and imaginary parts of the eigenvalues as

T χ ·
∞∑
n=1

2eRe[λn(0)]T

cos(T Im[λn(0)])Re
[
∂λn(χ)
∂χ

]
χ=0

−sin(T Im[λn(0)]) Im
[
∂λn(χ)
∂χ

]
χ=0

 .
(18.45)

Taking λ1 to have the largest real part, for T →∞ this expression will tend to just

T χ · 2eRe[λ1(0)]T

cos(T Im[λ1(0)])Re
[
∂λ1(χ)
∂χ

]
χ=0

−sin(T Im[λ1(0)]) Im
[
∂λ1(χ)
∂χ

]
χ=0

 . (18.46)

The quadratic change, meanwhile, comes out to

χ2

2
·∂2
χ

[∫
d[u, ū]d[v, v̄]⟨⟨u,v|eTLχ |u,v⟩⟩

]
χ=0

=T
χ2

2
·
∞∑
n=1

[∂2λn(χ)
∂χ2

]
χ=0

eλn(0)T +
[
∂2λ̄n(χ)
∂χ2

]
χ=0

eλ̄n(0)T


+ T 2χ

2

2
·
∞∑
n=1

[∂λn(χ)
∂χ

]2

χ=0
eλn(0)T +

[
∂λ̄n(χ)
∂χ

]2

χ=0
eλ̄n(0)T

 ,
(18.47)

which again may be rewritten in terms of the real and imaginary parts of the
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eigenvalues:

T χ2 ·
∞∑
n=1

eRe[λn(0)]T

cos(T Im[λn(0)])Re
[
∂2λn(χ)
∂χ2

]
χ=0

−sin(T Im[λn(0)]) Im
[
∂2λn(χ)
∂χ2

]
χ=0


+T 2χ2 ·

∞∑
n=1

eRe[λn(0)]T

cos(T Im[λn(0)])Re

(∂λn(χ)
∂χ

)2
χ=0

−sin(T Im[λn(0)]) Im

(∂λn(χ)
∂χ

)2
χ=0

 .

(18.48)

With λ1 having the largest real part, for T →∞ this expression will tend to

T χ2eRe[λ1(0)]T

cos(T Im[λ1(0)])Re
[
∂2λ1(χ)
∂χ2

]
χ=0

−sin(T Im[λ1(0)]) Im
[
∂2λ1(χ)
∂χ2

]
χ=0


+T 2χ2eRe[λ1(0)]T

cos(T Im[λ1(0)])Re

(∂λ1(χ)
∂χ

)2
χ=0

−sin(T Im[λ1(0)]) Im

(∂λ1(χ)
∂χ

)2
χ=0

 .

(18.49)

By matching these results against terms in our perturbation series, we should

be able to extract derivatives of the eigenvalues with respect to χ. Note that,

since we are using the coherently driven harmonic oscillator as the basis for our

perturbation method, we haveℜ[λ1(0)] = −κ andℑ[λ1(0)] = iδ. We may now

consider the linear and quadratic corrections to the spectra of some systems.

18.2 Spectra Calculations

We will consider four systems, namely the parametrically driven oscillator, an

anti-normal ordered Kerr oscillator, an incoherently driven oscillator, and an os-

cillator with ternary dissipation. The first of these are Hamiltonian systems with

linear dissipation of strength 2κ, so we may compare our results against those ob-

tained for linear dissipation systems with a truncated Fock basis in [58]. Specif-

ically, it was found there that if the Hamiltonian has spectrum En, the spectrum

of the corresponding truncated Lindbladian with our linear dissipation strength

should be

λn,m = −i(En −Em)−κ(n+m), n,m ∈ N0. (18.50)
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We will find that our results agree with this result, suggesting that our pertur-

bation theory captures a similar portion of the true result to truncating the Fock

basis.

18.2.1 Parametrically Driven Harmonic Oscillator

We will take the parametrically driven harmonic oscillator to be the coherently

driven harmonic oscillator with a Hamiltonian perturbed by

HCDHO→HCDHO +χ((a†)2 + a2). (18.51)

This corresponds to the following perturbation to the action (from now on we

absorb the perturbation coefficient into l):

δS =
∫ T

0
dt l(ψ+

t , ψ̄
+
t ,ψ

−
t , ψ̄

−
t ), (18.52)

l(ψ+
t , ψ̄

+
t ,ψ

−
t , ψ̄

−
t ) = iχ

[
(ψ−t )2 + (ψ̄−t )2 − (ψ+

t )2 − (ψ̄+
t )2

]
. (18.53)

Applying the theory from the previous section, we find the following first and

second order perturbations to the trace of the propagator:

χ : iχ
∫ T

0
dt

(
∂2
J3

+∂2
J4
−∂2

J1
−∂2

J2

)
T1(J1, . . . , J4)[T ,t] = 0, (18.54)

χ2 : −χ2
∫ T

0
dt1

∫ t1

0
dt2

(
∂2
J7

+∂2
J8
−∂2

J5
−∂2

J6

)(
∂2
J3

+∂2
J4
−∂2

J3
−∂2

J4

)
· T2(J1, . . . , J8)[T ,t1, t2]

=
χ2T eκT sin(δT )

δ (cos(δT )− cosh(κT ))2 .

(18.55)

There is thus no linear correction to any of the eigenvalues, while taking T →∞
and using (18.49) suggests that the quadratic corrections to the non-zero eigen-

values with largest real part are

λ1→ λ1 −
2iχ2

δ
= −κ+ i

(
δ − 2χ2

δ

)
, (18.56)

λ̄1→ λ̄1 −
2iχ2

δ
= −κ − i

(
δ − 2χ2

δ

)
. (18.57)

When the parametrically driven oscillator is stable, the spectrum for Φ = 0 is

easily found by a Bogoliubov transformation [19] to be En = n
√
δ2 − 4χ2, so for a

truncated Fock basis the expected spectrum would be

λn,m = −i(n−m)
√
δ2 − 4χ2 −κ(n+m). (18.58)
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The two non-zero eigenvalues with largest real part would be λ1,0 = −i
√
δ2 − 4χ2−

κ and λ0,1 = i
√
δ2 − 4χ2 −κ, and it is easy to check that their series expansions in

χ match our result. Based on the perturbative result, the Φ terms appear to again

not affect the spectrum.

18.2.2 Antinormal Kerr Oscillator

We will consider an antinormal-ordered Kerr perturbation of the Hamiltonian

χa2(a†)2. This is partly because it is neater for our antinormal formalism, but also

because unlike its normal-ordered counterpart it generates non-zero corrections

to the leading eigenvalues. Thus

δS =
∫ T

0
dt l(ψ+

t , ψ̄
+
t ,ψ

−
t , ψ̄

−
t ), (18.59)

l(ψ+
t , ψ̄

+
t ,ψ

−
t , ψ̄

−
t ) = iχ

[
(ψ−t )2(ψ̄−t )2 − (ψ+

t )2(ψ̄+
t )2

]
, (18.60)

and first order correction is given by

iχ

∫ T

0
dt (∂2

J3
∂2
J4
−∂2

J1
∂2
J2

)T (J1, . . . , J4)[T ,t]

=
T χeκT sin(δT )

((
δ2 +κ2

)
sinh(κT )−

(
δ2 + 2F2 +κ2 + 2E2

)
(cos(δT )− cosh(κT ))

)
(δ2 +κ2) (cos(δT )− cosh(κT ))3 .

(18.61)

while the second order one is too cumbersome to fruitfully write down.

Once again matching this against our expression for the series expansion of

the trace in χ, we obtain

ℜ
[
∂λ1(χ)
∂χ

]
χ=0

= 0, (18.62)

ℑ
[
∂λ1(χ)
∂χ

]
χ=0

=
4
(
δ2 +F2 +κ2 +E2

)
δ2 +κ2 , (18.63)

ℜ
[
∂2λ1(χ)
∂χ2

]
χ=0

= −
16κ

(
F2 +E2

)
(δ2 + κ2)2 , (18.64)

ℑ
[
∂2λ1(χ)
∂χ2

]
χ=0

= −
4
(
F2 +E2

)(
20δ4 + δ2

(
20κ2 + 9E2

)
+F2

(
9δ2 +κ2

)
+κ2E2

)
δ (δ2 +κ2)3 .

(18.65)
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Thus our perturbative analysis suggests that:

λ1 =−κ

1 +χ2
8
(
F2 +E2

)
(δ2 + κ2)2


+i

δ+χ
4
(
δ2 +F2 +κ2 +E2

)
δ2 +κ2

−χ2
2
(
F2 +E2

)(
20δ4 + δ2

(
20κ2 + 9E2

)
+F2

(
9δ2 +κ2

)
+κ2E2

)
δ (δ2 +κ2)3

.
(18.66)

We see that in this case the Φ = F + iE terms do affect the spectrum. We may

once again check whether the result is reasonable by considering the spectrum

predicted in the absence of the Φ terms by the truncated Fock basis method. The

Hamiltonian

δa†a+χa2(a†)2 (18.67)

may be rearranged via commutation into (I drop constant terms as these cancel

out in the Lindbladian, and define n = a†a)

δn+ 3χn+χn2. (18.68)

The first non-zero eigenvalue of this is δ + 4χ, so that the truncated method pre-

dicts the non-zero eigenvalues of the Lindbladian with the largest real part to be

λ1 = −κ+ i(δ+4χ), λ̄1 = −κ− i(δ+4χ). This matches the perturbative result when

Φ = 0, though unlike in the previous two examples Φ now affects the spectrum.

Unfortunately, the result fails to pick up the appearance of bistability in the

Kerr oscillator. As seen in Figure 3 of [59], the real part of λ1 does initially

decrease with F but after a certain critical value of the latter reverses and ap-

proaches 0. This corresponds to the beginning of the bistable region. The ab-

sence of this effect from our approach despite the fact that it should be present

for even small non-linearity suggests it is non-perturbative/non-smooth in χ at

χ = 0. This is unfortunate, since it suggests the perturbative approach may be

a poor fit for the study of metastability even in very simple models like the the

Kerr oscillator that exhibit classical metastability.

18.2.3 Incoherently Driven Oscillator

For an oscillator interacting with a bath of oscillators in thermal equilibrium at a

positive temperature, the total dissipator may be represented [19], [58] through

an average thermal occupation number n̄th as

2κ(n̄th + 1)
[
aρa† − 1

2

(
a†aρ+ ρa†a

)]
+ 2κn̄th

[
a†ρa− 1

2

(
aa†ρ+ ρaa†

)]
. (18.69)
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This is essentially an incoherently driven oscillator, but with a restriction on the

magnitude of the drive relative to the dissipation. Since we were unable to obtain

an exact expression for this oscillator in the last chapter and because there is

generally no simple truncated Fock basis formula for systems with such a bath

[58] (though the present quadratic case is covered by [55] and so our result may

be checked), it is a good example to consider.

Replacing the coefficients by arbitrary α, β, this constitutes a perturbation

δL = α
[
aρa† − 1

2

(
a†aρ+ ρa†a

)]
+ β

[
a†ρa− 1

2

(
aa†ρ+ ρaa†

)]
= α

[
aρa† − 1

2

(
aa†ρ+ ρaa†

)]
+ β

[
a†ρa− 1

2

(
aa†ρ+ ρaa†

)]
+αρ.

(18.70)

Mapping them to fields gives

δS =
∫ T

0
dt l(ψ+

t , ψ̄
+
t ,ψ

−
t , ψ̄

−
t ), (18.71)

l(ψ+
t , ψ̄

+
t ,ψ

−
t , ψ̄

−
t ) = αψ+

t ψ̄
−
t + βψ̄+

t ψ
−
t −

α + β
2

ψ̄+
t ψ

+
t −

α + β
2

ψ̄−t ψ
−
t +α, (18.72)

to which we now apply our perturbation expressions. The first order correction

is given by∫ T

0
dt (α∂J1∂J4 + β∂J2∂J3 −

α + β
2

∂J1∂J2 −
α + β

2
∂J3∂J4 +α)T (J1, . . . , J4)[T ,t]

=
T (α − β)

(
2− 2eκT cos(δT )

)
8(cos(δT )− cosh(κT ))2 .

(18.73)

Adjusting our method in turn to α and β instead of χ, we obtain

ℜ
[
∂λ1(α,β)
∂α

]
α,β=0

= −1
2
, ℑ

[
∂λ1(α,β)
∂α

]
α,β=0

= 0, (18.74)

ℜ
[
∂λ1(α,β)

∂β

]
α,β=0

=
1
2
, ℑ

[
∂λ1(α,β)

∂β

]
α,β=0

= 0. (18.75)

Since there are no terms linear in T , the second derivatives are zero, and so to

quadratic order we have

λ1 = −
(
κ+

α − β
2

)
+ iδ (18.76)

This agrees with [55], indeed being the exact result. As stated there, we can see

that a sufficiently large incoherent drive β can destabilize the system. For the

thermal bath, however, α = 2κn̄th = β so there is no correction to the lowest non-

zero eigenvalue.

Overall, we see that the perturbative approach can correctly calculate correc-

tions to eigenvalues of various Lindbladians for which exact propagators are not
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available. As the Kerr oscillator example demonstrates, however, the appearance

of a gap in the spectrum in a system’s metastable regime may be (and likely gen-

erally is) a non-perturbative phenomena.



Chapter 19

Conclusion

While the lofty ambitions of studying metastability in Lindbladian systems that

motivated this work have not been realised, some interesting results have never-

theless been obtained. This includes a path integral-based perturbation theory

for Lindbladian systems and their spectra, offering a simple way to calculate cor-

rections to eigenvalues of systems not covered by the method of third quantisa-

tion [55] or standard formula from the truncated Fock space approach [58].

The perturbative result for the driven-dissipative Kerr oscillator also confirms

that the bistability it exhibits is non-perturbative, highlighting the need for the

development of such methods for the analytical study of metastable systems. A

significant portion of this part is devoted to a review of the difficulties encoun-

tered with one main-stream approach to this problem, namely the instantonic

one [10], [27], due to the limitations of the coherent state path integral typically

employed in condensed matter and quantum optics.

The primary issue is found to be that the conventional formulation of the path

integral [13] lacks a way to represent the fluctuation corrections of the integral

as a property of a well-defined continuous time operator, complicating the anal-

ysis of zero modes associated to instantons. I review this approach alongside the

competing approach of Klauder and Daubechies (KD) [1], [2], highlighting the

relationship between them and the more rigorous nature of the latter. While the

latter approach does allow for the study of fluctuation contributions as a func-

tional determinant of a continuous time operator, the latter is extremely difficult

to analyse for all but the simplest paths, and I express hope that it may be linked

to the more manageable method derived in [16] directly from the discrete form

of the integral.

The KD approach for Hamiltonian dynamics leads to the possibility of defin-

ing an analogous path integral for Lindbladian systems, which I carry out. This

in turn allows for the exact calculation of the propagator for a coherently driven-

dissipative harmonic oscillator, which forms the basis for the aforementioned

perturbation theory. It is hoped that in future exact propagators could be ob-
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tained for more complicated systems, improving the properties of the perturba-

tion theory.

Overall, this part constitutes some preliminary steps towards the study of

Lindbladian spectra via the coherent state path integral. With a perturbation

theory now available, the next step lies in overcoming the challenges associated

with instantons in the coherent state driven dissipative setting. It is hoped that

the review of coherent state theory presented herein will be of value to future

workers pursuing this direction.



Appendix C

Forman’s Theorem

The method we will use to calculate functional determinants is known as For-

man’s Theorem, and is a generalisation of the Gelfand-Yaglom (G-Y) Theorem

[60]. The latter is a well-known method in quantum mechanics and relates the

functional determinant of a Schrödinger-type differential operator

O = −∂2
t +V (t),

ψ(0) = ψ(T ) = 0
(C.1)

to an initial value problem associated to this operator:

Oψ = 0,

ψ(0) = 0, ψ′(0) = 1,

Det[O] � ψ(T ).

(C.2)

Here � signifies ‘formal’ equality. In general functional determinants are naively

divergent, and must be regularised. The G-Y Theorem (and Forman’s Theorem)

perform this regularisation by dividing the formal expression for the required

determinant by the formal expression for a simpler determinant, which has a

known value via other means. Thus, the formal equality becomes a true equality

when a ratio is taken:

Det[O] � ψ(T ), Det[Osimple] � ψsimple(T ),

Det[O]
Det[Osimple]

=
ψ(T )

ψsimple(T )
.

(C.3)

Forman’s Theorem extends this to matrix elliptic differential operators of arbi-

trary order1, though for our purposes we shall present the second-order case with

1The result is more general than this, but we will only require this portion of it.
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Dirichlet conditions. For a differential operator

Ω = P0(t)∂2
t + P1(t)∂t + P2(t),

ψ(a) = 0, ψ(b) = 0,
(C.4)

where P0, P1, and P2 are complex r × r matrices, Forman’s theorem states that

Det[Ω] �
det[MHΩ(a) +NHΩ(b)]√

det[HΩ(a)]det[HΩ(b)]
(C.5)

whereHΩ is a matrix with columns

ψiψ̇i
, ψi are 2r linearly independent solutions

for Ωψ = 0, M is the square block matrix

Ir×r 0

0 0

, and N is

 0 0

Ir×r 0

.

There exist some generalisations of Forman’s theorem to field theories [61],

[62], though I am not aware of an equally general result in that case.



Appendix D

Method of Steepest Descent

The method of steepest descent is a generalisation of both the Laplace method

and the method of stationary phase, applicable when the exponent is neither

purely real nor purely imaginary. Its essence lies in the deformation of the con-

tour of integration to one possessing a constant imaginary part in the vicinity of

select stationary points and thus admitting a local Laplace approximation. This

requires us to consider our initial integration contour as a half-dimensional man-

ifold in a space formed by complexifying all of our real variables of integration,

and to deform it through suitable stationary points in this complexified space.

In functional integral literature the method of steepest descent is sometimes

referred to as “Picard-Lefschetz theory”, possibly due to the term being used in

[63], and represents a flavour of it that relies on results from homology theory.

We will not consider these aspects of it in any detail.

Before considering its applications to functional integration, we shall review

steepest descent for conventional integrals. We will particularly wish to highlight

the complexities related to choosing a suitable complex integration cycle, which

are not specific to functional integration and thus best presented in isolation.

The method of steepest descent consists of two parts [64]:

1. Topological aspect: deformation of the integration contour γ into a contour

γ∗ that is most convenient for obtaining an asymptotic approximation;

2. Analytical aspect: Calculation of the asymptotic approximation from the

contour γ∗.

The second aspect is the more familiar, and is what we shall briefly review

first. This is the ”local” part of the method, as it consists of calculating local ap-

proximations to the integral in the vicinity of stationary points — this can gener-

ally be accomplished by means of a standard formula, and then the contributions

are summed for all the stationary points on the contour.
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Local Steepest Descent Approximation

Consider an integral over a half-dimensional integration cycle γ in an n-dimensional

complex space C
n (a line contour in the complex plane for n = 1) of the following

form ∫
γ
dnzeλI (z), (D.1)

where I is a holomorphic function. We wish to approximate this integral in the

vicinity of a non-degenerate stationary point z0 of I , which we assume lies on γ .

By the complex Morse lemma, there exists a local holomorphic variable change

ω = φ(z) such that

I (ω) = I ◦φ−1(ω) = I (ω0)−
n∑
i=1

ω2
i . (D.2)

If ωi = xi + iyi , this means that (ω0 = φ(z0))

ReI (ω) = ReI ′(ω0)−
n∑
i=1

(x2
i − y

2
i ), (D.3)

ImI (ω) = ImI ′(ω0)−
n∑
i=1

2xiyi , (D.4)

from which we see that non-degenerate stationary points of holomorphic func-

tions are always saddle-points of the real part.

Now assume that the cycle γ was chosen such that in the vicinity of z0, it

is given by yi = 0; This defines a half-dimensional manifold of constant ImI
and fastest decreasing ReI , making it suitable for the application of Laplace’s

method. In a neighbourhood γ0 of z0 on which our coordinate transformation is

defined, we may rewrite

∫
γ0

dnzeλI (z) =
∣∣∣∣∣ ∂z
∂ω

∣∣∣∣∣eλI (z0)
∫
γ0

dnx e
−λ

n∑
i=1
x2
i

≈
(π
λ

)n/2 ∣∣∣∣∣ ∂z
∂ω

∣∣∣∣∣eλI (z0)

(D.5)

where we have employed the real Laplace approximation to approximate the lo-

cal integral. It remains to observe that(
∂z
∂ω

)T
·
(
∂2I
∂z2

)
·
(
∂z
∂ω

)
=

(
∂2I
∂ω2

)
= −2I, (D.6)∣∣∣∣∣ ∂z

∂ω

∣∣∣∣∣ = (
√

2i)n
(
∂2I
∂z2

)−1/2

, (D.7)



251

so that (denoting ∂2I
∂z2 = I ′′(z))

∫
γ0

dnzeλI (z) ≈
∣∣∣∣∣−λI ′′(z0)

2π

∣∣∣∣∣−1/2

eλI (z0). (D.8)

Thus, for a cycle γ passing through stationary points zi0 in an appropriate

local manner, the approximation states

∫
γ
dnzeλI (z) ≈

∑
i

∣∣∣∣∣∣−λI ′′(zi0)
2π

∣∣∣∣∣∣
−1/2

eλI (zi0). (D.9)

Some care ought to be exercised with respect to which branch of the square root

is taken. Splitting
∣∣∣−I ′′(zi0)

∣∣∣ into a product of its eigenvalues
∏
j µj , more careful

considerations than those we have provided [64] indicate that the determinant

should be taken as
∏
j
√
µj , arg(√µj) ≤ π

4 . Since Forman’s theorem does not give

the individual eigenvalues, we will thus generally have a phase ambiguity in our

results obtained with it. For a single classical path this poses no difficulty since

this phase is constant and can be easily worked out by considering limiting be-

haviour such as T → 0. For multiple paths, however, this could lead to inter-

ference effects between them that we will be unable to resolve without explicitly

finding the spectrum of the Hessian. In this part we will only ever deal with a

single path, and so will not run into these difficulties.

Global Problem: Contour Selection

The far more difficult problem, when applying steepest descent, is the selection

of a suitable contour γ . For the approximation to be valid the stationary points

must be the “most important” parts of the cycle, with the integrand negligible

outside their neighbourhoods, and the imaginary part of the integrand should be

locally constant on the contour in their vicinity.

A simple example of how a naive choice of contour (attempting to include

all existing stationary points) may fail is provided in [63] via the Airy function

integral (λ ∈R)

2πλ−1/3Ai(λ2/3) =
∫ ∞
−∞
dxeiλ(x3/3+x). (D.10)

Complexifying the exponent yields

I (z) = i(z3/3 + z), (D.11)
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which possess two stationary points:

∂zI (z) = i(z2 + 1) = 0 (D.12)

=⇒

z = ±i. (D.13)

Including both points would yield the approximation

2πλ−1/3Ai(λ2/3) ≈
√
π
λ
e−

2
3λ ± i

√
π
λ
e

2
3λ, (D.14)

where the second term (z0 = −i) is incorrect: the Airy function of a real variable

is real, and its λ→∞ behaviour scales as e−
2
3λ, which is the contribution of the

first term (z0 = i).



ℝ

z = ⅈ



ℝ

z = -ⅈ

Figure D.1: (Left) One may see that it is easy to draw a non-self intersecting line
through the black point (z = i) which is locally tangent to its dashed surface of steepest
descent, begins and ends in the appropriate green asymptotic regions (0 ≤ Argz < π/3
and 2π/3 < Argz ≤ π ), and stays outside the red forbidden region.

Figure D.2: (Right) It is impossible to draw an analogous non-self intersecting line
through the black point (z = −i).

To understand the problem, it is instructive to plot1 the region of C on which

ReI (z) is greater than I (i), and similarly for I (−i). A contour passing through

one of these two stationary points should not pass through the corresponding

region if that point is to have the largest contribution on the contour.

At the same time, we may plot the lines of constant ImI and fastest decreasing

ReI (from now we will refer to these as surfaces of steepest descent) passing

through the stationary points: a valid contour should be locally tangent to these

lines at the stationary points, as described in the last section.

1We plot using λ = 1−0.01i. The small imaginary part of λ avoids a surface of steepest descent
connecting the stationary points, which is a complication we will not discuss. More details may
be found in [63].
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Finally, any valid contour must have its ends in the appropriate asymptotic

regions: regions at infinity at which ReI (z) → −∞ such that the integral con-

verges, and which are ”connected” to the original contour ends at ±∞. For the

Airy integral these are 0 ≤ Argz < π/3 for∞ and 2π/3 < Argz ≤ π for −∞. Look-

ing at Figures D.1 and D.2, one may see that a non-self intersecting contour (self

intersection implies a closed loop, along which the integral is trivially zero and

should be discarded) passing through z = i and locally tangent to its surface of

steepest descent may be drawn that remains in the region where ReI (z) < ReI (i),

so that z = i is indeed the most significant contribution on such a contour. For

z = −i, however, it is easy to see that an analogous contour does not exist. Thus

this point cannot be included on any contour suitable for an asymptotic approx-

imation, and must be discarded. Doing so yields

2πλ−1/3Ai(λ2/3) ≈
√
π
λ
e−

2
3λ, (D.15)

which is the correct result.

Obviously the kind of graphic analysis performed above is entirely unsuitable

for higher-dimensional integrals. Fortunately, there is a more systematic way to

construct a suitable contour, though it is by no means simple to implement. We

address this in the following section.

Steepest Descent Surfaces

Let us consider the following gradient system in the complexified space (z = x +

iy):

∂sx(s) = −∇xReI (x(s),y(s)), (D.16)

∂sy(s) = −∇y ReI (x(s),y(s)). (D.17)

This system, which for holomorphic I may be rewritten as (and thus shares the

stationary points of the action)

∂sz(s) = −∂zI (z(s)), (D.18)

generates trajectories along which the magnitude of the integrand monotonically

decreases and locally does so the fastest. At the same time, it can be shown that

ImI is a conserved quantity. Indeed, the surface of steepest descent for the sta-

tionary point zi may be characterised as the set [63]

Ji = {z = z(0) : ∂sz(s) = −∂zI (z(s)), z(−∞) = zi} (D.19)

of points reachable from the stationary point by such trajectories.
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Consider now what happens if we evolve the original contour of integration

using this gradient system (the essence of this explanation is due to [65]). Since

the magnitude of the integrand will decrease at every point along the evolved

contour, the convergence of the integral must improve: this means that the ends

of the contour remain in valid asymptotic regions throughout. At the same time,

due to a corollary of Lojasiewicz’s inequality [66], [67], for a real analytic ReI the

trajectories of this system will either converge to its stationary points or diverge

to infinity. Thus, as the contour evolves, portions of it will either move off to

infinity in the valid asymptotic regions (with correspondingly negligible value

of the integrand on them) or become ‘pinned’ on stationary points (and locally

assume the shape of the point’s surface of steepest descent, since the equations

characterising the latter are the same as of the system). A plot of this is provided

for the Airy function:



ℝ

Figure D.3: The original contour (yellow) for the Airy function evolving (colour shifting
to purple as it evolves) into the dashed black steepest descent surface of the z = i
stationary point according to the gradient system ∂sz(s) = −∂zI (z(s)). The ends of the
contour remain within the valid asymptotic regions throughout the evolution and the
final contour lies outside the forbidden red region.

The question of whether the original contour may be validly deformed through

a stationary point thus becomes one of whether the point is reachable from some

point on the original contour via a trajectory of this system: if so, we can evolve

the contour as above and the neighbourhood of this point on it will become

pinned on the corresponding stationary point. There are, however, further com-

plications. Specifically, the neighbourhood may arrive at the stationary point

with different orientations [63], [65], so its contribution is determined only up

to a sign unless the orientation is known. Furthermore, multiple regions of the

original contour may arrive at the same stationary point (possibly with differ-
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ent orientations), and their number must somehow be calculated. A theoreti-

cal answer to these problems is provided in [63], but there is no easy practical

way to implement it. Indeed, even the question of whether a given stationary

point is reachable from the original contour appears intractable in the infinite-

dimensional setting of path integration [68].

Some simplifications are possible. An argument in [63] shows that for a purely

imaginary I , as in zero-temperature quantum mechanics, the dominant station-

ary points appearing on the original contour will contribute a single time with

positive orientation and be dominant over any points not on the contour. The

same reasoning may be used to argue the same for a purely real I , explaining

why these difficulties are not encountered in Laplace’s method and the method

of stationary phase. Furthermore, if only a single stationary point is present,

arguments ibidem show that it will necessarily contribute to the integral. The

multiplicity and orientation of its contribution, however, will not necessarily be

single and positive2. This will not generally be a problem for us, however, as

with all functional integrals we perform the correct value of a limiting case will

be known (this is also essentially necessary to calculate functional determinants

via Forman’s theorem). Thus, like the phase ambiguity discussed in the previ-

ous section, the multiplicity/orientation ambiguity for a single stationary point

is easily resolved by comparing to a known limiting case.

Finding Stationary Points, Phases, and Intersection Numbers

The preceding theory is well-known, and a desire to apply it to functional in-

tegration had been expressed as far back as 1983 [69]. This has been hindered,

however, by the complexity associated with calculating contributing stationary

points, their orientations, and multiplicities [68]. In infinite dimensions this ap-

pears computationally intractable.

The state of affairs is thus roughly as follows. Finding the stationary points of

a given complexified action is by far the simplest part of the theory: in quantum

mechanics this amounts to solving a system of ODEs with appropriate boundary

conditions, while in QFTs these are elevated to PDEs. So long as these can be

solved, the goal is achievable.

Next, how hard it is to calculate the phase associated with the branch of the

square root of the functional determinant varies. If the non-complexified action

is purely real, as it is in Euclidean path integrals, the phase is always zero. In

the case of a purely imaginary action of zero temperature quantum mechanics,

this phase is related to the Maslov index [10] of the trajectory and there is pos-

sibly a similar result for QFT. For a general complex action, such as arises in

Feynman-Vernon path integrals, however, no method appears to exist other than

2If there is a stronger result in this direction, I am unfortunately unaware of it.
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the explicit computation of the spectrum of the associated Hessian. This may be

tractable for some simple differential operators (and in the case of only a single

path may be worked out by other means), but is likely to be very hard in general.

Finally, as mentioned at the start, there is the essentially intractable problem

of identifying which stationary points should contribute, and with what orien-

tations and multiplicities. So far as only a single path is involved, this is not a

problem since it is guaranteed to contribute and the multiplicity/orientation may

be fixed by other means; thus many problems in driven-dissipative quantum me-

chanics (ones for which the equations of motion and their boundary conditions

ensure unique solutions) should be solvable while disregarding this difficulty.

Otherwise, however, there does not appear to be a rigorous way to identifying

contributing points.
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Chapter 20

The Wigner-Moyal Formalism and
Stratonovich Postulates

In Part II we saw that the space of square-integrable functions on the phase space

of a system is typically too large to serve as the Hilbert space we wish to work

with. While the definition of a suitable polarisation and subsequent quantisation

in geometric quantisation can often produce an appropriate smaller subspace,

this conceptually amounts to artificially carving out an effective configuration

space and makes clear that quantum mechanical wave functions are not the nat-

ural objects of study on the phase space.

Stepping back to classical mechanics, this is not entirely surprising. Loosely

associating pure, localized quantum states to classical states of the system, the

latter correspond to individual points of phase space rather than functions de-

fined on it. Yet classical mechanics does involve objects that are precisely such

functions: they are the observables and phase space distribution of the system

[1]. Unlike states, for which the Schrödinger equation is a quantized analogue

of the classical energy-momentum relation1, these objects obey classical dynami-

cal equations expressed through phase space coordinates via the Poisson bracket,

and so we might expect the possibility of building a quantum theory of these ob-

jects on the phase space with dynamical equations reducing to the classical ones

in the ℏ→ 0 limit. That the quantum analogues of these objects exist in spaces

larger than the Hilbert space of the system2 is promising.

This point of view takes us away from geometric quantisation, arriving in-

stead at what is known as deformation quantisation [2]. The goal of this formal-

1Because classical mechanics does not distinguish between state and a fixed set of values for a
complete set of observables (the coordinates in a chart on a symplectic manifold), the Hamilton
equations for the evolution of a state are indistinguishable from equations for the evolution of
observables. Yet upon quantisation these become equations for the evolution of operators (or
their expectations via the Ehrenfest theorem), showing that from a quantum point of view they
are the latter. One is thus forced to construct the Schrödinger equation as the actual dynamical
equation for the state.

2Namely the space of linear operators on that Hilbert space, which for finite Hilbert spaces is
the tensor product of the Hilbert space with its dual.
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ism is to construct an algebra of functions on the phase space symplectic man-

ifold (corresponding to linear operators of the quantum theory) equipped with

a non-commutative star product (since the product of quantum mechanical op-

erators is non-commutative) expressed as a series in ℏ. In the ℏ → 0 limit this

product is to become the ordinary commutative product of functions, while at

linear order in ℏ the commutator expressed in terms of it should reduce to the

appropriate Poisson bracket. From a purely mathematical point of view the se-

ries expression of the star product need not be convergent, giving what is known

as ‘formal deformation quantisation’. If the theory is to describe real physics,

however, it should converge, leading to the more constrained ‘strict deformation

quantisation’.

The most well known result in this direction is the Wigner-Moyal formalism3.

Originally formulated for particles on flat phase space, it constructs a represen-

tation of operator quantum mechanics that fits the scheme outlined above, giving

the following set of correspondences:

Representations of Quantum Mechanics

Classical Physics Matrix Quantum Me-

chanics

Wigner-Moyal Formal-

ism

Phase point Quantum state Pure Wigner function

Phase space

distribution

Density matrix Wigner function

Classical observables Linear operators Functions on the phase-

space manifold

Scalar product Operator product Star (⋆) product

Energy-momentum

relation4

Schrödinger equation von Neumann equation

for a pure Wigner

function

Classical equations of

motion

Heisenberg equations Heisenberg equations

Liouville equation von Neumann equation von Neumann equation

In this formalism one maps linear operators A to functions WA(x,p) (known as

the symbols of the operator) on the flat phase space and vice versa via an operator

3The formalism predates the deformation quantisation program by a good 40 years [3], [4],
so it would be unfair to view it as a product of the latter. Nevertheless, it fits neatly into that
framework.

4Alternatively, the Hamilton-Jacobi equation.
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kernel ∆(x,p) [5]:

∆(x,p) =
∫
dx′ eip·x

′/ℏ|x+ x′/2⟩⟨x − x′/2|, (20.1)

WA(x,p) = Tr[A∆(x,p)] , (20.2)

A =
∫
dx

∫
dp

(2πℏ)n
WA(x,p)∆(x,p), (20.3)

where n is the number of particles in the system. This mapping is evidently

linear, and it is easy to see that Hermitian operators are mapped to real functions

and that WI = 1. Combined with an associative star product known as the Moyal

product

WA(x,p) ⋆ WB(x,p) =WA(x,p)exp
[
i
2
ℏ

(←
∂x ·

→
∂p −

←
∂p ·

→
∂x

)]
WB(x,p), (20.4)

and the standardization and traciality properties

TrA =
∫
dx

∫
dp

(2πℏ)n
WA(x,p), (20.5)

Tr[AB] =
∫
dx

∫
dp

(2πℏ)n
WA(x,p)WB(x,p), (20.6)

this provides all the tools needed to perform quantum mechanical calculations

in terms of these symbols. The density matrix is mapped to a symbol known as

the Wigner function and in the Schrödinger picture this is evolved in time by a

suitable dynamical equation, while in the Heisenberg picture it is the symbols of

other operators that are evolved. Expectations are taken by tracing symbols of

observables against the Wigner function, relying on the traciality property.

Our interest in this construction lies in the following fact: at order O(ℏ2) the

Moyal product is a second order bilinear differential operator. Moreover, the ℏ
0

and ℏ
2 terms are symmetric in the symbols while the ℏ term is antisymmetric.

This means that if one writes down a non-driven dissipative von Neumann equa-

tion in terms of the Wigner function accurate up to O(ℏ2), one obtains a partial

differential equation that is first order in both time and phase variables, while a

Lindbladian master equation will yield one that is first order in time but second

order in phase variables. Since the trace of the density matrix must be conserved

so must the total mass of the Wigner function by the standardization property,

meaning these will be continuity equations. In particular, the partial differential

equation will generally take the form of a Fokker-Planck equation.

Truncating at this order in ℏ thus endows the evolution with a classic stochas-

tic interpretation via the mapping from Fokker-Planck equations to stochastic

differential equations (with no noise in the von Neumann case). This means that

operator expectations in the theory may be computed by sampling trajectories
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from an initial Wigner distribution, evolving them to the time at which the expec-

tation is to be taken, and then averaging the operator symbol over them. While

the Wigner function may, unlike a real probability distribution, have regions of

negative density, one may still make progress by restricting to initially positive

Wigner distributions5 and, in the case of a Fokker-Planck equation with a steady

state, relying on the independence of the steady state from the initial distribu-

tion. This stochastic approximation is the Truncated Wigner approximation we

met in Part Ib, now phrased in terms of the Wigner-Moyal formalism rather than

the path integral.

The Truncated Wigner formalism is well established for particles with a flat

phase space, and there are several related approaches to spin degrees of freedom.

These include various flavours of bosonizing the spins and using the flat space

variant on the resulting quasiparticles [6], the discrete Truncated Wigner method

for spin [7], [8] that uses Wooters’ discrete phase space [9], [10], and approaches

that use the fact that the algebra su(2n) together with the identity matrix spans

the Hilbert space of a cluster of n spin-1
2 particles [11], [12]6.

These are all valuable methods, but all somewhat deviate from the prototypi-

cal Truncated Wigner approximation described above:

• The use of bosonization typically leads to a flat phase space with a con-

straint, so one is in effect doing constraint quantisation [13]. The case of

Schwinger bosons for a single spin, for instance, corresponds to the quan-

tisation of R4 constrained to S3, the latter being diffeomorphic to and car-

rying a transitive action of SU(2) and furnishing a quantum theory of spin

(see section 5.2 of the cited article). This is entirely valid, but is a very ‘ex-

trinsic’ approach to something I feel could be more elegantly described by

constructing the theory on the appropriate manifold from the start.

• Methods based on a discrete phase space evidently do not produce a Fokker-

Planck equation meaning that if one wishes to obtain classical equations

with noise, the latter must be added via external considerations rather than

appearing intrinsically. The truncation involved in the approximation is

also not in ℏ, breaking the connection to deformation quantisation. Finally,

from an aesthetic point of view, this approach de-emphasizes the connec-

tion to the Lie group action on the phase space, which we will see is an

important part of the flat space theory.

• Finally, approaches based on spanning spin Hilbert spaces by appropriate

bases also lack ℏ as a truncation parameter, and must find an alternative
5We will see that it is actually sometimes possible to sample from a non-positive distribution.
6The two cited works are quite different in their specifics, one considering a mapping of sin-

gle spins onto an S2 phase space and the other of clusters onto a flat phase space. The second
work also considers other bases for the Hilbert space. Nevertheless, there is a distinct similarity
between the approaches.
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justification for the truncation. These approaches are also constructed for a

specific magnitude of the spin and size of cluster, as opposed to an approach

where the spin magnitude may be continuously varied (indeed, since di-

mensionless spin magnitude is proportional to ℏ
−1, it is a natural expansion

parameter for the star product).

What we will thus pursue in this part is a Truncated Wigner approach that

is formulated on the spin phase space S2 from the start, respects the deforma-

tion quantisation structure by admitting an expansion in ℏ, exhibits the same

structure for any spin number, and is covariant under the action of the Lie group

associated to the system (SU(2) for spin). This approach was begun with the con-

struction of the Wigner-Moyal correspondence for spin [14] and development of

the Truncated Wigner approach toO(ℏ) [15]–[17]. Our aim here will be to extend

it to O(ℏ2) and thus to stochastic dynamics.

It is useful to begin by understanding the general structure of constructing

a Wigner-Moyal correspondence for a symplectic manifold, known in this con-

text as the Stratonovich-Weyl correspondence, which we will then specialise to

S2 in the next chapter. Specifically, will demand that the classical phase space

and corresponding Hilbert space share a transitive action by a Lie group, namely

that the classical phase space is a symplectic manifoldM, G is a group that acts

transitively onM, and H is a Hilbert space realizing a unitary irreducible repre-

sentation πg of g ∈ G. For the flat phase spaceG is typically the Heisenberg group,

while for spin it will be SU(2)7. With this established, we will seek a mapping

A ∈ L(H)↔ WA ∈ F∞(M) from linear operators on H to (generalized) functions

onM satisfying the following “Stratonovich Postulates” [18]:

1. Linearity: A 7→WA is a one-to-one linear map;

2. Reality: WA† =WA;

3. Standardization:
∫
Mdµ(ζ)WA(ζ) = TrA;

4. Traciality:
∫
Mdµ(ζ)WA(ζ)WB(ζ) = Tr(AB);

5. Covariance: Wg·A(ζ) =WA(g−1 ◦ ζ), where g ·A = πgAπ−1
g .

Here µ(ζ) is an invariant measure (under G) onM. The first four conditions are

familiar from the flat phase space example earlier, with the linearity condition

preserves the linear structure of the quantum theory, while the traciality condi-

tion preserves the statistical properties of the theory when one of the symbols

is of a density matrix. The final postulate is not mandatory to preserving the

structure of the quantum theory, though we will see the motivation for it in the

7Note that, unlike the Heisenberg group and its Stone-von Neumann theorem, SU(2) will have
multiple different irreducible representations corresponding to different spin numbers.
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next section, and could be replaced by another. This may lead to a different

phase space and a de-emphasis of the transitive action of the Lie group, as occurs

in Wooters’ discrete phase space construction [9], [10]. As we are interested in

preserving the geometric structure of the theory, we will retain the covariance

postulate.

The most direct way to achieve this correspondence is through the construc-

tion of a kernel similar to the flat space kernel ∆(x,p) by which operators may be

mapped to functions and vice versa. In the context of the above postulates this is

known as the Stratonovich-Weyl kernel, and is described in the next section.

20.1 Stratonovich-Weyl Operator Kernel

The mapping above can be realised by means of an operator kernel ∆(ζ). Specif-

ically, we implement the mapping via

WA(ζ) = Tr(A∆(ζ)). (20.7)

The traciality property suggests that this mapping can be inverted via

A =
∫
M
dµ(ζ)WA(ζ)∆(ζ), (20.8)

showing that the kernel is self-dual.

The Stratonovich postulates translate to the following properties of the ker-

nel:

1. ∆(ζ)† = ∆(ζ) for all ζ ∈M;

2.
∫
Mdµ(ζ)∆(ζ) = I ;

3.
∫
Mdµ(ζ) Tr(∆(ζ′)∆(ζ))∆(ζ) = ∆(ζ′);

4. ∆(g ◦ ζ) = πg∆(ζ)π−1
g .

Note that the last kernel property is true for the flat space Wigner-Moyal kernel

[5]:

∆(x+ x′,p+p′) = e
i
ℏ

(p′ ·x̂−x′ ·p̂)∆(x,p)
(
e
i
ℏ

(p′ ·x̂−x′ ·p̂)
)†

(20.9)

where e
i
ℏ

(p′ ·x̂−x′ ·p̂) is an element of the unitary irreducible representation of the

Heisenberg group we saw in Part II with ℏ reinserted. Thus the covariance postu-

late generalizes what is true for flat space, stating that the action of the associated

Lie group must always be respected.

If the kernel is successfully constructed for a given system, the task of con-

structing the correspondence is largely accomplished. We shall see in Chap. 22
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that an expression for a star product respecting the correspondence

WAB =WA ⋆ WB (20.10)

may be constructed directly from the Stratonovich-Weyl kernel via an integral

trikernel. The derivation of a differential form of the product, however, is typi-

cally a more difficult task. I will present this derivation only for the case of spin.

In the next chapter we will review the construction of this kernel for the case

of spin, whereinM = S2 and G = SU (2).
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Chapter 21

The Spin Kernel

In the case of a spin-j system, the objects considered in the previous chapter take

on the valuesM = S2, G = SU(2), and the Hilbert space H is 2j + 1-dimensional.

The SU(2)-invariant measure on S2 is, up to normalization, simply the area mea-

sure:

µj(n) =
2j + 1

4π
sinθdθdφ, (21.1)

where n denotes the unit vector of the sphere, and we shall denote this spin-j

kernel by ∆(j)(n).

The explicit form of the spin-j kernel was found in [14] by starting from a

general matrix element representation and progressively restricting it by apply-

ing the Stratonovich postulates. Since this kernel is the foundation of all the work

performed in this part, I devote the present chapter to an exposition of its deriva-

tion. We will also see how it is used to work out the symbols of some standard

operators and density matrices that we will need in subsequent parts.

21.1 SU(2) Tensor Conventions

Throughout this part we will follow the conventions for SU(2) tensors set out

in [19]. In particular, for the spin-j representation, we will have the following

important tensors:

• The epsilon tensor ϵ(j)mn, which is the coordinate vector of the rotationally

invariant combination of two equal spins:

(J (1) + J (2))2
∑
m,n

ϵ(j)mn|jm⟩|jn⟩ = 0. (21.2)

It obeys

ϵ
(j)
nm = (−1)2jϵ

(j)
mn,

∑
m′
ϵ

(j)
mm′ϵ

(j)m′n = (−1)2jδnm, (21.3)

273
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and is also used to raise and lower indices:

vm =
∑
n

ϵ(j)mnvn, vm =
∑
n

vnϵ
(j)
nm; (21.4)

• The Wigner D-matrices D(j)m
n = ⟨jm|π(j)

g |jn⟩, which are the j-dimensional

representation matrices of SU(2). They respect the inversion relation

D
(j)m

n (g−1) = (−1)2jD
(j) m
n (g); (21.5)

• The Clebsch–Gordan coefficientsC(j1j2j) m
m1m2 , which are the coordinate vec-

tors of spin combinations in different bases:

|j1m1⟩|j2m2⟩ =
∑
j,m

C
(j1j2j) m

m1m2 |j1j2; jm⟩, (21.6)

|j1j2; jm⟩ =
∑
m1,m2

C
(j1j2j)m1m2

m |j1m1⟩|j2m2⟩. (21.7)

Because of how they couple two spin-j1 and spin-j2 representations to a

spin-j representation, they have specific behaviour under SU(2) transfor-

mations:

D
(j1)n1

m1 (g)D(j2)n2
m2 (g)C(j1j2j) m

n1n2 = C(j1j2j) n
m1m2 D

(j)m
n (g). (21.8)

We will use the Condon–Shortley phase convention for these;

• The Wigner 3j symbols j1 j2 j3
m1 m2 m3

 =
1√
dj3

(−1)j1−j2+j3C
(j1j2j3) n

m1m2 ϵ
(j3)
nm3 , (21.9)

where dj = 2j + 1. These inherit modified SU(2) transformation properties

from the Clebsch-Gordan coefficients:

D
(j1)m1

n1 (g)D(j1)m2
n2 (g)D(j1)m3

n3 (g)

 j1 j2 j3
m1 m2 m3

 =

 j1 j2 j3
n1 n2 n3

 , (21.10)

meaning they are the invariant tensors, or intertwiners, of the SU(2) repre-

sentation theory.

Throughout the derivation we will need various other properties of these tensors,

which will be quoted without reference. Essentially all of these may be found in

[19]. We will also unfortunately not use the repeated index summation conven-

tion since, while the theory is tensorial, we will have cause to sum over indices

that appear more than two times and the notation would become confusing.
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21.2 Constructing the Kernel

With the basics of SU(2) tensors out of the way, we may turn to the derivation of

the SU(2) kernel [14]. The core of the method is to write ∆(j)(n) in terms of the

standard spin basis as

∆(j)(n) =
∑
r,s

Z
(j)r

s (n)|jr⟩⟨js|. (21.11)

and then gradually constrain this representation via application of the

Stratonovich postulates. Beginning with the covariance condition

∆(j)(g ◦n) = π(j)
g ∆(n) (π(j)

g )−1, (21.12)

this gives the relation

Z
(j)r

s (g ◦n) = ⟨jr |∆(j)(g ◦n)|js⟩ = ⟨jr |π(j)
g ∆(j)(n)π(j)†

g |js⟩

=
∑
p,q

⟨jr |π(j)
g |jp⟩Z

(j)p
q (n)⟨jq|π(j)†

g |js⟩

=
∑
p,q

D
(j)r

p (g)D(j)q
s (g−1)Z(j)p

q (n).

(21.13)

Using the Clebsch-Gordan series

D
(j1)m1

n1 (g)D(j2)m2
n2 (g) =

∑
j,m,n

C
(j1j2j)m1m2

mC
(j1j2j) n

n1n2 D
(j)m

n (g) (21.14)

one obtains

D
(j1)m1

n1 (g)D(j2)m2
n2 (g) =

∑
j,m,n

C(j1j2j)m1m2mC
(j1j2j)

n1n2nD
(j) n
m (g)

=
∑
j,m,n

(−1)2j(2j + 1)

 j1 j2 j

m1 m2 m

 j1 j2 j

n1 n2 n

D(j) n
m (g)

=
∑
j,m,n

(−1)2j(2j + 1)

 j1 j j2
m1 m m2

 j1 j j2
n1 n n2

D(j) n
m (g)

=
∑
j,m,n

(−1)2(j−j2) 2j + 1
2j2 + 1

C(j1jj2)m1mm2C
(j1jj2)

n1nn2D
(j) n
m (g),

(21.15)

which, combined with the inversion relation

D
(j)m

n (g−1) = (−1)2jD
(j) m
n (g), (21.16)
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yields

D
(j)m1

n1 (g)D(j)n2
m2 (g−1) =

∑
l,m,n

2l + 1
2j + 1

C
(jlj)m1m

m2C
(jlj) n2

n1n D
(l)n

m (g−1). (21.17)

Substituting this result into (21.13), we obtain

Z
(j)r

s (g ◦n) =
∑
l,m,n
p,q

2l + 1
2j + 1

C
(jlj)rm

sC
(jlj) q

pn D
(l)n

m (g−1)Z(j)p
q (n). (21.18)

We now define

Ỹ
(l)
m (n) =

∑
p,q

√
2l + 1√
2j + 1

C
(jlj) q

pm Z
(j)p

q (n) (21.19)

and observe that the orthogonality relation for 3j-symbols yields

Ỹ
(l)
m (g ◦n) =

∑
p,q

√
2l + 1√
2j + 1

C
(jlj) q

pm Z
(j)p

q (g ◦n)

=
∑
k,t,u
p,q

√
2l + 1

√
2k + 1

2j + 1
C

(jlj) q
pm C

(jkj)pt
qD

(k)u
t (g
−1)Ỹ (k)

u (n)

=
∑
k,t,u
p,q

√
2l + 1

√
2k + 1

j l j

p m q

j k j

p t q

D(k)u
t (g
−1)Ỹ (k)

u (n)

=
∑
k,t,u

√
2l + 1

√
2k + 1

2l + 1
δlkδ

t
mD

(k)u
t (g
−1)Ỹ (k)

u (n)

=
∑
u

D
(l)u

m (g−1)Ỹ (l)
u (n).

(21.20)

In the process, we obtain the intermediate result∑
p,q

1
2j + 1

C
(jlj) q

pm C
(jkj)pt

q =
1

2l + 1
δlkδ

t
m (21.21)

(21.20) is the correct covariance relation for normal spherical harmonics Y (l)
m , and

we now aim to show that Ỹ (l)
m ∼ Y

(l)
m up to a constant. To this end, consider the

tensor

c
(lk)m

n =
∫
S2
dµl(n) Ỹ (l)

n (n)Y (k)∗
m (n) (21.22)

and observe that it intertwines the representations πk and πl :

D
(l)s
m (g)c(lk)m

nD
(l)n

t (g
−1) =

∫
S2
dµl(n) Ỹ (l)

t (g ◦n)Y (k)∗
s (g ◦n)

=
∫
S2
dµl(n) Ỹ (l)

t (n)Y (k)∗
s (n) = c(lk)s

t ,
(21.23)
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the integral equality holding by the SU(2) invariance of µl(n).

By Schur’s lemma, c(lk)m
n = λ(jl)δlkδmn for some constants λ(jl). Since the spher-

ical harmonics form an orthogonal basis for L2(S2) with (we use Racah’s normal-

isation, contrary to the normalisation in Ref. [14])∫
S2
dµl(n)Y (l)

n (n)Y (k)∗
m (n) = δlkδnm, (21.24)

we conclude that Ỹ (l)
m = λ(jl)Y

(l)
m .

Thus,

Z
(j)r

s (n) =
∑
l,m

√
2l + 1√
2j + 1

C
(jlj)rm

s Ỹ
(l)
m (n) =

∑
l,m

λ(jl)

√
2l + 1√
2j + 1

C
(jlj)rm

sY
(l)
m (n). (21.25)

The requirement that ∆(j)(n)∗ = ∆(j)(n) necessitates that Z(j)r
s (n)∗ = Z

(j)s
r (n). Us-

ing the fact that Y (l)
m (n)∗ = (−1)mY (l)

−m(n),

∑
m

C
(jlj)rm

sY
(l)
m (n)∗ =

∑
m

√
2j + 1(−1)−j+l−s

 1√
2j + 1

(−1)j−l+sC(jlj)rm
s

︸                            ︷︷                            ︸j l j

r m −s



(−1)mY (l)
−m(n)

=
∑
m

√
2j + 1(−1)−j+l−s

j l j

s −m −r

 (−1)mY (l)
−m(n)

=
∑
m

(−1)−j+l−s(−1)j−l+rC(jlj)s−m
r (−1)mY (l)

−m(n)

=
∑
m

C
(jlj)s−m

rY
(l)
−m(n)

=
∑
m

C
(jlj)sm

rY
(l)
m (n),

(21.26)

which shows that

Z
(j)r

s (n)∗ =
∑
l,m

λ(jl)∗
√

2l + 1√
2j + 1

C
(jlj)rm

sY
(l)
m (n)∗ =

∑
l,m

λ(jl)∗
√

2l + 1√
2j + 1

C
(jlj)sm

rY
(l)
m (n).

(21.27)

Since

Z
(j)s

r (n) =
∑
l,m

λ(jl)

√
2l + 1√
2j + 1

C
(jlj)sm

rY
(l)
m (n), (21.28)

this shows that λ(jl)∗ = λ(jl) and thus that the constants are real.

So far we have used only the covariance and reality postulates (or rather the

corresponding properties of ∆j). To maximally restrict the possible values of the
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constants, we now consider the other two properties of the kernel, stemming

from the standardization and traciality postulates:∫
S2
dµj(n)∆j(n) = I, (21.29)∫

S2
dµj(n) tr(∆j(m)∆j(n))∆j(n) = ∆j(m). (21.30)

Because the matrix elements of the kernel ∆j lie in the Hilbert space of spherical

harmonics of order ≤ 2j, the property (21.30) requires that the integral kernel

tr(∆j(m)∆j(n)) be the identity operator on this space. Substituting our expression

for the kernel, we find

tr(∆j(m)∆j(n)) =
∑
r,s

Z
(j)r

s (m)Z(j)s
r (n)

=
∑
r,s

l,m,k,p

λ(jl)λ(jk)

√
2l + 1

√
2k + 1

2j + 1
C

(jlj)rm
sC

(jkj)sp
rY

(l)
m (m)Y (k)

p (n)

(21.27)
=

∑
r,s

l,m,k,p

λ(jl)λ(jk)

√
2l + 1

√
2k + 1

2j + 1
C

(jlj)rm
sC

(jkj) s
rp Y

(l)
m (m)Y (k)

p (n)∗

(21.21)
=

∑
r,s

l,m,k,p

λ(jl)λ(jk)

√
2l + 1

√
2k + 1

2l + 1
δlkδ

m
p Y

(l)
m (m)Y (k)

p (n)∗

=
∑
lm

(λ(jl))2Y
(l)
m (m)Y (l)

m (n)∗.

(21.31)

With Racah’s normalization,
∑
lmY

(l)
m (m)Y (l)

m (n)∗ is the identity operator on the

Hilbert space up to a factor of 2j+1
2l+1 , so we conclude that (λ(jl))2 = 2l+1

2j+1 . Because∫
dµj(n)Y (l)

m (n) =
2j + 1
√

2l + 1

∫
dµl(n)Y (l)

m (n)Y (0)
0 (n) =

2j + 1
√

2l + 1
δl0δm0, (21.32)

property (21.29) together with the expression (21.25) requires that λ(j0) be posi-

tive. The other λ(jl), 0 < l ≤ 2j, have unconstrained signs.

Generally, the choice made is that λ(jl) be positive for all l. This choice is

related to how this self-dual kernel fits between the non-self dual P andQ kernels

(which are frequently used but do not satisfy the traciality postulate, being dual

to each-other). The final result is that the kernel is given by

Z
(j)r

s (n) =
∑
l,m

2l + 1
2j + 1

C
(jlj)rm

sY
(l)
m (n). (21.33)
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Before moving on to tackle the star product, we note the symbols associated

to some standard operators and density matrices. In particular, the symbols of

the elements of the SU(2) algebra are given by [14]

WSx =
√
j(j + 1)sin(θ)cos(φ), (21.34)

WSy =
√
j(j + 1)sin(θ)sin(φ), (21.35)

WSz =
√
j(j + 1)cos(θ), (21.36)

which intuitively are just the polar representations of the x, y, z coordinates on a

sphere with radius
√
j(j + 1). It will also be invaluable to know the symbols of the

pure states of maximum and minimum weight, |j, j⟩⟨j, j | and |j,−j⟩⟨j,−j |. These

may be read off directly from the kernel since the spin basis is orthogonal (for

Racah’s normalisation, Y (l)
0 (n) = Pl(cos(θ)), where Pl are the Legendre polynomi-

als):

Tr[∆(j)(n)|j, j⟩⟨j, j |] = Z(j)j
j (n) =

2j∑
l=0

2l + 1
2j + 1

C
(jlj)j0

j Pl(cos(θ)), (21.37)

Tr[∆(j)(n)|j,−j⟩⟨j,−j |] = Z(j)−j
−j (n) =

2j∑
l=0

2l + 1
2j + 1

C
(jlj)−j0

−j Pl(cos(θ)). (21.38)
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Chapter 22

Spin Star Product

22.1 Integral versus Differential Form

With the spin-j kernel in hand, there is a simple representation of the star prod-

uct in terms of the integral trikernel [14]

L(j)(n,m,k) =
(2j + 1

4π

)2
Tr

[
∆(j)(n)∆(j)(m)∆(j)(k)

]
(22.1)

in terms of which

(WA ⋆ WB)(n) =
∫
S2
dµ(m)

∫
S2
dµ(k)L(j)(n,m,k)WA(m)WB(k). (22.2)

As we are interested in constructing a Fokker-Planck equation, however, what

we are after is a differential form for the product. Its construction amounts to

defining a bilinear differential operator L[x,y] such that

WAB =WA ⋆ WB = L[WA,WB]. (22.3)

The general procedure for constructing this product in the case of SU(2) was

given in [15], [16]. The derivation is a comparatively heavy SU(2) tensor calcula-

tion, using somewhat obscure properties of 6-j symbols, and I will not present it.

The resulting expression

WA ⋆ WB =NS
∞∑
j=0

aj

∫
dψ

2π
F̃−1(J 2)

[
((S+)j F̃(J 2)WA)× ((S−)j F̃(J 2)WB)

]
(22.4)

is exact, but difficult to use given it is written in terms of fairly abstract differ-

ential operators (we will define them below). In the spirit of deformation quan-

tisation, however, it possesses a formal power expansion in a small parameter

proportional to ℏ. This expansion was worked out to first order in [15], and the

corresponding first order Bopp operators were worked out in [17]. The second

281
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work used these to write down a classical Fokker-Planck equation corresponding

to the Lindbladian master equation.

Because the resulting Fokker-Planck equation contains terms second order in

the small expansion parameter, however, for the derivation to be consistent the

star product and Bopp operators1 [20], [21] used should also be to second order

in the parameter. To my knowledge this result is not present in the literature, and

so this chapter is devoted to the derivation of an explicit form for the star product

that is accurate to second order in the parameter. For completeness I also present

Bopp operators to second order.

22.2 Second Order Operator

22.2.1 General Expression and Definitions

We start from equation (39) of [15] for a spin-S system (we use S rather than j in

this section to free up the latter for product indices), with s = s1 = s2 = 0 as we’re

working with the self-dual representation:

WA ⋆ WB =NS
∞∑
j=0

aj

∫
dψ

2π
F̃−1(J 2)

[
((S+)j F̃(J 2)WA)× ((S−)j F̃(J 2)WB)

]
(22.5)

where

J 2 = −
[
∂2

∂θ2 + cotθ
∂
∂θ

+
1

sin2θ

(
∂2

∂φ2 − 2cosθ
∂2

∂φ∂ψ
+
∂2

∂ψ2

)]
, (22.6)

S± = ie∓iψ
(
±cotθ

∂
∂ψ

+ i
∂
∂θ
∓ 1

sinθ
∂
∂φ

)
, (22.7)

aj =
(−1)j

j!(2S + j + 1)!
, (22.8)

NS =
√

2S + 1, (22.9)

F(L) =
√

(2S +L+ 1)!(2S −L)!, (22.10)

F̃(J 2)DL
MM ′ = F(L)DL

MM ′ . (22.11)

The operators J 2 and S± possess the property that [J 2,S±]f (θ,φ) = 0 (note that

they do not commute when applied to functions also dependent on ψ). Moreover,

J 2(f (θ,φ)g(θ,φ)) =g(θ,φ)J 2f (θ,φ) + f (θ,φ)J 2g(θ,φ)

− (S+f (θ,φ))(S−g(θ,φ))− (S+g(θ,φ))(S−f (θ,φ)).
(22.12)

1Bopp operators replicate the star product action on the Wigner function by some set of quan-
tum operators out of which observables of interest are built out of. For bosonic particles these are
typically the creation and annihilation operators, while for spins they are Sz, S+, and S−. Bopp
operators are a useful shorthand compared to explicitly using the star product.
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Before proceeding, we also define some ψ-independent operators via

L2 = −
[
∂2

∂θ2 + cotθ
∂
∂θ

+
1

sin2θ

∂2

∂φ2

]
, (22.13)

S±(j) =
j−1∏
k=0

(
k cotθ − ∂

∂θ
∓ i

sinθ
∂
∂φ

)
, (22.14)

such that

J 2f (θ,φ) = L2f (θ,φ), (22.15)

(S±)jf (θ,φ) = e∓ijψS±(j)f (θ,φ). (22.16)

22.2.2 Order Expansion

We shall carry out the expansion in the parameter ϵ = 1
2S+1 . If we view S as a

physical spin measured in units of ℏ, we see that ϵ ∼ ℏ and that this is nothing but

the semiclassical approximation. Of course, in most cases the physical spin will

not be much greater than ℏ, making this approximation a particularly poor fit for

spin systems. Nevertheless, this means that we perform the same approximation

for both bosons and spins and thus spin truncated Wigner may be seamlessly

combined with boson truncated Wigner.

We begin with an expansion of F̃(J 2). Note that

F(L) =
√

(2S +L+ 1)!(2S −L)!

=

√√√(2S + 1)!
2S + 1

L∏
k=0

(2S + 1 + k)


(2S + 1)!

L∏
k=0

(2S + 1− k)−1


=

(2S + 1)!
√

2S + 1

√√√
L∏
k=0

1
ϵ + k
1
ϵ + k

=
(2S + 1)!
√

2S + 1

√√√
L∏
k=0

1 + ϵk
1 + ϵk

=
(2S + 1)!
√

2S + 1
exp

1
2

L∑
k=0

ln
1 + ϵk
1− ϵk

 .

(22.17)

To second order in ϵ,

ln
1 + ϵk
1− ϵk

= ln
[
(1 + ϵk)(1 + ϵk + ϵ2k2)

]
= ln

[
1 + 2ϵk + 2ϵ2k2 + o(ϵ2)

]
= 2ϵk + o(ϵ2).

(22.18)
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Thus, substituting this result back into (22.17), we find

F(L) =
(2S + 1)!
√

2S + 1
exp

[1
2
ϵL(L+ 1) + o(ϵ2)

]
=

(2S + 1)!
√

2S + 1

[
1 +

1
2
ϵL(L+ 1) +

1
8
ϵ2L2(L+ 1)2 + o(ϵ2)

]
,

(22.19)

from which we conclude that

F̃(J 2) =
(2S + 1)!
√

2S + 1

[
1 +

1
2
ϵJ 2 +

1
8
ϵ2J 4 + o(ϵ2)

]
︸                              ︷︷                              ︸

G̃(J 2)

, (22.20)

F̃−1(J 2) =

√
2S + 1

(2S + 1)!

[
1− 1

2
ϵJ 2 +

1
8
ϵ2J 4 + o(ϵ2)

]
︸                              ︷︷                              ︸

G̃−1(J 2)

. (22.21)

The terms (2S+1)!√
2S+1

from F̃(J ) and F̃−1(J ) in (22.5) along withNS may be combined

to rewrite (22.5) as:

WA ⋆ WB = (2S + 1)!
∞∑
j=0

aj

∫
dψ

2π
G̃−1(J 2)

[
((S+)jG̃(J 2)WA)× ((S−)jG̃(J 2)WB)

]
.

(22.22)

This allows us to express (2S + 1)!aj in terms of ϵ:

(2S + 1)!aj =
(−1)j

j!
(2S + 1)!

(2S + j + 1)!
=

(−1)j

j!

j∏
k=1

1
(2S + k + 1)

=
(−1)j

j!

j∏
k=1

ϵ
(1 + ϵk)

=
(−1)j

j!

j∏
k=1

(
ϵ − ϵ2k + o(ϵ2)

)
.

(22.23)

To second order in ϵ, therefore, only the j = 0,1,2 coefficients are relevant and

these are

c0 = (2S + 1)!a0 = 1, (22.24)

c1 = (2S + 1)!a1 = ϵ2 − ϵ+ o(ϵ2), (22.25)

c2 = (2S + 1)!a2 =
1
2
ϵ2 + o(ϵ2), (22.26)

through which we may once again rewrite (22.22) as

WA ⋆ WB =
2∑
j=0

cj

∫
dψ

2π
G̃−1(J 2)

[
((S+)jG̃(J 2)WA)× ((S−)jG̃(J 2)WB)

]
+ o(ϵ2).

(22.27)

We now work out the summand for each j, going by order in ϵ. In each case, it
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will be found that the integrand is independent of ψ when simplified (recall that

the W -symbols do not depend on ψ, and that we may switch to ψ-independent

operators L2 and S±(j) when the expression being acted on is ψ-independent and

we can cancel the eijψ terms coming from the S± operators) and thus the
∫ dψ

2π

integral simply multiplies the integrand by 1 and may be ignored. Since the

calculation is heavy on cancelling terms, I denote terms that are about to be can-

celled against each-other in the same colour. The final result for each calculation

is given a border.

j = 0:

(
1− 1

2
ϵJ 2 +

1
8
ϵ2J 4

)[((
1 +

1
2
ϵJ 2 +

1
8
ϵ2J 4

)
WA

)((
1 +

1
2
ϵJ 2 +

1
8
ϵ2J 4

)
WB

)]
(22.28)

ϵ0:
= WAWB (22.29)

ϵ1:
=

1
2
WBJ 2WA +

1
2
WAJ 2WB −

1
2
J 2(WAWB)

(22.12)
=

1
2
[
(S+WA)(S−WB) + (S−WA)(S+WB)

]
=

1
2

[
(S+(1)WA)(S−(1)WB) + (S−(1)WA)(S+(1)WB)

] (22.30)
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ϵ2:
=

1
4

(J 2WA)(J 2WB) +
1
8

(WBJ 4WA +WAJ 4WB)

+
1
8
J 4(WAWB)− 1

4
J 2(WBL2WA +WAL2WB)

(22.31)

=
1
4

(L2WA)(L2WB) +
1
8

(WBL4WA +WAL4WB)

+
1
8
J 2

[
WBL2WA +WAL2WB − (S+(1)WA)(S−(1)WB)− (S−(1)WA)(S+(1)WB)

]
− 1

4
J 2(WBL2WA +WAL2WB)

(22.32)

=
1
4

(L2WA)(L2WB) +
1
8

(WBL4WA +WAL4WB)

− 1
8

[
(L2S+(1)WA)(S−(1)WB) + (S+(1)WA)(L2S−(1)WB)

− (S+(1)S+(1)WA)(S−(1)S−(1)WB)− (S−(1)S+(1)WA)(S+(1)S−(1)WB)

+ (L2S−(1)WA)(S+(1)WB) + (S−(1)WA)(L2S+(1)WB)

− (S+(1)S−(1)WA)(S−(1)S+(1)WB)− (S−(1)S−(1)WA)(S+(1)S+(1)WB)
]

− 1
8

[
2(L2WA)(L2WB) +WBL4WA +WAL4WB

− (S+(1)L2WA)(S−(1)WB)− (S−(1)L2WA)(S+(1)WB)

− (S+(1)WA)(S−(1)L2WB)− (S−(1)WA)(S+(1)L2WB)
]

(22.33)

=
1
8

[
(S+(1)S+(1)WA)(S−(1)S−(1)WB) + (S−(1)S+(1)WA)(S+(1)S−(1)WB)

+ (S+(1)S−(1)WA)(S−(1)S+(1)WB) + (S−(1)S−(1)WA)(S+(1)S+(1)WB)

− (QWA)(S−(1)WB)− (S+(1)WA)(RWB)

− (RWA)(S+(1)WB)− (S−(1)WA)(QWB)
]

(22.34)

where we have defined

Q = [L2,S+(1)], (22.35)

R = [L2,S−(1)]. (22.36)

j = 1:

(ϵ2 − ϵ)
(
1− 1

2
ϵJ 2 +

1
8
ϵ2J 4

)
·
[(
S+

(
1 +

1
2
ϵJ 2 +

1
8
ϵ2J 4

)
WA

)(
S−

(
1 +

1
2
ϵJ 2 +

1
8
ϵ2J 4

)
WB

)] (22.37)

ϵ0:
= 0 (22.38)
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ϵ1:
= −(S+(1)WA)(S−(1)WB) (22.39)

ϵ2:
= (S+(1)WA)(S−(1)WB) +

1
2
J 2((S+(1)WA)(S−(1)WB))

− 1
2

(S+(1)J 2WA)(S−(1)WB)− 1
2

(S+(1)WA)(S−(1)J 2WB)

(22.40)

= (S+(1)WA)(S−(1)WB)

+
1
2

(J 2S+(1)WA)(S−(1)WB) +
1
2

(S+(1)WA)(J 2S−(1)WB)

− 1
2

(S+(1)S+(1)WA)(S−(1)S−(1)WB)− 1
2

(S−(1)S+(1)WA)(S+(1)S−(1)WB)

− 1
2

(S+(1)J 2WA)(S−(1)WB)− 1
2

(S+(1)WA)(S−(1)J 2WB)

(22.41)

= (S+(1)WA)(S−(1)WB)

+
1
2

(QWA)(S−(1)WB) +
1
2

(S+(1)WA)(RWB)

− 1
2

(S+(1)S+(1)WA)(S−(1)S−(1)WB)− 1
2

(S−(1)S+(1)WA)(S+(1)S−(1)WB)

(22.42)

j = 2:

1
2
ϵ2

(
1− 1

2
ϵJ 2 +

1
8
ϵ2J 4

)
·
[(

(S+)2
(
1 +

1
2
ϵJ 2 +

1
8
ϵ2J 4

)
WA

)(
(S−)2

(
1 +

1
2
ϵJ 2 +

1
8
ϵ2J 4

)
WB

)] (22.43)

ϵ0:
= 0 (22.44)

ϵ1:
= 0 (22.45)

ϵ2:

=
1
2

(S+(2)WA)(S−(2)WB) (22.46)

Overall (
∑
j):

ϵ0:
= WAWB (22.47)

ϵ1:
=

1
2

[
(S+(1)WA)(S−(1)WB) + (S−(1)WA)(S+(1)WB)

]
− (S+(1)WA)(S−(1)WB) (22.48)

=
1
2

[
(S−(1)WA)(S+(1)WB)− (S+(1)WA)(S−(1)WB)

]
(22.49)
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ϵ2:
=

1
8

[
(S+(1)S+(1)WA)(S−(1)S−(1)WB) + (S−(1)S+(1)WA)(S+(1)S−(1)WB)

+ (S+(1)S−(1)WA)(S−(1)S+(1)WB) + (S−(1)S−(1)WA)(S+(1)S+(1)WB)

− (QWA)(S−(1)WB)− (S+(1)WA)(RWB)

− (RWA)(S+(1)WB)− (S−(1)WA)(QWB)
]

+ (S+(1)WA)(S−(1)WB)

+
1
2

(QWA)(S−(1)WB) +
1
2

(S+(1)WA)(RWB)

− 1
2

(S+(1)S+(1)WA)(S−(1)S−(1)WB)− 1
2

(S−(1)S+(1)WA)(S+(1)S−(1)WB)

+
1
2

(S+(2)WA)(S−(2)WB)

(22.50)

= − 3
8

(S+(1)S+(1)WA)(S−(1)S−(1)WB)− 3
8

(S−(1)S+(1)WA)(S+(1)S−(1)WB)

+
1
8

(S+(1)S−(1)WA)(S−(1)S+(1)WB) +
1
8

(S−(1)S−(1)WA)(S+(1)S+(1)WB)

+
3
8

(QWA)(S−(1)WB) +
3
8

(S+(1)WA)(RWB)

− 1
8

(RWA)(S+(1)WB)− 1
8

(S−(1)WA)(QWB)
]

+ (S+(1)WA)(S−(1)WB)

+
1
2

(S+(2)WA)(S−(2)WB)

(22.51)

22.2.3 Simplifying the Operator

The star product for spin is thus given to second order in ϵ by

⋆s =I⊗ I (22.52)

+
ϵ
2

[
S−(1) ⊗ S+(1) − S+(1) ⊗ S−(1)

]
(22.53)

+ ϵ2
[
S+(1) ⊗ S−(1) +

1
2
S+(2) ⊗ S−(2) (22.54)

+
1
8
S+(1)S−(1) ⊗ S−(1)S+(1) +

1
8
S−(1)S−(1) ⊗ S+(1)S+(1) (22.55)

− 3
8
S−(1)S+(1) ⊗ S+(1)S−(1) − 3

8
S+(1)S+(1) ⊗ S−(1)S−(1) (22.56)

+
3
8
F ⊗ S−(1) +

3
8
S+(1) ⊗G − 1

8
G⊗ S+(1) − 1

8
S−(1) ⊗F

]
(22.57)
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where

S+(1) = −∂θ − i csc(θ)∂φ, (22.58)

S−(1) = −∂θ + i csc(θ)∂φ, (22.59)

S+(2) = ∂2
θ − cot(θ)∂θ − csc2(θ)∂2

φ + 2i csc(θ)∂θ∂φ − 2i cot(θ)csc(θ)∂φ, (22.60)

S−(2) = ∂2
θ − cot(θ)∂θ − csc2(θ)∂2

φ − 2i csc(θ)∂θ∂φ + 2i cot(θ)csc(θ)∂φ, (22.61)

F = csc2(θ)
(
2cot(θ)∂2

φ − 2i cos(θ)∂θ∂φ + i csc(θ)∂φ +∂θ
)
, (22.62)

G = csc2(θ)
(
2cot(θ)∂2

φ + 2i cos(θ)∂θ∂φ − i csc(θ)∂φ +∂θ
)
. (22.63)

It is useful to notice that ϵ
2

[
S−(1) ⊗ S+(1) − S+(1) ⊗ S−(1)

]
may be rewritten as

iϵ
(←
∂φ
→
∂cos(θ) −

←
∂cos(θ)

→
∂φ

)
= iϵ s{ ←,→} (22.64)

where s{ ←,→} is the Poisson bracket on the sphere (with φ and cos(θ) as conju-

gate position and momentum). This allows the above cumbersome expression to

be rewritten as

⋆s = 1 + iϵ s{ ←,→}+ ϵ2B(←,→) (22.65)

where we have compressed everything multiplying ϵ2 into B(, ). For complete-

ness, the simplified explicit expression for B is given by

B(WA,WB) =
1
2
∂θWA(θ,φ)∂θWB(θ,φ)− 1

2
cot(θ)∂2

θWA(θ,φ)∂θWB(θ,φ)

− 1
2

cot(θ)∂θWA(θ,φ)∂2
θWB(θ,φ) +

3
4

csc4(θ)∂φWA(θ,φ)∂φWB(θ,φ)

+ csc2(θ)∂θ∂φWA(θ,φ)∂θ∂φWB(θ,φ)

− 1
2

csc2(θ)∂2
θWA(θ,φ)∂2

φWB(θ,φ)

− 1
2

csc2(θ)∂2
φWA(θ,φ)∂2

θWB(θ,φ)

+
1
4

cos(2θ)csc4(θ)∂φWA(θ,φ)∂φWB(θ,φ)

− cot(θ)csc2(θ)∂θ∂φWA(θ,φ)∂φWB(θ,φ)

− 1
2

sin(2θ)csc4(θ)∂φWA(θ,φ)∂θ∂φWB(θ,φ).

(22.66)
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Finally, we also have the explicit Bopp operators S =
√
S(S + 1):

S+ ⋆ ◦ =Seiφ sin(θ) ◦+Sϵeiφ
(
∂θ ◦+i cot(θ)∂φ ◦

)
+

1
2
Sϵ2eiφ

(
sin(θ)∂2

θ ◦+2cos(θ)∂θ ◦+i csc(θ)∂φ ◦+csc(θ)∂2
φ ◦

)
,

S− ⋆ ◦ =Se−iφ sin(θ) ◦+Sϵe−iφ
(
−∂θ ◦+i cot(θ)∂φ ◦

)
+

1
2
Sϵ2e−iφ

(
sin(θ)∂2

θ ◦+2cos(θ)∂θ ◦−i csc(θ)∂φ ◦+csc(θ)∂2
φ ◦

)
,

Sz ⋆ ◦ =S cos(θ) ◦−iSϵ∂φ◦

+
1
2
Sϵ2

(
cos(θ)∂2

θ ◦+csc(θ)
(
cos(2θ)∂θ ◦+cot(θ)∂2

φ ◦
))
,

◦ ⋆ S+ =Seiφ sin(θ) ◦+Sϵeiφ
(
−∂θ ◦−i cot(θ)∂φ ◦

)
+

1
2
Sϵ2eiφ

(
sin(θ)∂2

θ ◦+2cos(θ)∂θ ◦+i csc(θ)∂φ ◦+csc(θ)∂2
φ ◦

)
,

◦ ⋆ S− =Se−iφ sin(θ) ◦+Sϵe−iφ
(
∂θ ◦−i cot(θ)∂φ ◦

)
+

1
2
Sϵ2e−iφ

(
sin(θ)∂2

θ ◦+2cos(θ)∂θ ◦−i csc(θ)∂φ ◦+csc(θ)∂2
φ ◦

)
,

◦ ⋆ Sz =S cos(θ) ◦+iSϵ∂φ◦

+
1
2
Sϵ2

(
cos(θ)∂2

θ ◦+csc(θ)
(
cos(2θ)∂θ ◦+cot(θ)∂2

φ ◦
))
.

(22.67)

22.3 Tensor Product of Star Products

Compound systems in quantum mechanics are constructed via tensor products

of their Hilbert spaces and the operators acting on them. In the Moyal repre-

sentation, this corresponds to a product of the phase spaces and symbols. To

combine symbols, however, the tensor product of the individual star products is

also required (if one is using Bopp operators, one simply applies them one at a

time as usual).

As an initial example, consider the star product for a free bosonic particle

⋆b = eiλ{←,→}, (22.68)

where {, } denotes the Poisson bracket and the arrows denote whether the left

or right symbol is to be used (the star product is an infix operator). If we are

interested in the expansion to order O(λ2), this becomes

⋆b = 1 + iλ{←,→}− λ
2

2
{←,→}2︸   ︷︷   ︸(←

∂xx
→
∂pp − 2

←
∂xp
→
∂px +

←
∂pp
→
∂xx

)
+O(λ3) (22.69)

Now suppose we consider a compound system involving two such particles (we

shall denote them 1 and 2). The symbols now depend on the coordinates of the
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product of the two R
2 phase spaces (x1,p1,x2,p2), and they are combined via the

tensor product of the original star products. The tensor product is by defini-

tion bilinear and for a pair of bi-differential operators consisting of products of

partial derivatives (e.g.
←
∂x1

→
∂p1

and
←
∂p2

→
∂x2

) amounts to simply “multiplying them

together” while keeping track of which side of the infix expression each operator

acts on (thus
←
∂x1

→
∂p1
⊗
←
∂p2

→
∂x2

=
←
∂x1p2

→
∂p1x2

).

Denoting the Poisson bracket acting on the coordinates of system i by {, }i , we

see how this occurs for the two-particle system:

⋆b1 ⊗ ⋆
b
2 =1 + iλ{←,→}1 ⊗ 1 + 1⊗ iλ{←,→}2

− λ
2

2
{←,→}21 ⊗ 1− 1⊗ λ

2

2
{←,→}22

−λ2 {←,→}1 ⊗ {←,→}2︸                  ︷︷                  ︸
←
∂x1x2

→
∂p1p2 −

←
∂x1p2

→
∂p1x2 −

←
∂p1x2

→
∂x1p2 +

←
∂p1p2

→
∂x1x2

+O(λ3).
(22.70)

Rewriting this in terms of the Poisson bracket for the combined system

{←,→} =
∑
i

{←,→}i (22.71)

we obtain

⋆b1 ⊗ ⋆
b
2 = 1 + iλ{←,→}− λ

2

2
{←,→}2 +O(λ3), (22.72)

which agrees with the well-known result for a many-particle system with overall

Poisson bracket {, }:
⋆bmp = eiλ{←,→}. (22.73)

For a system comprising both bosons and spins, we may again construct the ap-

propriate star product by tensoring together ⋆b and ⋆s appropriately. We begin

by constructing it for a system comprising multiple spins, indexed by j ∈ J . De-

noting the individual Poisson brackets and B by s{ ←,→}j and Bj , and the overall

spin Poisson bracket by s{ ←,→}, it is easy to show that

⋆s =
⊗
j∈J

⋆sj = 1+iϵ s{ ←,→}−
ϵ2

2

∑
j,k∈J
j,k

s{ ←,→}j⊗s{ ←,→}k+ϵ2
∑
j∈J
Bj(←,→)+O(ϵ3).

(22.74)
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Finally, indexing the bosonic particles by i ∈ I , denoting the corresponding

Poisson brackets by {←,→}i and the overall bosonic Poisson bracket by {←,→},

⋆ = ⋆b ⊗ ⋆s =1 + iλ{←,→}+ iϵ s{ ←,→}

− 1
2

∑
i,j∈I⊕J
i,j

pi(←,→)⊗ pj(←,→)

− λ
2

2

∑
i∈I
{←,→}2i + ϵ2

∑
j∈J
Bj(←,→) +O(3),

(22.75)

pi(←,→) =

ϵ s{ ←,→}i , if i ∈ J,

λ{←,→}i , if i ∈ I.
(22.76)

Here O(3) indicates expressions of degree > 2 over ϵ and λ. We truncate at this

order because both λ and ϵ are physically of order ℏ (indeed λ is essentially ℏ), so

O(3) is effectively O(ℏ3) and we have the star product to second order in ℏ.

With this, we may now construct the semiclassical equations governing spin-

boson dynamics. In this part we will restrict to purely spin systems, since it is

the spin part of the formalism that is novel. In the next chapter I will analyse the

behaviour of a single spin, showing that the results given by this formalism are

almost exact for large spin numbers as expected, but systematically deviate for

small spins and discuss this. In the process we will review the behaviour of the

Fokker-Planck equation on a sphere and its mapping to a stochastic differential

equation in this context.



Chapter 23

Truncated Wigner and the LMG
Model

A very simple model to test our formalism on is a restricted form of the Lipkin-

Meshkov-Glick (LMG) Hamiltonian [22], describing a single quantum spin, with

dissipation (we have reinserted factors of ℏ):

∂tρ = L1[ρ], (23.1)

L1[ρ] = − i
ℏ

[H1,ρ] +
Γ

ℏ

(ℏ2S−ρS+ − ℏ
2

2
{S+S−,ρ}), (23.2)

H1 = −Jℏ2S2
x +∆ℏSz. (23.3)

We see that Γ ℏ is a frequency, meaning that we can define a a dimensionless time

variable τ = tΓ ℏ. Then, making the dimensionless definitions

J̃ =
J
Γ
, ∆̃ =

∆

Γ ℏ
, (23.4)

we obtain the dimensionless equation

∂τρ = −i[−J̃S2
x + ∆̃Sz,ρ] + (S−ρS+ − 1

2
{S+S−,ρ}). (23.5)

From Refs [23], [24] we know to consider not the symbol ρ(θ,φ) but rather the

measure-weighted symbol ρ̄(θ,φ) = sin(θ)ρ(θ,φ) when constructing our Fokker-

Planck equation (this has to do with our how our area element interacts with the

generalised Stokes theorem when formulating the continuity equation), so we

consider

∂τ ρ̄(θ,φ) = sin(θ)
(
− i[[−J̃Sx(θ,φ) ⋆ Sx(θ,φ) + ∆̃Sz(θ,φ),ρ(θ,φ)]]

+
(
S−(θ,φ) ⋆ ρ ⋆ S+(θ,φ)

− 1
2

[[[S+(θ,φ) ⋆ S−(θ,φ),ρ(θ,φ)]]]
))
.

(23.6)

293
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where

[[WA,WB]] =WA ⋆ WB −WB ⋆ WA, (23.7)

[[[WA,WB]]] =WA ⋆ WB +WB ⋆ WA. (23.8)

23.1 Fokker-Planck Equation and Ito SDE

The right hand side can be shown to be an exact differential of a smooth one-form,

so this is a continuity equation on the sphere. This confirms that the normalisa-

tion of the quasi-distribution is preserved. Moreover, it is not too difficult to show

that this is in fact a Fokker-Planck equation in ρ̄(θ,φ). Taking 1 to be θ and 2 to

be φ in index notation, we find that

˙̄ρ(θ,φ) = −∂i[µi(θ,φ)ρ̄(θ,φ)] +
1
2
∂i∂j[Dij(θ,φ)ρ̄(θ,φ)], (23.9)

where

D =

λ2 0

0 λ2 cot2(θ)

 , (23.10)

µ = λ

1
2λcot(θ) +S sin(θ)(1 + J̃ sin(2φ))

∆̃+ 2J̃S cos(θ)cos2(φ)

 , (23.11)

S =
√
j(j + 1), (23.12)

λ = 2Sϵ. (23.13)

D is clearly positive-semidefinite on θ ∈ [0,π] so the Fokker-Planck equation is

well-posed and should represent a stochastic process.

Since the sphere cannot be covered by a single coordinate chart and the chart

we are presently working has singular points at θ = 0, π, some care is called for

when converting the Fokker-Planck equation to an SDE. In any interior neigh-

bourhood of the chart the Fokker-Planck equation should describe an Ito stochas-

tic process governed bydθdφ
 = λ

1
2λcot(θ) +S sin(θ)(1 + J̃ sin(2φ))

∆̃+ 2J̃S cos(θ)cos2(φ)

dt +

λ 0

0 λcot(θ)

dW1

dW2

 (23.14)

so the question is mainly one of what occurs at the singular points at the bound-

ary of the chart. One approach would be to consider the sphere extrinsically,

embedding it in R
3 and lifting the Fokker-Planck equation to one in that space

and possessing radius as a conserved quantity. This approach is sketched in Ap-

pendix E as a mathematical curiosity and confirmation that our local chart rea-

soning about the form of the SDE is correct. There is, however, a more direct way
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to understand this boundary behaviour.

Writing out the equation for dθ,

dθ =
(1
2
λ2 cot(θ) +λS sin(θ)(1 + J̃ sin(2φ))

)
dt +λdW1, (23.15)

we notice that the 1
2λ

2 cot(θ) term is highly singular and repulsive at the points

θ = 0,π. Rescaling the time by dtλ2 = dτ , we obtain (the Wiener term rescales as

just λ)

dθ =
( 1

2
cot(θ) +

S
λ

sin(θ)(1 + J̃ sin(2φ))︸                                     ︷︷                                     ︸
m(θ)

)
dτ + dW1. (23.16)

It is then true that

∃c1 <∞ s.t.

∣∣∣∣∣m(θ)− 1
2θ

∣∣∣∣∣ ≤ c1θ and
∣∣∣∣∣∂θm(θ) +

1
2θ2

∣∣∣∣∣ ≤ c1θ for θ ∈ [0,π/2], (23.17)

∃c2 <∞ s.t.

∣∣∣∣∣m(π −θ)− 1
2θ

∣∣∣∣∣ ≤ c2θ and
∣∣∣∣∣∂θm(π −θ) +

1
2θ2

∣∣∣∣∣ ≤ c2θ for θ ∈ [0,π/2],

(23.18)

which means that the process is asymptotically Bessel-1
2 at θ = 0, π. This in turn

means that it almost surely does not reach these points in finite time if started

from any point θ ∈ (0,π) [25], so the singular nature of the chart at these points

poses no problems for defining the SDE so long as we do not initialize trajectories

starting from them; since our initial probability density will always assign zero

measure to these points, we will have no need to do so.

The only difficulty in this regard arises in simulations, since numerical error

may lead a trajectory to overshoot these boundary points even if the abstract

process should not reach them. Given that the main feature of the Bessel process

is the incredibly strong repulsive term, it seems reasonable to fix this numerical

issue by setting θ = 0, π as hard reflecting boundaries in simulations.

23.2 Initial Distribution

With the SDE corresponding to the spherical Fokker-Planck equation identified,

we must now identify how we intend to sample from ρ̄(θ,φ).

It was argued in Ref. [11] that, since all pure spin states have non-positive

symbols, the latter are not valid probability distributions and hence cannot be

sampled from. While the first part of this statement is true, the second is erro-

neous. The positive and negative restrictions1 ρ̄+(θ,φ), ρ̄−(θ,φ) of the measure-

weighted symbol are both positive and, since they have the same boundary con-

ditions and the Fokker-Planck equation is linear, are evolved independently. One

1ρ̄+(θ,φ) ≥ 0, ρ̄−(θ,φ) ≥ 0, ρ̄+(θ,φ)− ρ̄−(θ,φ) = ρ̄(θ,φ)
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may thus sample |ρ̄(θ,φ)|, including samples for which the trajectory originated

from the domain of the positive restriction with a positive sign and those for

which it originated from the domain of the negative restriction with a negative

one when averaging. Since the mass of |ρ̄(θ,φ)| may not be equal to 1, we will

also need to multiply the final average by this value since averaging over samples

assumes the original distribution was normalised.

For the simulations in this chapter, we will initialize the spin in a maximum

weight state |j, j⟩⟨j, j | and consider j = 1
2 ,10. This is so we may observe how large

and small spin numbers affect our approximation, which is based on a truncation

ideally suited for large spin numbers. From (21.37), (21.38) we know these to be

ρ̄10(θ,φ) = sin(θ)
20∑
l=0

2l + 1
21

C
(10 l 10)10 0

10Pl(cos(θ)), (23.19)

ρ̄ 1
2
(θ,φ) = sin(θ)

1∑
l=0

2l + 1
2

C
( 1

2 l
1
2 ) 1

2 0
1
2
Pl(cos(θ)). (23.20)

The total mass of the norm of the first is numerically found to be 0.0952381,

while for the second it is 1.1547.

23.3 Observables

Given that we have only a single spin at our disposal and that the purpose of

the present simulations is to get an overall sense of the method’s behaviour, we

will restrict ourselves to observing the evolution of ⟨Sz⟩ over time. As mentioned

above, we will initialize in the maximum weight states for two different spin

magnitudes and then compare to dynamics obtained by directly integrating the

master equation using the QuantumOptics.jl library2 [26].

This is also a good place to comment on time-correlation functions, specif-

ically why they are difficult to compute. This was touched upon in Part Ib but,

with the language of the star product in hand, we may now elaborate. Specifically,

consider a conventional time-correlation function of random variables O1(x) and

O2(x) for a stationary process:

⟨O1(t1)O2(t2)⟩ =
∫
dx1dx2dx3O1(x1)P (x1,x2; t1 − t2)O2(x2)P (x2,x3; t2)P (x3).

(23.21)

Here P (x, t;x′, t′) is the transition probability and P (x) is the initial distribution.

Here the transition probability acts as a propagation kernel for the initial distri-

bution, evolving it forward in time. It is this object that is represented by a set of

2QuantumOptics.jl is a numerical library for simulating open quantum systems, written in
and for the Julia programming language. It is developed by the CQED group at the Institute for
Theoretical Physics of the University of Innsbruck.
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SDE trajectories starting at x′ and finishing at x.

Analogously to the transition probability, there exists an integral kernel for

evolving the density matrix symbol. Using the star product integral trikernel one

could construct an exact expression for it in terms of symbols of Kraus operators,

but from the perspective of Truncated Wigner it is again simply given by sets of

trajectories with fixed initial and final points. Denoting this kernel by K , we may

write an analogous expression for the time-correlation function of two operators:

⟨O1(t1)O2(t2)⟩

=
∫
dµj(m)dµj(n)dµj(k)O1(n) ⋆ [K(n,m; t1 − t2)O2(m) ⋆ [K(m,k; t2)P (k)]] .

(23.22)

Here the product between operators and all preceding terms is now a star prod-

uct, and therein lies the problem. Expanding the star product in a series will give

the normal probabilistic expression as the classical limit, but will now contain

extra terms at higher orders. These arise from the ‘back action’ of quantum mea-

surements on the quantum state, and may be modelled by introducing jumps to

the trajectories at the times of measurement [27]. The time symmetric ordering

we encountered in Part Ib is in fact a special ordering for bosonic theories that

cancels out these back action terms, leaving only the classical expression, and

thus allowing for conventional averaging over trajectories. Because the observ-

ables of the spin theory are not the canonical position and momentum of the spin

Poisson bracket, the time symmetric ordering does not trivially carry over and I

do not currently know if an analogous ordering exists. Due to these difficulties, in

this part we will restrict ourselves to spatial-correlation functions once we move

onto lattice models in the next chapter.

23.4 Spin-10 Simulation

The simulation for spin-10 was run with ∆̃ = J̃ = 10, initialized in the |10,10⟩⟨10,10|
pure state. The attached plots demonstrate the evolution of the system obtained

with the stochastic method compared to direct integration using QuantumOp-

tics.jl [26].

For the stochastic method, 30 instances of the average Sz are calculated, each

over n trajectories with n = 100, 500, 1000, 2000, 4000, 8000 to show stochastic

convergence. The plots on the left show the average of these means together

with the maximum and minimum deviations of them from it as compared to the

directly integrated solution labelled E.S..
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Figure 23.1: Evolution of the spin-10 LMG model using the stochastic Truncated
Wigner method and QuantumOptics.jl, the latter labelled E.S. for exact solution. The
time axis has been normalized to final time 1 for plotting, with the actual final time
being 0.1.
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We see that at the initial time the method is exact, meaning the sign-weighted

sampling from the non-positive function works correctly (though for j = 10 the

function is almost positive, so a better demonstration will be the case of j = 1
2 ).

Furthermore, as the number of trajectories increases, the overall mean and its

maximum deviations tightly converge to the directly integrated solution.

This may be seen in more detail in the middle and rightmost plots: the mid-

dle show the empirical standard deviations of the mean and that its maximum

deviation remains within two or three standard deviations, while the rightmost

compare the deviation of the directly integrated solution from the mean against

the standard deviations. From the plots on the right we see that at long times

there is clearly a systematic difference between the stochastic solution and the

directly integrated one. For spin-10, however, this deviation is on the order of

2–3% of the final equilibrium value of the observable, suggesting the method is

comparatively accurate for high spin values as expected.

There are two ways to understand this good behaviour for large spins besides

the obviously improved accuracy of the series truncation. One is that the cor-

rect function space for all symbols in the spin-j theory is spanned by spherical

harmonics of order up to 2j, a constraint the Fokker-Planck equation does not

respect. Thus the larger this function space, the less serious the error introduced

by the stochastic evolution. The other is that the Fokker-Planck equation is gen-

erally only able to produce entirely positive equilibrium distributions3. For large

spins the pure spin states are almost entirely positive and so this does not pose

too much of an issue. The situation is rather different for smaller spins, as we are

about to see.

23.5 Spin-1
2 Simulation

We repeat the simulation of the previous section for the same parameters, num-

ber of trajectories, and so on but with j = 1
2 and initial state |12 ,

1
2⟩⟨

1
2 ,

1
2 |. For

this spin we have S2
x ∝ I and so it is easy to see that minimum weight state

|12 ,−
1
2⟩⟨

1
2 ,−

1
2 | is the steady state (this was not so for spin-10).

Inspecting the corresponding plots, stochastic convergence occurs at the same

rate as for spin-10 with the standard deviation of the mean decaying by a factor

of 10 between 100 and 8000 trajectories. In this case, however, the mean given by

the stochastic method does not converge onto its directly integrated counterpart,

with a clear systematic error of approximately 16%. The reason for this is easy to

see if one plots the minimum weight pure state symbols for spin-10 and spin-1
2

side by side:

3One could in principle engineer an equation with multiple steady states and then construct
the positive and negative restrictions of a density symbol to converge to different ones, but this
would be rather artificial.
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Figure 23.2: Evolution of the spin-1
2 LMG model using the stochastic Truncated Wigner

method and QuantumOptics.jl, the latter labelled E.S. for exact solution. The time axis
has been normalized to final time 1 for plotting, with the actual final time being 0.1.
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Figure 23.3: Symbol of the pure state
|10,−10⟩⟨10,−10|.
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Figure 23.4: Symbol of the pure state
|12 ,−

1
2⟩⟨

1
2 ,−

1
2 |.

While the spin-10 symbol is essentially entirely positive and could be easily

reproduced as the stationary distribution of a Fokker-Planck equation (though it

is not the stationary distribution in our case), the spin-1
2 symbol has a substantial

negative portion for small θ. The effect of this is to push the expectation of Sz
to be even smaller than a purely positive distribution concentrated at large θ,

and this is exactly the effect we see in our plots: the stochastic simulation, which

can only produce a positive distribution, does not achieve a sufficiently negative

value of ⟨Sz⟩ in equilibrium.

Nevertheless, despite this systematic error, the simulation has captured the

correct phenomenological behaviour even for a small spin, despite the truncation

of the star product expansion being strictly valid in the high spin limit. In the

next chapter we will see that this trend continues for significantly more compli-

cated spin lattice models: despite the spin-1
2 being seemingly incompatible with

the truncation, broadly correct results are obtained regardless for both macro

observables and correlation functions.
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Chapter 24

Driven-Dissipative Anisotropic XY
Model

In this chapter we will apply the stochastic Truncated Wigner method to spin

lattice models. Certain considerations relating to convergence rates and the pos-

sibility of sampling from non-negative initial distributions must be taken into

account when transitioning from a single spin to a large lattice, and these are

discussed in Appendix F. For the simulations performed in this chapter I ac-

knowledge the use of the UCL Kathleen High Performance Computing Facility

(Kathleen@UCL), and associated support services.

For our purposes the driven-dissipative anisotropic XY model is the spin-1
2

lattice model with cyclic boundary conditions defined by

HXY =
ℏ

2

z

∑
j,k

J(j,k)
(
S+
j S

+
k + S−j S

−
k

)
, (24.1)

Lρ = −i[HXY ,ρ] + Γ ℏ2
∑
j

(
S−j ρS

+
j −

1
2
{S+
j S
−
j ,ρ}

)
, (24.2)

∂tρ =
1
ℏ

Lρ. (24.3)

once again we wish to work with a dimensionless equation, so observe that Γ ℏ is

a frequency and define the dimensionless time τ = tΓ ℏ. Then, defining J̃(j,k) =
J(j,k)
Γ

,

∂τρ = − i
z

∑
j,k

J̃(j,k)
(
S+
j S

+
k + S−j S

−
k

)
,ρ

+
∑
j

(
S−j ρS

+
j −

1
2
{S+
j S
−
j ,ρ}

)
. (24.4)
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Supposing that there are N = n2 spins arranged in a square lattice according to

n



n︷                                                       ︸︸                                                       ︷
1• 2• 3• · · · n−2• n−1• n•
n+1• n+2• n+3• · · · 2n−2• 2n−1• 2n•

2n+1• 2n+2• 2n+3• · · · 3n−2• 3n−1• 3n•
...

...
...

. . .
...

...
...

n(n−1)+1
•

n(n−1)+2
•

n(n−1)+3
• · · · n2−2• n2−1• n2

•

(24.5)

with the corresponding vector of coordinates ordered as (θ1,φ1,θ2,φ2, . . . ,θn2 ,φn2),

and defining

S =
√
j(j + 1), (24.6)

λ = 2Sϵ, (24.7)

as before, we find the following block-diagonal diffusion matrix:

D =
λ2

2



1 0

0 cot2θ1
0 0 0

0
1 0

0 cot2θ2
0 0

0 0 . . . 0

0 0 0
1 0

0 cot2θn2



. (24.8)

We also the drift vector, which may be represented as the sum of a vector µD
coming from the dissipator and a vector µH coming from the Hamiltonian:

µD = λ



λ
2 cotθ1 +S sinθ1

0
...

λ
2 cotθi +S sinθi

0
...


, µH = −2

z
Sλ



∑
j,1
J̃(1, j)sinθj sin(φ1 +φj)∑

j,1
J̃(1, j)cotθ1 sinθj cos(φ1 +φj)

...∑
j,i
J̃(i, j)sinθj sin(φi +φj)∑

j,i
J̃(i, j)cotθi sinθj cos(φi +φj)

...


(24.9)

We observe that, as before, the dissipation µD vector serves to yield Bessel Process

dynamics near the singular points of the coordinate chart, preventing trajectories
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from reaching these points.

Here z is a normalizing constant associated with the range of the interaction

J̃(j,k). If we split up J̃(j,k) as a constant J̃ and range function r(j,k) such that

J̃(j,k) = J̃ · r(j,k), taking a spin i in the middle of the lattice and defining z as

z =
1
2

∑
j,i

r(i, j) (24.10)

allows the mean field phase transition points of this model (to be described mo-

mentarily) to depend only on J̃ and not the range function of the interaction in

the thermodynamic limit. For nearest-neighbour interactions the above defini-

tion gives z as simply the coordination number divided by two.

The mean field equations of this model are given by (extended to ranged in-

teractions from Ref. [28]):

d⟨Sxi ⟩
dt

= −1
2
⟨Sxi ⟩ −

2J̃
z

∑
j,i

r(i, j)⟨Szi ⟩⟨S
y
j ⟩, (24.11)

d⟨Syi ⟩
dt

= −1
2
⟨Syi ⟩ −

2J̃
z

∑
j,i

r(i, j)⟨Szi ⟩⟨S
x
j ⟩, (24.12)

d⟨Szi ⟩
dt

= −(⟨Szi ⟩+
1
2

) +
J̃
z

∑
j,i

r(i, j)
(
⟨Sxi ⟩⟨S

y
j ⟩+ ⟨S

y
i ⟩⟨S

x
j ⟩

)
. (24.13)

For small J̃ the equations have a single stationary point at ⟨Sxi ⟩ = ⟨Syi ⟩ = 0 and

⟨Szi ⟩ = −1
2 . This is referred to in [28] as the paramagnetic phase. If for every i

we consider a solution ⟨Sxi ⟩ = ⟨Syj ⟩, ⟨S
x
j ⟩ = ⟨Syi ⟩ for r(i, j) , 0, we see that solutions

of this form appear at J̃ = 1
4 while the paramagnetic solution becomes unstable.

Thus, in the thermodynamic limit there is a phase transition at J̃ = 1
4 if no other

solutions appear. This is the case for nearest neighbour interactions [28] and ‘infi-

nite range’ interactions (r(i, j) = const on a finite lattice, since the thermodynamic

limit is not defined in this case) [29]. Between these extremes detailed analysis

of the mean field unfortunately appears to not exist in the literature, but it is ev-

ident that once destabilised the paramagnetic phase should remain unstable in

favour of either the phase described above or some other phase for all J̃ ≥ 1
4 .

The invaluable feature of the anisotropic XY model is that the true behaviour

disagrees with the mean field. For nearest neighbour interactions one finds that

no ordered phase and thus no phase transition at all [30], [31], while for an al-

gebraically decaying interaction the phase diagram is more complicated than the

mean field prediction [32]. This presents an opportunity to demonstrate that my

method goes beyond the mean field, correctly identifying these phase diagrams

and giving phenomenologically correct correlation functions in disordered and

ordered phases.
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24.1 Nearest Neighbour Interactions

In this case r(i, j) = 1 if |i − j | = 1 and = 0 otherwise. For this system the mean

field phase diagram consists of the paramagnetic phase below J̃ = 1
4 and a ‘stag-

gered XY’ phase [28] above that. The latter fits our categorization in the previous

section, consisting of two chequerboard sub-lattices A and B such that SxA = S
y
B

and S
y
A = SxB. This means that spins on the A sub-lattice will form some angle

θ with the x = y direction while those on the B sub-lattice will form −θ. This

corresponds to a breaking of the global U(1) symmetry of the system given by

S+
i → eiθ, S−i → e−iθ, S+

j → e−iθ,S−j → eiθ for i ∈ A, j ∈ B.

Since in finite spin systems spontaneous symmetry breaking cannot occur

[33], we expect the steady state to have Sx =
∑
i S

x
i = 0 and Sy =

∑
i S

y
i = 0 in

the absence of an external symmetry breaking field. Indeed, when modelled by a

Fokker-Planck equation, the steady state is expected to correspond to a uniform

probabilistic mixture of the symmetry broken states. We will thus focus on ob-

servables that are predicted to be non-zero even in this mixture, starting with

the macroscopic Sz =
∑
i S

z
i magnetization and the macroscopic product SxSy .

The latter is, as I will momentarily demonstrate, predicted to exhibit fairly large

values in the mixture steady state despite not being U(1) invariant.

24.1.1 Macroscopic Sz Magnetization

Throughout this section a 20×20 lattice of spin-1
2 particles is simulated for time

τ = [0,30] (except when stated otherwise). Due to an error in the code describing

the initial distribution, its form does not admit a simple description (the code

generating it is preserved). Nevertheless, the simulation is run for long enough

for convergence to be observed in the expectations under investigation, and the

system converges to a state with Sx = Sy ≈ 0 as expected1. Values for ⟨Sz⟩ in the

thermodynamic limit were calculated in [34] for a range of J̃ , and these literature

values were reproduced for me using tensor network code inherited from that

work by group member Jack Dunham. Fig. 24.1 is a plot of the stochastic method

result in blue, the tensor network one in red, and the mean field in green. The

exact equation for the mean field is worked out below, and I have normalized the

plot to magnetization per spin (with N = 400 spins). The blue stochastic plot has

errors bars, estimated by empirically calculating the standard deviation of the

mean over 80 trajectories from 100 such batches and then extrapolating to 8000

trajectories, but they are so small so as to be invisible.

1Since we are interested exclusively in the unique steady state, the precise nature of the initial
distribution, and thus the coding error, are irrelevant.
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Figure 24.1: 1
N ⟨S

z⟩ for the nearest neighbour anisotropic XY model with 8000
trajectories2in blue, tensor networks results based on [31] in red, MF in green.

Near to the paramagnetic phase we observe an expected overshoot of the true

value by the stochastic method due to the inability of the Fokker-Planck equation

to accurately represent a pure spin down state that we saw in the previous chap-

ter (or a tensor product of such states). It is less clear what causes the reversal of

the trend and undershoot for higher J̃ but, outside of the reversal region, the sys-

tematic error appears roughly constant at 0.04–0.05. While this error evidently

becomes quite large as a relative error as Sz decreases for larger J̃ , it remains on

the order of 20% or less up to J̃ = 0.6, well past the mean field transition point,

and the curves are visually quite close. It is interesting that the method appears

to under-perform the mean field for higher J̃ due to the systematic error but does

better for lower J̃ , correctly capturing the smooth increase in ⟨Jz⟩ below the tran-

sition point compared to the sharp behaviour of the mean field.

24.1.2 Macroscopic SxSy Magnetization

Next, the observable ⟨SxSy⟩ is a good measure of whether the staggered XY phase

exists. To see this, we work out the mean field values for the macroscopic observ-

ables in a given symmetry broken state parametrised by the deflection of its A

sub-lattice spins from Sx = Sy by angle θ (here N is the number of spins in the

2During these simulations, difficulties with the cluster file system meant that some data files
were corrupted. As such, in some cases there are up to 20% fewer trajectories than stated. The
error bars in the plot account for this.
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lattice):

⟨Sz⟩ = −N
8J̃
, s =

√
⟨SxA⟩2 + ⟨SyA⟩2 =

√
⟨SxB⟩2 + ⟨SyB⟩2 =

N
2

√
1
4J̃
− 1

16J̃2
, (24.14)(

⟨SxA⟩ ⟨S
y
A⟩

)
=

(
scos

(
π
4 +θ

)
s sin

(
π
4 +θ

))
, (24.15)(

⟨SxB⟩ ⟨S
y
B⟩

)
=

(
s sin

(
π
4 +θ

)
scos

(
π
4 +θ

))
. (24.16)

If we assume the system to be in a uniform classical probabilistic mixture over the

symmetry broken states (the approximate expected behaviour of the FP equation

in the steady state if the staggered phase exists), then ⟨SxSy⟩ should be given by

⟨SxSy⟩ =
s2

π

∫ π

0
dθ

(
cos

(π
4

+θ
)

+ sin
(π

4
+θ

))2
= s2. (24.17)

Plotting s2 against results obtained via the Truncated Wigner simulations, the fit

is fairly poor. While the functional form of s2 matches the data well, the mag-

nitude of the values obtained via simulation is suppressed by approximately 80

times relative to the s2 values.
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Figure 24.2: Plot of stochastic expectation of ⟨SxSy⟩ in blue against s2

80.957 for N = 400
and 8000 trajectories3, showing a roughly 98% suppression in the expectation (fitted
numerically) relative to the mean field result.

The staggered XY phase is thus clearly heavily suppressed, as predicted by

[30], [31].

3During these simulations, difficulties with the cluster file system meant that some data files
were corrupted. As such, in some cases there are up to 20% fewer trajectories than stated. The
error bars in the plot account for this.
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24.1.3 Sxi S
x
j , Syi S

y
j , and Szi S

z
j Correlations

We may confirm the suppression of the staggered XY phase by considering the

correlation functions of the system. The mean-field prediction for these (symmet-

ric in i, j) quantities in the uniform probabilistic mixture over symmetry-broken

states is

⟨Sxi S
x
j ⟩ = ⟨Syi S

y
j ⟩ =


1
π

∫ π
0
dθ 4s2

N2 cos2
(
π
4 +θ

)
= 2s2
N2 if i, j ∈ A or i, j ∈ B,

1
π

∫ π
0
dθ 4s2

N2 sin
(
π
4 +θ

)
cos

(
π
4 +θ

)
= 0 if i ∈ A,j ∈ B,

(24.18)

⟨Szi S
z
j ⟩ =

1
64J̃2

. (24.19)

This indicates a chequerboard pattern in the ⟨Sxi S
x
j ⟩ and ⟨Syi S

y
j ⟩ functions, with

sites totally uncorrelated if they are on different lattices and possessing positive

correlation independent of distance between them if they share a lattice. The

function ⟨Syi S
y
j ⟩ is simpler, exhibiting a simple constant correlation independent

of distance.

Computing these functions for J̃ = 0.3, a value inside the mean field staggered

XY phase, yields the diagrams

Figure 24.3: log⟨Sxi S
x
j ⟩ of the nearest neighbour anisotropic XY model for N = 400,

J̃ = 0.3, and 50560 trajectories (also averaged over the lattice), displaying a distinctive
chequerboard pattern and exponential decay.
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Figure 24.4: log⟨Syi S
y
j ⟩ of the nearest neighbour anisotropic XY model for N = 400,

J̃ = 0.3, and 50560 trajectories (also averaged over the lattice), displaying a distinctive
chequerboard pattern and exponential decay.

for ⟨Sxi S
x
j ⟩ and ⟨Syi S

y
j ⟩. While these clearly display the predicted chequerboard

pattern, the correlation function is highly dependent on distance between sites.

Indeed, plotting it for i, j in the same sub-lattice (for different sub-lattices it is

effectively zero, as predicted by the mean field) and only those points where it ex-

ceeds its empirically estimated standard deviation, we find an exponential decay

law ⟨Sxi S
x
j ⟩ ≈ 0.21e−r/0.57 for r =

√
i2 + j2 the Euclidean distance on the lattice.
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i2 + j2
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Figure 24.5: log⟨Sxi S
x
j ⟩ of the nearest neighbour anisotropic XY model for N = 400,

J̃ = 0.3, and 50560 trajectories (also averaged over the lattice), plotted for i, j in the same
sub-lattice as a function of Euclidean distance r =

√
i2 + j2. The data is well-fitted by an

exponential decay law ⟨Sxi S
x
j ⟩ ≈ 0.21e−r/0.57.

By rotational symmetry the same scaling should hold for ⟨Syi S
y
j ⟩ (and this is
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clear from the plots). It is not immediately clear why some points deviate from

the fitted line by significantly more than their standard deviations. This could

be due to values of the function in the exponential tail being so small4 as to be

affected by the system being almost but still not entirely converged to the steady

state in finite time, but this requires further investigation. Furthermore, while

the method recovers the correct form for the correlation function, its estimate for

the Euclidean correlation distance of ξ = 0.57 differs from the estimate of ξ = 0.93

obtained for the same parameters in Ref. [31] via tensor network methods. Likely

this is again a consequence of the true steady state not being an everywhere pos-

itive probability density, and thus approximation of it by the latter introducing

errors to its correlation structure.

Since ⟨Szi ⟩ is non-zero and in good agreement with the mean field (see Fig. 24.1),

the ⟨Szi S
z
j ⟩ correlation function will also be in good agreement with the mean

field. We may instead explore ⟨Szi S
z
j ⟩ − ⟨S

z
i ⟩⟨S

z
j ⟩, the correlation function of fluc-

tuations around the mean of Szi , which displays no particular structure beyond

also decaying exponentially with Euclidean distance (faster, in fact, than ⟨Sxi S
x
j ⟩

and ⟨Syi S
y
j ⟩, with ξ ≈ 0.27, which makes sense since its mean field value is 0).

Figure 24.6: log(⟨Szi S
z
j ⟩ − ⟨S

z
i ⟩⟨S

z
j ⟩) of the nearest neighbour anisotropic XY model for

N = 400, J̃ = 0.3, and 50560 trajectories (also averaged over the lattice), displaying faster
exponential decay than log⟨Sxi S

x
j ⟩ and log⟨Syi S

y
j ⟩.

4Indeed, to achieve sufficient resolution to resolve the exponential tail over 8 times the number
of trajectories were required compared to macroscopic observables, and the function then had to
also be averaged over the lattice. The exceptionally rapid decay of the exponential tail generally
makes it a challenge to estimate using Monte Carlo methods, since the latter only polynomially
improves in accuracy with trajectory number.
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24.1.4 Vortex Formation

Finally, we can analyse the mechanism by which the staggered XY phase is sup-

pressed. As noted earlier, the system exhibits a continuous U(1) symmetry, with

the symmetry-broken phases parametrized by the angle 2θ, θ ∈ [0,π] between

spin vectors of the two sub-lattices in the Sx-Sy plane. The topological defects

supported by a field theory exhibiting symmetry-breaking are fixed by the non-

trivial homotopy groups of the vacuum manifold, which is the quotient of the

broken symmetry group by the symmetry group under which the symmetry-

broken states are still invariant [35]. In this case the vacuum manifold is sim-

ply U(1)/1 and is homeomorphic to S1, meaning its non-trivial homotopy group

is π1(S1) = (Z,+): a field theory with such a vacuum manifold should support

vortex defects. In [30] the universality class of the field theory corresponding to

the bosonized form of the nearest neighbour interaction anisotropic XY model

was identified via a renormalization group analysis to be that of the classical XY

model. Systems in this universality class exhibit a vortex-induced BKT transition

[36]–[38] at some effective critical temperature, with long range order below it

and a disordered phase above.

Importantly, a mean field analysis in Ref. [30] also found that the effective

temperature of the field theory was always higher than the critical temperature

of the associated BKT transition, meaning that the long range order of the stag-

gered XY phase is expected to be destroyed by vortex formation. Because my

stochastic method has direct access to the φ variable associated with orientation

in the Sx-Sy plane and is capable of producing single-shot trajectories, it is fairly

easy to observe these vortices . For a given trajectory at every moment in time one

constructs the lattice of edge midpoints of the original lattice (from now on re-

ferred to as the midpoint lattice), assigns to each site of this lattice the difference

between the φ of B and A sub-lattice vertices of that edge, and then calculates

winding numbers around the plaquettes of this lattice. The final result is a lat-

tice of plaquettes with associated winding numbers (the plaquette lattice). This

way of identifying vortices will only find those with winding number ±15, but

these are the only ones expected to contribute to the BKT transition [39].

The axes of the plaquette lattice are unfortunately not aligned with those of

the spin lattice, being offset by π/4. Performing this rotation, however, causes

the finite lattice to no longer be a square, necessitating its embedding in a larger

square for the purposes of plotting. Adjusting for this, it is possible to plot the

plaquette lattice for trajectories initialized with no vortices after a time greater

than is required for the system to converge to the steady state. Plots of the lattice

for four such trajectories are provided below.

5On a square lattice it is difficult to distinguish between higher winding number vortices and
clusters of the ±1 ones [39].
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(a) 55 vortex/anti-vortex pairs (b) 58 vortex/anti-vortex pairs

(c) 64 vortex/anti-vortex pairs (d) 60 vortex/anti-vortex pairs

Figure 24.7: Vortex lattices (rotated by π/4 anticlockwise relative to the spin lattice) of
single shot trajectories for J̃ = 0.5, initialized with no vortices and evolved for τ = 30.
The lattices are labelled by the vortex (in yellow)/antivortex (in black) pairs present.

Figure 24.8: Average number of vortex/antivortex pairs for 5600 trajectories and
J̃ = 0.5. Vortex formation appears to occur on two different time scales, with an initial
rapid increase followed by slower saturation.

Vortex proliferation is clearly observed, with an average (over 400 trajecto-

ries) of 57 vortex pairs, which is roughly 15% of the available plaquettes. We



314 CHAPTER 24. DRIVEN-DISSIPATIVE ANISOTROPIC XY MODEL

may also observe the evolution of vortex pair number with time in Fig. 24.8, not-

ing that this appears to exhibit two different time-scales: there is rapid initial

increase in number, followed by a slower saturation. This appears to confirm the

argument of [30] for vortex formation as the mechanism for staggered XY phase

suppression.

This concludes the present analysis of the nearest neighbour interaction model,

confirming that the method gives reasonably accurate estimates for macroscopic

expectation values, identifies the suppression of the staggered XY phase through

the former and the system correlation functions (thus going beyond the mean

field) and is also capable of studying the associated vortices.

We now move onto algebraically decaying long range interactions, for which

phases with algebraic long range order do appear to exist.

24.2 Algebraically Decaying Interactions

We consider now a range function of the form

r(i, j) =
1

|i − j |α
, (24.20)

which we refer to as algebraically decaying interactions. In 2 dimensions, α ≤ d
yields what are known as strong long range interactions, meaning that interac-

tion energies of subsystems with the bulk are no longer negligible with respect

to their internal energies [40]. This leads to difficulties with conventional defi-

nitions of thermodynamic quantities like internal energy and entropy becoming

non-extensive, and also means the system is acutely sensitive to its boundary con-

ditions [41]. Such systems may be regularized by means of what is known as the

Kac prescription [42], which in our case amounts to z scaling asO((N
1
d )d−α). This

preserves the non-extensive properties of the system while ensuring that various

quantities remain finite.

Due to the significant sensitivity of this regime to the system’s boundary con-

ditions and because in this case J̃
z → 0 as N →∞, meaning the mean field disor-

dered phase essentially vanishes in thermodynamic limit, I will not extensively

explore it here. Much of the focus will be instead be on α > 2, for which z con-

verges to a finite value as N →∞.

As before, the mean field equations predict a second order phase transition

at J̃ = 1
4 from a paramagnetic phase to one exhibiting order in the Sx-Sy plane.

For the present interactions the system no longer possesses an obvious U(1) sym-

metry associated with the sub-lattices, but still retains a Z2 symmetry associated

with inverting the signs of all Sxi , Syi . For α = 0 in finite systems this corresponds

to classical bistability between states with Sx = Sy > 0 and Sx = Sy < 0, referred to
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as the ferromagnetic phase [29], and the mean field predicts this basic structure

for all α, though I am unaware of specific mean field results in the literature for

0 < α; Nevertheless, the basic prediction is that of a single phase transition.

In contrast to this, numerical investigations [32] using the discrete Truncated

Wigner method have identified a second phase transition for α > 2: for suffi-

ciently large J̃ it is possible to transition out of the ferromagnetic phases back

into the paramagnetic regime. Moreover, the above mean field description says

very little about the actual structure of the ferromagnetic phase compared to the

nearest neighbour interaction case where a detailed description in terms of ori-

ented sub-lattices was available. This system is thus an interesting candidate for

further investigation with my method, especially since long range interactions

are easy to encode using Truncated Wigner in particular.

To study the ferromagnetic phase boundary we may consider the macroscopic

magnetization ⟨SxSy⟩, which we expect to be non-zero for a uniform probabilistic

mixture of the ferromagnetic states since it is invariant under Z2. Plotting the

value of this observable over a grid of (J̃−1,α) allows the creation of a heatmap

akin to the one presented in [32].

Figure 24.9: ⟨SxSy⟩ for the algebraically decaying interaction anisotropic XY model,
N = 400, τ = 40, and 109 parameter combinations using 30 trajectories each. The
observable takes on macroscopic value in a significant portion of the phase diagram,
indicating the presence of an ordered phase.
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We may investigate further by restricting to the α = 1 and α = 3 cross-sections

of this plot and using larger numbers of trajectories for greater precision. Since

we do not have the precise form of the mean field solution for arbitrary α, we

cannot make the same type of comparison that we did in Fig. 24.2. Nevertheless,

we find that inside the ferromagnetic phase ⟨SxSy⟩ is on the order of the nearest

neighbour mean field prediction inside the staggered phase, suggesting order is

not suppressed.

Figure 24.10: ⟨SxSy⟩ for the algebraically decaying interaction anisotropic XY model,
N = 400, τ = 40, α = 1, and 2000 trajectories. The observable exhibits significant growth
after the thermodynamic limit phase transition point J̃ = 1/4, clearly being
unsuppressed.

Figure 24.11: ⟨SxSy⟩ for the algebraically decaying interaction anisotropic XY model,
N = 400, τ = 40, α = 3, and 2000 trajectories. The observable exhibits significant growth
after the thermodynamic limit phase transition point J̃ = 1/4, clearly being
unsuppressed. Moreover, above J̃ = 0.847 it begins to decay, agreeing with the
appearance of a second phase transition in Ref. [32] for α > 2.
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Focusing on α = 3, we may verify the presence of long range order in the fer-

romagnetic phase by again considering the correlation functions of the system6

Figure 24.12: log⟨Sxi S
x
j ⟩ for the algebraically decaying interaction anisotropic XY model,

N = 400, τ = 80, J̃ = 0.847, and 16k trajectories, displaying slow algebraic decay.

Figure 24.13: log⟨Syi S
y
j ⟩ for the algebraically decaying interaction anisotropic XY model,

N = 400,τ = 80, J̃ = 0.847, and 16k trajectories, displaying slow algebraic decay.

6The central point in each plot should be ignored since the colour scheme has been truncated
to better show the rest of the scaling.
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Figure 24.14: log(⟨Szi S
z
j ⟩−⟨S

z
i ⟩⟨S

z
j ⟩) for the algebraically decaying interaction anisotropic

XY model, N = 400, τ = 80, J̃ = 0.847, and 16k trajectories, displaying exponential decay.

Fewer trajectories are currently available for these than for the nearest neigh-

bour interactions model, and it appears that the convergence time increases sig-

nificantly inside the ferromagnetic phase: I have had to use τ = 80 compared

to τ = 40 for the previous plots to achieve comparatively satisfactory conver-

gence. These considerations likely account for the small difference between the

log⟨Sxi S
x
j ⟩ and log⟨Syi S

y
j ⟩ plots. As before, log(⟨Szi S

z
j ⟩−⟨S

z
i ⟩⟨S

z
j ⟩) displays exponen-

tial decay. Fitting log⟨Sxi S
x
j ⟩ , however, now gives a good with power law decay:
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Figure 24.15: log⟨Sxi S
x
j ⟩ for the algebraically decaying interaction anisotropic XY model,

N = 400, τ = 80, J̃ = 0.847, and 16k trajectories (also averaged over the lattice), plotted
as a function of Euclidean distance r =

√
i2 + j2. The data is well-fitted by two different

power laws, ∼ r−0.217 and ∼ r−0.0707.

Curiously there appear to be two different power law regimes. This is possibly
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a finite size effect7 or alternatively the decay obeys a more complicated functional

form (from the plots we see a depletion in the correlation functions at short dis-

tances). This is a direction requiring further investigation, with more trajectories

required for better resolution and longer running times to ensure convergence is

sufficient to extract very accurate functional forms. Larger lattice sizes should

also be considered to confirm or the refute the presence of finite size effects. Nev-

ertheless, this is indicative of long range order.

Thus, the stochastic method agrees with [32] about the existence of an or-

dered ferromagnetic phase for the long range interaction anisotropic XY model,

and we have been able to calculate macroscopic magnetizations and correlation

functions indicating its existence and some of its properties. Since second or-

der phase transitions are present in this model, and interesting further direction

would be to probe the system in their vicinity, potentially again using single shot

trajectories to probe their mechanisms.

7A power law subject to an infrared cut-off (the truncation of its low frequency Fourier modes
or, equivalently, the introduction of a finite volume) transforms into a slower exponential decay.
The cross-over to a slower decay near the system boundary could thus plausibly be related to this.
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Chapter 25

Conclusion

In this part I have developed a stochastic Truncated Wigner method for spin sys-

tems based on a consistent truncation in ℏ of the Stratonovich-Weyl correspon-

dence for the latter. The method may be applied to particles of spin other than
1
2 simply by varying a continuous parameter j, and is truncated in the same pa-

rameter as conventional bosonic Truncated Wigner, meaning the two methods

may be easily integrated at the same order of semiclassical accuracy. Finally, the

method utilises a continuous phase space, meaning it preserves the geometric

structure of the theory and gives an easy way to extract quantities like phase

winding numbers.

The method has been tested on a single Lipkin-Meshkov-Glick spin to study

its behaviour for large and small spin numbers. This was achieved via an ap-

proach allowing for the sampling from a non-positive initial Wigner function

so long as the dimension of the phase space is not too great. Results confirmed

that the method is highly accurate for large spin numbers (consistent with this

yielding a small truncation parameter) but experiences increasing systematic er-

ror for smaller ones. Nevertheless, the observable under consideration, Sz, still

exhibited correct overall behaviour for spin-1
2 , the worst case scenario, and the

systematic was on the order of 16%.

Moving to larger lattice models, the nearest neighbour and algebraically de-

caying interactions anisotropic XY models were considered: the method was able

to efficiently simulate both types of interactions for a comparatively large square

lattice of N = 400 spins. For the nearest neighbour interactions model, strong

suppression of the mean field-predicted staggered XY phase was confirmed, with

the observable ⟨SxSy⟩ exhibiting its mean field functional form but with signifi-

cantly reduced magnitude, and ⟨Sxi S
x
j ⟩ and ⟨Syi S

y
j ⟩ correlation functions exhibit-

ing exponential decay rather than long ranger order. Furthermore, the use of

single shot trajectories allowed for the observation of vortices in the staggered

XY phase, and the rate of vortex formation was also found. This gives support

to the suggestion of [30] that the staggered phase is suppressed by vortex prolif-

321
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eration associated to the BKT transition, and to my knowledge is the first direct

simulation observation of this occurring.

In the case of long range interactions, the ferromagnetic phase identified in

[32] was found, with the observables ⟨SxSy⟩, ⟨Sxi S
x
j ⟩, and ⟨Syi S

y
j ⟩ now indicating

order. The first now exhibited an unsuppressed magnitude (while also confirm-

ing the appearance of a second phase transition, agreeing with [32]), while the

latter appear to decay according to a power law (albeit with two distinct regimes).

This system appears well suited to study via both discrete Truncated Wigner and

my method, and offers a good avenue for further exploration. In particular, im-

proved estimates for the correlation functions in the ordered phase and observa-

tion of the mechanism associated with the second order phase transitions in this

system would be of great interest.

Overall, the method is clearly capable of capturing phenomena beyond the

mean field, appears to remain relatively accurate even for small spin values, and

is exhibits great flexibility with respect to the forms of interactions it can accom-

modate (indeed, I am unaware of any restrictions on the latter) and its ability

to directly integrate with bosonic Truncated Wigner. As such it is hoped that it

will be a valuable addition to the tools available for the study of non-equilibrium

spin-boson systems going forwards.



Appendix E

Fokker-Planck on the Sphere via
Conserved Quantities

E.1 Fokker-Planck in Different Coordinates [43]

Suppose we want to rewrite the Fokker-Planck equation

∂
∂t
P = − ∂

∂xi
(µiP ) +

1
2

∂2

∂xi∂xj
(D ijP ) (E.1)

in new coordinates x̄ (we shall restrict ourselves to time-independent coordinate

transformations). We know from basic probability that the density will transform

as

J =

∣∣∣∣∣∣det
∂xi

∂x̄j

∣∣∣∣∣∣ , (E.2)

P̄ = JP . (E.3)

Further, from Jacobi’s formula, we have

−1
J
∂J

∂xi
= −∂x̄

j

∂xl
∂

∂xi
∂xl

∂x̄j
=
∂xl

∂x̄j
∂

∂xi
∂x̄j

∂xl

=
∂xl

∂x̄j
∂

∂xl
∂x̄j

∂xi
=

∂

∂x̄j
∂x̄j

∂xi
.

(E.4)

We may use this to rewrite partial derivatives as

∂

∂xi
=
∂x̄j

∂xi
∂

∂x̄j
=

∂

∂x̄j
∂x̄j

∂xi
−
(
∂

∂x̄j
∂x̄j

∂xi

)
=

∂

∂x̄j
∂x̄j

∂xi
+

1
J
∂J

∂xi
=

1
J
∂

∂x̄j
∂x̄j

∂xi
J, (E.5)
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which also allows us to obtain a simple expression for repeated derivatives:

∂2

∂xi∂xj
=

1
J
∂

∂x̄k
∂x̄k

∂xi
J

1
J
∂

∂x̄l
∂x̄l

∂xj
J

=
1
J

∂2

∂x̄k∂x̄l
∂x̄k

∂xi
∂x̄l

∂xj
J − 1

J
∂

∂x̄k

(
∂

∂x̄l
∂x̄k

∂xi

)
∂x̄l

∂xj
J

=
1
J

∂2

∂x̄k∂x̄l
∂x̄k

∂xi
∂x̄l

∂xj
J − 1

J
∂

∂x̄k
∂2x̄k

∂xi∂xj
J.

(E.6)

Combining these results, this yields the following Fokker-Planck equation:

∂
∂t
P̄ = − ∂

∂x̄i
(µ̄i P̄ ) +

1
2

∂2

∂x̄i∂x̄j
(D̄ ij P̄ ), (E.7)

µ̄i =
∂x̄i

∂xj
µj +

1
2
∂2x̄i

∂xj∂xk
Djk , (E.8)

D̄ ij =
∂x̄i

∂xk
∂x̄j

∂xl
Dkl . (E.9)

E.2 Fokker-Planck Conserved Quantities [23]

E.2.1 General Theory

For a function Φ to be a conserved quantity, all of its moments must be zero (we

assume that P is zero on the boundary of the space):

d
dt

∫
dxf (Φ)P =

∫
dxf (Φ)

∂
∂t
P

=
∫
dxP

(
µi
∂Φ

∂xi
f ′(Φ) +

1
2
D ij

[
Φ

∂xi∂xj
f ′(Φ) +

∂Φ

∂xi
∂Φ

∂xj
f ′′(Φ)

])
(E.10)

The coefficients of f ′ and f ′′ must vanish independently, so that (recall that Bij is

positive semi-definite):

D ij ∂Φ

∂xi
∂Φ

∂xj
= 0 =⇒ D ij ∂Φ

∂xj
= 0, (E.11)

µi
∂Φ

∂xi
+

1
2
D ij Φ

∂xi∂xj
= 0. (E.12)

E.2.2 Radius as a Conserved Quantity

If Φ = r and we work in xi = (r,θ,φ), the conserved quantity equations reduce to

D ir = 0, (E.13)

µr = 0. (E.14)
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Because no derivatives with respect to r are now present in the Fokker-Planck

equation, there exist solutions of the form P (r,θ,φ) = S(θ,φ)δ(r − c), so that the

equation reduces down to the Fokker-Planck equation on the sphere very directly.

This means that, to write a Fokker-Planck equation on the sphere “extrinsi-

cally”, it is sufficient to augment the drift vector and diffusion matrix with some

zero entries as above to obtain the corresponding 3D Fokker-Planck equation

with radius as a conserved quantity.

E.3 Fokker-Planck→ Ito Mapping on a Sphere

Suppose one is supplied with a Fokker-Planck equation on a sphere

∂
∂t
P = − ∂

∂xi
(µiP ) +

1
2

∂2

∂xi∂xj
(D ijP ) (E.15)

with xi = (θ,φ). As discussed in the previous section, this can be augmented to a

3D equation with xi = (r,θ,φ) by extending D and µ via

D ir = 0, (E.16)

µr = 0. (E.17)

Denoting the 3D Cartesian coordinates by x̄i , we may use section E.1 to rewrite

the equation as

∂
∂t
P̄ = − ∂

∂x̄i
(µ̄i P̄ ) +

1
2

∂2

∂x̄i∂x̄j
(D̄ ij P̄ ), (E.18)

µ̄i =
∂x̄i

∂xj
µj +

1
2
∂2x̄i

∂xj∂xk
Djk , (E.19)

D̄ ij =
∂x̄i

∂xk
∂x̄j

∂xl
Dkl . (E.20)

From here we may construct the corresponding Ito process, denoting D̄ ij = σ̄ ik σ̄
j
l δ
kl ,

dx̄i = µ̄idt + σ̄ ij dW
j (E.21)
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in Cartesian coordinates. To return to polar coordinates, we may employ Ito’s

lemma:

dxi =
∂xi

∂x̄j
dx̄j +

1
2
∂2xi

∂x̄j∂x̄k
dx̄jdx̄k

=
(
∂xi

∂x̄j
µ̄j +

1
2
∂2xi

∂x̄j∂x̄k
σ̄
j
l σ̄

k
m δ

lm

)
dt +

∂xi

∂x̄j
σ̄
j
k dW

k

=
(
µi +

1
2

(∂xi
∂x̄j

∂2x̄j

∂xk∂xl
Dkl +

∂2xi

∂x̄k∂x̄l
D̄kl

))
dt + σ ij

∂xj

∂x̄k
dW k

=
(
µi +

1
2

(∂xi
∂x̄j

∂2x̄j

∂xk∂xl
+

∂2xi

∂x̄m∂x̄n
∂x̄m

∂xk
∂x̄n

∂xl

)
Dmn

)
dt + σ ij

∂xj

∂x̄k
dW k .

(E.22)

Here σ ij = ∂xi

∂x̄k
σ̄ kl

∂x̄l

∂xj
. Observing that

∂2xi

∂xk∂xl
= 0 =

∂

∂xk

(
∂xi

∂x̄j
∂x̄j

∂xl

)
=
∂xi

∂x̄j
∂2x̄j

∂xk∂xl
+

∂2xi

∂x̄m∂x̄n
∂x̄m

∂xk
∂x̄n

∂xl
, (E.23)

we find that

dxi = µidt + σ ij
∂xj

∂x̄k
dW k . (E.24)



Appendix F

Lattice Simulation Considerations

F.1 Monte Carlo Scaling in Higher Dimensions

In moving from a single or small group of spins to large lattice models, the ques-

tion of how the increase in phase space dimension affects the method arises.

While mapping from a Fokker-Planck equation to the associated SDE saves us

from the exponential explosion in simulation degrees of freedom, we are instead

faced with the requirement to compute integrals by Monte Carlo sampling with

stochastic trajectories. This has consequences for what can and cannot be done

as the dimension number grows.

It is not true, in general, that Monte Carlo is insensitive to dimension d be-

cause a random variable X’s variance may exhibit some scaling C(d) with it1 [44],

meaning that the standard deviation of the stochastic average computed with n

trajectories scales as (we are assuming X is sufficiently well behaved for the cen-

tral limit theorem to hold)

σX ≍
√
C(d)
n

. (F.1)

If C(d) grows sufficiently quickly with dimension, the number of trajectories n

required to obtain a given absolute accuracy may rapidly become untenable. For

spin observables, however, C(d) has a simple upper bound. Since the symbol of a

tensor product ofm elements of su(2), regardless of which lattice site each is asso-

ciated to, is bounded by Sm independent of dimension, its standard deviation will

always scale no worse than ≍
√
Sm/n. This means that, as the lattice is enlarged,

the number of trajectories required to achieve a given absolute accuracy for anm-

point correlation function will scale no worse than this dimension-independent

bound.

From the previous result, the worst case scaling for a macroscopic magnetiza-

tion composed of m total spin operators, such as ⟨Sz⟩, ⟨SxSy⟩ and so on, will be

1Here we should think of ‘physical’ random variables, such as position, total spin, or energy,
the form of which also changes with dimension and thus leads to the change in variance.
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σ ∼
√

(NS)m/n, where N is the lattice size. Here, then, the dimension does enter,

and for a fixed absolute error n must increase with it. Nevertheless, for extensive

quantities like ⟨Sz⟩ the expectation (if it is non-zero) will scale as ≍N , so that the

relative error will be
σSz

⟨Sz⟩
≍

√
S
Nn

. (F.2)

Thus a larger lattice actually improves the relative error of extensive quantities,

explaining why the empirical error bars we find for 1
N S

z of the anisotropic XY

model are so small: for spin-1
2 , N = 400, and 8000 trajectories, this estimate gives

a relative error of 0.05%, which is precisely the order of magnitude of those bars.

For m = 2, the scaling of quantities with N depends on the system correla-

tion functions. For very short range correlations, for instance, ⟨SxSy⟩ will scale

roughly as ≍ N , in the case of true long range order this could go up to ≍ N 2,

and algebraic long range order will give some power 1 < γ < 2, ⟨SxSy⟩ ≍ Nγ in

between. In the first case,
σSxSy

⟨SxSy⟩
≍

√
S2

n
, (F.3)

so that the relative error is independent of dimension, while for algebraic long

range order, we have
σSxSy

⟨SxSy⟩
≍

√
S2

Nγ−1n
, (F.4)

which improves with dimension but generally slower than for truly extensive

quantities. This agrees with the comparatively larger empirical error bars we see

for this observable for the anisotropic XY model.

We do not calculate any quantities with m > 2, but for those the scaling would

depend on m-point correlation functions, and for very short range interactions

could be as bad as
σ(S◦)m

⟨(S◦)m⟩
≍

√
Nm−2Sm

n
, (F.5)

making them very difficult to calculate with Monte Carlo.

The asymptotic behaviour of simulation times is comparatively simpler, being

evidently linear in the time for which the system is to be evolved and either scal-

ing as ≍ N (for interactions involving a finite number of lattice sites) or as ≍ N 2

(for long range interactions that cannot be effectively truncated, such as those

exhibiting algebraic decay). The latter scaling may be challenging for very large

lattices, but is nevertheless still polynomial with a not excessively high power.

There may of course be practical issues that are not covered by this analysis, such

as the finite memory (further graded by varying access times) available to clusters

used for simulation.
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F.2 Integrals of Powers of the Wigner Function

In this part we have been predominantly concerned with the calculation of op-

erator expectations wherein the operator and its symbol are known in advance.

Quantities such as the von Neumann entropy

S = −Tr[ρ logρ] , (F.6)

however, do not fit this characterisation because the operator logρ depends on

the density matrix itself, and must be considered separately.

For a function f (ρ) with a series expansion

f (ρ) =
∑
n

cnρ
n, (F.7)

the corresponding symbol will be given by a series expansion featuring the star

product:

Wf (ρ) =
∑
n

cnWρ ⋆ . . . ⋆ Wρ︸          ︷︷          ︸
n

. (F.8)

Since only a single star product may be omitted via the traciality postulate, expec-

tations of terms in this series for n > 2 have unwieldy interpretations as stochas-

tic averages. Using the star product trikernel it is in principle possible to write a

term such as

Wρ ⋆ . . . ⋆ Wρ︸          ︷︷          ︸
n

(F.9)

as a string of trikernel integrals averaged over n i.i.d. random variables dis-

tributed according to the stochastic approximation of Wρ. As I will now argue,

however, in high phase space dimensions this procedure is so unwieldy even for

n = 2 that in general the Truncated Wigner approximation is a very poor fit for

finding such quantities in lattice systems2.

For n = 2 we may, instead of omitting the star product, use our trikernel idea

above:

⟨ρ2⟩ =
∫
dµ(n)dµ(m)dµ(k)L(n,m,k)Wρ(m)Wρ(k). (F.10)

The structure of the trikernel and the standardization postulate mean that this is

equivalent to

⟨ρ2⟩ =
∫
dµ(m)dµ(k) Tr

[
∆(j)(m)∆(j)(k)

]
Wρ(m)Wρ(k), (F.11)

connecting it to the expression for fidelity in [45]. Thus the stochastic average of

2Nevertheless, it is viable for single and small spin systems.
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this quantity corresponds to the average of Tr
[
∆(j)(m)∆(j)(k)

]
over two indepen-

dent random variables distributed according to Wρ.

The problem is that for high phase space dimension this quantity becomes ex-

tremely peaked around m = k. For large j this occurs already for a small number

of spins (indeed for j =∞ it becomes the Dirac delta function), so let us consider

spin-1
2 . We will consider a simple numerical experiment to illustrate the issue.

Taking 1024 uniformly distributed samples from the phase space of a 400 spin

system, we find the following statistics for

Tr
[
∆(j)(m)∆(j)(k)

]
: (F.12)

The sample mean is found to be 9.8 ∗ 10−313. Eliminating the largest value from

the sample, however, reduces the sample mean to 9.6 ∗ 10−316, a change of three

orders of magnitude from one value. This instability of the sample mean is con-

firmed by the very large sample excess kurtosis value of 1019 (itself also unsta-

ble). In effect, the distribution of Tr
[
∆(j)(m)∆(j)(k)

]
in high dimensions becomes

fat-tailed3. This has severely detrimental implications for the convergence rate

of its average with the number of trajectories and the effect evidently becomes

worse with dimension (for N = 400 it is clearly already very bad). Thus, in gen-

eral, it is not expected that quantities of this type can be effectively calculated

with Truncated Wigner for large lattice systems. Obviously the situation would

be even worse for n > 2 and thus multiple trikernels.

This difficulty is not surprising given that, were we to remove the star prod-

uct using the traciality postulate rather than using the trikernel, we would find

ourselves calculating the collision entropy of the distribution. For distributions

on R
d with bounded support its estimation in high dimensions is known to be

difficult: the upper bound convergence rate given in [46] for their method, for in-

stance, isO(n−
2

3d ), which for even moderately large d is exceptionally slow. While

in our case for small j we have the advantage of the distribution being constrained

to a specific function subspace, the above arguments suggest this is not enough

to overcome the curse of dimensionality.

F.3 Sampling Non-positive Distributions

Large phase space dimensions also have negative implications for our ability to

sample from non-positive distributions. Recall that the basic idea amounts to

sampling from the absolute value of the distribution and then taking into ac-

count whether a trajectory came from the positive or negative portion when av-

eraging, including each with the associated sign. Suppose that, for a single spin

3Our numerical experiment demonstrates this for a uniform Wρ, but it is clear how this will
generally be the case due to how peaked the function is.
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distribution, the probability of a trajectory originating from the positive region

is p and from the negative 1 − p. Then, for N spins in a product state of that

distribution, these probabilities become [47] 1
2 + 1

2(2p − 1)N and 1
2 −

1
2(2p − 1)N .

For non-negligible p (so especially for small j) and large N these become almost

equal. For the spin-1
2 spin up state and N = 400, for instance,

ρ̄ 1
2
θ,φ) = sin(θ)

1∑
l=0

2l + 1
2

C
( 1

2 l
1
2 ) 1

2 0
1
2
Pl(cos(θ)), (F.13)

p ≈ 0.93, and the difference between these probabilities becomes ≈ 6·10−27. Then,

as the trajectories gradually converge to the same stationary distribution it would

take on the order of 1027 trajectories to accurately resolve this difference in prob-

abilities, which is evidently impractical.

The possibility of sampling from non-positive distributions thus appears re-

stricted to smaller collections of spins: for N = 50, for instance, the difference is

now around 10−3, and so can be resolved with thousands of trajectories. It may

thus be a better fit for spin chains than spin lattices.
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